1
|
Shyam M, Sidharth S, Veronica A, Jagannathan L, Srirangan P, Radhakrishnan V, Sabina EP. Diabetic retinopathy: a comprehensive review of pathophysiology and emerging treatments. Mol Biol Rep 2025; 52:380. [PMID: 40205024 DOI: 10.1007/s11033-025-10490-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 04/02/2025] [Indexed: 04/11/2025]
Abstract
Diabetic retinopathy constitutes a major complication associated with diabetes mellitus, resulting in visual impairment and blindness on a global scale. The pathophysiology of DR is characterized by intricate interactions among metabolic, hemodynamic, and inflammatory pathways, which include the activation of the polyol pathway, the accumulation of advanced glycation end products, the overactivation of protein kinase C, dysregulation of the renin-angiotensin-aldosterone system, and retinal neurodegeneration. This review investigates the classification, complex pathophysiology, and therapeutic modalities for DR, encompassing conventional interventions such as anti-VEGF agents, aldose reductase inhibitors, angiotensin receptor blockers, laser photocoagulation, and vitrectomy. Innovative treatments, including advanced anti-VEGF agents, neuroprotective strategies, gene and stem cell therapies, and advancements in drug delivery systems, exhibit considerable transformative potential. Furthermore, integrating artificial intelligence for early detection and modulation of inflammatory pathways signifies cutting-edge progress in the field. By integrating contemporary knowledge and prospective avenues, this review underscores the significance of comprehending the multifaceted nature of DR and the advancements in its therapeutic approaches. The objective is to bridge the gaps between research findings and clinical application, thereby providing a comprehensive resource to enhance outcomes and quality of life for individuals impacted by DR.
Collapse
Affiliation(s)
- Mukul Shyam
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - S Sidharth
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Aleen Veronica
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Lakshmipriya Jagannathan
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Prathap Srirangan
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Vidya Radhakrishnan
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Evan Prince Sabina
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
2
|
Edel MJ, Casellas HS, Osete JR, Nieto-Nicolau N, Arnalich-Montiel F, De Miguel MP, McLenachan S, Roshandel D, Casaroli-Marano RP, Alvarez-Palomo B. An Optimized Method to Produce Human-Induced Pluripotent Stem Cell-Derived Limbal Stem Cells Easily Adaptable for Clinical Use. Stem Cells Dev 2025; 34:49-60. [PMID: 39689863 DOI: 10.1089/scd.2024.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
In adults, the limbal stem cells (LSC) reside in the limbal region of the eye, at the junction of the cornea and the sclera where they renew the outer epithelial layer of the cornea assuring transparency. LSC deficiencies (LSCD) due to disease or injury account for one of the major causes of blindness. Among current treatments for LSCD, cornea transparency can be restored by providing new LSC to the damaged eye and induced pluripotent stem cells (iPSC) holds great promise as a new advanced cell source. A synthetic mRNA-based protocol to produce human iPSC from bone marrow mesenchymal stem cells has been defined. The results demonstrate a standardizable method that can be easily adaptable for clinical-grade production standards, produce high-purity LSC-like cells in a relatively rapid timeframe of 12 days, and can be successfully seeded on amniotic membrane or a biodegradable fibrin gel for transplantation. In vivo data demonstrated it is feasible to transplant the iPSC-LSC fibrin patch. In conclusion, an efficient method has been developed to produce patient-specific LSC and seed them on a scaffold fibrin gel for future treatment of LSC-deficiency disease.
Collapse
Affiliation(s)
- Michael J Edel
- Autonomous University of Barcelona, Faculty of Medicine, Unit of Anatomy and Embryology, Barcelona, Spain
- Discipline of Medical Sciences and Genetics, School of Biomedical Sciences, University of Western Australia, Perth 6009, Australia
| | | | - Jordi Requena Osete
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | | | | | - María P De Miguel
- Cell Engineering Laboratory, La Paz Hospital Research Institute (IdiPAZ), Madrid, Spain
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia
- Lions Eye Institute (LEI), Perth, Western Australia, Australia
| | - Danial Roshandel
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia
- Lions Eye Institute (LEI), Perth, Western Australia, Australia
| | - Ricardo P Casaroli-Marano
- Department of Surgery, Faculty of Medicine and Health Science & Hospital Clinic de Barcelona (IDIBAPS), Universitat de Barcelona, Spain
| | - Belén Alvarez-Palomo
- Cell Therapy Service, Banc de Sang i Teixits (BST), Passeig Taulat 116, 08005, Barcelona, Spain
| |
Collapse
|
3
|
Chehelgerdi M, Behdarvand Dehkordi F, Chehelgerdi M, Kabiri H, Salehian-Dehkordi H, Abdolvand M, Salmanizadeh S, Rashidi M, Niazmand A, Ahmadi S, Feizbakhshan S, Kabiri S, Vatandoost N, Ranjbarnejad T. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy. Mol Cancer 2023; 22:189. [PMID: 38017433 PMCID: PMC10683363 DOI: 10.1186/s12943-023-01873-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/27/2023] [Indexed: 11/30/2023] Open
Abstract
The advent of iPSCs has brought about a significant transformation in stem cell research, opening up promising avenues for advancing cancer treatment. The formation of cancer is a multifaceted process influenced by genetic, epigenetic, and environmental factors. iPSCs offer a distinctive platform for investigating the origin of cancer, paving the way for novel approaches to cancer treatment, drug testing, and tailored medical interventions. This review article will provide an overview of the science behind iPSCs, the current limitations and challenges in iPSC-based cancer therapy, the ethical and social implications, and the comparative analysis with other stem cell types for cancer treatment. The article will also discuss the applications of iPSCs in tumorigenesis, the future of iPSCs in tumorigenesis research, and highlight successful case studies utilizing iPSCs in tumorigenesis research. The conclusion will summarize the advancements made in iPSC-based tumorigenesis research and the importance of continued investment in iPSC research to unlock the full potential of these cells.
Collapse
Affiliation(s)
- Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fereshteh Behdarvand Dehkordi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Hamidreza Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Mohammad Abdolvand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Sharareh Salmanizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar-Jereeb Street, Isfahan, 81746-73441, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saba Ahmadi
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Sara Feizbakhshan
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saber Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Nasimeh Vatandoost
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tayebeh Ranjbarnejad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
4
|
Tran TM, Hou JH. Clinical applications of bioengineered tissue-cellular products for management of corneal diseases. Curr Opin Ophthalmol 2023; 34:311-323. [PMID: 37097181 DOI: 10.1097/icu.0000000000000961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
PURPOSE OF REVIEW To discuss bioengineered tissue-cellular products for treatment of corneal diseases that are currently in clinical use. These include tissue-cellular products that have received regulatory approval, are being used off-label in clinical practice, or are in active use in clinical trials. RECENT FINDINGS Due to the global shortage of donor corneal tissue, significant efforts have been made to develop bioengineering tissue-cellular products that can replace or augment the use of cadaveric tissue for corneal transplantation. The development of carrier substrates to support transplantation of cultivated limbal epithelial transplantation (CLET) has been a growing area of research. CLET offers a promising therapeutic alternative to conventional simple limbal epithelial transplantation and keratolimbal allografts for treatment of limbal stem cell deficiency. Engineered tissue matrices and porcine-derived corneas are potential alternatives to human donor tissue in anterior lamellar keratoplasty for corneal ulcers and scars, as well as intrastromal transplants for advanced keratoconus. For endothelial disease, substrate supported cultured endothelial cell grafts, and synthetic barrier devices are promising alternative to traditional endothelial keratoplasties. SUMMARY There has been increasing interest in cellular and acellular bioengineered tissue-cellular and synthetic products for treatment of corneal diseases, and many of these products have already seen clinical use. Industry and academia have important roles in advancing these products to later phase clinical trials and comparing them to conventional allograft approaches. Future development of full thickness donor corneas with cultivated epithelium, endothelium, and stromal keratocytes in a biosynthetic matrix will likely be an important next step in tissue alternatives. Continued progress in this field will be critical for addressing the global disease burden from corneal blindness.
Collapse
Affiliation(s)
- Tu M Tran
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | | |
Collapse
|
5
|
Ramos T, Parekh M, Meleady P, O’Sullivan F, Stewart RMK, Kaye SB, Hamill K, Ahmad S. Specific decellularized extracellular matrix promotes the plasticity of human ocular surface epithelial cells. Front Med (Lausanne) 2022; 9:974212. [PMID: 36457571 PMCID: PMC9705355 DOI: 10.3389/fmed.2022.974212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2023] Open
Abstract
The ocular surface is composed of two phenotypically and functionally different epithelial cell types: corneal and the conjunctival epithelium. Upon injury or disease, ocular surface homeostasis is impaired resulting in migration of conjunctival epithelium on to the corneal surface. This can lead to incomplete transdifferentiation toward corneal epithelial-like cells in response to corneal basement membrane cues. We show that corneal extracellular matrix (ECM) proteins induce conjunctival epithelial cells to express corneal associated markers losing their conjunctival associated phenotype at both, mRNA and protein level. Corneal epithelial cells behave the same in the presence of conjunctival ECM proteins, expressing markers associated with conjunctival epithelium. This process of differentiation is accompanied by an intermediate step of cell de-differentiation as an up-regulation in the expression of epithelial stem cell markers is observed. In addition, analysis of ECM proteins by laminin screening assays showed that epithelial cell response is laminin-type dependent, and cells cultured on laminin-511 showed lower levels of lineage commitment. The phosphorylation and proteolysis levels of proteins mainly involved in cell growth and differentiation showed lower modifications in cells with lower lineage commitment. These observations showed that the ECM proteins may serve as tools to induce cell differentiation, which may have potential applications for the treatment of ocular surface injuries.
Collapse
Affiliation(s)
- Tiago Ramos
- Department of Eye and Vision Science, University of Liverpool, Liverpool, United Kingdom
- Faculty of Brain Sciences, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Mohit Parekh
- Faculty of Brain Sciences, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Paula Meleady
- Primary Department, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Finbarr O’Sullivan
- Primary Department, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Rosalind M. K. Stewart
- Department of Eye and Vision Science, University of Liverpool, Liverpool, United Kingdom
- St Paul’s Eye Unit, Royal Liverpool University Hospital, Liverpool, United Kingdom
- Department of Ophthalmology, Aberdeen Royal Infirmary, Aberdeen, United Kingdom
| | - Stephen B. Kaye
- Department of Eye and Vision Science, University of Liverpool, Liverpool, United Kingdom
- St Paul’s Eye Unit, Royal Liverpool University Hospital, Liverpool, United Kingdom
| | - Kevin Hamill
- Department of Eye and Vision Science, University of Liverpool, Liverpool, United Kingdom
| | - Sajjad Ahmad
- Department of Eye and Vision Science, University of Liverpool, Liverpool, United Kingdom
- Faculty of Brain Sciences, Institute of Ophthalmology, University College London, London, United Kingdom
- St Paul’s Eye Unit, Royal Liverpool University Hospital, Liverpool, United Kingdom
- External Eye Disease Service, Moorfields Eye Hospital, London, United Kingdom
| |
Collapse
|
6
|
Bone Morphogenetic Protein 4 (BMP4) Enhances the Differentiation of Human Induced Pluripotent Stem Cells into Limbal Progenitor Cells. Curr Issues Mol Biol 2021; 43:2124-2134. [PMID: 34940121 PMCID: PMC8929048 DOI: 10.3390/cimb43030147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/14/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022] Open
Abstract
Corneal epithelium maintains visual acuity and is regenerated by the proliferation and differentiation of limbal progenitor cells. Transplantation of human limbal progenitor cells could restore the integrity and functionality of the corneal surface in patients with limbal stem cell deficiency. However, multiple protocols are employed to differentiate human induced pluripotent stem (iPS) cells into corneal epithelium or limbal progenitor cells. The aim of this study was to optimize a protocol that uses bone morphogenetic protein 4 (BMP4) and limbal cell-specific medium. Human dermal fibroblast-derived iPS cells were differentiated into limbal progenitor cells using limbal cell-specific (PI) medium and varying doses (1, 10, and 50 ng/mL) and durations (1, 3, and 10 days) of BMP4 treatment. Differentiated human iPS cells were analyzed by real-time polymerase chain reaction (RT-PCR), Western blotting, and immunocytochemical studies at 2 or 4 weeks after BMP4 treatment. Culturing human dermal fibroblast-derived iPS cells in limbal cell-specific medium and BMP4 gave rise to limbal progenitor and corneal epithelial-like cells. The optimal protocol of 10 ng/mL and three days of BMP4 treatment elicited significantly higher limbal progenitor marker (ABCG2, ∆Np63α) expression and less corneal epithelial cell marker (CK3, CK12) expression than the other combinations of BMP4 dose and duration. In conclusion, this study identified a successful reprogramming strategy to induce limbal progenitor cells from human iPS cells using limbal cell-specific medium and BMP4. Additionally, our experiments indicate that the optimal BMP4 dose and duration favor limbal progenitor cell differentiation over corneal epithelial cells and maintain the phenotype of limbal stem cells. These findings contribute to the development of therapies for limbal stem cell deficiency disorders.
Collapse
|
7
|
Jin M, Wang Y, An X, Kang H, Wang Y, Wang G, Gao Y, Wu S, Reinach PS, Liu Z, Xue Y, Li C. Phenotypic and transcriptomic changes in the corneal epithelium following exposure to cigarette smoke. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117540. [PMID: 34147784 DOI: 10.1016/j.envpol.2021.117540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
Cigarette smoke extract (CSE), a complex mixture of compounds, contributes to a range of eye diseases; however, the underlying pathophysiological responses to tobacco smoke remain ambiguous. The purpose of the present study was to evaluate the cigarette smoke-induced phenotypic and transcriptomic changes in the corneal epithelium with a view to elucidating the likely underlying mechanism. Accordingly, for the first time, we characterized the genome-wide effects of CSE on the corneal epithelium. The ocular surface of the mice in the experimental groups was exposed to CSE for 1 h per day for a period of one week, while mice in the control group were exposed to preservative-free artificial tears. Corneal fluorescein staining, in vivo confocal microscopy and scanning electron microscopy were performed to examine the corneal ultrastructure. Transcriptome sequencing and bioinformatics analysis were performed followed by RT-qPCR to validate gene expression changes. The results indicate that CSE exposure disrupted the structural integrity of the superficial epithelium, decreased the density of microvilli, and compromised the corneal epithelial barrier intactness. RNA-seq revealed 667 differentially expressed genes, and functional analysis highlighted the enhancement of several biological processes such as antioxidant activity and the response to oxidative stress. Moreover, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that glutathione metabolism and drug metabolism cytochrome P450 were the most relevant pathways contributing to the effects of CSE on the corneal epithelium. Protein-protein interaction (PPI) network analysis illustrated that GCLC, NQO1, and HMOX1 were the most relevant nodes. In conclusion, the present study indicates that CSE exposure induces changes in the phenotype and genotype of the corneal epithelium. The antioxidant response element is essential for counteracting the effects of cigarette smoke on this tissue layer. These results shed novel insights into how cigarette smoke damages this ocular surface.
Collapse
Affiliation(s)
- Mengyi Jin
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yanzi Wang
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Xiaoya An
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, 361102, China; School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Honghua Kang
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yixin Wang
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, 361102, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Guoliang Wang
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, 361102, China; School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yang Gao
- College of Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Shuiping Wu
- College of Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Peter S Reinach
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zuguo Liu
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, 361102, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yuhua Xue
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Cheng Li
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, 361102, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
8
|
Nosrati H, Alizadeh Z, Nosrati A, Ashrafi-Dehkordi K, Banitalebi-Dehkordi M, Sanami S, Khodaei M. Stem cell-based therapeutic strategies for corneal epithelium regeneration. Tissue Cell 2020; 68:101470. [PMID: 33248403 DOI: 10.1016/j.tice.2020.101470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022]
Abstract
Any significant loss of vision or blindness caused by corneal damages is referred to as corneal blindness. Corneal blindness is the fourth most common cause of blindness worldwide, representing more than 5% of the total blind population. Currently, corneal transplantation is used to treat many corneal diseases. In some cases, implantation of artificial cornea (keratoprosthesis) is suggested after a patient has had a donor corneal transplant failure. The shortage of donors and the side effects of keratoprosthesis are limiting these approaches. Recently, researchers have been actively pursuing new approaches for corneal regeneration because of these limitations. Nowadays, tissue engineering of different corneal layers (epithelium, stroma, endothelium, or full thickness tissue) is a promising approach that has attracted a great deal of interest from researchers and focuses on regenerative strategies using different cell sources and biomaterials. Various sources of corneal and non-corneal stem cells have shown significant advantages for corneal epithelium regeneration applications. Pluripotent stem cells (embryonic stem cells and iPS cells), epithelial stem cells (derived from oral mucus, amniotic membrane, epidermis and hair follicle), mesenchymal stem cells (bone marrow, adipose-derived, amniotic membrane, placenta, umbilical cord), and neural crest origin stem cells (dental pulp stem cells) are the most promising sources in this regard. These cells could also be used in combination with natural or synthetic scaffolds to improve the efficacy of the therapeutic approach. As the ocular surface is exposed to external damage, the number of studies on regeneration of the corneal epithelium is rising. In this paper, we reviewed the stem cell-based strategies for corneal epithelium regeneration.
Collapse
Affiliation(s)
- Hamed Nosrati
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Zohreh Alizadeh
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Anatomical Sciences, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Nosrati
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Korosh Ashrafi-Dehkordi
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehdi Banitalebi-Dehkordi
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Samira Sanami
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Khodaei
- Department of Materials Science and Engineering, Golpayegan University of Technology, Golpayegan, Iran
| |
Collapse
|
9
|
Bandeira F, Goh TW, Setiawan M, Yam GHF, Mehta JS. Cellular therapy of corneal epithelial defect by adipose mesenchymal stem cell-derived epithelial progenitors. Stem Cell Res Ther 2020; 11:14. [PMID: 31900226 PMCID: PMC6942321 DOI: 10.1186/s13287-019-1533-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/29/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
Background Persistent epithelial defects (PED), associated with limbal stem cell deficiency (LSCD), require ocular surface reconstruction with a stable corneal epithelium (CE). This study investigated CE reformation using human adipose mesenchymal stem cells (ADSC), which derived epithelial progenitors via mesenchymal-epithelial transition (MET). Methods STEMPRO human ADSC were cultured with specific inhibitors antagonizing glycogen synthase kinase-3 and transforming growth factor-β signaling, followed by culture under a defined progenitor cell targeted-epithelial differentiation condition to generate epithelial-like cells (MET-Epi), which were characterized for cell viability, mesenchymal, and epithelial phenotypes using immunofluorescence and flow cytometry. Tissue-engineered (TE) MET-Epi cells on fibrin gel were transplanted to corneal surface of the rat LSCD model caused by alkali injury. Epithelial healing, corneal edema, and haze grading, CE formation were assessed by fluorescein staining, slit lamp bio-microscopy, anterior segment optical coherence tomography, and immunohistochemistry. Results CD73high/CD90high/CD105high/CD166high/CD14negative/CD31negative human ADSC underwent MET, giving viable epithelial-like progenitors expressing δNp63, CDH1 (E-cadherin), epidermal growth factor receptor, integrin-β4, and cytokeratin (CK)-5, 9. Under defined epithelial differentiation culture, these progenitors generated MET-Epi cells expressing cell junction proteins ZO1 and occludin. When transplanted onto rat corneal surface with LSCD-induced PED, TE-MET-Epi achieved more efficient epithelial healing, suppressed corneal edema, and opacities, when compared to corneas without treatment or transplanted with TE-ADSC. CE markers (CK3, 12, and CDH1) were expressed on TE-MET-Epi-transplanted corneas but not in other control groups. Conclusion Human ADSC-derived epithelial-like cells, via MET, recovered the CE from PED associated with LSCD. ADSC can be a viable adult stem cell source for potential autologous epithelial cell-based therapy for corneal surface disorders.
Collapse
Affiliation(s)
- Francisco Bandeira
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, 20 College Road, The Academia, Discovery Tower Level 6, Singapore, 169856, Singapore.,Federal University of São Paulo, Sao Paulo, Brazil
| | - Tze-Wei Goh
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, 20 College Road, The Academia, Discovery Tower Level 6, Singapore, 169856, Singapore
| | - Melina Setiawan
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, 20 College Road, The Academia, Discovery Tower Level 6, Singapore, 169856, Singapore
| | - Gary Hin-Fai Yam
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, 20 College Road, The Academia, Discovery Tower Level 6, Singapore, 169856, Singapore. .,Eye-Academic Clinical Program, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore, Singapore.
| | - Jodhbir S Mehta
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, 20 College Road, The Academia, Discovery Tower Level 6, Singapore, 169856, Singapore. .,Eye-Academic Clinical Program, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore, Singapore. .,Singapore National Eye Centre, Singapore, Singapore. .,School of Material Science and Engineering, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
10
|
Guo ZH, Zhang W, Jia YYS, Liu QX, Li ZF, Lin JS. An Insight into the Difficulties in the Discovery of Specific Biomarkers of Limbal Stem Cells. Int J Mol Sci 2018; 19:ijms19071982. [PMID: 29986467 PMCID: PMC6073450 DOI: 10.3390/ijms19071982] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/25/2018] [Accepted: 06/29/2018] [Indexed: 12/13/2022] Open
Abstract
Keeping the integrity and transparency of the cornea is the most important issue to ensure normal vision. There are more than 10 million patients going blind due to the cornea diseases worldwide. One of the effective ways to cure corneal diseases is corneal transplantation. Currently, donations are the main source of corneas for transplantation, but immune rejection and a shortage of donor corneas are still serious problems. Graft rejection could cause transplanted cornea opacity to fail. Therefore, bioengineer-based corneas become a new source for corneal transplantation. Limbal stem cells (LSCs) are located at the basal layer in the epithelial palisades of Vogt, which serve a homeostatic function for the cornea epithelium and repair the damaged cornea. LSC-based transplantation is one of the hot topics currently. Clinical data showed that the ratio of LSCs to total candidate cells for a transplantation has a significant impact on the effectiveness of the transplantation. It indicates that it is very important to accurately identify the LSCs. To date, several putative biomarkers of LSCs have been widely reported, whereas their specificity is controversial. As reported, the identification of LSCs is based on the characteristics of stem cells, such as a nuclear-to-cytoplasm ratio (N/C) ≥ 0.7, label-retaining, and side population (SP) phenotype. Here, we review recently published data to provide an insight into the circumstances in the study of LSC biomarkers. The particularities of limbus anatomy and histochemistry, the limits of the current technology level for LSC isolation, the heterogeneity of LSCs and the influence of enzyme digestion are discussed. Practical approaches are proposed in order to overcome the difficulties in basic and applied research for LSC-specific biomarkers.
Collapse
Affiliation(s)
- Zhi Hou Guo
- School of Medicine, Huaqiao University, Quanzhou 362021, China.
| | - Wei Zhang
- School of Medicine, Huaqiao University, Quanzhou 362021, China.
| | | | - Qing Xiu Liu
- School of Medicine, Huaqiao University, Quanzhou 362021, China.
| | - Zhao Fa Li
- School of Medicine, Huaqiao University, Quanzhou 362021, China.
| | - Jun Sheng Lin
- School of Medicine, Huaqiao University, Quanzhou 362021, China.
| |
Collapse
|
11
|
Menzel-Severing J, Zenkel M, Polisetti N, Sock E, Wegner M, Kruse FE, Schlötzer-Schrehardt U. Transcription factor profiling identifies Sox9 as regulator of proliferation and differentiation in corneal epithelial stem/progenitor cells. Sci Rep 2018; 8:10268. [PMID: 29980721 PMCID: PMC6035181 DOI: 10.1038/s41598-018-28596-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/26/2018] [Indexed: 02/08/2023] Open
Abstract
Understanding transcription factor (TF) regulation of limbal epithelial stem/progenitor cells (LEPCs) may aid in using non-ocular cells to regenerate the corneal surface. This study aimed to identify and characterize TF genes expressed specifically in LEPCs isolated from human donor eyes by laser capture microdissection. Using a profiling approach, preferential limbal expression was found for SoxE and SoxF genes, particularly for Sox9, which showed predominantly cytoplasmic localization in basal LEPCs and nuclear localization in suprabasal and corneal epithelial cells, indicating nucleocytoplasmic translocation and activation during LEPC proliferation and differentiation. Increased nuclear localization of Sox9 was also observed in activated LEPCs following clonal expansion and corneal epithelial wound healing. Knockdown of SOX9 expression in cultured LEPCs by RNAi led to reduced expression of progenitor cell markers, e.g. keratin 15, and increased expression of differentiation markers, e.g. keratin 3. Furthermore, SOX9 silencing significantly suppressed the proliferative capacity of LEPCs and reduced levels of glycogen synthase kinase 3 beta (GSK-3ß), a negative regulator of Wnt/ß-catenin signaling. Sox9 expression, in turn, was significantly suppressed by treatment of LEPCs with exogenous GSK-3ß inhibitors and enhanced by small molecule inhibitors of Wnt signaling. Our results suggest that Sox9 and Wnt/ß-catenin signaling cooperate in mutually repressive interactions to achieve a balance between quiescence, proliferation and differentiation of LEPCs in the limbal niche. Future molecular dissection of Sox9-Wnt interaction and mechanisms of nucleocytoplasmic shuttling of Sox9 may aid in improving the regenerative potential of LEPCs and the reprogramming of non-ocular cells for corneal surface regeneration.
Collapse
Affiliation(s)
- Johannes Menzel-Severing
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Zenkel
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Naresh Polisetti
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elisabeth Sock
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Friedrich E Kruse
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
12
|
Saghizadeh M, Kramerov AA, Svendsen CN, Ljubimov AV. Concise Review: Stem Cells for Corneal Wound Healing. Stem Cells 2017; 35:2105-2114. [PMID: 28748596 PMCID: PMC5637932 DOI: 10.1002/stem.2667] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/16/2017] [Accepted: 07/02/2017] [Indexed: 02/06/2023]
Abstract
Corneal wound healing is a complex process that occurs in response to various injuries and commonly used refractive surgery. It is a significant clinical problem, which may lead to serious complications due to either incomplete (epithelial) or excessive (stromal) healing. Epithelial stem cells clearly play a role in this process, whereas the contribution of stromal and endothelial progenitors is less well studied. The available evidence on stem cell participation in corneal wound healing is reviewed, together with the data on the use of corneal and non-corneal stem cells to facilitate this process in diseased or postsurgical conditions. Important aspects of corneal stem cell generation from alternative cell sources, including pluripotent stem cells, for possible transplantation upon corneal injuries or in disease conditions are also presented. Stem Cells 2017;35:2105-2114.
Collapse
Affiliation(s)
- Mehrnoosh Saghizadeh
- Cedars‐Sinai Medical Center, Regenerative Medicine InstituteLos AngelesCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Andrei A. Kramerov
- Cedars‐Sinai Medical Center, Regenerative Medicine InstituteLos AngelesCaliforniaUSA
| | - Clive N. Svendsen
- Cedars‐Sinai Medical Center, Regenerative Medicine InstituteLos AngelesCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Alexander V. Ljubimov
- Cedars‐Sinai Medical Center, Regenerative Medicine InstituteLos AngelesCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| |
Collapse
|
13
|
Zhang C, Du L, Pang K, Wu X. Differentiation of human embryonic stem cells into corneal epithelial progenitor cells under defined conditions. PLoS One 2017; 12:e0183303. [PMID: 28813511 PMCID: PMC5557585 DOI: 10.1371/journal.pone.0183303] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 08/02/2017] [Indexed: 12/13/2022] Open
Abstract
The development of cell-based therapies using stem cells represents a significant breakthrough in the treatment of limbal stem cell deficiency (LSCD). The aim of this study was to develop a novel protocol to differentiate human embryonic stem cells (hESCs) into corneal epithelial progenitor cells (CEPCs), with similar features to primary cultured human limbal stem cells (LSCs), using a medium composed of DMEM/F12 and defined keratinocyte serum-free medium (KSFM) (1:1) under different carbon dioxide (CO2) levels in culture. The differentiated cells exhibited a similar morphology to limbal stem cells under 5%, 7%, and 9% CO2 and expressed the LSC markers ABCG-2 and p63; however, CK14 was only expressed in the cells cultured under 7% and 9% CO2. Quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis indicated that the ABCG2, p63, and CK14 levels in the 7% CO2 and 9% CO2 groups were higher than those in the 5% CO2 group and in undifferentiated hESCs (p<0.05). The highest expression of ABCG2 and p63 was exhibited in the cells cultured under 7% CO2 at day 6 of differentiation. Western blotting indicated that the ABCG2 and p63 levels were higher at day 6 than the other time points in the 7% CO2 and 9% CO2 groups. The highest protein expression of ABCG2 and p63 was identified in the 7% CO2 group. The neural cell-specific marker tubulin β3 and the epidermal marker K1/10 were also detected in the differentiated cells via immunofluorescent staining; thus, cell sorting was performed via fluorescence-activated cell sorting (FACS), and ABCG2-positive cells were isolated as CEPCs. The sorted cells formed three to four layers of epithelioid cells by airlifting culture and expressed ABCG2, p63, CK14, and CK3. In conclusion, the novel induction system conditioned by 7% CO2 in this study may be an effective and feasible method for CEPC differentiation.
Collapse
Affiliation(s)
- Canwei Zhang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Liqun Du
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Kunpeng Pang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Xinyi Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
- * E-mail:
| |
Collapse
|
14
|
Abstract
Purpose of review Progress in stem cell research for blinding diseases over the past decade is now being applied to patients with retinal degenerative diseases and soon perhaps, glaucoma. However, the field still has much to learn about the conversion of stem cells into various retinal cell types, and the potential delivery methods that will be required to optimize the clinical efficacy of stem cells delivered into the eye. Recent findings Recent groundbreaking human clinical trials have demonstrated both the opportunities and current limitations of stem cell transplantation for retinal diseases. New progress in developing in vitro retinal organoids, coupled with the maturation of bio-printing technology, and non-invasive high-resolution imaging have created new possibilities for repairing and regenerating the diseased retina and rigorously validating its clinical impact in vivo. Summary While promising progress is being made, meticulous clinical trials with cells derived using good manufacturing practice, novel surgical methods, and improved methods to derive all of the neuronal cell types present in the retina will be indispensable for developing stem cell transplantation as a paradigm shift for the treatment of blinding diseases.
Collapse
|
15
|
Evidence-Based Update on Ocular Chemical Injuries. CURRENT OPHTHALMOLOGY REPORTS 2017. [DOI: 10.1007/s40135-017-0120-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Suzuki J, Nagai N, Nishizawa M, Abe T, Kaji H. Electrochemical manipulation of cell populations supported by biodegradable polymeric nanosheets for cell transplantation therapy. Biomater Sci 2017; 5:216-222. [DOI: 10.1039/c6bm00852f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The on-demand harvesting of cell/nanosheet constructs and their subsequent transplantation in a minimally-invasive manner are described.
Collapse
Affiliation(s)
- Jin Suzuki
- Department of Finemechanics
- Graduate School of Engineering
- Tohoku University
- Sendai 980-8579
- Japan
| | - Nobuhiro Nagai
- Division of Clinical Cell Therapy
- United Centers for Advanced Research and Translational Medicine (ART)
- Tohoku University Graduate School of Medicine
- Sendai 980-8575
- Japan
| | - Matsuhiko Nishizawa
- Department of Finemechanics
- Graduate School of Engineering
- Tohoku University
- Sendai 980-8579
- Japan
| | - Toshiaki Abe
- Division of Clinical Cell Therapy
- United Centers for Advanced Research and Translational Medicine (ART)
- Tohoku University Graduate School of Medicine
- Sendai 980-8575
- Japan
| | - Hirokazu Kaji
- Department of Finemechanics
- Graduate School of Engineering
- Tohoku University
- Sendai 980-8579
- Japan
| |
Collapse
|
17
|
Limbal Stem Cells from Aged Donors Are a Suitable Source for Clinical Application. Stem Cells Int 2016; 2016:3032128. [PMID: 28042298 PMCID: PMC5155095 DOI: 10.1155/2016/3032128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 10/02/2016] [Accepted: 10/09/2016] [Indexed: 12/13/2022] Open
Abstract
Limbal stem cells (LSC) are the progenitor cells that maintain the transparency of the cornea. Limbal stem cell deficiency (LSCD) leads to corneal opacity, inflammation, scarring, and blindness. A clinical approach to treat this condition consists in LSC transplantation (LSCT) after ex vivo expansion of LSC. In unilateral LSCD, an autologous transplant is possible, but cases of bilateral LSCD require allogenic LSCT. Cadaveric donors represent the most important source of LSC allografts for treatment of bilateral LSCD when living relative donors are not available. To evaluate the suitability of aged cadaveric donors for LSCT, we compared three pools of LSC from donors of different ages (<60 years, 60–75 years, and >75 years). We evaluated graft quality in terms of percent of p63-positive (p63+) cells by immunofluorescence, colony forming efficiency, and mRNA and protein expression of p63, PAX6, Wnt7a, E-cadherin, and cytokeratin (CK) 12, CK3, and CK19. The results showed that LSC cultures from aged donors can express ≥3% of p63+ cells—considered as the minimum value for predicting favorable clinical outcomes after LSCT—suggesting that these cells could be a suitable source of LSC for transplantation. Our results also indicate the need to evaluate LSC graft quality criteria for each donor.
Collapse
|
18
|
Atallah MR, Palioura S, Perez VL, Amescua G. Limbal stem cell transplantation: current perspectives. Clin Ophthalmol 2016; 10:593-602. [PMID: 27099468 PMCID: PMC4824369 DOI: 10.2147/opth.s83676] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Regeneration of the corneal surface after an epithelial insult involves division, migration, and maturation of a specialized group of stem cells located in the limbus. Several insults, both intrinsic and extrinsic, can precipitate destruction of the delicate microenvironment of these cells, resulting in limbal stem cell deficiency (LSCD). In such cases, reepithelialization fails and conjunctival epithelium extends across the limbus, leading to vascularization, persistent epithelial defects, and chronic inflammation. In partial LSCD, conjunctival epitheliectomy, coupled with amniotic membrane transplantation, could be sufficient to restore a healthy surface. In more severe cases and in total LSCD, stem cell transplantation is currently the best curative option. Before any attempts are considered to perform a limbal stem cell transplantation procedure, the ocular surface must be optimized by controlling causative factors and comorbid conditions. These factors include adequate eyelid function or exposure, control of the ocular surface inflammatory status, and a well-lubricated ocular surface. In cases of unilateral LSCD, stem cells can be obtained from the contralateral eye. Newer techniques aim at expanding cells in vitro or in vivo in order to decrease the need for large limbal resection that may jeopardize the “healthy” eye. Patients with bilateral disease can be treated using allogeneic tissue in combination with systemic immunosuppressive therapy. Another emerging option for this subset of patients is the use of noncorneal cells such as mucosal grafts. Finally, the use of keratoprosthesis is reserved for patients who are not candidates for any of the aforementioned options, wherein the choice of the type of keratoprosthesis depends on the severity of the disease. In summary, limbal stem cell transplantation improves both vision and quality-of-life in patients with ocular surface disorders associated with LSCD, and overall, the use of autologous tissue offers the best results. Future studies aim at improving cellular expansion and finding different sources of stem cells.
Collapse
Affiliation(s)
- Marwan Raymond Atallah
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sotiria Palioura
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Victor L Perez
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Guillermo Amescua
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
19
|
Yu T, Rajendran V, Griffith M, Forrester JV, Kuffová L. High-risk corneal allografts: A therapeutic challenge. World J Transplant 2016; 6:10-27. [PMID: 27011902 PMCID: PMC4801785 DOI: 10.5500/wjt.v6.i1.10] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/03/2015] [Accepted: 12/04/2015] [Indexed: 02/05/2023] Open
Abstract
Corneal transplantation is the most common surgical procedure amongst solid organ transplants with a high survival rate of 86% at 1-year post-grafting. This high success rate has been attributed to the immune privilege of the eye. However, mechanisms originally thought to promote immune privilege, such as the lack of antigen presenting cells and vessels in the cornea, are challenged by recent studies. Nevertheless, the immunological and physiological features of the cornea promoting a relatively weak alloimmune response is likely responsible for the high survival rate in “low-risk” settings. Furthermore, although corneal graft survival in “low-risk” recipients is favourable, the prognosis in “high-risk” recipients for corneal graft is poor. In “high-risk” grafts, the process of indirect allorecognition is accelerated by the enhanced innate and adaptive immune responses due to pre-existing inflammation and neovascularization of the host bed. This leads to the irreversible rejection of the allograft and ultimately graft failure. Many therapeutic measures are being tested in pre-clinical and clinical studies to counter the immunological challenge of “high-risk” recipients. Despite the prevailing dogma, recent data suggest that tissue matching together with use of systemic immunosuppression may increase the likelihood of graft acceptance in “high-risk” recipients. However, immunosuppressive drugs are accompanied with intolerance/side effects and toxicity, and therefore, novel cell-based therapies are in development which target host immune cells and restore immune homeostasis without significant side effect of treatment. In addition, developments in regenerative medicine may be able to solve both important short comings of allotransplantation: (1) graft rejection and ultimate graft failure; and (2) the lack of suitable donor corneas. The advances in technology and research indicate that wider therapeutic choices for patients may be available to address the worldwide problem of corneal blindness in both “low-risk” and “high-risk” hosts.
Collapse
|
20
|
Abstract
Corneal wound healing is a complex process involving cell death, migration, proliferation, differentiation, and extracellular matrix remodeling. Many similarities are observed in the healing processes of corneal epithelial, stromal and endothelial cells, as well as cell-specific differences. Corneal epithelial healing largely depends on limbal stem cells and remodeling of the basement membrane. During stromal healing, keratocytes get transformed to motile and contractile myofibroblasts largely due to activation of transforming growth factor-β (TGF-β) system. Endothelial cells heal mostly by migration and spreading, with cell proliferation playing a secondary role. In the last decade, many aspects of wound healing process in different parts of the cornea have been elucidated, and some new therapeutic approaches have emerged. The concept of limbal stem cells received rigorous experimental corroboration, with new markers uncovered and new treatment options including gene and microRNA therapy tested in experimental systems. Transplantation of limbal stem cell-enriched cultures for efficient re-epithelialization in stem cell deficiency and corneal injuries has become reality in clinical setting. Mediators and course of events during stromal healing have been detailed, and new treatment regimens including gene (decorin) and stem cell therapy for excessive healing have been designed. This is a very important advance given the popularity of various refractive surgeries entailing stromal wound healing. Successful surgical ways of replacing the diseased endothelium have been clinically tested, and new approaches to accelerate endothelial healing and suppress endothelial-mesenchymal transformation have been proposed including Rho kinase (ROCK) inhibitor eye drops and gene therapy to activate TGF-β inhibitor SMAD7. Promising new technologies with potential for corneal wound healing manipulation including microRNA, induced pluripotent stem cells to generate corneal epithelium, and nanocarriers for corneal drug delivery are discussed. Attention is also paid to problems in wound healing understanding and treatment, such as lack of specific epithelial stem cell markers, reliable identification of stem cells, efficient prevention of haze and stromal scar formation, lack of data on wound regulating microRNAs in keratocytes and endothelial cells, as well as virtual lack of targeted systems for drug and gene delivery to select corneal cells.
Collapse
Affiliation(s)
- Alexander V Ljubimov
- Eye Program, Board of Governors Regenerative Medicine Institute, Departments of Biomedical Sciences and Neurosurgery, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - Mehrnoosh Saghizadeh
- Eye Program, Board of Governors Regenerative Medicine Institute, Departments of Biomedical Sciences and Neurosurgery, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|