1
|
Papantoniou K, Aggeletopoulou I, Pastras P, Triantos C. The Role of Somatostatin in the Gastrointestinal Tract. BIOLOGY 2025; 14:558. [PMID: 40427747 DOI: 10.3390/biology14050558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025]
Abstract
The gastrointestinal (GI) tract is responsible for food digestion and host protection from harmful stimuli; however, its function as an endocrine organ is also well documented. Somatostatin (SST) was first discovered in the hypothalamus, but the GI tract is its main producer and target organ. SST is a potent inhibitor of many GI functions, including peristalsis, hormone secretion, and gastric acid production, while its anti-inflammatory effects contribute to the integrity of the intestinal barrier. These data make SST and its analogs useful agents in clinical practice. As our understanding of SST metabolism and function evolves, their use in a wide variety of medical conditions can improve patient care.
Collapse
Affiliation(s)
- Konstantinos Papantoniou
- Division of Gastroenterology, Department of Internal Medicine, University of Patras, 26504 Patras, Greece
| | - Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University of Patras, 26504 Patras, Greece
| | - Ploutarchos Pastras
- Division of Gastroenterology, Department of Internal Medicine, University of Patras, 26504 Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University of Patras, 26504 Patras, Greece
| |
Collapse
|
2
|
Britt M, Abdilmasih N, Rezanejad H. Pancreatic Ductal Cell Heterogeneity: Insights into the Potential for β-Cell Regeneration in Diabetes. Stem Cell Rev Rep 2025; 21:953-963. [PMID: 40063303 DOI: 10.1007/s12015-025-10859-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2025] [Indexed: 05/24/2025]
Abstract
Diabetes mellitus is a significant and fast-growing health problem worldwide. Cost, donor shortages, and immune rejection limit current treatment strategies. While considerable progress has been made in creating β-cells in vitro with remarkable morphological and functional resemblance to those in primary pancreatic islets, exploring alternative sources for β-cell replacement is crucial. With adult pancreatic stem cells still not conclusively identified, researchers focus their attention on heterogeneity within pancreatic ductal epithelial cells, exploring these cells as a potential source of progenitor cells for pancreatic regeneration and β-cell formation. Recent studies using techniques such as fluorescence-activated cell sorting, immunostaining and single cell RNA-sequencing have identified ductal cell heterogeneity with several subpopulations of ductal cells with progenitor-like properties and their capacity for differentiation into insulin producing cells. Here, we have reviewed the most recent studies on pancreatic ductal cell subpopulations that offer insights into potential stem-cell populations to form β-cells in diabetes treatment.
Collapse
Affiliation(s)
- Madelaine Britt
- Biological Sciences Department, Macewan University, Edmonton, Canada
| | | | - Habib Rezanejad
- Biological Sciences Department, Macewan University, Edmonton, Canada.
| |
Collapse
|
3
|
Lin Z, Wang W, Marin-Llobet A, Li Q, Pollock SD, Sui X, Aljovic A, Lee J, Baek J, Liang N, Zhang X, Wang CK, Huang J, Liu M, Gao Z, Sheng H, Du J, Lee SJ, Wang B, He Y, Ding J, Wang X, Alvarez-Dominguez JR, Liu J. Spatial transcriptomics AI agent charts hPSC-pancreas maturation in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.646731. [PMID: 40236029 PMCID: PMC11996516 DOI: 10.1101/2025.04.01.646731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Spatial transcriptomics has revolutionized our understanding of tissue organization by simultaneously capturing gene expression and spatial localization within intact tissues. However, analyzing these increasingly complex datasets requires specialized expertise across computational biology, statistics, and biological context. To address this challenge, we introduce the Spatial Transcriptomics AI Agent (STAgent), an autonomous multimodal agentic AI that integrates multimodal large language models (LLMs) with specialized computational tools to transform weeks-long analysis tasks into minutes of automated processing. Unlike conventional machine learning approaches that are limited to narrow, predefined tasks, STAgent leverages the emergent capabilities of multimodal LLMs - such as flexible reasoning, contextual understanding, and cross-modal integration - which allow it to adapt to novel data, execute multi-step analyses, and generate biologically meaningful insights with minimal human input. STAgent enables autonomous deep research through integrated capabilities, including dynamic code generation for complex analytical workflows, visual reasoning for interpreting spatial patterns, real-time retrieval of relevant peer-reviewd scientific literature, and synthesis of comprehensive, actionable reports. We applied STAgent to investigate the in vivo maturation of human stem cell-derived pancreatic cells (SC-pancreas) transplanted into immunodeficient mice. We generated single-cell spatial transcriptomics data spanning multiple developmental timepoints. STAgent autonomously (1) identified the maturation of initially scattered endocrine cells into well-defined islet-like structures, with predominantly peripheral α-cells surrounding β-cell cores supported by an expanding mesenchymal network; (2) revealed strengthening endocrine-endocrine cell interactions over time and, through context-aware gene set analysis, uncovered spatially resolved biological processes driving maturation; (3) unlike traditional analytical approaches, STAgent offers mechanistic explanations of spatial patterns, contextualizing findings with relevant literatures and developing cohesive insights into human pancreatic development. This agentic approach establishes a new paradigm in spatial transcriptomics analysis by substantially lowering the expertise barrier and reducing analysis time, accelerating biological and biomedical discovery.
Collapse
|
4
|
Sertbas M, Ulgen KO. Genome-Scale Metabolic Modeling of Human Pancreas with Focus on Type 2 Diabetes. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2025; 29:125-138. [PMID: 40068171 DOI: 10.1089/omi.2024.0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Type 2 diabetes (T2D) is characterized by relative insulin deficiency due to pancreatic beta cell dysfunction and insulin resistance in different tissues. Not only beta cells but also other islet cells (alpha, delta, and pancreatic polypeptide [PP]) are critical for maintaining glucose homeostasis in the body. In this overarching context and given that a deeper understanding of T2D pathophysiology and novel molecular targets is much needed, studies that integrate experimental and computational biology approaches offer veritable prospects for innovation. In this study, we report on single-cell RNA sequencing data integration with a generic Human1 model to generate context-specific genome-scale metabolic models for alpha, beta, delta, and PP cells for nondiabetic and T2D states and, importantly, at single-cell resolution. Moreover, flux balance analysis was performed for the investigation of metabolic activities in nondiabetic and T2D pancreatic cells. By altering glucose and oxygen uptakes to the metabolic networks, we documented the ways in which hypoglycemia, hyperglycemia, and hypoxia led to changes in metabolic activities in various cellular subsystems. Reporter metabolite analysis revealed significant transcriptional changes around several metabolites involved in sphingolipid and keratan sulfate metabolism in alpha cells, fatty acid metabolism in beta cells, and myoinositol phosphate metabolism in delta cells. Taken together, by leveraging genome-scale metabolic modeling, this research bridges the gap between metabolic theory and clinical practice, offering a comprehensive framework to advance our understanding of pancreatic metabolism in T2D, and contributes new knowledge toward the development of targeted precision medicine interventions.
Collapse
Affiliation(s)
- Mustafa Sertbas
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey
| | - Kutlu O Ulgen
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey
| |
Collapse
|
5
|
van der Heide V, McArdle S, Nelson MS, Cerosaletti K, Gnjatic S, Mikulski Z, Posgai AL, Kusmartseva I, Atkinson M, Homann D. Integrated histopathology of the human pancreas throughout stages of type 1 diabetes progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.644000. [PMID: 40166299 PMCID: PMC11956956 DOI: 10.1101/2025.03.18.644000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Type 1 diabetes (T1D) is a progressive autoimmune condition that culminates in the loss of insulin-producing beta cells. Pancreatic histopathology provides essential insights into disease initiation and progression yet an integrated perspective of in situ pathogenic processes is lacking due to limited sample availability, the dispersed nature of anatomical lesions, and often restricted analytical dimensionality. Here, we combined multiplexed immunostaining, high-magnification whole-slide imaging, digital pathology, and semi-automated image analysis strategies to interrogate pancreatic tail and head regions obtained from organ donors across T1D stages including at-risk and at-onset cases. Deconvolution of architectural features, endocrine cell composition, immune cell burden, and spatial relations of ~25,000 islets revealed a series of novel histopathological correlates especially in the prodromal disease stage preceding clinical T1D. Altogether, our comprehensive "single-islet" analyses permit the reconstruction of a revised natural T1D history with implications for further histopathological investigations, considerations of pathogenetic modalities, and therapeutic interventions.
Collapse
Affiliation(s)
- Verena van der Heide
- Marc and Jennifer Lipschultz Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA
- These authors contributed equally
| | - Sara McArdle
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
- These authors contributed equally
| | - Michael S. Nelson
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Karen Cerosaletti
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Sacha Gnjatic
- Marc and Jennifer Lipschultz Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA
- Tisch Cancer Institute, Department of Medicine, ISMMS, New York, NY 10029, USA
| | - Zbigniew Mikulski
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Amanda L. Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL 32610, USA
| | - Irina Kusmartseva
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL 32610, USA
| | - Mark Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL 32610, USA
- Department of Pediatrics, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL 32610, USA
| | - Dirk Homann
- Marc and Jennifer Lipschultz Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA
- Diabetes, Obesity & Metabolism Institute, Department of Medicine, ISMMS, New York, NY 10029, USA
- Lead contact
| |
Collapse
|
6
|
Yang M, Mandal K, Södergren M, Dumral Ö, Winroth L, Tengholm A. Real-time detection of somatostatin release from single islets reveals hypersecretion in type 2 diabetes. Acta Physiol (Oxf) 2025; 241:e14268. [PMID: 39803760 PMCID: PMC11726413 DOI: 10.1111/apha.14268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/01/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025]
Abstract
AIM Somatostatin from pancreatic δ-cells is a paracrine regulator of insulin and glucagon secretion, but the release kinetics and whether secretion is altered in diabetes is unclear. This study aimed to improve understanding of somatostatin secretion by developing a tool for real-time detection of somatostatin release from individual pancreatic islets. METHODS Reporter cells responding to somatostatin with cytoplasmic Ca2+ concentration ([Ca2+]i) changes were generated by co-expressing somatostatin receptor SSTR2, the G-protein Gα15 and a fluorescent Ca2+ sensor in HeLa cells. RESULTS Somatostatin induced dose-dependent [Ca2+]i increases in reporter cells with half-maximal and maximal effects at 1.6 ± 0.4 and ~30 nM, respectively. Mouse and human islets induced reporter cell [Ca2+]i elevations that were inhibited by the SSTR2 antagonist CYN154806. Depolarization of islets by high K+, KATP channel blockade or increasing the glucose concentration from 3 to 11 mM evoked concomitant elevations of [Ca2+]i in islets and reporter cells. Exposure of islets to glucagon, GLP-1 and ghrelin also triggered reporter cell [Ca2+]i responses, whereas little effect was obtained by islet exposure to insulin, glutamate, GABA and urocortin-3. Islets from type 2 diabetic human donors induced higher reporter cell [Ca2+]i responses at 11 mM and after K+ depolarization compared with non-diabetic islets, although fewer δ-cells were identified by immunostaining. CONCLUSION Type 2 diabetes is associated with hypersecretion of somatostatin, which has implications for paracrine regulation of insulin and glucagon secretion. The new reporter cell assay for real-time detection of single-islet somatostatin release holds promise for further studies of somatostatin secretion in islet physiology and pathophysiology.
Collapse
Affiliation(s)
- Mingyu Yang
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | - Kousik Mandal
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | - Moa Södergren
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | - Özge Dumral
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | - Lena Winroth
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | - Anders Tengholm
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| |
Collapse
|
7
|
Guan G, Liu J, Zhang Q, He M, Liu H, Chen K, Wan X, Jin P. NFAT5 exacerbates β-cell ferroptosis by suppressing the transcription of PRDX2 in obese type 2 diabetes mellitus. Cell Mol Life Sci 2025; 82:64. [PMID: 39875646 PMCID: PMC11775373 DOI: 10.1007/s00018-024-05563-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/17/2024] [Accepted: 12/22/2024] [Indexed: 01/30/2025]
Abstract
Pancreatic β-cell damage is a critical pathological mechanism in the progression of obese type 2 diabetes mellitus (T2DM). However, the exact underlying mechanism remains unclear. We established an obese T2DM mouse model via high-fat diet feeding. The protein expression profiles of pancreatic tissues from normal and obese T2DM mice were analyzed, revealing that nuclear factor of activated T cells 5 (NFAT5) and ferroptosis are potential mediators and mechanisms of β-cell damage in obese T2DM mice. In vitro, high glucose and palmitate treatment resulted in increased NFAT5 expression and nuclear translocation in MIN6 cells. Inhibition of NFAT5 expression by shRNA significantly reduced ferroptosis and improved the reduction in insulin secretion in palmitic acid and high glucose (PG)-treated MIN6 cells. Luciferase reporter and chromatin immunoprecipitation (ChIP) assays confirmed the ability of NFAT5 to bind to the peroxiredoxin 2 (PRDX2) promoter, leading to the downregulation of PRDX2 transcription. Subsequent rescue experiments confirmed that NFAT5 is involved in PG-induced ferroptosis in MIN6 cells by inhibiting the expression of PRDX2. Finally, we demonstrated that the use of the AAV8-RIP2-miR30-shNFAT5 vector to specifically inhibit the expression of NFAT5 in β-cells significantly diminishes ferroptosis in obese T2DM mice, thereby increasing insulin secretion and improving abnormal glucose tolerance. These findings collectively highlight the therapeutic potential of targeting NFAT5 in β cells to counteract obesity-induced T2DM.
Collapse
Affiliation(s)
- Gaopeng Guan
- Department of Endocrinology, Central South University Third Xiangya Hospital, Changsha, China
| | - Jie Liu
- Department of Endocrinology, Central South University Third Xiangya Hospital, Changsha, China
| | - Qin Zhang
- Department of Endocrinology, Central South University Third Xiangya Hospital, Changsha, China
| | - Meiqi He
- Department of Endocrinology, Central South University Third Xiangya Hospital, Changsha, China
| | - Hong Liu
- Department of Endocrinology, Central South University Third Xiangya Hospital, Changsha, China
| | - Ke Chen
- Department of Endocrinology, Central South University Third Xiangya Hospital, Changsha, China
| | - Xinxing Wan
- Department of Endocrinology, Central South University Third Xiangya Hospital, Changsha, China
| | - Ping Jin
- Department of Endocrinology, Central South University Third Xiangya Hospital, Changsha, China.
| |
Collapse
|
8
|
Sanwick AM, Haugh KN, Williams EJ, Perry KA, Thiele NA, Chaple IF. [ 89Zr]Zr-DFO-TOC: a novel radiopharmaceutical for PET imaging of somatostatin receptor positive neuroendocrine tumors. EJNMMI Radiopharm Chem 2024; 9:88. [PMID: 39693037 DOI: 10.1186/s41181-024-00320-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Neuroendocrine tumors (NETs) are clinically diverse types of tumors that can arise anywhere in the body. Previous studies have shown that somatostatin receptors (SSTRs) are overexpressed on NET cell membranes relative to healthy tissue, allowing for tumor targeting through radiolabeled somatostatin analogs (SSAs). This work aims to develop a novel 89Zr-labeled tracer incorporating the SSA, octreotide (TOC), for positron emission tomography (PET) imaging of SSTR + NETs and predictive dosimetry calculations, leveraging the excellent nuclear (t½ = 3.27 days, β+ = 22.3%, β+avg = 395.5 keV) and chemical characteristics (+ 4 oxidation state, preferential coordination number of 7/8, favorable aqueous chemistry) of 89Zr. In combination with 89Zr, the known radiochemistry with the chelator deferoxamine (DFO) gives reason to believe that this radiopharmaceutical incorporating an octreotide conjugate will be successful in studying the suitability of detecting SSTR + NETs. RESULTS Radiochemical tracer assessment indicated that amounts as low as 0.1 nmol DFO-TOC can be effectively radiolabeled with 89Zr, while maintaining ≥ 95% radiochemical yield. The stability of the compound was found to maintain radiochemical yields of 89.6% and 88.7% on the benchtop and in mouse serum, respectively, after 9 days. Receptor binding and competitive receptor blocking assays compared AR42J (high SSTR expression), PC-3 (moderate SSTR expression), and PANC-1 (minimal SSTR expression) cell lines at time points up to 6 days. In vitro studies demonstrated highest uptake in AR42J cells, and statistically significant differences in tracer uptake were seen after 1 h. Internalization assays showed maximum internalization after 3 h for all cell lines. CONCLUSIONS In this work, [89Zr]Zr-DFO-TOC was synthesized with radiochemical yields ≥ 95% and was found to remain stable in vitro at extended time points. In vitro cell studies demonstrated a statistically significant difference between receptor binding and blocking experiments. The development of this work shows potential to positively impact patient care through the predictive dosimetry calculations for the FDA-approved therapeutic agent [177Lu]Lu-DOTA-TATE, while allowing for imaging at extended timepoints and should be studied further.
Collapse
Affiliation(s)
- Alexis M Sanwick
- Department of Nuclear Engineering, University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Katherine N Haugh
- Department of Nuclear Engineering, University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Evan J Williams
- Department of Nuclear Engineering, University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Kala A Perry
- Department of Nuclear Engineering, University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Nikki A Thiele
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Ivis F Chaple
- Department of Nuclear Engineering, University of Tennessee, Knoxville, Knoxville, TN, 37996, USA.
| |
Collapse
|
9
|
Carroll J, Chen J, Mittal R, Lemos JRN, Mittal M, Juneja S, Assayed A, Hirani K. Decoding the Significance of Alpha Cell Function in the Pathophysiology of Type 1 Diabetes. Cells 2024; 13:1914. [PMID: 39594662 PMCID: PMC11593172 DOI: 10.3390/cells13221914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Alpha cells in the pancreas, traditionally known for their role in secreting glucagon to regulate blood glucose levels, are gaining recognition for their involvement in the pathophysiology of type 1 diabetes (T1D). In T1D, autoimmune destruction of beta cells results in insulin deficiency, which in turn may dysregulate alpha cell function, leading to elevated glucagon levels and impaired glucose homeostasis. This dysfunction is characterized by inappropriate glucagon secretion, augmenting the risk of life-threatening hypoglycemia. Moreover, insulin deficiency and autoimmunity alter alpha cell physiological responses, further exacerbating T1D pathophysiology. Recent studies suggest that alpha cells undergo transdifferentiation and interact with beta cells through mechanisms involving gamma-aminobutyric acid (GABA) signaling. Despite these advances, the exact pathways and interactions remain poorly understood and are often debated. Understanding the precise role of alpha cells in T1D is crucial, as it opens up avenues for developing new therapeutic strategies for T1D. Potential strategies include targeting alpha cells to normalize glucagon secretion, utilizing glucagon receptor antagonists, enhancing GABA signaling, and employing glucagon-like peptide-1 (GLP-1) receptor agonists. These approaches aim to improve glycemic control and reduce the risk of hypoglycemic events in individuals with T1D. This review provides an overview of alpha cell function in T1D, highlighting the emerging focus on alpha cell dysfunction in the context of historically well-developed beta cell research.
Collapse
Affiliation(s)
| | | | - Rahul Mittal
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.C.); (J.C.); (J.R.N.L.); (M.M.); (S.J.); (A.A.)
| | | | | | | | | | - Khemraj Hirani
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.C.); (J.C.); (J.R.N.L.); (M.M.); (S.J.); (A.A.)
| |
Collapse
|
10
|
Wang Y, Zhang L, Xiao H, Ye X, Pan H, Chen S. Revisiting dietary proanthocyanidins on blood glucose homeostasis from a multi-scale structural perspective. Curr Res Food Sci 2024; 9:100926. [PMID: 39654810 PMCID: PMC11626065 DOI: 10.1016/j.crfs.2024.100926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
Multi-dimensional studies have consistently indicated the benefits of dietary proanthocyanidins on blood glucose homeostasis through consumption of them from fruits, cereals and nuts. Proanthocyanidins from various sources possess different structures, but even the minor variations in structures influence their regulation on blood glucose, including the degree of polymerization, galloacylation at C3, number of hydroxyl groups in B ring and linkage type. Therefore, this Review details the role of three types of proanthocyanidins (procyanidins, prodelphinidins and propelargonidins) in blood glucose control and their underlying mechanisms, and various structural features contribute to. Due to the extremely low bioavailability, proanthocyanidins mainly ameliorate high blood glucose by luminal effects: inhibit enzyme activities, improve the structure of gut microbiota, and protect the intestinal barrier function. A few absorbed proanthocyanidins exert insulin-like effects on targeted organs. Prodelphinidin gallates exhibit greater hypoglycemic activities than others, due to their galloacylation at C3 and high amounts of hydroxyl groups in B ring. Because of different action pathways, comprehensive consideration on the degree of polymerization, linkage type and density of hydroxyl groups was required. Further understanding of these relationships can concrete diet therapeutic opportunities for proanthocyanidins.
Collapse
Affiliation(s)
- Yi Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, PR China
| | - Laiming Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, PR China
| | - Hang Xiao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, PR China
- Department of Food Science, University of Massachusetts, Amherst, 01003, USA
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, PR China
- Zhejiang University Zhongyuan Institute, Zhengzhou, 450000, PR China
| | - Haibo Pan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, PR China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, PR China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, PR China
- Zhejiang University Zhongyuan Institute, Zhengzhou, 450000, PR China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, PR China
| |
Collapse
|
11
|
Nazar AK, Basu S. Radiolabeled Somatostatin Analogs for Cancer Imaging. Semin Nucl Med 2024; 54:914-940. [PMID: 39122608 DOI: 10.1053/j.semnuclmed.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 08/12/2024]
Abstract
Somatostatin receptors (SSTR) are expressed by many tumours especially those related to neuro-endocrine origin and molecular functional imaging of SSTR expression using radiolabelled somatostatin analogs have revolutionized imaging of patients with these group of malignancies. Coming a long way from the first radiolabelled somatostatin analog 123I-Tyr-3-octreotide, there has been significant developments in terms of radionuclides used, the ligands and somatostatin derivatives. 111In-Pentetreotide extensively employed for imaging NETs at the beginning has now been replaced by 68Ga-SSA based PET-CT. SSA-PET/CT performs superior to conventional imaging modalities and has evolved in the mainframe for NET imaging. The advantages were multiple: (i) superior spatial resolution of PET versus SPECT, (ii) quantitative capabilities of PET aiding in disease activity and treatment response monitoring with better precision, (iii) shorter scan time and (iv) less patient exposure to radiation. The modality is indicated for staging, detecting the primary in CUP-NETs, restaging, treatment planning (along with FDG: the concept of dual-tracer PET-CT) as well as treatment response evaluation and follow-up of NETs. SSA PET/CT has also been incorporated in the guidelines for imaging of Pheochromocytoma-Paraganglioma, Medullary carcinoma thyroid, Meningioma and Tumor induced osteomalacia. At present, there is rising interest on (a) 18F-labelled SSA, (b) 64Cu-labelled SSA, and (c) somatostatin antagonists. 18F offers excellent imaging properties, 64Cu makes delayed imaging feasible which has implications in dosimetry and SSTR antagonists bind with the SST receptors with high affinity and specificity, providing high contrast images with less background, which can be translated to theranostics effectively. SSTR have been demonstrated in non-neuroendocrine tumours as well in the peer-reviewed literature, with studies demonstrating the potential of SSA PET/CT in Neuroblastoma, Nasopharyngeal carcinoma, carcinoma prostate (neuroendocrine differentiation) and lymphoma. This review will focus on the currently available SSAs and their history, different SPECT/PET agents, SSTR antagonists, comparison between the various imaging tracers, and their utility in both neuroendocrine and non-neuroendocrine tumors.
Collapse
Affiliation(s)
- Aamir K Nazar
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Centre Annexe, Mumbai; Homi Bhabha National Institute, Mumbai
| | - Sandip Basu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Centre Annexe, Mumbai; Homi Bhabha National Institute, Mumbai.
| |
Collapse
|
12
|
Zheng Z, Zong Y, Ma Y, Tian Y, Pang Y, Zhang C, Gao J. Glucagon-like peptide-1 receptor: mechanisms and advances in therapy. Signal Transduct Target Ther 2024; 9:234. [PMID: 39289339 PMCID: PMC11408715 DOI: 10.1038/s41392-024-01931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/17/2024] [Accepted: 07/16/2024] [Indexed: 09/19/2024] Open
Abstract
The glucagon-like peptide-1 (GLP-1) receptor, known as GLP-1R, is a vital component of the G protein-coupled receptor (GPCR) family and is found primarily on the surfaces of various cell types within the human body. This receptor specifically interacts with GLP-1, a key hormone that plays an integral role in regulating blood glucose levels, lipid metabolism, and several other crucial biological functions. In recent years, GLP-1 medications have become a focal point in the medical community due to their innovative treatment mechanisms, significant therapeutic efficacy, and broad development prospects. This article thoroughly traces the developmental milestones of GLP-1 drugs, from their initial discovery to their clinical application, detailing the evolution of diverse GLP-1 medications along with their distinct pharmacological properties. Additionally, this paper explores the potential applications of GLP-1 receptor agonists (GLP-1RAs) in fields such as neuroprotection, anti-infection measures, the reduction of various types of inflammation, and the enhancement of cardiovascular function. It provides an in-depth assessment of the effectiveness of GLP-1RAs across multiple body systems-including the nervous, cardiovascular, musculoskeletal, and digestive systems. This includes integrating the latest clinical trial data and delving into potential signaling pathways and pharmacological mechanisms. The primary goal of this article is to emphasize the extensive benefits of using GLP-1RAs in treating a broad spectrum of diseases, such as obesity, cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), neurodegenerative diseases, musculoskeletal inflammation, and various forms of cancer. The ongoing development of new indications for GLP-1 drugs offers promising prospects for further expanding therapeutic interventions, showcasing their significant potential in the medical field.
Collapse
Affiliation(s)
- Zhikai Zheng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Yiyang Ma
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yucheng Tian
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yidan Pang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
13
|
Ali II, D'Souza C, Tariq S, Adeghate EA. Adropin Is Expressed in Pancreatic Islet Cells and Reduces Glucagon Release in Diabetes Mellitus. Int J Mol Sci 2024; 25:9824. [PMID: 39337311 PMCID: PMC11432804 DOI: 10.3390/ijms25189824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Diabetes mellitus affects 537 million adults around the world. Adropin is expressed in different cell types. Our aim was to investigate the cellular localization in the endocrine pancreas and its effect on modulating pancreatic endocrine hormone release in streptozotocin (STZ)-induced diabetic rats. Adropin expression in the pancreas was investigated in normal and diabetic rats using immunohistochemistry and immunoelectron microscopy. Serum levels of insulin, glucagon pancreatic polypeptide (PP), and somatostatin were measured using a Luminex® χMAP (Magpix®) analyzer. Pancreatic endocrine hormone levels in INS-1 832/3 rat insulinoma cells, as well as pancreatic tissue fragments of normal and diabetic rats treated with different concentrations of adropin (10-6, 10-9, and 10-12 M), were measured using ELISA. Adropin was colocalized with cells producing either insulin, glucagon, or PP. Adropin treatment reduced the number of glucagon-secreting alpha cells and suppressed glucagon release from the pancreas. The serum levels of GLP-1 and amylin were significantly increased after treatment with adropin. Our study indicates a potential role of adropin in modulating glucagon secretion in animal models of diabetes mellitus.
Collapse
Affiliation(s)
- Ifrah I Ali
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Crystal D'Souza
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Saeed Tariq
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ernest A Adeghate
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Foundation, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
14
|
Staels W, Berthault C, Bourgeois S, Laville V, Lourenço C, De Leu N, Scharfmann R. Comprehensive alpha, beta, and delta cell transcriptomics reveal an association of cellular aging with MHC class I upregulation. Mol Metab 2024; 87:101990. [PMID: 39009220 PMCID: PMC11327396 DOI: 10.1016/j.molmet.2024.101990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
OBJECTIVES This study aimed to evaluate the efficacy of a purification method developed for isolating alpha, beta, and delta cells from pancreatic islets of adult mice, extending its application to islets from newborn and aged mice. Furthermore, it sought to examine transcriptome dynamics in mouse pancreatic endocrine islet cells throughout postnatal development and to validate age-related alterations within these cell populations. METHODS We leveraged the high surface expression of CD71 on beta cells and CD24 on delta cells to FACS-purify alpha, beta, and delta cells from newborn (1-week-old), adult (12-week-old), and old (18-month-old) mice. Bulk RNA sequencing was conducted on these purified cell populations, and subsequent bioinformatic analyses included differential gene expression, overrepresentation, and intersection analysis. RESULTS Alpha, beta, and delta cells from newborn and aged mice were successfully FACS-purified using the same method employed for adult mice. Our analysis of the age-related transcriptional changes in alpha, beta, and delta cell populations revealed a decrease in cell cycling and an increase in neuron-like features processes during the transition from newborn to adult mice. Progressing from adult to old mice, we identified an inflammatory gene signature related to aging (inflammaging) encompassing an increase in β-2 microglobulin and major histocompatibility complex (MHC) Class I expression. CONCLUSIONS Our study demonstrates the effectiveness of our cell sorting technique in purifying endocrine subsets from mouse islets at different ages. We provide a valuable resource for better understanding endocrine pancreas aging and identified an inflammaging gene signature with increased β-2 microglobulin and MHC Class I expression as a common hallmark of old alpha, beta, and delta cells, with potential implications for immune response regulation and age-related diabetes.
Collapse
Affiliation(s)
- W Staels
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France; Genetics, Reproduction and Development (GRAD), Vrije Universiteit Brussel (VUB), Brussels, Belgium; Division of Pediatric Endocrinology, Department of Pediatrics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.
| | - C Berthault
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - S Bourgeois
- Genetics, Reproduction and Development (GRAD), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - V Laville
- Stem Cells and Development Unit, Institut Pasteur, Paris, France; UMR CNRS 3738, Institut Pasteur, Paris, France; Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - C Lourenço
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - N De Leu
- Genetics, Reproduction and Development (GRAD), Vrije Universiteit Brussel (VUB), Brussels, Belgium; Endocrinology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium; Endocrinology, ASZ Aalst, 9300 Aalst, Belgium
| | - R Scharfmann
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| |
Collapse
|
15
|
Lv Y, Lu X, Liu G, Qi L, Zhong Z, Wang X, Zhang W, Shi R, Goodarzi MO, Pandol SJ, Li L. Differential Diagnosis of Post Pancreatitis Diabetes Mellitus Based on Pancreatic and Gut Hormone Characteristics. J Clin Endocrinol Metab 2024; 109:2003-2011. [PMID: 38344778 DOI: 10.1210/clinem/dgae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/20/2024] [Accepted: 02/06/2024] [Indexed: 03/20/2024]
Abstract
CONTEXT Distinguishing different types of diabetes is important in directing optimized treatment strategies and correlated epidemiological studies. OBJECTIVE Through detailed analysis of hormone responses to mixed meal tolerance test (MMTT), we aimed to find representing characteristics of post-acute pancreatitis diabetes mellitus (PPDM-A) and post-chronic pancreatitis diabetes mellitus (PPDM-C). METHODS Participants with PPDM-A, PPDM-C, type 1 diabetes, type 2 diabetes, and normal controls (NCs) underwent MMTT. Fasting and postprandial responses of serum glucose, C-peptide, insulin, glucagon, pancreatic polypeptide (PP), ghrelin, gastric inhibitory peptide (GIP), glucagon like peptide-1 (GLP-1), and peptide YY (PYY) were detected and compared among different groups. Focused analysis on calculated insulin sensitivity and secretion indices were performed to determine major causes of hyperglycemia in different conditions. RESULTS Participants with PPDM-A were characterized by increased C-peptide, insulin, glucagon, and PP, but decreased ghrelin, GIP, and PYY compared with NCs. Patients with PPDM-C showed secretion insufficiency of C-peptide, insulin, ghrelin, and PYY, and higher postprandial responses of glucagon and PP than NCs. In particular, both fasting and postprandial levels of ghrelin in PPDM-C were significantly lower than other diabetes groups. PYY responses in patients with PPDM-A and PPDM-C were markedly reduced. Additionally, the insulin sensitivity of PPDM-A was decreased, and the insulin secretion for PPDM-C was decreased. CONCLUSION Along with the continuum from acute to chronic pancreatitis, the pathological mechanism of PPDM changes from insulin resistance to insulin deficiency. Insufficient PYY secretion is a promising diagnostic marker for distinguishing PPDM from type 1 and type 2 diabetes. Absent ghrelin secretion to MMTT may help identify PPDM-C.
Collapse
Affiliation(s)
- Yingqi Lv
- Division of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xuejia Lu
- School of Medicine, Nanjing Medical University, Nanjing 210009, China
- Division of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Gaifang Liu
- Division of Gastroenterology, Hebei General Hospital, Shijiazhuang 050000, China
| | - Liang Qi
- Division of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zihang Zhong
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 210009, China
| | - Xiaoyuan Wang
- Division of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Ruihua Shi
- School of Medicine, Nanjing Medical University, Nanjing 210009, China
- Division of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Stephen J Pandol
- Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ling Li
- Division of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
16
|
Chernysheva МB, Ruchko ЕS, Karimova МV, Vorotelyak ЕA, Vasiliev АV. Development, regeneration, and physiological expansion of functional β-cells: Cellular sources and regulators. Front Cell Dev Biol 2024; 12:1424278. [PMID: 39045459 PMCID: PMC11263198 DOI: 10.3389/fcell.2024.1424278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024] Open
Abstract
Pancreatic regeneration is a complex process observed in both normal and pathological conditions. The aim of this review is to provide a comprehensive understanding of the emergence of a functionally active population of insulin-secreting β-cells in the adult pancreas. The renewal of β-cells is governed by a multifaceted interaction between cellular sources of genetic and epigenetic factors. Understanding the development and heterogeneity of β-cell populations is crucial for functional β-cell regeneration. The functional mass of pancreatic β-cells increases in situations such as pregnancy and obesity. However, the specific markers of mature β-cell populations and postnatal pancreatic progenitors capable of increasing self-reproduction in these conditions remain to be elucidated. The capacity to regenerate the β-cell population through various pathways, including the proliferation of pre-existing β-cells, β-cell neogenesis, differentiation of β-cells from a population of progenitor cells, and transdifferentiation of non-β-cells into β-cells, reveals crucial molecular mechanisms for identifying cellular sources and inducers of functional cell renewal. This provides an opportunity to identify specific cellular sources and mechanisms of regeneration, which could have clinical applications in treating various pathologies, including in vitro cell-based technologies, and deepen our understanding of regeneration in different physiological conditions.
Collapse
Affiliation(s)
- М. B. Chernysheva
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Moscow, Russia
| | - Е. S. Ruchko
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Moscow, Russia
| | - М. V. Karimova
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Moscow, Russia
- Department of Biology and Biotechnologies Charles Darwin, The Sapienza University of Rome, Rome, Italy
| | - Е. A. Vorotelyak
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Moscow, Russia
| | - А. V. Vasiliev
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Moscow, Russia
| |
Collapse
|
17
|
Reed J, Bain SC, Kanamarlapudi V. The Regulation of Metabolic Homeostasis by Incretins and the Metabolic Hormones Produced by Pancreatic Islets. Diabetes Metab Syndr Obes 2024; 17:2419-2456. [PMID: 38894706 PMCID: PMC11184168 DOI: 10.2147/dmso.s415934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024] Open
Abstract
In healthy humans, the complex biochemical interplay between organs maintains metabolic homeostasis and pathological alterations in this process result in impaired metabolic homeostasis, causing metabolic diseases such as diabetes and obesity, which are major global healthcare burdens. The great advancements made during the last century in understanding both metabolic disease phenotypes and the regulation of metabolic homeostasis in healthy individuals have yielded new therapeutic options for diseases like type 2 diabetes (T2D). However, it is unlikely that highly desirable more efficacious treatments will be developed for metabolic disorders until the complex systemic regulation of metabolic homeostasis becomes more intricately understood. Hormones produced by pancreatic islet beta-cells (insulin) and alpha-cells (glucagon) are pivotal for maintaining metabolic homeostasis; the activity of insulin and glucagon are reciprocally correlated to achieve strict control of glucose levels (normoglycaemia). Metabolic hormones produced by other pancreatic islet cells and incretins produced by the gut are also crucial for maintaining metabolic homeostasis. Recent studies highlighted the incomplete understanding of metabolic hormonal synergism and, therefore, further elucidation of this will likely lead to more efficacious treatments for diseases such as T2D. The objective of this review is to summarise the systemic actions of the incretins and the metabolic hormones produced by the pancreatic islets and their interactions with their respective receptors.
Collapse
Affiliation(s)
- Joshua Reed
- Institute of Life Science, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Stephen C Bain
- Institute of Life Science, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | | |
Collapse
|
18
|
Deshmukh A, Chang K, Cuala J, Vanslembrouck B, Georgia S, Loconte V, White KL. Subcellular Feature-Based Classification of α and β Cells Using Soft X-ray Tomography. Cells 2024; 13:869. [PMID: 38786091 PMCID: PMC11119489 DOI: 10.3390/cells13100869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
The dysfunction of α and β cells in pancreatic islets can lead to diabetes. Many questions remain on the subcellular organization of islet cells during the progression of disease. Existing three-dimensional cellular mapping approaches face challenges such as time-intensive sample sectioning and subjective cellular identification. To address these challenges, we have developed a subcellular feature-based classification approach, which allows us to identify α and β cells and quantify their subcellular structural characteristics using soft X-ray tomography (SXT). We observed significant differences in whole-cell morphological and organelle statistics between the two cell types. Additionally, we characterize subtle biophysical differences between individual insulin and glucagon vesicles by analyzing vesicle size and molecular density distributions, which were not previously possible using other methods. These sub-vesicular parameters enable us to predict cell types systematically using supervised machine learning. We also visualize distinct vesicle and cell subtypes using Uniform Manifold Approximation and Projection (UMAP) embeddings, which provides us with an innovative approach to explore structural heterogeneity in islet cells. This methodology presents an innovative approach for tracking biologically meaningful heterogeneity in cells that can be applied to any cellular system.
Collapse
Affiliation(s)
- Aneesh Deshmukh
- Department of Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (A.D.); (K.C.)
| | - Kevin Chang
- Department of Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (A.D.); (K.C.)
| | - Janielle Cuala
- Department of Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (A.D.); (K.C.)
- Medical Biophysics Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Bieke Vanslembrouck
- Department of Anatomy, School of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Senta Georgia
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Valentina Loconte
- Department of Anatomy, School of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kate L. White
- Department of Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (A.D.); (K.C.)
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
19
|
Mongia A, Zohora FT, Burget NG, Zhou Y, Saunders DC, Wang YJ, Brissova M, Powers AC, Kaestner KH, Vahedi G, Naji A, Schwartz GW, Faryabi RB. AnnoSpat annotates cell types and quantifies cellular arrangements from spatial proteomics. Nat Commun 2024; 15:3744. [PMID: 38702321 PMCID: PMC11068798 DOI: 10.1038/s41467-024-47334-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 03/25/2024] [Indexed: 05/06/2024] Open
Abstract
Cellular composition and anatomical organization influence normal and aberrant organ functions. Emerging spatial single-cell proteomic assays such as Image Mass Cytometry (IMC) and Co-Detection by Indexing (CODEX) have facilitated the study of cellular composition and organization by enabling high-throughput measurement of cells and their localization directly in intact tissues. However, annotation of cell types and quantification of their relative localization in tissues remain challenging. To address these unmet needs for atlas-scale datasets like Human Pancreas Analysis Program (HPAP), we develop AnnoSpat (Annotator and Spatial Pattern Finder) that uses neural network and point process algorithms to automatically identify cell types and quantify cell-cell proximity relationships. Our study of data from IMC and CODEX shows the higher performance of AnnoSpat in rapid and accurate annotation of cell types compared to alternative approaches. Moreover, the application of AnnoSpat to type 1 diabetic, non-diabetic autoantibody-positive, and non-diabetic organ donor cohorts recapitulates known islet pathobiology and shows differential dynamics of pancreatic polypeptide (PP) cell abundance and CD8+ T cells infiltration in islets during type 1 diabetes progression.
Collapse
Affiliation(s)
- Aanchal Mongia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Fatema Tuz Zohora
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Vector Institute, University of Toronto, Toronto, ON, Canada
| | - Noah G Burget
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yeqiao Zhou
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Diane C Saunders
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yue J Wang
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Marcela Brissova
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alvin C Powers
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- VA Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Klaus H Kaestner
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Golnaz Vahedi
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ali Naji
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Gregory W Schwartz
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Vector Institute, University of Toronto, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | - Robert B Faryabi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Yang H, Luo J, Liu X, Luo Y, Lai X, Zou F. Unveiling cell subpopulations in T1D mouse islets using single-cell RNA sequencing. Am J Physiol Endocrinol Metab 2024; 326:E723-E734. [PMID: 38506753 PMCID: PMC11376805 DOI: 10.1152/ajpendo.00323.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of beta cells by immune cells. The interactions among cells within the islets may be closely linked to the pathogenesis of T1D. In this study, we used single-cell RNA sequencing (scRNA-Seq) to analyze the cellular heterogeneity within the islets of a T1D mouse model. We established a T1D mouse model induced by streptozotocin and identified cell subpopulations using scRNA-Seq technology. Our results revealed 11 major cell types in the pancreatic islets of T1D mice, with heterogeneity observed in the alpha and beta cell subgroups, which may play a crucial role in the progression of T1D. Flow cytometry further confirmed a mature alpha and beta cell reduction in T1D mice. Overall, our scRNA-Seq analysis provided insights into the cellular heterogeneity of T1D islet tissue and highlighted the potential importance of alpha and beta cells in developing T1D.NEW & NOTEWORTHY In this study, we created a comprehensive single-cell atlas of pancreatic islets in a T1D mouse model using scRNA-Seq and identified 11 major cell types in the islets, highlighting the role of alpha and beta cells in T1D. This study revealed a significant reduction in the maturity alpha and beta cells in T1D mice through flow cytometry. It also demonstrated the heterogeneity of alpha and beta cells, potentially crucial for T1D progression. Overall, our scRNA-Seq analysis provided new insights for understanding and treating T1D by studying cell subtype changes and functions.
Collapse
Affiliation(s)
- Huan Yang
- Department of Endocrinology, Jiujiang University Affiliated Hospital, Jiujiang, People's Republic of China
| | - Junming Luo
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Xuyang Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Yue Luo
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Xiaoyang Lai
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Fang Zou
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
21
|
Hill TG, Hill DJ. The Importance of Intra-Islet Communication in the Function and Plasticity of the Islets of Langerhans during Health and Diabetes. Int J Mol Sci 2024; 25:4070. [PMID: 38612880 PMCID: PMC11012451 DOI: 10.3390/ijms25074070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Islets of Langerhans are anatomically dispersed within the pancreas and exhibit regulatory coordination between islets in response to nutritional and inflammatory stimuli. However, within individual islets, there is also multi-faceted coordination of function between individual beta-cells, and between beta-cells and other endocrine and vascular cell types. This is mediated partly through circulatory feedback of the major secreted hormones, insulin and glucagon, but also by autocrine and paracrine actions within the islet by a range of other secreted products, including somatostatin, urocortin 3, serotonin, glucagon-like peptide-1, acetylcholine, and ghrelin. Their availability can be modulated within the islet by pericyte-mediated regulation of microvascular blood flow. Within the islet, both endocrine progenitor cells and the ability of endocrine cells to trans-differentiate between phenotypes can alter endocrine cell mass to adapt to changed metabolic circumstances, regulated by the within-islet trophic environment. Optimal islet function is precariously balanced due to the high metabolic rate required by beta-cells to synthesize and secrete insulin, and they are susceptible to oxidative and endoplasmic reticular stress in the face of high metabolic demand. Resulting changes in paracrine dynamics within the islets can contribute to the emergence of Types 1, 2 and gestational diabetes.
Collapse
Affiliation(s)
- Thomas G. Hill
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - David J. Hill
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON N6A 4V2, Canada;
- Departments of Medicine, Physiology and Pharmacology, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
22
|
Villaca CBP, Mastracci TL. Pancreatic Crosstalk in the Disease Setting: Understanding the Impact of Exocrine Disease on Endocrine Function. Compr Physiol 2024; 14:5371-5387. [PMID: 39109973 PMCID: PMC11425433 DOI: 10.1002/cphy.c230008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The exocrine and endocrine are functionally distinct compartments of the pancreas that have traditionally been studied as separate entities. However, studies of embryonic development, adult physiology, and disease pathogenesis suggest there may be critical communication between exocrine and endocrine cells. In fact, the incidence of the endocrine disease diabetes secondary to exocrine disease/dysfunction ranges from 25% to 80%, depending on the type and severity of the exocrine pathology. Therefore, it is necessary to investigate how exocrine-endocrine "crosstalk" may impact pancreatic function. In this article, we discuss common exocrine diseases, including cystic fibrosis, acute, hereditary, and chronic pancreatitis, and the impact of these exocrine diseases on endocrine function. Additionally, we review how obesity and fatty pancreas influence exocrine function and the impact on cellular communication between the exocrine and endocrine compartments. Interestingly, in all pathologies, there is evidence that signals from the exocrine disease contribute to endocrine dysfunction and the progression to diabetes. Continued research efforts to identify the mechanisms that underlie the crosstalk between various cell types in the pancreas are critical to understanding normal pancreatic physiology as well as disease states. © 2024 American Physiological Society. Compr Physiol 14:5371-5387, 2024.
Collapse
Affiliation(s)
| | - Teresa L Mastracci
- Department of Biology, Indiana University Indianapolis, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
23
|
Clemente-Suárez VJ, Peris-Ramos HC, Redondo-Flórez L, Beltrán-Velasco AI, Martín-Rodríguez A, David-Fernandez S, Yáñez-Sepúlveda R, Tornero-Aguilera JF. Personalizing Nutrition Strategies: Bridging Research and Public Health. J Pers Med 2024; 14:305. [PMID: 38541047 PMCID: PMC10970995 DOI: 10.3390/jpm14030305] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 11/11/2024] Open
Abstract
In recent years, although life expectancy has increased significantly, non-communicable diseases (NCDs) continue to pose a significant threat to the health of the global population. Therefore, eating habits have been recognized as key modifiable factors that influence people's health and well-being. For this reason, it is interesting to study dietary patterns, since the human diet is a complex mixture of macronutrients, micronutrients, and bioactive compounds, and can modulate multiple physiological processes, including immune function, the metabolism, and inflammation. To ensure that the data we acquired were current and relevant, we searched primary and secondary sources, including scientific journals, bibliographic indexes, and databases in the last 15 years with the most relevant articles. After this search, we observed that all the recent research on NCDs suggests that diet is a critical factor in shaping an individual's health outcomes. Thus, cardiovascular, metabolic, mental, dental, and visual health depends largely on the intake, habits and patterns, and nutritional behaviors. A diet high in processed and refined foods, added sugars, and saturated fats can increase the risk of developing chronic diseases. On the other hand, a diet rich in whole, nutrient-dense foods, such as vegetables, fruits, nuts, legumes, and a high adherence to Mediterranean diet can improve health's people.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Helia Carmen Peris-Ramos
- Faculty of Biomedical and Health Sciences, Clinical Odontology Department, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (H.C.P.-R.); (S.D.-F.)
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Tajo Street, s/n, Villaviciosa de Odón, 28670 Madrid, Spain;
| | | | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
| | - Susana David-Fernandez
- Faculty of Biomedical and Health Sciences, Clinical Odontology Department, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (H.C.P.-R.); (S.D.-F.)
| | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile;
| | | |
Collapse
|
24
|
Maranesi M, Palmioli E, Dall'Aglio C, Marini D, Anipchenko P, De Felice E, Scocco P, Mercati F. Resistin in endocrine pancreas of sheep: Presence and expression related to different diets. Gen Comp Endocrinol 2024; 348:114452. [PMID: 38246291 DOI: 10.1016/j.ygcen.2024.114452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/30/2023] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
Resistin (RETN), a recently discovered adipokine, is a cysteine-rich and secretory protein produced by adipocytes. RETN has been detected in several tissues, including human and laboratory animals' pancreas, wherein impairs glucose tolerance and insulin (INS) action and causes INS resistance. This study aims to evaluate the presence and expression of RETN in the pancreas of 15 adult female sheep reared on Apennine pastures, which show a decrease in their nutritional value due to the drought stress linked to the increasing summer aridity. The sheep were divided into 3 groups according to the diet they were subjected to: maximum pasture flowering (MxF) group, maximum pasture dryness (MxD) group, and experimental (Exp) group which received a feed supplementation in addition to the MxD group feeding. Immunohistochemistry and immunofluorescence were performed on formalin-fixed and paraffin-embedded sections of the pancreas to detect the RETN presence and to evaluate the co-localization of RETN with both glucagon (GCG)- and INS-producing cells. In addition, the expression of the three molecules was evaluated also in relation to different diets. RETN was observed only in the endocrine pancreas, showing a wide distribution throughout the pancreatic islets with few negative cells and the RETN producing cells colocalized with both α cells and ß cells. No differences in distribution and immunostaining intensity of RETN, GCG and INS were observed among the three groups. Quantitative PCR showed the expression of RETN, GCG and INS in all tested samples. No significant differences were observed for RETN and GCG among all three groups of sheep. Instead, a high statistically significant expression of INS was detected in the MxF group with respect to the Exp and MxD groups. These results highlight the localization of RETN in GCG- and INS-secreting cells involved in glucose homeostasis suggesting a modulatory role for RETN. Furthermore, the RETN expression is not influenced by food supplementation and thus is not affected by diet.
Collapse
Affiliation(s)
- Margherita Maranesi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy.
| | - Elisa Palmioli
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy; Department of Philosophy, Social Sciences, and Education, PhD Course in "Ethics of Communication, Scientific Research and Technological Innovation" Medical-Health Curriculum, University of Perugia, Piazza G. Ermini, 1, 06123 Perugia, IT, Italy.
| | - Cecilia Dall'Aglio
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy.
| | - Daniele Marini
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy; Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden.
| | - Polina Anipchenko
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy.
| | - Elena De Felice
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, IT, Italy.
| | - Paola Scocco
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, IT, Italy.
| | - Francesca Mercati
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy.
| |
Collapse
|
25
|
Tyler SR, Lozano-Ojalvo D, Guccione E, Schadt EE. Anti-correlated feature selection prevents false discovery of subpopulations in scRNAseq. Nat Commun 2024; 15:699. [PMID: 38267438 PMCID: PMC10808220 DOI: 10.1038/s41467-023-43406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 11/07/2023] [Indexed: 01/26/2024] Open
Abstract
While sub-clustering cell-populations has become popular in single cell-omics, negative controls for this process are lacking. Popular feature-selection/clustering algorithms fail the null-dataset problem, allowing erroneous subdivisions of homogenous clusters until nearly each cell is called its own cluster. Using real and synthetic datasets, we find that anti-correlated gene selection reduces or eliminates erroneous subdivisions, increases marker-gene selection efficacy, and efficiently scales to millions of cells.
Collapse
Affiliation(s)
- Scott R Tyler
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Daniel Lozano-Ojalvo
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ernesto Guccione
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing (BiNGS) Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
26
|
Röthe J, Kraft R, Ricken A, Kaczmarek I, Matz-Soja M, Winter K, Dietzsch AN, Buchold J, Ludwig MG, Liebscher I, Schöneberg T, Thor D. The adhesion GPCR GPR116/ADGRF5 has a dual function in pancreatic islets regulating somatostatin release and islet development. Commun Biol 2024; 7:104. [PMID: 38228886 PMCID: PMC10791652 DOI: 10.1038/s42003-024-05783-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024] Open
Abstract
Glucose homeostasis is maintained by hormones secreted from different cell types of the pancreatic islets and controlled by manifold input including signals mediated through G protein-coupled receptors (GPCRs). RNA-seq analyses revealed expression of numerous GPCRs in mouse and human pancreatic islets, among them Gpr116/Adgrf5. GPR116 is an adhesion GPCR mainly found in lung and required for surfactant secretion. Here, we demonstrate that GPR116 is involved in the somatostatin release from pancreatic delta cells using a whole-body as well as a cell-specific knock-out mouse model. Interestingly, the whole-body GPR116 deficiency causes further changes such as decreased beta-cell mass, lower number of small islets, and reduced pancreatic insulin content. Glucose homeostasis in global GPR116-deficient mice is maintained by counter-acting mechanisms modulating insulin degradation. Our data highlight an important function of GPR116 in controlling glucose homeostasis.
Collapse
Affiliation(s)
- Juliane Röthe
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Robert Kraft
- Carl-Ludwig-Institute for Physiology, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Albert Ricken
- Institute of Anatomy, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Isabell Kaczmarek
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Madlen Matz-Soja
- Medical Department II - Gastroenterology, Hepatology, Infectious Diseases, Pneumology, University Medical Center, Leipzig, Germany
- Division of Hepatology, Clinic and Polyclinic for Oncology, Gastroenterology, Hepatology, Infectious Diseases, and Pneumology, University Hospital, Leipzig, Germany
| | - Karsten Winter
- Institute of Anatomy, Medical Faculty, Leipzig University, Leipzig, Germany
| | - André Nguyen Dietzsch
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Julia Buchold
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | | | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany.
| |
Collapse
|
27
|
Waters BJ, Birman ZR, Wagner MR, Lemanski J, Blum B. Islet architecture in adult mice is actively maintained by Robo2 expression in β cells. Dev Biol 2024; 505:122-129. [PMID: 37972678 PMCID: PMC10841604 DOI: 10.1016/j.ydbio.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
A fundamental question in developmental biology is whether tissue architectures formed during development are set for life, or require continuous maintenance signals, and if so, what are those signals. The islets of Langerhans in the pancreas can serve as an elegant model tissue to answer these questions. Islets have a non-random spatial architecture, which is important to proper glucose homeostasis. Islet architecture forms during embryonic development, in a morphogenesis process partially involving expression of Roundabout (Robo) receptors in β cells, and their ligand, Slit, in the surrounding mesenchyme. Whether islet architecture is set during development and remains passive in adulthood, or whether it requires active maintenance throughout life, has not been determined. Here we conditionally deleted Robo2 in β cells of adult mice and observed their islet architecture following a two-month chase. We show that deleting Robo2 in adult β cells causes significant loss of islet architecture without affecting β cell identity, maturation, or stress, indicating that Robo2 plays a role in actively maintaining adult islet architecture. Understanding the factors required to maintain islet architecture, and thus optimize islet function, is important for developing future diabetes therapies.
Collapse
Affiliation(s)
- Bayley J Waters
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Zoe R Birman
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Matthew R Wagner
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Julia Lemanski
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Barak Blum
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
28
|
Kumar PP, Rao GV, Shetty M, Pradeep R, PremaVani C, Sasikala M, Reddy DN. Understanding the Structural Arrangement of Islets in Chronic Pancreatitis. J Histochem Cytochem 2024; 72:25-40. [PMID: 38063163 PMCID: PMC10795563 DOI: 10.1369/00221554231217552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 10/20/2023] [Indexed: 12/31/2023] Open
Abstract
Islet transplantation has become an established method for the treatment of insulin-deficient diabetes such as type 1 and type 3C (pancreatogenic). An effective transplantation necessitates a thorough understanding of the islet architecture and related functions to improve engraftment outcomes. However, in chronic pancreatitis (CP), the structural and related functional information is inadequate. Hence, the present study is aimed to understand the cytoarchitecture of endocrine cells and their functional implications in CP with and without diabetes. Herein, a set of human pancreatic tissue specimens (normal, n=5 and CP, n=20) was collected and processed for islet isolation. Furthermore, immunohistochemistry was used to assess the vascular densities, cell mass, organization, and cell-cell interactions. The glucose-stimulated insulin release results revealed that in chronic pancreatitis without diabetes mellitus altered (CPNDA), at basal glucose concentration the insulin secretion was increased by 24.2%, whereas at high glucose concentration the insulin levels were reduced by 77.4%. The impaired insulin secretion may be caused by alterations in the cellular architecture of islets during CP progression, particularly in chronic pancreatitis with diabetes mellitus and CPNDA conditions. Based on the results, a deeper comprehension of islet architecture would be needed to enhance successful transplantation in CP patients: (J Histochem Cytochem XX.XXX-XXX, XXXX).
Collapse
Affiliation(s)
- Pondugala Pavan Kumar
- Translational Research Center, Asian Healthcare Foundation, Hyderabad, India
- AIG Hospitals, Hyderabad, India
| | | | | | | | | | - Mitnala Sasikala
- Translational Research Center, Asian Healthcare Foundation, Hyderabad, India
| | - Duvvur Nageshwar Reddy
- Translational Research Center, Asian Healthcare Foundation, Hyderabad, India
- AIG Hospitals, Hyderabad, India
| |
Collapse
|
29
|
Cao S, Wang L, Feng Y, Peng XD, Li LM. A data integration approach unveils a transcriptional signature of type 2 diabetes progression in rat and human islets. PLoS One 2023; 18:e0292579. [PMID: 37816033 PMCID: PMC10564241 DOI: 10.1371/journal.pone.0292579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023] Open
Abstract
Pancreatic islet failure is a key characteristic of type 2 diabetes besides insulin resistance. To get molecular insights into the pathology of islets in type 2 diabetes, we developed a computational approach to integrating expression profiles of Goto-Kakizaki and Wistar rat islets from a designed experiment with those of the human islets from an observational study. A principal gene-eigenvector in the expression profiles characterized by up-regulated angiogenesis and down-regulated oxidative phosphorylation was identified conserved across the two species. In the case of Goto-Kakizaki versus Wistar islets, such alteration in gene expression can be verified directly by the treatment-control tests over time, and corresponds to the alteration of α/β-cell distribution obtained by quantifying the islet micrographs. Furthermore, the correspondence between the dual sample- and gene-eigenvectors unveils more delicate structures. In the case of rats, the up- and down-trend of insulin mRNA levels before and after week 8 correspond respectively to the top two principal eigenvectors. In the case of human, the top two principal eigenvectors correspond respectively to the late and early stages of diabetes. According to the aggregated expression signature, a large portion of genes involved in the hypoxia-inducible factor signaling pathway, which activates transcription of angiogenesis, were significantly up-regulated. Furthermore, top-ranked anti-angiogenic genes THBS1 and PEDF indicate the existence of a counteractive mechanism that is in line with thickened and fragmented capillaries found in the deteriorated islets. Overall, the integrative analysis unravels the principal transcriptional alterations underlying the islet deterioration of morphology and insulin secretion along type 2 diabetes progression.
Collapse
Affiliation(s)
- Shenghao Cao
- National Center of Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Linting Wang
- National Center of Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yance Feng
- National Center of Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xiao-ding Peng
- Department of Biochemistry and Molecular Genetics, The University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Lei M. Li
- National Center of Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
30
|
Bohuslavova R, Fabriciova V, Smolik O, Lebrón-Mora L, Abaffy P, Benesova S, Zucha D, Valihrach L, Berkova Z, Saudek F, Pavlinkova G. NEUROD1 reinforces endocrine cell fate acquisition in pancreatic development. Nat Commun 2023; 14:5554. [PMID: 37689751 PMCID: PMC10492842 DOI: 10.1038/s41467-023-41306-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023] Open
Abstract
NEUROD1 is a transcription factor that helps maintain a mature phenotype of pancreatic β cells. Disruption of Neurod1 during pancreatic development causes severe neonatal diabetes; however, the exact role of NEUROD1 in the differentiation programs of endocrine cells is unknown. Here, we report a crucial role of the NEUROD1 regulatory network in endocrine lineage commitment and differentiation. Mechanistically, transcriptome and chromatin landscape analyses demonstrate that Neurod1 inactivation triggers a downregulation of endocrine differentiation transcription factors and upregulation of non-endocrine genes within the Neurod1-deficient endocrine cell population, disturbing endocrine identity acquisition. Neurod1 deficiency altered the H3K27me3 histone modification pattern in promoter regions of differentially expressed genes, which resulted in gene regulatory network changes in the differentiation pathway of endocrine cells, compromising endocrine cell potential, differentiation, and functional properties.
Collapse
Affiliation(s)
- Romana Bohuslavova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Valeria Fabriciova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Ondrej Smolik
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Laura Lebrón-Mora
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Sarka Benesova
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Daniel Zucha
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Zuzana Berkova
- Diabetes Centre, Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, 14021, Prague, Czechia
| | - Frantisek Saudek
- Diabetes Centre, Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, 14021, Prague, Czechia
| | - Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia.
| |
Collapse
|
31
|
Aldous N, Moin ASM, Abdelalim EM. Pancreatic β-cell heterogeneity in adult human islets and stem cell-derived islets. Cell Mol Life Sci 2023; 80:176. [PMID: 37270452 DOI: 10.1007/s00018-023-04815-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 05/19/2023] [Indexed: 06/05/2023]
Abstract
Recent studies reported that pancreatic β-cells are heterogeneous in terms of their transcriptional profiles and their abilities for insulin secretion. Sub-populations of pancreatic β-cells have been identified based on the functionality and expression of specific surface markers. Under diabetes condition, β-cell identity is altered leading to different β-cell sub-populations. Furthermore, cell-cell contact between β-cells and other endocrine cells within the islet play an important role in regulating insulin secretion. This highlights the significance of generating a cell product derived from stem cells containing β-cells along with other major islet cells for treating patients with diabetes, instead of transplanting a purified population of β-cells. Another key question is how close in terms of heterogeneity are the islet cells derived from stem cells? In this review, we summarize the heterogeneity in islet cells of the adult pancreas and those generated from stem cells. In addition, we highlight the significance of this heterogeneity in health and disease conditions and how this can be used to design a stem cell-derived product for diabetes cell therapy.
Collapse
Affiliation(s)
- Noura Aldous
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, PO Box 34110, Doha, Qatar
| | - Abu Saleh Md Moin
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, PO Box 34110, Doha, Qatar
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Kingdom of Bahrain
| | - Essam M Abdelalim
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar.
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, PO Box 34110, Doha, Qatar.
| |
Collapse
|
32
|
Zhao Y, Zhou Y, Chi J, Che K, Wang Y, Wang W. Obesity is associated with impaired postprandial pancreatic polypeptide secretion. Front Endocrinol (Lausanne) 2023; 14:1192311. [PMID: 37334299 PMCID: PMC10273268 DOI: 10.3389/fendo.2023.1192311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023] Open
Abstract
Objective This study aims to compare the levels of serum pancreatic polypeptide (PP), insulin (INS), C-peptide (C-P), and glucagon (GCG) before and after glucose stimulation in type 2 diabetes mellitus (T2DM) patients with different body mass indexes (BMI), analyze the relevant factors associated with PP secretion, and further investigate the role of PP in the development of obesity and diabetes. Methods Data were collected from 83 patients from the hospital. The subjects were divided into normal-weight group, overweight group, and obese group according to their BMI. All subjects were tested with the standard bread meal test (SBMT). PP and relevant parameters were measured, and the area under the curve (AUC) was calculated after 120 min of SBMT. AUCpp (AUC of PP) was used as the dependent variable, and the potential influencing factors were used as independent variables for multiple linear regression analysis. Results The obese and overweight groups had significantly lower PP secretion than the normal-weight group (485.95 pg·h/ml, 95% CI 76.16-895.74, p = 0.021; 664.61 pg·h/ml, 95% CI 285.46-1043.77, p = 0.001) at 60 min postprandial. PP secretion in the obese and overweight groups was also significantly lower than that in the normal-weight group (520.07 pg·h/ml, 95% CI 186.58-853.56, p = 0.003; 467.62 pg·h/ml, 95% CI 159.06-776.18, p = 0.003) at 120 min postprandial. AUCpp was negatively associated with BMI (r = -0.260, p = 0.017) and positively associated with AUCGCG (r = 0.501, p< 0.001). Multiple linear regression analysis showed that there was a linear correlation between AUCGCG, BMI, and AUCpp (p< 0.001, p = 0.008). The regression equation was calculated as follows: AUCpp = 1772.255-39.65 × BMI + 0.957 × AUCGCG (R2 = 54.1%, p< 0.001). Conclusion Compared with normal-weight subjects, overweight and obese subjects had impaired PP secretion after glucose stimulation. In T2DM patients, PP secretion was mainly affected by BMI and GCG. Clinical trial registry The Ethics Committee of the Affiliated Hospital of Qingdao University. Clinical trial registration http://www.chictr.org.cn, identifier ChiCTR2100047486.
Collapse
Affiliation(s)
- Yanyun Zhao
- Department of Endocrinology and Metabolism, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yue Zhou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingwei Chi
- Medical Research Center, Qingdao Key Laboratory of Thyroid Diseases, Qingdao, China
| | - Kui Che
- Medical Research Center, Qingdao Key Laboratory of Thyroid Diseases, Qingdao, China
| | - Yangang Wang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Wang
- Department of Hematology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
33
|
AlAnazi FH, Al‐kuraishy HM, Al‐Gareeb AI, Alexiou A, Papadakis M, Ogaly HA, Alanazi YA, Saad HM, Batiha GE. Effects of neprilysin and neprilysin inhibitors on glucose homeostasis: Controversial points and a promising arena. J Diabetes 2023; 15:397-408. [PMID: 37078106 PMCID: PMC10172023 DOI: 10.1111/1753-0407.13389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/01/2023] [Accepted: 04/02/2023] [Indexed: 04/21/2023] Open
Abstract
Neprilysin (NEP) is a transmembrane zinc-dependent metalloproteinase that inactivates various peptide hormones including glucagon-like peptide 1 (GLP-1). NEP inhibitors may be effective in the management of type 2 diabetes mellitus (T2DM) by increasing the circulating level of GLP-1. However, acute-effect NEP inhibitors may lead to detrimental effects by increasing blood glucose independent of GLP-1. These findings suggest a controversial point regarding the potential role of NEP inhibitors on glucose homeostasis in T2DM patients. Therefore, this perspective aimed to clarify the controversial points concerning the role of NEP inhibitors on glucose homeostasis in T2DM. NEP inhibitors may lead to beneficial effects by inhibition of NEP, which is involved in the impairment of glucose homeostasis through modulation of insulin resistance. NEP increases dipeptidyl peptidase-4 (DPP4) activity and contributes to increasing active GLP-1 proteolysis so NEP inhibitors may improve glycemic control through increasing endogenous GLP-1 activity and reduction of DPP4 activity. Thus, NEP inhibitors could be effective alone or in combination with antidiabetic agents in treating T2DM patients. However, long-term and short-term effects of NEP inhibitors may lead to a detrimental effect on insulin sensitivity and glucose homeostasis through different mechanisms including augmentation of substrates and pancreatic amyloid deposition. These findings are confirmed in animal but not in humans. In conclusion, NEP inhibitors produce beneficial rather than detrimental effects on glucose homeostasis and insulin sensitivity in humans though most of the detrimental effects of NEP inhibitors are confirmed in animal studies.
Collapse
Affiliation(s)
- Faisal Holil AlAnazi
- Department of Medicine, College of MedicineMajmaah UniversityMajmaahSaudi Arabia
| | - Hayder M. Al‐kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineALmustansiriyia UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineALmustansiriyia UniversityBaghdadIraq
| | - Athanasios Alexiou
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- AFNP MedWienAustria
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐Herdecke, University of Witten‐HerdeckeWuppertalGermany
| | - Hanan A. Ogaly
- Chemistry Department, College of ScienceKing Khalid UniversityAbhaSaudi Arabia
| | - Yousef Abud Alanazi
- Department of Pediatrics, College of MedicineMajmaah UniversityMajmaahSaudi Arabia
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMarsa MatruhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
34
|
Colasante C, Bonilla-Martinez R, Berg T, Windhorst A, Baumgart-Vogt E. Peroxisomes during postnatal development of mouse endocrine and exocrine pancreas display cell-type- and stage-specific protein composition. Cell Tissue Res 2023:10.1007/s00441-023-03766-6. [PMID: 37126142 DOI: 10.1007/s00441-023-03766-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/15/2023] [Indexed: 05/02/2023]
Abstract
Peroxisomal dysfunction unhinges cellular metabolism by causing the accumulation of toxic metabolic intermediates (e.g. reactive oxygen species, very -chain fatty acids, phytanic acid or eicosanoids) and the depletion of important lipid products (e.g. plasmalogens, polyunsaturated fatty acids), leading to various proinflammatory and devastating pathophysiological conditions like metabolic syndrome and age-related diseases including diabetes. Because the peroxisomal antioxidative marker enzyme catalase is low abundant in Langerhans islet cells, peroxisomes were considered scarcely present in the endocrine pancreas. Recently, studies demonstrated that the peroxisomal metabolism is relevant for pancreatic cell functionality. During the postnatal period, significant changes occur in the cell structure and the metabolism to trigger the final maturation of the pancreas, including cell proliferation, regulation of energy metabolism, and activation of signalling pathways. Our aim in this study was to (i) morphometrically analyse the density of peroxisomes in mouse endocrine versus exocrine pancreas and (ii) investigate how the distribution and the abundance of peroxisomal proteins involved in biogenesis, antioxidative defence and fatty acid metabolism change during pancreatic maturation in the postnatal period. Our results prove that endocrine and exocrine pancreatic cells contain high amounts of peroxisomes with heterogeneous protein content indicating that distinct endocrine and exocrine cell types require a specific set of peroxisomal proteins depending on their individual physiological functions. We further show that significant postnatal changes occur in the peroxisomal compartment of different pancreatic cells that are most probably relevant for the metabolic maturation and differentiation of the pancreas during the development from birth to adulthood.
Collapse
Affiliation(s)
- Claudia Colasante
- Institute for Anatomy and Cell Biology, Medical Cell Biology, Justus Liebig -University, Aulweg 123, 35392, Giessen, Germany
| | - Rocio Bonilla-Martinez
- Institute for Anatomy and Cell Biology, Medical Cell Biology, Justus Liebig -University, Aulweg 123, 35392, Giessen, Germany
| | - Timm Berg
- Institute for Anatomy and Cell Biology, Medical Cell Biology, Justus Liebig -University, Aulweg 123, 35392, Giessen, Germany
| | - Anita Windhorst
- Institute for Medical Informatic, Justus Liebig University, Rudolf-Buchheim-Str. 6, 35392, Gießen, Germany
| | - Eveline Baumgart-Vogt
- Institute for Anatomy and Cell Biology, Medical Cell Biology, Justus Liebig -University, Aulweg 123, 35392, Giessen, Germany.
| |
Collapse
|
35
|
Magenheim J, Maestro MA, Sharon N, Herrera PL, Murtaugh LC, Kopp J, Sander M, Gu G, Melton DA, Ferrer J, Dor Y. Matters arising: Insufficient evidence that pancreatic β cells are derived from adult ductal Neurog3-expressing progenitors. Cell Stem Cell 2023; 30:488-497.e3. [PMID: 37028408 DOI: 10.1016/j.stem.2023.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/29/2022] [Accepted: 03/01/2023] [Indexed: 04/08/2023]
Abstract
Understanding the origin of pancreatic β cells has profound implications for regenerative therapies in diabetes. For over a century, it was widely held that adult pancreatic duct cells act as endocrine progenitors, but lineage-tracing experiments challenged this dogma. Gribben et al. recently used two existing lineage-tracing models and single-cell RNA sequencing to conclude that adult pancreatic ducts contain endocrine progenitors that differentiate to insulin-expressing β cells at a physiologically important rate. We now offer an alternative interpretation of these experiments. Our data indicate that the two Cre lines that were used directly label adult islet somatostatin-producing ∂ cells, which precludes their use to assess whether β cells originate from duct cells. Furthermore, many labeled ∂ cells, which have an elongated neuron-like shape, were likely misclassified as β cells because insulin-somatostatin coimmunolocalizations were not used. We conclude that most evidence so far indicates that endocrine and exocrine lineage borders are rarely crossed in the adult pancreas.
Collapse
|
36
|
Wang Y, Gao Y, Li X, Tian G, Lü J. Single-cell infrared phenomics identifies cell heterogeneity of individual pancreatic islets in mouse model. Anal Chim Acta 2023; 1258:341185. [PMID: 37087295 DOI: 10.1016/j.aca.2023.341185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 04/08/2023]
Abstract
Identifying the islet heterogeneity (cell types and the proportion of each subpopulation) and their relevance to function and disease will lead to fundamental information for the prevention and therapies of diabetes. Here, we introduce a single-cell phenotypic essay on the heterogeneity within individual pancreatic islets by using the combination of synchrotron infrared microspectroscopy and quantitative calculation. In a mouse model, the cellular heterogeneities at both the whole pancreas and single intact islet level were identified. The variation of biochemical phenotypes successfully subdivided islet cells into five main groups and quantitatively determined their proportion. These findings not only demonstrate single-cell infrared phenomics as a value complementary technique and strategy for the description of cellular heterogeneity within the pancreatic islets but also provide a quick, label-free optical platform for investigating phenotypic heterogeneity at the small-organelle level with single cell resolution.
Collapse
|
37
|
Fontcuberta-PiSunyer M, García-Alamán A, Prades È, Téllez N, Alves-Figueiredo H, Ramos-Rodríguez M, Enrich C, Fernandez-Ruiz R, Cervantes S, Clua L, Ramón-Azcón J, Broca C, Wojtusciszyn A, Montserrat N, Pasquali L, Novials A, Servitja JM, Vidal J, Gomis R, Gasa R. Direct reprogramming of human fibroblasts into insulin-producing cells using transcription factors. Commun Biol 2023; 6:256. [PMID: 36964318 PMCID: PMC10039074 DOI: 10.1038/s42003-023-04627-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/24/2023] [Indexed: 03/26/2023] Open
Abstract
Direct lineage reprogramming of one somatic cell into another without transitioning through a progenitor stage has emerged as a strategy to generate clinically relevant cell types. One cell type of interest is the pancreatic insulin-producing β cell whose loss and/or dysfunction leads to diabetes. To date it has been possible to create β-like cells from related endodermal cell types by forcing the expression of developmental transcription factors, but not from more distant cell lineages like fibroblasts. In light of the therapeutic benefits of choosing an accessible cell type as the cell of origin, in this study we set out to analyze the feasibility of transforming human skin fibroblasts into β-like cells. We describe how the timed-introduction of five developmental transcription factors (Neurog3, Pdx1, MafA, Pax4, and Nkx2-2) promotes conversion of fibroblasts toward a β-cell fate. Reprogrammed cells exhibit β-cell features including β-cell gene expression and glucose-responsive intracellular calcium mobilization. Moreover, reprogrammed cells display glucose-induced insulin secretion in vitro and in vivo. This work provides proof-of-concept of the capacity to make insulin-producing cells from human fibroblasts via transcription factor-mediated direct reprogramming.
Collapse
Affiliation(s)
| | - Ainhoa García-Alamán
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Èlia Prades
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Noèlia Téllez
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Medicine of University of Vic, Central University of Catalonia (UVic-UCC), Vic, Spain
- Institute of Health Research and Innovation at Central Catalonia (IRIS-CC), Vic, Spain
| | - Hugo Alves-Figueiredo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, N.L., México
| | | | - Carlos Enrich
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Rebeca Fernandez-Ruiz
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Cervantes
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Laura Clua
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
| | - Javier Ramón-Azcón
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Christophe Broca
- CHU Montpellier, Laboratory of Cell Therapy for Diabetes (LTCD), Hospital St-Eloi, Montpellier, France
| | - Anne Wojtusciszyn
- CHU Montpellier, Laboratory of Cell Therapy for Diabetes (LTCD), Hospital St-Eloi, Montpellier, France
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Nuria Montserrat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
| | - Lorenzo Pasquali
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Anna Novials
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Joan-Marc Servitja
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Josep Vidal
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
- Endocrinology and Nutrition Department, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Ramon Gomis
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Rosa Gasa
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
38
|
Martins JRN, Lopes S, Hurtado HN, da Silva FN, Villard DR, Taboga SR, Souza KLA, Quesada I, Soriano S, Rafacho A. Acute and chronic effects of the organophosphate malathion on the pancreatic α and β cell viability, cell structure, and voltage-gated K + currents. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104046. [PMID: 36587778 DOI: 10.1016/j.etap.2022.104046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/09/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Studies indicate that the pesticide malathion may have a role in diabetes. Herein, we determined the effects of different concentrations of malathion on survival, ultrastructure, and electrophysiologic islet cell parameters. Acutely, high concentrations of malathion (0.5 or 1 mM) increased cell death in rat islet cells, while low concentrations (0.1 mM) caused signs of cell damage in pancreatic α and β cells. Exposure of RINm5F cells to malathion for 24 or 48 h confirmed the reduction in β-cell viability at lower concentrations (0.001-100 µM). Chronic exposure of mouse pancreatic α and β cells to 3 nM of malathion led to increased voltage-gated K+ (Kv) currents in α-cells. Our findings show a time and concentration dependency for the malathion effect on the reduction of islet cell viability and indicate that pancreatic α cells are more sensitive to malathion effects on Kv currents and cell death.
Collapse
Affiliation(s)
- J R N Martins
- Laboratory of Investigation in Chronic Diseases LIDoC, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina UFSC, Florianópolis, Brazil; Graduate Program in Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina UFSC, Florianópolis, Brazil
| | - S Lopes
- Central Laboratory of Electron Microscopy LCME, PROPESQ, Federal University of Santa Catarina UFSC, Florianópolis, Brazil
| | - H N Hurtado
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain
| | - F N da Silva
- Laboratory of Investigation in Chronic Diseases LIDoC, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina UFSC, Florianópolis, Brazil; Graduate Program in Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina UFSC, Florianópolis, Brazil
| | - D R Villard
- NUMPEX-BIO, Campus Duque de Caxias, Universidade Federal do Rio de Janeiro (UFRJ), Campus UFRJ Duque de Caxias Prof. Geraldo Cidade, Duque de Caxias 25245-390, Brazil
| | - S R Taboga
- Department of Biological Sciences, Laboratory of Microscopy and Microanalysis, Universidade Estadual Paulista-UNESP, São Paulo, Brazil
| | - K L A Souza
- NUMPEX-BIO, Campus Duque de Caxias, Universidade Federal do Rio de Janeiro (UFRJ), Campus UFRJ Duque de Caxias Prof. Geraldo Cidade, Duque de Caxias 25245-390, Brazil
| | - I Quesada
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain; Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - S Soriano
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain; Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain
| | - A Rafacho
- Laboratory of Investigation in Chronic Diseases LIDoC, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina UFSC, Florianópolis, Brazil; Graduate Program in Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina UFSC, Florianópolis, Brazil.
| |
Collapse
|
39
|
Zhu W, Tanday N, Flatt PR, Irwin N. Pancreatic polypeptide revisited: Potential therapeutic effects in obesity-diabetes. Peptides 2023; 160:170923. [PMID: 36509169 DOI: 10.1016/j.peptides.2022.170923] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Pancreatic polypeptide (PP), a member of the neuropeptide Y (NPY) family of peptides, is a hormone secreted from the endocrine pancreas with established actions on appetite regulation. Thus, through activation of hypothalamic neuropeptide Y4 (NPY4R or Y4) receptors PP induces satiety in animals and humans, suggesting potential anti-obesity actions. In addition, despite being actively secreted from pancreatic islets and evidence of local Y4 receptor expression, PP mediated effects on the endocrine pancreas have not been fully elucidated. To date, it appears that PP possesses an acute insulinostatic effect, similar to the impact of other peptides from the NPY family. However, it is interesting that prolonged activation of pancreatic Y1 receptors leads to established benefits on beta-cell turnover, preservation of beta-cell identity and improved insulin secretory responsiveness. This may hint towards possible similar anti-diabetic actions of sustained Y4 receptor modulation, since the Y1 and Y4 receptors trigger comparable cell signalling pathways. In terms of exploiting the prospective therapeutic promise of PP, this is severely restricted by a short circulating half-life as is the case for many regulatory peptide hormones. It follows that long-acting, enzyme resistant, forms of PP will be required to determine viability of the Y4 receptor as an anti-obesity and -diabetes drug target. The current review aims to refocus interest on the biology of PP and highlight opportunities for therapeutic development.
Collapse
|
40
|
Mongia A, Saunders DC, Wang YJ, Brissova M, Powers AC, Kaestner KH, Vahedi G, Naji A, Schwartz GW, Faryabi RB. AnnoSpat annotates cell types and quantifies cellular arrangements from spatial proteomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.15.524135. [PMID: 36712052 PMCID: PMC9882100 DOI: 10.1101/2023.01.15.524135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cellular composition and anatomical organization influence normal and aberrant organ functions. Emerging spatial single-cell proteomic assays such as Image Mass Cytometry (IMC) and Co-Detection by Indexing (CODEX) have facilitated the study of cellular composition and organization by enabling high-throughput measurement of cells and their localization directly in intact tissues. However, annotation of cell types and quantification of their relative localization in tissues remain challenging. To address these unmet needs, we developed AnnoSpat (Annotator and Spatial Pattern Finder) that uses neural network and point process algorithms to automatically identify cell types and quantify cell-cell proximity relationships. Our study of data from IMC and CODEX show the superior performance of AnnoSpat in rapid and accurate annotation of cell types compared to alternative approaches. Moreover, the application of AnnoSpat to type 1 diabetic, non-diabetic autoantibody-positive, and non-diabetic organ donor cohorts recapitulated known islet pathobiology and showed differential dynamics of pancreatic polypeptide (PP) cell abundance and CD8+ T cells infiltration in islets during type 1 diabetes progression.
Collapse
Affiliation(s)
- Aanchal Mongia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Diane C. Saunders
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yue J. Wang
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Marcela Brissova
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alvin C. Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University School of Medicine, Nashville, TN, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, 37212, USA
- Human Pancreas Analysis Program Consortium
| | - Klaus H. Kaestner
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Human Pancreas Analysis Program Consortium
| | - Golnaz Vahedi
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Human Pancreas Analysis Program Consortium
| | - Ali Naji
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Human Pancreas Analysis Program Consortium
| | - Gregory W. Schwartz
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Robert B. Faryabi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Human Pancreas Analysis Program Consortium
| |
Collapse
|
41
|
Infante M, Ricordi C. The unique pathophysiological features of diabetes mellitus secondary to total pancreatectomy: proposal for a new classification distinct from diabetes of the exocrine pancreas. Expert Rev Endocrinol Metab 2023; 18:19-32. [PMID: 36692892 DOI: 10.1080/17446651.2023.2168645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Diabetes of the exocrine pancreas (DEP; a.k.a. pancreatic diabetes or pancreatogenic diabetes or type 3c diabetes mellitus or T3cDM) refers to different diabetes types resulting from disorders of the exocrine pancreas. DEP is characterized by the structural and functional loss of glucose-normalizing insulin secretion in the context of exocrine pancreatic dysfunction. Among these forms, new-onset diabetes mellitus secondary to total pancreatectomy (TP) has unique pathophysiological and clinical features, for which we propose a new nomenclature such as post-total pancreatectomy diabetes mellitus (PTPDM). AREAS COVERED TP results in the complete loss of pancreatic parenchyma, with subsequent absolute insulinopenia and lifelong need for exogenous insulin therapy. Patients with PTPDM also exhibit deficiency of glucagon, amylin and pancreatic polypeptide. These endocrine abnormalities, coupled with increased peripheral insulin sensitivity, deficiency of pancreatic enzymes and TP-related modifications of gastrointestinal anatomy, can lead to marked glucose variability and increased risk of iatrogenic (insulin-induced) severe hypoglycemic episodes ('brittle diabetes'). EXPERT OPINION We believe that diabetes mellitus secondary to TP should not be included in the DEP spectrum in light of its peculiar pathophysiological and clinical features. Therefore, we propose a new classification for this entity, that would likely provide more accurate prognosis and treatment strategies.
Collapse
Affiliation(s)
- Marco Infante
- Cell Transplant Center, Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, Miami, FL, USA
- Section of Diabetes and Metabolic Disorders, UniCamillus, Saint Camillus International University of Health Sciences, Rome, Italy
- Diabetes Research Institute Federation (DRIF), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Rome, Italy
| | - Camillo Ricordi
- Cell Transplant Center, Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
42
|
Abstract
The islets of Langerhans are highly organized structures that have species-specific, three-dimensional tissue architecture. Islet architecture is critical for proper hormone secretion in response to nutritional stimuli. Islet architecture is disrupted in all types of diabetes mellitus and in cadaveric islets for transplantation during isolation, culture, and perfusion, limiting patient outcomes. Moreover, recapitulating native islet architecture remains a key challenge for in vitro generation of islets from stem cells. In this review, we discuss work that has led to the current understanding of determinants of pancreatic islet architecture, and how this architecture is maintained or disrupted during tissue remodeling in response to normal and pathological metabolic changes. We further discuss both empirical and modeling data that highlight the importance of islet architecture for islet function.
Collapse
Affiliation(s)
- Melissa T. Adams
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Barak Blum
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
- CONTACT Barak Blum Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI53705, USA
| |
Collapse
|
43
|
Pei X, Wang H, Xu P, Liang K, Yuan L. The core autophagy protein ATG5 controls the polarity of the Golgi apparatus and insulin secretion of pancreatic beta cells. Biochem Biophys Res Commun 2022; 629:26-33. [PMID: 36095911 DOI: 10.1016/j.bbrc.2022.08.084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 02/08/2023]
Abstract
Pancreatic beta cells are insulin-producing cells that are structurally and functionally polarized in the islets of Langerhans. The organization and position of the Golgi complex play a key role in maintaining a polarized cell state, but the factors and molecular mechanisms determining the Golgi polarization of pancreatic beta cells are still unknown. In the current study, using pancreatic beta cell-specific Atg5 knockout mice, we found that Atg5, an essential gene for autophagy, plays a pivotal role in regulating Golgi integrity and polarization by affecting the expression of genes involved in vesicle transport. Deletion of Atg5 led to endoplasmic reticulum (ER) stress and impaired the distribution of proinsulin and insulin secretion of pancreatic beta cells, which further exacerbates diabetes. These results contribute to a comprehensive understanding of autophagy-mediated Golgi polarization and its regulation of the function of pancreatic beta cells.
Collapse
Affiliation(s)
- Xintong Pei
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Huiyu Wang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Pingyong Xu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100101, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Kuo Liang
- Department of General Surgery, XuanWu Hospital, Capital Medical University, Beijing, China.
| | - Lin Yuan
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
44
|
van Albada ME, Mohnike K, Dunne MJ, Banerjee I, Betz SF. Somatostatin receptors in congenital hyperinsulinism: Biology to bedside. Front Endocrinol (Lausanne) 2022; 13:921357. [PMID: 36237195 PMCID: PMC9552539 DOI: 10.3389/fendo.2022.921357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Congenital hyperinsulinism (CHI), although a rare disease, is an important cause of severe hypoglycemia in early infancy and childhood, causing preventable morbidity and mortality. Prompt diagnosis and appropriate treatment is necessary to prevent hypoglycaemia mediated brain damage. At present, the medical treatment of CHI is limited to diazoxide as first line and synthetic somatostatin receptor ligands (SRLs) as second line options; therefore understanding somatostatin biology and treatment perspectives is important. Under healthy conditions, somatostatin secreted from pancreatic islet δ-cells reduces insulin release through somatostatin receptor induced cAMP-mediated downregulation and paracrine inhibition of β- cells. Several SRLs with extended duration of action are now commercially available and are being used off-label in CHI patients. Efficacy remains variable with the present generation of SRLs, with treatment effect often being compromised by loss of initial response and adverse effects such as bowel ischaemia and hepatobiliary dysfunction. In this review we have addressed the biology of the somatostatin system contexualised to CHI. We have discussed the clinical use, limitations, and complications of somatostatin agonists and new and emerging therapies for CHI.
Collapse
Affiliation(s)
- Mirjam E. van Albada
- Department of Paediatric Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Klaus Mohnike
- Universitätskinderklinik, Otto-von-Guericke-Universität, Magdeburg, Germany
| | - Mark J. Dunne
- Department of Physiology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Indi Banerjee
- Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital and Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | | |
Collapse
|
45
|
Pignatelli C, Campo F, Neroni A, Piemonti L, Citro A. Bioengineering the Vascularized Endocrine Pancreas: A Fine-Tuned Interplay Between Vascularization, Extracellular-Matrix-Based Scaffold Architecture, and Insulin-Producing Cells. Transpl Int 2022; 35:10555. [PMID: 36090775 PMCID: PMC9452644 DOI: 10.3389/ti.2022.10555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022]
Abstract
Intrahepatic islet transplantation is a promising β-cell replacement strategy for the treatment of type 1 diabetes. Instant blood-mediated inflammatory reactions, acute inflammatory storm, and graft revascularization delay limit islet engraftment in the peri-transplant phase, hampering the success rate of the procedure. Growing evidence has demonstrated that islet engraftment efficiency may take advantage of several bioengineering approaches aimed to recreate both vascular and endocrine compartments either ex vivo or in vivo. To this end, endocrine pancreas bioengineering is an emerging field in β-cell replacement, which might provide endocrine cells with all the building blocks (vascularization, ECM composition, or micro/macro-architecture) useful for their successful engraftment and function in vivo. Studies on reshaping either the endocrine cellular composition or the islet microenvironment have been largely performed, focusing on a single building block element, without, however, grasping that their synergistic effect is indispensable for correct endocrine function. Herein, the review focuses on the minimum building blocks that an ideal vascularized endocrine scaffold should have to resemble the endocrine niche architecture, composition, and function to foster functional connections between the vascular and endocrine compartments. Additionally, this review highlights the possibility of designing bioengineered scaffolds integrating alternative endocrine sources to overcome donor organ shortages and the possibility of combining novel immune-preserving strategies for long-term graft function.
Collapse
Affiliation(s)
- Cataldo Pignatelli
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Campo
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Alessia Neroni
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Antonio Citro
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
46
|
Gloyn AL, Ibberson M, Marchetti P, Powers AC, Rorsman P, Sander M, Solimena M. Every islet matters: improving the impact of human islet research. Nat Metab 2022; 4:970-977. [PMID: 35953581 PMCID: PMC11135339 DOI: 10.1038/s42255-022-00607-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/14/2022] [Indexed: 11/10/2022]
Abstract
Detailed characterization of human pancreatic islets is key to elucidating the pathophysiology of all forms of diabetes, especially type 2 diabetes. However, access to human pancreatic islets is limited. Pancreatic tissue for islet retrieval can be obtained from brain-dead organ donors or from individuals undergoing pancreatectomy, often referred to as 'living donors'. Different protocols for human islet procurement can substantially impact islet function. This variability, coupled with heterogeneity between individuals and islets, results in analytical challenges to separate genuine disease pathology or differences between human donors from experimental noise. There are currently no international guidelines for human donor phenotyping, islet procurement and functional characterization. This lack of standardization means that substantial investments from multiple international efforts towards improved understanding of diabetes pathology cannot be fully leveraged. In this Perspective, we overview the status of the field of human islet research, highlight the challenges and propose actions that could accelerate research progress and increase understanding of type 2 diabetes to slow its pandemic spreading.
Collapse
Affiliation(s)
- Anna L Gloyn
- Department of Pediatrics, Division of Endocrinology & Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA.
| | - Mark Ibberson
- Vital-IT, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alvin C Powers
- Vanderbilt University Medical Center, Nashville, TN, USA
- VA Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Metabolic Physiology Unit, Institute of Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden
| | - Maike Sander
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San Diego, San Diego, CA, USA
| | - Michele Solimena
- Department of Molecular Diabetology, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
- Paul Langerhans Institute Dresden and German Center for Diabetes Resaerch (DZD e.V.), Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
47
|
Verberne AJM, Mussa BM. Neural control of pancreatic peptide hormone secretion. Peptides 2022; 152:170768. [PMID: 35189258 DOI: 10.1016/j.peptides.2022.170768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 11/20/2022]
Abstract
Pancreatic peptide hormone secretion is inextricably linked to maintenance of normal levels of blood glucose. In animals and man, pancreatic peptide hormone secretion is controlled, at least in part, by input from parasympathetic (vagal) premotor neurons that are found principally in the dorsal motor nucleus of the vagus (DMV). Iatrogenic (insulin-induced) hypoglycaemia evokes a homeostatic response commonly referred to as the glucose counter-regulatory response. This homeostatic response is of particular importance in Type 1 diabetes in which episodes of hypoglycaemia are common, debilitating and lead to suboptimal control of blood glucose. Glucagon is the principal counterregulatory hormone but for reasons unknown, its secretion during insulin-induced hypoglycaemia is impaired. Pancreatic parasympathetic neurons are distinguishable electrophysiologically from those that control other (e.g. gastric) functions and are controlled by supramedullary inputs from hypothalamic structures such as the perifornical region. During hypoglycaemia, glucose-sensitive, GABAergic neurons in the ventromedial hypothalamus are inhibited leading to disinhibition of perifornical orexin neurons with projections to the DMV which, in turn, leads to increased secretion of glucagon.
Collapse
Affiliation(s)
- Anthony J M Verberne
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia.
| | - Bashair M Mussa
- Basic Medical Science Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
48
|
Patel SN, Mathews CE, Chandler R, Stabler CL. The Foundation for Engineering a Pancreatic Islet Niche. Front Endocrinol (Lausanne) 2022; 13:881525. [PMID: 35600597 PMCID: PMC9114707 DOI: 10.3389/fendo.2022.881525] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/30/2022] [Indexed: 12/01/2022] Open
Abstract
Progress in diabetes research is hindered, in part, by deficiencies in current experimental systems to accurately model human pathophysiology and/or predict clinical outcomes. Engineering human-centric platforms that more closely mimic in vivo physiology, however, requires thoughtful and informed design. Summarizing our contemporary understanding of the unique and critical features of the pancreatic islet can inform engineering design criteria. Furthermore, a broad understanding of conventional experimental practices and their current advantages and limitations ensures that new models address key gaps. Improving beyond traditional cell culture, emerging platforms are combining diabetes-relevant cells within three-dimensional niches containing dynamic matrices and controlled fluidic flow. While highly promising, islet-on-a-chip prototypes must evolve their utility, adaptability, and adoptability to ensure broad and reproducible use. Here we propose a roadmap for engineers to craft biorelevant and accessible diabetes models. Concurrently, we seek to inspire biologists to leverage such tools to ask complex and nuanced questions. The progenies of such diabetes models should ultimately enable investigators to translate ambitious research expeditions from benchtop to the clinic.
Collapse
Affiliation(s)
- Smit N. Patel
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Clayton E. Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
- Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Rachel Chandler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Cherie L. Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
- Diabetes Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
49
|
Thor D. G protein-coupled receptors as regulators of pancreatic islet functionality. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119235. [PMID: 35151663 DOI: 10.1016/j.bbamcr.2022.119235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/03/2023]
Abstract
Glucose homeostasis is maintained by hormones secreted from different types of pancreatic islets and its dysregulation can result in diseases including diabetes mellitus. The secretion of hormones from pancreatic islets is highly complex and tightly controlled by G protein-coupled receptors (GPCRs). Moreover, GPCR signaling may play a role in enhancing islet cell replication and proliferation. Thus, targeting GPCRs offers a promising strategy for regulating the functionality of pancreatic islets. Here, available RNAseq datasets from human and mouse islets were used to identify the GPCR expression profile and the impact of GPCR signaling for normal islet functionality is discussed.
Collapse
Affiliation(s)
- Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany.
| |
Collapse
|
50
|
Zhao Y, Zhou Y, Xiao M, Huang Y, Qi M, Kong Z, Chi J, Che K, Lv W, Dong B, Wang Y. Impaired glucose tolerance is associated with enhanced postprandial pancreatic polypeptide secretion. J Diabetes 2022; 14:334-344. [PMID: 35437937 PMCID: PMC9366580 DOI: 10.1111/1753-0407.13268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/05/2022] [Accepted: 03/26/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The purpose of this study is to compare serum pancreatic polypeptide (PP), insulin, C-peptide, and glucagon in different glucose tolerance stages; analyze the influencing factors of PP secretion; and further explore the role of PP in the pathogenesis of diabetes mellitus. METHODS Data were collected from 100 subjects from hospital. According to the results of oral glucose tolerance test (OGTT), the subjects were divided into a normal glucose tolerance (NGT) group, an impaired glucose regulation (IGR) group, and a newly diagnosed type 2 diabetes mellitus (T2DM) group. PP and the related parameters were measured, and the area under the curve (AUC) 120 min after OGTT was calculated. AUCpp (AUC of PP) was used as the dependent variable and the potentially influencing factors were used as the independent variable for multiple linear regression analysis. RESULTS Postprandial 60 min PP in the IGR group was higher than those in the NGT group (2973.80 [±547.49] pg·h/mL vs 2663.55 [±594.89] pg·h/mL, p < 0.05). AUCpp was significantly higher in the IGR group (428.76 pg·h/mL, 95% confidence interval [CI] [41.06 -816.46], p = 0.031) and newly diagnosed T2DM group (404.35 pg·h/mL, 95% CI [5.37-803.33], p = 0.047) than in the NGT group. AUCpp was negatively correlated with body mass index (BMI) (r = -0.235, p = 0.038) and positively correlated with postprandial 60 min blood glucose (r = 0.370, p = 0.001) and AUCbg (AUC of blood glucose) (r = 0.323, p = 0.007). Multiple linear regression analysis indicated that there was a linear correlation between BMI, AUCbg , and AUCpp (p = 0.004, p = 0.001), and the regression equation was calculated as: AUCpp = 6592.272 + 86.275 × AUCbg -95.291 × BMI (R2 = 12.7%, p < 0.05). CONCLUSIONS Compared with NGT subjects, IGR and T2DM patients have an enhanced postprandial PP secretion. In T2DMs, the secretion of PP is mainly affected by BMI and blood glucose.
Collapse
Affiliation(s)
- Yanyun Zhao
- Department of Endocrinology and MetabolismAffiliated Hospital of Qingdao UniversityQingdaoChina
- Medical Research CenterQingdao Key Laboratory of Thyroid DiseasesQingdaoChina
| | - Yue Zhou
- Department of Endocrinology and MetabolismAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Min Xiao
- Department of Endocrinology and MetabolismAffiliated Hospital of Qingdao UniversityQingdaoChina
- Medical Research CenterQingdao Key Laboratory of Thyroid DiseasesQingdaoChina
| | - Yajing Huang
- Department of Endocrinology and MetabolismAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Mengmeng Qi
- Department of Endocrinology and MetabolismAffiliated Hospital of Qingdao UniversityQingdaoChina
- Medical Research CenterQingdao Key Laboratory of Thyroid DiseasesQingdaoChina
| | - Zili Kong
- Department of Endocrinology and MetabolismAffiliated Hospital of Qingdao UniversityQingdaoChina
- Medical Research CenterQingdao Key Laboratory of Thyroid DiseasesQingdaoChina
| | - Jingwei Chi
- Medical Research CenterQingdao Key Laboratory of Thyroid DiseasesQingdaoChina
| | - Kui Che
- Medical Research CenterQingdao Key Laboratory of Thyroid DiseasesQingdaoChina
| | - Wenshan Lv
- Department of Endocrinology and MetabolismAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Bingzi Dong
- Department of Endocrinology and MetabolismAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Yangang Wang
- Department of Endocrinology and MetabolismAffiliated Hospital of Qingdao UniversityQingdaoChina
| |
Collapse
|