Published online Jan 18, 2020. doi: 10.5500/wjt.v10.i1.15
Peer-review started: July 31, 2019
First decision: August 20, 2019
Revised: December 3, 2019
Accepted: December 19, 2019
Article in press: December 19, 2019
Published online: January 18, 2020
Processing time: 167 Days and 2.1 Hours
Scarcity of donor organs and the increment in patients awaiting a transplant increased the use of organs from expanded criteria donors or donation after circulatory death. Due to the suboptimal outcomes of these donor organs, there is an increased interest in better preservation methods, such as ex vivo machine perfusion or abdominal regional perfusion to improve outcomes. This state-of-the-art review aims to discuss the available types of perfusion techniques, its potential benefits and the available evidence in kidney, liver and pancreas transplantation. Additionally, translational steps from animal models towards clinical studies will be described, as well as its application to clinical practice, with the focus on the Netherlands. Despite the lack of evidence from randomized controlled trials, currently available data suggest especially beneficial effects of normothermic regional perfusion on biliary complications and ischemic cholangiopathy after liver transplantation. For ex vivo machine perfusion in kidney transplantation, hypothermic machine perfusion has proven to be beneficial over static cold storage in a randomized controlled trial, while normothermic machine perfusion is currently under investigation. For ex vivo machine perfusion in liver transplantation, normothermic machine perfusion has proven to reduce discard rates and early allograft dysfunction. In response to clinical studies, hypothermic machine perfusion for deceased donor kidneys has already been implemented as standard of care in the Netherlands.
Core tip: Scarcity of donor organs and the increment in waitlisted patients increased the use of organs from expanded criteria donors or donation after circulatory death donors. Due to suboptimal outcomes of these organs, there is an increased interest in dynamic preservation, such as ex vivo machine perfusion or abdominal regional perfusion to improve outcomes. This review discusses perfusion types, its potential benefits and the available evidence in kidney, liver and pancreas transplantation. Additionally, translational steps from animal models towards clinical studies will be described as well as its application to clinical practice, with as focus the Netherlands.