1
|
Correa A, Ponzi A, Calderón VM, Migliore R. Pathological cell assembly dynamics in a striatal MSN network model. Front Comput Neurosci 2024; 18:1410335. [PMID: 38903730 PMCID: PMC11188713 DOI: 10.3389/fncom.2024.1410335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Under normal conditions the principal cells of the striatum, medium spiny neurons (MSNs), show structured cell assembly activity patterns which alternate sequentially over exceedingly long timescales of many minutes. It is important to understand this activity since it is characteristically disrupted in multiple pathologies, such as Parkinson's disease and dyskinesia, and thought to be caused by alterations in the MSN to MSN lateral inhibitory connections and in the strength and distribution of cortical excitation to MSNs. To understand how these long timescales arise we extended a previous network model of MSN cells to include synapses with short-term plasticity, with parameters taken from a recent detailed striatal connectome study. We first confirmed the presence of sequentially switching cell clusters using the non-linear dimensionality reduction technique, Uniform Manifold Approximation and Projection (UMAP). We found that the network could generate non-stationary activity patterns varying extremely slowly on the order of minutes under biologically realistic conditions. Next we used Simulation Based Inference (SBI) to train a deep net to map features of the MSN network generated cell assembly activity to MSN network parameters. We used the trained SBI model to estimate MSN network parameters from ex-vivo brain slice calcium imaging data. We found that best fit network parameters were very close to their physiologically observed values. On the other hand network parameters estimated from Parkinsonian, decorticated and dyskinetic ex-vivo slice preparations were different. Our work may provide a pipeline for diagnosis of basal ganglia pathology from spiking data as well as for the design pharmacological treatments.
Collapse
Affiliation(s)
- Astrid Correa
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Adam Ponzi
- Institute of Biophysics, National Research Council, Palermo, Italy
- Center for Human Nature, Artificial Intelligence, and Neuroscience, Hokkaido University, Sapporo, Japan
| | - Vladimir M. Calderón
- Department of Developmental Neurobiology and Neurophysiology, Neurobiology Institute, National Autonomous University of Mexico, Querétaro, Mexico
| | - Rosanna Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| |
Collapse
|
2
|
Zamora-Ursulo MA, Perez-Becerra J, Tellez LA, Saderi N, Carrillo-Reid L. Reversal of pathological motor behavior in a model of Parkinson's disease by striatal dopamine uncaging. PLoS One 2023; 18:e0290317. [PMID: 37594935 PMCID: PMC10437883 DOI: 10.1371/journal.pone.0290317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/06/2023] [Indexed: 08/20/2023] Open
Abstract
Motor deficits observed in Parkinson's disease (PD) are caused by the loss of dopaminergic neurons and the subsequent dopamine depletion in different brain areas. The most common therapy to treat motor symptoms for patients with this disorder is the systemic intake of L-DOPA that increases dopamine levels in all the brain, making it difficult to discern the main locus of dopaminergic action in the alleviation of motor control. Caged compounds are molecules with the ability to release neuromodulators locally in temporary controlled conditions using light. In the present study, we measured the turning behavior of unilateral dopamine-depleted mice before and after dopamine uncaging. The optical delivery of dopamine in the striatum of lesioned mice produced contralateral turning behavior that resembled, to a lesser extent, the contralateral turning behavior evoked by a systemic injection of apomorphine. Contralateral turning behavior induced by dopamine uncaging was temporarily tied to the transient elevation of dopamine concentration and was reversed when dopamine decreased to pathological levels. Remarkably, contralateral turning behavior was tuned by changing the power and frequency of light stimulation, opening the possibility to modulate dopamine fluctuations using different light stimulation protocols. Moreover, striatal dopamine uncaging recapitulated the motor effects of a low concentration of systemic L-DOPA, but with better temporal control of dopamine levels. Finally, dopamine uncaging reduced the pathological synchronization of striatal neuronal ensembles that characterize unilateral dopamine-depleted mice. We conclude that optical delivery of dopamine in the striatum resembles the motor effects induced by systemic injection of dopaminergic agonists in unilateral dopamine-depleted mice. Future experiments using this approach could help to elucidate the role of dopamine in different brain nuclei in normal and pathological conditions.
Collapse
Affiliation(s)
| | - Job Perez-Becerra
- Instituto de Neurobiologia, Universidad Nacional Autónoma de Mexico, Juriquilla, Queretaro, Mexico
| | - Luis A. Tellez
- Instituto de Neurobiologia, Universidad Nacional Autónoma de Mexico, Juriquilla, Queretaro, Mexico
| | - Nadia Saderi
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosi, San Luis Potosi, Mexico
| | - Luis Carrillo-Reid
- Instituto de Neurobiologia, Universidad Nacional Autónoma de Mexico, Juriquilla, Queretaro, Mexico
| |
Collapse
|
3
|
Carrillo-Reid L, Agetsuma M, Kropff E. Editorial: Reconfiguration of neuronal ensembles throughout learning. Front Syst Neurosci 2023; 17:1161967. [PMID: 36998389 PMCID: PMC10043398 DOI: 10.3389/fnsys.2023.1161967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Affiliation(s)
- Luis Carrillo-Reid
- Neurobiology Institute, National Autonomous University of Mexico, Juriquilla, Queretaro, Mexico
- *Correspondence: Luis Carrillo-Reid
| | - Masakazu Agetsuma
- Institute for Quantum Life Science, Quantum Regenerative and Biomedical Engineering Team, Chiba, Japan
| | - Emilio Kropff
- Leloir Institute-IIBBA/CONICET, Buenos Aires, Argentina
| |
Collapse
|
4
|
Minkowicz S, Mathews MA, Mou FH, Yoon H, Freda SN, Cui ES, Kennedy A, Kozorovitskiy Y. Striatal ensemble activity in an innate naturalistic behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529669. [PMID: 36865109 PMCID: PMC9980072 DOI: 10.1101/2023.02.23.529669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Self-grooming is an innate, naturalistic behavior found in a wide variety of organisms. The control of rodent grooming has been shown to be mediated by the dorsolateral striatum through lesion studies and in-vivo extracellular recordings. Yet, it is unclear how populations of neurons in the striatum encode grooming. We recorded single-unit extracellular activity from populations of neurons in freely moving mice and developed a semi-automated approach to detect self-grooming events from 117 hours of simultaneous multi-camera video recordings of mouse behavior. We first characterized the grooming transition-aligned response profiles of striatal projection neuron and fast spiking interneuron single units. We identified striatal ensembles whose units were more strongly correlated during grooming than during the entire session. These ensembles display varied grooming responses, including transient changes around grooming transitions or sustained changes in activity throughout the duration of grooming. Neural trajectories computed from the identified ensembles retain the grooming related dynamics present in trajectories computed from all units in the session. These results elaborate striatal function in rodent self-grooming and demonstrate that striatal grooming-related activity is organized within functional ensembles, improving our understanding of how the striatum guides action selection in a naturalistic behavior.
Collapse
Affiliation(s)
- Samuel Minkowicz
- Department of Neurobiology, Northwestern University, Evanston, IL, United States
| | | | - Felicia Hoilam Mou
- Department of Neurobiology, Northwestern University, Evanston, IL, United States
| | - Hyoseo Yoon
- Department of Neurobiology, Northwestern University, Evanston, IL, United States
| | - Sara Nicole Freda
- Department of Neurobiology, Northwestern University, Evanston, IL, United States
| | - Ethan S Cui
- Department of Neurobiology, Northwestern University, Evanston, IL, United States
| | - Ann Kennedy
- Department of Neuroscience, Northwestern University, Chicago, IL, United States
| | | |
Collapse
|
5
|
Serrano-Reyes M, Pérez-Ortega JE, García-Vilchis B, Laville A, Ortega A, Galarraga E, Bargas J. Dimensionality reduction and recurrence analysis reveal hidden structures of striatal pathological states. Front Syst Neurosci 2022; 16:975989. [PMID: 36741818 PMCID: PMC9893717 DOI: 10.3389/fnsys.2022.975989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/09/2022] [Indexed: 12/02/2022] Open
Abstract
A pipeline is proposed here to describe different features to study brain microcircuits on a histological scale using multi-scale analyses, including the uniform manifold approximation and projection (UMAP) dimensional reduction technique and modularity algorithm to identify neuronal ensembles, Runs tests to show significant ensembles activation, graph theory to show trajectories between ensembles, and recurrence analyses to describe how regular or chaotic ensembles dynamics are. The data set includes ex-vivo NMDA-activated striatal tissue in control conditions as well as experimental models of disease states: decorticated, dopamine depleted, and L-DOPA-induced dyskinetic rodent samples. The goal was to separate neuronal ensembles that have correlated activity patterns. The pipeline allows for the demonstration of differences between disease states in a brain slice. First, the ensembles were projected in distinctive locations in the UMAP space. Second, graphs revealed functional connectivity between neurons comprising neuronal ensembles. Third, the Runs test detected significant peaks of coactivity within neuronal ensembles. Fourth, significant peaks of coactivity were used to show activity transitions between ensembles, revealing recurrent temporal sequences between them. Fifth, recurrence analysis shows how deterministic, chaotic, or recurrent these circuits are. We found that all revealed circuits had recurrent activity except for the decorticated circuits, which tended to be divergent and chaotic. The Parkinsonian circuits exhibit fewer transitions, becoming rigid and deterministic, exhibiting a predominant temporal sequence that disrupts transitions found in the controls, thus resembling the clinical signs of rigidity and paucity of movements. Dyskinetic circuits display a higher recurrence rate between neuronal ensembles transitions, paralleling clinical findings: enhancement in involuntary movements. These findings confirm that looking at neuronal circuits at the histological scale, recording dozens of neurons simultaneously, can show clear differences between control and diseased striatal states: "fingerprints" of the disease states. Therefore, the present analysis is coherent with previous ones of striatal disease states, showing that data obtained from the tissue are robust. At the same time, it adds heuristic ways to interpret circuitry activity in different states.
Collapse
Affiliation(s)
- Miguel Serrano-Reyes
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico,Departamento de Ingeniería en Sistemas Biomédicos, Centro de Ingeniería Avanzada, Facultad de Ingeniería, Universidad Nacional Autónoma de México, Mexico City, Mexico,Miguel Serrano-Reyes,
| | - Jesús Esteban Pérez-Ortega
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico,Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Brisa García-Vilchis
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Antonio Laville
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Aidán Ortega
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elvira Galarraga
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jose Bargas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico,*Correspondence: Jose Bargas,
| |
Collapse
|
6
|
Carrillo-Reid L, Calderon V. Conceptual framework for neuronal ensemble identification and manipulation related to behavior using calcium imaging. NEUROPHOTONICS 2022; 9:041403. [PMID: 35898958 PMCID: PMC9309498 DOI: 10.1117/1.nph.9.4.041403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Significance: The identification and manipulation of spatially identified neuronal ensembles with optical methods have been recently used to prove the causal link between neuronal ensemble activity and learned behaviors. However, the standardization of a conceptual framework to identify and manipulate neuronal ensembles from calcium imaging recordings is still lacking. Aim: We propose a conceptual framework for the identification and manipulation of neuronal ensembles using simultaneous calcium imaging and two-photon optogenetics in behaving mice. Approach: We review the computational approaches that have been used to identify and manipulate neuronal ensembles with single cell resolution during behavior in different brain regions using all-optical methods. Results: We proposed three steps as a conceptual framework that could be applied to calcium imaging recordings to identify and manipulate neuronal ensembles in behaving mice: (1) transformation of calcium transients into binary arrays; (2) identification of neuronal ensembles as similar population vectors; and (3) targeting of neuronal ensemble members that significantly impact behavioral performance. Conclusions: The use of simultaneous two-photon calcium imaging and two-photon optogenetics allowed for the experimental demonstration of the causal relation of population activity and learned behaviors. The standardization of analytical tools to identify and manipulate neuronal ensembles could accelerate interventional experiments aiming to reprogram the brain in normal and pathological conditions.
Collapse
Affiliation(s)
- Luis Carrillo-Reid
- National Autonomous University of Mexico, Neurobiology Institute, Department of Developmental Neurobiology and Neurophysiology, Querétaro, Mexico
| | - Vladimir Calderon
- National Autonomous University of Mexico, Neurobiology Institute, Department of Developmental Neurobiology and Neurophysiology, Querétaro, Mexico
| |
Collapse
|
7
|
Padilla-Orozco M, Duhne M, Fuentes-Serrano A, Ortega A, Galarraga E, Bargas J, Lara-González E. Synaptic determinants of cholinergic interneurons hyperactivity during parkinsonism. Front Synaptic Neurosci 2022; 14:945816. [PMID: 36147730 PMCID: PMC9485566 DOI: 10.3389/fnsyn.2022.945816] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
Parkinson’s disease is a neurodegenerative ailment generated by the loss of dopamine in the basal ganglia, mainly in the striatum. The disease courses with increased striatal levels of acetylcholine, disrupting the balance among these modulatory transmitters. These modifications disturb the excitatory and inhibitory balance in the striatal circuitry, as reflected in the activity of projection striatal neurons. In addition, changes in the firing pattern of striatal tonically active interneurons during the disease, including cholinergic interneurons (CINs), are being searched. Dopamine-depleted striatal circuits exhibit pathological hyperactivity as compared to controls. One aim of this study was to show how striatal CINs contribute to this hyperactivity. A second aim was to show the contribution of extrinsic synaptic inputs to striatal CINs hyperactivity. Electrophysiological and calcium imaging recordings in Cre-mice allowed us to evaluate the activity of dozens of identified CINs with single-cell resolution in ex vivo brain slices. CINs show hyperactivity with bursts and silences in the dopamine-depleted striatum. We confirmed that the intrinsic differences between the activity of control and dopamine-depleted CINs are one source of their hyperactivity. We also show that a great part of this hyperactivity and firing pattern change is a product of extrinsic synaptic inputs, targeting CINs. Both glutamatergic and GABAergic inputs are essential to sustain hyperactivity. In addition, cholinergic transmission through nicotinic receptors also participates, suggesting that the joint activity of CINs drives the phenomenon; since striatal CINs express nicotinic receptors, not expressed in striatal projection neurons. Therefore, CINs hyperactivity is the result of changes in intrinsic properties and excitatory and inhibitory inputs, in addition to the modification of local circuitry due to cholinergic nicotinic transmission. We conclude that CINs are the main drivers of the pathological hyperactivity present in the striatum that is depleted of dopamine, and this is, in part, a result of extrinsic synaptic inputs. These results show that CINs may be a main therapeutic target to treat Parkinson’s disease by intervening in their synaptic inputs.
Collapse
Affiliation(s)
- Montserrat Padilla-Orozco
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mariana Duhne
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Alejandra Fuentes-Serrano
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Aidán Ortega
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elvira Galarraga
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Bargas
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: José Bargas,
| | - Esther Lara-González
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Esther Lara-González,
| |
Collapse
|
8
|
Yu C, Jiang TT, Shoemaker CT, Fan D, Rossi MA, Yin HH. Striatal mechanisms of turning behaviour following unilateral dopamine depletion in mice. Eur J Neurosci 2022; 56:4529-4545. [PMID: 35799410 PMCID: PMC9710193 DOI: 10.1111/ejn.15764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022]
Abstract
Unilateral dopamine (DA) depletion produces ipsiversive turning behaviour, and the injection of DA receptor agonists can produce contraversive turning, but the underlying mechanisms remain unclear. We conducted in vivo recording and pharmacological and optogenetic manipulations to study the role of DA and striatal output in turning behaviour. We used a video-based tracking programme while recording single unit activity in both putative medium spiny projection neurons (MSNs) and fast-spiking interneurons (FSIs) in the dorsal striatum bilaterally. Our results suggest that unilateral DA depletion reduced striatal output from the depleted side, resulting in asymmetric striatal output. Depletion systematically altered activity in both MSNs and FSIs, especially in neurons that increased firing during turning movements. Like D1 agonist SKF 38393, optogenetic stimulation in the depleted striatum increased striatal output and reversed biassed turning. These results suggest that relative striatal outputs from the two cerebral hemispheres determine the direction of turning: Mice turn away from the side of higher striatal output and towards the side of the lower striatal output.
Collapse
Affiliation(s)
- Chunxiu Yu
- Department of Biomedical Engineering, Michigan Technological University
| | | | | | - David Fan
- Department of Psychology and Neuroscience, Duke University
| | | | - Henry H. Yin
- Department of Psychology and Neuroscience, Duke University
| |
Collapse
|
9
|
Lara-González E, Padilla-Orozco M, Fuentes-Serrano A, Bargas J, Duhne M. Translational neuronal ensembles: Neuronal microcircuits in psychology, physiology, pharmacology and pathology. Front Syst Neurosci 2022; 16:979680. [PMID: 36090187 PMCID: PMC9449457 DOI: 10.3389/fnsys.2022.979680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
Multi-recording techniques show evidence that neurons coordinate their firing forming ensembles and that brain networks are made by connections between ensembles. While “canonical” microcircuits are composed of interconnected principal neurons and interneurons, it is not clear how they participate in recorded neuronal ensembles: “groups of neurons that show spatiotemporal co-activation”. Understanding synapses and their plasticity has become complex, making hard to consider all details to fill the gap between cellular-synaptic and circuit levels. Therefore, two assumptions became necessary: First, whatever the nature of the synapses these may be simplified by “functional connections”. Second, whatever the mechanisms to achieve synaptic potentiation or depression, the resultant synaptic weights are relatively stable. Both assumptions have experimental basis cited in this review, and tools to analyze neuronal populations are being developed based on them. Microcircuitry processing followed with multi-recording techniques show temporal sequences of neuronal ensembles resembling computational routines. These sequences can be aligned with the steps of behavioral tasks and behavior can be modified upon their manipulation, supporting the hypothesis that they are memory traces. In vitro, recordings show that these temporal sequences can be contained in isolated tissue of histological scale. Sequences found in control conditions differ from those recorded in pathological tissue obtained from animal disease models and those recorded after the actions of clinically useful drugs to treat disease states, setting the basis for new bioassays to test drugs with potential clinical use. These findings make the neuronal ensembles theoretical framework a dynamic neuroscience paradigm.
Collapse
Affiliation(s)
- Esther Lara-González
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Montserrat Padilla-Orozco
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alejandra Fuentes-Serrano
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Bargas
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: José Bargas,
| | - Mariana Duhne
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Mariana Duhne,
| |
Collapse
|
10
|
Ponzi A, Wickens J. Ramping activity in the striatum. Front Comput Neurosci 2022; 16:902741. [PMID: 35978564 PMCID: PMC9376361 DOI: 10.3389/fncom.2022.902741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Control of the timing of behavior is thought to require the basal ganglia (BG) and BG pathologies impair performance in timing tasks. Temporal interval discrimination depends on the ramping activity of medium spiny neurons (MSN) in the main BG input structure, the striatum, but the underlying mechanisms driving this activity are unclear. Here, we combine an MSN dynamical network model with an action selection system applied to an interval discrimination task. We find that when network parameters are appropriate for the striatum so that slowly fluctuating marginally stable dynamics are intrinsically generated, up and down ramping populations naturally emerge which enable significantly above chance task performance. We show that emergent population activity is in very good agreement with empirical studies and discuss how MSN network dysfunction in disease may alter temporal perception.
Collapse
Affiliation(s)
- Adam Ponzi
- Institute of Biophysics, Italian National Research Council, Palermo, Italy
- *Correspondence: Adam Ponzi
| | - Jeff Wickens
- Neurobiology Research Unit, Okinawa Institute of Science and Technology (OIST), Okinawa, Japan
| |
Collapse
|
11
|
Striatal neuronal ensembles reveal differential actions of amantadine and clozapine to ameliorate mice L-DOPA-induced dyskinesia. Neuroscience 2022; 492:92-107. [PMID: 35367290 DOI: 10.1016/j.neuroscience.2022.03.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/03/2022] [Accepted: 03/26/2022] [Indexed: 12/23/2022]
Abstract
Amantadine and clozapine have proved to reduce abnormal involuntary movements (AIMs) in preclinical and clinical studies of L-DOPA-Induced Dyskinesias (LID). Even though both drugs decrease AIMs, they may have different action mechanisms by using different receptors and signaling profiles. Here we asked whether there are differences in how they modulate neuronal activity of multiple striatal neurons within the striatal microcircuit at histological level during the dose-peak of L-DOPA in ex-vivo brain slices obtained from dyskinetic mice. To answer this question, we used calcium imaging to record the activity of dozens of neurons of the dorsolateral striatum before and after drugs administration in vitro. We also developed an analysis framework to extract encoding insights from calcium imaging data by quantifying neuronal activity, identifying neuronal ensembles by linking neurons that coactivate using hierarchical cluster analysis and extracting network parameters using Graph Theory. The results show that while both drugs reduce LIDs scores behaviorally in a similar way, they have several different and specific actions on modulating the dyskinetic striatal microcircuit. The extracted features were highly accurate in separating amantadine and clozapine effects by means of principal components analysis (PCA) and support vector machine (SVM) algorithms. These results predict possible synergistic actions of amantadine and clozapine on the dyskinetic striatal microcircuit establishing a framework for a bioassay to test novel antidyskinetic drugs or treatments in vitro.
Collapse
|
12
|
Rendón-Ochoa EA, Padilla-Orozco M, Calderon VM, Avilés-Rosas VH, Hernández-González O, Hernández-Flores T, Perez-Ramirez MB, Palomero-Rivero M, Galarraga E, Bargas J. Dopamine D 2 and Adenosine A 2A Receptors Interaction on Ca 2+ Current Modulation in a Rodent Model of Parkinsonism. ASN Neuro 2022; 14:17590914221102075. [PMID: 36050845 PMCID: PMC9178983 DOI: 10.1177/17590914221102075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Adenosine A1 and A2A receptors are expressed in striatal projection neurons (SPNs). A1 receptors are located in direct (dSPN) and indirect SPNs (iSNP). A2A receptors are only present in iSPNs. Dopamine D2 receptors are also expressed in iSPNs and interactions between D2 and A2A receptors have received attention. iSPNs activity increases during parkinsonism (PD) and A2A receptors may be responsible by enhancing Ca2+ currents (iCa2+). Therefore, A2A receptors blockade is a therapeutic approach. We asked whether A2A receptors need the interaction with D2 receptors (D2R) to exert their actions. By using isolated and identified iSPNs to avoid indirect influences, we show that D2R action habilitates A2A receptors (A2AR) modulation. iCa2+ through voltage gated Ca2+ channels (CaV) was used as a signal to observe this interaction. Voltage-clamp recordings in acutely dissociated iSPNs, current-clamp recordings in slices and calcium imaging in transgenic A2A-Cre mice, showed that D2R reduction in iCa2+ endows A2AR to restore iCa2+ on iSPNs showing an antagonistic interaction between D2 and A2A receptors. A2A receptors were blocked by the antagonist istradefylline, however, this blockade differed in control and dopamine-depleted iSPNs: istradefylline reduced D2R modulation in parkinsonian animals as compared to controls. Calcium imaging recordings show that istradefylline occludes D2R actions in the parkinsonian circuitry and this effect depends on the order of drugs application. Thus, while D2 activation enables A2A receptors action, blockade of A2AR induces a reduction in the action of D2 agonists, confirming a complex interaction. Summary Statement A2A receptor required previous D2 receptor activation to modulate Ca2+ currents. Istradefylline decreases pramipexole modulation on Ca2+ currents. Istradefylline reduces A2A + neurons activity in striatial microcircuit, but pramipexole failed to further reduce neuronal activity.
Collapse
Affiliation(s)
- Ernesto Alberto Rendón-Ochoa
- Laboratorio de Psicofarmacología, Unidad de Investigación Interdisciplinaria y de Ciencias de la Salud y Educación, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Montserrat Padilla-Orozco
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Vladimir Melesio Calderon
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Victor Hugo Avilés-Rosas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Omar Hernández-González
- Facultad de Medicina, Departamento dé Fisiología, Universidad Nacional Autónoma de México, Circuito Exterior s/n Ciudad Universitaria, Ciudad de Mexico, Mexico
| | - Teresa Hernández-Flores
- Brain Mechanism for behavior Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - María Belén Perez-Ramirez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Marcela Palomero-Rivero
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Elvira Galarraga
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - José Bargas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| |
Collapse
|
13
|
Neuronal ensembles in memory processes. Semin Cell Dev Biol 2021; 125:136-143. [PMID: 33858772 DOI: 10.1016/j.semcdb.2021.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022]
Abstract
A neuronal ensemble represents the concomitant activity of a specific group of neurons that could encompass a broad repertoire of brain functions such as motor, perceptual, memory or cognitive states. On the other hand, a memory engram portrays the physical manifestation of memory or the changes that enable learning and retrieval. Engram studies focused for many years on finding where memories are stored as in, which cells or brain regions represent a memory trace, and disregarded the investigation of how neuronal activity patterns give rise to such memories. Recent experiments suggest that the association and reactivation of specific neuronal groups could be the main mechanism underlying the brain's ability to remember past experiences and envision future actions. Thus, the growing consensus is that the interaction between neuronal ensembles could allow sequential activity patterns to become memories and recurrent memories to compose complex behaviors. The goal of this review is to propose how the neuronal ensemble framework could be translated and useful to understand memory processes.
Collapse
|
14
|
Identification and quantification of neuronal ensembles in optical imaging experiments. J Neurosci Methods 2020; 351:109046. [PMID: 33359231 DOI: 10.1016/j.jneumeth.2020.109046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 12/30/2022]
Abstract
Recent technical advances in molecular biology and optical imaging have made it possible to record from up to thousands of densely packed neurons in superficial and deep brain regions in vivo, with cellular subtype specificity and high spatiotemporal fidelity. Such optical neurotechnologies are enabling increasingly fine-scaled studies of neuronal circuits and reliably co-active groups of neurons, so-called ensembles. Neuronal ensembles are thought to constitute the basic functional building blocks of brain systems, potentially exhibiting collective computational properties. While the technical framework of in vivo optical imaging and quantification of neuronal activity follows certain widely held standards, analytical methods for study of neuronal co-activity and ensembles lack consensus and are highly varied across the field. Here we provide a comprehensive step-by-step overview of theoretical, experimental, and analytical considerations for the identification and quantification of neuronal ensemble dynamics in high-resolution in vivo optical imaging studies.
Collapse
|
15
|
K369I Tau Mice Demonstrate a Shift Towards Striatal Neuron Burst Firing and Goal-directed Behaviour. Neuroscience 2020; 449:46-62. [PMID: 32949670 DOI: 10.1016/j.neuroscience.2020.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 11/22/2022]
Abstract
Pathological forms of the microtubule-associated protein tau are involved in a large group of neurodegenerative diseases named tauopathies, including frontotemporal lobar degeneration (FTLD-tau). K369I mutant tau transgenic mice (K3 mice) recapitulate neural and behavioural symptoms of FTLD, including tau aggregates in the cortex, alterations to nigrostriatum, memory deficits and parkinsonism. The aim of this study was to further characterise the K3 mouse model by examining functional alterations to the striatum. Whole-cell patch-clamp electrophysiology was used to investigate the properties of striatal neurons in K3 mice and wildtype controls. Additionally, striatal-based instrumental learning tasks were conducted to assess goal-directed versus habitual behaviours (i.e., by examining sensitivity to outcome devaluation and progressive ratios). The K3 model demonstrated significant alterations in the discharge properties of striatal neurons relative to wildtype mice, which manifested as a shift in neuronal output towards a burst firing state. K3 mice acquired goal-directed responding faster than control mice and were goal-directed at test unlike wildtype mice, which is likely to indicate reduced capacity to develop habitual behaviour. The observed pattern of behaviour in K3 mice is suggestive of deficits in dorsal lateral striatal function and this was supported by our electrophysiological findings. Thus, both the electrophysiological and behavioural alterations indicate that K3 mice have early deficits in striatal function. This finding adds to the growing literature which indicate that the striatum is impacted in tau-related neuropathies such as FTLD, and further suggests that the K3 model is a unique mouse model for investigating FTLD especially with striatal involvement.
Collapse
|
16
|
Oxytocin prevents neuronal network pain-related changes on spinal cord dorsal horn in vitro. Cell Calcium 2020; 90:102246. [PMID: 32590238 DOI: 10.1016/j.ceca.2020.102246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/02/2020] [Accepted: 06/16/2020] [Indexed: 12/28/2022]
Abstract
Recently, oxytocin (OT) has been studied as a potential modulator of endogenous analgesia by acting upon pain circuits at the spinal cord and supraspinal levels. Yet the detailed action mechanisms of OT are still undetermined. The present study aimed to evaluate the action of OT in the spinal cord dorsal horn network under nociceptive-like conditions induced by the activation of the N-methyl-d-aspartate (NMDA) receptor and formalin injection, using calcium imaging techniques. Results demonstrate that the spontaneous Ca2+-dependent activity of the dorsal horn cells was scarce, and the coactivity of cells was mainly absent. When NMDA was applied, high rates of activity and coactivity occurred in the dorsal horn cells; these rates of high activity mimicked the activity dynamics evoked by a neuropathic pain condition. In addition, although OT treatment increased activity rates, it was also capable of disrupting the conformation of coordinated activity previously consolidated by NMDA treatment, without showing any effect by itself. Altogether, our results suggest that OT globally prevents the formation of coordinated patterns previously generated by nociceptive-like conditions on dorsal horn cells by NMDA application, which supports previous evidence showing that OT represents a potential therapeutic alternative for the treatment of chronic neuropathic pain.
Collapse
|
17
|
Impaired Motor Recycling during Action Selection in Parkinson's Disease. eNeuro 2020; 7:ENEURO.0492-19.2020. [PMID: 32299805 PMCID: PMC7218010 DOI: 10.1523/eneuro.0492-19.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/19/2020] [Accepted: 03/22/2020] [Indexed: 11/21/2022] Open
Abstract
Behavioral studies have shown that the human motor system recycles motor parameters of previous actions, such as movement amplitude, when programming new actions. Shifting motor plans toward a new action forms a particularly severe problem for patients with Parkinson’s disease (PD), a disorder that, in its early stage, is dominated by basal ganglia dysfunction. Here, we test whether this action selection deficit in Parkinson’s patients arises from an impaired ability to recycle motor parameters shared across subsequent actions. Parkinson’s patients off dopaminergic medication (n = 16) and matched healthy controls (n = 16) performed a task that involved moving a handheld dowel over an obstacle in the context of a sequence of aiming movements. Consistent with previous research, healthy participants continued making unnecessarily large hand movements after clearing the obstacle (defined as “hand path priming effect”), even after switching movements between hands. In contrast, Parkinson’s patients showed a reduced hand path priming effect, i.e., they performed biomechanically more efficient movements than controls, but only when switching movements between hands. This effect correlated with disease severity, such that patients with more severe motor symptoms had a smaller hand path priming effect. We propose that the basal ganglia mediate recycling of movement parameters across subsequent actions.
Collapse
|
18
|
Ponzi A, Barton SJ, Bunner KD, Rangel-Barajas C, Zhang ES, Miller BR, Rebec GV, Kozloski J. Striatal network modeling in Huntington's Disease. PLoS Comput Biol 2020; 16:e1007648. [PMID: 32302302 PMCID: PMC7197869 DOI: 10.1371/journal.pcbi.1007648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 05/04/2020] [Accepted: 01/09/2020] [Indexed: 12/26/2022] Open
Abstract
Medium spiny neurons (MSNs) comprise over 90% of cells in the striatum. In vivo MSNs display coherent burst firing cell assembly activity patterns, even though isolated MSNs do not burst fire intrinsically. This activity is important for the learning and execution of action sequences and is characteristically dysregulated in Huntington's Disease (HD). However, how dysregulation is caused by the various neural pathologies affecting MSNs in HD is unknown. Previous modeling work using simple cell models has shown that cell assembly activity patterns can emerge as a result of MSN inhibitory network interactions. Here, by directly estimating MSN network model parameters from single unit spiking data, we show that a network composed of much more physiologically detailed MSNs provides an excellent quantitative fit to wild type (WT) mouse spiking data, but only when network parameters are appropriate for the striatum. We find the WT MSN network is situated in a regime close to a transition from stable to strongly fluctuating network dynamics. This regime facilitates the generation of low-dimensional slowly varying coherent activity patterns and confers high sensitivity to variations in cortical driving. By re-estimating the model on HD spiking data we discover network parameter modifications are consistent across three very different types of HD mutant mouse models (YAC128, Q175, R6/2). In striking agreement with the known pathophysiology we find feedforward excitatory drive is reduced in HD compared to WT mice, while recurrent inhibition also shows phenotype dependency. We show that these modifications shift the HD MSN network to a sub-optimal regime where higher dimensional incoherent rapidly fluctuating activity predominates. Our results provide insight into a diverse range of experimental findings in HD, including cognitive and motor symptoms, and may suggest new avenues for treatment.
Collapse
Affiliation(s)
- Adam Ponzi
- IBM Research, Computational Biology Center, Thomas J. Watson Research Laboratories, Yorktown Heights, New York, United States of America
- * E-mail:
| | - Scott J. Barton
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Kendra D. Bunner
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Claudia Rangel-Barajas
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Emily S. Zhang
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Benjamin R. Miller
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - George V. Rebec
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - James Kozloski
- IBM Research, Computational Biology Center, Thomas J. Watson Research Laboratories, Yorktown Heights, New York, United States of America
| |
Collapse
|
19
|
Duhne M, Lara‐González E, Laville A, Padilla‐Orozco M, Ávila‐Cascajares F, Arias‐García M, Galarraga E, Bargas J. Activation of parvalbumin‐expressing neurons reconfigures neuronal ensembles in murine striatal microcircuits. Eur J Neurosci 2020; 53:2149-2164. [DOI: 10.1111/ejn.14670] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/23/2019] [Accepted: 01/02/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Mariana Duhne
- División Neurociencias Instituto de Fisiología Celular Universidad Nacional Autónoma de México México City Mexico
| | - Esther Lara‐González
- División Neurociencias Instituto de Fisiología Celular Universidad Nacional Autónoma de México México City Mexico
- Facultad de Ciencias Químicas Benemérita Universidad Autónoma de Puebla Puebla Mexico
| | - Antonio Laville
- División Neurociencias Instituto de Fisiología Celular Universidad Nacional Autónoma de México México City Mexico
| | - Montserrat Padilla‐Orozco
- División Neurociencias Instituto de Fisiología Celular Universidad Nacional Autónoma de México México City Mexico
| | - Fatima Ávila‐Cascajares
- División Neurociencias Instituto de Fisiología Celular Universidad Nacional Autónoma de México México City Mexico
| | - Mario Arias‐García
- División Neurociencias Instituto de Fisiología Celular Universidad Nacional Autónoma de México México City Mexico
| | - Elvira Galarraga
- División Neurociencias Instituto de Fisiología Celular Universidad Nacional Autónoma de México México City Mexico
| | - José Bargas
- División Neurociencias Instituto de Fisiología Celular Universidad Nacional Autónoma de México México City Mexico
| |
Collapse
|
20
|
Comparison of Actions between L-DOPA and Different Dopamine Agonists in Striatal DA-Depleted Microcircuits In Vitro: Pre-Clinical Insights. Neuroscience 2019; 410:76-96. [DOI: 10.1016/j.neuroscience.2019.04.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/23/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
|
21
|
Mariani LL, Longueville S, Girault JA, Hervé D, Gervasi N. Differential enhancement of ERK, PKA and Ca 2+ signaling in direct and indirect striatal neurons of Parkinsonian mice. Neurobiol Dis 2019; 130:104506. [PMID: 31220556 DOI: 10.1016/j.nbd.2019.104506] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/06/2019] [Accepted: 06/13/2019] [Indexed: 12/29/2022] Open
Abstract
Parkinson's disease (PD) is characterized by severe locomotor deficits due to the disappearance of dopamine (DA) from the dorsal striatum. The development of PD symptoms and treatment-related complications such as dyskinesia have been proposed to result from complex alterations in intracellular signaling in both direct and indirect pathway striatal projection neurons (dSPNs and iSPNs, respectively) following loss of DA afferents. To identify cell-specific and dynamical modifications of signaling pathways associated with PD, we used a hemiparkinsonian mouse model with 6-hydroxydopamine (6-OHDA) lesion combined with two-photon fluorescence biosensors imaging in adult corticostriatal slices. After DA lesion, extracellular signal-regulated kinase (ERK) activation was increased in response to DA D1 receptor (D1R) or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) stimulation. The cAMP-dependent protein kinase (PKA) pathway contributing to ERK activation displayed supersensitive responses to D1R stimulation after 6-OHDA lesion. This cAMP/PKA supersensitivity was specific of D1R-responding SPNs and resulted from Gαolf upregulation and deficient phosphodiesterase activity. In lesioned striatum, the number of D1R-SPNs with spontaneous Ca2+ transients augmented while Ca2+ response to AMPA receptor stimulation specifically increased in iSPNs. Our work reveals distinct cell type-specific signaling alterations in the striatum after DA denervation. It suggests that over-activation of ERK pathway, observed in PD striatum, known to contribute to dyskinesia, may be linked to the combined dysregulation of DA and glutamate signaling pathways in the two populations of SPNs. These findings bring new insights into the implication of these respective neuronal populations in PD motor symptoms and the occurrence of PD treatment complications.
Collapse
Affiliation(s)
- Louise-Laure Mariani
- Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Sophie Longueville
- Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Jean-Antoine Girault
- Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Denis Hervé
- Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France.
| | - Nicolas Gervasi
- Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France.
| |
Collapse
|
22
|
Jáidar O, Carrillo-Reid L, Nakano Y, Lopez-Huerta VG, Hernandez-Cruz A, Bargas J, Garcia-Munoz M, Arbuthnott GW. Synchronized activation of striatal direct and indirect pathways underlies the behavior in unilateral dopamine-depleted mice. Eur J Neurosci 2019; 49:1512-1528. [PMID: 30633847 PMCID: PMC6767564 DOI: 10.1111/ejn.14344] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/17/2018] [Accepted: 12/25/2018] [Indexed: 11/27/2022]
Abstract
For more than three decades it has been known, that striatal neurons become hyperactive after the loss of dopamine input, but the involvement of dopamine (DA) D1‐ or D2‐receptor‐expressing neurons has only been demonstrated indirectly. By recording neuronal activity using fluorescent calcium indicators in D1 or D2 eGFP‐expressing mice, we showed that following dopamine depletion, both types of striatal output neurons are involved in the large increase in neuronal activity generating a characteristic cell assembly of particular neurons that dominate the pattern. When we expressed channelrhodopsin in all the output neurons, light activation in freely moving animals, caused turning like that following dopamine loss. However, if the light stimulation was patterned in pulses the animals circled in the other direction. To explore the neuronal participation during this stimulation we infected normal mice with channelrhodopsin and calcium indicator in striatal output neurons. In slices made from these animals, continuous light stimulation for 15 s induced many cells to be active together and a particular dominant group of neurons, whereas light in patterned pulses activated fewer cells in more variable groups. These results suggest that the simultaneous activity of a large dominant group of striatal output neurons is intimately associated with parkinsonian symptoms.
Collapse
Affiliation(s)
- Omar Jáidar
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Luis Carrillo-Reid
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yoko Nakano
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | | | | | - José Bargas
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | | | | |
Collapse
|
23
|
García-Vilchis B, Suárez P, Serrano-Reyes M, Arias-García M, Tapia D, Duhne M, Bargas J, Galarraga E. Differences in synaptic integration between direct and indirect striatal projection neurons: Role of CaV
3 channels. Synapse 2018; 73:e22079. [DOI: 10.1002/syn.22079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Brisa García-Vilchis
- División de Neurociencias, Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; México City México
| | - Paola Suárez
- División de Neurociencias, Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; México City México
| | - Miguel Serrano-Reyes
- División de Neurociencias, Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; México City México
| | - Mario Arias-García
- División de Neurociencias, Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; México City México
| | - Dagoberto Tapia
- División de Neurociencias, Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; México City México
| | - Mariana Duhne
- División de Neurociencias, Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; México City México
| | - José Bargas
- División de Neurociencias, Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; México City México
| | - Elvira Galarraga
- División de Neurociencias, Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; México City México
| |
Collapse
|
24
|
Cáceres-Chávez VA, Hernández-Martínez R, Pérez-Ortega J, Herrera-Valdez MA, Aceves JJ, Galarraga E, Bargas J. Acute dopamine receptor blockade in substantia nigra pars reticulata: a possible model for drug-induced Parkinsonism. J Neurophysiol 2018; 120:2922-2938. [PMID: 30256736 DOI: 10.1152/jn.00579.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Dopamine (DA) depletion modifies the firing pattern of neurons in the substantia nigra pars reticulata (SNr), shifting their mostly tonic firing toward irregularity and bursting, traits of pathological firing underlying rigidity and postural instability in Parkinson's disease (PD) patients and animal models of Parkinsonism (PS). Drug-induced Parkinsonism (DIP) represents 20-40% of clinical cases of PS, becoming a problem for differential diagnosis, and is still not well studied with physiological tools. It may co-occur with tardive dyskinesia. Here we use in vitro slice preparations including the SNr to observe drug-induced pathological firing by using drugs that most likely produce it, DA-receptor antagonists (SCH23390 plus sulpiride), to compare with firing patterns found in DA-depleted tissue. The hypothesis is that SNr firing would be similar under both conditions, a prerequisite to the proposal of a similar preparation to test other DIP-producing drugs. Firing was analyzed with three complementary metrics, showing similarities between DA depletion and acute DA-receptor blockade. Moreover, blockade of either nonselective cationic channels or Cav3 T-type calcium channels hyperpolarized the membrane and abolished bursting and irregular firing, silencing SNr neurons in both conditions. Therefore, currents generating firing in control conditions are in part responsible for pathological firing. Haloperidol, a DIP-producing drug, reproduced DA-receptor antagonist firing modifications. Since acute DA-receptor blockade induces SNr neuron firing similar to that found in the 6-hydroxydopamine model of PS, output basal ganglia neurons may play a role in generating DIP. Therefore, this study opens the way to test other DIP-producing drugs. NEW & NOTEWORTHY Dopamine (DA) depletion enhances substantia nigra pars reticulata (SNr) neuron bursting and irregular firing, hallmarks of Parkinsonism. Several drugs, including antipsychotics, antidepressants, and calcium channel antagonists, among others, produce drug-induced Parkinsonism. Here we show the first comparison between SNr neuron firing after DA depletion vs. firing found after acute blockade of DA receptors. It was found that firing in both conditions is similar, implying that pathological SNr neuron firing is also a physiological correlate of drug-induced Parkinsonism.
Collapse
Affiliation(s)
| | - Ricardo Hernández-Martínez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , México City, México
| | - Jesús Pérez-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México , Querétaro, México
| | - Marco Arieli Herrera-Valdez
- Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México , México City, México
| | - Jose J Aceves
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, México
| | - Elvira Galarraga
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , México City, México
| | - José Bargas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , México City, México
| |
Collapse
|
25
|
Peña-Ortega F. Neural Network Reconfigurations: Changes of the Respiratory Network by Hypoxia as an Example. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1015:217-237. [PMID: 29080029 DOI: 10.1007/978-3-319-62817-2_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neural networks, including the respiratory network, can undergo a reconfiguration process by just changing the number, the connectivity or the activity of their elements. Those elements can be either brain regions or neurons, which constitute the building blocks of macrocircuits and microcircuits, respectively. The reconfiguration processes can also involve changes in the number of connections and/or the strength between the elements of the network. These changes allow neural networks to acquire different topologies to perform a variety of functions or change their responses as a consequence of physiological or pathological conditions. Thus, neural networks are not hardwired entities, but they constitute flexible circuits that can be constantly reconfigured in response to a variety of stimuli. Here, we are going to review several examples of these processes with special emphasis on the reconfiguration of the respiratory rhythm generator in response to different patterns of hypoxia, which can lead to changes in respiratory patterns or lasting changes in frequency and/or amplitude.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM-Campus Juriquilla, Boulevard Juriquilla 3001, Querétaro, 76230, Mexico.
| |
Collapse
|
26
|
Aparicio-Juárez A, Duhne M, Lara-González E, Ávila-Cascajares F, Calderón V, Galarraga E, Bargas J. Cortical stimulation relieves parkinsonian pathological activity in vitro. Eur J Neurosci 2018; 49:834-848. [PMID: 29250861 DOI: 10.1111/ejn.13806] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/21/2017] [Accepted: 12/11/2017] [Indexed: 01/22/2023]
Abstract
Previously, we have shown that chemical excitatory drives such as N-methyl-d-aspartate (NMDA) are capable of activating the striatal microcircuit exhibiting neuronal ensembles that alternate their activity producing temporal sequences. One aim of this work was to demonstrate whether similar activity could be evoked by delivering cortical stimulation. Dynamic calcium imaging allowed us to follow the activity of dozens of neurons with single-cell resolution in mus musculus brain slices. A train of electrical stimuli in the cortex evoked network activity similar to the one induced by bath application of NMDA. Previously, we have also shown that the dopamine-depleted striatal microcircuit increases its spontaneous activity generating dominant recurrent ensembles that interrupt the temporal sequences found in control microcircuits. This activity correlates with parkinsonian pathological activity. Several cortical stimulation protocols such as transcranial magnetic stimulation reduce motor signs of Parkinsonism. Here, we show that cortical stimulation in vitro temporarily eliminates the pathological activity from the dopamine-depleted striatal microcircuit by turning off some neurons that sustain this activity and recruiting new ones that allow transitions between network states, similar to the control circuit. When cortical stimulation is given in the presence of L-DOPA, parkinsonian activity is eliminated during the whole recording period. The present experimental evidence suggests that cortical stimulation such as that generated by transcranial magnetic stimulation, or otherwise, may allow reduce L-DOPA dosage.
Collapse
Affiliation(s)
- Ariadna Aparicio-Juárez
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, P.O. Box 70-253, CDMX, Mexico City, 04510, México
| | - Mariana Duhne
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, P.O. Box 70-253, CDMX, Mexico City, 04510, México
| | - Esther Lara-González
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, P.O. Box 70-253, CDMX, Mexico City, 04510, México
| | - Fátima Ávila-Cascajares
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, P.O. Box 70-253, CDMX, Mexico City, 04510, México
| | - Vladimir Calderón
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, P.O. Box 70-253, CDMX, Mexico City, 04510, México
| | - Elvira Galarraga
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, P.O. Box 70-253, CDMX, Mexico City, 04510, México
| | - José Bargas
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, P.O. Box 70-253, CDMX, Mexico City, 04510, México
| |
Collapse
|
27
|
Functional comparison of corticostriatal and thalamostriatal postsynaptic responses in striatal neurons of the mouse. Brain Struct Funct 2017; 223:1229-1253. [PMID: 29101523 DOI: 10.1007/s00429-017-1536-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 10/05/2017] [Indexed: 12/19/2022]
Abstract
Synaptic inputs from cortex and thalamus were compared in electrophysiologically defined striatal cell classes: direct and indirect pathways' striatal projection neurons (dSPNs and iSPNs), fast-spiking interneurons (FS), cholinergic interneurons (ChINs), and low-threshold spiking-like (LTS-like) interneurons. Our purpose was to observe whether stimulus from cortex or thalamus had equivalent synaptic strength to evoke prolonged suprathreshold synaptic responses in these neuron classes. Subthreshold responses showed that inputs from either source functionally mix up in their dendrites at similar electrotonic distances from their somata. Passive and active properties of striatal neuron classes were consistent with the previous studies. Cre-dependent adeno-associated viruses containing Td-Tomato or eYFP fluorescent proteins were used to identify target cells. Transfections with ChR2-eYFP driven by the promoters CamKII or EF1.DIO in intralaminar thalamic nuclei using Vglut-2-Cre mice, or CAMKII in the motor cortex were used to stimulate cortical or thalamic afferents optogenetically. Both field stimuli in the cortex or photostimulation of ChR2-YFP cortical fibers evoked similar prolonged suprathreshold responses in SPNs. Photostimulation of ChR2-YFP thalamic afferents also evoked suprathreshold responses. Differences previously described between responses of dSPNs and iSPNs were observed in both cases. Prolonged suprathreshold responses could also be evoked from both sources onto all other neuron classes studied. However, to evoke thalamostriatal suprathreshold responses, afferents from more than one thalamic nucleus had to be stimulated. In conclusion, both thalamus and cortex are capable to generate suprathreshold responses converging on diverse striatal cell classes. Postsynaptic properties appear to shape these responses.
Collapse
|
28
|
Winland CD, Welsh N, Sepulveda-Rodriguez A, Vicini S, Maguire-Zeiss KA. Inflammation alters AMPA-stimulated calcium responses in dorsal striatal D2 but not D1 spiny projection neurons. Eur J Neurosci 2017; 46:2519-2533. [PMID: 28921719 PMCID: PMC5673553 DOI: 10.1111/ejn.13711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 12/22/2022]
Abstract
Neuroinflammation precedes neuronal loss in striatal neurodegenerative diseases and can be exacerbated by the release of proinflammatory molecules by microglia. These molecules can affect trafficking of AMPARs. The preferential trafficking of calcium-permeable versus impermeable AMPARs can result in disruptions of [Ca2+ ]i and alter cellular functions. In striatal neurodegenerative diseases, changes in [Ca2+ ]i and L-type voltage-gated calcium channels (VGCCs) have been reported. Therefore, this study sought to determine whether a proinflammatory environment alters AMPA-stimulated [Ca2+ ]i through calcium-permeable AMPARs and/or L-type VGCCs in dopamine-2- and dopamine-1-expressing striatal spiny projection neurons (D2 and D1 SPNs) in the dorsal striatum. Mice expressing the calcium indicator protein, GCaMP in D2 or D1 SPNs, were utilized for calcium imaging. Microglial activation was assessed by morphology analyses. To induce inflammation, acute mouse striatal slices were incubated with lipopolysaccharide (LPS). Here we report that LPS treatment potentiated AMPA responses only in D2 SPNs. When a nonspecific VGCC blocker was included, we observed a decrease of AMPA-stimulated calcium fluorescence in D2 but not D1 SPNs. The remaining agonist-induced [Ca2+ ]i was mediated by calcium-permeable AMPARs because the responses were completely blocked by a selective calcium-permeable AMPAR antagonist. We used isradipine, the highly selective L-type VGCC antagonist to determine the role of L-type VGCCs in SPNs treated with LPS. Isradipine decreased AMPA-stimulated responses selectively in D2 SPNs after LPS treatment. Our findings suggest that dorsal striatal D2 SPNs are specifically targeted in proinflammatory conditions and that L-type VGCCs and calcium-permeable AMPARs are important mediators of this effect.
Collapse
MESH Headings
- Animals
- CX3C Chemokine Receptor 1/genetics
- CX3C Chemokine Receptor 1/metabolism
- Calcium/metabolism
- Calcium Channel Blockers/pharmacology
- Calcium Channels, L-Type/metabolism
- Cations, Divalent/metabolism
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Corpus Striatum/pathology
- Dopaminergic Neurons/drug effects
- Dopaminergic Neurons/metabolism
- Dopaminergic Neurons/pathology
- Female
- Inflammation/metabolism
- Inflammation/pathology
- Lipopolysaccharides
- Male
- Mice, Inbred C57BL
- Mice, Transgenic
- Microglia/drug effects
- Microglia/metabolism
- Microglia/pathology
- Receptors, AMPA/antagonists & inhibitors
- Receptors, AMPA/metabolism
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Tissue Culture Techniques
- alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism
Collapse
Affiliation(s)
- Carissa D. Winland
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D.C. 20007 USA
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C. 20007 USA
| | - Nora Welsh
- Department of Biology, Georgetown University, Washington, D.C. 20007 USA
| | - Alberto Sepulveda-Rodriguez
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D.C. 20007 USA
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C. 20007 USA
| | - Stefano Vicini
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D.C. 20007 USA
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C. 20007 USA
| | - Kathleen A. Maguire-Zeiss
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D.C. 20007 USA
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C. 20007 USA
- Department of Biology, Georgetown University, Washington, D.C. 20007 USA
| |
Collapse
|
29
|
Boronat-García A, Guerra-Crespo M, Drucker-Colín R. Historical perspective of cell transplantation in Parkinson’s disease. World J Transplant 2017; 7:179-192. [PMID: 28698835 PMCID: PMC5487308 DOI: 10.5500/wjt.v7.i3.179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/27/2017] [Accepted: 05/15/2017] [Indexed: 02/05/2023] Open
Abstract
Cell grafting has been considered a therapeutic approach for Parkinson’s disease (PD) since the 1980s. The classical motor symptoms of PD are caused by the loss of dopaminergic neurons in the substantia nigra pars compacta, leading to a decrement in dopamine release in the striatum. Consequently, the therapy of cell-transplantation for PD consists in grafting dopamine-producing cells directly into the brain to reestablish dopamine levels. Different cell sources have been shown to induce functional benefits on both animal models of PD and human patients. However, the observed motor improvements are highly variable between individual subjects, and the sources of this variability are not fully understood. The purpose of this review is to provide a general overview of the pioneering studies done in animal models of PD that established the basis for the first clinical trials in humans, and compare these with the latest findings to identify the most relevant aspects that remain unanswered to date. The main focus of the discussions presented here will be on the mechanisms associated with the survival and functionality of the transplants. These include the role of the dopamine released by the grafts and the capacity of the grafted cells to extend fibers and to integrate into the motor circuit. The complete understanding of these aspects will require extensive research on basic aspects of molecular and cellular physiology, together with neuronal network function, in order to uncover the real potential of cell grafting for treating PD.
Collapse
|
30
|
Merchant H, Bartolo R. Primate beta oscillations and rhythmic behaviors. J Neural Transm (Vienna) 2017; 125:461-470. [DOI: 10.1007/s00702-017-1716-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/19/2017] [Indexed: 11/24/2022]
|
31
|
Carrillo-Reid L, Yang W, Kang Miller JE, Peterka DS, Yuste R. Imaging and Optically Manipulating Neuronal Ensembles. Annu Rev Biophys 2017; 46:271-293. [PMID: 28301770 DOI: 10.1146/annurev-biophys-070816-033647] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The neural code that relates the firing of neurons to the generation of behavior and mental states must be implemented by spatiotemporal patterns of activity across neuronal populations. These patterns engage selective groups of neurons, called neuronal ensembles, which are emergent building blocks of neural circuits. We review optical and computational methods, based on two-photon calcium imaging and two-photon optogenetics, to detect, characterize, and manipulate neuronal ensembles in three dimensions. We review data using these methods in the mammalian cortex that demonstrate the existence of neuronal ensembles in the spontaneous and evoked cortical activity in vitro and in vivo. Moreover, two-photon optogenetics enable the possibility of artificially imprinting neuronal ensembles into awake, behaving animals and of later recalling those ensembles selectively by stimulating individual cells. These methods could enable deciphering the neural code and also be used to understand the pathophysiology of and design novel therapies for neurological and mental diseases.
Collapse
Affiliation(s)
- Luis Carrillo-Reid
- NeuroTechnology Center, Columbia University, New York, NY 10027.,Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Weijian Yang
- NeuroTechnology Center, Columbia University, New York, NY 10027.,Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Jae-Eun Kang Miller
- NeuroTechnology Center, Columbia University, New York, NY 10027.,Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Darcy S Peterka
- NeuroTechnology Center, Columbia University, New York, NY 10027.,Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Rafael Yuste
- NeuroTechnology Center, Columbia University, New York, NY 10027.,Department of Biological Sciences, Columbia University, New York, NY 10027.,Department of Neuroscience, Columbia University, New York, NY 10027;
| |
Collapse
|
32
|
Barbera G, Liang B, Zhang L, Gerfen CR, Culurciello E, Chen R, Li Y, Lin DT. Spatially Compact Neural Clusters in the Dorsal Striatum Encode Locomotion Relevant Information. Neuron 2016; 92:202-213. [PMID: 27667003 DOI: 10.1016/j.neuron.2016.08.037] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/20/2016] [Accepted: 08/24/2016] [Indexed: 11/19/2022]
Abstract
An influential striatal model postulates that neural activities in the striatal direct and indirect pathways promote and inhibit movement, respectively. Normal behavior requires coordinated activity in the direct pathway to facilitate intended locomotion and indirect pathway to inhibit unwanted locomotion. In this striatal model, neuronal population activity is assumed to encode locomotion relevant information. Here, we propose a novel encoding mechanism for the dorsal striatum. We identified spatially compact neural clusters in both the direct and indirect pathways. Detailed characterization revealed similar cluster organization between the direct and indirect pathways, and cluster activities from both pathways were correlated with mouse locomotion velocities. Using machine-learning algorithms, cluster activities could be used to decode locomotion relevant behavioral states and locomotion velocity. We propose that neural clusters in the dorsal striatum encode locomotion relevant information and that coordinated activities of direct and indirect pathway neural clusters are required for normal striatal controlled behavior. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Giovanni Barbera
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA; Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907, USA
| | - Bo Liang
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Lifeng Zhang
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Charles R Gerfen
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Building 49, Room 5A60, Bethesda, MD 20814, USA
| | - Eugenio Culurciello
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907, USA
| | - Rong Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 100 N Greene St, Baltimore, MD 21201, USA.
| | - Yun Li
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA.
| | - Da-Ting Lin
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
33
|
Pérez-Ortega J, Duhne M, Lara-González E, Plata V, Gasca D, Galarraga E, Hernández-Cruz A, Bargas J. Pathophysiological signatures of functional connectomics in parkinsonian and dyskinetic striatal microcircuits. Neurobiol Dis 2016; 91:347-61. [PMID: 26951948 DOI: 10.1016/j.nbd.2016.02.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/19/2016] [Accepted: 02/24/2016] [Indexed: 12/12/2022] Open
Abstract
A challenge in neuroscience is to integrate the cellular and system levels. For instance, we still do not know how a few dozen neurons organize their activity and relations in a microcircuit or module of histological scale. By using network theory and Ca(2+) imaging with single-neuron resolution we studied the way in which striatal microcircuits of dozens of cells orchestrate their activity. In addition, control and diseased striatal tissues were compared in rats. In the control tissue, functional connectomics revealed small-world, scale-free and hierarchical network properties. These properties were lost during pathological conditions in ways that could be quantitatively analyzed. Decorticated striatal circuits disclosed that corticostriatal interactions depend on privileged connections with a set of highly connected neurons or "hubs". In the 6-OHDA model of Parkinson's disease there was a decrease in hubs number; but the ones that remained were linked to dominant network states. l-DOPA induced dyskinesia provoked a loss in the hierarchical structure of the circuit. All these conditions conferred distinct temporal sequences to circuit activity. Temporal sequences appeared as particular signatures of disease process thus bringing the possibility of a future quantitative pathophysiology at a histological scale.
Collapse
Affiliation(s)
- Jesús Pérez-Ortega
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, DF, Mexico
| | - Mariana Duhne
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, DF, Mexico
| | - Esther Lara-González
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, DF, Mexico
| | - Victor Plata
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, DF, Mexico
| | - Deisy Gasca
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
| | - Elvira Galarraga
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, DF, Mexico
| | - Arturo Hernández-Cruz
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, DF, Mexico
| | - José Bargas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, DF, Mexico.
| |
Collapse
|
34
|
Angulo-Garcia D, Berke JD, Torcini A. Cell Assembly Dynamics of Sparsely-Connected Inhibitory Networks: A Simple Model for the Collective Activity of Striatal Projection Neurons. PLoS Comput Biol 2016; 12:e1004778. [PMID: 26915024 PMCID: PMC4767417 DOI: 10.1371/journal.pcbi.1004778] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 01/27/2016] [Indexed: 11/19/2022] Open
Abstract
Striatal projection neurons form a sparsely-connected inhibitory network, and this arrangement may be essential for the appropriate temporal organization of behavior. Here we show that a simplified, sparse inhibitory network of Leaky-Integrate-and-Fire neurons can reproduce some key features of striatal population activity, as observed in brain slices. In particular we develop a new metric to determine the conditions under which sparse inhibitory networks form anti-correlated cell assemblies with time-varying activity of individual cells. We find that under these conditions the network displays an input-specific sequence of cell assembly switching, that effectively discriminates similar inputs. Our results support the proposal that GABAergic connections between striatal projection neurons allow stimulus-selective, temporally-extended sequential activation of cell assemblies. Furthermore, we help to show how altered intrastriatal GABAergic signaling may produce aberrant network-level information processing in disorders such as Parkinson's and Huntington's diseases.
Collapse
Affiliation(s)
- David Angulo-Garcia
- CNR - Consiglio Nazionale delle Ricerche - Istituto dei Sistemi Complessi, Sesto Fiorentino, Italy
- Aix-Marseille Université, Inserm, INMED UMR 901 and Institut de Neurosciences des Systèmes UMR 1106, Marseille, France
| | - Joshua D. Berke
- Department of Psychology and Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alessandro Torcini
- CNR - Consiglio Nazionale delle Ricerche - Istituto dei Sistemi Complessi, Sesto Fiorentino, Italy
- Aix-Marseille Université, Inserm, INMED UMR 901 and Institut de Neurosciences des Systèmes UMR 1106, Marseille, France
- Aix-Marseille Université, Université de Toulon, CNRS, CPT, UMR 7332, Marseille, France
- INFN Sez. Firenze, via Sansone, Sesto Fiorentino, Italy
- * E-mail:
| |
Collapse
|
35
|
Bakhurin KI, Mac V, Golshani P, Masmanidis SC. Temporal correlations among functionally specialized striatal neural ensembles in reward-conditioned mice. J Neurophysiol 2016; 115:1521-32. [PMID: 26763779 DOI: 10.1152/jn.01037.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/07/2016] [Indexed: 11/22/2022] Open
Abstract
As the major input to the basal ganglia, the striatum is innervated by a wide range of other areas. Overlapping input from these regions is speculated to influence temporal correlations among striatal ensembles. However, the network dynamics among behaviorally related neural populations in the striatum has not been extensively studied. We used large-scale neural recordings to monitor activity from striatal ensembles in mice undergoing Pavlovian reward conditioning. A subpopulation of putative medium spiny projection neurons (MSNs) was found to discriminate between cues that predicted the delivery of a reward and cues that predicted no specific outcome. These cells were preferentially located in lateral subregions of the striatum. Discriminating MSNs were more spontaneously active and more correlated than their nondiscriminating counterparts. Furthermore, discriminating fast spiking interneurons (FSIs) represented a highly prevalent group in the recordings, which formed a strongly correlated network with discriminating MSNs. Spike time cross-correlation analysis showed the existence of synchronized activity among FSIs and feedforward inhibitory modulation of MSN spiking by FSIs. These findings suggest that populations of functionally specialized (cue-discriminating) striatal neurons have distinct network dynamics that sets them apart from nondiscriminating cells, potentially to facilitate accurate behavioral responding during associative reward learning.
Collapse
Affiliation(s)
- Konstantin I Bakhurin
- Neuroscience Interdepartmental Program, University of California, Los Angeles, California
| | - Victor Mac
- Department of Neurobiology, University of California, Los Angeles, California
| | - Peyman Golshani
- Neuroscience Interdepartmental Program, University of California, Los Angeles, California; Department of Neurology, University of California, Los Angeles, California; Integrative Center for Learning and Memory, University of California, Los Angeles, California; West Los Angeles Veterans Affairs Medical Center, Los Angeles, California
| | - Sotiris C Masmanidis
- Neuroscience Interdepartmental Program, University of California, Los Angeles, California; Department of Neurobiology, University of California, Los Angeles, California; Integrative Center for Learning and Memory, University of California, Los Angeles, California; California NanoSystems Institute, University of California, Los Angeles, California; and
| |
Collapse
|
36
|
Diverse Short-Term Dynamics of Inhibitory Synapses Converging on Striatal Projection Neurons: Differential Changes in a Rodent Model of Parkinson's Disease. Neural Plast 2015; 2015:573543. [PMID: 26167304 PMCID: PMC4475734 DOI: 10.1155/2015/573543] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/20/2015] [Indexed: 02/08/2023] Open
Abstract
Most neurons in the striatum are projection neurons (SPNs) which make synapses with each other within distances of approximately 100 µm. About 5% of striatal neurons are GABAergic interneurons whose axons expand hundreds of microns. Short-term synaptic plasticity (STSP) between fast-spiking (FS) interneurons and SPNs and between SPNs has been described with electrophysiological and optogenetic techniques. It is difficult to obtain pair recordings from some classes of interneurons and due to limitations of actual techniques, no other types of STSP have been described on SPNs. Diverse STSPs may reflect differences in presynaptic release machineries. Therefore, we focused the present work on answering two questions: Are there different identifiable classes of STSP between GABAergic synapses on SPNs? And, if so, are synapses exhibiting different classes of STSP differentially affected by dopamine depletion? Whole-cell voltage-clamp recordings on SPNs revealed three classes of STSPs: depressing, facilitating, and biphasic (facilitating-depressing), in response to stimulation trains at 20 Hz, in a constant ionic environment. We then used the 6-hydroxydopamine (6-OHDA) rodent model of Parkinson's disease to show that synapses with different STSPs are differentially affected by dopamine depletion. We propose a general model of STSP that fits all the dynamics found in our recordings.
Collapse
|
37
|
Carrillo-Reid L, Lopez-Huerta VG, Garcia-Munoz M, Theiss S, Arbuthnott GW. Cell Assembly Signatures Defined by Short-Term Synaptic Plasticity in Cortical Networks. Int J Neural Syst 2015; 25:1550026. [PMID: 26173906 DOI: 10.1142/s0129065715500264] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The cell assembly (CA) hypothesis has been used as a conceptual framework to explain how groups of neurons form memories. CAs are defined as neuronal pools with synchronous, recurrent and sequential activity patterns. However, neuronal interactions and synaptic properties that define CAs signatures have been difficult to examine because identities and locations of assembly members are usually unknown. In order to study synaptic properties that define CAs, we used optical and electrophysiological approaches to record activity of identified neurons in mouse cortical cultures. Population analysis and graph theory techniques allowed us to find sequential patterns that represent repetitive transitions between network states. Whole cell pair recordings of neurons participating in repeated sequences demonstrated that synchrony is exhibited by groups of neurons with strong synaptic connectivity (concomitant firing) showing short-term synaptic depression (STD), whereas alternation (sequential firing) is seen in groups of neurons with weaker synaptic connections showing short-term synaptic facilitation (STF). Decreasing synaptic weights of a network promoted the generation of sequential activity patterns, whereas increasing synaptic weights restricted state transitions. Thus in simple cortical networks of real neurons, basic signatures of CAs, the properties that underlie perception and memory in Hebb's original description, are already present.
Collapse
Affiliation(s)
| | - Violeta G Lopez-Huerta
- Brain Mechanisms for Behavior Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495 Okinawa, Japan
| | - Marianela Garcia-Munoz
- Brain Mechanisms for Behavior Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495 Okinawa, Japan
| | | | - Gordon W Arbuthnott
- Brain Mechanisms for Behavior Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495 Okinawa, Japan
| |
Collapse
|
38
|
Desynchronization of fast-spiking interneurons reduces β-band oscillations and imbalance in firing in the dopamine-depleted striatum. J Neurosci 2015; 35:1149-59. [PMID: 25609629 DOI: 10.1523/jneurosci.3490-14.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oscillations in the β-band (8-30 Hz) that emerge in the output nuclei of the basal ganglia during Parkinson's disease, along with an imbalanced activation of the direct and indirect pathways, have been linked to the hypokinetic motor output associated with the disease. Although dopamine depletion causes a change in cellular and network properties in the striatum, it is unclear whether abnormal activity measured in the globus pallidus and substantia nigra pars reticulata is caused by abnormal striatal activity. Here we use a computational network model of medium spiny neurons (MSNs)-fast-spiking interneurons (FSIs), based on data from several mammalian species, and find that robust β-band oscillations and imbalanced firing emerge from implementation of changes to cellular and circuit properties caused by dopamine depletion. These changes include a reduction in connections between MSNs, a doubling of FSI inhibition to D2 MSNs, an increase in D2 MSN dendritic excitability, and a reduction in D2 MSN somatic excitability. The model reveals that the reduced decorrelation between MSNs attributable to weakened lateral inhibition enables the strong influence of synchronous FSIs on MSN firing and oscillations. Weakened lateral inhibition also produces an increased sensitivity of MSN output to cortical correlation, a condition relevant to the parkinsonian striatum. The oscillations of FSIs, in turn, are strongly modulated by fast electrical transmission between FSIs through gap junctions. These results suggest that pharmaceuticals that desynchronize FSI activity may provide a novel treatment for the enhanced β-band oscillations, imbalanced firing, and motor dysfunction in Parkinson's disease.
Collapse
|
39
|
Modulation of direct pathway striatal projection neurons by muscarinic M4-type receptors. Neuropharmacology 2015; 89:232-44. [DOI: 10.1016/j.neuropharm.2014.09.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/12/2014] [Accepted: 09/23/2014] [Indexed: 12/29/2022]
|
40
|
Garcia-Munoz M, Lopez-Huerta VG, Carrillo-Reid L, Arbuthnott GW. Extrasynaptic glutamate NMDA receptors: key players in striatal function. Neuropharmacology 2014; 89:54-63. [PMID: 25239809 DOI: 10.1016/j.neuropharm.2014.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/26/2014] [Accepted: 09/06/2014] [Indexed: 10/24/2022]
Abstract
N-methyl-D-aspartate receptors (NMDAR) are crucial for the function of excitatory neurotransmission and are present at the synapse and on the extrasynaptic membrane. The major nucleus of the basal ganglia, striatum, receives a large glutamatergic excitatory input carrying information about movements and associated sensory stimulation for its proper function. Such bombardment of glutamate synaptic release results in a large extracellular concentration of glutamate that can overcome the neuronal and glial uptake homeostatic systems therefore allowing the stimulation of extrasynaptic glutamate receptors. Here we have studied the participation of their extrasynaptic type in cortically evoked responses or in the presence of NMDARs stimulation. We report that extrasynaptic NMDAR blocker memantine, reduced in a dose-dependent manner cortically induced NMDA excitatory currents in striatal neurons (recorded in zero-Mg(++) plus DNQX 10 μM). Moreover, memantine (2-4 μM) significantly reduced the NMDAR-dependent membrane potential oscillations called up and down states. Recordings of neuronal striatal networks with a fluorescent calcium indicator or with multielectrode arrays (MEA) also showed that memantine reduced in a dose-dependent manner, NMDA-induced excitatory currents and network behavior. We used multielectrode arrays (MEA) to grow segregated cortical and striatal neurons. Once synaptic contacts were developed (>21DIV) recordings of extracellular activity confirmed the cortical drive of spontaneous synchronous discharges in both compartments. After severing connections between compartments, active striatal neurons in the presence of memantine (1 μM) and CNQX (10 μM) were predominantly fast spiking interneurons (FSI). The significance of extrasynaptic receptors in the regulation of striatal function and neuronal network activity is evident.
Collapse
Affiliation(s)
- Marianela Garcia-Munoz
- Brain Mechanisms for Behaviour Unit, Okinawa Institute of Science and Technology Graduate University, Japan.
| | - Violeta G Lopez-Huerta
- Brain Mechanisms for Behaviour Unit, Okinawa Institute of Science and Technology Graduate University, Japan.
| | - Luis Carrillo-Reid
- Brain Mechanisms for Behaviour Unit, Okinawa Institute of Science and Technology Graduate University, Japan; Department of Biological Sciences, Columbia University, NY, USA.
| | - Gordon W Arbuthnott
- Brain Mechanisms for Behaviour Unit, Okinawa Institute of Science and Technology Graduate University, Japan.
| |
Collapse
|
41
|
Nieto-Posadas A, Flores-Martínez E, Lorea-Hernández JJ, Rivera-Angulo AJ, Pérez-Ortega JE, Bargas J, Peña-Ortega F. Change in network connectivity during fictive-gasping generation in hypoxia: prevention by a metabolic intermediate. Front Physiol 2014; 5:265. [PMID: 25101002 PMCID: PMC4107943 DOI: 10.3389/fphys.2014.00265] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 06/25/2014] [Indexed: 11/13/2022] Open
Abstract
The neuronal circuit in charge of generating the respiratory rhythms, localized in the pre-Bötzinger complex (preBötC), is configured to produce fictive-eupnea during normoxia and reconfigures to produce fictive-gasping during hypoxic conditions in vitro. The mechanisms involved in such reconfiguration have been extensively investigated by cell-focused studies, but the actual changes at the network level remain elusive. Since a failure to generate gasping has been linked to Sudden Infant Death Syndrome (SIDS), the study of gasping generation and pharmacological approaches to promote it may have clinical relevance. Here, we study the changes in network dynamics and circuit reconfiguration that occur during the transition to fictive-gasping generation in the brainstem slice preparation by recording the preBötC with multi-electrode arrays and assessing correlated firing among respiratory neurons or clusters of respiratory neurons (multiunits). We studied whether the respiratory network reconfiguration in hypoxia involves changes in either the number of active respiratory elements, the number of functional connections among elements, or the strength of these connections. Moreover, we tested the influence of isocitrate, a Krebs cycle intermediate that has recently been shown to promote breathing, on the configuration of the preBötC circuit during normoxia and on its reconfiguration during hypoxia. We found that, in contrast to previous suggestions based on cell-focused studies, the number and the overall activity of respiratory neurons change only slightly during hypoxia. However, hypoxia induces a reduction in the strength of functional connectivity within the circuit without reducing the number of connections. Isocitrate prevented this reduction during hypoxia while increasing the strength of network connectivity. In conclusion, we provide an overview of the configuration of the respiratory network under control conditions and how it is reconfigured during fictive-gasping. Additionally, our data support the use of isocitrate to favor respiratory rhythm generation under normoxia and to prevent some of the changes in the respiratory network under hypoxic conditions.
Collapse
Affiliation(s)
- Andrés Nieto-Posadas
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Ernesto Flores-Martínez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Jonathan-Julio Lorea-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Ana-Julia Rivera-Angulo
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Jesús-Esteban Pérez-Ortega
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México México D.F., México
| | - José Bargas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México México D.F., México
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| |
Collapse
|
42
|
Suárez LM, Solís O, Caramés JM, Taravini IR, Solís JM, Murer MG, Moratalla R. L-DOPA treatment selectively restores spine density in dopamine receptor D2-expressing projection neurons in dyskinetic mice. Biol Psychiatry 2014; 75:711-22. [PMID: 23769604 DOI: 10.1016/j.biopsych.2013.05.006] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 05/06/2013] [Accepted: 05/08/2013] [Indexed: 12/25/2022]
Abstract
BACKGROUND L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia is an incapacitating complication of L-DOPA therapy that affects most patients with Parkinson's disease. Previous work indicating that molecular sensitization to dopamine receptor D1 (D1R) stimulation is involved in dyskinesias prompted us to perform electrophysiological recordings of striatal projection "medium spiny neurons" (MSN). Moreover, because enhanced D1R signaling in drug abuse induces changes in spine density in striatum, we investigated whether the dyskinesia is related to morphological changes in MSNs. METHODS Wild-type and bacterial artificial chromosome transgenic mice (D1R-tomato and D2R-green fluorescent protein) mice were lesioned with 6-hydroxydopamine and subsequently treated with L-DOPA to induce dyskinesia. Functional, molecular, and structural changes were assessed in corticostriatal slices. Individual MSNs injected with Lucifer-Yellow were detected by immunohistochemistry for three-dimensional reconstructions with Neurolucida software. Intracellular current-clamp recordings with high-resistance micropipettes were used to characterize electrophysiological parameters. RESULTS Both D1R-MSNs and D2R-MSNs showed diminished spine density in totally denervated striatal regions in parkinsonian mice. Chronic L-DOPA treatment, which induced dyskinesia and aberrant FosB expression, restored spine density in D2R-MSNs but not in D1R-MSNs. In basal conditions, MSNs are more excitable in parkinsonian than in sham mice, and excitability decreases toward normal values after L-DOPA treatment. Despite this normalization of basal excitability, in dyskinetic mice, the selective D1R agonist SKF38393 increased the number of evoked action potentials in MSNs, compared with sham animals. CONCLUSIONS Chronic L-DOPA induces abnormal spine re-growth exclusively in D2R-MSNs and robust supersensitization to D1R-activated excitability in denervated striatal MSNs. These changes might constitute the anatomical and electrophysiological substrates of dyskinesia.
Collapse
Affiliation(s)
- Luz M Suárez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Madrid Spain; CIBERNED, Instituto de Salud Carlos III, Madrid Spain
| | - Oscar Solís
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Madrid Spain; CIBERNED, Instituto de Salud Carlos III, Madrid Spain
| | - Jose M Caramés
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Madrid Spain; CIBERNED, Instituto de Salud Carlos III, Madrid Spain
| | - Irene R Taravini
- Instituto de Investigaciones Farmacológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Jose M Solís
- Hospital Universitario Ramón y Cajal, IRYCIS, Madrid Spain
| | - Mario G Murer
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Madrid Spain; CIBERNED, Instituto de Salud Carlos III, Madrid Spain.
| |
Collapse
|
43
|
|
44
|
Russo G, Nieus TR, Maggi S, Taverna S. Dynamics of action potential firing in electrically connected striatal fast-spiking interneurons. Front Cell Neurosci 2013; 7:209. [PMID: 24294191 PMCID: PMC3827583 DOI: 10.3389/fncel.2013.00209] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/21/2013] [Indexed: 12/31/2022] Open
Abstract
Fast-spiking interneurons (FSIs) play a central role in organizing the output of striatal neural circuits, yet functional interactions between these cells are still largely unknown. Here we investigated the interplay of action potential (AP) firing between electrically connected pairs of identified FSIs in mouse striatal slices. In addition to a loose coordination of firing activity mediated by membrane potential coupling, gap junctions (GJ) induced a frequency-dependent inhibition of spike discharge in coupled cells. At relatively low firing rates (2–20 Hz), some APs were tightly synchronized whereas others were inhibited. However, burst firing at intermediate frequencies (25–60 Hz) mostly induced spike inhibition, while at frequencies >50–60 Hz FSI pairs tended to synchronize. Spike silencing occurred even in the absence of GABAergic synapses or persisted after a complete block of GABAA receptors. Pharmacological suppression of presynaptic spike afterhyperpolarization (AHP) caused postsynaptic spikelets to become more prone to trigger spikes at near-threshold potentials, leading to a mostly synchronous firing activity. The complex pattern of functional coordination mediated by GJ endows FSIs with peculiar dynamic properties that may be critical in controlling striatal-dependent behavior.
Collapse
Affiliation(s)
- Giovanni Russo
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genoa, Italy
| | | | | | | |
Collapse
|
45
|
Plata V, Duhne M, Pérez-Ortega J, Hernández-Martinez R, Rueda-Orozco P, Galarraga E, Drucker-Colín R, Bargas J. Global actions of nicotine on the striatal microcircuit. Front Syst Neurosci 2013; 7:78. [PMID: 24223538 PMCID: PMC3818482 DOI: 10.3389/fnsys.2013.00078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 10/17/2013] [Indexed: 11/13/2022] Open
Abstract
The question to solve in the present work is: what is the predominant action induced by the activation of cholinergic-nicotinic receptors (nAChrs) in the striatal network given that nAChrs are expressed by several elements of the circuit: cortical terminals, dopamine terminals, and various striatal GABAergic interneurons. To answer this question some type of multicellular recording has to be used without losing single cell resolution. Here, we used calcium imaging and nicotine. It is known that in the presence of low micromolar N-Methyl-D-aspartate (NMDA), the striatal microcircuit exhibits neuronal activity consisting in the spontaneous synchronization of different neuron pools that interchange their activity following determined sequences. The striatal circuit also exhibits profuse spontaneous activity in pathological states (without NMDA) such as dopamine depletion. However, in this case, most pathological activity is mostly generated by the same neuron pool. Here, we show that both types of activity are inhibited during the application of nicotine. Nicotine actions were blocked by mecamylamine, a non-specific antagonist of nAChrs. Interestingly, inhibitory actions of nicotine were also blocked by the GABAA-receptor antagonist bicuculline, in which case, the actions of nicotine on the circuit became excitatory and facilitated neuronal synchronization. We conclude that the predominant action of nicotine in the striatal microcircuit is indirect, via the activation of networks of inhibitory interneurons. This action inhibits striatal pathological activity in early Parkinsonian animals almost as potently as L-DOPA.
Collapse
Affiliation(s)
- Víctor Plata
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Mexico City, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Lalchandani RR, Vicini S. Inhibitory collaterals in genetically identified medium spiny neurons in mouse primary corticostriatal cultures. Physiol Rep 2013; 1:e00164. [PMID: 24400165 PMCID: PMC3871478 DOI: 10.1002/phy2.164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 11/20/2022] Open
Abstract
Inhibitory collaterals between striatal medium spiny neuron (MSN) subtypes have been shown to critically influence striatal output. However, the low rate of inhibitory collateral detection between striatal MSNs in conventional ex vivo slice recordings has made the study of these connections challenging. Furthermore, most studies on MSN collaterals have been conducted either blind or in models, in which only one MSN subtype can be distinguished. Here, we describe a dissociated culture system using striatal and cortical neurons harvested from genetically modified mice at postnatal day 0. These mice express tdTomato and enhanced green fluorescent protein (EGFP) downstream of the dopamine D1 and D2 receptor promoters, respectively, allowing for simultaneous distinction between the two major subtypes of MSNs. In vitro, these neurons develop spines, hyperpolarized resting membrane potentials and exhibit up-and-down states, while also maintaining expression of both fluorophores through time. Using paired whole-cell patch-clamp recordings from identified MSNs at 14 days in vitro, we are able to detect a much higher rate of inhibitory functional synapses than what has been previously reported in slice recordings. These collateral synapses release γ-Aminobutyric acid (GABA) and shape the firing patters of other MSNs. Although reduced in vitro models have a number of inherent limitations, the cultures described here provide a unique opportunity to study frequently observed functional collaterals between identifiable MSNs. Additionally, cultured neurons allow for control of the extracellular environment, with the potential to investigate pharmacological regulation of inhibitory MSNs collaterals.
Collapse
Affiliation(s)
- Rupa R Lalchandani
- Graduate Program in Physiology and Biophysics, Georgetown University Washington, District of Columbia, 20007 ; Department of Pharmacology and Physiology, Georgetown University Washington, District of Columbia, 20007
| | - Stefano Vicini
- Department of Pharmacology and Physiology, Georgetown University Washington, District of Columbia, 20007
| |
Collapse
|
47
|
Direct evaluation of L-DOPA actions on neuronal activity of Parkinsonian tissue in vitro. BIOMED RESEARCH INTERNATIONAL 2013; 2013:519184. [PMID: 24151606 PMCID: PMC3789288 DOI: 10.1155/2013/519184] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/18/2013] [Indexed: 11/18/2022]
Abstract
Physiological and biochemical experiments in vivo and in vitro have explored striatal receptor signaling and neuronal excitability to posit pathophysiological models of Parkinson's disease. However, when therapeutic approaches, such as dopamine agonists, need to be evaluated, behavioral tests using animal models of Parkinson's disease are employed. To our knowledge, recordings of population neuronal activity in vitro to assess anti-Parkinsonian drugs and the correlation of circuit dynamics with disease state have only recently been attempted. We have shown that Parkinsonian pathological activity of neuronal striatal circuits can be characterized in in vitro cerebral tissue. Here, we show that calcium imaging techniques, capable of recording dozens of neurons simultaneously with single-cell resolution, can be extended to assess the action of therapeutic drugs. We used L-DOPA as a prototypical anti-Parkinsonian drug to show the efficiency of this proposed bioassay. In a rodent model of early Parkinson's disease, Parkinsonian neuronal activity can be returned to control levels by the bath addition of L-DOPA in a reversible way. This result raises the possibility to use calcium imaging techniques to measure, quantitatively, the actions of anti-Parkinsonian drugs over time and to obtain correlations with disease evolution and behavior.
Collapse
|
48
|
Castaño JG, González C, Obeso JA, Rodriguez M. Molecular Pathogenesis and Pathophysiology of Parkinson’s Disease: New Targets for New Therapies. EMERGING DRUGS AND TARGETS FOR PARKINSON’S DISEASE 2013. [DOI: 10.1039/9781849737357-00026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Parkinson’s disease (PD) is a complex chronic neurodegenerative disease of unknown etiology. A conceptual framework for all chronic diseases involves a series of channels or pathways (aging, genetic, environment, oxidative stress, mitochondrial damage, protein aggregation, etc.) and their interactions. Those channels with specificities may explain the ‘developmental’ program that through transcriptional reprogramming results in stressed dopamine neurons that eventually become dysfunctional or die, giving rise to the clinical manifestations of PD. In Chapter 2 we review the molecular mechanisms of those channels that may be implicated in the pathogenesis of PD and the pathophysiology of the disease based on the anatomo‐physiological complexity of the basal ganglia. This illustrates that understanding the molecular mechanisms of a disease may not be enough, or we have to reach an adequate system level to understand the disease process. Finally, we suggest that common therapies used for the treatment of other chronic diseases may be useful for the treatment (or help to advance the understanding) of PD, as well as new targets for new therapies that may be useful in the prevention of, or to stop the progression of, PD and other synucleinopathies.
Collapse
Affiliation(s)
- José G. Castaño
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols”, Facultad de Medicina Universidad Autónoma de Madrid Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Madrid Spain
| | - Carmen González
- Departamento de Farmacologia, Facultad de Medicina Universidad de Castilla‐La Mancha Albacete Spain
| | - José A. Obeso
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Madrid Spain
- Laboratorio de Trastornos del Movimiento, Centro de Investigación Médica Aplicada University of Navarra Pamplona Spain
| | - Manuel Rodriguez
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Madrid Spain
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine University of La Laguna Tenerife Canary Islands
| |
Collapse
|
49
|
Abstract
Inhibitory connections among striatal projection neurons (SPNs) called "feedback inhibition," have been proposed to endow the striatal microcircuit with computational capabilities, such as motor sequence selection, filtering, and the emergence of alternating network states. These properties are disrupted in models of Parkinsonism. However, the impact of feedback inhibition in the striatal network has remained under debate. Here, we test this inhibition at the microcircuit level. We used optical and electrophysiological recordings in mice and rats to demonstrate the action of striatal feedback transmission in normal and pathological conditions. Dynamic calcium imaging with single-cell resolution revealed the synchronous activation of a pool of identified SPNs by antidromic stimulation. Using bacterial artificial chromosome-transgenic mice, we demonstrate that the activated neuron pool equally possessed cells from the direct and indirect basal ganglia pathways. This pool inhibits itself because of its own GABA release when stimuli are frequent enough, demonstrating functional and significant inhibition. Blockade of GABAA receptors doubled the number of responsive neurons to the same stimulus, revealing a second postsynaptic neuron pool whose firing was being arrested by the first pool. Stronger connections arise from indirect SPNs. Dopamine deprivation impaired striatal feedback transmission disrupting the ability of a neuronal pool to arrest the firing of another neuronal pool. We demonstrate that feedback inhibition among SPNs is strong enough to control the firing of cell ensembles in the striatal microcircuit. However, to be effective, feedback inhibition should arise from synchronized pools of SPNs whose targets are other SPNs pools.
Collapse
|
50
|
Ponzi A, Wickens JR. Optimal balance of the striatal medium spiny neuron network. PLoS Comput Biol 2013; 9:e1002954. [PMID: 23592954 PMCID: PMC3623749 DOI: 10.1371/journal.pcbi.1002954] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 01/13/2013] [Indexed: 11/18/2022] Open
Abstract
Slowly varying activity in the striatum, the main Basal Ganglia input structure, is important for the learning and execution of movement sequences. Striatal medium spiny neurons (MSNs) form cell assemblies whose population firing rates vary coherently on slow behaviourally relevant timescales. It has been shown that such activity emerges in a model of a local MSN network but only at realistic connectivities of 10 ~ 20% and only when MSN generated inhibitory post-synaptic potentials (IPSPs) are realistically sized. Here we suggest a reason for this. We investigate how MSN network generated population activity interacts with temporally varying cortical driving activity, as would occur in a behavioural task. We find that at unrealistically high connectivity a stable winners-take-all type regime is found where network activity separates into fixed stimulus dependent regularly firing and quiescent components. In this regime only a small number of population firing rate components interact with cortical stimulus variations. Around 15% connectivity a transition to a more dynamically active regime occurs where all cells constantly switch between activity and quiescence. In this low connectivity regime, MSN population components wander randomly and here too are independent of variations in cortical driving. Only in the transition regime do weak changes in cortical driving interact with many population components so that sequential cell assemblies are reproducibly activated for many hundreds of milliseconds after stimulus onset and peri-stimulus time histograms display strong stimulus and temporal specificity. We show that, remarkably, this activity is maximized at striatally realistic connectivities and IPSP sizes. Thus, we suggest the local MSN network has optimal characteristics - it is neither too stable to respond in a dynamically complex temporally extended way to cortical variations, nor is it too unstable to respond in a consistent repeatable way. Rather, it is optimized to generate stimulus dependent activity patterns for long periods after variations in cortical excitation.
Collapse
Affiliation(s)
- Adam Ponzi
- Neurobiology Research Unit, Okinawa Institute of Science and Technology (OIST), Okinawa, Japan.
| | | |
Collapse
|