1
|
Gurdita A, Kwiecien JM, Choh V. Development of a new surgical technique to infuse kynurenic acid to optic nerves in chickens for studying loss of myelination. Heliyon 2023; 9:e14361. [PMID: 36938412 PMCID: PMC10020079 DOI: 10.1016/j.heliyon.2023.e14361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/14/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Prolonged infusion of a high dose of kynurenic acid (KYNA) reduces the myelin content in the rat spinal cord with preservation of the axonal integrity and without inducing an inflammatory response. We hypothesized that subdural infusion of a high concentration of KYNA can induce myelin loss in the optic nerves (ONs) of chickens. However, existing methods to deliver agents to the ON are inefficient, unlocalized and provide only acute exposure. Thus, we developed a surgical approach for sustained delivery of KYNA to the chicken ON. In brief, the novel surgical technique, which does not include excision of the extraocular muscles, involves incision of the skin and underlying fascial sheath to access the optic nerve within the muscle cone, implantation of a catheter in the dura of the optic nerve, the other end of which exits the orbit under the skin. The catheter runs under the skin near the lateral canthus, over the ears to the back of the neck, where a second incision is made to both implant the osmotic pump and to attach the catheter to the osmotic pump. India ink was used to confirm prolonged sustained administration to the optic nerves and across the chiasm. This surgical model was used to investigate KYNA's effect(s) on myelin loss in the ON. ONs of 7-day old chickens were infused with 50 mM KYNA or phosphate buffered saline (PBS) for seven days. Analysis of KYNA-infused contralateral ON g-ratios and protein levels indicated a reduction in myelin. These findings demonstrate the utility of our surgical approach for sustained delivery of KYNA into the ON and suggest a role for KYNA in modulating CNS myelination.
Collapse
Affiliation(s)
- Akshay Gurdita
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Jacek M. Kwiecien
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Vivian Choh
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
- Corresponding author. University of Waterloo, 200 Columbia St W, Waterloo, ON N2L 3G1
| |
Collapse
|
2
|
Fischer M, Zimmerman A, Zhang E, Kolis J, Dickey A, Burdette MK, Chander P, Foulger SH, Brigman JL, Weick JP. Distribution and inflammatory cell response to intracranial delivery of radioluminescent Y2(SiO4)O:Ce particles. PLoS One 2023; 18:e0276819. [PMID: 36634053 PMCID: PMC9836305 DOI: 10.1371/journal.pone.0276819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 10/13/2022] [Indexed: 01/13/2023] Open
Abstract
Due to increasing advances in their manufacture and functionalization, nanoparticle-based systems have become a popular tool for in vivo drug delivery and biodetection. Recently, scintillating nanoparticles such as yttrium orthosilicate doped with cerium (Y2(SiO4)O:Ce) have come under study for their potential utility in optogenetic applications, as they emit photons upon low levels of stimulation from remote x-ray sources. The utility of such nanoparticles in vivo is hampered by rapid clearance from circulation by the mononuclear phagocytic system, which heavily restricts nanoparticle accumulation at target tissues. Local transcranial injection of nanoparticles may deliver scintillating nanoparticles to highly specific brain regions by circumventing the blood-brain barrier and avoiding phagocytic clearance. Few studies to date have examined the distribution and response to nanoparticles following localized delivery to cerebral cortex, a crucial step in understanding the therapeutic potential of nanoparticle-based biodetection in the brain. Following the synthesis and surface modification of these nanoparticles, two doses (1 and 3 mg/ml) were introduced into mouse secondary motor cortex (M2). This region was chosen as the site for RLP delivery, as it represents a common target for optogenetic manipulations of mouse behavior, and RLPs could eventually serve as an injectable x-ray inducible light delivery system. The spread of particles through the target tissue was assessed 24 hours, 72 hours, and 9 days post-injection. Y2(SiO4)O:Ce nanoparticles were found to be detectable in the brain for up to 9 days, initially diffusing through the tissue until 72 hours before achieving partial clearance by the final endpoint. Small transient increases in the presence of IBA-1+ microglia and GFAP+ astrocytic cell populations were detected near nanoparticle injection sites of both doses tested 24 hours after surgery. Taken together, these data provide evidence that Y2(SiO4)O:Ce nanoparticles coated with BSA can be injected directly into mouse cortex in vivo, where they persist for days and are broadly tolerated, such that they may be potentially utilized for remote x-ray activated stimulation and photon emission for optogenetic experiments in the near future.
Collapse
Affiliation(s)
- Máté Fischer
- Department of Neurosciences, University of New Mexico HSC, Albuquerque, New Mexico, United States of America
| | - Amber Zimmerman
- Department of Neurosciences, University of New Mexico HSC, Albuquerque, New Mexico, United States of America
| | - Eric Zhang
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina, United States of America
| | - Joseph Kolis
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina, United States of America
| | - Ashley Dickey
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina, United States of America
| | - Mary K. Burdette
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina, United States of America
| | - Praveen Chander
- Department of Neurosciences, University of New Mexico HSC, Albuquerque, New Mexico, United States of America
| | - Stephen H. Foulger
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina, United States of America
- Center for Optical Materials Science and Engineering Technologies, Clemson University, Clemson, South Carolina, United States of America
- Department of Bioengineering, Clemson University, Clemson, South Carolina, United States of America
| | - Jonathan L. Brigman
- Department of Neurosciences, University of New Mexico HSC, Albuquerque, New Mexico, United States of America
- Center for Brain Recovery and Repair, University of New Mexico HSC, Albuquerque, New Mexico, United States of America
| | - Jason P. Weick
- Department of Neurosciences, University of New Mexico HSC, Albuquerque, New Mexico, United States of America
- Center for Brain Recovery and Repair, University of New Mexico HSC, Albuquerque, New Mexico, United States of America
| |
Collapse
|
3
|
Fernández-Albarral JA, de Hoz R, Matamoros JA, Chen L, López-Cuenca I, Salobrar-García E, Sánchez-Puebla L, Ramírez JM, Triviño A, Salazar JJ, Ramírez AI. Retinal Changes in Astrocytes and Müller Glia in a Mouse Model of Laser-Induced Glaucoma: A Time-Course Study. Biomedicines 2022; 10:biomedicines10050939. [PMID: 35625676 PMCID: PMC9138377 DOI: 10.3390/biomedicines10050939] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 11/28/2022] Open
Abstract
Macroglia (astrocytes and Müller glia) may play an important role in the pathogenesis of glaucoma. In a glaucoma mouse model, we studied the effects of unilateral laser-induced ocular hypertension (OHT) on macroglia in OHT and contralateral eyes at different time points after laser treatment (1, 3, 5, 8 and 15 days) using anti-GFAP and anti-MHC-II, analyzing the morphological changes, GFAP-labelled retinal area (GFAP-PA), and GFAP and MHC-II immunoreactivity intensities ((GFAP-IRI and MHC-II-IRI)). In OHT and contralateral eyes, with respect to naïve eyes, at all the time points, we found the following: (i) astrocytes with thicker somas and more secondary processes, mainly in the intermediate (IR) and peripheral retina (PR); (ii) astrocytes with low GFAP-IRI and only primary processes near the optic disc (OD); (iii) an increase in total GFAP-RA, which was higher at 3 and 5 days, except for at 15 days; (iv) an increase in GFAP-IRI in the IR and especially in the PR; (v) a decrease in GFAP-IRI near the OD, especially at 1 and 5 days; (vi) a significant increase in MHC-II-IRI, which was higher in the IR and PR; and (vii) the Müller glia were GFAP+ and MHC-II+. In conclusion, in this model of glaucoma, there is a bilateral macroglial activation maintained over time involved in the inflammatory glaucoma process.
Collapse
Affiliation(s)
- Jose A. Fernández-Albarral
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.A.F.-A.); (R.d.H.); (J.A.M.); (L.C.); (I.L.-C.); (E.S.-G.); (L.S.-P.); (J.M.R.); (A.T.)
| | - Rosa de Hoz
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.A.F.-A.); (R.d.H.); (J.A.M.); (L.C.); (I.L.-C.); (E.S.-G.); (L.S.-P.); (J.M.R.); (A.T.)
- Departamento de Inmunología, Facultad de Óptica y Optometría, Oftalmología y ORL, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - José A. Matamoros
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.A.F.-A.); (R.d.H.); (J.A.M.); (L.C.); (I.L.-C.); (E.S.-G.); (L.S.-P.); (J.M.R.); (A.T.)
| | - Lejing Chen
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.A.F.-A.); (R.d.H.); (J.A.M.); (L.C.); (I.L.-C.); (E.S.-G.); (L.S.-P.); (J.M.R.); (A.T.)
| | - Inés López-Cuenca
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.A.F.-A.); (R.d.H.); (J.A.M.); (L.C.); (I.L.-C.); (E.S.-G.); (L.S.-P.); (J.M.R.); (A.T.)
| | - Elena Salobrar-García
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.A.F.-A.); (R.d.H.); (J.A.M.); (L.C.); (I.L.-C.); (E.S.-G.); (L.S.-P.); (J.M.R.); (A.T.)
- Departamento de Inmunología, Facultad de Óptica y Optometría, Oftalmología y ORL, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - Lidia Sánchez-Puebla
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.A.F.-A.); (R.d.H.); (J.A.M.); (L.C.); (I.L.-C.); (E.S.-G.); (L.S.-P.); (J.M.R.); (A.T.)
| | - José M. Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.A.F.-A.); (R.d.H.); (J.A.M.); (L.C.); (I.L.-C.); (E.S.-G.); (L.S.-P.); (J.M.R.); (A.T.)
- Departamento de Inmunología, Facultad de Medicina, Oftalmología y ORL, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Alberto Triviño
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.A.F.-A.); (R.d.H.); (J.A.M.); (L.C.); (I.L.-C.); (E.S.-G.); (L.S.-P.); (J.M.R.); (A.T.)
- Departamento de Inmunología, Facultad de Medicina, Oftalmología y ORL, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Juan J. Salazar
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.A.F.-A.); (R.d.H.); (J.A.M.); (L.C.); (I.L.-C.); (E.S.-G.); (L.S.-P.); (J.M.R.); (A.T.)
- Departamento de Inmunología, Facultad de Óptica y Optometría, Oftalmología y ORL, Universidad Complutense de Madrid, 28037 Madrid, Spain
- Correspondence: (J.J.S.); (A.I.R.)
| | - Ana I. Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.A.F.-A.); (R.d.H.); (J.A.M.); (L.C.); (I.L.-C.); (E.S.-G.); (L.S.-P.); (J.M.R.); (A.T.)
- Departamento de Inmunología, Facultad de Óptica y Optometría, Oftalmología y ORL, Universidad Complutense de Madrid, 28037 Madrid, Spain
- Correspondence: (J.J.S.); (A.I.R.)
| |
Collapse
|
4
|
Early Application of Ipsilateral Cathodal-tDCS in a Mouse Model of Brain Ischemia Results in Functional Improvement and Perilesional Microglia Modulation. Biomolecules 2022; 12:biom12040588. [PMID: 35454177 PMCID: PMC9027610 DOI: 10.3390/biom12040588] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 02/01/2023] Open
Abstract
Early stroke therapeutic approaches rely on limited options, further characterized by a narrow therapeutic time window. In this context, the application of transcranial direct current stimulation (tDCS) in the acute phases after brain ischemia is emerging as a promising non-invasive tool. Despite the wide clinical application of tDCS, the cellular mechanisms underlying its positive effects are still poorly understood. Here, we explored the effects of cathodal tDCS (C-tDCS) 6 h after focal forelimb M1 ischemia in Cx3CR1GFP/+ mice. C-tDCS improved motor functionality of the affected forelimb, as assessed by the cylinder and foot-fault tests at 48 h, though not changing the ischemic volume. In parallel, histological analysis showed that motor recovery is associated with decreased microglial cell density in the area surrounding the ischemic core, while astrocytes were not affected. Deeper analysis of microglia morphology within the perilesional area revealed a shift toward a more ramified healthier state, with increased processes’ complexity and a less phagocytic anti-inflammatory activity. Taken together, our findings suggest a positive role for early C-tDCS after ischemia, which is able to modulate microglia phenotype and morphology in parallel to motor recovery.
Collapse
|
5
|
Kumar A, Biswas A, Bojja SL, Kolathur KK, Volety SM. Emerging therapeutic role of chondroitinase (ChABC) in neurological disorders and cancer. CURRENT DRUG THERAPY 2022. [DOI: 10.2174/1574885517666220331151619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Proteoglycans are essential biomacromolecules that participate in matrix structure and organization, cell proliferation and migration, and cell surface signal transduction. However, their roles in physiology, particularly in CNS remain incompletely deciphered. Numerous studies highlight the elevated levels of chondroitin sulphate proteoglycans (CSPGs) in various diseases like cancers and neurological disorders like spinal cord injury (SCI), traumatic brain damage, neurodegenerative diseases, and are mainly implicated to hinder tissue repair. In such a context, chondroitinase ABC (ChABC), a therapeutic enzyme has shown immense hope to treat these diseases in several preclinical studies, primarily attributed to the digestion of the side chains of the proteoglycan chondroitin sulphate (CS) molecule. Despite extensive research, the progress in evolving the concept of therapeutic targeting of proteoglycans is still in its infancy. This review thus provides fresh insights into the emerging therapeutic applications of ChABC in various diseases apart from SCI and the underlying mechanisms.
Collapse
Affiliation(s)
- Akshara Kumar
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Aishi Biswas
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sree Lalitha Bojja
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Kiran Kumar Kolathur
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Subrahmanyam M Volety
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
6
|
Transcriptomic Analysis of the Effects of Chemokine Receptor CXCR3 Deficiency on Immune Responses in the Mouse Brain during Toxoplasma gondii Infection. Microorganisms 2021; 9:microorganisms9112340. [PMID: 34835465 PMCID: PMC8620038 DOI: 10.3390/microorganisms9112340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/06/2021] [Indexed: 11/16/2022] Open
Abstract
The obligate intracellular parasite Toxoplasma gondii infects warm-blooded animals, including humans. We previously revealed through a whole-brain transcriptome analysis that infection with T. gondii in mice causes immune response-associated genes to be upregulated, for instance, chemokines and chemokine receptors such as CXC chemokine receptor 3 (CXCR3) and its ligand CXC chemokine ligand 10 (CXCL10). Here, we describe the effect of CXCR3 on responses against T. gondii infection in the mouse brain. In vivo assays using CXCR3-deficient mice showed that the absence of CXCR3 delayed the normal recovery of body weight and increased the brain parasite burden, suggesting that CXCR3 plays a role in the control of pathology in the brain, the site where chronic infection occurs. Therefore, to further analyze the function of CXCR3 in the brain, we profiled the gene expression patterns of primary astrocytes and microglia by RNA sequencing and subsequent analyses. CXCR3 deficiency impaired the normal upregulation of immune-related genes during T. gondii infection, in astrocytes and microglia alike. Collectively, our results suggest that the immune-related genes upregulated by CXCR3 perform a particular role in controlling pathology when the host is chronically infected with T. gondii in the brain.
Collapse
|
7
|
Iacono D, Murphy EK, Avantsa SS, Perl DP, Day RM. Reduction of pTau and APP levels in mammalian brain after low-dose radiation. Sci Rep 2021; 11:2215. [PMID: 33500491 PMCID: PMC7838187 DOI: 10.1038/s41598-021-81602-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/07/2021] [Indexed: 12/16/2022] Open
Abstract
Brain radiation can occur from treatment of brain tumors or accidental exposures. Brain radiation has been rarely considered, though, as a possible tool to alter protein levels involved in neurodegenerative disorders. We analyzed possible molecular and neuropathology changes of phosphorylated-Tau (pTau), all-Tau forms, β-tubulin, amyloid precursor protein (APP), glial fibrillary acidic protein (GFAP), ionized calcium binding adaptor molecule 1 (IBA-1), myelin basic protein (MBP), and GAP43 in Frontal Cortex (FC), Hippocampus (H) and Cerebellum (CRB) of swine brains following total-body low-dose radiation (1.79 Gy). Our data show that radiated-animals had lower levels of pTau in FC and H, APP in H and CRB, GAP43 in CRB, and higher level of GFAP in H versus sham-animals. These molecular changes were not accompanied by obvious neurohistological changes, except for astrogliosis in the H. These findings are novel, and might open new perspectives on brain radiation as a potential tool to interfere with the accumulation of specific proteins linked to the pathogenesis of various neurodegenerative disorders.
Collapse
Affiliation(s)
- Diego Iacono
- DoD/USU Brain Tissue Repository and Neuropathology Core, Uniformed Services University (USU), Bethesda, MD, USA. .,Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA. .,Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA. .,The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), 4301 Jones Bridge Road, A1036, Bethesda, MD, 20814-4799, USA. .,Complex Neurodegenerative Disorders, National Institute of Neurological Disorders and Stroke, NINDS, NIH, Bethesda, MD, USA.
| | - Erin K Murphy
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), 4301 Jones Bridge Road, A1036, Bethesda, MD, 20814-4799, USA
| | - Soundarya S Avantsa
- DoD/USU Brain Tissue Repository and Neuropathology Core, Uniformed Services University (USU), Bethesda, MD, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), 4301 Jones Bridge Road, A1036, Bethesda, MD, 20814-4799, USA
| | - Daniel P Perl
- DoD/USU Brain Tissue Repository and Neuropathology Core, Uniformed Services University (USU), Bethesda, MD, USA.,Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA
| | - Regina M Day
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University (USU), Bethesda, MD, USA
| |
Collapse
|
8
|
Explosive-driven double-blast exposure: molecular, histopathological, and behavioral consequences. Sci Rep 2020; 10:17446. [PMID: 33060648 PMCID: PMC7566442 DOI: 10.1038/s41598-020-74296-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Traumatic brain injury generated by blast may induce long-term neurological and psychiatric sequelae. We aimed to identify molecular, histopathological, and behavioral changes in rats 2 weeks after explosive-driven double-blast exposure. Rats received two 30-psi (~ 207-kPa) blasts 24 h apart or were handled identically without blast. All rats were behaviorally assessed over 2 weeks. At Day 15, rats were euthanized, and brains removed. Brains were dissected into frontal cortex, hippocampus, cerebellum, and brainstem. Western blotting was performed to measure levels of total-Tau, phosphorylated-Tau (pTau), amyloid precursor protein (APP), GFAP, Iba1, αII-spectrin, and spectrin breakdown products (SBDP). Kinases and phosphatases, correlated with tau phosphorylation were also measured. Immunohistochemistry for pTau, APP, GFAP, and Iba1 was performed. pTau protein level was greater in the hippocampus, cerebellum, and brainstem and APP protein level was greater in cerebellum of blast vs control rats (p < 0.05). GFAP, Iba1, αII-spectrin, and SBDP remained unchanged. No immunohistochemical or neurobehavioral changes were observed. The dissociation between increased pTau and APP in different regions in the absence of neurobehavioral changes 2 weeks after double blast exposure is a relevant finding, consistent with human data showing that battlefield blasts might be associated with molecular changes before signs of neurological and psychiatric disorders manifest.
Collapse
|
9
|
Vernazza S, Tirendi S, Bassi AM, Traverso CE, Saccà SC. Neuroinflammation in Primary Open-Angle Glaucoma. J Clin Med 2020; 9:E3172. [PMID: 33007927 PMCID: PMC7601106 DOI: 10.3390/jcm9103172] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Primary open-angle glaucoma (POAG) is the second leading cause of irreversible blindness worldwide. Increasing evidence suggests oxidative damage and immune response defects are key factors contributing to glaucoma onset. Indeed, both the failure of the trabecular meshwork tissue in the conventional outflow pathway and the neuroinflammation process, which drives the neurodegeneration, seem to be linked to the age-related over-production of free radicals (i.e., mitochondrial dysfunction) and to oxidative stress-linked immunostimulatory signaling. Several previous studies have described a wide range of oxidative stress-related makers which are found in glaucomatous patients, including low levels of antioxidant defences, dysfunction/activation of glial cells, the activation of the NF-κB pathway and the up-regulation of pro-inflammatory cytokines, and so on. However, the intraocular pressure is still currently the only risk factor modifiable by medication or glaucoma surgery. This present review aims to summarize the multiple cellular processes, which promote different risk factors in glaucoma including aging, oxidative stress, trabecular meshwork defects, glial activation response, neurodegenerative insults, and the altered regulation of immune response.
Collapse
Affiliation(s)
| | - Sara Tirendi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (S.T.); (A.M.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Italy
| | - Anna Maria Bassi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (S.T.); (A.M.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Italy
| | - Carlo Enrico Traverso
- Clinica Oculistica, DiNOGMI, University of Genoa, 16132 Genoa, Italy;
- Ophthalmology Unit, IRCCS-Polyclinic San Martino Hospital, 16132 Genoa, Italy;
| | | |
Collapse
|
10
|
Gasterich N, Wetz S, Tillmann S, Fein L, Seifert A, Slowik A, Weiskirchen R, Zendedel A, Ludwig A, Koschmieder S, Beyer C, Clarner T. Inflammatory Responses of Astrocytes Are Independent from Lipocalin 2. J Mol Neurosci 2020; 71:933-942. [PMID: 32959226 DOI: 10.1007/s12031-020-01712-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022]
Abstract
The central nervous system (CNS) responds to diverse neurologic injuries with a vigorous activation of astrocytes. In addition to their role in the maintenance of CNS homeostasis and neuronal function, astrocytes are thought to participate in the regulation of innate and adaptive immune responses in the CNS. Following antigen recognition, reactive astrocytes may participate in the initiation of innate immune responses, and modulate adaptive immune response leading to the recruitment of peripheral immune cells. Among activation, astrocytes undergo morphological changes and express several molecules, e.g., chemokines. Lipocalin 2 (LCN2) is involved in the control of innate immune responses, regulation of excess iron, and reactive oxygen production. Here, we investigated the influence of LCN2 on basic astrocytic functions linked to inflammatory responses. In vitro studies revealed a similar chemokine expression pattern in wild-type and Lcn2-deficient astrocyte cultures after treatment with lipopolysaccharides (LPS). Increased wound closure and morphological changes upon LPS treatment are independent of Lcn2 expression. We conclude that LCN2 is not necessary for basic astrocytic functions in the context of inflammation. However, CNS-derived LCN2 might have a regulatory effect on other cells, e.g., endothelial cells of the blood-brain barrier.
Collapse
Affiliation(s)
- Natalie Gasterich
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany.
| | - Sophie Wetz
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany
| | - Stefan Tillmann
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Lena Fein
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany
| | - Anke Seifert
- Institute of Molecular Pharmacology, RWTH University Hospital Aachen, Aachen, Germany
| | - Alexander Slowik
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Adib Zendedel
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany
| | - Andreas Ludwig
- Institute of Molecular Pharmacology, RWTH University Hospital Aachen, Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany
| | - Tim Clarner
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
11
|
Mohamed EA, Sayed WM. Implication of JAK1/STAT3/SOCS3 Pathway in Aging of Cerebellum of Male Rat: Histological and Molecular study. Sci Rep 2020; 10:8840. [PMID: 32483368 PMCID: PMC7264275 DOI: 10.1038/s41598-020-64050-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/22/2020] [Indexed: 01/05/2023] Open
Abstract
Aging causes morphological and functional changes in the cerebellum. This work aimed to demonstrate the implication of JAK1/STAT3/SOCS3 on aging-induced changes of rat cerebellum. Thirty male rats were divided into: adult (12 months), early senile (24 months) and late senile (32 months) groups. Immunohistochemical reaction of the cerebellum to GFAP and caspase-3 was assessed and the expression of JAK1, STAT3, SOCS3 proteins was also evaluated. TNFα as well as the activities of malondialdehyde (MDA) and reduced glutathione (GSH) in cerebellar tissue were also measured. The cerebellum of late senile rats revealed more degenerative changes than early senile rats in the form of increase in GFAP and caspase-3 immunoreaction. Additionally, there was decrease in JAK1and STAT3 expression in early and late senile rats and increase in SOCS3 when compare early and late senile groups with adult one. Enhancement of TNFα was noticed with aging as well as significant decrease in GSH and increase in MDA in early senile group. Moreover, late senile group revealed significant decrease in GSH and increase in MDA. It could be concluded that aging resulting in variable changes of the cerebellum as detected by morphological changes, immunohistochemical reactions of caspase-3 and GFAP and expression of JAK1/STAT3/SOCS3 proteins. Additionally, inflammatory marker TNFα and the activity of oxidative/antioxidative stress markers; malondialdehyde (MDA) and reduced glutathione (GSH) were also affected with aging.
Collapse
Affiliation(s)
- Enas Ahmed Mohamed
- Department of Anatomy, College of Medicine, Qassim University, Meleda, Buraydah, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - Walaa Mohamed Sayed
- Department of Anatomy and Embryology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt.
| |
Collapse
|
12
|
Mysona BA, Segar S, Hernandez C, Kim C, Zhao J, Mysona D, Bollinger KE. QuPath Automated Analysis of Optic Nerve Degeneration in Brown Norway Rats. Transl Vis Sci Technol 2020; 9:22. [PMID: 32714648 PMCID: PMC7353320 DOI: 10.1167/tvst.9.3.22] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/11/2019] [Indexed: 01/03/2023] Open
Abstract
Purpose A novel application of QuPath open-source digital analysis software is used to provide in-depth morphological analysis of progressive optic nerve (ON) degeneration in rats. Methods QuPath software was adapted to assess axon and gliotic morphology in toluidine blue-stained, Brown Norway rat ON light micrographs. QuPath axon numbers, density, size distributions, and gliotic areas were obtained from test images and ON cross-sections separated by damage grade. QuPath results were compared with manual counting, AxonJ, and electron microscopy axon estimates. Results QuPath-derived axon number, density, and diameter decreased with increasing ON damage. Axon density negatively correlated with gliotic areas in test images (R2 = 0.759; P < 0.0001; N = 40) and in ON cross-sections (R2 = 0.803; P < 0.0004; N = 10). Although axon losses occurred across most axon diameters, large axons were more susceptible to degeneration. The exception was swollen axons > 2 µm, which increased in moderately but not severely damaged images. QuPath axon counts correlated strongly with manual counts of test images (R2 = 0.956; P < 0.0001). QuPath outperformed AxonJ on test images and total ON axon counts. Compared to electron microscopy analysis, QuPath undercounted ON axons; however, correlation between the methods was robust (R2 = 0.797; P < 0.001; N = 10). Conclusions QuPath analysis reliably identified axon loss, axon morphology changes, and gliotic expansion that occurred in degenerating ONs. Translational Relevance QuPath is a valuable tool for rapid, automated, analysis of healthy and degenerating ONs. Reproducible preclinical studies for new glaucoma treatments depend on unbiased in-depth analysis of ON pathology. This was provided by the QuPath approach.
Collapse
Affiliation(s)
- Barbara A. Mysona
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Sharmila Segar
- Medical College of Georgia at Augusta University, Augusta, GA, USA
| | | | - Christian Kim
- Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Jing Zhao
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - David Mysona
- Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Kathryn E. Bollinger
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| |
Collapse
|
13
|
Xu S, Sun Q, Fan J, Jiang Y, Yang W, Cui Y, Yu Z, Jiang H, Li B. Role of Astrocytes in Post-traumatic Epilepsy. Front Neurol 2019; 10:1149. [PMID: 31798512 PMCID: PMC6863807 DOI: 10.3389/fneur.2019.01149] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/14/2019] [Indexed: 12/25/2022] Open
Abstract
Traumatic brain injury, a common cause of acquired epilepsy, is typical to find necrotic cell death within the injury core. The dynamic changes in astrocytes surrounding the injury core contribute to epileptic seizures associated with intense neuronal firing. However, little is known about the molecular mechanisms that activate astrocytes during traumatic brain injury or the effect of functional changes of astrocytes on seizures. In this comprehensive review, we present our cumulated understanding of the complex neurological affection in astrocytes after traumatic brain injury. We approached the problem through describing the changes of cell morphology, neurotransmitters, biochemistry, and cytokines in astrocytes during post-traumatic epilepsy. In addition, we also discussed the relationship between dynamic changes in astrocytes and seizures and the current pharmacologic agents used for treatment. Hopefully, this review will provide a more detailed knowledge from which better therapeutic strategies can be developed to treat post-traumatic epilepsy.
Collapse
Affiliation(s)
- Songbai Xu
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, China
| | - Qihan Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Jie Fan
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Yuanyuan Jiang
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Yifeng Cui
- Department of Pediatrics, Yanbian Maternal and Child Health Hospital, Yanji, China
| | - Zhenxiang Yu
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, China
| | - Huiyi Jiang
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Kobayashi K, Umeda K, Ihara F, Tanaka S, Yamagishi J, Suzuki Y, Nishikawa Y. Transcriptome analysis of the effect of C-C chemokine receptor 5 deficiency on cell response to Toxoplasma gondii in brain cells. BMC Genomics 2019; 20:705. [PMID: 31506064 PMCID: PMC6737708 DOI: 10.1186/s12864-019-6076-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/04/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Infection with Toxoplasma gondii is thought to damage the brain and be a risk factor for neurological and psychotic disorders. The immune response-participating chemokine system has recently been considered vital for brain cell signaling and neural functioning. Here, we investigated the effect of the deficiency of C-C chemokine receptor 5 (CCR5), which is previously reported to be associated with T. gondii infection, on gene expression in the brain during T. gondii infection and the relationship between CCR5 and the inflammatory response against T. gondii infection in the brain. RESULTS We performed a genome-wide comprehensive analysis of brain cells from wild-type and CCR5-deficient mice. Mouse primary brain cells infected with T. gondii were subjected to RNA sequencing. The expression levels of some genes, especially in astrocytes and microglia, were altered by CCR5-deficiency during T. gondii infection, and the gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis revealed an enhanced immune response in the brain cells. The expression levels of genes which were highly differentially expressed in vitro were also investigated in the mouse brains during the T. gondii infections. Among the genes tested, only Saa3 (serum amyloid A3) showed partly CCR5-dependent upregulation during the acute infection phase. However, analysis of the subacute phase showed that in addition to Saa3, Hmox1 may also contribute to the protection and/or pathology partly via the CCR5 pathway. CONCLUSIONS Our results indicate that CCR5 is involved in T. gondii infection in the brain where it contributes to inflammatory responses and parasite elimination. We suggest that the inflammatory response by glial cells through CCR5 might be associated with neurological injury during T. gondii infection to some extent.
Collapse
Affiliation(s)
- Kaoru Kobayashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Kousuke Umeda
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Fumiaki Ihara
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Sachi Tanaka
- Division of Animal Science, Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Minamiminowa, Nagano, Japan
| | - Junya Yamagishi
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yutaka Suzuki
- Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan.
| |
Collapse
|
15
|
Trautz F, Franke H, Bohnert S, Hammer N, Müller W, Stassart R, Tse R, Zwirner J, Dreßler J, Ondruschka B. Survival-time dependent increase in neuronal IL-6 and astroglial GFAP expression in fatally injured human brain tissue. Sci Rep 2019; 9:11771. [PMID: 31417126 PMCID: PMC6695416 DOI: 10.1038/s41598-019-48145-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/30/2019] [Indexed: 01/31/2023] Open
Abstract
Knowledge on trauma survival time prior to death following a lethal traumatic brain injury (TBI) may be essential for legal purposes. Immunohistochemistry studies might allow to narrow down this survival interval. The biomarkers interleukin-6 (IL-6) and glial fibrillary acidic protein (GFAP) are well known in the clinical setting for their usability in TBI prediction. Here, both proteins were chosen in forensics to determine whether neuronal or glial expression in various brain regions may be associated with the cause of death and the survival time prior to death following TBI. IL-6 positive neurons, glial cells and GFAP positive astrocytes all concordantly increase with longer trauma survival time, with statistically significant changes being evident from three days post-TBI (p < 0.05) in the pericontusional zone, irrespective of its definite cortical localization. IL-6 staining in neurons increases significantly in the cerebellum after trauma, whereas increasing GFAP positivity is also detected in the cortex contralateral to the focal lesion. These systematic chronological changes in biomarkers of pericontusional neurons and glial cells allow for an estimation of trauma survival time. Higher numbers of IL-6 and GFAP-stained cells above threshold values in the pericontusional zone substantiate the existence of fatal traumatic changes in the brain with reasonable certainty.
Collapse
Affiliation(s)
- Florian Trautz
- Institute of Legal Medicine, Medical Faculty University of Leipzig, Leipzig, Germany
| | - Heike Franke
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty University of Leipzig, Leipzig, Germany
| | - Simone Bohnert
- Institute of Forensic Medicine, University of Würzburg, Würzburg, Germany
| | - Niels Hammer
- Department of Anatomy, University of Otago, Dunedin, New Zealand.,Department of Orthopedic and Trauma Surgery, University Hospital of Leipzig, Leipzig, Germany.,Fraunhofer IWU, Dresden, Germany
| | - Wolf Müller
- Department of Neuropathology, University Hospital of Leipzig, Leipzig, Germany
| | - Ruth Stassart
- Department of Neuropathology, University Hospital of Leipzig, Leipzig, Germany
| | - Rexson Tse
- Department of Forensic Pathology, LabPLUS, Auckland City Hospital, Auckland, New Zealand
| | - Johann Zwirner
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Jan Dreßler
- Institute of Legal Medicine, Medical Faculty University of Leipzig, Leipzig, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, Medical Faculty University of Leipzig, Leipzig, Germany.
| |
Collapse
|
16
|
Marins FR, Iddings JA, Fontes MAP, Filosa JA. Evidence that remodeling of insular cortex neurovascular unit contributes to hypertension-related sympathoexcitation. Physiol Rep 2017; 5:e13156. [PMID: 28270592 PMCID: PMC5350170 DOI: 10.14814/phy2.13156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/18/2017] [Indexed: 11/24/2022] Open
Abstract
The intermediate region of the posterior insular cortex (intermediate IC) mediates sympathoexcitatory responses to the heart and kidneys. Previous studies support hypertension-evoked changes to the structure and function of neurons, blood vessels, astrocytes and microglia, disrupting the organization of the neurovascular unit (NVU). In this study, we evaluated the functional and anatomical integrity of the NVU at the intermediate IC in the spontaneously hypertensive rat (SHR) and its control the Wistar-Kyoto (WKY). Under urethane anesthesia, NMDA microinjection (0.2 mmol/L/100 nL) was performed at the intermediate IC with simultaneous recording of renal sympathetic nerve activity (RSNA), heart rate (HR) and mean arterial pressure (MAP). Alterations in NVU structure were investigated by immunofluorescence for NMDA receptors (NR1), blood vessels (70 kDa FITC-dextran), astrocytes (GFAP), and microglia (Iba1). Injections of NMDA into intermediate IC of SHR evoked higher amplitude responses of RSNA, MAP, and HR On the other hand, NMDA receptor blockade decreased baseline RSNA, MAP and HR in SHR, with no changes in WKY Immunofluorescence data from SHR intermediate IC showed increased NMDA receptor density, contributing to the SHR enhanced sympathetic responses, and increased in vascular density (increased number of branches and endpoints, reduced average branch length), suggesting angiogenesis. Additionally, IC from SHR presented increased GFAP immunoreactivity and contact between astrocyte processes and blood vessels. In SHR, IC microglia skeleton analysis supports their activation (reduced number of branches, junctions, endpoints and process length), suggesting an inflammatory process in this region. These findings indicate that neurogenic hypertension in SHR is accompanied by marked alterations to the NVU within the IC and enhanced NMDA-mediated sympathoexcitatory responses likely contributors of the maintenance of hypertension.
Collapse
Affiliation(s)
- Fernanda R Marins
- Departamento de Fisiologia e Biofísica, INCT, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Marco A P Fontes
- Departamento de Fisiologia e Biofísica, INCT, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | |
Collapse
|
17
|
Schäfer P, Karl MO. Prospective purification and characterization of Müller glia in the mouse retina regeneration assay. Glia 2017; 65:828-847. [PMID: 28220544 DOI: 10.1002/glia.23130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 01/06/2023]
Abstract
Reactive gliosis is an umbrella term for various glia functions in neurodegenerative diseases and upon injury. Specifically, Müller glia (MG) in some species readily regenerate retinal neurons to restore vision loss after insult, whereas mammalian MG respond by reactive gliosis-a heterogeneous response which frequently includes cell hypertrophy and proliferation. Limited regeneration has been stimulated in mammals, with a higher propensity in young MG, and in vitro compared to in vivo, but the underlying processes are unknown. To facilitate studies on the mechanisms regulating and limiting glia functions, we developed a strategy to purify glia and their progeny by fluorescence-activated cell sorting. Dual-transgenic nuclear reporter mice, which label neurons and glia with red and green fluorescent proteins, respectively, have enabled MG enrichment up to 93% purity. We applied this approach to MG in a mouse retina regeneration ex vivo assay. Combined cell size and cell cycle analysis indicates that most MG hypertrophy and a subpopulation proliferates which, over time, become even larger in cell size than the ones that do not proliferate. MG undergo timed differential genomic changes in genes controlling stemness and neurogenic competence; and glial markers are downregulated. Genes that are potentially required for, or associated with, regeneration and reactive gliosis are differentially regulated by retina explant culture time, epidermal growth factor stimulation, and animal age. Thus, MG enrichment facilitates cellular and molecular studies which, in combination with the mouse retina regeneration assay, provide an experimental approach for deciphering mechanisms that possibly regulate reactive gliosis and limit regeneration in mammals.
Collapse
Affiliation(s)
- Patrick Schäfer
- TU Dresden, Center for Regenerative Therapies Dresden (CRTD), Fetscherstr. 107, Dresden, 01307, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Arnoldstr. 13, Dresden, 01307, Germany
| | - Mike O Karl
- TU Dresden, Center for Regenerative Therapies Dresden (CRTD), Fetscherstr. 107, Dresden, 01307, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Arnoldstr. 13, Dresden, 01307, Germany
| |
Collapse
|
18
|
Ependymal cell contribution to scar formation after spinal cord injury is minimal, local and dependent on direct ependymal injury. Sci Rep 2017; 7:41122. [PMID: 28117356 PMCID: PMC5259707 DOI: 10.1038/srep41122] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/14/2016] [Indexed: 01/30/2023] Open
Abstract
Ependyma have been proposed as adult neural stem cells that provide the majority of newly proliferated scar-forming astrocytes that protect tissue and function after spinal cord injury (SCI). This proposal was based on small, midline stab SCI. Here, we tested the generality of this proposal by using a genetic knock-in cell fate mapping strategy in different murine SCI models. After large crush injuries across the entire spinal cord, ependyma-derived progeny remained local, did not migrate and contributed few cells of any kind and less than 2%, if any, of the total newly proliferated and molecularly confirmed scar-forming astrocytes. Stab injuries that were near to but did not directly damage ependyma, contained no ependyma-derived cells. Our findings show that ependymal contribution of progeny after SCI is minimal, local and dependent on direct ependymal injury, indicating that ependyma are not a major source of endogenous neural stem cells or neuroprotective astrocytes after SCI.
Collapse
|
19
|
Yoo JY, Hwang CH, Hong HN. A Model of Glial Scarring Analogous to the Environment of a Traumatically Injured Spinal Cord Using Kainate. Ann Rehabil Med 2016; 40:757-768. [PMID: 27847705 PMCID: PMC5108702 DOI: 10.5535/arm.2016.40.5.757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/14/2016] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To develop an in vitro model analogous to the environment of traumatic spinal cord injury (SCI), the authors evaluated change of astrogliosis following treatments with kainate and/or scratch, and degree of neurite outgrowth after treatment with a kainate inhibitor. METHODS Astrocytes were obtained from the rat spinal cord. Then, 99% of the cells were confirmed to be GFAP-positive astrocytes. For chemical injury, the cells were treated with kainate at different concentrations (10, 50 or 100 µM). For mechanical injury, two kinds of uniform scratches were made using a plastic pipette tip by removing strips of cells. For combined injury (S/K), scratch and kainate were provided. Cord neurons from rat embryos were plated onto culture plates immediately after the three kinds of injuries and some cultures were treated with a kainate inhibitor. RESULTS Astro-gliosis (glial fibrillary acidic protein [GFAP], vimentin, chondroitin sulfate proteoglycan [CSPG], rho-associated protein kinase [ROCK], and ephrin type-A receptor 4 [EphA4]) was most prominent after treatment with 50 µM kainate and extensive scratch injury in terms of single arm (p<0.001) and in the S/K-induced injury model in view of single or combination (p<0.001). Neurite outgrowth in the seeded spinal cord (β-III tubulin) was the least in the S/K-induced injury model (p<0.001) and this inhibition was reversed by the kainate inhibitor (p<0.001). CONCLUSION The current in vitro model combining scratch and kainate induced glial scarring and inhibitory molecules and restricted neurite outgrowth very strongly than either the mechanically or chemically-induced injury model; hence, it may be a useful tool for research on SCI.
Collapse
Affiliation(s)
- Jong Yoon Yoo
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chang Ho Hwang
- Department of Physical Medicine and Rehabilitation, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Hea Nam Hong
- Department of Anatomy, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
20
|
Li D, Tong L, Kawano H, Liu N, Yan HJ, Zhao L, Li HP. Regulation and role of ERK phosphorylation in glial cells following a nigrostriatal pathway injury. Brain Res 2016; 1648:90-100. [PMID: 27402431 DOI: 10.1016/j.brainres.2016.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 02/05/2023]
Abstract
This study was undertaken to examine the function of extracellular signal-regulated kinase (ERK) signaling pathway on the proliferation and activation of microglia/macrophage and astrocytes after brain injury in mice. The result of Western blot showed that p-ERK was immediately activated after injury (<4h), but the duration was short (<4 days). According to immunofluorescence double staining, it was found that at 4 and 8h after injury, p-ERK was expressed in microglia/macrophages, and that more cells were co-expressed by p-ERK and IBA-1 (microglia/macrophage marker) at 8h; at days 1 and 4, p-ERK was expressed in astrocytes, and more cells were co-expressed by p-ERK and GFAP (astrocyte marker) at day 4. After injury, the mice were injected with U0126 (MAPK/ERK signaling pathway inhibitor) via the femoral vein. Compared with those injected with DMSO, the cell number co-expressed by p-ERK and IBA-1 or GFAP significantly decreased (P<0.05). The increase of microglia/macrophage and astrocyte caused by injury was remitted, and the positive cell number significantly decreased (P<0.05). Western blot showed that the expression quantity of IBA-1 and GFAP significantly decreased (P<0.05). Furthermore, the ERK signaling pathway was involved in the proliferation and activation of the two glial cells types and improved long-term neurobehavioral function after brain injury. Therefore, the exploration of the formation mechanism of glial scar after injury and further research on the therapeutic method of neural regeneration are essential.
Collapse
Affiliation(s)
- Dan Li
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Lei Tong
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Hitoshi Kawano
- Department of Health and Dietetics, Faculty of Health and Medical Science. Teikyo Heisei University, Tokyo 170-8445, Japan
| | - Nan Liu
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Hong-Jing Yan
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Liang Zhao
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Hong-Peng Li
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
21
|
Thomas LB, Steindler DA. Review : Glial Boundaries and Scars: Programs for Normal Development and Wound Healing in the Brain. Neuroscientist 2016. [DOI: 10.1177/107385849500100305] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Early studies of glial boundaries, which are composed of immature astrocytes and extracellular matrix mol ecules (which they express), initially offered insight into the partitioning that occurs in the developing nervous system. More recently, however, it has been suggested that similar "boundaries" may have important roles in other processes occurring in the brain, including repair after traumatic brain injury. As more is understood about the expression and function of boundary molecules and glia, their potential importance is becoming apparent in numerous neuropathological conditions, including neurodegeneration and neuroregeneration in Alzheimer's and Huntington's diseases as well as in brain neoplasms. Furthermore, before we can hope to fully understand and facilitate regeneration in the compromised brain, our knowledge of the glial boundary, both during development and in the adult, must be more complete. The Neuroscientist 1:142-154, 1995
Collapse
Affiliation(s)
- L. Brannon Thomas
- Department of Anatomy and Neurobiology Department of Neurosurgery The University of Tennessee Memphis, Tennessee
| | - Dennis A. Steindler
- Department of Anatomy and Neurobiology Department of Neurosurgery The University of Tennessee Memphis, Tennessee
| |
Collapse
|
22
|
Abstract
Throughout the nervous system, neurons are closely surrounded by glial cells, leaving only a 20-nm wide extracellular space filled with interstitial fluid. Ions, transmitters, hormones, nutrients, and waste products all share this narrow diffusion pathway. Because the interstitial space occupies only a small volume, neuronal activity can lead to appreciable changes in the extracellular concentration of ions, protons, and neurotrans mitters. These changes can affect neuronal activity and are believed to be influenced by glial cells. The proximity of glial processes to synapses and axons make glial cells ideal partners to sequester ions and transmitters released by neurons. The failure of glial cells to perform such essential homeostatic functions can have profound effects, and these homeostatic activities may constitute one way in which glial cells can influence neuronal signaling. In addition, glial cells, which, unlike most neurons, are coupled to each other through gap-junctions, communicate with each other and possibly also with adjacent neurons through prop agated intracellular Ca2+waves. The importance of such interglial signaling is not understood. Additionally, glial cells and neurons mutually modulate their expression of ion channels, most likely through factors re leased into the extracellular space. The range of responses observed in glial cells and their intimate anatomical relationship with neurons suggest a broader role for glia than is currently appreciated. It also emphasizes the importance of a better understanding of glial-neuronal interactions to an understanding of brain function. The Neuroscientist 1:328-337, 1995
Collapse
Affiliation(s)
- Harald Sontheimer
- Neurobiology Research Center and Department of Physiology and Biophysics The University of Alabama at Birmingham Birmingham, Alabama
| |
Collapse
|
23
|
Logica T, Riviere S, Holubiec MI, Castilla R, Barreto GE, Capani F. Metabolic Changes Following Perinatal Asphyxia: Role of Astrocytes and Their Interaction with Neurons. Front Aging Neurosci 2016; 8:116. [PMID: 27445788 PMCID: PMC4921470 DOI: 10.3389/fnagi.2016.00116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/03/2016] [Indexed: 11/13/2022] Open
Abstract
Perinatal Asphyxia (PA) represents an important cause of severe neurological deficits including delayed mental and motor development, epilepsy, major cognitive deficits and blindness. The interaction between neurons, astrocytes and endothelial cells plays a central role coupling energy supply with changes in neuronal activity. Traditionally, experimental research focused on neurons, whereas astrocytes have been more related to the damage mechanisms of PA. Astrocytes carry out a number of functions that are critical to normal nervous system function, including uptake of neurotransmitters, regulation of pH and ion concentrations, and metabolic support for neurons. In this work, we aim to review metabolic neuron-astrocyte interactions with the purpose of encourage further research in this area in the context of PA, which is highly complex and its mechanisms and pathways have not been fully elucidated to this day.
Collapse
Affiliation(s)
- Tamara Logica
- Laboratorio de Citoarquitectura y Plasticidad Neuronal, Facultad de Medicina, Instituto de Investigaciones Cardiológicas Prof. Dr. Alberto C. Taquini (ININCA), UBA-CONICET, CABA Buenos Aires, Argentina
| | - Stephanie Riviere
- Laboratorio de Biología Molecular, Facultad de Medicina, Instituto de Investigaciones cardiológicas Prof. Dr. Alberto C. Taquini (ININCA), UBA-CONICET, CABA Buenos Aires, Argentina
| | - Mariana I Holubiec
- Laboratorio de Citoarquitectura y Plasticidad Neuronal, Facultad de Medicina, Instituto de Investigaciones Cardiológicas Prof. Dr. Alberto C. Taquini (ININCA), UBA-CONICET, CABA Buenos Aires, Argentina
| | - Rocío Castilla
- Laboratorio de Biología Molecular, Facultad de Medicina, Instituto de Investigaciones cardiológicas Prof. Dr. Alberto C. Taquini (ININCA), UBA-CONICET, CABA Buenos Aires, Argentina
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana Bogotá Bogotá, Colombia
| | - Francisco Capani
- Laboratorio de Citoarquitectura y Plasticidad Neuronal, Facultad de Medicina, Instituto de Investigaciones Cardiológicas Prof. Dr. Alberto C. Taquini (ININCA), UBA-CONICET, CABABuenos Aires, Argentina; Departamento de Biología, Universidad Argentina JF KennedyBuenos Aires, Argentina; Investigador Asociado, Universidad Autónoma de ChileSantiago, Chile
| |
Collapse
|
24
|
Tovar-Vidales T, Wordinger RJ, Clark AF. Identification and localization of lamina cribrosa cells in the human optic nerve head. Exp Eye Res 2016; 147:94-97. [PMID: 27167365 DOI: 10.1016/j.exer.2016.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/08/2016] [Accepted: 05/03/2016] [Indexed: 10/21/2022]
Abstract
One of the central features of glaucoma is progressive cupping and excavation of the optic nerve head (ONH). Unmyelinated retinal ganglion cell (RGC) axons exit the eye through the ONH, which is supported by the lamina cribrosa (LC) consisting of plates of connective tissue with channels for bundles of RGC axons. The LC progressively remodels during glaucoma, but the cellular and molecular mechanisms responsible for this remodeling are poorly understood. Two major cell types have been isolated and cultured from the human ONH, which differ in their characteristics. Glial fibrillary acidic protein (GFAP) positive ONH astrocytes are the major cell type and are reactive in glaucoma. GFAP negative LC cells are the second major cell type isolated from the human ONH, and in contrast to ONH astrocytes, are α-smooth muscle actin (α-SMA) positive. Although a number of in vitro studies have been conducted with LC cells, to date there has been no direct evidence for these cells in situ in the human ONH. We used GFAP and α-SMA immunofluorescent staining of human eyes to clearly demonstrate the presence of not only ONH astrocytes within the human ONH, but also LC cells within the cribriform (e.g. laminar) plates/beams of the LC region. Both of these cell types likely play important roles in the homeostatic maintenance of the ONH and pathogenic changes that occur in primary open angle glaucoma (POAG).
Collapse
Affiliation(s)
- Tara Tovar-Vidales
- The North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, United States.
| | - Robert J Wordinger
- The North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, United States
| | - Abbot F Clark
- The North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, United States.
| |
Collapse
|
25
|
Purines in neurite growth and astroglia activation. Neuropharmacology 2015; 104:255-71. [PMID: 26498067 DOI: 10.1016/j.neuropharm.2015.10.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/14/2015] [Accepted: 10/18/2015] [Indexed: 12/19/2022]
Abstract
The mammalian nervous system is a complex, functional network of neurons, consisting of local and long-range connections. Neuronal growth is highly coordinated by a variety of extracellular and intracellular signaling molecules. Purines turned out to be an essential component of these processes. Here, we review the current knowledge about the involvement of purinergic signaling in the regulation of neuronal development. We particularly focus on its role in neuritogenesis: the formation and extension of neurites. In the course of maturation mammals generally lose their ability to regenerate the central nervous system (CNS) e.g. after traumatic brain injury; although, spontaneous regeneration still occurs in the peripheral nervous system (PNS). Thus, it is crucial to translate the knowledge about CNS development and PNS regeneration into novel approaches to enable neurons of the mature CNS to regenerate. In this context we give a general overview of growth-inhibitory and growth-stimulatory factors and mechanisms involved in neurite growth. With regard to neuronal growth, astrocytes are an important cell population. They provide structural and metabolic support to neurons and actively participate in brain signaling. Astrocytes respond to injury with beneficial or detrimental reactions with regard to axonal growth. In this review we present the current knowledge of purines in these glial functions. Moreover, we discuss organotypic brain slice co-cultures as a model which retains neuron-glia interactions, and further presents at once a model for CNS development and regeneration. In summary, the purinergic system is a pivotal factor in neuronal development and in the response to injury. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
|
26
|
Capilla-Gonzalez V, Herranz-Pérez V, García-Verdugo JM. The aged brain: genesis and fate of residual progenitor cells in the subventricular zone. Front Cell Neurosci 2015; 9:365. [PMID: 26441536 PMCID: PMC4585225 DOI: 10.3389/fncel.2015.00365] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/03/2015] [Indexed: 12/12/2022] Open
Abstract
Neural stem cells (NSCs) persist in the adult mammalian brain through life. The subventricular zone (SVZ) is the largest source of stem cells in the nervous system, and continuously generates new neuronal and glial cells involved in brain regeneration. During aging, the germinal potential of the SVZ suffers a widespread decline, but the causes of this turn down are not fully understood. This review provides a compilation of the current knowledge about the age-related changes in the NSC population, as well as the fate of the newly generated cells in the aged brain. It is known that the neurogenic capacity is clearly disrupted during aging, while the production of oligodendroglial cells is not compromised. Interestingly, the human brain seems to primarily preserve the ability to produce new oligodendrocytes instead of neurons, which could be related to the development of neurological disorders. Further studies in this matter are required to improve our understanding and the current strategies for fighting neurological diseases associated with senescence.
Collapse
Affiliation(s)
- Vivian Capilla-Gonzalez
- Laboratory of Comparative Neurobiology, Department of Cell Biology, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, University of Valencia, CIBERNED Valencia, Spain ; Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine Seville, Spain
| | - Vicente Herranz-Pérez
- Laboratory of Comparative Neurobiology, Department of Cell Biology, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, University of Valencia, CIBERNED Valencia, Spain ; Multiple Sclerosis and Neuroregeneration Mixed Unit, IIS Hospital La Fe Valencia, Spain
| | - Jose Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Department of Cell Biology, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, University of Valencia, CIBERNED Valencia, Spain ; Multiple Sclerosis and Neuroregeneration Mixed Unit, IIS Hospital La Fe Valencia, Spain
| |
Collapse
|
27
|
Chondroitin Sulfate Induces Depression of Synaptic Transmission and Modulation of Neuronal Plasticity in Rat Hippocampal Slices. Neural Plast 2015; 2015:463854. [PMID: 26075099 PMCID: PMC4444577 DOI: 10.1155/2015/463854] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/18/2015] [Accepted: 04/22/2015] [Indexed: 12/13/2022] Open
Abstract
It is currently known that in CNS the extracellular matrix is involved in synaptic stabilization and limitation of synaptic plasticity. However, it has been reported that the treatment with chondroitinase following injury allows the formation of new synapses and increased plasticity and functional recovery. So, we hypothesize that some components of extracellular matrix may modulate synaptic transmission. To test this hypothesis we evaluated the effects of chondroitin sulphate (CS) on excitatory synaptic transmission, cellular excitability, and neuronal plasticity using extracellular recordings in the CA1 area of rat hippocampal slices. CS caused a reversible depression of evoked field excitatory postsynaptic potentials in a concentration-dependent manner. CS also reduced the population spike amplitude evoked after orthodromic stimulation but not when the population spikes were antidromically evoked; in this last case a potentiation was observed. CS also enhanced paired-pulse facilitation and long-term potentiation. Our study provides evidence that CS, a major component of the brain perineuronal net and extracellular matrix, has a function beyond the structural one, namely, the modulation of synaptic transmission and neuronal plasticity in the hippocampus.
Collapse
|
28
|
Lee KM, MacLean AG. New advances on glial activation in health and disease. World J Virol 2015; 4:42-55. [PMID: 25964871 PMCID: PMC4419121 DOI: 10.5501/wjv.v4.i2.42] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/23/2015] [Accepted: 02/11/2015] [Indexed: 02/05/2023] Open
Abstract
In addition to being the support cells of the central nervous system (CNS), astrocytes are now recognized as active players in the regulation of synaptic function, neural repair, and CNS immunity. Astrocytes are among the most structurally complex cells in the brain, and activation of these cells has been shown in a wide spectrum of CNS injuries and diseases. Over the past decade, research has begun to elucidate the role of astrocyte activation and changes in astrocyte morphology in the progression of neural pathologies, which has led to glial-specific interventions for drug development. Future therapies for CNS infection, injury, and neurodegenerative disease are now aimed at targeting astrocyte responses to such insults including astrocyte activation, astrogliosis and other morphological changes, and innate and adaptive immune responses.
Collapse
|
29
|
Abstract
Preconditioning (PC) using a preceding sublethal ischemic insult is an attractive strategy for protecting neurons by inducing ischemic tolerance in the brain. Although the underlying molecular mechanisms have been extensively studied, almost all studies have focused on neurons. Here, using a middle cerebral artery occlusion model in mice, we show that astrocytes play an essential role in the induction of brain ischemic tolerance. PC caused activation of glial cells without producing any noticeable brain damage. The spatiotemporal pattern of astrocytic, but not microglial, activation correlated well with that of ischemic tolerance. Interestingly, such activation in astrocytes lasted at least 8 weeks. Importantly, inhibiting astrocytes with fluorocitrate abolished the induction of ischemic tolerance. To investigate the underlying mechanisms, we focused on the P2X7 receptor as a key molecule in astrocyte-mediated ischemic tolerance. P2X7 receptors were dramatically upregulated in activated astrocytes. PC-induced ischemic tolerance was abolished in P2X7 receptor knock-out mice. Moreover, our results suggest that hypoxia-inducible factor-1α, a well known mediator of ischemic tolerance, is involved in P2X7 receptor-mediated ischemic tolerance. Unlike previous reports focusing on neuron-based mechanisms, our results show that astrocytes play indispensable roles in inducing ischemic tolerance, and that upregulation of P2X7 receptors in astrocytes is essential.
Collapse
|
30
|
Abstract
Partial recovery from brain injury due to trauma, hypoxia, or stroke, is ubiquitous and occurs largely through unknown mechanisms. It is now well accepted that injury enhances proliferation of quiescent stem and progenitor cells in specialized niches within the brain. However, whether this injury-induced neurogenesis contributes to recovery after brain injury remains controversial. Recent evidence suggests that hippocampal neural stem/precursor cell activation and subsequent neurogenesis are responsible for at least some aspects of spontaneous recovery following brain injury from a variety of causes. However, other aspects of injury-induced neurogenesis, including its contribution to adverse sequelae such as seizures, are still being investigated. The purpose of this review is to provide an overview of adult hippocampal neurogenesis and how it relates to injury and explain how current mouse technology is allowing for better understanding of whether manipulating this natural process might eventually help inform therapy following brain injury.
Collapse
Affiliation(s)
- Tzong-Shiue Yu
- Departments of Pediatrics and Pathology & Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Patricia M Washington
- Departments of Pediatrics and Pathology & Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Steven G Kernie
- Departments of Pediatrics and Pathology & Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
31
|
Capilla-Gonzalez V, Cebrian-Silla A, Guerrero-Cazares H, Garcia-Verdugo JM, Quiñones-Hinojosa A. Age-related changes in astrocytic and ependymal cells of the subventricular zone. Glia 2014; 62:790-803. [PMID: 24677590 DOI: 10.1002/glia.22642] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/10/2014] [Accepted: 01/16/2014] [Indexed: 01/06/2023]
Abstract
Neurogenesis persists in the adult subventricular zone (SVZ) of the mammalian brain. During aging, the SVZ neurogenic capacity undergoes a progressive decline, which is attributed to a decrease in the population of neural stem cells (NSCs). However, the behavior of the NSCs that remain in the aged brain is not fully understood. Here we performed a comparative ultrastructural study of the SVZ niche of 2-month-old and 24-month-old male C57BL/6 mice, focusing on the NSC population. Using thymidine-labeling, we showed that residual NSCs in the aged SVZ divide less frequently than those in young mice. We also provided evidence that ependymal cells are not newly generated during senescence, as others studies suggest. Remarkably, both astrocytes and ependymal cells accumulated a high number of intermediate filaments and dense bodies during aging, resembling reactive cells. A better understanding of the changes occurring in the neurogenic niche during aging will allow us to develop new strategies for fighting neurological disorders linked to senescence.
Collapse
|
32
|
Ricks CB, Shin SS, Becker C, Grandhi R. Extracellular matrices, artificial neural scaffolds and the promise of neural regeneration. Neural Regen Res 2014; 9:1573-7. [PMID: 25368641 PMCID: PMC4211196 DOI: 10.4103/1673-5374.141778] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2014] [Indexed: 01/08/2023] Open
Abstract
Over last 20 years, extracellular matrices have been shown to be useful in promoting tissue regeneration. Recently, they have been used and have had success in achieving neurogenesis. Recent developments in extracellular matrix design have allowed their successful in vivo incorporation to engender an environment favorable for neural regeneration in animal models. Promising treatments under investigation include manipulation of the intrinsic extracellular matrix and incorporation of engineered naometer-sized scaffolds through which inhibition of molecules serving as barriers to neuroregeneration and delivery of neurotrophic factors and/or cells for successful tissue regeneration can be achieved. Further understanding of the changes incurred within the extracellular matrix following central nervous system injury will undoubtedly help design a clinically efficacious extracellular matrix scaffold that can mitigate or reverse neural degeneration in the clinical setting.
Collapse
Affiliation(s)
- Christian B Ricks
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Samuel S Shin
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Ramesh Grandhi
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
33
|
Pathological potential of astroglial purinergic receptors. ADVANCES IN NEUROBIOLOGY 2014; 11:213-56. [PMID: 25236731 DOI: 10.1007/978-3-319-08894-5_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acute brain injury and neurodegenerative disorders may result in astroglial activation. Astrocytes are able to determine the progression and outcome of these neuropathologies in a beneficial or detrimental way. Nucleotides, e.g. adenosine 5'-triphosphate (ATP), released after acute or chronic neuronal injury, are important mediators of glial activation and astrogliosis.Acute injury may cause significant changes in ATP balance, resulting in (1) a decline of intracellular ATP levels and (2) an increase in extracellular ATP concentrations via efflux from the intracellular space. The released ATP may have trophic effects, but can also act as a proinflammatory mediator or cytotoxic factor, inducing necrosis/apoptosis as a universal "danger" signal. Furthermore, ATP, primarily released from astrocytes, is a means of communication between neurons, glial cells, and intracerebral blood vessels.Astrocytes express a heterogeneous battery of purinergic ionotropic and metabotropic receptors (P2XRs and P2YRs, respectively) to respond to extracellular nucleotides.In this chapter, we summarize the contemporary knowledge on the pathological potential of P2Rs in relation to changes of astrocytic functions, determined by distinct molecular signaling cascades, in a variety of diseases. We discuss specific aspects of reactive astrogliosis, with respect to the involvement of prominent receptor subtypes, such as the P2X7 and P2Y1/2Rs. Examples of purinergic signaling of microglia, oligodendrocytes, and blood vessels under pathophysiological conditions will also be presented.The understanding of the pathological potential of purinergic signaling in "controlling and fine-tuning" of astrocytic responses is important for identifying possible therapeutic principles to treat acute and chronic central nervous system diseases.
Collapse
|
34
|
Zhang H, Liu Y, Li Y, Zhou Y, Chen D, Shen J, Yan Y, Yan S, Wu X, Li A, Guo A, Cheng C. The expression of CAP1 after traumatic brain injury and its role in astrocyte proliferation. J Mol Neurosci 2014; 54:653-63. [PMID: 25060335 DOI: 10.1007/s12031-014-0363-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/24/2014] [Indexed: 11/27/2022]
Abstract
Adenylate cyclase-associated protein 1 (CAP1), a member of cyclase-associated proteins involved in the regulation of actin filaments, was recently reported to play a role in the pathology of sciatic nerves injury. However, the distribution and function of CAP1 in the central nervous system (CNS) remain unclear. To investigate whether CAP1 is involved in CNS injury and repair, we used an acute traumatic brain injury (TBI) model in adult rats. Western blot analysis and immunohistochemistry showed a significant upregulation of CAP1 in ipsilateral peritrauma cortex compared with the contralateral and sham-operated ones. Double immunofluorescence staining showed that CAP1 was co-expressed with glial fibrillary acidic protein (GFAP). In addition, we detected that Ki-67 had colocalization with GFAP and CAP1 after TBI. In vitro, during the process of lipopolysaccharide (LPS)-induced primary astrocyte proliferation, we observed enhanced expression of CAP1. Specially, CAP1-specific siRNA-transfected primary astrocytes show significantly decreased ability for proliferation. Together, all these data indicated that the change of CAP1 protein expression was associated with astrocyte proliferation after the trauma of the central nervous system (CNS).
Collapse
Affiliation(s)
- Haiyan Zhang
- Department of Immunology, Medical College of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Seil FJ. The changeable nervous system: studies on neuroplasticity in cerebellar cultures. Neurosci Biobehav Rev 2014; 45:212-32. [PMID: 24933693 DOI: 10.1016/j.neubiorev.2014.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 05/23/2014] [Accepted: 06/05/2014] [Indexed: 01/03/2023]
Abstract
Circuit reorganization after injury was studied in a cerebellar culture model. When cerebellar cultures derived from newborn mice were exposed at explantation to a preparation of cytosine arabinoside that destroyed granule cells and oligodendrocytes and compromised astrocytes, Purkinje cells surviving in greater than usual numbers were unensheathed by astrocytic processes and received twice the control number of inhibitory axosomatic synapses. Purkinje cell axon collaterals sprouted and many of their terminals formed heterotypical synapses with other Purkinje cell dendritic spines. The resulting circuit reorganization preserved inhibition in the cerebellar cortex. Following this reorganization, replacement of the missing granule cells and glia was followed by a restitution of the normal circuitry. Most of these developmental and reconstructive changes were not dependent on neuronal activity, the major exception being inhibitory synaptogenesis. The full complement of inhibitory synapses did not develop in the absence of neuronal activity, which could be mitigated by application of exogenous TrkB receptor ligands. Inhibitory synaptogenesis could also be promoted by activity-induced release of endogenous TrkB receptor ligands or by antibody activation of the TrkB receptor.
Collapse
Affiliation(s)
- Fredrick J Seil
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
36
|
Ruiz M, Martínez-Vidal AF, Morales JM, Monleón D, Giménez Y Ribotta M. Neurodegenerative changes are prevented by Erythropoietin in the pmn model of motoneuron degeneration. Neuropharmacology 2014; 83:137-53. [PMID: 24769002 DOI: 10.1016/j.neuropharm.2014.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 03/02/2014] [Accepted: 04/10/2014] [Indexed: 11/29/2022]
Abstract
Motoneuron diseases are fatal neurodegenerative disorders characterized by a progressive loss of motoneurons, muscle weakness and premature death. The progressive motor neuronopathy (pmn) mutant mouse has been considered a good model for the autosomal recessive childhood form of spinal muscular atrophy (SMA). Here, we investigated the therapeutic potential of Erythropoietin (Epo) on this mutant mouse. Symptomatic or pre-symptomatic treatment with Epo significantly prolongs lifespan by 84.6% or 87.2% respectively. Epo preserves muscle strength and significantly attenuates behavioural motor deficits of mutant pmn mice. Histological and metabolic changes in the spinal cord evaluated by immunohistochemistry, western blot, and high-resolution (1)H-NMR spectroscopy were also greatly prevented by Epo-treatment. Our results illustrate the efficacy of Epo in improving quality of life of mutant pmn mice and open novel therapeutic pathways for motoneuron diseases.
Collapse
Affiliation(s)
- Marta Ruiz
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Miguel Hernández (UMH), Av. Ramón y Cajal s/n, 03550 San Juan de Alicante, Alicante, Spain
| | - Ana Fe Martínez-Vidal
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Miguel Hernández (UMH), Av. Ramón y Cajal s/n, 03550 San Juan de Alicante, Alicante, Spain
| | - José Manuel Morales
- Unidad Central de Investigación en Medicina, Universidad de Valencia, Valencia, Spain
| | - Daniel Monleón
- Fundación de Investigación del Hospital Clínico Universitario de Valencia (FIHCUV), Valencia, Spain
| | - Minerva Giménez Y Ribotta
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Miguel Hernández (UMH), Av. Ramón y Cajal s/n, 03550 San Juan de Alicante, Alicante, Spain.
| |
Collapse
|
37
|
Adorjan I, Bindics K, Galgoczy P, Kalman M. Phases of intermediate filament composition in Bergmann glia following cerebellar injury in adult rat. Exp Brain Res 2014; 232:2095-104. [DOI: 10.1007/s00221-014-3900-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 03/03/2014] [Indexed: 02/02/2023]
|
38
|
Sharma S, Nag TC, Thakar A, Bhardwaj DN, Roy TS. The aging human cochlear nucleus: Changes in the glial fibrillary acidic protein, intracellular calcium regulatory proteins, GABA neurotransmitter and cholinergic receptor. J Chem Neuroanat 2014; 56:1-12. [DOI: 10.1016/j.jchemneu.2013.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 12/19/2013] [Accepted: 12/19/2013] [Indexed: 01/23/2023]
|
39
|
Anderson MA, Ao Y, Sofroniew MV. Heterogeneity of reactive astrocytes. Neurosci Lett 2013; 565:23-9. [PMID: 24361547 DOI: 10.1016/j.neulet.2013.12.030] [Citation(s) in RCA: 337] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 12/01/2013] [Accepted: 12/12/2013] [Indexed: 12/31/2022]
Abstract
Astrocytes respond to injury and disease in the central nervous system (CNS) with a process referred to as reactive astrogliosis. Recent progress demonstrates that reactive astrogliosis is not a simple all-or-none phenomenon, but is a finely gradated continuum of changes that range from reversible alterations in gene expression and cell hypertrophy, to scar formation with permanent tissue rearrangement. There is now compelling evidence that reactive astrocytes exhibit a substantial potential for heterogeneity at multiple levels, including gene expression, cell morphology, topography (distance from lesions), CNS regions, local (among neighboring cells), cell signaling and cell function. Structural and functional changes are regulated in reactive astrocytes by many different potential signaling events that occur in a context dependent manner. It is noteworthy that different stimuli of astrocyte reactivity can lead to similar degrees of GFAP upregulation while causing substantially different changes in transcriptome profiles and cell function. Thus, it is not possible to equate simple and uniform measures such as cell hypertrophy and upregulation of GFAP expression with a single, uniform concept of astrocyte reactivity. Instead, it is necessary to recognize the considerable potential for heterogeneity and determine the functional implications of astrocyte reactivity in a context specific manner as regulated by specific signaling events.
Collapse
Affiliation(s)
- Mark A Anderson
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1763, United States
| | - Yan Ao
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1763, United States
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1763, United States.
| |
Collapse
|
40
|
Kaiser O, Aliuos P, Wissel K, Lenarz T, Werner D, Reuter G, Kral A, Warnecke A. Dissociated neurons and glial cells derived from rat inferior colliculi after digestion with papain. PLoS One 2013; 8:e80490. [PMID: 24349001 PMCID: PMC3861243 DOI: 10.1371/journal.pone.0080490] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/13/2013] [Indexed: 01/10/2023] Open
Abstract
The formation of gliosis around implant electrodes for deep brain stimulation impairs electrode–tissue interaction. Unspecific growth of glial tissue around the electrodes can be hindered by altering physicochemical material properties. However, in vitro screening of neural tissue–material interaction requires an adequate cell culture system. No adequate model for cells dissociated from the inferior colliculus (IC) has been described and was thus the aim of this study. Therefore, IC were isolated from neonatal rats (P3_5) and a dissociated cell culture was established. In screening experiments using four dissociation methods (Neural Tissue Dissociation Kit [NTDK] T, NTDK P; NTDK PN, and a validated protocol for the dissociation of spiral ganglion neurons [SGN]), the optimal media, and seeding densities were identified. Thereafter, a dissociation protocol containing only the proteolytic enzymes of interest (trypsin or papain) was tested. For analysis, cells were fixed and immunolabeled using glial- and neuron-specific antibodies. Adhesion and survival of dissociated neurons and glial cells isolated from the IC were demonstrated in all experimental settings. Hence, preservation of type-specific cytoarchitecture with sufficient neuronal networks only occurred in cultures dissociated with NTDK P, NTDK PN, and fresh prepared papain solution. However, cultures obtained after dissociation with papain, seeded at a density of 2×104 cells/well and cultivated with Neuro Medium for 6 days reliably revealed the highest neuronal yield with excellent cytoarchitecture of neurons and glial cells. The herein described dissociated culture can be utilized as in vitro model to screen interactions between cells of the IC and surface modifications of the electrode.
Collapse
Affiliation(s)
- Odett Kaiser
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Pooyan Aliuos
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Kirsten Wissel
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Darja Werner
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Günter Reuter
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Andrej Kral
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Athanasia Warnecke
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
41
|
Herndon JM, Cholanians AB, Lau SS, Monks TJ. Glial cell response to 3,4-(+/-)-methylenedioxymethamphetamine and its metabolites. Toxicol Sci 2013; 138:130-8. [PMID: 24299738 DOI: 10.1093/toxsci/kft275] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
3,4-(±)-Methylenedioxymethamphetamine (MDMA) and 3,4-(±)-methylenedioxyamphetamine (MDA), a primary metabolite of MDMA, are phenylethylamine derivatives that cause serotonergic neurotoxicity. Although several phenylethylamine derivatives activate microglia, little is known about the effects of MDMA on glial cells, and evidence of MDMA-induced microglial activation remains ambiguous. We initially determined microglial occupancy status of the parietal cortex in rats at various time points following a single neurotoxic dose of MDMA (20mg/kg, SC). A biphasic microglial response to MDMA was observed, with peak microglial occupancy occurring 12- and 72-h post-MDMA administration. Because direct injection of MDMA into the brain does not produce neurotoxicity, the glial response to MDMA metabolites was subsequently examined in vivo and in vitro. Rats were treated with MDA (20mg/kg, SC) followed by ex vivo biopsy culture to determine the activation of quiescent microglia. A reactive microglial response was observed 72 h after MDA administration that subsided by 7 days. In contrast, intracerebroventricular (ICV) administration of MDA failed to produce a microglial response. However, thioether metabolites of MDA derived from α-methyldopamine (α-MeDA) elicited a robust microglial response following icv injection. We subsequently determined the direct effects of various MDMA metabolites on primary cultures of E18 hippocampal mixed glial and neuronal cells. 5-(Glutathion-S-yl)-α-MeDA, 2,5-bis-(glutathion-S-yl)-α-MeDA, and 5-(N-acetylcystein-S-yl)-α-MeDA all stimulated the proliferation of glial fibrillary acidic protein-positive astrocytes at a dose of 10 µM. The findings indicate that glial cells are activated in response to MDMA/MDA and support a role for thioether metabolites of α-MeDA in the neurotoxicity.
Collapse
Affiliation(s)
- Joseph M Herndon
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721
| | | | | | | |
Collapse
|
42
|
Castejón OJ. Electron microscopy of astrocyte changes and subtypes in traumatic human edematous cerebral cortex: a review. Ultrastruct Pathol 2013; 37:417-24. [PMID: 24134799 DOI: 10.3109/01913123.2013.831157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The astrocyte subtypes in moderate and severe human brain trauma complicated with subdural hematoma or hygroma are described. Clear and dense edematous and hypertrophic reactive astrocytes are distinguished in severe vasogenic brain edema. Swollen perineuronal astrocytes appear compressing and indenting dark, degenerated pyramidal and nonpyramidal nerve cells. Glycogen-depleted and glycogen-rich astrocytes also are seen. Reactive hypertrophic astrocytes exhibit increased amounts of dilated smooth and rough endoplasmic reticulum, microtubules, and gliofilaments. Perisynaptic astrocyte ensheathments of neuropil synaptic contacts are lost, and the perivascular astrocyte end-feet appear dissociated from the capillary basement membrane. The interastrocytary gap junctions appear fragmented.
Collapse
Affiliation(s)
- Orlando J Castejón
- Biological Research Institute, "Drs. Orlando Castejón and Haydée Viloria de Castejón," Faculty of Medicine, Zulia University , Maracaibo , Venezuela
| |
Collapse
|
43
|
Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J Neurosci 2013; 33:12870-86. [PMID: 23904622 DOI: 10.1523/jneurosci.2121-13.2013] [Citation(s) in RCA: 597] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Astroglial scars surround damaged tissue after trauma, stroke, infection, or autoimmune inflammation in the CNS. They are essential for wound repair, but also interfere with axonal regrowth. A better understanding of the cellular mechanisms, regulation, and functions of astroglial scar formation is fundamental to developing safe interventions for many CNS disorders. We used wild-type and transgenic mice to quantify and dissect these parameters. Adjacent to crush spinal cord injury (SCI), reactive astrocytes exhibited heterogeneous phenotypes as regards proliferation, morphology, and chemistry, which all varied with distance from lesions. Mature scar borders at 14 d after SCI consisted primarily of newly proliferated astroglia with elongated cell processes that surrounded large and small clusters of inflammatory, fibrotic, and other cells. During scar formation from 5 to 14 d after SCI, cell processes deriving from different astroglia associated into overlapping bundles that quantifiably reoriented and organized into dense mesh-like arrangements. Selective deletion of STAT3 from astroglia quantifiably disrupted the organization of elongated astroglia into scar borders, and caused a failure of astroglia to surround inflammatory cells, resulting in increased spread of these cells and neuronal loss. In cocultures, wild-type astroglia spontaneously corralled inflammatory or fibromeningeal cells into segregated clusters, whereas STAT3-deficient astroglia failed to do so. These findings demonstrate heterogeneity of reactive astroglia and show that scar borders are formed by newly proliferated, elongated astroglia, which organize via STAT3-dependent mechanisms to corral inflammatory and fibrotic cells into discrete areas separated from adjacent tissue that contains viable neurons.
Collapse
|
44
|
Franco Rodríguez N, Dueñas Jiménez J, De la Torre Valdovinos B, López Ruiz J, Hernández Hernández L, Dueñas Jiménez S. Tamoxifen favoured the rat sensorial cortex regeneration after a penetrating brain injury. Brain Res Bull 2013; 98:64-75. [DOI: 10.1016/j.brainresbull.2013.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/10/2013] [Accepted: 07/15/2013] [Indexed: 02/01/2023]
|
45
|
Weidemann F, Sanchez-Niño MD, Politei J, Oliveira JP, Wanner C, Warnock DG, Ortiz A. Fibrosis: a key feature of Fabry disease with potential therapeutic implications. Orphanet J Rare Dis 2013; 8:116. [PMID: 23915644 PMCID: PMC3750297 DOI: 10.1186/1750-1172-8-116] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 08/01/2013] [Indexed: 12/30/2022] Open
Abstract
Fabry disease is a rare X-linked hereditary disease caused by mutations in the AGAL gene encoding the lysosomal enzyme alpha-galactosidase A. Enzyme replacement therapy (ERT) is the current cornerstone of Fabry disease management. Involvement of kidney, heart and the central nervous system shortens life span, and fibrosis of these organs is a hallmark of the disease. Fibrosis was initially thought to result from tissue ischemia secondary to endothelial accumulation of glycosphingolipids in the microvasculature. However, despite ready clearance of endothelial deposits, ERT is less effective in patients who have already developed fibrosis. Several potential explanations of this clinical observation may impact on the future management of Fabry disease. Alternative molecular pathways linking glycosphingolipids and fibrosis may be operative; tissue injury may recruit secondary molecular mediators of fibrosis that are unresponsive to ERT, or fibrosis may represent irreversible tissue injury that limits the therapeutic response to ERT. We provide an overview of Fabry disease, with a focus on the assessment of fibrosis, the clinical consequences of fibrosis, and recent advances in understanding the cellular and molecular mechanisms of fibrosis that may suggest novel therapeutic approaches to Fabry disease.
Collapse
Affiliation(s)
- Frank Weidemann
- Department of Medicine, Divisions of Cardiology and Nephrology, The Comprehensive Heart Failure Center at the University of Würzburg, Würzburg, Germany
| | | | - Juan Politei
- Trinity Dupuytren Clinic, Neurology department, Buenos Aires, Argentina
| | | | - Christoph Wanner
- Department of Medicine, Divisions of Cardiology and Nephrology, The Comprehensive Heart Failure Center at the University of Würzburg, Würzburg, Germany
| | | | - Alberto Ortiz
- IIS-Fundacion Jimenez Diaz-UAM, IRSIN/REDINREN, Madrid, Spain
- Unidad de Dialisis, IIS-Fundacion Jimenez Diaz, Av Reyes católicos 2, Madrid, 28040, Spain
| |
Collapse
|
46
|
Lee CY, Pappas GD, Kriho V, Huang BM, Yang HY. Proliferation of a subpopulation of reactive astrocytes following needle-insertion lesion in rat. Neurol Res 2013; 25:767-76. [PMID: 14579798 DOI: 10.1179/016164103101202156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It is well known that traumatic injuries of the CNS induce a gliotic reaction, characterized by the presence of reactive astrocytes. Reactive astrocytes exhibit enhanced expression of the astrocyte-specific intermediate filament, glial fibrillary acidic protein (GFAP), hypertrophy, and thickened processes. Recently, we have demonstrated that injuries of the CNS induce a re-expression of an embryonic intermediate filament-associated protein, IFAP-70/280 kDa. Based on IFAP-70/280 kDa immunolabeling, we have shown that reactive astrocytes, activated by stab-wound injury, can be divided into two major groups: 1. persistent IFAP+/GFAP+ cells which are close to the wound in the area of glial scar, and 2. transient IFAP-/GFAP+ cells which are farther from the wound. In this study, we use BrdU incorporation to examine proliferation in these two groups of reactive astrocytes induced by stab injury of the rat cerebrum. Triple/double-label immunofluorescence microscopy was performed using antibodies to IFAP-70/280 kDa, GFAP, and BrdU. The results showed that BrdU+ reactive astrocytes (GFAP+) were always IFAB-70/280 kDa+ as well. However, not all IFAP+ reactive astrocytes are BrdU+. BrdU+ signal was not observed in any IFAP- reactive astrocytes. At five days post-lesion, IFAP+ reactive astrocytes were increasing in the area of the wound (0-50 micrograms from the wound edge), but had reached a peak in the proximal area (50-800 micrograms away from the wound edge). At eight days post-lesion, IFAP+ reactive astrocytes achieved the highest percentage in the wound area. At the same time, BrdU-containing reactive astrocytes occupied an area closer to the wound. By 20 days post-lesion, following the formation of the gliotic scar at the stab-wound, a few IFAP+/GFAP+ cells still persisted. BrdU-containing reactive astrocytes were only observed in the scar. These results indicate that many IFAP+ reactive astrocytes close to the wound, in contrast to the IFAP- ones farther from the wound, appear to regain their proliferative potential to increase in number and participate in the formation of the gliotic scar.
Collapse
Affiliation(s)
- Chung-Ying Lee
- Department of Zoology, National Taiwan University, Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
47
|
Kokjohn TA, Maarouf CL, Daugs ID, Hunter JM, Whiteside CM, Malek-Ahmadi M, Rodriguez E, Kalback W, Jacobson SA, Sabbagh MN, Beach TG, Roher AE. Neurochemical profile of dementia pugilistica. J Neurotrauma 2013; 30:981-97. [PMID: 23268705 PMCID: PMC3684215 DOI: 10.1089/neu.2012.2699] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Dementia pugilistica (DP), a suite of neuropathological and cognitive function declines after chronic traumatic brain injury (TBI), is present in approximately 20% of retired boxers. Epidemiological studies indicate TBI is a risk factor for neurodegenerative disorders including Alzheimer disease (AD) and Parkinson disease (PD). Some biochemical alterations observed in AD and PD may be recapitulated in DP and other TBI persons. In this report, we investigate long-term biochemical changes in the brains of former boxers with neuropathologically confirmed DP. Our experiments revealed biochemical and cellular alterations in DP that are complementary to and extend information already provided by histological methods. ELISA and one-dimensional and two dimensional Western blot techniques revealed differential expression of select molecules between three patients with DP and three age-matched non-demented control (NDC) persons without a history of TBI. Structural changes such as disturbances in the expression and processing of glial fibrillary acidic protein, tau, and α-synuclein were evident. The levels of the Aβ-degrading enzyme neprilysin were reduced in the patients with DP. Amyloid-β levels were elevated in the DP participant with the concomitant diagnosis of AD. In addition, the levels of brain-derived neurotrophic factor and the axonal transport proteins kinesin and dynein were substantially decreased in DP relative to NDC participants. Traumatic brain injury is a risk factor for dementia development, and our findings are consistent with permanent structural and functional damage in the cerebral cortex and white matter of boxers. Understanding the precise threshold of damage needed for the induction of pathology in DP and TBI is vital.
Collapse
Affiliation(s)
- Tyler A. Kokjohn
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona
- Department of Microbiology, Midwestern University School of Medicine, Glendale, Arizona
| | - Chera L. Maarouf
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona
| | - Ian D. Daugs
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona
| | - Jesse M. Hunter
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona
| | - Charisse M. Whiteside
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona
| | - Michael Malek-Ahmadi
- Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute, Sun City, Arizona
| | - Emma Rodriguez
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona
- National Institute of Cardiology, Mexico City, Mexico
| | - Walter Kalback
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona
| | - Sandra A. Jacobson
- Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute, Sun City, Arizona
| | - Marwan N. Sabbagh
- Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute, Sun City, Arizona
| | - Thomas G. Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona
| | - Alex E. Roher
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona
| |
Collapse
|
48
|
Tomassoni D, Nwankwo IE, Gabrielli MG, Bhatt S, Muhammad AB, Lokhandwala MF, Tayebati SK, Amenta F. Astrogliosis in the brain of obese Zucker rat: a model of metabolic syndrome. Neurosci Lett 2013; 543:136-41. [PMID: 23545209 DOI: 10.1016/j.neulet.2013.03.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/11/2013] [Accepted: 03/14/2013] [Indexed: 11/28/2022]
Abstract
Metabolic syndrome (MetS) is a disorder characterized primarily by the development of insulin resistance. Insulin resistance and subsequent hyperinsulinemia, originating from abdominal obesity, increases the risk of cerebrovascular and cardiovascular disease and all-cause mortality. Obesity is probably a risk factor for Alzheimer's disease and vascular dementia and is associated with impaired cognitive function. The obese Zucker rat (OZR) represents a model of type 2 diabetes exhibiting a moderate degree of arterial hypertension and of increased oxidative stress. To clarify the possible relationships between MetS and brain damage, the present study has investigated brain microanatomy in OZRs compared with their littermate controls lean Zucker rats (LZRs). Male OZRs and LZRs of 12 weeks of age were used. Their brain was processed for immunochemical and immunohistochemical analysis of glial fibrillary acidic protein (GFAP). In frontal and parietal cortex of OZRs a significant increase in the number of GFAP immunoreactive astrocytes was observed. Similar findings were found in the hippocampus, where an increased number of GFAP immunoreactive astrocytes were detected in the CA1 and CA3 subfields and dentate gyrus of OZRs compared to the LZRs. These findings indicating the occurrence of brain injury accompanied by astrogliosis in OZRs suggest that these rats, developed as an animal model of type 2 diabetes, may also represent a model for assessing the influence of MetS on brain. The identification of neurodegenerative changes in OZRs may represent the first step for better characterizing neuronal involvement in this model of MetS and possible treatment for countering it.
Collapse
Affiliation(s)
- Daniele Tomassoni
- School of Bioscience and Biotechnology, University of Camerino, 62032 Camerino, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Wilhelmus MM, Bol JG, van Duinen SG, Drukarch B. Extracellular matrix modulator lysyl oxidase colocalizes with amyloid-beta pathology in Alzheimer's disease and hereditary cerebral hemorrhage with amyloidosis—Dutch type. Exp Gerontol 2013; 48:109-14. [DOI: 10.1016/j.exger.2012.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 12/10/2012] [Accepted: 12/13/2012] [Indexed: 11/29/2022]
|
50
|
Ando T, Sato S, Toyooka T, Kobayashi H, Nawashiro H, Ashida H, Obara M. Photomechanical wave-driven delivery of siRNAs targeting intermediate filament proteins promotes functional recovery after spinal cord injury in rats. PLoS One 2012; 7:e51744. [PMID: 23272155 PMCID: PMC3522723 DOI: 10.1371/journal.pone.0051744] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 11/05/2012] [Indexed: 11/25/2022] Open
Abstract
The formation of glial scars after spinal cord injury (SCI) is one of the factors inhibiting axonal regeneration. Glial scars are mainly composed of reactive astrocytes overexpressing intermediate filament (IF) proteins such as glial fibrillary acidic protein (GFAP) and vimentin. In the current study, we delivered small interfering RNAs (siRNAs) targeting these IF proteins to SCI model rats using photomechanical waves (PMWs), and examined the restoration of motor function in the rats. PMWs are generated by irradiating a light-absorbing material with 532-nm nanosecond laser pulses from a Q-switched Nd:YAG laser. PMWs can site-selectively increase the permeability of the cell membrane for molecular delivery. Rat spinal cord was injured using a weight-drop device and the siRNA(s) solutions were intrathecally injected into the vicinity of the exposed SCI, to which PMWs were applied. We first confirmed the substantial uptake of fluorescence-labeled siRNA by deep glial cells; then we delivered siRNAs targeting GFAP and vimentin into the lesion. The treatment led to a significant improvement in locomotive function from five days post-injury in rats that underwent PMW-mediated siRNA delivery. This was attributable to the moderate silencing of the IF proteins and the subsequent decrease in the cavity area in the injured spinal tissue.
Collapse
Affiliation(s)
- Takahiro Ando
- Department of Electronics and Electrical Engineering, Keio University, Yokohama, Japan
| | - Shunichi Sato
- Division of Biomedical Information Sciences, National Defense Medical College Research Institute, Tokorozawa, Japan
- * E-mail:
| | - Terushige Toyooka
- Department of Neurosurgery, National Defense Medical College, Tokorozawa, Japan
| | - Hiroaki Kobayashi
- Department of Neurosurgery, National Defense Medical College, Tokorozawa, Japan
| | - Hiroshi Nawashiro
- Department of Neurosurgery, National Defense Medical College, Tokorozawa, Japan
| | - Hiroshi Ashida
- Division of Biomedical Information Sciences, National Defense Medical College Research Institute, Tokorozawa, Japan
| | - Minoru Obara
- Department of Electronics and Electrical Engineering, Keio University, Yokohama, Japan
| |
Collapse
|