1
|
Wang YN, Li R, Huang Y, Chen H, Nie H, Liu L, Zou X, Zhong J, Zheng B, Gong Q. The role of B cells in the pathogenesis of type 1 diabetes. Front Immunol 2024; 15:1450366. [PMID: 39776900 PMCID: PMC11703732 DOI: 10.3389/fimmu.2024.1450366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
Type 1 diabetes (T1D) is a metabolic disorder caused by a complete lack of insulin, primarily manifested by hyperglycemia. The mechanisms underlying the onset of T1D are complex, involving genetics, environment, and various unknown factors, leading to the infiltration of various immune components into the islets. Besides T cells, B cells are now considered important contributors to the pathogenesis of T1D, according to recent studies. In non-obese diabetic (NOD) mice, the absence of B cells prevents the development of T1D, and B-cell depletion can even restore the function of pancreatic β cells, emphasizing their involvement in the development of T1D. Naturally, besides pathogenic B cells, regulatory B cells (Bregs) might have a protective function in T1D. This article examines the mechanisms behind B-cell tolerance and the defects in B-cell tolerance checkpoints in T1D. We explored possible functions of B cells in T1D, including the role of islet autoantibodies in T1D, T-B cell interactions, and the role of Bregs in the pathogenesis of T1D. We also summarized the advances of B cell-targeted therapy, exploring new methods for intervention and treatment of T1D.
Collapse
Affiliation(s)
- Ya-nan Wang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Ruihua Li
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Yaxuan Huang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Hui Chen
- Department of Laboratory Medicine, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Hao Nie
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei, China
| | - Lian Liu
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei, China
| | - Xiaoting Zou
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bing Zheng
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
2
|
Su QY, Jiang ZQ, Song XY, Zhang SX. Regulatory B cells in autoimmune diseases: Insights and therapeutic potential. J Autoimmun 2024; 149:103326. [PMID: 39520834 DOI: 10.1016/j.jaut.2024.103326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/06/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Autoimmune diseases are characterized by the body's immune system attacking its own cells, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS). In recent studies, regulatory B cells (Bregs), which play a vital role in maintaining peripheral tolerance and controlling persistent autoimmune diseases (ADs), have shown great potential in treating ADs. This review synthesizes the latest advancements in targeted therapies for ADs, with a particular emphasis on the subgroups, phenotypic markers, and signal pathways associated with Bregs. Following an examination of these elements, the discussion pivots to innovative Breg-based therapeutic approaches for the management of ADs.
Collapse
Affiliation(s)
- Qin-Yi Su
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China
| | - Zhong-Qing Jiang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China
| | - Xuan-Yi Song
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China
| | - Sheng-Xiao Zhang
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
3
|
Satitsuksanoa P, Iwasaki S, Boersma J, Bel Imam M, Schneider SR, Chang I, van de Veen W, Akdis M. B cells: The many facets of B cells in allergic diseases. J Allergy Clin Immunol 2023; 152:567-581. [PMID: 37247640 DOI: 10.1016/j.jaci.2023.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/30/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
B cells play a key role in our immune system through their ability to produce antibodies, suppress a proinflammatory state, and contribute to central immune tolerance. We aim to provide an in-depth knowledge of the molecular biology of B cells, including their origin, developmental process, types and subsets, and functions. In allergic diseases, B cells are well known to induce and maintain immune tolerance through the production of suppressor cytokines such as IL-10. Similarly, B cells protect against viral infections such as severe acute respiratory syndrome coronavirus 2 that caused the recent coronavirus disease 2019 pandemic. Considering the unique and multifaceted functions of B cells, we hereby provide a comprehensive overview of the current knowledge of B-cell biology and its clinical applications in allergic diseases, organ transplantation, and cancer.
Collapse
Affiliation(s)
- Pattraporn Satitsuksanoa
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland.
| | - Sayuri Iwasaki
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Wageningen University & Research, Wageningen, The Netherlands
| | - Jolien Boersma
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Wageningen University & Research, Wageningen, The Netherlands
| | - Manal Bel Imam
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Stephan R Schneider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Iris Chang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Sean N. Parker Centre for Allergy and Asthma Research, Department of Medicine, Stanford University, Palo Alto, Calif
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland.
| |
Collapse
|
4
|
Chayé MAM, Gasan TA, Ozir-Fazalalikhan A, Scheenstra MR, Zawistowska-Deniziak A, van Hengel ORJ, Gentenaar M, Manurung MD, Harvey MR, Codée JDC, Chiodo F, Heijke AM, Kalinowska A, van Diepen A, Hensbergen PJ, Yazdanbakhsh M, Guigas B, Hokke CH, Smits HH. Schistosoma mansoni egg-derived thioredoxin and Sm14 drive the development of IL-10 producing regulatory B cells. PLoS Negl Trop Dis 2023; 17:e0011344. [PMID: 37363916 DOI: 10.1371/journal.pntd.0011344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 05/02/2023] [Indexed: 06/28/2023] Open
Abstract
During chronic schistosome infections, a complex regulatory network is induced to regulate the host immune system, in which IL-10-producing regulatory B (Breg) cells play a significant role. Schistosoma mansoni soluble egg antigens (SEA) are bound and internalized by B cells and induce both human and mouse IL-10 producing Breg cells. To identify Breg-inducing proteins in SEA, we fractionated SEA by size exclusion chromatography and found 6 fractions able to induce IL-10 production by B cells (out of 18) in the high, medium and low molecular weight (MW) range. The high MW fractions were rich in heavily glycosylated molecules, including multi-fucosylated proteins. Using SEA glycoproteins purified by affinity chromatography and synthetic glycans coupled to gold nanoparticles, we investigated the role of these glycan structures in inducing IL-10 production by B cells. Then, we performed proteomics analysis on active low MW fractions and identified a number of proteins with putative immunomodulatory properties, notably thioredoxin (SmTrx1) and the fatty acid binding protein Sm14. Subsequent splenic murine B cell stimulations and hock immunizations with recombinant SmTrx1 and Sm14 showed their ability to dose-dependently induce IL-10 production by B cells both in vitro and in vivo. Identification of unique Breg cells-inducing molecules may pave the way to innovative therapeutic strategies for inflammatory and auto-immune diseases.
Collapse
Affiliation(s)
- Mathilde A M Chayé
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas A Gasan
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Maaike R Scheenstra
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anna Zawistowska-Deniziak
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Parasitology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Oscar R J van Hengel
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Max Gentenaar
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mikhael D Manurung
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael R Harvey
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Fabrizio Chiodo
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- Italian National Research Council, Institute of Biomolecular Chemistry, Pozzuoli, Italy
| | - Anouk M Heijke
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alicja Kalinowska
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Angela van Diepen
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul J Hensbergen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelis H Hokke
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hermelijn H Smits
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
5
|
Wang XY, Wei Y, Hu B, Liao Y, Wang X, Wan WH, Huang CX, Mahabati M, Liu ZY, Qu JR, Chen XD, Chen DP, Kuang DM, Wang XH, Chen Y. c-Myc-driven glycolysis polarizes functional regulatory B cells that trigger pathogenic inflammatory responses. Signal Transduct Target Ther 2022; 7:105. [PMID: 35430810 PMCID: PMC9013717 DOI: 10.1038/s41392-022-00948-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 11/29/2022] Open
Abstract
B cells secreting IL-10 functionally are recognized as functional regulatory B (Breg) cells; however, direct evidence concerning the phenotype, regulation, and functional and clinical relevance of IL-10-secreting Breg cells in humans is still lacking. Here, we demonstrate that, although IL-10 itself is anti-inflammatory, IL-10+ functional Breg cells in patients with systemic lupus erythematosus (SLE) display aggressive inflammatory features; these features shift their functions away from inducing CD8+ T cell tolerance and cause them to induce a pathogenic CD4+ T cell response. Functional Breg cells polarized by environmental factors (e.g., CPG-DNA) or directly isolated from patients with SLE mainly exhibit a CD24intCD27-CD38-CD69+/hi phenotype that is different from that of their precursors. Mechanistically, MAPK/ERK/P38-elicited sequential oncogenic c-Myc upregulation and enhanced glycolysis are necessary for the generation and functional maintenance of functional Breg cells. Consistently, strategies that abrogate the activity of ERK, P38, c-Myc, and/or cell glycolysis can efficiently eliminate the pathogenic effects triggered by functional Breg cells.
Collapse
Affiliation(s)
- Xu-Yan Wang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuan Wei
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bo Hu
- Department of Laboratory Medicine, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuan Liao
- Department of Laboratory Medicine, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaodong Wang
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Wen-Hua Wan
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chun-Xiang Huang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Mahepali Mahabati
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zheng-Yu Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing-Rui Qu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Dan Chen
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dong-Ping Chen
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dong-Ming Kuang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Xue-Hao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China.
| | - Yun Chen
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
6
|
Garcia SG, Sandoval-Hellín N, Franquesa M. Regulatory B Cell Therapy in Kidney Transplantation. Front Pharmacol 2021; 12:791450. [PMID: 34950041 PMCID: PMC8689004 DOI: 10.3389/fphar.2021.791450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/22/2021] [Indexed: 01/22/2023] Open
Abstract
In the context of kidney injury, the role of Bregs is gaining interest. In a number of autoimmune diseases, the number and/or the function of Bregs has been shown to be impaired or downregulated, therefore restoring their balance might be a potential therapeutic tool. Moreover, in the context of kidney transplantation their upregulation has been linked to tolerance. However, a specific marker or set of markers that define Bregs as a unique cell subset has not been found and otherwise multiple phenotypes of Bregs have been studied. A quest on the proper markers and induction mechanisms is now the goal of many researchers. Here we summarize the most recent evidence on the role of Bregs in kidney disease by describing the relevance of in vitro and in vivo Bregs induction as well as the potential use of Bregs as cell therapy agents in kidney transplantation.
Collapse
Affiliation(s)
- Sergio G Garcia
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) and Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain.,Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Bellaterra, Spain
| | - Noelia Sandoval-Hellín
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) and Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
| | - Marcella Franquesa
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) and Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
| |
Collapse
|
7
|
de Mol J, Kuiper J, Tsiantoulas D, Foks AC. The Dynamics of B Cell Aging in Health and Disease. Front Immunol 2021; 12:733566. [PMID: 34675924 PMCID: PMC8524000 DOI: 10.3389/fimmu.2021.733566] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/16/2021] [Indexed: 12/30/2022] Open
Abstract
Aging is considered to be an important risk factor for several inflammatory diseases. B cells play a major role in chronic inflammatory diseases by antibody secretion, antigen presentation and T cell regulation. Different B cell subsets have been implicated in infections and multiple autoimmune diseases. Since aging decreases B cell numbers, affects B cell subsets and impairs antibody responses, the aged B cell is expected to have major impacts on the development and progression of these diseases. In this review, we summarize the role of B cells in health and disease settings, such as atherosclerotic disease. Furthermore, we provide an overview of age-related changes in B cell development and function with respect to their impact in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Jill de Mol
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | | | - Amanda C. Foks
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| |
Collapse
|
8
|
Jansen K, Cevhertas L, Ma S, Satitsuksanoa P, Akdis M, van de Veen W. Regulatory B cells, A to Z. Allergy 2021; 76:2699-2715. [PMID: 33544905 DOI: 10.1111/all.14763] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
B cells play a central role in the immune system through the production of antibodies. During the past two decades, it has become increasingly clear that B cells also have the capacity to regulate immune responses through mechanisms that extend beyond antibody production. Several types of human and murine regulatory B cells have been reported that suppress inflammatory responses in autoimmune disease, allergy, infection, transplantation, and cancer. Key suppressive molecules associated with regulatory B-cell function include the cytokines IL-10, IL-35, and TGF-β as well as cell membrane-bound molecules such as programmed death-ligand 1, CD39, CD73, and aryl hydrocarbon receptor. Regulatory B cells can be induced by a range of different stimuli, including microbial products such as TLR4 or TLR9 ligands, inflammatory cytokines such as IL-6, IL-1β, and IFN-α, as well as CD40 ligation. This review provides an overview of our current knowledge on regulatory B cells. We discuss different types of regulatory B cells, the mechanisms through which they exert their regulatory functions, factors that lead to induction of regulatory B cells and their role in the alteration of inflammatory responses in different diseases.
Collapse
Affiliation(s)
- Kirstin Jansen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Lacin Cevhertas
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Department of Medical Immunology Institute of Health SciencesBursa Uludag University Bursa Turkey
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Siyuan Ma
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Department of Otolaryngology Head and Neck Surgery+ Beijing TongRen HospitalCapital Medical University Beijing China
| | | | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| |
Collapse
|
9
|
Ben Nasr M, Usuelli V, Seelam AJ, D'Addio F, Abdi R, Markmann JF, Fiorina P. Regulatory B Cells in Autoimmune Diabetes. THE JOURNAL OF IMMUNOLOGY 2021; 206:1117-1125. [PMID: 33685919 DOI: 10.4049/jimmunol.2001127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022]
Abstract
Since they were discovered almost three decades ago, a subset of B cells denoted as regulatory B cells (Bregs) have elicited interest throughout the immunology community. Many investigators have sought to characterize their phenotype and to understand their function and immunosuppressive mechanisms. Indeed, studies in murine models have demonstrated that Bregs possess varied phenotypic markers and could be classified into different subsets whose action and pivotal role depend on the pathological condition or stimuli. Similar conclusions were drawn in clinical settings delineating an analogous Breg population phenotypically resembling the murine Bregs that ultimately may be associated with a state of tolerance. Recent studies suggested that Bregs may play a role in the onset of autoimmune diabetes. This review will focus on deciphering the different subclasses of Bregs, their emerging role in autoimmune diabetes, and their potential use as a cell-based therapeutic.
Collapse
Affiliation(s)
- Moufida Ben Nasr
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115.,International Center for T1D, Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi," Department of Biomedical and Clinical Science "L. Sacco," University of Milan, 20157 Milan, Italy.,Transplantation Research Center, Nephrology Division, Children's Hospital and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Vera Usuelli
- International Center for T1D, Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi," Department of Biomedical and Clinical Science "L. Sacco," University of Milan, 20157 Milan, Italy
| | - Andy Joe Seelam
- International Center for T1D, Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi," Department of Biomedical and Clinical Science "L. Sacco," University of Milan, 20157 Milan, Italy
| | - Francesca D'Addio
- International Center for T1D, Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi," Department of Biomedical and Clinical Science "L. Sacco," University of Milan, 20157 Milan, Italy
| | - Reza Abdi
- Transplantation Research Center, Nephrology Division, Children's Hospital and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - James F Markmann
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114; and
| | - Paolo Fiorina
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115; .,International Center for T1D, Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi," Department of Biomedical and Clinical Science "L. Sacco," University of Milan, 20157 Milan, Italy.,Division of Endocrinology, ASST Fatebenefratelli Sacco, 20157 Milan, Italy
| |
Collapse
|
10
|
Catalán D, Mansilla MA, Ferrier A, Soto L, Oleinika K, Aguillón JC, Aravena O. Immunosuppressive Mechanisms of Regulatory B Cells. Front Immunol 2021; 12:611795. [PMID: 33995344 PMCID: PMC8118522 DOI: 10.3389/fimmu.2021.611795] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Regulatory B cells (Bregs) is a term that encompasses all B cells that act to suppress immune responses. Bregs contribute to the maintenance of tolerance, limiting ongoing immune responses and reestablishing immune homeostasis. The important role of Bregs in restraining the pathology associated with exacerbated inflammatory responses in autoimmunity and graft rejection has been consistently demonstrated, while more recent studies have suggested a role for this population in other immune-related conditions, such as infections, allergy, cancer, and chronic metabolic diseases. Initial studies identified IL-10 as the hallmark of Breg function; nevertheless, the past decade has seen the discovery of other molecules utilized by human and murine B cells to regulate immune responses. This new arsenal includes other anti-inflammatory cytokines such IL-35 and TGF-β, as well as cell surface proteins like CD1d and PD-L1. In this review, we examine the main suppressive mechanisms employed by these novel Breg populations. We also discuss recent evidence that helps to unravel previously unknown aspects of the phenotype, development, activation, and function of IL-10-producing Bregs, incorporating an overview on those questions that remain obscure.
Collapse
Affiliation(s)
- Diego Catalán
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Miguel Andrés Mansilla
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Ashley Ferrier
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Unidad de Dolor, Hospital Clínico, Universidad de Chile (HCUCH), Santiago, Chile
| | | | - Juan Carlos Aguillón
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Octavio Aravena
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
11
|
Lundy SK, Taitano SH, van der Vlugt LEPM. Characterization and Activation of Fas Ligand-Producing Mouse B Cells and Their Killer Exosomes. Methods Mol Biol 2021; 2270:149-178. [PMID: 33479898 DOI: 10.1007/978-1-0716-1237-8_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
B lymphocytes make several contributions to immune regulation including production of antibodies with regulatory properties, release of immune suppressive cytokines, and expression of death-inducing ligands. A role for Fas ligand (FasL)-expressing "killer" B cells in regulating T helper (TH) cell survival and chronic inflammation has been demonstrated in animal models of schistosome worm and other infections, asthma, autoimmune arthritis, and type 1 diabetes. FasL+ B cells were also capable of inducing immune tolerance in a male-to-female transplantation model. Interestingly, populations of B cells found in the spleen and lungs of naïve mice constitutively expresses FasL and have potent killer function against TH cells that is antigen-specific and FasL-dependent. Epstein-Barr virus-transformed human B cells constitutively express FasL and package it into exosomes that co-express MHC Class II molecules and have killer function against antigen-specific TH cells. FasL+ exosomes with markers of B-cell lineage are abundant in the spleen of naïve mice. Killer B cells therefore represent a novel target for immune modulation in many disease settings. Our laboratory has published methods of characterizing FasL+ B cells and inducing their proliferation in vitro. This updated chapter will describe methods of identifying and expanding killer B cells from mice, detecting FasL expression in B cells, extracting FasL+ exosomes from spleen and culture supernatants, and performing functional killing assays against antigen-specific TH cells.
Collapse
Affiliation(s)
- Steven K Lundy
- Graduate Program in Immunology, Program in Biomedical Sciences and Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Sophina H Taitano
- Graduate Program in Immunology, Program in Biomedical Sciences and Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Luciën E P M van der Vlugt
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Ma S, Satitsuksanoa P, Jansen K, Cevhertas L, van de Veen W, Akdis M. B regulatory cells in allergy. Immunol Rev 2020; 299:10-30. [PMID: 33345311 DOI: 10.1111/imr.12937] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022]
Abstract
B cells have classically been recognized for their unique and indispensable role in the production of antibodies. Their potential as immunoregulatory cells with anti-inflammatory functions has received increasing attention during the last two decades. Herein, we highlight pioneering studies in the field of regulatory B cell (Breg) research. We will review the literature on Bregs with a particular focus on their role in the regulation of allergic inflammation.
Collapse
Affiliation(s)
- Siyuan Ma
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.,Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | | | - Kirstin Jansen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Lacin Cevhertas
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.,Department of Medical Immunology, Institute of Health Sciences, Bursa Uludag University, Bursa, Turkey
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
13
|
TCDD attenuates EAE through induction of FasL on B cells and inhibition of IgG production. Toxicology 2020; 448:152646. [PMID: 33253778 DOI: 10.1016/j.tox.2020.152646] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 12/24/2022]
Abstract
Previously we demonstrated that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) suppressed experimental autoimmune encephalomyelitis (EAE), a model to study multiple sclerosis (MS), through induction of regulatory T cells (Tregs) and suppression of effector T cell function in the spleen. Since B cells and specifically regulatory B cells (Bregs) have been shown to be so critical in the pathology associated with EAE and MS, we wanted to determine whether TCDD could also induce Bregs. We specifically hypothesized that a Fas ligand (FasL)+ Breg population would be induced by TCDD in EAE thereby triggering apoptosis in Fas-expressing effector T cells as one mechanism to account for inhibition of T cell function by TCDD. TCDD (0.1-2.5 μg/kg/day administered orally for 12 days) modestly increased the percentage of FasL + B cells in the spleen and spinal cord in TCDD-treated EAE mice. However, we did not detect significant increases in percentages of FasL + B cells using TCDD in vitro in mouse splenocytes or human peripheral blood mononuclear cells (PBMCs). Part of the modest effect by TCDD was likely related to the localized expression of FasL; for instance, in the spleen, FasL was more highly expressed by IgMhiIgDlo marginal zone (MZ) B cells, but IgMloIgDhi follicular (FO) B cells were more responsive to TCDD. Consistent with our observation of modest upregulation of FasL, we also observed modest changes in mitochondrial membrane potential in T cells co-cultured with isolated total B cells or IgM-depleted (i.e., FO-enriched) B cells from TCDD-treated EAE mice. These data suggest that while small microenvironments of apoptosis might be occurring in T cells in response to TCDD-treated B cells, it is not a major mechanism by which T cell function is compromised by TCDD in EAE. TCDD did robustly suppress IgG production systemically and in spleen and spinal cord B cells at end stage disease. Thus, these studies show that TCDD's primary effect on B cells in EAE is compromised IgG production but not FasL + Breg induction.
Collapse
|
14
|
Ran Z, Yue-Bei L, Qiu-Ming Z, Huan Y. Regulatory B Cells and Its Role in Central Nervous System Inflammatory Demyelinating Diseases. Front Immunol 2020; 11:1884. [PMID: 32973780 PMCID: PMC7468432 DOI: 10.3389/fimmu.2020.01884] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
Regulatory B (Breg) cells represent a population of suppressor B cells that participate in immunomodulatory processes and inhibition of excessive inflammation. The regulatory function of Breg cells have been demonstrated in mice and human with inflammatory diseases, cancer, after transplantation, and particularly in autoinflammatory disorders. In order to suppress inflammation, Breg cells produce anti-inflammatory mediators, induce death ligand-mediated apoptosis, and regulate many kinds of immune cells such as suppressing the proliferation and differentiation of effector T cell and increasing the number of regulatory T cells. Central nervous system Inflammatory demyelinating diseases (CNS IDDs) are a heterogeneous group of disorders, which occur against the background of an acute or chronic inflammatory process. With the advent of monoclonal antibodies directed against B cells, breakthroughs have been made in the treatment of CNS IDDs. Therefore, the number and function of B cells in IDDs have attracted attention. Meanwhile, increasing number of studies have confirmed that Breg cells play a role in alleviating autoimmune diseases, and treatment with Breg cells has also been proposed as a new therapeutic direction. In this review, we focus on the understanding of the development and function of Breg cells and on the diversification of Breg cells in CNS IDDs.
Collapse
Affiliation(s)
- Zhou Ran
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Luo Yue-Bei
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zeng Qiu-Ming
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Huan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Ramachandran R, Kaundal U, Girimaji N, Rakha A, Rathi M, Gupta KL, Kohli HS, Jha V. Regulatory B Cells Are Reduced and Correlate With Disease Activity in Primary Membranous Nephropathy. Kidney Int Rep 2020; 5:872-878. [PMID: 32518869 PMCID: PMC7271006 DOI: 10.1016/j.ekir.2020.03.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 11/30/2022] Open
Abstract
Introduction Primary membranous nephropathy (PMN) is an autoimmune disease. Both T-regulatory cells (TREGs) and B-regulatory cells (BREGs) are decreased in patients with autoimmune disease. We evaluated the TREG and BREG population in patients of PMN treated with cyclical cyclophosphamide and steroid therapy (cCYC/GC). Methods Twenty-four patients with PMN resistant to a restrictive strategy and treated with cCYC/GC therapy and 10 healthy controls were enrolled. The proteinuria, serum creatinine, and serum albumin were tested at monthly intervals and blood samples were collected before starting cCYC/GC and at 6 and 8 (2 months wash out) months of therapy. The peripheral blood mononuclear cells (PBMCs) after staining with fluorochrome-conjugated antibodies were then subjected to flow cytometric analysis for detection of TREGs (CD3+CD4+CD25hiCD127loFoxP3+) and BREGs (CD19+CD5+CD1dhiIL10+). TREGs and BREGs are presented as the percentage of T and B cells, respectively. Cases with remission at month 18 were classified as responders, and those without any remission as nonresponders. Results Patients with PMN had a lower percentage of TREGs (P = 0.07) and BREGs compared with healthy controls (P = 0.0007). As compared with baseline, there was a significant increase in both BREGs (P = 0.001) and TREGs (P = 0.02) with the treatment (8 months). Patients who responded to therapy by 18 months had an increase in TREG (P = 0.05) and BREG (P = 0.0001) at month 8 compared with baseline. Conclusion As compared with healthy controls, patients with PMN displayed a lower percentage of BREGs. Both TREGs and BREGs significantly improved with disease-specific therapy. BREGs had an association with clinical activity.
Collapse
Affiliation(s)
- Raja Ramachandran
- Department of Nephrology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Urvashi Kaundal
- Department of Translational and Regenerative Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Niveditha Girimaji
- Department of Nephrology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Aruna Rakha
- Department of Translational and Regenerative Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Manish Rathi
- Department of Nephrology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Krishnan L Gupta
- Department of Nephrology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Harbir S Kohli
- Department of Nephrology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vivekanand Jha
- The George Institute for Global Health, University of South Wales, New Delhi, India.,Manipal Academy of Higher Education, Manipal, India.,University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Sookrung N, Tungtrongchitr A, Chaicumpa W. Cockroaches: Allergens, Component-Resolved Diagnosis (CRD) and Component-Resolved Immunotherapy. Curr Protein Pept Sci 2020; 21:124-141. [DOI: 10.2174/1389203720666190731144043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 12/27/2022]
Abstract
Allergic diseases are assuming increasing trend of prevalence worldwide. The diseases confer increasing demand on medical and healthcare facilities. Patients with allergies have poor quality of life and impaired cognition. Adult patients have subpar working efficiency while afflicted children are less effective at school, often have school absenteeism and need more attention of their caregivers. All of them lead to negative socio-economic impact. This narrative review focuses on cockroach allergy including currently recognized cockroach allergens, pathogenic mechanisms of allergy, componentresolved diagnosis and allergen-specific immunotherapy, particularly the component-resolved immunotherapy and the molecular mechanisms that bring about resolution of the chronic airway inflammation.
Collapse
Affiliation(s)
- Nitat Sookrung
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Anchalee Tungtrongchitr
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
17
|
High Serum Level of IL-17 in Patients with Chronic Obstructive Pulmonary Disease and the Alpha-1 Antitrypsin PiZ Allele. Pulm Med 2020; 2020:9738032. [PMID: 32089881 PMCID: PMC7011399 DOI: 10.1155/2020/9738032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is multifactorial disease, which is characterized by airflow limitation and can be provoked by genetic factors, including carriage of the PiZ allele of the protease inhibitor (Pi) gene, encoding alpha-1 antitrypsin (A1AT). Both homozygous and heterozygous PiZ allele carriers can develop COPD. It was found recently that normal A1AT regulates cytokine levels, including IL-17, which is involved in COPD progression. The aim of this study was to determine whether homozygous or heterozygous PiZ allele carriage leads to elevated level of IL-17 and other proinflammatory cytokines in COPD patients. Materials and Methods. Serum samples and clinical data were obtained from 44 COPD patients, who included 6 PiZZ, 8 PiMZ, and 30 PiMM A1AT phenotype carriers. Serum concentrations of IL-17, IL-6, IL-8, IFN-γ, and TNF-α were measured by the enzyme-linked immunosorbent assay (ELISA). All A1AT phenotypes were verified by narrow pH range isoelectrofocusing with selective A1AT staining. A turbidimetric method was used for quantitative A1AT measurements. Results. COPD patients with both PiZZ and PiMZ phenotypes demonstrated elevated IL-17 and decreased IFN-γ levels in comparison to patients with the PiMM phenotype of A1AT. Thereafter, the ratio IL-17/IFN-γ in PiZZ and PiMZ groups greatly exceeded the values of the PiMM group. Homozygous PiZ allele carriers also had significantly higher levels of IL-6 and lower levels of IL-8, and IL-6 values correlated negatively with A1AT concentrations. Conclusions. The presence of the PiZ allele in both homozygous and heterozygous states is associated with altered serum cytokine levels, including elevated IL-17, IL-17/IFN-γ ratio, and IL-6 (only PiZZ), but lower IFN-γ and IL-8.
Collapse
|
18
|
Maerz JK, Trostel C, Lange A, Parusel R, Michaelis L, Schäfer A, Yao H, Löw HC, Frick JS. Bacterial Immunogenicity Is Critical for the Induction of Regulatory B Cells in Suppressing Inflammatory Immune Responses. Front Immunol 2020; 10:3093. [PMID: 32038631 PMCID: PMC6993086 DOI: 10.3389/fimmu.2019.03093] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/18/2019] [Indexed: 01/18/2023] Open
Abstract
B cells fulfill multifaceted functions that influence immune responses during health and disease. In autoimmune diseases, such as inflammatory bowel disease, multiple sclerosis and rheumatoid arthritis, depletion of functional B cells results in an aggravation of disease in humans and respective mouse models. This could be due to a lack of a pivotal B cell subpopulation: regulatory B cells (Bregs). Although Bregs represent only a small proportion of all immune cells, they exhibit critical properties in regulating immune responses, thus contributing to the maintenance of immune homeostasis in healthy individuals. In this study, we report that the induction of Bregs is differentially triggered by the immunogenicity of the host microbiota. In comparative experiments with low immunogenic Bacteroides vulgatus and strong immunogenic Escherichia coli, we found that the induction and longevity of Bregs depend on strong Toll-like receptor activation mediated by antigens of strong immunogenic commensals. The potent B cell stimulation via E. coli led to a pronounced expression of suppressive molecules on the B cell surface and an increased production of anti-inflammatory cytokines like interleukin-10. These bacteria-primed Bregs were capable of efficiently inhibiting the maturation and function of dendritic cells (DCs), preventing the proliferation and polarization of T helper (Th)1 and Th17 cells while simultaneously promoting Th2 cell differentiation in vitro. In addition, Bregs facilitated the development of regulatory T cells (Tregs) resulting in a possible feedback cooperation to establish immune homeostasis. Moreover, the colonization of germfree wild type mice with E. coli but not B. vulgatus significantly reduced intestinal inflammatory processes in dextran sulfate sodium (DSS)-induced colitis associated with an increase induction of immune suppressive Bregs. The quantity of Bregs directly correlated with the severity of inflammation. These findings may provide new insights and therapeutic approaches for B cell-controlled treatments of microbiota-driven autoimmune disease.
Collapse
Affiliation(s)
- Jan Kevin Maerz
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Constanze Trostel
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Anna Lange
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Raphael Parusel
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Lena Michaelis
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Andrea Schäfer
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Hans Yao
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Hanna-Christine Löw
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Julia-Stefanie Frick
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| |
Collapse
|
19
|
Abstract
Pregnancy, a challenging physiological state, requires shuffling of conventional immune work-sets. Strategies to tolerate the semi-allogenic fetus in normal human pregnancy are multivariate with perfect modulation of the immune cells. Pregnancy is marked by B cell lymphocytopenia accompanied by reduced responsiveness to infectious agents. Besides this old age concept, plenty of research confirms that B cells have other crucial roles in pregnancy and undergo a wide range of modifications in terms of its proliferation, switching between its subtypes, variation in antibody productions, shifting the tides of cytokines as well as regulating other immune cells. B cells establish tolerant environment in pregnancy by producing protective antibodies to encounter the foreign paternal antigens. Regulatory B cells (Bregs) have adopted anti-inflammatory characteristics to sustain normal pregnancy. Moreover, the colossal physiological alterations during human pregnancy also include synchronized changes in the cross-talks between the pregnancy hormones and B cells. These aspects of pregnancy from the view point of B cell functions have so far appeared individually in discrete reports. This review finds its novelty in concisely presenting every facet of association of B cell with human pregnancy.
Collapse
Affiliation(s)
- Sulagna Dutta
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom, Malaysia
| | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, MAHSA University, Jenjarom, Malaysia
| | - Nazmul Haque
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom, Malaysia
| |
Collapse
|
20
|
Valizadeh A, Sanaei R, Rezaei N, Azizi G, Fekrvand S, Aghamohammadi A, Yazdani R. Potential role of regulatory B cells in immunological diseases. Immunol Lett 2019; 215:48-59. [PMID: 31442542 DOI: 10.1016/j.imlet.2019.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/04/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022]
Abstract
Regulatory B cells (Bregs) are immune-modulating cells that affect the immune system by producing cytokines or cellular interactions. These cells have immunomodulatory effects on the immune system by cytokine production. The abnormalities in Bregs could be involved in various disorders such as autoimmunity, chronic infectious disease, malignancies, allergies, and primary immunodeficiencies are immune-related scenarios. Ongoing investigation could disclose the biology and the exact phenotype of these cells and also the assigned mechanisms of action of each subset, as a result, potential therapeutic strategies for treating immune-related anomalies. In this review, we collect the findings of human and mouse Bregs and the therapeutic efforts to change the pathogenicity of these cells in diverse disease.
Collapse
Affiliation(s)
- Amir Valizadeh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Roozbeh Sanaei
- Immunology Research Center (IRC), Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
21
|
Eiza N, Zuckerman E, Carlebach M, Rainis T, Goldberg Y, Vadasz Z. Increased killer B cells in chronic HCV infection may lead to autoimmunity and increased viral load. Clin Exp Immunol 2019; 193:183-193. [PMID: 29665000 DOI: 10.1111/cei.13139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2018] [Indexed: 01/20/2023] Open
Abstract
Regulatory B (Breg ) cells are characterized by various membrane markers and the secretion of different inhibitory cytokines. A new subset of Breg cells was identified as CD5hi Fas-ligand (FasL)hi . Their main reported role is to suppress anti-viral and anti-tumour immune responses, and, hence they have been dubbed 'killer' B cells. In this study, we aim to assess the role of these cells in chronic hepatitis C virus (HCV) infection, and determine if they contribute to the increased viral load and persistence of HCV and its related autoimmunity. (i) FasL expression on CD5hi B cells is increased significantly in HCV-infected patients compared to healthy individuals [28·06 ± 6·71 mean fluorescence intensity (MFI) ± standard error of the mean (s.e.m.), median = 27·9 versus 10·87 ± 3·97 MFI ± s.e.m., median = 10·3, respectively, P < 0·0001]. (ii) Killer B cells from HCV patients increased autologous CD4+ T cell apoptosis compared to the apoptosis in healthy individuals [39·17% ± 7·18% mean ± standard deviation (s.d.), median = 39·6 versus 25·92 ± 8·65%, mean ± s.d., median = 24·1%, P < 0·0001, respectively]. A similar increase was observed in CD8+ T cell apoptosis (54·67 ± 15·49% mean ± s.d., median = 57·3 versus 21·07% ± 7·4%, mean ± s.d., median = 20%, P = 0·0006, respectively). (iii) By neutralizing FasL with monoclonal anti-FasL antibodies, we have shown that the induction of apoptosis by killer B cells is FasL-dependent. (iv) Increased expression of FasL on CD5hi B cells is correlated positively with an increased viral load and the presence of anti-nuclear antibodies and rheumatoid factor in HCV. This is the first study in which killer B cells have been suggested to play a pathogenic role in HCV. They seem to be involved in HCV's ability to escape efficient immune responses.
Collapse
Affiliation(s)
- N Eiza
- Division of Allergy and Clinical Immunology, Bnai Zion Medical Center, Haifa, Israel
| | - E Zuckerman
- Unit of Hepatology, Carmel Medical Center, Haifa, Israel
| | - M Carlebach
- Division of Gastroenterology, Bnai Zion Medical Center, Haifa, Israel.,Faculty of Medicine, Technion, Haifa, Israel
| | - T Rainis
- Division of Gastroenterology, Bnai Zion Medical Center, Haifa, Israel.,Faculty of Medicine, Technion, Haifa, Israel
| | - Y Goldberg
- Department of Statistics, University of Haifa, Haifa, Israel
| | - Z Vadasz
- Division of Allergy and Clinical Immunology, Bnai Zion Medical Center, Haifa, Israel
| |
Collapse
|
22
|
Moore DK, Loxton AG. Regulatory B lymphocytes: development and modulation of the host immune response during disease. Immunotherapy 2019; 11:691-704. [DOI: 10.2217/imt-2018-0185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The role of B lymphocytes (B cells) in immunogenic responses has become increasingly important over the past decade, focusing on a new B-cell subtype: regulatory B-cells (Bregs). These Bregs have been shown to possess potent immunosuppressive activities and have identified as key players in disease control and immune tolerance. In this review, the occurrence of Breg type in various conditions, along with evidence supporting discovered functions and proposed purposes will be explored. An example of such regulatory functions includes the induction or suppression of various T lymphocyte phenotypes in response to a particular stimulus. Should Bregs prove effective in mediating immune responses, and correlate with favorable disease outcome, they may serve as a novel therapeutic to combat disease and prevent infection. However, the induction, function and stability of these cells remain unclear and further investigation is needed to better understand their role and therapeutic efficacy.
Collapse
Affiliation(s)
- Dannielle K Moore
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa, 8000
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa, 8000
- Faculty of Medicine & Health Sciences, Division of Molecular Biology & Human Genetics, Stellenbosch University, Cape Town, South Africa, 8000
| | - Andre G Loxton
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa, 8000
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa, 8000
- Faculty of Medicine & Health Sciences, Division of Molecular Biology & Human Genetics, Stellenbosch University, Cape Town, South Africa, 8000
| |
Collapse
|
23
|
Zhao H, Feng R, Peng A, Li G, Zhou L. The expanding family of noncanonical regulatory cell subsets. J Leukoc Biol 2019; 106:369-383. [DOI: 10.1002/jlb.6ru0918-353rrrr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 03/13/2019] [Accepted: 03/20/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
- Hai Zhao
- Department of NeurosurgeryWest China HospitalSichuan University Chengdu China
| | - Ridong Feng
- Department of NeurosurgeryWest China HospitalSichuan University Chengdu China
| | - Aijun Peng
- Department of NeurosurgeryWest China HospitalSichuan University Chengdu China
| | - Gaowei Li
- Department of NeurosurgeryWest China HospitalSichuan University Chengdu China
| | - Liangxue Zhou
- Department of NeurosurgeryWest China HospitalSichuan University Chengdu China
| |
Collapse
|
24
|
Cai X, Zhang L, Wei W. Regulatory B cells in inflammatory diseases and tumor. Int Immunopharmacol 2019; 67:281-286. [DOI: 10.1016/j.intimp.2018.12.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/12/2018] [Accepted: 12/03/2018] [Indexed: 01/10/2023]
|
25
|
Su J, Wang K, Zhou X, Wang Y, Xu J, Tao L, Zeng X, Chen N, Bai X, Li X. B-cell-specific-peroxisome proliferator-activated receptor γ deficiency augments contact hypersensitivity with impaired regulatory B cells. Immunology 2018; 156:282-296. [PMID: 30471095 DOI: 10.1111/imm.13027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/08/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022] Open
Abstract
Nuclear receptor peroxisome proliferator-activated receptor γ (PPAR-γ) activation can prevent immunoinflammatory disorders and diabetes. B cells play protective roles during inflammation as well. However, the roles of endogenous PPAR-γ in the regulatory properties of B cells to relieve inflammation remain unknown. Here, we developed B-cell-specific PPAR-γ knockout (B-PPAR-γ-/- ) mice and found that the conditional deletion of PPAR-γ in B cells resulted in exaggerated contact hypersensitivity (CHS). Meanwhile, interferon-γ (IFN-γ) of CD4+ CD8+ T cells was up-regulated in B-PPAR-γ-/- mice in CHS. This showed that the regulatory function of B cells in B-PPAR-γ-/- mice declined in vivo. Whereas splenic CD5+ CD1dhi regulatory B-cell numbers and peripheral regulatory T-cell numbers were not changed in naive B-PPAR-γ-/- mice. Loss of PPAR-γ in B cells also did not affect either CD86 or FasL expression in splenic CD5+ CD1dhi regulatory B cells after activation. Notably, interleukin-10 (IL-10) production in CD5+ CD1dhi regulatory B cells reduced in B-PPAR-γ-deficient mice. In addition, functional IL-10-producing CD5+ CD1dhi regulatory B cells decreased in B-PPAR-γ-/- mice in the CHS model. These findings were in accordance with augmented CHS. The current work indicated the involvement of endogenous PPAR-γ in the regulatory function of B cells by disturbing the expansion of IL-10-positive regulatory B cells.
Collapse
Affiliation(s)
- Jianbing Su
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Keng Wang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xuan Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yiyuan Wang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jialan Xu
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Lei Tao
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiangzhou Zeng
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Nana Chen
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaochun Bai
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaojuan Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
26
|
Wąsik M, Nazimek K, Bryniarski K. Regulatory B cell phenotype and mechanism of action: the impact of stimulating conditions. Microbiol Immunol 2018; 62:485-496. [PMID: 29998521 DOI: 10.1111/1348-0421.12636] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/29/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022]
Abstract
A diverse population of regulatory B (Breg) cells reportedly exhibits significant immunomodulatory effects in various models of inflammatory responses and infectious diseases caused by bacteria, viruses or parasites. Breg cells contribute to maintenance of homeostasis via IL-10 production and multiple IL-10-independent mechanisms. The current review describes various phenotypic and functional subsets of Breg cells in autoimmune and infectious diseases and discusses the impacts of experimental conditions that have been found to drive Breg cell differentiation.
Collapse
Affiliation(s)
- Magdalena Wąsik
- Department of Immunology, Jagiellonian University College of Medicine, 18 Czysta St., 31-121 Krakow, Poland
| | - Katarzyna Nazimek
- Department of Immunology, Jagiellonian University College of Medicine, 18 Czysta St., 31-121 Krakow, Poland
| | - Krzysztof Bryniarski
- Department of Immunology, Jagiellonian University College of Medicine, 18 Czysta St., 31-121 Krakow, Poland
| |
Collapse
|
27
|
Taitano SH, van der Vlugt LEPM, Shea MM, Yang J, Lukacs NW, Lundy SK. Differential Influence on Regulatory B Cells by T H2 Cytokines Affects Protection in Allergic Airway Disease. THE JOURNAL OF IMMUNOLOGY 2018; 201:1865-1874. [PMID: 30127086 DOI: 10.4049/jimmunol.1800206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/23/2018] [Indexed: 11/19/2022]
Abstract
The role of regulatory B cells (Bregs) in modulating immune responses and maintaining tolerance are well established. However, how cytokines present during immune responses affect Breg growth and function are not as well defined. Previously, our laboratory reported IL-5- and mCD40L-expressing fibroblast (mCD40L-Fb) stimulation induced IL-10 production from murine B cells. The current study investigated the phenotype and functional relevance of IL-10- producing B cells from this culture. We found IL-5/mCD40L-Fb stimulation induced IL-10 production exclusively from CD5+ splenic B cells of naive mice. After stimulation, the resulting IL-10+ B cells displayed markers of multiple reported Breg phenotypes. Interestingly, when investigating effects of IL-4 (a critical TH2 cytokine) on IL-5/mCD40L-Fb-induced IL-10 production, we found IL-4 inhibited IL-10 production in a STAT6-dependent manner. Upon adoptive transfer, CD5+ B cells previously stimulated with IL-5/mCD40L-Fb were able to reduce development of OVA-induced allergic airway disease in mice. Using B cells from IL-10 mutant mice differentiated by IL-5/mCD40L-Fb, we found protection from allergic airway disease development was dependent on the IL-10 production from the transferred B cells. Bregs have been shown to play crucial roles in the immune tolerance network, and understanding stimuli that modulate their growth and function may be key in development of future treatments for diseases of immune dysregulation.
Collapse
Affiliation(s)
- Sophina H Taitano
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109.,Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI 48109; and
| | - Luciën E P M van der Vlugt
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Molly M Shea
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Jennifer Yang
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Nicholas W Lukacs
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI 48109; and.,Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Steven K Lundy
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109; .,Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI 48109; and
| |
Collapse
|
28
|
Schumacher A, Ehrentraut S, Scharm M, Wang H, Hartig R, Morse HC, Zenclussen AC. Plasma Cell Alloantigen 1 and IL-10 Secretion Define Two Distinct Peritoneal B1a B Cell Subsets With Opposite Functions, PC1 high Cells Being Protective and PC1 low Cells Harmful for the Growing Fetus. Front Immunol 2018; 9:1045. [PMID: 29868008 PMCID: PMC5962664 DOI: 10.3389/fimmu.2018.01045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/26/2018] [Indexed: 12/18/2022] Open
Abstract
B cells possess various immuno regulatory functions. However, research about their participation in tolerance induction toward the fetus is just emerging. Accumulating evidence supports the idea that B cells can play seemingly conflicting roles during pregnancy, either protecting or harming the fetus. Previous findings indicated the presence of two different peritoneal B cell subsets, defined by the expression of the plasma cell alloantigen 1 (PC1) and with distinct immune modulatory functions. Here, we aimed to study the participation of these two B cell subsets, on pregnancy outcome in a murine model of disturbed fetal tolerance. The frequencies and cell numbers of peritoneal and splenic CD19+IL-10+ and CD19+CD5+IL-10+PC1+ cells were assessed in virgin as well as normal pregnant (NP) and abortion-prone (AP) females during the course of gestation. Peritoneal PC1low or PC1high B1a B cells were sorted, analyzed for their ability to secrete IL-10 and adoptively transferred into NP or AP females. On gestation day (gd) 12, the abortion rate as well as the frequencies and cell numbers of regulatory T cells, TH1 and TH17 cells were determined in spleens and decidua. In addition, mRNA expression of IL-10, TGF-β, IFN-γ, and TNF-α was analyzed in decidual tissue. Peritoneal CD19+IL-10+ and CD19+CD5+IL-10+PC1+ frequencies fluctuated during the progression of normal pregnancies while no significant changes were observed in spleen. AP females showed significantly reduced frequencies of both B cell populations and exhibited an altered peritoneal PC1high/PC1low ratio at gd10. Adoptive transfers of PC1low B1a B cells into NP females increased the abortion rate in association with a reduced splenic regulatory T/TH17 ratio. By contrast, the transfer of PC1high B1a B cells into AP females significantly diminished the fetal rejection rate and significantly reduced the numbers of splenic TH17 cells. Our results suggest that the peritoneum harbors two distinct B1a B cell subsets that can be distinguished by their PC1 expression. Whereas PC1high B1a B cells seem to support fetal survival, PC1low cells B1a B cells may compromise fetal well-being.
Collapse
Affiliation(s)
- Anne Schumacher
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Stefanie Ehrentraut
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Markus Scharm
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Hongsheng Wang
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, United States
| | - Roland Hartig
- Core Facility Multidimensional Microscopy and Cellular Diagnostics, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Herbert C Morse
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, United States
| | - Ana Claudia Zenclussen
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
29
|
Yu J, Duong VHH, Westphal K, Westphal A, Suwandi A, Grassl GA, Brand K, Chan AC, Föger N, Lee KH. Surface receptor Toso controls B cell-mediated regulation of T cell immunity. J Clin Invest 2018; 128:1820-1836. [PMID: 29461978 DOI: 10.1172/jci97280] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/13/2018] [Indexed: 02/06/2023] Open
Abstract
The immune system is tightly controlled by regulatory processes that allow for the elimination of invading pathogens, while limiting immunopathological damage to the host. In the present study, we found that conditional deletion of the cell surface receptor Toso on B cells unexpectedly resulted in impaired proinflammatory T cell responses, which led to impaired immune protection in an acute viral infection model and was associated with reduced immunopathological tissue damage in a chronic inflammatory context. Toso exhibited its B cell-inherent immunoregulatory function by negatively controlling the pool of IL-10-competent B1 and B2 B cells, which were characterized by a high degree of self-reactivity and were shown to mediate immunosuppressive activity on inflammatory T cell responses in vivo. Our results indicate that Toso is involved in the differentiation/maintenance of regulatory B cells by fine-tuning B cell receptor activation thresholds. Furthermore, we showed that during influenza A-induced pulmonary inflammation, the application of Toso-specific antibodies selectively induced IL-10-competent B cells at the site of inflammation and resulted in decreased proinflammatory cytokine production by lung T cells. These findings suggest that Toso may serve as a novel therapeutic target to dampen pathogenic T cell responses via the modulation of IL-10-competent regulatory B cells.
Collapse
Affiliation(s)
- Jinbo Yu
- Inflammation Research Group.,Institute of Clinical Chemistry, and
| | | | - Katrin Westphal
- Inflammation Research Group.,Institute of Clinical Chemistry, and
| | - Andreas Westphal
- Inflammation Research Group.,Institute of Clinical Chemistry, and
| | - Abdulhadi Suwandi
- Institute of Medical Microbiology and Hospital Epidemiology and German Center for Infection Research (DZIF), Hannover Medical School, Hannover, Germany
| | - Guntram A Grassl
- Institute of Medical Microbiology and Hospital Epidemiology and German Center for Infection Research (DZIF), Hannover Medical School, Hannover, Germany
| | | | - Andrew C Chan
- Research, Genentech, South San Francisco, California, USA
| | - Niko Föger
- Inflammation Research Group.,Institute of Clinical Chemistry, and
| | - Kyeong-Hee Lee
- Inflammation Research Group.,Institute of Clinical Chemistry, and
| |
Collapse
|
30
|
Do Thi VA, Park SM, Lee H, Kim YS. Ectopically Expressed Membrane-bound Form of IL-9 Exerts Immune-stimulatory Effect on CT26 Colon Carcinoma Cells. Immune Netw 2018; 18:e12. [PMID: 29503742 PMCID: PMC5833119 DOI: 10.4110/in.2018.18.e12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 12/12/2022] Open
Abstract
IL-9 is a known T cell growth factor with pleiotropic immunological functions, especially in parasite infection and colitis. However, its role in tumor growth is controversial. In this study, we generated tumor clones expressing the membrane-bound form of IL-9 (MB-IL-9) and investigated their influences on immune system. MB-IL-9 tumor clones showed reduced tumorigenicity but shortened survival accompanied with severe body weight loss in mice. MB-IL-9 expression on tumor cells had no effect on cell proliferation or major histocompatibility complex class I expression in vitro. MB-IL-9 tumor clones were effective in amplifying CD4+ and CD8+ T cells and increasing cytotoxic activity against CT26 cells in vivo. We also observed a prominent reduction in body weights and survival period of mice injected intraperitoneally with MB-IL-9 clones compared with control groups. Ratios of IL-17 to interferon (IFN)-γ in serum level and tumor mass were higher in mice implanted with MB-IL-9 tumor clones than those observed in mice implanted with control cells. These results indicate that the ectopic expression of the MB-IL-9 on tumor cells exerts an immune-stimulatory effect with toxicity. To exploit its benefits as a tumor vaccine, a strategy to control the toxicity of MB-IL-9 tumor clones should be developed.
Collapse
Affiliation(s)
- Van Anh Do Thi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Sang Min Park
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Hayyoung Lee
- Institute of Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Young Sang Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea.,Institute of Biotechnology, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
31
|
Regulatory B cells: the cutting edge of immune tolerance in kidney transplantation. Cell Death Dis 2018; 9:109. [PMID: 29371592 PMCID: PMC5833552 DOI: 10.1038/s41419-017-0152-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/16/2017] [Accepted: 10/25/2017] [Indexed: 12/20/2022]
Abstract
Kidney transplantation is the optimal treatment for end-stage renal diseases. Although great improvement has been achieved, immune tolerance is still the Holy Grail that every organ transplant practitioner pursues. The role of B cells in transplantation has long been considered simply to serve as precursors of plasma cells, which produce alloantibodies and induce antibody-mediated rejection. Recent research indicates that a specialized subset of B cells plays an important role in immune regulation, which has been well demonstrated in autoimmune diseases, infections, and cancers. This category of regulatory B cells (Bregs) differs from conventional B cells, and they may help develop a novel immunomodulatory therapeutic strategy to achieve immune tolerance in transplantation. Here, we review the latest evidence regarding phenotypes, functions, and effectors of Bregs and discuss their diverse effects on kidney transplantation.
Collapse
|
32
|
Bocian K, Kiernozek E, Domagała-Kulawik J, Korczak-Kowalska G, Stelmaszczyk-Emmel A, Drela N. Expanding Diversity and Common Goal of Regulatory T and B Cells. I: Origin, Phenotype, Mechanisms. Arch Immunol Ther Exp (Warsz) 2017; 65:501-520. [PMID: 28477096 PMCID: PMC5688216 DOI: 10.1007/s00005-017-0469-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 03/14/2017] [Indexed: 12/21/2022]
Abstract
Immunosuppressive activity of regulatory T and B cells is critical to limit autoimmunity, excessive inflammation, and pathological immune response to conventional antigens or allergens. Both types of regulatory cells are intensively investigated, however, their development and mechanisms of action are still not completely understood. Both T and B regulatory cells represent highly differentiated populations in terms of phenotypes and origin, however, they use similar mechanisms of action. The most investigated CD4+CD25+ regulatory T cells are characterized by the expression of Foxp3+ transcription factor, which is not sufficient to maintain their lineage stability and suppressive function. Currently, it is considered that specific epigenetic changes are critical for defining regulatory T cell stability in the context of their suppressive function. It is not yet known if similar epigenetic regulation determines development, lineage stability, and function of regulatory B cells. Phenotype diversity, confirmed or hypothetical developmental pathways, multiple mechanisms of action, and role of epigenetic changes in these processes are the subject of this review.
Collapse
Affiliation(s)
- Katarzyna Bocian
- Department of Immunology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Ewelina Kiernozek
- Department of Immunology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | | | - Grażyna Korczak-Kowalska
- Department of Immunology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Anna Stelmaszczyk-Emmel
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Nadzieja Drela
- Department of Immunology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
33
|
Wang K, Tao L, Su J, Zhang Y, Zou B, Wang Y, Zou M, Chen N, Lei L, Li X. TLR4 supports the expansion of FasL +CD5 +CD1d hi regulatory B cells, which decreases in contact hypersensitivity. Mol Immunol 2017; 87:188-199. [PMID: 28505514 DOI: 10.1016/j.molimm.2017.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 04/18/2017] [Accepted: 04/23/2017] [Indexed: 02/06/2023]
Abstract
Certain B cells termed as "regulatory B cells" (Bregs) can suppress the ongoing immune responses and a splenic CD5+CD1dhi Breg subset identified earlier was shown to exert its regulatory functions through secretion of IL-10. Though FasL expression is an alternative mechanism of immune suppression used by B cells, little is known about the FasL expressing CD5+CD1dhi Bregs. In this study, we isolated splenocytes or splenic CD19+ B cells and compared the efficiency of toll-like receptor(TLR)4 ligand (lipopolysaccharide) with TLR9 ligand (CpG), anti-CD40 and TLR9 ligand (CpG) plus anti-CD40 on the FasL expression of splenic CD5+CD1dhi Bregs by flow cytometry. FasL expression in CD5+CD1dhi B cells was rapidly increased after TLR4 ligation. Intriguingly, anti-CD40 and CpG plus anti-CD40 combinations failed to stimulate FasL expression in CD5+CD1dhi B cells although the IL-10 production was up-regulated in this subset. In addition, LPS and other B10-cell inducers increased the expression of surface molecules like CD86 and CD25, which are correlated to the regulatory functions of B cells. Furthermore, NF-κB and NF-AT inhibitors decreased the TLR4-activated FasL expression in CD5+CD1dhi B cells. Then we sorted splenic CD5+CD1dhi Bregs using flow cytometry and found that TLR4-activated CD5+CD1dhi Bregs suppressed the proliferation of CFSE-labeled CD4+ T cells in vitro, which was partly blocked by anti-FasL antibody. In oxazolone-sensitized mice having contact hypersensitivity, FasL expression in splenic CD5+CD1dhi B cells was decreased compared to the control group after TLR4 ligation. Our findings suggest that the regulatory function of CD5+CD1dhi B cells could be partly mediated by Fas-FasL pathway and this FasL expressing CD5+CD1dhi Bregs might participate in the regulation of inflammatory diseases.
Collapse
Affiliation(s)
- Keng Wang
- Laboratory of Anti-inflammatory Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China; Department of Clinical Pharmacy, The Affiliated Nanhai Hospital of Southern Medical University, Foshan 528200, PR China
| | - Lei Tao
- Laboratory of Anti-inflammatory Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Jianbing Su
- Laboratory of Anti-inflammatory Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Yueyang Zhang
- Laboratory of Anti-inflammatory Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Binhua Zou
- Laboratory of Anti-inflammatory Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Yiyuan Wang
- Laboratory of Anti-inflammatory Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Min Zou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Nana Chen
- Laboratory of Anti-inflammatory Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Linsheng Lei
- Laboratory of Anti-inflammatory Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Xiaojuan Li
- Laboratory of Anti-inflammatory Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
34
|
Yamada A, Arakaki R, Saito M, Kudo Y, Ishimaru N. Dual Role of Fas/FasL-Mediated Signal in Peripheral Immune Tolerance. Front Immunol 2017; 8:403. [PMID: 28424702 PMCID: PMC5380675 DOI: 10.3389/fimmu.2017.00403] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 03/21/2017] [Indexed: 12/20/2022] Open
Abstract
Fas-mediated apoptosis contributes to physiological and pathological cellular processes, such as differentiation and survival. In particular, the roles of Fas in immune cells are complex and critical for the maintenance of immune tolerance. The precise pathways and unique functions associated with Fas/FasL-mediated signaling in the immune system are known. The dual character of Fas/FasL-mediated immune regulation that induces beneficial or harmful effects is associated with the onset or development of immune disorders. Studies on mutations in genes encoding Fas and FasL gene of humans and mice contributed to our understanding of the pathogenesis of autoimmune diseases. Here, we review the opposing functions of Fas/FasL-mediated signaling, bilateral effects of Fas/FasL on in immune cells, and complex pathogenesis of autoimmunity mediated by Fas/FasL.
Collapse
Affiliation(s)
- Akiko Yamada
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Rieko Arakaki
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masako Saito
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yasusei Kudo
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
35
|
Pathological Findings in Myasthenia Gravis Patients with Thymic Hyperplasia and Thymoma. Pathol Oncol Res 2017; 24:67-74. [DOI: 10.1007/s12253-017-0213-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 02/16/2017] [Indexed: 12/28/2022]
|
36
|
Guzman-Genuino RM, Diener KR. Regulatory B Cells in Pregnancy: Lessons from Autoimmunity, Graft Tolerance, and Cancer. Front Immunol 2017; 8:172. [PMID: 28261223 PMCID: PMC5313489 DOI: 10.3389/fimmu.2017.00172] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/03/2017] [Indexed: 12/26/2022] Open
Abstract
The success of pregnancy is contingent on the maternal immune system recognizing and accommodating a growing semi-allogeneic fetus. Specialized subsets of lymphocytes capable of negative regulation are fundamental in this process, and include the regulatory T cells (Tregs) and potentially, regulatory B cells (Bregs). Most of our current understanding of the immune regulatory role of Bregs comes from studies in the fields of autoimmunity, transplantation tolerance, and cancer biology. Bregs control autoimmune diseases and can elicit graft tolerance by inhibiting the differentiation of effector T cells and dendritic cells (DCs), and activating Tregs. Furthermore, in cancer, Bregs are hijacked by neoplastic cells to promote tumorigenesis. Pregnancy therefore represents a condition that reconciles these fields-mechanisms must be in place to ensure maternal immunological tolerance throughout gravidity to allow the semi-allogeneic fetus to grow within. Thus, the mechanisms underlying Breg activities in autoimmune diseases, transplantation tolerance, and cancer may take place during pregnancy as well. In this review, we discuss the potential role of Bregs as guardians of pregnancy and propose an endocrine-modulated feedback loop highlighting the Breg-Treg-tolerogenic DC interface essential for the induction of maternal immune tolerance.
Collapse
Affiliation(s)
- Ruth Marian Guzman-Genuino
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Science, Hanson Institute and Sansom Institute for Health Research, University of South Australia , Adelaide, SA , Australia
| | - Kerrilyn R Diener
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Science, Hanson Institute and Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia; Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
37
|
Ray A, Dittel BN. Mechanisms of Regulatory B cell Function in Autoimmune and Inflammatory Diseases beyond IL-10. J Clin Med 2017; 6:jcm6010012. [PMID: 28124981 PMCID: PMC5294965 DOI: 10.3390/jcm6010012] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 01/06/2023] Open
Abstract
In the past two decades it has become clear that in addition to antigen presentation and antibody production B cells play prominent roles in immune regulation. While B cell-derived IL-10 has garnered much attention, B cells also effectively regulate inflammation by a variety of IL-10-independent mechanisms. B cell regulation has been studied in both autoimmune and inflammatory diseases. While collectively called regulatory B cells (Breg), no definitive phenotype has emerged for B cells with regulatory potential. This has made their study challenging and thus unique B cell regulatory mechanisms have emerged in a disease-dependent manner. Thus to harness the therapeutic potential of Breg, further studies are needed to understand how they emerge and are induced to evoke their regulatory activities.
Collapse
Affiliation(s)
- Avijit Ray
- Blood Center of Wisconsin, Blood Research Institute, Milwaukee, WI 53226, USA.
- Oncology Discovery, AbbVie Inc., North Chicago, IL 60064, USA.
| | - Bonnie N Dittel
- Blood Center of Wisconsin, Blood Research Institute, Milwaukee, WI 53226, USA.
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW The number of deaths associated with cardiovascular disease remains high, despite great advances in treating the associated high levels of cholesterol. The main underlying pathology of cardiovascular disease is atherosclerosis, which is recognized as a chronic autoimmune-like inflammatory disease. Hence, there is a pressing need to shed light on the immune pathways associated with atherosclerosis. B cells have long been thought to have a general protective effect in atherosclerosis. However, findings in the last decade have challenged this paradigm, showing that it is crucial to differentiate between the various B-cell subsets when assessing their role/effect on atherosclerosis. RECENT FINDINGS It has become increasingly recognized lately that B cells can have significant effects on the immune system independent of antibody production. The understanding that B cells form a major source of cytokines and can directly influence T-cell responses via surface markers, have led to the identification of novel B-cell subsets. These subsets are important modulators of autoimmune disorders but have not yet been fully investigated in atherosclerosis. SUMMARY Here we review the current known roles of B-cell subsets and the putative effects of recently identified B cells on atherosclerosis.
Collapse
Affiliation(s)
- Hidde Douna
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
39
|
Floudas A, Amu S, Fallon PG. New Insights into IL-10 Dependent and IL-10 Independent Mechanisms of Regulatory B Cell Immune Suppression. J Clin Immunol 2016; 36 Suppl 1:25-33. [DOI: 10.1007/s10875-016-0263-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/07/2016] [Indexed: 01/01/2023]
|
40
|
Durand J, Chiffoleau E. B cells with regulatory properties in transplantation tolerance. World J Transplant 2015; 5:196-208. [PMID: 26722647 PMCID: PMC4689930 DOI: 10.5500/wjt.v5.i4.196] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/19/2015] [Accepted: 09/30/2015] [Indexed: 02/05/2023] Open
Abstract
Induction of tolerance remains a major goal in transplantation. Indeed, despite potent immunosuppression, chronic rejection is still a real problem in transplantation. The humoral response is an important mediator of chronic rejection, and numerous strategies have been developed to target either B cells or plasma cells. However, the use of anti-CD20 therapy has highlighted the beneficial role of subpopulation of B cells, termed regulatory B cells. These cells have been characterized mainly in mice models of auto-immune diseases but emerging literature suggests their role in graft tolerance in transplantation. Regulatory B cells seem to be induced following inflammation to restrain excessive response. Different phenotypes of regulatory B cells have been described and are functional at various differentiation steps from immature to plasma cells. These cells act by multiple mechanisms such as secretion of immuno-suppressive cytokines interleukin-10 (IL-10) or IL-35, cytotoxicity, expression of inhibitory receptors or by secretion of non-inflammatory antibodies. Better characterization of the development, phenotype and mode of action of these cells seems urgent to develop novel approaches to manipulate the different B cell subsets and the response to the graft in a clinical setting.
Collapse
|
41
|
Ray A, Wang L, Dittel BN. IL-10-independent regulatory B-cell subsets and mechanisms of action. Int Immunol 2015; 27:531-6. [PMID: 25999596 PMCID: PMC11513724 DOI: 10.1093/intimm/dxv033] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 05/18/2015] [Indexed: 12/16/2022] Open
Abstract
Although classically B cells are known to play important roles in immune protection via humoral immunity, recently their regulatory mechanisms have been best appreciated in the context of autoimmunity. Several studies have identified different subsets of regulatory B cells that vary not only in their phenotype but also in their mechanism of action. Although the best-studied mechanism of B-cell immune regulation is IL-10 production, other IL-10-independent mechanisms have been proposed. These include maintenance of CD4(+)Foxp3(+) regulatory T cells; production of transforming growth factor-β, IL-35, IgM or adenosine or expression of PD-L1 (programmed death 1 ligand 1) or FasL (Fas ligand). Given that B-cell-targeted therapy is being increasingly used in the clinic, a complete understanding of the mechanisms whereby B cells regulate inflammation associated with specific diseases is required for designing safe and effective immunotherapies targeting B cells.
Collapse
MESH Headings
- Animals
- B-Lymphocytes, Regulatory/immunology
- B-Lymphocytes, Regulatory/pathology
- B7-H1 Antigen/genetics
- B7-H1 Antigen/immunology
- Cell Lineage/immunology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Fas Ligand Protein/genetics
- Fas Ligand Protein/immunology
- Gene Expression Regulation/immunology
- Graft vs Host Disease/genetics
- Graft vs Host Disease/immunology
- Graft vs Host Disease/pathology
- Humans
- Interleukin-10
- Interleukins/genetics
- Interleukins/immunology
- Mice
- Signal Transduction
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/immunology
Collapse
Affiliation(s)
- Avijit Ray
- BloodCenter of Wisconsin, Blood Research Institute, Milwaukee, WI 53201, USA
| | - Luman Wang
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Biotherapy Research Center of Fudan University, Shanghai 200032, People's Republic of China
| | - Bonnie N Dittel
- BloodCenter of Wisconsin, Blood Research Institute, Milwaukee, WI 53201, USA
| |
Collapse
|
42
|
Abstract
Over the last decade it has become evident that in addition to producing antibody, B cells activate the immune system by producing cytokines and via antigen presentation. In addition, B cells also exhibit immunosuppressive functions via diverse regulatory mechanisms. This subset of B cells, known as regulatory B cells (Bregs), contributes to the maintenance of tolerance, primarily via the production of IL-10. Studies in experimental animal models, as well as in patients with autoimmune diseases, have identified multiple Breg subsets exhibiting diverse mechanisms of immune suppression. In this review, we describe the different Breg subsets identified in mice and humans, and their diverse mechanisms of suppression in different disease settings.
Collapse
Affiliation(s)
- Claudia Mauri
- Centre for Rheumatology, Division of Medicine, University College London, 5 University Street, London WC1E 6JF, UK
| | - Madhvi Menon
- Centre for Rheumatology, Division of Medicine, University College London, 5 University Street, London WC1E 6JF, UK
| |
Collapse
|
43
|
Lundy SK, Klinker MW, Fox DA. Killer B lymphocytes and their fas ligand positive exosomes as inducers of immune tolerance. Front Immunol 2015; 6:122. [PMID: 25852690 PMCID: PMC4367442 DOI: 10.3389/fimmu.2015.00122] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/04/2015] [Indexed: 01/31/2023] Open
Abstract
Induction of immune tolerance is a key process by which the immune system is educated to modulate reactions against benign stimuli such as self-antigens and commensal microbes. Understanding and harnessing the natural mechanisms of immune tolerance may become an increasingly useful strategy for treating many types of allergic and autoimmune diseases, as well as for improving the acceptance of solid organ transplants. Our laboratory and others have been interested in the natural ability of some B lymphocytes to express the death-inducing molecule Fas ligand (FasL), and their ability to kill T helper (TH) lymphocytes. We have recently shown that experimental transformation of human B cells by a non-replicative variant of Epstein-Barr virus (EBV) consistently resulted in high expression of functional FasL protein. The production and release of FasL+ exosomes that co-expressed major histocompatibility complex (MHC) class II molecules and had the capacity to kill antigen-specific TH cells was also observed. Several lines of evidence indicate that FasL+ B cells and FasL+MHCII+ exosomes have important roles in natural immune tolerance and have a great deal of therapeutic potential. Taken together, these findings suggest that EBV-immortalized human B lymphoblastoid cell lines could be used as cellular factories for FasL+ exosomes, which would be employed to therapeutically establish and/or regain immune tolerance toward specific antigens. The goals of this review are to summarize current knowledge of the roles of FasL+ B cells and exosomes in immune regulation, and to suggest methods of manipulating killer B cells and FasL+ exosomes for clinical purposes.
Collapse
Affiliation(s)
- Steven K Lundy
- Department of Internal Medicine-Rheumatology, University of Michigan Medical School , Ann Arbor, MI , USA ; Graduate Training Program in Immunology, University of Michigan Medical School , Ann Arbor, MI , USA
| | - Matthew W Klinker
- Graduate Training Program in Immunology, University of Michigan Medical School , Ann Arbor, MI , USA
| | - David A Fox
- Department of Internal Medicine-Rheumatology, University of Michigan Medical School , Ann Arbor, MI , USA ; Graduate Training Program in Immunology, University of Michigan Medical School , Ann Arbor, MI , USA
| |
Collapse
|
44
|
Lundy SK, Klinker MW. Characterization and activity of Fas ligand producing CD5⁺ B cells. Methods Mol Biol 2015; 1190:81-102. [PMID: 25015275 DOI: 10.1007/978-1-4939-1161-5_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
B lymphocytes make several contributions to immune regulation including production of antibodies with regulatory properties, release of immune suppressive cytokines, and expression of death-inducing ligands. A role for Fas ligand (FasL)-expressing "killer" B cells in regulating T helper cell survival and chronic inflammation has been demonstrated in animal models of schistosome worm infection, asthma, and autoimmune arthritis. Interestingly, a population of CD5(+) B cells found in the spleen and lungs of naïve mice constitutively expresses FasL and has potent killer function against T helper cells that is antigen-specific and FasL-dependent. Killer B cells therefore represent a novel target for immune modulation in many disease settings. Our laboratory has recently published methods of characterizing FasL(+) B cells and inducing their proliferation in vitro. This chapter will describe detailed methods of identifying and expanding killer B cells from mice, detecting FasL expression in B cells, and performing functional killing assays against antigen-specific TH cells.
Collapse
Affiliation(s)
- Steven K Lundy
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, 4043 Biomedical Sciences Research Bldg., 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA,
| | | |
Collapse
|
45
|
Jiao Y, Wang X, Zhang T, Lijun S, Wang R, Li W, Ji Y, Wu H, Liu C. Regulatory B cells correlate with HIV disease progression. Microbiol Immunol 2014; 58:449-55. [PMID: 24947188 DOI: 10.1111/1348-0421.12171] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/21/2014] [Accepted: 06/11/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Yanmei Jiao
- Beijing You’an Hospital; Capital Medical University; 8, Xi Tou Tiao, Youanmen wai Fengtai District Beijing 100069 China
| | - Xi Wang
- Beijing You’an Hospital; Capital Medical University; 8, Xi Tou Tiao, Youanmen wai Fengtai District Beijing 100069 China
| | - Tong Zhang
- Beijing You’an Hospital; Capital Medical University; 8, Xi Tou Tiao, Youanmen wai Fengtai District Beijing 100069 China
| | - Sun Lijun
- Beijing You’an Hospital; Capital Medical University; 8, Xi Tou Tiao, Youanmen wai Fengtai District Beijing 100069 China
| | - Rui Wang
- Beijing You’an Hospital; Capital Medical University; 8, Xi Tou Tiao, Youanmen wai Fengtai District Beijing 100069 China
| | - Wei Li
- Beijing You’an Hospital; Capital Medical University; 8, Xi Tou Tiao, Youanmen wai Fengtai District Beijing 100069 China
| | - Yunxia Ji
- Beijing You’an Hospital; Capital Medical University; 8, Xi Tou Tiao, Youanmen wai Fengtai District Beijing 100069 China
| | - Hao Wu
- Beijing You’an Hospital; Capital Medical University; 8, Xi Tou Tiao, Youanmen wai Fengtai District Beijing 100069 China
| | - Cuie Liu
- Beijing You’an Hospital; Capital Medical University; 8, Xi Tou Tiao, Youanmen wai Fengtai District Beijing 100069 China
| |
Collapse
|
46
|
Bouma G, Carter NA, Recher M, Malinova D, Adriani M, Notarangelo LD, Burns SO, Mauri C, Thrasher AJ. Exacerbated experimental arthritis in Wiskott-Aldrich syndrome protein deficiency: modulatory role of regulatory B cells. Eur J Immunol 2014; 44:2692-702. [PMID: 24945741 PMCID: PMC4209796 DOI: 10.1002/eji.201344245] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 04/27/2014] [Accepted: 06/11/2014] [Indexed: 12/19/2022]
Abstract
Patients deficient in the cytoskeletal regulator Wiskott–Aldrich syndrome protein (WASp) are predisposed to varied autoimmunity, suggesting it has an important controlling role in participating cells. IL-10-producing regulatory B (Breg) cells are emerging as important mediators of immunosuppressive activity. In experimental, antigen-induced arthritis WASp-deficient (WASp knockout [WAS KO]) mice developed exacerbated disease associated with decreased Breg cells and regulatory T (Treg) cells, but increased Th17 cells in knee-draining LNs. Arthritic WAS KO mice showed increased serum levels of B-cell-activating factor, while their B cells were unresponsive in terms of B-cell-activating factor induced survival and IL-10 production. Adoptive transfer of WT Breg cells ameliorated arthritis in WAS KO recipients and restored a normal balance of Treg and Th17 cells. Mice with B-cell-restricted WASp deficiency, however, did not develop exacerbated arthritis, despite exhibiting reduced Breg- and Treg-cell numbers during active disease, and Th17 cells were not increased over equivalent WT levels. These findings support a contributory role for defective Breg cells in the development of WAS-related autoimmunity, but demonstrate that functional competence in other regulatory populations can be compensatory. A properly regulated cytoskeleton is therefore important for normal Breg-cell activity and complementation of defects in this lineage is likely to have important therapeutic benefits.
Collapse
Affiliation(s)
- Gerben Bouma
- Molecular Immunology Unit, UCL Institute of Child Health, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Klinker MW, Lizzio V, Reed TJ, Fox DA, Lundy SK. Human B Cell-Derived Lymphoblastoid Cell Lines Constitutively Produce Fas Ligand and Secrete MHCII(+)FasL(+) Killer Exosomes. Front Immunol 2014; 5:144. [PMID: 24765093 PMCID: PMC3980107 DOI: 10.3389/fimmu.2014.00144] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 03/20/2014] [Indexed: 12/18/2022] Open
Abstract
Immune suppression mediated by exosomes is an emerging concept with potentially immense utility for immunotherapy in a variety of inflammatory contexts, including allogeneic transplantation. Exosomes containing the apoptosis-inducing molecule Fas ligand (FasL) have demonstrated efficacy in inhibiting antigen-specific immune responses upon adoptive transfer in animal models. We report here that a very high frequency of human B cell-derived lymphoblastoid cell lines (LCL) constitutively produce MHCII+FasL+ exosomes that can induce apoptosis in CD4+ T cells. All LCL tested for this study (>20 independent cell lines) showed robust expression of FasL, but had no detectable FasL on the cell surface. Given this intracellular sequestration, we hypothesized that FasL in LCL was retained in the secretory lysosome and secreted via exosomes. Indeed, we found both MHCII and FasL proteins present in LCL-derived exosomes, and using a bead-based exosome capture assay demonstrated the presence of MHCII+FasL+ exosomes among those secreted by LCL. Using two independent experimental approaches, we demonstrated that LCL-derived exosomes were capable of inducing antigen-specific apoptosis in autologous CD4+ T cells. These results suggest that LCL-derived exosomes may present a realistic source of immunosuppressive exosomes that could reduce or eliminate T cell-mediated responses against donor-derived antigens in transplant recipients.
Collapse
Affiliation(s)
- Matthew W Klinker
- Graduate Program in Immunology, University of Michigan , Ann Arbor, MI , USA ; Division of Rheumatology, Department of Internal Medicine, University of Michigan , Ann Arbor, MI , USA
| | - Vincent Lizzio
- Division of Rheumatology, Department of Internal Medicine, University of Michigan , Ann Arbor, MI , USA
| | - Tamra J Reed
- Division of Rheumatology, Department of Internal Medicine, University of Michigan , Ann Arbor, MI , USA
| | - David A Fox
- Graduate Program in Immunology, University of Michigan , Ann Arbor, MI , USA ; Division of Rheumatology, Department of Internal Medicine, University of Michigan , Ann Arbor, MI , USA
| | - Steven K Lundy
- Graduate Program in Immunology, University of Michigan , Ann Arbor, MI , USA ; Division of Rheumatology, Department of Internal Medicine, University of Michigan , Ann Arbor, MI , USA
| |
Collapse
|
48
|
|
49
|
Klinker MW, Reed TJ, Fox DA, Lundy SK. Interleukin-5 supports the expansion of fas ligand-expressing killer B cells that induce antigen-specific apoptosis of CD4(+) T cells and secrete interleukin-10. PLoS One 2013; 8:e70131. [PMID: 23940537 PMCID: PMC3734024 DOI: 10.1371/journal.pone.0070131] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 06/15/2013] [Indexed: 01/19/2023] Open
Abstract
Beyond their critical role in humoral immunity, B lymphocytes can employ a variety of immunomodulatory mechanisms including expression of the apoptosis-inducing molecule Fas ligand (FasL; CD178). Here, we extensively characterized the surface phenotype of FasL+ killer B cells, showing they are enriched in the IgMhighCD5+CD1dhigh B cell subset previously reported to contain a higher frequency of B cells producing interleukin-10 (IL-10). A rare population of B cells expressing IL-10 was present among FasL+ B cells, but most FasL+ B cells did not produce IL-10. We also identify interleukin-5 (IL-5) as a novel inducer of killer B cell function. Constitutively FasL+ B cells expressed higher levels of the IL-5 receptor, and treating B cells with IL-5 and CD40L resulted in the expansion of a B cell population enriched for FasL+ cells. B cells stimulated with IL-5 and CD40L were potent inducers of apoptosis in activated primary CD4+ T cells, and this killing function was antigen-specific and dependent upon FasL. IL-5 also enhanced IL-10 secretion in B cells stimulated with CD40L. Taken together these findings elucidate the relationship of FasL+ B cells and IL-10-producing B cells and demonstrate that IL-5 can induce or enhance both killer B cell activity and IL-10 secretion in B cells. Finally, we found that the killer B cell activity induced by IL-5 was completely blocked by IL-4, suggesting the existence of a previously unknown antagonistic relationship between these type-2 cytokines in modulating the activity of killer B cells. Targeting this IL-5/IL-4 signaling axis may therefore represent a novel area of drug discovery in inflammatory disorders.
Collapse
Affiliation(s)
- Matthew W. Klinker
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Tamra J. Reed
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - David A. Fox
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Steven K. Lundy
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
50
|
Lundy SK, Lukacs NW. Chronic schistosome infection leads to modulation of granuloma formation and systemic immune suppression. Front Immunol 2013; 4:39. [PMID: 23429492 PMCID: PMC3576626 DOI: 10.3389/fimmu.2013.00039] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/31/2013] [Indexed: 11/13/2022] Open
Abstract
Schistosome worms have been infecting humans for millennia, but it is only in the last half century that we have begun to understand the complexities of this inter-relationship. As our sophistication about the inner workings of every aspect of the immune system has increased, it has also become obvious that schistosome infections have broad ranging effects on nearly all of the innate and adaptive immune response mechanisms. Selective pressures on both the worms and their hosts, has no doubt led to co-evolution of protective mechanisms, particularly those that favor granuloma formation around schistosome eggs and immune suppression during chronic infection. The immune modulatory effects that chronic schistosome infection and egg deposition elicit have been intensely studied, not only because of their major implications to public health issues, but also due to the emerging evidence that schistosome infection may protect humans from severe allergies and autoimmunity. Mouse models of schistosome infection have been extremely valuable for studying immune modulation and regulation, and in the discovery of novel aspects of immunity. A progression of immune reactions occurs during granuloma formation ranging from innate inflammation, to activation of each branch of adaptive immune response, and culminating in systemic immune suppression and granuloma fibrosis. Although molecular factors from schistosome eggs have been identified as mediators of immune modulation and suppressive functions of T and B cells, much work is still needed to define the mechanisms of the immune alteration and determine whether therapies for asthma or autoimmunity could be developed from these pathways.
Collapse
Affiliation(s)
- Steven K Lundy
- Graduate Training Program in Immunology, University of Michigan Medical School Ann Arbor, MI, USA ; Department of Internal Medicine-Rheumatology, University of Michigan Medical School Ann Arbor, MI, USA
| | | |
Collapse
|