1
|
Scalera I, Franzin R, Stasi A, Castellaneta A, Fischetti E, Morelli G, Raele M, Panetta E, Kurevija A, Pulga W, Atti M, Gesualdo L. Haemoadsorption cartridge connected to the machine perfusion for donation after circulatory death porcine liver marginal grafts. World J Transplant 2025; 15:99287. [DOI: 10.5500/wjt.v15.i2.99287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/07/2024] [Accepted: 01/11/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Marginal donation after circulatory death (DCD) liver grafts are carefully used to combat the constant shortage of donors. Clinically, the worst outcomes are mainly related to severe ischemia-reperfusion-injury and the dangerous effect of various inflammatory cytokines (CK). The machine perfusion (MP) is a promising device to rescue these grafts.
AIM To analyze the role of MP connected to a sorbent cartridge (PerSorb®) and used for very damaged DCD pig livers.
METHODS Seven grafts were procured from pigs from a slaughterhouse. Grafts were made very marginal with at least 60 minutes of donor warm ischemia time and 24 hours of static-cold ischemia time: (1) 3 grafts were perfused in hypothermic MP with PerSorb (Sorb); (2) 2 other grafts in hypothermic MP (HMP) without the cartridge (NoSorb); and (3) The other 2 livers stored in the ice box (NoTreat). The CK were measured at HMP start (T0) and at the end (Tend). Biopsies were taken at T0 and Tend.
RESULTS All 5 grafts treated with HMP had a negative lactate trend after 3 hours of treatment (8.83 at T0 vs 6.4 at Tend of Sorb; 15 at T0 vs 5.45 at Tend for NoSorb, P value > 0.05). At Tend, both Sorb and NoSorb groups had better hemodynamic parameters, comparable between the two groups. Enzyme-linked immunosorbent assay analysis showed a reduction of monocyte chemotactic protein-1, tumor necrosis factor-alpha and interleukin-1β for NoSorb group at Tend and a complete downregulation to physiological levels of the same CK in Sorb livers after 3 hours of treatment. Biopsies showed a reduction of the perisinusoidal edema for the Sorb grafts compared with the NoSorb livers.
CONCLUSION These data suggest a potential protective role of treatment of grafts with MP and sorbent cartridge in reducing the inflammatory response after a severe ischemic injury.
Collapse
Affiliation(s)
- Irene Scalera
- Hepatobiliary and Liver Transplant Unit, University Hospital Policlinic of Bari, Bari 70124, Puglia, Italy
| | - Rossana Franzin
- Division of Nephrology, Department of Dialysis and Transplant, University Hospital Policlinic of Bari, Bari 70124, Puglia, Italy
| | - Alessandra Stasi
- Division of Nephrology, Department of Dialysis and Transplant, University Hospital Policlinic of Bari, Bari 70124, Puglia, Italy
| | - Antonino Castellaneta
- Gastroenterology and Digestive Endoscopy Unit, University Hospital Policlinic of Bari, Bari 70124, Puglia, Italy
| | - Enrico Fischetti
- Hepatobiliary and Liver Transplant Unit, University Hospital Policlinic of Bari, Bari 70124, Puglia, Italy
| | - Giulia Morelli
- Hepatobiliary and Liver Transplant Unit, University Hospital Policlinic of Bari, Bari 70124, Puglia, Italy
| | - Margherita Raele
- Hepatobiliary and Liver Transplant Unit, University Hospital Policlinic of Bari, Bari 70124, Puglia, Italy
| | - Emilio Panetta
- Department of Aferetica, Aferetica Srl, Bologna 40138, Emilia-Romagna, Italy
| | - Andjela Kurevija
- Department of Aferetica, Aferetica Srl, Bologna 40138, Emilia-Romagna, Italy
| | - William Pulga
- Department of Aferetica, Aferetica Srl, Bologna 40138, Emilia-Romagna, Italy
| | - Mauro Atti
- Department of Aferetica, Aferetica Srl, Bologna 40138, Emilia-Romagna, Italy
| | - Loreto Gesualdo
- Division of Nephrology, Department of Dialysis and Transplant, University Hospital Policlinic of Bari, Bari 70124, Puglia, Italy
| |
Collapse
|
2
|
Li J, Lu H, Zhang J, Li Y, Zhao Q. Comprehensive Approach to Assessment of Liver Viability During Normothermic Machine Perfusion. J Clin Transl Hepatol 2023; 11:466-479. [PMID: 36643041 PMCID: PMC9817053 DOI: 10.14218/jcth.2022.00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/14/2022] [Accepted: 08/10/2022] [Indexed: 01/18/2023] Open
Abstract
Liver transplantation is the most effective treatment of advanced liver disease, and the use of extended criteria donor organs has broadened the source of available livers. Although normothermic machine perfusion (NMP) has become a useful tool in liver transplantation, there are no consistent criteria that can be used to evaluate the viability of livers during NMP. This review summarizes the criteria, indicators, and methods used to evaluate liver viability during NMP. The shape, appearance, and hemodynamics of the liver can be analyzed at a macroscopic level, while markers of liver injury, indicators of liver and bile duct function, and other relevant indicators can be evaluated by biochemical analysis. The liver can also be assessed by tissue biopsy at the microscopic level. Novel methods for assessment of liver viability are introduced. The limitations of evaluating liver viability during NMP are discussed and suggestions for future clinical practice are provided.
Collapse
Affiliation(s)
| | | | | | | | - Qiang Zhao
- Correspondence to: Qiang Zhao, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China. ORCID: https://orcid.org/0000-0002-6369-1393. Tel: +86-15989196835, E-mail:
| |
Collapse
|
3
|
KIANI AYSHAKARIM, PHEBY DEREK, HENEHAN GARY, BROWN RICHARD, SIEVING PAUL, SYKORA PETER, MARKS ROBERT, FALSINI BENEDETTO, CAPODICASA NATALE, MIERTUS STANISLAV, LORUSSO LORENZO, DONDOSSOLA DANIELE, TARTAGLIA GIANLUCAMARTINO, ERGOREN MAHMUTCERKEZ, DUNDAR MUNIS, MICHELINI SANDRO, MALACARNE DANIELE, BONETTI GABRIELE, DAUTAJ ASTRIT, DONATO KEVIN, MEDORI MARIACHIARA, BECCARI TOMMASO, SAMAJA MICHELE, CONNELLY STEPHENTHADDEUS, MARTIN DONALD, MORRESI ASSUNTA, BACU ARIOLA, HERBST KARENL, KAPUSTIN MYKHAYLO, STUPPIA LIBORIO, LUMER LUDOVICA, FARRONATO GIAMPIETRO, BERTELLI MATTEO. Ethical considerations regarding animal experimentation. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E255-E266. [PMID: 36479489 PMCID: PMC9710398 DOI: 10.15167/2421-4248/jpmh2022.63.2s3.2768] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Animal experimentation is widely used around the world for the identification of the root causes of various diseases in humans and animals and for exploring treatment options. Among the several animal species, rats, mice and purpose-bred birds comprise almost 90% of the animals that are used for research purpose. However, growing awareness of the sentience of animals and their experience of pain and suffering has led to strong opposition to animal research among many scientists and the general public. In addition, the usefulness of extrapolating animal data to humans has been questioned. This has led to Ethical Committees' adoption of the 'four Rs' principles (Reduction, Refinement, Replacement and Responsibility) as a guide when making decisions regarding animal experimentation. Some of the essential considerations for humane animal experimentation are presented in this review along with the requirement for investigator training. Due to the ethical issues surrounding the use of animals in experimentation, their use is declining in those research areas where alternative in vitro or in silico methods are available. However, so far it has not been possible to dispense with experimental animals completely and further research is needed to provide a road map to robust alternatives before their use can be fully discontinued.
Collapse
Affiliation(s)
- AYSHA KARIM KIANI
- Allama Iqbal Open University, Islamabad, Pakistan
- MAGI EUREGIO, Bolzano, Italy
| | - DEREK PHEBY
- Society and Health, Buckinghamshire New University, High Wycombe, UK
| | - GARY HENEHAN
- School of Food Science and Environmental Health, Technological University of Dublin, Dublin, Ireland
| | - RICHARD BROWN
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - PAUL SIEVING
- Department of Ophthalmology, Center for Ocular Regenerative Therapy, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - PETER SYKORA
- Department of Philosophy and Applied Philosophy, University of St. Cyril and Methodius, Trnava, Slovakia
| | - ROBERT MARKS
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - BENEDETTO FALSINI
- Institute of Ophthalmology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | | | - STANISLAV MIERTUS
- Department of Biotechnology, University of SS. Cyril and Methodius, Trnava, Slovakia
- International Centre for Applied Research and Sustainable Technology, Bratislava, Slovakia
| | | | - DANIELE DONDOSSOLA
- Center for Preclincal Research and General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca‘ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - GIANLUCA MARTINO TARTAGLIA
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
- UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - MAHMUT CERKEZ ERGOREN
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - MUNIS DUNDAR
- Department of Medical Genetics, Erciyes University Medical Faculty, Kayseri, Turkey
| | - SANDRO MICHELINI
- Vascular Diagnostics and Rehabilitation Service, Marino Hospital, ASL Roma 6, Marino, Italy
| | | | | | | | | | | | - TOMMASO BECCARI
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | | | - DONALD MARTIN
- Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, SyNaBi, Grenoble, France
| | - ASSUNTA MORRESI
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - ARIOLA BACU
- Department of Biotechnology, University of Tirana, Tirana, Albania
| | - KAREN L. HERBST
- Total Lipedema Care, Beverly Hills California and Tucson Arizona, USA
| | | | - LIBORIO STUPPIA
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, University "G. d'Annunzio", Chieti, Italy
| | - LUDOVICA LUMER
- Department of Anatomy and Developmental Biology, University College London, London, UK
| | - GIAMPIETRO FARRONATO
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
- UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - MATTEO BERTELLI
- MAGI EUREGIO, Bolzano, Italy
- MAGI’S LAB, Rovereto (TN), Italy
- MAGISNAT, Peachtree Corners (GA), USA
| |
Collapse
|
4
|
Lascaris B, Thorne AM, Lisman T, Nijsten MWN, Porte RJ, de Meijer VE. Long-term normothermic machine preservation of human livers: what is needed to succeed? Am J Physiol Gastrointest Liver Physiol 2022; 322:G183-G200. [PMID: 34756122 DOI: 10.1152/ajpgi.00257.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Although short-term machine perfusion (≤24 h) allows for resuscitation and viability assessment of high-risk donor livers, the donor organ shortage might be further remedied by long-term perfusion machines. Extended preservation of injured donor livers may allow reconditioning, repairing, and regeneration. This review summarizes the necessary requirements and challenges for long-term liver machine preservation, which requires integrating multiple core physiological functions to mimic the physiological environment inside the body. A pump simulates the heart in the perfusion system, including automatically controlled adjustment of flow and pressure settings. Oxygenation and ventilation are required to account for the absence of the lungs combined with continuous blood gas analysis. To avoid pressure necrosis and achieve heterogenic tissue perfusion during preservation, diaphragm movement should be simulated. An artificial kidney is required to remove waste products and control the perfusion solution's composition. The perfusate requires an oxygen carrier, but will also be challenged by coagulation and activation of the immune system. The role of the pancreas can be mimicked through closed-loop control of glucose concentrations by automatic injection of insulin or glucagon. Nutrients and bile salts, generally transported from the intestine to the liver, have to be supplemented when preserving livers long term. Especially for long-term perfusion, the container should allow maintenance of sterility. In summary, the main challenge to develop a long-term perfusion machine is to maintain the liver's homeostasis in a sterile, carefully controlled environment. Long-term machine preservation of human livers may allow organ regeneration and repair, thereby ultimately solving the shortage of donor livers.
Collapse
Affiliation(s)
- Bianca Lascaris
- Section of Hepatopancreatobiliary Surgery & Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Adam M Thorne
- Section of Hepatopancreatobiliary Surgery & Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ton Lisman
- Surgical Research Laboratory, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maarten W N Nijsten
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Robert J Porte
- Section of Hepatopancreatobiliary Surgery & Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Vincent E de Meijer
- Section of Hepatopancreatobiliary Surgery & Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|