1
|
Borkow G, Melamed E. The Journey of Copper-Impregnated Dressings in Wound Healing: From a Medical Hypothesis to Clinical Practice. Biomedicines 2025; 13:562. [PMID: 40149539 PMCID: PMC11939876 DOI: 10.3390/biomedicines13030562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/09/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives. Chronic wounds pose a substantial global healthcare burden exacerbated by aging populations and the increasing prevalence of conditions such as diabetes, peripheral vascular disease, and venous insufficiency. Impaired physiological repair mechanisms, including angiogenesis, collagen synthesis, and re-epithelialization, hinder the healing process in chronic wounds. Many of these physiological processes are dependent on their interaction with copper. We hypothesized that the targeted delivery of copper ions to the wound bed would enhance healing. Methods. Wound dressings impregnated with copper oxide microparticles were designed to ensure the controlled release of copper ions. The efficacy of these dressings was evaluated using non-infected wound models, including diabetic mouse models compared against control and silver dressings. Outcome measures included wound closure rates, epidermal skin quality assessed by histopathological examination, and gene expression profiling. Clinical applications were assessed through diverse case studies and controlled trials involving chronic wound management. Results. Copper dressings significantly accelerated wound closure and enhanced angiogenesis compared to control and silver dressings. Histopathological analyses revealed faster granulation tissue formation, epidermal regeneration, and neovascularization. Gene expression studies showed upregulation of critical angiogenic factors such as VEGF and HIF-1α. Investigations and clinical observations corroborated improved healing across various chronic wound types, including non-infected wounds. Conclusions. Copper is essential for wound healing, and copper-impregnated dressings provide a promising solution for chronic wound management. By enhancing angiogenesis and tissue regeneration, these dressings go beyond antimicrobial action, offering a cost-effective and innovative alternative to conventional therapies. Copper dressings represent a transformative advancement in addressing the challenges of chronic wound care.
Collapse
Affiliation(s)
- Gadi Borkow
- MedCu Technologies Ltd., Herzliya 4672200, Israel
- The Skin Research Institute, The Dead-Sea & Arava Science Center, Masada 8691000, Israel
| | - Eyal Melamed
- Foot and Ankle Service, Department of Orthopedics, Bnai Zion Medical Center, Haifa 3109601, Israel
| |
Collapse
|
2
|
Maharjan A, Gautam R, Lee G, Kim D, Lee D, Acharya M, Kim H, Heo Y, Kim C. Assessment of skin sensitization potential of zinc oxide, aluminum oxide, manganese oxide, and copper oxide nanoparticles through the local lymph node assay: 5-bromo-deoxyuridine flow cytometry method. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025; 88:95-105. [PMID: 38796781 DOI: 10.1080/15287394.2024.2357466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The advent of nanotechnology has significantly spurred the utilization of nanoparticles (NPs) across diverse sectors encompassing industry, agriculture, engineering, cosmetics, and medicine. Metallic oxides including zinc oxide (ZnO), copper oxide (CuO), manganese oxide (Mn2O3), and aluminum oxide (Al2O3), in their NP forms, have become prevalent in cosmetics and various dermal products. Despite the expanding consideration of these compounds for dermal applications, their potential for initiating skin sensitization (SS) has not been comprehensively examined. An in vivo assay, local lymph node assay: 5-bromo-2-deoxyuridine-flow cytometry method (LLNA: BrdU-FCM) recognized as an alternative testing method for screening SS potential was used to address these issues. Following the OECD TG 442B guidelines, NPs suspensions smaller than 50 nm size were prepared for ZnO and Al2O3 at concentrations of 10, 25, and 50%, and Mn2O3 and CuO at concentrations of 5, 10, and 25%, and applied to the dorsum of each ear of female BALB/c mice on a daily basis for 3 consecutive days. Regarding the prediction of test substance to skin sensitizer if sensitization index (SI)≥2.7, all 4 NPs were classified as non-sensitizing. The SI values were below 2.06, 1.33, 1.42, and 0.99 for ZnO, Al2O3, Mn2O3, and CuO, respectively, at all test concentrations. Although data presented were negative with respect to adverse SS potential for these 4 NPs, further confirmatory tests addressing other key events associated with SS adverse outcome pathway need to be carried out to arrive at an acceptable conclusion on the skin safety for both cosmetic and dermal applications.
Collapse
Affiliation(s)
- Anju Maharjan
- Department of Health and Safety, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
| | - Ravi Gautam
- Department of Health and Safety, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
| | - GiYong Lee
- Department of Toxicity Assessment, Daegu Catholic University Graduate School of Medical Health and Science, Gyeongsan, Republic of Korea
| | - DongYoon Kim
- Department of Toxicity Assessment, Daegu Catholic University Graduate School of Medical Health and Science, Gyeongsan, Republic of Korea
| | - DaEun Lee
- Department of Occupational Health, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
| | - Manju Acharya
- Department of Health and Safety, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
| | - HyoungAh Kim
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yong Heo
- Department of Health and Safety, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
- Department of Toxicity Assessment, Daegu Catholic University Graduate School of Medical Health and Science, Gyeongsan, Republic of Korea
- Department of Occupational Health, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
| | - ChangYul Kim
- Department of Health and Safety, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
- Department of Toxicity Assessment, Daegu Catholic University Graduate School of Medical Health and Science, Gyeongsan, Republic of Korea
| |
Collapse
|
3
|
Draveny M, Chauvet H, Rouam V, Jamme F, Masi M. Intracellular Quantification of an Antibiotic Metal Complex in Single Cells of Escherichia coli Using Cryo-X-ray Fluorescence Nanoimaging. ACS NANO 2025; 19:979-988. [PMID: 39740123 PMCID: PMC11771837 DOI: 10.1021/acsnano.4c12664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/08/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025]
Abstract
Bacterial resistance is a major public health challenge. In Gram-negative bacteria, the synergy between multidrug efflux pumps and outer membrane impermeability determines the intracellular concentration of antibiotics. Consequently, it also dictates antibiotic activity on their respective targets. Previous research has employed spectrofluorimetry and synchrotron radiation-based DUV microscopy as tools for monitoring the accumulation of fluoroquinolone antibiotics in bacteria at population and single-cell scales, respectively. Here, we show that cryo-XRF nanoimaging allows intracellular localization and quantification of a fluoroquinolone metal complex accumulation in Escherichia coli with different efflux pump expression levels. This method offers a promising avenue for elucidating the intracellular behavior of a range of metallodrugs in bacteria and for designing novel agents with unique mechanisms of action.
Collapse
Affiliation(s)
- Margot Draveny
- Aix
Marseille Univ, INSERM, SSA, MCT, 27 Bd Jean Moulin, Marseille 13005, France
- Synchrotron
SOLEIL, L’Orme des Merisiers, Départementale 128, Saint-Aubin 91190, France
| | - Hugo Chauvet
- Synchrotron
SOLEIL, L’Orme des Merisiers, Départementale 128, Saint-Aubin 91190, France
| | - Valérie Rouam
- Synchrotron
SOLEIL, L’Orme des Merisiers, Départementale 128, Saint-Aubin 91190, France
| | - Frédéric Jamme
- Synchrotron
SOLEIL, L’Orme des Merisiers, Départementale 128, Saint-Aubin 91190, France
| | - Muriel Masi
- Aix
Marseille Univ, INSERM, SSA, MCT, 27 Bd Jean Moulin, Marseille 13005, France
- Synchrotron
SOLEIL, L’Orme des Merisiers, Départementale 128, Saint-Aubin 91190, France
| |
Collapse
|
4
|
Liu G, Ye S, Li Y, Yang J, Wang S, Liu Y, Yang S, Tian Y, Yin M, Cheng B. Copper ions-photo dual-crosslinked alginate hydrogel for angiogenesis and osteogenesis. J Biomed Mater Res A 2025; 113:e37790. [PMID: 39228141 DOI: 10.1002/jbm.a.37790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024]
Abstract
Early healing of bone defects is still a clinical challenge. Many bone-filling materials have been studied, among which photocrosslinked alginate has received significant attention due to its good biocompatibility and morphological plasticity. Although it has been confirmed that photocrosslinked alginate can be used as an extracellular matrix for 3D cell culture, it lacks osteogenesis-related biological functions. This study constructed a copper ions-photo dual-crosslinked alginate hydrogel scaffold by controlling the copper ion concentration. The scaffolds were shaped by photocrosslinking and then endowed with biological functions by copper ions crosslinking. According to in vitro research, the dual-crosslinked hydrogel increased the compressive strength and favored copper dose-dependent osteoblast differentiation and cell surface adherence of rat bone marrow mesenchymal stem cells and the expression of type I collagen (Col1), runt-related transcription factor 2 (Runx2), osteocalcin (OCN), vascular endothelial growth factor (VEGF). In addition, hydrogel scaffolds were implanted into rat skull defects, and more angiogenesis and osteogenesis could be observed in in vivo studies. The above results show that the copper-photo-crosslinked hydrogel scaffold has excellent osseointegration properties and can potentially promote angiogenesis and early healing of bone defects, providing a reference solution for bone tissue engineering materials.
Collapse
Affiliation(s)
- Guochen Liu
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Stomatology, Ezhou Central Hospital, Ezhou, Hubei, China
| | - Shanshan Ye
- Department of Stomatology, Ezhou Central Hospital, Ezhou, Hubei, China
| | - Yue Li
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jing Yang
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Simin Wang
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuan Liu
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Sisi Yang
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yinping Tian
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Miao Yin
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bo Cheng
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
5
|
Lubojański A, Zakrzewski W, Samól K, Bieszczad-Czaja M, Świtała M, Wiglusz R, Watras A, Mielan B, Dobrzyński M. Application of Nanohydroxyapatite in Medicine-A Narrative Review. Molecules 2024; 29:5628. [PMID: 39683785 PMCID: PMC11643452 DOI: 10.3390/molecules29235628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
This review is an extensive collection of the latest literature describing the current knowledge about nanohydroxyapatite in a comprehensive way. These are hydroxyapatite particles with a size below 100 nm. Due to their size, the surface area to mass ratio of the particles increases. They are widely used in medicine due to their high potential in regenerative medicine, as a carrier of various substances, e.g., in targeted therapy. The aim of this article is to present the biological and physicochemical properties as well as the use of nanohydroxyapatite in modern medicine. Due to the potential of nanohydroxyapatite in medicine, further research is needed.
Collapse
Affiliation(s)
- Adam Lubojański
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wrocław, Poland;
| | - Wojciech Zakrzewski
- Pre-Clinical Research Centre, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland (K.S.); (M.B.-C.); (M.Ś.); (B.M.)
| | - Kinga Samól
- Pre-Clinical Research Centre, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland (K.S.); (M.B.-C.); (M.Ś.); (B.M.)
| | - Martyna Bieszczad-Czaja
- Pre-Clinical Research Centre, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland (K.S.); (M.B.-C.); (M.Ś.); (B.M.)
| | - Mateusz Świtała
- Pre-Clinical Research Centre, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland (K.S.); (M.B.-C.); (M.Ś.); (B.M.)
| | - Rafał Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland;
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
- Meinig School of Biomedical Engineering, College of Engineering, Cornell University, Ithaca, NY 14853-1801, USA
| | - Adam Watras
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wrocław, Poland;
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland;
| | - Bartosz Mielan
- Pre-Clinical Research Centre, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland (K.S.); (M.B.-C.); (M.Ś.); (B.M.)
| | - Maciej Dobrzyński
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wrocław, Poland;
| |
Collapse
|
6
|
Nishimura T, Hashimoto M, Yamada K, Iwata R, Tateda K. The precipitate structure of copper-based antibacterial and antiviral agents enhances their longevity for kitchen use. NPJ Sci Food 2024; 8:83. [PMID: 39448621 PMCID: PMC11502883 DOI: 10.1038/s41538-024-00324-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
The transmission of bacteria through cooking surfaces, the handles of hot plates, and cookware that is not cleaned frequently can pose a problem. In this study, a copper ion-based mixed solution (CBMS) containing only inorganic ions with controlled acidity was assessed as a new antibacterial and antiviral agent. We analysed the structure of the precipitates, and various deposits measuring a few micrometres were observed on the substrates. We have defined these deposits as strongly bonded scaly copper dispersion (SBSCD) structures.The antibacterial copper component of the liquid agent changed over time after application; this mechanism appears to be responsible for the maintenance of antibacterial performance.CBMS demonstrates high safety for the human body and can be applied to stainless steel materials used in kitchens and tables. It exhibits a sustained antibacterial effect over time, and its antibacterial properties can be continuously maintained.
Collapse
Affiliation(s)
- Takashi Nishimura
- Saitama Industrial Promotion Public Corporation, Shintoshin Business Exchange Plaza 3F, 2-3-2 Kamiochiai, Chuo-ku, Saitama City, Saitama Prefecture, 338-0001, Japan.
| | - Masami Hashimoto
- Materials Research and Development Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya, 456-8587, Japan
| | - Kageto Yamada
- Department of Microbiology and Infection Diseases, Toho University, 5-21-16 Omorinishi, Ota-ku, Tokyo, 1143-8540, Japan
| | - Ryuji Iwata
- Department of Technology Management for Innovation, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazuhiro Tateda
- Department of Microbiology and Infection Diseases, Toho University, 5-21-16 Omorinishi, Ota-ku, Tokyo, 1143-8540, Japan
| |
Collapse
|
7
|
Zhang S, Huang X, Dong W, Wang H, Hu L, Zhou G, Zheng Z. Potential effects of Cu 2+ stress on nitrogen removal performance, microbial characteristics, and metabolism pathways of biofilm reactor. ENVIRONMENTAL RESEARCH 2024; 259:119541. [PMID: 38960353 DOI: 10.1016/j.envres.2024.119541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
Sequencing batch biofilm reactors (SBBR) were utilized to investigate the impact of Cu2+ on nitrogen (N) removal and microbial characteristics. The result indicated that the low concentration of Cu2+ (0.5 mg L-1) facilitated the removal of ammonia nitrogen (NH4+-N), total nitrogen (TN), nitrate nitrogen (NO3--N), and chemical oxygen demand (COD). In comparison to the average effluent concentration of the control group, the average effluent concentrations of NH4+-N, NO3--N, COD, and TN were found to decrease by 40.53%, 17.02%, 10.73%, and 15.86%, respectively. Conversely, the high concentration of Cu2+ (5 mg L-1) resulted in an increase of 94.27%, 55.47%, 22.22%, and 14.23% in the aforementioned parameters, compared to the control group. Low concentrations of Cu2+ increased the abundance of nitrifying bacteria (Rhodanobacter, unclassified-o-Sacharimonadales), denitrifying bacteria (Thermomonas, Comamonas), denitrification-associated genes (hao, nosZ, norC, nffA, nirB, nick, and nifD), and heavy-metal-resistant genes related to Cu2+ (pcoB, cutM, cutC, pcoA, copZ) to promote nitrification and denitrification. Conversely, high concentration Cu2+ hindered the interspecies relationship among denitrifying bacteria genera, nitrifying bacteria genera, and other genera, reducing denitrification and nitrification efficiency. Cu2+ involved in the N and tricarboxylic acid (TCA) cycles, as evidenced by changes in the abundance of key enzymes, such as (EC:1.7.99.1), (EC:1.7.2.4), and (EC:1.1.1.42), which initially increased and then decreased with varying concentrations of Cu2+. Conversely, the abundance of EC1.7.2.1, associated with the accumulation of nitrite nitrogen (NO2--N), gradually declined. These findings provided insights into the impact of Cu2+ on biological N removal.
Collapse
Affiliation(s)
- Shuai Zhang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Wenyi Dong
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hongjie Wang
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Liangshan Hu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Guorun Zhou
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Zhihao Zheng
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
8
|
Fernandes H, Kannan S, Alam M, Stan G, Popa A, Buczyński R, Gołębiewski P, Ferreira J. Two decades of continuous progresses and breakthroughs in the field of bioactive ceramics and glasses driven by CICECO-hub scientists. Bioact Mater 2024; 40:104-147. [PMID: 39659434 PMCID: PMC11630650 DOI: 10.1016/j.bioactmat.2024.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 12/12/2024] Open
Abstract
Over the past two decades, the CICECO-hub scientists have devoted substantial efforts to advancing bioactive inorganic materials based on calcium phosphates and alkali-free bioactive glasses. A key focus has been the deliberate incorporation of therapeutic ions like Mg, Sr, Zn, Mn, or Ga to enhance osteointegration and vascularization, confer antioxidant properties, and impart antimicrobial effects, marking significant contributions to the field of biomaterials and bone tissue engineering. Such an approach is expected to circumvent the uncertainties posed by methods relying on growth factors, such as bone morphogenetic proteins, parathyroid hormone, and platelet-rich plasma, along with their associated high costs and potential adverse side effects. This comprehensive overview of CICECO-hub's significant contributions to the forefront inorganic biomaterials across all research aspects and dimensionalities (powders, granules, thin films, bulk materials, and porous structures), follows a unified approach rooted in a cohesive conceptual framework, including synthesis, characterization, and testing protocols. Tangible outcomes [injectable cements, durable implant coatings, and bone graft substitutes (scaffolds) featuring customized porous architectures for implant fixation, osteointegration, accelerated bone regeneration in critical-sized bone defects] were achieved. The manuscript showcases specific biofunctional examples of successful biomedical applications and effective translations to the market of bone grafts for advanced therapies.
Collapse
Affiliation(s)
- H.R. Fernandes
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - S. Kannan
- Centre for Nanoscience and Technology, Pondicherry University, 605014, Puducherry, India
| | - M. Alam
- Centre for Nanoscience and Technology, Pondicherry University, 605014, Puducherry, India
| | - G.E. Stan
- National Institute of Materials Physics, 077125, Magurele, Romania
| | - A.C. Popa
- National Institute of Materials Physics, 077125, Magurele, Romania
| | - R. Buczyński
- Łukasiewicz Research Network – Institute of Microelectronics and Photonics, Al. Lotników 32/46, 02–668, Warsaw, Poland
| | - P. Gołębiewski
- Łukasiewicz Research Network – Institute of Microelectronics and Photonics, Al. Lotników 32/46, 02–668, Warsaw, Poland
| | - J.M.F. Ferreira
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
- Łukasiewicz Research Network – Institute of Microelectronics and Photonics, Al. Lotników 32/46, 02–668, Warsaw, Poland
| |
Collapse
|
9
|
Paul R, Chakrabarty A, Samanta S, Dey S, Pandey R, Maji S, Pezacki AT, Chang CJ, Datta R, Gupta A. Leishmania major-induced alteration of host cellular and systemic copper homeostasis drives the fate of infection. Commun Biol 2024; 7:1226. [PMID: 39349621 PMCID: PMC11442737 DOI: 10.1038/s42003-024-06716-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 08/12/2024] [Indexed: 10/04/2024] Open
Abstract
Copper plays a key role in host-pathogen interaction. We find that during Leishmania major infection, the parasite-harboring macrophage regulates its copper homeostasis pathway in a way to facilitate copper-mediated neutralization of the pathogen. Copper-ATPase ATP7A transports copper to amastigote-harboring phagolysosomes to induce stress on parasites. Leishmania in order to evade the copper stress, utilizes a variety of manipulative measures to lower the host-induced copper stress. It induces deglycosylation and degradation of host-ATP7A and downregulation of copper importer, CTR1 by cysteine oxidation. Additionally, Leishmania induces CTR1 endocytosis that arrests copper uptake. In mouse model of infection, we report an increase in systemic bioavailable copper in infected animals. Heart acts as the major organ for diverting its copper reserves to systemic circulation to fight-off infection by downregulating its CTR1. Our study explores reciprocal mechanism of manipulation of host copper homeostasis pathway by macrophage and Leishmania to gain respective advantages in host-pathogen interaction.
Collapse
Affiliation(s)
- Rupam Paul
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India.
| | - Adrija Chakrabarty
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Suman Samanta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Swastika Dey
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Raviranjan Pandey
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Saptarshi Maji
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Aidan T Pezacki
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - Christopher J Chang
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - Rupak Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Arnab Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India.
| |
Collapse
|
10
|
Hikal AF, Hasan S, Gudeta D, Zhao S, Foley S, Khan AA. The acquired pco gene cluster in Salmonella enterica mediates resistance to copper. Front Microbiol 2024; 15:1454763. [PMID: 39290517 PMCID: PMC11406079 DOI: 10.3389/fmicb.2024.1454763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
The pervasive environmental metal contamination has led to selection of heavy-metal resistance genes in bacteria. The pco and sil clusters are located on a mobile genetic element and linked to heavy-metal resistance. These clusters have been found in Salmonella enterica serovars isolated from human clinical cases and foods of animal origin. This may be due to the use of heavy metals, such as copper, in animal feed for their antimicrobial and growth promotion properties. The sil cluster can be found alone or in combination with pco cluster, either in the chromosome or on a plasmid. Previous reports have indicated that sil, but not pco, cluster contributes to copper resistance in S. enterica Typhimurium. However, the role of the pco cluster on the physiology of non-typhoidal S. enterica remains poorly understood. To understand the function of the pco gene cluster, a deletion mutant of pcoABCD genes was constructed using allelic exchange mutagenesis. Deletion of pcoABCD genes inhibited growth of S. enterica in high-copper medium, but only under anaerobic environment. Complementation of the mutant reversed the growth phenotype. The survival of S. enterica in RAW264.7 macrophages was not affected by the loss of pcoABCD genes. This study indicates that the acquired pco cluster is crucial for copper detoxification in S. enterica, but it is not essential for intracellular replication within macrophages.
Collapse
Affiliation(s)
- Ahmed F Hikal
- Division of Microbiology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR, United States
| | - Sameer Hasan
- Division of Microbiology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR, United States
| | - Dereje Gudeta
- Division of Microbiology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR, United States
| | - Shaohua Zhao
- Office of Applied Science, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Steven Foley
- Division of Microbiology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR, United States
| | - Ashraf A Khan
- Division of Microbiology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR, United States
| |
Collapse
|
11
|
Garncarek-Musiał M, Dziewulska K, Kowalska-Góralska M. Effect of different sizes of nanocopper particles on rainbow trout (Oncorhynchus mykiss W.) spermatozoa motility kinematics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173763. [PMID: 38839004 DOI: 10.1016/j.scitotenv.2024.173763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
In recent years, nanocopper (Cu NPs) has gained attention due to its antimicrobial properties and potential for industrial, agricultural, and consumer applications. But it also has several effects on the aquatic environment. Widespread use of various nanoproducts has raised concerns about impacts of different nanoparticle size on environment and biological objects. Spermatozoa is a model for studying the ecotoxic effects of pollutants on cells and organisms. This study aimed to investigate the effects of different sizes of copper nanoparticles on rainbow trout spermatozoa motility, and to compare their effects with copper ionic solution. Computer assisted sperm analysis (CASA) was used to detect movement parameters at activation of gametes (direct effect) with milieu containing nanocopper of primary particle size of 40-60, 60-80 and 100 nm. The effect of the elements ions was also tested using copper sulfate solution. All products was prepared in concentration of 0, 1, 5, 50, 125, 250, 350, 500, 750, and 1000 mg Cu L-1. Six motility parameters were selected for analysis. The harmful effect of Cu NPS nanoparticle was lower than ionic form of copper but the effect depends on the motility parameters. Ionic form caused complete immobilization (MOT = 0 %, IC100) at 350 mg Cu L-1 whilst Cu NPs solution only decreased the percentage of motile sperm (MOT) up to 76.4 % at highest concentration tested of 1000 mg Cu L-1 of 40-60 nm NPs. Cu NPs of smaller particles size had more deleterious effect than the bigger one particularly in percentage of MOT and for curvilinear velocity (VCL). Moreover, nanoparticles decrease motility duration (MD). This may influence fertility because the first two parameters positively correlate with fertilization rate. However, the ionic form of copper has deleterious effect on the percentage of MOT and linearity (LIN), but in some concentrations it slightly increases VCL and MD.
Collapse
Affiliation(s)
- Małgorzata Garncarek-Musiał
- University of Szczecin, Doctoral School, Mickiewicza 18, 70-383 Szczecin, Poland; University of Szczecin, Institute of Biology, Felczaka 3C, 71-412 Szczecin, Poland.
| | - Katarzyna Dziewulska
- University of Szczecin, Institute of Biology, Felczaka 3C, 71-412 Szczecin, Poland; Molecular Biology and Biotechnology Centre, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland.
| | - Monika Kowalska-Góralska
- Wrocław University of Environmental and Life Sciences, Faculty of Biology and Animal Science, Institute of Animal Breeding, Department of Limnology and Fishery, Chełmońskiego 38c, 51-630 Wrocław, Poland.
| |
Collapse
|
12
|
Garinie T, Nusillard W, Lelièvre Y, Taranu ZE, Goubault M, Thiéry D, Moreau J, Louâpre P. Adverse effects of the Bordeaux mixture copper-based fungicide on the non-target vineyard pest Lobesia botrana. PEST MANAGEMENT SCIENCE 2024; 80:4790-4799. [PMID: 38801156 DOI: 10.1002/ps.8195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Bordeaux mixture is a copper-based fungicide commonly used in vineyards to prevent fungal and bacterial infections in grapevines. However, this fungicide may adversely affect the entomological component, including insect pests. Understanding the impacts of Bordeaux mixture on the vineyard pest Lobesia botrana is an increasing concern in the viticultural production. RESULTS Bordeaux mixture had detrimental effects on the development and reproductive performance of L. botrana. Several physiological traits were adversely affected by copper-based fungicide exposure, including a decrease in larval survival and a delayed larval development to moth emergence, as well as a reduced reproductive performance through a decrease in female fecundity and fertility and male sperm quality. However, we did not detect any effect of Bordeaux mixture on the measured reproductive behaviors (mating success, pre-mating latency and mating duration). CONCLUSION Ingestion by larvae of food contaminated with Bordeaux mixture had a negative effect on the reproductive performance of the pest L. botrana, which could affect its population dynamics in vineyards. Although this study highlighted collateral damage of Bordeaux mixture on L. botrana, the potential impact of copper-based fungicides on vineyard diversity, including natural predators is discussed and needs to be taken in consideration in integrated pest management. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Tessie Garinie
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, Dijon, France
| | - William Nusillard
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, Dijon, France
- AgroParisTech, Palaiseau, France
| | - Yann Lelièvre
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, Dijon, France
| | - Zofia E Taranu
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, ECCC, Montréal, Canada
| | - Marlène Goubault
- Institut de la Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS, Université de Tours, Tours, France
| | - Denis Thiéry
- INRA (French National Institute for Agricultural Research), UMR 1065 Save, BSA, Centre de recherches INRAe Nouvelle-Aquitaine-Bordeaux, Villenave d'Ornon Cedex, France
| | - Jérôme Moreau
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, Dijon, France
- Centre d'Études Biologiques de Chizé, CNRS and La Rochelle Université, Villiers-en-Bois, France
| | - Philippe Louâpre
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, Dijon, France
| |
Collapse
|
13
|
Chen Y, Sullivan PJ, Paul E. Sediment quality classification in freshwater lakes predicted by the history of treatment with copper-based aquatic algaecides. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1586-1597. [PMID: 38353389 DOI: 10.1002/ieam.4901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 08/13/2024]
Abstract
Copper-based aquatic algaecides have been widely used in the management of aquatic macrophyte and harmful algal blooms for decades due to their effectiveness and low cost. However, repeated treatment of freshwater lakes results in the accumulation of copper in the sediment, which may adversely affect the ecosystem of the lakes through toxicity to benthic invertebrates and other organisms. Consequently, copper-based aquatic herbicides and algaecides have been frequently subjected to regulations aimed at preventing further ecological deterioration in treated waterbodies. Many states in the US are taking or considering taking an approach that limits or prohibits copper treatment in waterbodies. Freshwater lakes with extensive historical copper treatments typically have significantly higher concentrations of copper in the sediment than untreated lakes. However, the correlation between the extent of the treatments and level of copper accumulation in the sediment has not been quantitatively characterized. In the present study, between 2006 and 2017, copper concentrations were measured in the sediment from selected lakes in New York State with different histories of copper-based aquatic algaecide treatment. Analysis of these data confirmed findings from earlier studies conducted by New York State that lakes with histories of copper treatment have significantly higher copper concentrations in the sediment. It also demonstrated that sediment copper concentrations were significantly higher in the sublittoral zone than the littoral zone in treated lakes. Moreover, a positive correlation was detected between sediment copper concentrations and the total number of treatments with copper-based aquatic algaecide for both littoral and sublittoral zones (p-value = 7.94 × 10-8 and 3.1 × 10-13, respectively). This relationship can be used as a screening tool for regulatory agencies to identify lakes with sediment copper levels possibly higher than the toxicity threshold for aquatic life. Consequently, additional ecological risk assessment may be required before allowing future treatment with copper-based aquatic algaecides. Integr Environ Assess Manag 2024;20:1586-1597. © 2024 SETAC.
Collapse
Affiliation(s)
- Yu Chen
- Division of Material Management, New York State Department of Environmental Conservation, Albany, New York, USA
| | - Patrick J Sullivan
- Department of Natural Resources and the Environment, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - Eric Paul
- Division of Fish and Wildlife, New York State Department of Environmental Conservation, Albany, New York, USA
| |
Collapse
|
14
|
Han K, Chen J, Han Q, Sun L, Dong X, Shi G, Yang R, Wei W, Cheng Y. Nanoclay Hydrogel Microspheres with a Sandwich-Like Structure for Complex Tissue Infection Treatment. Macromol Biosci 2024; 24:e2400027. [PMID: 38462911 DOI: 10.1002/mabi.202400027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Indexed: 03/12/2024]
Abstract
Addressing complex tissue infections remains a challenging task because of the lack of effective means, and the limitations of traditional bioantimicrobial materials in single-application scenarios hinder their utility for complex infection sites. Hence, the development of a bioantimicrobial material with broad applicability and potent bactericidal activity is necessary to treat such infections. In this study, a layered lithium magnesium silicate nanoclay (LMS) is used to construct a nanobactericidal platform. This platform exhibits a sandwich-like structure, which is achieved through copper ion modification using a dopamine-mediated metallophenolic network. Moreover, the nanoclay is encapsulated within gelatin methacryloyl (GelMA) hydrogel microspheres for the treatment of complex tissue infections. The results demonstrate that the sandwich-like micro- and nanobactericidal hydrogel microspheres effectively eradicated Staphylococcus aureus (S. aureus) while exhibiting excellent biocompatibility with bone marrow-derived mesenchymal stem cells (BMSCs) and human umbilical vein endothelial cells (HUVECs). Furthermore, the hydrogel microspheres upregulated the expression levels of osteogenic differentiation and angiogenesis-related genes in these cells. In vivo experiments validated the efficacy of sandwich-like micro- and nanobactericidal hydrogel microspheres when injected into deep infected tissues, effectively eliminating bacteria and promoting robust vascular regeneration and tissue repair. Therefore, these innovative sandwich-like micro- and nanobacteriostatic hydrogel microspheres show great potential for treating complex tissue infections.
Collapse
Affiliation(s)
- Kunyuan Han
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jishizhan Chen
- Mechanical Engineering, University College London, London, WC1E 7JE, UK
- R&D Center, Otrixell Biotechnology (Suzhou) Co.,Ltd, Suzhou, 215129, China
| | - Qinglin Han
- R&D Center, Otrixell Biotechnology (Suzhou) Co.,Ltd, Suzhou, 215129, China
| | - Lei Sun
- Beijing Institute of Traumatology and Orthopedics, Jishuitan Hospital, Beijing, 100035, China
| | - Xieping Dong
- Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, JXHC Key Laboratory of Digital Orthopedics, Nanchang, 330006, China
| | - Gengqiang Shi
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Runhuai Yang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center (3DPTEC), Anhui Medical University, Hefei, 230032, China
- China Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, China
| | - Wenqing Wei
- Spine Surgery Center, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200092, China
| | - Yunzhang Cheng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Director Office, Shanghai Engineering Research Center of Interventional Medical Device, Shanghai, 20093, China
| |
Collapse
|
15
|
Wang X, Zheng K, Wang Y, Hou X, He Y, Wang Z, Zhang J, Chen X, Liu X. Microplastics and viruses in the aquatic environment: a mini review. Front Microbiol 2024; 15:1433724. [PMID: 39021631 PMCID: PMC11251918 DOI: 10.3389/fmicb.2024.1433724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Microplastics (MPs) have been widely found in the environment and have exerted non-negligible impacts on the environment and human health. Extensive research has shown that MPs can act as carriers for viruses and interacts with them in various ways. Whether MPs influence the persistence, transmission and infectivity of virus has attracted global concern in the context of increasing MPs contamination. This review paper provides an overview of the current state of knowledge regarding the interactions between MPs and viruses in aquatic environments. Latest progress and research trends in this field are summarized based on literature analysis. Additionally, we discuss the potential risks posed by microplastic-associated viruses to human health and the environmental safety, highlighting that MPs can affect viral transmission and infectivity through various pathways. Finally, we underscores the need for further research to address key knowledge gaps, such as elucidating synergistic effects between MPs and viruses, understanding interactions under real environmental conditions, and exploring the role of biofilms in virus-MPs interactions. This review aims to contribute to a deeper understanding on the transmission of viruses in the context of increasing MPs pollution in water, and promote actions to reduce the potential risks.
Collapse
Affiliation(s)
- Xiuwen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Kaixin Zheng
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Yi Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Xin Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Yike He
- The Eighth Geological Brigade, Hebei Geological Prospecting Bureau, Qinhuangdao, China
- Marine Ecological Restoration and Smart Ocean Engineering Research Center of Hebei Province, Qinhuangdao, China
| | - Zhiyun Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Jiabo Zhang
- The Eighth Geological Brigade, Hebei Geological Prospecting Bureau, Qinhuangdao, China
- Marine Ecological Restoration and Smart Ocean Engineering Research Center of Hebei Province, Qinhuangdao, China
| | - Xiaochen Chen
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
16
|
Mrozińska Z, Kaczmarek A, Świerczyńska M, Juszczak M, Kudzin MH. Biochemical Behavior, Influence on Cell DNA Condition, and Microbiological Properties of Wool and Wool-Copper Materials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2878. [PMID: 38930247 PMCID: PMC11204859 DOI: 10.3390/ma17122878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
The paper presents the study concerning the preparation and physio-chemical and biological properties of wool-copper (WO-Cu) materials obtained by the sputter deposition of copper onto the wool fibers. The WO-Cu material was subjected to physio-chemical and biological investigations. The physio-chemical investigations included the elemental analysis of materials (C, N, O, S, and Cu), their microscopic analysis, and surface properties analysis (specific surface area and total pore volume). The biological investigations consisted of the antimicrobial activity tests of the WO-Cu materials against colonies of Gram-positive (Staphylococcus aureus) bacteria, Gram-negative (Escherichia coli) bacteria, and fungal mold species (Chaetomium globosum). Biochemical-hematological tests included the evaluation of the activated partial thromboplastin time and pro-thrombin time. The tested wool-copper demonstrated the ability to interact with the DNA in a time-dependent manner. These interactions led to the DNA's breaking and degradation. The antimicrobial and antifungal activities of the WO-Cu materials suggest a potential application as an antibacterial/antifungal material. Wool-copper materials may be also used as customized materials where the blood coagulation process could be well controlled through the appropriate copper content.
Collapse
Affiliation(s)
- Zdzisława Mrozińska
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (Z.M.); (M.J.)
| | - Anna Kaczmarek
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (Z.M.); (M.J.)
| | - Małgorzata Świerczyńska
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (Z.M.); (M.J.)
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Michał Juszczak
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (Z.M.); (M.J.)
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Marcin H. Kudzin
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (Z.M.); (M.J.)
| |
Collapse
|
17
|
Kang Y, Liu K, Chen Z, Guo J, Xiang K, Wu X, Jiang T, Chen J, Yan C, Jiang G, Wang Y, Zhang M, Xiang X, Dai H, Yang X. Healing with precision: A multi-functional hydrogel-bioactive glass dressing boosts infected wound recovery and enhances neurogenesis in the wound bed. J Control Release 2024; 370:210-229. [PMID: 38648955 DOI: 10.1016/j.jconrel.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/31/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Chronic skin wounds, especially infected ones, pose a significant clinical challenge due to their increasing incidence and poor outcomes. The deteriorative microenvironment in such wounds, characterized by reduced extracellular matrix, impaired angiogenesis, insufficient neurogenesis, and persistent bacterial infection, has prompted the exploration of novel therapeutic strategies. In this study, we developed an injectable multifunctional hydrogel (GEL/BG@Cu + Mg) incorporating Gelatin-Tannic acid/ N-hydroxysuccinimide functionalized polyethylene glycol and Bioactive glass doped with copper and magnesium ions to accelerate the healing of infected wounds. The GEL/BG@Cu + Mg hydrogel composite demonstrates good biocompatibility, degradability, and rapid formation of a protective barrier to stop bleeding. Synergistic bactericidal effects are achieved through the photothermal properties of BG@Cu + Mg and sustained copper ions release, with the latter further promoting angiogenesis. Furthermore, the hydrogel enhances neurogenesis by stimulating axons and Schwann cells in the wound bed through the beneficial effects of magnesium ions. Our results demonstrate that the designed novel multifunctional hydrogel holds tremendous promise for treating infected wounds and allowing regenerative neurogenesis at the wound site, which provides a viable alternative for further improving clinical outcomes.
Collapse
Affiliation(s)
- Yu Kang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kun Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiahe Guo
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaituo Xiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaopei Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chenqi Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guoyong Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yufeng Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Maojie Zhang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuejiao Xiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
18
|
Vecchio G, Darcos V, Grill SL, Brouillet F, Coppel Y, Duttine M, Pugliara A, Combes C, Soulié J. Spray-dried ternary bioactive glass microspheres: Direct and indirect structural effects of copper-doping on acellular degradation behavior. Acta Biomater 2024; 181:453-468. [PMID: 38723927 DOI: 10.1016/j.actbio.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/19/2024]
Abstract
Silicate-based bioactive glass nano/microspheres hold significant promise for bone substitution by facilitating osteointegration through the release of biologically active ions and the formation of a biomimetic apatite layer. Cu-doping enhances properties such as pro-angiogenic and antibacterial behavior. While sol-gel methods usually yield homogeneous spherical particles for pure silica or binary glasses, synthesizing poorly aggregated Cu-doped ternary glass nano/microparticles without a secondary CuO crystalline phase remains challenging. This article introduces an alternative method for fabricating Cu-doped ternary microparticles using sol-gel chemistry combined with spray-drying. The resulting microspheres exhibit well-defined, poorly aggregated particles with spherical shapes and diameters of a few microns. Copper primarily integrates into the microspheres as Cu0 nanoparticles and as Cu2+ within the amorphous network. This doping affects silica network connectivity, as calcium and phosphorus are preferentially distributed in the glass network (respectively as network modifiers and formers) or involved in amorphous calcium phosphate nano-domains depending on the doping rate. These differences affect the interaction with simulated body fluid. Network depolymerization, ion release (SiO44-, Ca2+, PO43-, Cu2+), and apatite nanocrystal layer formation are impacted, as well as copper release. The latter is mainly provided by the copper involved in the silica network and not from metal nanoparticles, most of which remain in the microspheres after interaction. This understanding holds promising implications for potential therapeutic applications, offering possibilities for both short-term and long-term delivery of a tunable copper dose. STATEMENT OF SIGNIFICANCE: A novel methodology, scalable to industrial levels, enables the synthesis of copper-doped ternary bioactive glass microparticles by combining spray-drying and sol-gel chemistry. It provides precise control over the copper percentage in microspheres. This study explores the influence of synthesis conditions on the copper environment, notably Cu0 and Cu2+ ratios, characterized by EPR spectroscopy, an aspect poorly described for copper-doped bioactive glass. Additionally, copper indirectly affects silica network connectivity and calcium/phosphorus distribution, as revealed by SSNMR. Multiscale characterization illustrates how these features impact acellular degradation in simulated body fluid, highlighting the therapeutic potential for customizable copper dosing to address short- and long-term needs.
Collapse
Affiliation(s)
- Gabriele Vecchio
- Institut des Biomolécules Max Mousseron (IBMM), University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France; CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 31030 Toulouse, France
| | - Vincent Darcos
- Institut des Biomolécules Max Mousseron (IBMM), University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Sylvain Le Grill
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 31030 Toulouse, France
| | - Fabien Brouillet
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 31030 Toulouse, France
| | - Yannick Coppel
- Laboratoire de Chimie de Coordination (LCC), Université de Toulouse, CNRS, UPR 8241, Université Toulouse 3 - Paul Sabatier, Toulouse 31077, France
| | - Mathieu Duttine
- Université de Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, Pessac F-33600, France
| | - Alessandro Pugliara
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 31030 Toulouse, France; Centre de MicroCaractérisation Raimond Castaing, Université Toulouse 3 - Paul Sabatier, Toulouse INP, INSA Toulouse, CNRS, 31400 Toulouse, France
| | - Christèle Combes
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 31030 Toulouse, France
| | - Jérémy Soulié
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 31030 Toulouse, France.
| |
Collapse
|
19
|
Su C, Chen A, Liang W, Xie W, Xu X, Zhan X, Zhang W, Peng C. Copper-based nanomaterials: Opportunities for sustainable agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171948. [PMID: 38527545 DOI: 10.1016/j.scitotenv.2024.171948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/08/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
The exponential growth of the global population has resulted in a significant surge in the demand for food worldwide. Additionally, the impact of climate change has exacerbated crop losses caused by pests and pathogens. The transportation and utilization of traditional agrochemicals in the soil are highly inefficient, resulting in significant environmental losses and causing severe pollution of both the soil and aquatic ecosystems. Nanotechnology is an emerging field with significant potential for market applications. Among metal-based nanomaterials, copper-based nanomaterials have demonstrated remarkable potential in agriculture, which are anticipated to offer a promising alternative approach for enhancing crop yields and managing diseases, among other benefits. This review firstly performed co-occurrence and clustering analyses of previous studies on copper-based nanomaterials used in agriculture. Then a comprehensive review of the applications of copper-based nanomaterials in agricultural production was summarized. These applications primarily involved in nano-fertilizers, nano-regulators, nano-stimulants, and nano-pesticides for enhancing crop yields, improving crop resistance, promoting crop seed germination, and controlling crop diseases. Besides, the paper concluded the potential impact of copper-based nanomaterials on the soil micro-environment, including soil physicochemical properties, enzyme activities, and microbial communities. Additionally, the potential mechanisms were proposed underlying the interactions between copper-based nanomaterials, pathogenic microorganisms, and crops. Furthermore, the review summarized the factors affecting the application of copper-based nanomaterials, and highlighted the advantages and limitations of employing copper-based nanomaterials in agriculture. Finally, insights into the future research directions of nano-agriculture were put forward. The purpose of this review is to encourage more researches and applications of copper-based nanomaterials in agriculture, offering a novel and sustainable strategy for agricultural development.
Collapse
Affiliation(s)
- Chengpeng Su
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Anqi Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weiyu Liang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenwen Xie
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiang Xu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiuping Zhan
- Shanghai Agricultural Technology Extension and Service Center, Shanghai 201103, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
20
|
Porollo A, Sayson SG, Ashbaugh A, Rebholz S, Landero Figueroa JA, Cushion MT. Insights into copper sensing and tolerance in Pneumocystis species. Front Microbiol 2024; 15:1383737. [PMID: 38812685 PMCID: PMC11133566 DOI: 10.3389/fmicb.2024.1383737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction Pneumocystis species are pathogenic fungi known to cause pneumonia in immunocompromised mammals. They are obligate to their host, replicate extracellularly in lung alveoli and thrive in the copper-enriched environment of mammalian lungs. In this study, we investigated the proteome of Pneumocystis murina, a model organism that infects mice, in the context of its copper sensing and tolerance. Methods and results The query for copper-associated annotations in FungiDB followed by a manual curation identified only 21 genes in P. murina, significantly fewer compared to other clinically relevant fungal pathogens or phylogenetically similar free-living fungi. We then employed instrumental analyses, including Size-Exclusion Chromatography Inductively Coupled Plasma Mass Spectrometry (SEC-ICP-MS), Immobilized Metal Affinity Chromatography (IMAC), and Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS), to isolate and identify copper-binding proteins from freshly extracted organisms, revealing 29 distinct cuproproteins. The RNA sequencing (RNA-seq) analysis of P. murina exposed to various CuSO4 concentrations at three temporal intervals (0.5, 2, and 5 h) indicated that significant gene expression changes occurred only under the highest CuSO4 concentration probed (100 μM) and the longest exposure duration (5 h). This stimulus led to the upregulation of 43 genes and downregulation of 27 genes compared to untreated controls. Quantitative PCR (qPCR) confirmed the expression of four out of eight selected upregulated genes, including three assumed transcription factors (PNEG_01236, PNEG_01675, and PNEG_01730) and a putative copper transporter (PNEG_02609). Notably, the three applied methodologies - homology-based annotation, SEC-ICP-MS/IMAC/LC-MS/MS, and RNA-seq - yielded largely distinct findings, with only four genes (PNEG_02587, PNEG_03319, PNEG_02584, and PNEG_02989) identified by both instrumental methods. Discussion The insights contribute to the broader knowledge of Pneumocystis copper homeostasis and provide novel facets of host-pathogen interactions for extracellular pathogens. We suggest that future studies of Pneumocystis pathogenicity and copper stress survival should consider the entire spectrum of identified genes.
Collapse
Affiliation(s)
- Aleksey Porollo
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Steven G. Sayson
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, United States
- Cincinnati Veterans Affairs Medical Center, Cincinnati, OH, United States
| | - Alan Ashbaugh
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, United States
- Cincinnati Veterans Affairs Medical Center, Cincinnati, OH, United States
| | - Sandra Rebholz
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, United States
- Cincinnati Veterans Affairs Medical Center, Cincinnati, OH, United States
| | | | - Melanie T. Cushion
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, United States
- Cincinnati Veterans Affairs Medical Center, Cincinnati, OH, United States
| |
Collapse
|
21
|
Sole-Gras M, Ren B, Ryder BJ, Ge J, Huang J, Chai W, Yin J, Fuchs GE, Wang G, Jiang X, Huang Y. Vapor-induced phase-separation-enabled versatile direct ink writing. Nat Commun 2024; 15:3058. [PMID: 38594271 PMCID: PMC11003993 DOI: 10.1038/s41467-024-47452-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
Versatile printing of polymers, metals, and composites always calls for simple, economic approaches. Here we present an approach to three-dimensional (3D) printing of polymeric, metallic, and composite materials at room conditions, based on the polymeric vapor-induced phase separation (VIPS) process. During VIPS 3D printing (VIPS-3DP), a dissolved polymer-based ink is deposited in an environment where nebulized non-solvent is present, inducing the low-volatility solvent to be extracted from the filament in a controllable manner due to its higher chemical affinity with the non-solvent used. The polymeric phase is hardened in situ as a result of the induced phase separation process. The low volatility of the solvent enables its reclamation after the printing process, significantly reducing its environmental footprint. We first demonstrate the use of VIPS-3DP for polymer printing, showcasing its potential in printing intricate structures. We further extend VIPS-3DP to the deposition of polymer-based metallic inks or composite powder-laden polymeric inks, which become metallic parts or composites after a thermal cycle is applied. Furthermore, spatially tunable porous structures and functionally graded parts are printed by using the printing path to set the inter-filament porosity as well as an inorganic space-holder as an intra-filament porogen.
Collapse
Affiliation(s)
- Marc Sole-Gras
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, USA
| | - Bing Ren
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, USA
| | - Benjamin J Ryder
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
| | - Jinqun Ge
- Department of Electrical Engineering, University of South Carolina, Columbia, SC, USA
| | - Jinge Huang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC, USA
| | - Wenxuan Chai
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, USA
| | - Jun Yin
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Gerhard E Fuchs
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
| | - Guoan Wang
- Department of Electrical Engineering, University of South Carolina, Columbia, SC, USA
| | - Xiuping Jiang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC, USA
| | - Yong Huang
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, USA.
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
22
|
Maciel-Flores CE, Lozano-Alvarez JA, Bivián-Castro EY. Recently Reported Biological Activities and Action Targets of Pt(II)- and Cu(II)-Based Complexes. Molecules 2024; 29:1066. [PMID: 38474580 DOI: 10.3390/molecules29051066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Most diseases that affect human beings across the world are now treated with drugs of organic origin. However, some of these are associated with side effects, toxicity, and resistance phenomena. For the treatment of many illnesses, the development of new molecules with pharmacological potential is now an urgent matter. The biological activities of metal complexes have been reported to have antitumor, antimicrobial, anti-inflammatory, anti-infective and antiparasitic effects, amongst others. Metal complexes are effective because they possess unique properties. For example, the complex entity possesses the effective biological activity, then the formation of coordination bonds between the metal ions and ligands is controlled, metal ions provide it with extraordinary mechanisms of action because of characteristics such as d-orbitals, oxidation states, and specific orientations; metal complexes also exhibit good stability and good physicochemical properties such as water solubility. Platinum is a transition metal widely used in the design of drugs with antineoplastic activities; however, platinum is associated with side effects which have made it necessary to search for, and design, novel complexes based on other metals. Copper is a biometal which is found in living systems; it is now used in the design of metal complexes with biological activities that have demonstrated antitumoral, antimicrobial and anti-inflammatory effects, amongst others. In this review, we consider the open horizons of Cu(II)- and Pt(II)-based complexes, new trends in their design, their synthesis, their biological activities and their targets of action.
Collapse
Affiliation(s)
- Cristhian Eduardo Maciel-Flores
- Centro Universitario de los Lagos, Universidad de Guadalajara, Av. Enrique Díaz de León 1144, Col. Paseos de la Montaña, Lagos de Moreno 47460, Jalisco, Mexico
| | - Juan Antonio Lozano-Alvarez
- Departamento de Ingeniería Bioquímica, Universidad Autónoma de Aguascalientes, Av. Universidad 940 Cd. Universitaria, Aguascalientes 20131, Aguascalientes, Mexico
| | - Egla Yareth Bivián-Castro
- Centro Universitario de los Lagos, Universidad de Guadalajara, Av. Enrique Díaz de León 1144, Col. Paseos de la Montaña, Lagos de Moreno 47460, Jalisco, Mexico
| |
Collapse
|
23
|
Wang D, Yuan C, Li Y, Bai S, Feng J, Wang Y, Fang Y, Zhang Z. Chelation of the Optimal Antifungal Pogostone Analogue with Copper(II) to Explore the Dual Antifungal and Antibacterial Agent. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3894-3903. [PMID: 38366986 DOI: 10.1021/acs.jafc.3c07050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
In an ongoing effort to explore more potent antifungal pogostone (Po) analogues, we maintained the previously identified 3-acetyl-4-hydroxy-2-pyrone core motif while synthesizing a series of Po analogues with variations in the alkyl side chain. The in vitro bioassay results revealed that compound 21 was the most potent antifungal analogue with an EC50 value of 1.1 μg/mL against Sclerotinia sclerotiorum (Lib.) de Bary. Meanwhile, its Cu(II) complex 34 manifested significantly enhanced antibacterial activity against Xanthomonas campestris pv campestris (Xcc) with a minimum inhibitory concentration (MIC) value of 300 μg/mL compared with 21 (MIC = 700 μg/mL). Complex 34 exhibited a striking preventive effect against S. sclerotiorum and Xcc in rape leaves, with control efficacies of 98.8% (50 μg/mL) and 80.7% (1000 μg/mL), respectively. The 3D-QSAR models generated using Topomer comparative molecular field analysis indicated that a shorter alkyl chain (carbon atom number <8), terminal rings, or electron-deficient groups on the alkyl side chain are beneficial for antifungal potency. Further, bioassay results revealed that the component of 21 in complex 34 dominated the antifungal activity, but the introduction of Cu(II) significantly enhanced its antibacterial activity. The toxicological observations demonstrated that 21 could induce abnormal mitochondrial morphology, loss of mitochondrial membrane potential, and reactive oxygen species (ROS) accumulation in S. sclerotiorum. The enzyme assay results showed that 21 is a moderate promiscuous inhibitor of mitochondrial complexes II and III. Besides, the introduction of Cu(II) to 34 could promote the disruption of the cell membrane and intracellular proteins and the ROS level in Xcc compared with 21. In summary, these results highlight the potential of 34 as a dual antifungal and antibacterial biocide for controlling rape diseases or as a promising candidate for further optimization.
Collapse
Affiliation(s)
- Delong Wang
- College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Chunxia Yuan
- College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Yunpeng Li
- College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Shuhong Bai
- College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Juntao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yali Fang
- College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Zhijia Zhang
- College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| |
Collapse
|
24
|
Zhang X, Zhou W, Xi W. Advancements in incorporating metal ions onto the surface of biomedical titanium and its alloys via micro-arc oxidation: a research review. Front Chem 2024; 12:1353950. [PMID: 38456182 PMCID: PMC10917964 DOI: 10.3389/fchem.2024.1353950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/31/2024] [Indexed: 03/09/2024] Open
Abstract
The incorporation of biologically active metallic elements into nano/micron-scale coatings through micro-arc oxidation (MAO) shows significant potential in enhancing the biological characteristics and functionality of titanium-based materials. By introducing diverse metal ions onto titanium implant surfaces, not only can their antibacterial, anti-inflammatory and corrosion resistance properties be heightened, but it also promotes vascular growth and facilitates the formation of new bone tissue. This review provides a thorough examination of recent advancements in this field, covering the characteristics of commonly used metal ions and their associated preparation parameters. It also highlights the diverse applications of specific metal ions in enhancing osteogenesis, angiogenesis, antibacterial efficacy, anti-inflammatory and corrosion resistance properties of titanium implants. Furthermore, the review discusses challenges faced and future prospects in this promising area of research. In conclusion, the synergistic approach of micro-arc oxidation and metal ion doping demonstrates substantial promise in advancing the effectiveness of biomedical titanium and its alloys, promising improved outcomes in medical implant applications.
Collapse
Affiliation(s)
- Xue’e Zhang
- Jiangxi Province Key Laboratory of Oral Biomedicine, School of Stomatology, Jiangxi Medical College, Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang University, Nanchang, China
| | - Wuchao Zhou
- Jiangxi Province Key Laboratory of Oral Biomedicine, The Affiliated Stomatological Hospital, Jiangxi Medical College, Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang University, Nanchang, China
| | - Weihong Xi
- Jiangxi Province Key Laboratory of Oral Biomedicine, The Affiliated Stomatological Hospital, Jiangxi Medical College, Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang University, Nanchang, China
| |
Collapse
|
25
|
Vital VG, Silva MR, Santos VT, Lobo FG, Xander P, Zauli RC, Moraes CB, Freitas-Junior LH, Barbosa CG, Pellosi DS, Silva RAG, Paganotti A, Vasconcellos SP. Micro-Addition of Silver to Copper: One Small Step in Composition, a Change for a Giant Leap in Biocidal Activity. MATERIALS (BASEL, SWITZERLAND) 2024; 17:917. [PMID: 38399167 PMCID: PMC10890504 DOI: 10.3390/ma17040917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
The use of copper as an antimicrobial agent has a long history and has gained renewed interest in the context of the COVID-19 pandemic. In this study, the authors investigated the antimicrobial properties of an alloy composed of copper with a small percentage of silver (Cu-0.03% wt.Ag). The alloy was tested against various pathogens, including Escherichia coli, Staphylococcus aureus, Candida albicans, Pseudomonas aeruginosa, and the H1N1 virus, using contact exposure tests. Results showed that the alloy was capable of inactivating these pathogens in two hours or less, indicating its strong antimicrobial activity. Electrochemical measurements were also performed, revealing that the small addition of silver to copper promoted a higher resistance to corrosion and shifted the formation of copper ions to higher potentials. This shift led to a slow but continuous release of Cu2+ ions, which have high biocidal activity. These findings show that the addition of small amounts of silver to copper can enhance its biocidal properties and improve its effectiveness as an antimicrobial material.
Collapse
Affiliation(s)
- Vitor G. Vital
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas—ICAQF, Universidade Federal de São Paulo—UNIFESP, Diadema 09913-030, Brazil (P.X.); (R.C.Z.)
| | - Márcio R. Silva
- Department of Research and Development, Termomecanica São Paulo S.A., São Bernardo do Campo 09612-000, Brazil
| | - Vinicius T. Santos
- Department of Research and Development, Termomecanica São Paulo S.A., São Bernardo do Campo 09612-000, Brazil
| | - Flávia G. Lobo
- Department of Research and Development, Termomecanica São Paulo S.A., São Bernardo do Campo 09612-000, Brazil
| | - Patrícia Xander
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas—ICAQF, Universidade Federal de São Paulo—UNIFESP, Diadema 09913-030, Brazil (P.X.); (R.C.Z.)
| | - Rogéria C. Zauli
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas—ICAQF, Universidade Federal de São Paulo—UNIFESP, Diadema 09913-030, Brazil (P.X.); (R.C.Z.)
| | - Carolina B. Moraes
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, Brazil
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Lucio H. Freitas-Junior
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Cecíla G. Barbosa
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Diogo S. Pellosi
- Instituto de Química, Universidade Federal do Paraná, Curitiba 81531-980, Brazil
| | - Ricardo A. G. Silva
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas—ICAQF, Universidade Federal de São Paulo—UNIFESP, Diadema 09913-030, Brazil (P.X.); (R.C.Z.)
| | - André Paganotti
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas—ICAQF, Universidade Federal de São Paulo—UNIFESP, Diadema 09913-030, Brazil (P.X.); (R.C.Z.)
| | - Suzan P. Vasconcellos
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas—ICAQF, Universidade Federal de São Paulo—UNIFESP, Diadema 09913-030, Brazil (P.X.); (R.C.Z.)
| |
Collapse
|
26
|
Jarin M, Wang T, Xie X. Operando investigation of the synergistic effect of electric field treatment and copper for bacteria inactivation. Nat Commun 2024; 15:1345. [PMID: 38355666 PMCID: PMC10867087 DOI: 10.1038/s41467-024-45587-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
As the overuse of chemicals in our disinfection processes becomes an ever-growing concern, alternative approaches to reduce and replace the usage of chemicals is warranted. Electric field treatment has shown promising potential to have synergistic effects with standard chemical-based methods as they both target the cell membrane specifically. In this study, we use a lab-on-a-chip device to understand, observe, and quantify the synergistic effect between electric field treatment and copper inactivation. Observations in situ, and at a single cell level, ensure us that the combined approach has an enhancement effect leading more bacteria to be weakened by electric field treatment and susceptible to inactivation by copper ion permeation. The synergistic effects of electric field treatment and copper can be visually concluded here, enabling the further study of this technology to optimally develop, mature, and scale for its various applications in the future.
Collapse
Affiliation(s)
- Mourin Jarin
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ting Wang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Xing Xie
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
27
|
Habib ML, Disha SA, Sahadat Hossain M, Uddin MN, Ahmed S. Enhancement of antimicrobial properties by metals doping in nano-crystalline hydroxyapatite for efficient biomedical applications. Heliyon 2024; 10:e23845. [PMID: 38192860 PMCID: PMC10772636 DOI: 10.1016/j.heliyon.2023.e23845] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024] Open
Abstract
In this study, we have introduced a method for the synthesis of various metal-doped nano-crystalline hydroxyapatites (HAp) using a standard wet chemical precipitation technique. Both divalent (Ni and Zn) and trivalent (Al and Fe) metals were selected for the doping process. Additional research work was also conducted to assess the antimicrobial efficacy of these doped-HAps against a range of gram-positive and gram-negative microorganisms. All the synthesized metal-doped hydroxyapatite (HAp) exhibited notable antibacterial characteristics against gram-negative bacterial strains, namely Escherichia coli (E. coli) and Salmonella typhi (S. typhi), outperforming the pure HAp. The inhibition zone observed for the metal-doped HAp ranged from 14 to 16 mm. The Fe ion displayed a notable inhibitory zone measuring 16 mm, proving to be the most expansive among all tested ions against both E. coli and S. typhi bacterial strains. The Zn-HAp exhibited a comparable inhibitory zone size of 14 mm against both S. typhi and E. coli. Additional characterization methods, such as X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and Scanning electron microscopy (SEM), were used to validate the structural properties of the synthesized metal-doped hydroxyapatite (HAp) samples. The biocompatibility assessment of metal-doped hydroxyapatite (HAp) samples was carried out by haemolysis tests, which revealed that all synthesized hydroxyapatite (HAp) samples have the potential to serve as reliable biomaterials.
Collapse
Affiliation(s)
- Md. Lawshan Habib
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj-8100, Bangladesh
| | - Sanjana Afrin Disha
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj-8100, Bangladesh
- Institute of Glass and Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka-1205, Bangladesh
| | - Md. Sahadat Hossain
- Institute of Glass and Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka-1205, Bangladesh
| | - Md. Najem Uddin
- BCSIR Dhaka Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh
| | - Samina Ahmed
- Institute of Glass and Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka-1205, Bangladesh
- BCSIR Dhaka Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh
| |
Collapse
|
28
|
Gorel O, Hamuda M, Feldman I, Kucyn‐Gabovich I. Enhanced healing of wounds that responded poorly to silver dressing by copper wound dressings: Prospective single arm treatment study. Health Sci Rep 2024; 7:e1816. [PMID: 38226359 PMCID: PMC10788384 DOI: 10.1002/hsr2.1816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/07/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024] Open
Abstract
Background and Aims Dressings containing silver ions are an accepted and common option for wound treatment. However, some wounds fail to heal at the desired rate despite optimal management. The aim of the study was to examine the effect of copper dressings in noninfected wounds. Methods The study included 20 patients aged 18-85 years with 2-30 cm2 noninfected wounds treated for 17-41 days with silver wound dressings that failed to reduce by >50% the wound size, who were then treated with copper dressings. Ten patients were diabetics, 10 suffered from hypertension, and six suffered from peripheral vascular disease (PVD). Two patients suffered from two wounds. Most were amputation wounds below the knee. Results Five patients dropped out from the study due to complications not related to the wound. The mean period of silver and copper dressings treatment was 25.6 and 29.6 days, respectively (p = 0.25; t test). None of the wounds became infected. Comparing a period of 25 days, during the copper dressings treatment, the mean wound area reduction was ~2.4 times higher than during the silver dressing treatment, 87.35 ± 22.4% versus 37.02 ± 25.11% (mean ± SD; p < 0.001; paired t test), respectively. The average decline during the silver and copper treatments were 1.2% and 2.14% per day (p = 0.002; multiple regression analysis), respectively. Conclusions The enhanced wound healing process observed with the copper dressings may be explained by the integral role of copper throughout all physiological skin repair processes. Silver in contrast has no physiological role in wound healing. The results of our study confirm case reports showing enhanced wound healing of hard-to-heal wounds with copper dressings, both of infected and noninfected wounds. Taken together, the results of the current study support the hypothesis that the application of copper dressings in situ for noninfected wounds results in the stimulation of the wound healing processes, as opposed to silver dressings.
Collapse
Affiliation(s)
- Oxana Gorel
- Loewenstein Rehabilitation CenterRa'ananaIsrael
| | | | | | | |
Collapse
|
29
|
Melamed E, Borkow G. Continuum of care in hard-to-heal wounds by copper dressings: a case series. J Wound Care 2023; 32:788-796. [PMID: 38060415 DOI: 10.12968/jowc.2023.32.12.788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
OBJECTIVE The quest for an ideal wound dressing has been a longstanding challenge due to the complex nature of wound healing, including stages of haemostasis, inflammation, maturation and remodelling, with overlapping timelines. This makes it difficult to find a single dressing that optimally supports all phases of wound healing. In addition, the ideal wound dressing should possess antibacterial properties and be capable of effectively debriding and lysing necrotic tissue. Copper is an essential trace element that participates in many of the key physiological wound healing processes. METHOD Copper stimulates secretion of various cytokines and growth factors, thus promoting angiogenesis, granulation tissue formation, extracellular matrix proteins secretion and re-epithelialisation. Harnessing this knowledge, we have used copper oxide-impregnated wound dressings in numerous cases and observed their benefits throughout the entire wound healing process. RESULTS This led us to postulate the 'continuum of care' hypothesis of copper dressings. In this study we describe four cases of hard-to-heal wounds of various aetiologies, in which we applied copper dressings consistently across all stages of wound healing, with rapid uneventful healing. CONCLUSION We believe we have successfully implemented the continuum of care principle.
Collapse
Affiliation(s)
- Eyal Melamed
- Foot and Ankle Service, Department of Orthopaedics, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Gadi Borkow
- The Skin Research Institute, The Dead-Sea & Arava Science Center, Masada 8693500, Israel
- MedCu Technologies Ltd., Herzliya 4672200, Israel
| |
Collapse
|
30
|
Shanmuganathan R, Le QH, Gavurová B, Wadaan MA, Baabbad A. Nano-composite rGO-Ag-Cu-Ni mediated photocatalytic degradation of anthracene and benzene. CHEMOSPHERE 2023; 343:140076. [PMID: 37678600 DOI: 10.1016/j.chemosphere.2023.140076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are omnipresent, persistent, and carcinogenic pollutants continuously released in the atmosphere due to the rapid increase in population and industrialization worldwide. Hence, there is an ultimate rise in concern about eliminating the toxic PAHs and their related aromatic hydrocarbons from the air, water, and soil environment by employing efficient removal technologies using nanoparticles as a catalyst. Here, the degradation of selective PAHs viz., anthracene and benzene using laboratory synthesized rGO-Ag-Cu-Ni nanocomposite (catalyst) was studied. Characterization studies revealed the nanocomposites exhibited surface plasma resonance at 350 - 450 nm, confirming the presence of Ag, Cu, and Ni metal ions embedded on the reduced graphene substrate. It was found that the nanocomposites synthesized were spherical, amorphous in nature, and aggregated together with measurements ranging from 423 to 477 nm. An SEM-EDX analysis of the nanocomposite demonstrated that it contained 25.13% O, 14.24% Ni, 27.79% Cu, and 32.84% Ag, which confirms the synthesis of the nanocomposite. Crystalline, sharp nanocomposites of average size 17-41 nm with an average diameter of 118.5 nm (X-ray diffraction and DLS) were observed. FTIR spectra showed that the nanocomposites had the functional groups alkanes, alkenes, alkynes, carboxylic acids, and halogen derivatives. Batch adsorption studies revealed that the maximum degradation achieved at optimum nano-composite concentration of 10 μg/mL, pH value of 5, PAHs concentration of 2 μg/mL and effective irradiation source being UV radiations in the case of both benzene and anthracene pollutants. The degradation of benzene and anthracene followed Freundlich & Langmuir isotherm with the highest R2 value of 0.9894 & 0.9885, respectively. Adsorption kinetic studies under optimum conditions revealed that the adsorption of both benzene and anthracene followed Pseudo-second order kinetics. Antimicrobial studies revealed that the synthesized nano-composite exhibited potential antimicrobial activity against Gram positive bacterium (Bacillus subtilis, Staphylococcus aureus), Gram negative bacterium (Klebsiella pneumonia, Escherichia coli) and fungal strain (Aspergillus niger) respectively. Thus, the synthesized rGO-Ag-Cu-Ni nano-composite acts as an effective antimicrobial agent as well as a PAHs degrading agent, helping to overcome antibiotics resistance and to mitigate the overgrowing PAHs pollution in the environment.
Collapse
Affiliation(s)
- Rajasree Shanmuganathan
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam.
| | - Quynh Hoang Le
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Beata Gavurová
- Technical University of Košice, Faculty of Mining, Ecology, Process Control and Geotechnologies, Letná 1/9, 042 00, Košice-Sever, Slovak Republic
| | - Mohammad Ahmad Wadaan
- Department of Zoology, College of Science, King Saud University, Riyadh, P.O. Box. 2455, 11451, Saudi Arabia
| | - Almohannad Baabbad
- Department of Zoology, College of Science, King Saud University, Riyadh, P.O. Box. 2455, 11451, Saudi Arabia
| |
Collapse
|
31
|
Binczarski MJ, Zuberek JZ, Samadi P, Cieslak M, Kaminska I, Berlowska J, Pawlaczyk A, Szynkowska-Jozwik MI, Witonska IA. Use of copper-functionalized cotton waste in combined chemical and biological processes for production of valuable chemical compounds. RSC Adv 2023; 13:34681-34692. [PMID: 38035250 PMCID: PMC10682913 DOI: 10.1039/d3ra06071c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
Cotton textiles modified with copper compounds have a documented mechanism of antimicrobial action against bacteria, fungi, and viruses. During the COVID-19 pandemic, there was pronounced interest in finding new solutions for textile engineering, using modifiers and bioactive methods of functionalization, including introducing copper nanoparticles and complexes into textile products (e.g. masks, special clothing, surface coverings, or tents). However, copper can be toxic, depending on its form and concentration. Functionalized waste may present a risk to the environment if not managed correctly. Here, we present a model for managing copper-modified cotton textile waste. The process includes pressure and temperature-assisted hydrolysis and use of the hydrolysates as a source of sugars for cultivating yeast and lactic acid bacteria biomass as valuable chemical compounds.
Collapse
Affiliation(s)
- Michal J Binczarski
- Lodz University of Technology, Institute of General and Ecological Chemistry 116 Zeromskiego Street 90-924 Lodz Poland
| | - Justyna Z Zuberek
- Lodz University of Technology, Institute of General and Ecological Chemistry 116 Zeromskiego Street 90-924 Lodz Poland
| | - Payam Samadi
- Lodz University of Technology, Institute of General and Ecological Chemistry 116 Zeromskiego Street 90-924 Lodz Poland
| | - Malgorzata Cieslak
- Lukasiewicz Research Network - Lodz Institute of Technology, Department of Chemical Textile Technologies 19/27 Marii Sklodowska-Curie Street 90-570 Lodz Poland
| | - Irena Kaminska
- Lukasiewicz Research Network - Lodz Institute of Technology, Department of Chemical Textile Technologies 19/27 Marii Sklodowska-Curie Street 90-570 Lodz Poland
| | - Joanna Berlowska
- Lodz University of Technology, Department of Environmental Biotechnology 171/173 Wolczanska Street 90-924 Lodz Poland
| | - Aleksandra Pawlaczyk
- Lodz University of Technology, Institute of General and Ecological Chemistry 116 Zeromskiego Street 90-924 Lodz Poland
| | | | - Izabela A Witonska
- Lodz University of Technology, Institute of General and Ecological Chemistry 116 Zeromskiego Street 90-924 Lodz Poland
| |
Collapse
|
32
|
Rodríguez-Ramos F, Briones-Labarca V, Plaza V, Castillo L. Iron and copper on Botrytis cinerea: new inputs in the cellular characterization of their inhibitory effect. PeerJ 2023; 11:e15994. [PMID: 37744242 PMCID: PMC10517660 DOI: 10.7717/peerj.15994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 08/08/2023] [Indexed: 09/26/2023] Open
Abstract
Certain metals play key roles in infection by the gray mold fungus, Botrytis cinerea. Among them, copper and iron are necessary for redox and catalytic activity of enzymes and metalloproteins, but at high concentrations they are toxic. Understanding the mechanism requires more cell characterization studies for developing new, targeted metal-based fungicides to control fungal diseases on food crops. This study aims to characterize the inhibitory effect of copper and iron on B. cinerea by evaluating mycelial growth, sensitivity to cell wall perturbing agents (congo red and calcofluor white), membrane integrity, adhesion, conidial germination, and virulence. Tests of copper over the range of 2 to 8 mM and iron at 2 to 20 mM revealed that the concentration capable of reducing mycelial growth by 50% (IC50) was 2.87 mM and 9.08 mM for copper and iron, respectively. When mixed at equimolar amounts there was a significant inhibitory effect mostly attributable to copper. The effect of Cu50, Fe50, and Cu50-Fe50 was also studied on the mycelial growth of three wild B. cinerea strains, which were more sensitive to metallic inhibitors. A significant inhibition of conidial germination was correlated with adhesion capacity, indicating potential usefulness in controlling disease at early stages of crop growth. Comparisons of the effects of disruptive agents on the cell wall showed that Cu, Fe, and Cu-Fe did not exert their antifungal effect on the cell wall of B. cinerea. However, a relevant effect was observed on plasma membrane integrity. The pathogenicity test confirmed that virulence was correlated with the individual presence of Cu and Fe. Our results represent an important contribution that could be used to formulate and test metal-based fungicides targeted at early prevention or control of B. cinerea.
Collapse
Affiliation(s)
- Fátima Rodríguez-Ramos
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, La Serena, Coquimbo, Chile
| | - Vilbett Briones-Labarca
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, La Serena, Coquimbo, Chile
| | - Verónica Plaza
- Departamento de Biología, Universidad de La Serena, La Serena, Coquimbo, Chile
| | - Luis Castillo
- Departamento de Biología, Universidad de La Serena, La Serena, Coquimbo, Chile
| |
Collapse
|
33
|
Wilkin S, Hommel P, Ventresca Miller A, Boivin N, Pedergnana A, Shishlina N, Trifonov V. Curated cauldrons: Preserved proteins from early copper-alloy vessels illuminate feasting practices in the Caucasian steppe. iScience 2023; 26:107482. [PMID: 37744407 PMCID: PMC10517358 DOI: 10.1016/j.isci.2023.107482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/26/2023] [Accepted: 07/24/2023] [Indexed: 09/26/2023] Open
Abstract
Large metal and metal-alloy cauldrons first appear on the far western steppe and Caucasus region during the Maykop period (3700-2900 BCE); however, the types of foods or beverages cooked in and served from these vessels have remained mysterious. Here, we present proteomic analysis of nine residues from copper-alloy cauldrons from Maykop burial contexts where we identify muscle, blood, and milk proteins specific to domesticated, and possibly wild, ruminants. This study clearly demonstrates that the earliest, large-volume feasting vessels contained both primary and secondary animal products, likely prepared in the form of a stew.
Collapse
Affiliation(s)
- Shevan Wilkin
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
- Max Planck Institute of Geoanthropology, Jena, Germany
- Australian Research Centre for Human Evolution (ARCHE), Griffith University, Brisbane, QLD, Australia
| | - Peter Hommel
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK
| | - Alicia Ventresca Miller
- Department of Anthropology, University of Michigan, Ann Arbor, MI, USA
- Museum of Anthropological Archaeology, University of Michigan, Ann Arbor, MI, USA
| | - Nicole Boivin
- Max Planck Institute of Geoanthropology, Jena, Germany
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- School of Social Science, University of Queensland, Brisbane, QLD, Australia
- Griffith Sciences, Griffith University, Brisbane, QLD, Australia
| | | | - Natalia Shishlina
- State Historical Museum, Moscow, Russia
- Peter the Great Museum of Anthropology and Ethnography (the Kunstkamera), St Petersburg, Russia
| | - Viktor Trifonov
- Institute for the History of Material Culture, St Petersburg, Russia
| |
Collapse
|
34
|
Wiśniewski OW, Czyżniewski B, Żukiewicz-Sobczak W, Gibas-Dorna M. Nutritional Behavior in European Countries during COVID-19 Pandemic-A Review. Nutrients 2023; 15:3451. [PMID: 37571387 PMCID: PMC10420667 DOI: 10.3390/nu15153451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/23/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
COVID-19 is highly linked with hyperinflammation and dysfunction of the immune cells. Studies have shown that adequate nutrition, a modifiable factor affecting immunity and limiting systemic inflammation, may play an adjunct role in combating the negative consequences of SARS-CoV-2 infection. Due to the global lockdown conditions, the COVID-19 pandemic has contributed, among others, to restrictions on fresh food availability and changes in lifestyle and eating behaviors. The aim of this paper was to review the data regarding eating habits in European countries within the general population of adults and some specific subpopulations, including obese, diabetic, and psychiatric patients, during the COVID-19 pandemic. The PubMed database and the official websites of medical organizations and associations were searched for the phrases "COVID" and "eating habits". Papers regarding the pediatric population, non-European countries, presenting aggregated data from different countries worldwide, and reviews were excluded. During the COVID-19 pandemic, unhealthy lifestyles and eating behaviors were commonly reported. These included increased snacking, intake of caloric foods, such as sweets, pastries, and beverages, and a decline in physical activity. Data suggest that poor eating habits that create a positive energy balance have persisted over time as an additional post-COVID negative consequence.
Collapse
Affiliation(s)
- Oskar Wojciech Wiśniewski
- Department of Cardiology-Intensive Therapy and Internal Medicine, Poznan University of Medical Sciences, 49 Przybyszewskiego Street, 60-355 Poznan, Poland
- Department of Nutrition and Food, Faculty of Health Sciences, Calisia University, 62-800 Kalisz, Poland;
| | - Bartłomiej Czyżniewski
- Faculty of Medicine, Collegium Medicum, University of Zielona Gora, 28 Zyty Street, 65-046 Zielona Gora, Poland;
| | - Wioletta Żukiewicz-Sobczak
- Department of Nutrition and Food, Faculty of Health Sciences, Calisia University, 62-800 Kalisz, Poland;
| | - Magdalena Gibas-Dorna
- Collegium Medicum, Institute of Health Sciences, University of Zielona Gora, 28 Zyty Street, 65-046 Zielona Gora, Poland
| |
Collapse
|
35
|
Shurson GC, Urriola PE, Schroeder DC. Biosecurity and Mitigation Strategies to Control Swine Viruses in Feed Ingredients and Complete Feeds. Animals (Basel) 2023; 13:2375. [PMID: 37508151 PMCID: PMC10376163 DOI: 10.3390/ani13142375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
No system nor standardized analytical procedures at commercial laboratories exist to facilitate and accurately measure potential viable virus contamination in feed ingredients and complete feeds globally. As a result, there is high uncertainty of the extent of swine virus contamination in global feed supply chains. Many knowledge gaps need to be addressed to improve our ability to prevent virus contamination and transmission in swine feed. This review summarizes the current state of knowledge involving: (1) the need for biosecurity protocols to identify production, processing, storage, and transportation conditions that may cause virus contamination of feed ingredients and complete feed; (2) challenges of measuring virus inactivation; (3) virus survival in feed ingredients during transportation and storage; (4) minimum infectious doses; (5) differences between using a food safety objective versus a performance objective as potential approaches for risk assessment in swine feed; (6) swine virus inactivation from thermal and irradiation processes, and chemical mitigants in feed ingredients and complete feed; (7) efficacy of virus decontamination strategies in feed mills; (8) benefits of functional ingredients, nutrients, and commercial feed additives in pig diets during a viral health challenge; and (9) considerations for improved risk assessment models of virus contamination in feed supply chains.
Collapse
Affiliation(s)
- Gerald C Shurson
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | - Pedro E Urriola
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | - Declan C Schroeder
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
36
|
Lejeune B, Zhang X, Sun S, Hines J, Jinn KW, Reilly AN, Clark HA, Lewis LH. Enhancing Biocidal Capability in Cuprite Coatings. ACS Biomater Sci Eng 2023; 9:4178-4186. [PMID: 37267510 PMCID: PMC10620754 DOI: 10.1021/acsbiomaterials.2c01222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/12/2023] [Indexed: 06/04/2023]
Abstract
The SARS-CoV-2 global pandemic has reinvigorated interest in the creation and widespread deployment of durable, cost-effective, and environmentally benign antipathogenic coatings for high-touch public surfaces. While the contact-kill capability and mechanism of metallic copper and its alloys are well established, the biocidal activity of the refractory oxide forms remains poorly understood. In this study, commercial cuprous oxide (Cu2O, cuprite) powder was rapidly nanostructured using high-energy cryomechanical processing. Coatings made from these processed powders demonstrated a passive "contact-kill" response to Escherichia coli (E. coli) bacteria that was 4× (400%) faster than coatings made from unprocessed powder. No viable bacteria (>99.999% (5-log10) reduction) were detected in bioassays performed after two hours of exposure of E. coli to coatings of processed cuprous oxide, while a greater than 99% bacterial reduction was achieved within 30 min of exposure. Further, these coatings were hydrophobic and no external energy input was required to activate their contact-kill capability. The upregulated antibacterial response of the processed powders is positively correlated with extensive induced crystallographic disorder and microstrain in the Cu2O lattice accompanied by color changes that are consistent with an increased semiconducting bandgap energy. It is deduced that cryomilling creates well-crystallized nanoscale regions enmeshed within the highly lattice-defective particle matrix. Increasing the relative proportion of lattice-defective cuprous oxide exposed to the environment at the coating surface is anticipated to further enhance the antipathogenic capability of this abundant, inexpensive, robust, and easily handled material for wider application in contact-kill surfaces.
Collapse
Affiliation(s)
- Brian
T. Lejeune
- Department
of Chemical Engineering, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Xiaoyu Zhang
- Department
of Mechanical and Industrial Engineering, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Su Sun
- Department
of Chemical Engineering, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Julia Hines
- Department
of Chemical Engineering, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Kevin W. Jinn
- Department
of Chemical Engineering, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Ashlyn Neal Reilly
- Department
of Bioengineering, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Heather A. Clark
- Department
of Bioengineering, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
- Department
of Chemistry, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Laura H. Lewis
- Department
of Chemical Engineering, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
- Department
of Mechanical and Industrial Engineering, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
- The
George J. Kostas Research Institute for Homeland Security, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
| |
Collapse
|
37
|
Ramos-Zúñiga J, Bruna N, Pérez-Donoso JM. Toxicity Mechanisms of Copper Nanoparticles and Copper Surfaces on Bacterial Cells and Viruses. Int J Mol Sci 2023; 24:10503. [PMID: 37445681 DOI: 10.3390/ijms241310503] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Copper is a metal historically used to prevent infections. One of the most relevant challenges in modern society are infectious disease outbreaks, where copper-based technologies can play a significant role. Currently, copper nanoparticles and surfaces are the most common antimicrobial copper-based technologies. Despite the widespread use of copper on nanoparticles and surfaces, the toxicity mechanism(s) explaining their unique antimicrobial properties are not entirely known. In general, toxicity effects described in bacteria and fungi involve the rupture of membranes, accumulation of ions inside the cell, protein inactivation, and DNA damage. A few studies have associated Cu-toxicity with ROS production and genetic material degradation in viruses. Therefore, understanding the mechanisms of the toxicity of copper nanoparticles and surfaces will contribute to developing and implementing efficient antimicrobial technologies to combat old and new infectious agents that can lead to disease outbreaks such as COVID-19. This review summarizes the current knowledge regarding the microbial toxicity of copper nanoparticles and surfaces and the gaps in this knowledge. In addition, we discuss potential applications derived from discovering new elements of copper toxicity, such as using different molecules or modifications to potentiate toxicity or antimicrobial specificity.
Collapse
Affiliation(s)
- Javiera Ramos-Zúñiga
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile
| | - Nicolás Bruna
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile
| | - José M Pérez-Donoso
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile
| |
Collapse
|
38
|
Moraes D, Rodrigues JGC, Silva MG, Soares LW, Soares CMDA, Bailão AM, Silva-Bailão MG. Copper acquisition and detoxification machineries are conserved in dimorphic fungi. FUNGAL BIOL REV 2023. [DOI: 10.1016/j.fbr.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Tian S, Chen Y, Wang Q, Liu Z, Li Y, Zhao X. Effects of four disease-controlling agents (chlorothalonil, CuCl 2, harpin, and melatonin) on postharvest jujube fruit quality. Sci Rep 2023; 13:8209. [PMID: 37217535 DOI: 10.1038/s41598-023-35392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 05/17/2023] [Indexed: 05/24/2023] Open
Abstract
Postharvest senescence and disease development can reduce the nutritional value of fresh jujube fruit. Herein, four different disease-controlling agents (chlorothalonil, CuCl2, harpin and melatonin) were separately applied to fresh jujube fruit, and all improved postharvest quality (evaluated by disease severity, antioxidant accumulation and senescence) relative to controls. Disease severity was drastically inhibited by these agents, in the order chlorothalonil > CuCl2 > harpin > melatonin. However, chlorothalonil residues were detected even after storage for 4 weeks. These agents increased the activities of defense enzymes including phenylalanine ammonia-lyase, polyphenol oxidase, glutathione reductase and glutathione S-transferase, as well as accumulation of antioxidant compounds such as ascorbic acid, glutathione, flavonoids and phenolics, in postharvest jujube fruit. The enhanced antioxidant content and antioxidant capacity (evaluated by Fe3+ reducing power) was ordered melatonin > harpin > CuCl2 > chlorothalonil. All four agents significantly delayed senescence (evaluated by weight loss, respiration rate and firmness), with the effect ordered CuCl2 > melatonin > harpin > chlorothalonil. Moreover, treatment with CuCl2 also increased copper accumulation ~ threefold in postharvest jujube fruit. Among the four agents, postharvest treatment with CuCl2 could be considered most appropriate for improving postharvest jujube fruit quality under low temperature conditions without sterilization.
Collapse
Affiliation(s)
- Shan Tian
- Life Science College, Luoyang Normal University, Luoyang, 471934, Henan, China
| | - Ying Chen
- Life Science College, Luoyang Normal University, Luoyang, 471934, Henan, China
| | - Qianjin Wang
- Life Science College, Luoyang Normal University, Luoyang, 471934, Henan, China
| | - Zhilan Liu
- Grain and Oil Crops Technology Extension Station, Yongchuan, 402160, Chongqing, China
| | - Yueyue Li
- Life Science College, Luoyang Normal University, Luoyang, 471934, Henan, China.
| | - Xusheng Zhao
- Life Science College, Luoyang Normal University, Luoyang, 471934, Henan, China.
| |
Collapse
|
40
|
Yang F, Huo D, Zhang J, Lin T, Zhang J, Tan S, Yang L. Fabrication of graphene oxide/copper synergistic antibacterial coating for medical titanium substrate. J Colloid Interface Sci 2023; 638:1-13. [PMID: 36731214 DOI: 10.1016/j.jcis.2023.01.114] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/15/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Titanium (Ti) was an excellent medical metal material, but the lack of good antibacterial activity confined its further practical application. To solve this dilemma, a coating containing graphene oxide (GO) and copper (Cu) was prepared on the surface of Ti sheet (Ti/APS/GO/Cu). First, physical sterilization could be carried out through the sharp-edged sheet structure of GO. Second, the oxygen-containing functional group on the surface of GO and the released Cu2+ would generate reactive oxygen species for chemical sterilization. The synergistic effect of GO and Cu substantially enhanced the in vitro and in vivo antibacterial property of Ti sheet, thereby reducing bacterial-related inflammation. Quantitatively, the antibacterial rate of Ti/APS/GO/Cu against E. coli or S. aureus reached over 99%. Besides, Ti/APS/GO/Cu showed excellent biocompatibility and no toxicity to cell. Such work developed multiple sterilization avenues to design non-antibiotic, safe and efficient antibacterial implant material for the biomedical domain.
Collapse
Affiliation(s)
- Fengjuan Yang
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China
| | - Dongliang Huo
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China
| | - Jinglin Zhang
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China; School of Light Industry and Materials, Guangdong Polytechnic, Foshan 528041, PR China
| | - Tongyao Lin
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China
| | - Jingxian Zhang
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China
| | - Shaozao Tan
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China.
| | - Lili Yang
- Analytical and Testing Center, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
41
|
Weber F, Esmaeili N. Marine biofouling and the role of biocidal coatings in balancing environmental impacts. BIOFOULING 2023; 39:661-681. [PMID: 37587856 DOI: 10.1080/08927014.2023.2246906] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
Marine biofouling is a global problem affecting various industries, particularly the shipping industry due to long-distance voyages across various ecosystems. Therein fouled hulls cause increased fuel consumption, greenhouse gas emissions, and the spread of invasive aquatic species. To counteract these issues, biofouling management plans are employed using manual cleaning protocols and protective coatings. This review provides a comprehensive overview of adhesion strategies of marine organisms, and currently available mitigation methods. Further, recent developments and open challenges of antifouling (AF) and fouling release (FR) coatings are discussed with regards to the future regulatory environment. Finally, an overview of the environmental and economic impact of fouling is provided to point out why and when the use of biocidal solutions is beneficial in the overall perspective.
Collapse
Affiliation(s)
- Florian Weber
- Department of Materials and Nanotechnology, SINTEF, Oslo, Norway
| | | |
Collapse
|
42
|
Xu J, Xu C, Chen R, Yin Y, Wang Z, Li K, Shi J, Chen X, Huang J, Hong J, Yuan R, Liu Y, Liu R, Wang Y, Liu X, Zhang Z. Stability of SARS-CoV-2 on inanimate surfaces: A review. Microbiol Res 2023; 272:127388. [PMID: 37141851 PMCID: PMC10116155 DOI: 10.1016/j.micres.2023.127388] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 04/09/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023]
Abstract
The stability of SARS-CoV-2 for varying periods on a wide range of inanimate surfaces has raised concerns about surface transmission; however, there is still no evidence to confirm this route. In the present review, three variables affecting virus stability, namely temperature, relative humidity (RH), and initial virus titer, were considered from different experimental studies. The stability of SARS-CoV-2 on the surfaces of six different contact materials, namely plastic, metal, glass, protective equipment, paper, and fabric, and the factors affecting half-life period was systematically reviewed. The results showed that the half-life of SARS-CoV-2 on different contact materials was generally 2-10 h, up to 5 d, and as short as 30 min at 22 °C, whereas the half-life of SARS-CoV-2 on non-porous surfaces was generally 5-9 h d, up to 3 d, and as short as 4 min at 22 ℃. The half-life on porous surfaces was generally 1-5 h, up to 2 d, and as short as 13 min at 22 °C. Therefore, the half-life period of SARS-CoV-2 on non-porous surfaces is longer than that on porous surfaces, and thehalf-life of the virus decreases with increasing temperature, whereas RH produces a stable negative inhibitory effect only in a specific humidity range. Various disinfection precautions can be implemented in daily life depending on the stability of SARS-CoV-2 on different surfaces to interrupt virus transmission, prevent COVID-19 infections, and avoid over-disinfection. Owing to the more stringent control of conditions in laboratory studies and the lack of evidence of transmission through surfaces in the real world, it is difficult to provide strong evidence for the efficiency of transmission of the contaminant from the surface to the human body. Therefore, we suggest that future research should focus on exploring the systematic study of the entire transmission process of the virus, which will provide a theoretical basis for optimizing global outbreak prevention and control measures.
Collapse
Affiliation(s)
- Jiayao Xu
- Department of Epidemiology and Health statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Chengyin Xu
- Department of Epidemiology and Health statistics, School of Public Health, Fudan University, Shanghai, China
| | - Ruilin Chen
- Department of Epidemiology and Health statistics, School of Public Health, Fudan University, Shanghai, China
| | - Yun Yin
- Department of Epidemiology and Health statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Zengliang Wang
- Department of Epidemiology, School of Public Health, Shandong University, Jinan, Shandong 250011, China
| | - Ke Li
- Department of Epidemiology and Health statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Jin Shi
- Department of Epidemiology and Health statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Xi Chen
- Department of Epidemiology and Health statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Jiaqi Huang
- Department of Epidemiology and Health statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Jie Hong
- Department of Epidemiology and Health statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Rui Yuan
- Department of Epidemiology and Health statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Yuanhua Liu
- Department of Epidemiology and Health statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Rui Liu
- Department of Geomatics and Spatial Information, Shandong University of Science and Technology, Qingdao, Shandong 266510, China
| | - Yizhen Wang
- Department of Geomatics and Spatial Information, Shandong University of Science and Technology, Qingdao, Shandong 266510, China
| | - Xin Liu
- Department of Geomatics and Spatial Information, Shandong University of Science and Technology, Qingdao, Shandong 266510, China
| | - Zhijie Zhang
- Department of Epidemiology and Health statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China.
| |
Collapse
|
43
|
Torres A, Rego L, Martins MS, Ferreira MS, Cruz MT, Sousa E, Almeida IF. How to Promote Skin Repair? In-Depth Look at Pharmaceutical and Cosmetic Strategies. Pharmaceuticals (Basel) 2023; 16:ph16040573. [PMID: 37111330 PMCID: PMC10144563 DOI: 10.3390/ph16040573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/03/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Skin repair encompasses epidermal barrier repair and wound healing which involves multiple cellular and molecular stages. Therefore, many skin repair strategies have been proposed. In order to characterize the usage frequency of skin repair ingredients in cosmetics, medicines, and medical devices, commercialized in Portuguese pharmacies and parapharmacies, a comprehensive analysis of the products' composition was performed. A total of 120 cosmetic products, collected from national pharmacies online platforms, 21 topical medicines, and 46 medical devices, collected from INFARMED database, were included in the study, revealing the top 10 most used skin repair ingredients in these categories. A critical review regarding the effectiveness of the top ingredients was performed and an in-depth analysis focused on the top three skin repair ingredients pursued. Results demonstrated that top three most used cosmetic ingredients were metal salts and oxides (78.3%), vitamin E and its derivatives (54.2%), and Centella asiatica (L.) Urb. extract and actives (35.8%). Regarding medicines, metal salts and oxides were also the most used (47.4%) followed by vitamin B5 and derivatives (23.8%), and vitamin A and derivatives (26.3%). Silicones and derivatives were the most common skin repair ingredients in medical devices (33%), followed by petrolatum and derivatives (22%) and alginate (15%). This work provides an overview of the most used skin repair ingredients, highlighting their different mechanisms of action, aiming to provide an up-to-date tool to support health professionals' decisions.
Collapse
Affiliation(s)
- Ana Torres
- UCIBIO-Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Liliana Rego
- UCIBIO-Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Márcia S Martins
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Marta S Ferreira
- UCIBIO-Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Maria T Cruz
- Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Isabel F Almeida
- UCIBIO-Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
44
|
Ngororabanga JMV, Dembaremba TO, Mama N, Tshentu ZR. Azo-hydrazone tautomerism in a simple coumarin azo dye and its contribution to the naked-eye detection of Cu 2+ and other potential applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 289:122202. [PMID: 36521339 DOI: 10.1016/j.saa.2022.122202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/02/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
A new tailor-made azo dye of coumarin connected to phenolic derivative is presented herein. Azo-hydrazone tautomerism in aqueous solution of the dye was observed and studied using spectroscopic assays such as 1H NMR, absorption and emission assays, and theoretical studies. Tautomerism was attributed to the presence of a labile phenolic hydrogen in the ortho position to the azo functionality and the hydrazone was found to be the more dominant tautomer. Influence of metal ions on the azo-hydrazone chemical equilibrium and how the accompanying colour and spectroscopic changes can be exploited for various functions, especially the detection and quantification of Cu2+ in aqueous environments was explored. The presence of Cu2+ affects the azo-hydrazone equilibrium resulting in visual appearance and spectroscopic changes and the likely binding sites for Cu2+ were evaluated. Cu2+ pushes the azo-hydrazone equilibrium towards the more conjugated form and the presence of other metal ions does not have any perceivable impact on this mechanism. The dye showed potential applications as a sensor in colorimetric and spectroscopic detection and quantification of Cu2+ in domestic and environmental water samples, photo-imprinting and as a logic gate. The limits of detection (LOD) and quantification (LOQ) for Cu2+ were found to be 0.0779 mg/L and 0.236 mg/L, respectively, much lower than the World Health Organization (WHO) guideline limit for Cu2+ levels in drinking water.
Collapse
Affiliation(s)
- Jean Marie Vianney Ngororabanga
- Department of Mathematics, Sciences and Physical Education, University of Rwanda College of Education, Po Box 55 Rwamagana-Eastern Province, Rwanda.
| | - Tendai O Dembaremba
- Department of Chemistry, Nelson Mandela University, Port Elizabeth 6031, South Africa
| | - Neliswa Mama
- Department of Chemistry, Nelson Mandela University, Port Elizabeth 6031, South Africa
| | - Zenixole R Tshentu
- Department of Chemistry, Nelson Mandela University, Port Elizabeth 6031, South Africa
| |
Collapse
|
45
|
Popescu M, Ungureanu C. Biosensors in Food and Healthcare Industries: Bio-Coatings Based on Biogenic Nanoparticles and Biopolymers. COATINGS 2023; 13:486. [DOI: 10.3390/coatings13030486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Biosensors use biological materials, such as enzymes, antibodies, or DNA, to detect specific analytes. These devices have numerous applications in the health and food industries, such as disease diagnosis, food safety monitoring, and environmental monitoring. However, the production of biosensors can result in the generation of chemical waste, which is an environmental concern for the developed world. To address this issue, researchers have been exploring eco-friendly alternatives for immobilising biomolecules on biosensors. One solution uses bio-coatings derived from nanoparticles synthesised via green chemistry and biopolymers. These materials offer several advantages over traditional chemical coatings, such as improved sensitivity, stability, and biocompatibility. In conclusion, the use of bio-coatings derived from green-chemistry synthesised nanoparticles and biopolymers is a promising solution to the problem of chemical waste generated from the production of biosensors. This review provides an overview of these materials and their applications in the health and food industries, highlighting their potential to improve the performance and sustainability of biosensors.
Collapse
Affiliation(s)
- Melania Popescu
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania
| | - Camelia Ungureanu
- General Chemistry Department, University “Politehnica” of Bucharest, Gheorghe Polizu Street, 1-7, 011061 Bucharest, Romania
| |
Collapse
|
46
|
Nanocrystalline Apatites: Post-Immersion Acidification and How to Avoid It-Application to Antibacterial Bone Substitutes. Bioengineering (Basel) 2023; 10:bioengineering10020220. [PMID: 36829714 PMCID: PMC9952497 DOI: 10.3390/bioengineering10020220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Biomimetic nanocrystalline apatites analogous to bone mineral can be prepared using soft chemistry. Due to their high similarity to bone apatite, as opposed to stoichiometric hydroxyapatite for example, they now represent an appealing class of compounds to produce bioactive ceramics for which drug delivery and ion exchange abilities have been described extensively. However, immersion in aqueous media of dried non-carbonated biomimetic apatite crystals may generate an acidification event, which is often disregarded and not been clarified to-date. Yet, this acidification process could limit their further development if it is not understood and overcome if necessary. This may, for example, alter biological test outcomes, during their evaluation as bone repair materials, due to potentially deleterious effects of the acidic environment on cells, especially in in vitro static conditions. In this study, we explore the origins of this acidification phenomenon based on complementary experimental data and we point out the central role of the hydrated ionic layer present on apatite nanocrystals. We then propose a practical strategy to circumvent this acidification effect using an adequate post-precipitation equilibration step that was optimized. Using this enutralization protocol, we then showed the possibility of performing (micro)biological assessments on such compounds and provide an illustration with the examples of post-equilibrated Cu2+- and Ag+-doped nanocrystalline apatites. We demonstrate their non-cytotoxicity to osteoblast cells and their antibacterial features as tested versus five major pathogens involved in bone infections, therefore pointing to their relevance in the field of antibacterial bone substitutes. The preliminary in vivo implantation of a relevant sample in a rat's calvarial defect confirmed its biocompatibility and the absence of adverse reaction. Understanding and eliminating this technical barrier should help promoting biomimetic apatites as a genuine new class of biomaterial-producing compounds for bone regeneration applications, e.g., with antibacterial features, far from being solely considered as "laboratory curiosities".
Collapse
|
47
|
Chen J, Yan F, Kuttappan VA, Wedekind K, Vázquez-Añón M, Hancock D. Effects of bis-chelated copper in growth performance and gut health in broiler chickens subject to coccidiosis vaccination or coccidia challenge. Front Physiol 2023; 13:991318. [PMID: 36817619 PMCID: PMC9936238 DOI: 10.3389/fphys.2022.991318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/28/2022] [Indexed: 02/05/2023] Open
Abstract
Copper (Cu) is widely used at high levels as growth promoter in poultry, the alternative source of Cu to replace the high level of inorganic Cu at poultry farm remains to be determined. Three floor pen experiments were conducted to evaluate the effects of Cu methionine hydroxy-analogue chelate (Cu-MHAC, MINTREX®Cu, Novus International, Inc.) on growth performance and gut health in broilers in comparison to CuSO4 and/or tribasic copper chloride (TBCC). There were 3 treatments in experiment#1 (0, 30 and 75 ppm Cu-MHAC) and experiment#2 (15 and 30 ppm Cu-MHAC, and 125 ppm CuSO4), and 4 treatments in experiment #3 (15 and 30 ppm Cu-MHAC, 125 ppm CuSO4 and 125 ppm TBCC) with nine replicates pens of 10-13 birds in each treatment. The levels of other minerals were equal among all treatments within each experiment. All birds were orally gavaged with a coccidiosis vaccine at 1x recommended dose on d0 in experiment#1 and #2 and 10x recommended dose on d15 in experiment #3. Data were analyzed by one-way ANOVA, means were separated by Fisher's protected LSD test. A p ≤ 0.05 was considered statistically different. In experiment #1, 30 and 75 ppm Cu-MHAC improved FCR during grower phase, increased jejunal villus height and reduced jejunal crypt depth, 30 ppm Cu-MHAC increased cecal Lactobacillus spp. abundance in 41 days broilers. In experiment #2, compared to CuSO4, 15ppm Cu-MHAC increased cumulative performance index in 28 days broilers, 15 and/or 30 ppm Cu-MHAC improved gut morphometry, and 30 ppm Cu-MHAC reduced the abundance of E. coli and Enterobacteriaceae in cecum in 43 days broilers. In experiment #3, 15 ppm and 30 ppm Cu-MHAC improved FCR vs. CuSO4 during starter phase, reduced the percentage of E. coli of total bacteria vs. TBCC, 30 ppm Cu-MHAC increased the percentages of Lactobacillus acidophilus, Lactobacillus spp. and Clostridium cluster XIVa of total bacteria vs. both CuSO4 and TBCC in the cecum of 27 days broilers. In summary, low doses of Cu-MHAC had comparable growth performance to high dose of TBCC and CuSO4 while improving gut microflora and gut morphometry in broilers subject to coccidiosis vaccination or coccidia challenge, indicating that low doses of bis-chelated Cu could be used as a complimentary strategy to improve animal gut health.
Collapse
|
48
|
Asmat-Campos D, de Oca-Vásquez GM, Rojas-Jaimes J, Delfín-Narciso D, Juárez-Cortijo L, Nazario-Naveda R, Batista Menezes D, Pereira R, de la Cruz MS. Cu 2O nanoparticles synthesized by green and chemical routes, and evaluation of their antibacterial and antifungal effect on functionalized textiles. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 37:e00785. [PMID: 36785536 PMCID: PMC9918746 DOI: 10.1016/j.btre.2023.e00785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
The potential for the application of metal-containing nanomaterials at the nanoscale promotes the opportunity to search for new methods for their elaboration, with special attention to those sustainable methods. In response to these challenges, we have investigated a new method for green synthesis of cuprous oxide nanoparticles (Cu2O NPs) using Myrciaria dubia juice as an organic reductant and, comparing it with chemical synthesis, evaluating in both cases the influence of the volume of the organic (juice) and chemical (ascorbic acid) reductants, for which a large number of techniques such as spectrophotometry, EDX spectrometry, TEM, SEM, DLS, FTIR spectroscopy have been used. Likewise, the nanomaterial with better morphological characteristics, stability, and size homogeneity has been applied in the functionalization of textiles by means of in situ and post-synthesis impregnation methods. The success of the synthesis process has been demonstrated by the antimicrobial activity (bacteria and fungi) of textiles impregnated with Cu2O NPs.
Collapse
Affiliation(s)
- David Asmat-Campos
- Universidad Privada del Norte, Dirección de Investigación, Innovación & Responsabilidad Social, Trujillo, Perú,Grupo de Investigación en Ciencias Aplicadas y Nuevas Tecnologías, Universidad Privada del Norte, Trujillo, Perú,Corresponding author.
| | | | - Jesús Rojas-Jaimes
- Universidad Privada del Norte, Dirección de Investigación, Innovación & Responsabilidad Social, Trujillo, Perú,Facultad de Ciencias de la Salud, Universidad Privada del Norte, Av. El Sol 461, San Juan de Lurigancho, Lima, 15434, Perú
| | - Daniel Delfín-Narciso
- Grupo de Investigación en Ciencias Aplicadas y Nuevas Tecnologías, Universidad Privada del Norte, Trujillo, Perú
| | - Luisa Juárez-Cortijo
- Grupo de Investigación en Ciencias Aplicadas y Nuevas Tecnologías, Universidad Privada del Norte, Trujillo, Perú
| | - Renny Nazario-Naveda
- Grupo de Investigación en Ciencias Aplicadas y Nuevas Tecnologías, Universidad Privada del Norte, Trujillo, Perú,Universidad Autónoma del Perú, Lima, Perú
| | - Diego Batista Menezes
- Laboratorio Nacional de Nanotecnología, Centro Nacional de Alta Tecnología, 10109 Pavas, San José, Costa Rica
| | - Reinaldo Pereira
- Laboratorio Nacional de Nanotecnología, Centro Nacional de Alta Tecnología, 10109 Pavas, San José, Costa Rica
| | | |
Collapse
|
49
|
Performance of a Combined Bacteria/Zeolite Permeable Barrier on the Rehabilitation of Wastewater Containing Atrazine and Heavy Metals. Processes (Basel) 2023. [DOI: 10.3390/pr11010246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Several chemicals, such as pesticides and heavy metals, are frequently encountered together in environment matrices, becoming a priority concerning the prevention of their emissions, as well as their removal from the environment. In this sense, this work aimed to evaluate the effectiveness of a permeable biosorbent bio-barrier reactor (PBR) on the removal of atrazine and heavy metals (copper and zinc) from aqueous solutions. The permeable bio-barrier was built with a bacterial biofilm of R. viscosum supported on 13X zeolite. One of the aims of this work is the investigation of the toxic effects of atrazine, copper and zinc on the bacterial growth, as well as the assessment of their ability to adapt to repeated exposure to contaminants and to degrade atrazine. The growth of R. viscosum was not affected by concentrations of atrazine bellow 7 mg/L. However, copper and zinc in binary solutions were able to inhibit the growth of bacteria for all the concentrations tested (5 to 40 mg/L). The pre-acclimation of the bacteria to the contaminants allowed for an increase of 50% of the bacterial growth. Biodegradation tests showed that 35% of atrazine was removed/degraded, revealing that this herbicide is a recalcitrant compound that is hard to degrade by pure cultures. The development of a PBR with R. viscosum supported on zeolite was successfully performed and the removal rates were 85% for copper, 95% for zinc and 25% for atrazine, showing the potential of the sustainable and low-cost technology herein proposed.
Collapse
|
50
|
Marengo E, Roveri N, Marengo D. Particelle nanostrutturate di idrossiapatite biomimetica come sistema di delivery di micro e macro elementi nelle colture biologiche. BIO WEB OF CONFERENCES 2023. [DOI: 10.1051/bioconf/20235601003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Nanoparticelle biomimetiche di idrossiapatite drogate con ioni metallici (Cu, Fe, Mg, Zn, K) sono state utilizzate in formulazioni contenenti basse concentrazioni di rame (Cu) e zolfo (S) per controllare la peronospora (plasmopara viticola) e l'oidio (erysiphe necator) della vite. I formulati sono stati testati in campo sulla varietà di vino "Dolcetto" coltivata secondo tecniche di agricoltura biologica, e la loro efficacia è stata confrontata con prodotti commerciali contenenti miscela bordolese e zolfo.
I dati indicano che le formulazioni contenenti bassi dosaggi di rame e zolfo possono essere trasportati in modo efficiente dalle nanoparticelle di idrossiapatite biomimetica e possono ridurre la presenza di micota sulle foglie della vite. Nessun residuo di rame e zolfo è stato rilevato in campioni di vino ottenuti da viti in cui è stata utilizzata l'idrossiapatite biomimetica. Il drogaggio di nanoparticelle di idrossiapatite biomimetica con metalli di transizione è un modo efficiente per fornire micro e macro-elementi alle piante a basso livello di dosaggio. Le formulazioni contenenti idrossiapatite funzionano anche come supporti a lento rilascio di macronutrienti come elementi di calcio e fosforo.
Collapse
|