1
|
Pham HL, Hoang TX, Kim JY. Human Regulatory Macrophages Derived from THP-1 Cells Using Arginylglycylaspartic Acid and Vitamin D3. Biomedicines 2023; 11:1740. [PMID: 37371835 DOI: 10.3390/biomedicines11061740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Regulatory macrophages (Mregs) are unique in that they have anti-inflammatory and immunosuppressive properties. Thus, treating inflammatory diseases using Mregs is an area of active research. Human Mregs are usually generated by culturing peripheral blood monocytes stimulated using a macrophage colony-stimulating factor with interferon (IFN)-γ. Herein, we generated Mregs with an elongated cell morphology from THP-1 cells that were stimulated with phorbol 12-myristate 13-acetate and cultured with both arginylglycylaspartic acid and vitamin D3. These Mregs regulated macrophage function, and respectively downregulated and upregulated the expression of pro-inflammatory and immunosuppressive mediators. They also expressed Mregs-specific markers, such as dehydrogenase/reductase 9, even when exposed to such inflammatory stimulants as IFN-γ, lipopolysaccharide, purified xenogeneic antigen, and xenogeneic cells. The Mregs also exerted anti-inflammatory and anticoagulatory actions in response to xenogeneic cells, as well as exerting immunosuppressive effects on mitogen-induced Jurkat T-cell proliferation. Our method of generating functional Mregs in vitro without cytokines is simple and cost-effective.
Collapse
Affiliation(s)
- Hoang Lan Pham
- Department of Life Science, Gachon University, Seongnam 13120, Gyeonggi-Do, Republic of Korea
| | - Thi Xoan Hoang
- Department of Life Science, Gachon University, Seongnam 13120, Gyeonggi-Do, Republic of Korea
| | - Jae Young Kim
- Department of Life Science, Gachon University, Seongnam 13120, Gyeonggi-Do, Republic of Korea
| |
Collapse
|
2
|
Kandasamy K, Johana NB, Tan LG, Tan Y, Yeo JSL, Yusof NNB, Li Z, Koh J, Ginhoux F, Chan JKY, Choolani M, Mattar CNZ. Maternal dendritic cells influence fetal allograft response following murine in-utero hematopoietic stem cell transplantation. Stem Cell Res Ther 2023; 14:136. [PMID: 37226255 DOI: 10.1186/s13287-023-03366-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/05/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Intrauterine hematopoietic stem cell transplantation (IUT), potentially curative in congenital haematological disease, is often inhibited by deleterious immune responses to donor cells resulting in subtherapeutic donor cell chimerism (DCC). Microchimerism of maternal immune cells (MMc) trafficked into transplanted recipients across the placenta may directly influence donor-specific alloresponsiveness, limiting DCC. We hypothesized that dendritic cells (DC) among trafficked MMc influence the development of tolerogenic or immunogenic responses towards donor cells, and investigated if maternal DC-depletion reduced recipient alloresponsiveness and enhanced DCC. METHODS Using transgenic CD11c.DTR (C57BL/6) female mice enabled transient maternal DC-depletion with a single dose of diphtheria toxin (DT). CD11c.DTR females and BALB/c males were cross-mated, producing hybrid pups. IUT was performed at E14 following maternal DT administration 24 h prior. Bone marrow-derived mononuclear cells were transplanted, obtained from semi-allogenic BALB/c (paternal-derived; pIUT), C57BL/6 (maternal-derived; mIUT), or fully allogenic (aIUT) C3H donor mice. Recipient F1 pups were analyzed for DCC, while maternal and IUT-recipient immune cell profile and reactivity were examined via mixed lymphocyte reactivity functional assays. T- and B-cell receptor repertoire diversity in maternal and recipient cells were examined following donor cell exposure. RESULTS DCC was highest and MMc was lowest following pIUT. In contrast, aIUT recipients had the lowest DCC and the highest MMc. In groups that were not DC-depleted, maternal cells trafficked post-IUT displayed reduced TCR & BCR clonotype diversity, while clonotype diversity was restored when dams were DC-depleted. Additionally, recipients displayed increased expression of regulatory T-cells and immune-inhibitory proteins, with reduced proinflammatory cytokine and donor-specific antibody production. DC-depletion did not impact initial donor chimerism. Postnatal transplantation without immunosuppression of paternal donor cells did not increase DCC in pIUT recipients; however there were no donor-specific antibody production or immune cell changes. CONCLUSIONS Though maternal DC depletion did not improve DCC, we show for the first time that MMc influences donor-specific alloresponsiveness, possibly by expanding alloreactive clonotypes, and depleting maternal DC promotes and maintains acquired tolerance to donor cells independent of DCC, presenting a novel approach to enhancing donor cell tolerance following IUT. This may have value when planning repeat HSC transplantations to treat haemoglobinopathies.
Collapse
Affiliation(s)
- Karthikeyan Kandasamy
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | | | - Lay Geok Tan
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore
- Department of Obstetrics and Gynaecology, National University Health System, National University Hospital, Singapore, Singapore
| | - Yvonne Tan
- Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Julie Su Li Yeo
- Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Nur Nazneen Binte Yusof
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Zhihui Li
- Genome Research Informatics and Data Science Platform, Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Jiayu Koh
- Genome Research Informatics and Data Science Platform, Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, The Academia, Singapore, Singapore
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jerry K Y Chan
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore
- Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Mahesh Choolani
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore
- Department of Obstetrics and Gynaecology, National University Health System, National University Hospital, Singapore, Singapore
| | - Citra N Z Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore.
- Department of Obstetrics and Gynaecology, National University Health System, National University Hospital, Singapore, Singapore.
| |
Collapse
|
3
|
Li J, Thomson AW, Rogers NM. Myeloid and Mesenchymal Stem Cell Therapies for Solid Organ Transplant Tolerance. Transplantation 2021; 105:e303-e321. [PMID: 33756544 PMCID: PMC8455706 DOI: 10.1097/tp.0000000000003765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Transplantation is now performed globally as a routine procedure. However, the increased demand for donor organs and consequent expansion of donor criteria has created an imperative to maximize the quality of these gains. The goal is to balance preservation of allograft function against patient quality-of-life, despite exposure to long-term immunosuppression. Elimination of immunosuppressive therapy to avoid drug toxicity, with concurrent acceptance of the allograft-so-called operational tolerance-has proven elusive. The lack of recent advances in immunomodulatory drug development, together with advances in immunotherapy in oncology, has prompted interest in cell-based therapies to control the alloimmune response. Extensive experimental work in animals has characterized regulatory immune cell populations that can induce and maintain tolerance, demonstrating that their adoptive transfer can promote donor-specific tolerance. An extension of this large body of work has resulted in protocols for manufacture, as well as early-phase safety and feasibility trials for many regulatory cell types. Despite the excitement generated by early clinical trials in autoimmune diseases and organ transplantation, there is as yet no clinically validated, approved regulatory cell therapy for transplantation. In this review, we summarize recent advances in this field, with a focus on myeloid and mesenchymal cell therapies, including current understanding of the mechanisms of action of regulatory immune cells, and clinical trials in organ transplantation using these cells as therapeutics.
Collapse
Affiliation(s)
- Jennifer Li
- Center of Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Angus W Thomson
- Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Natasha M Rogers
- Center of Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
4
|
Suuring M, Moreau A. Regulatory Macrophages and Tolerogenic Dendritic Cells in Myeloid Regulatory Cell-Based Therapies. Int J Mol Sci 2021; 22:7970. [PMID: 34360736 PMCID: PMC8348814 DOI: 10.3390/ijms22157970] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Myeloid regulatory cell-based therapy has been shown to be a promising cell-based medicinal approach in organ transplantation and for the treatment of autoimmune diseases, such as type 1 diabetes, rheumatoid arthritis, Crohn's disease and multiple sclerosis. Dendritic cells (DCs) are the most efficient antigen-presenting cells and can naturally acquire tolerogenic properties through a variety of differentiation signals and stimuli. Several subtypes of DCs have been generated using additional agents, including vitamin D3, rapamycin and dexamethasone, or immunosuppressive cytokines, such as interleukin-10 (IL-10) and transforming growth factor-beta (TGF-β). These cells have been extensively studied in animals and humans to develop clinical-grade tolerogenic (tol)DCs. Regulatory macrophages (Mregs) are another type of protective myeloid cell that provide a tolerogenic environment, and have mainly been studied within the context of research on organ transplantation. This review aims to thoroughly describe the ex vivo generation of tolDCs and Mregs, their mechanism of action, as well as their therapeutic application and assessment in human clinical trials.
Collapse
Affiliation(s)
| | - Aurélie Moreau
- Centre de Recherche en Transplantation et Immunologie—UMR1064, INSERM—ITUN, Nantes Université, CHU Nantes, 44000 Nantes, France;
| |
Collapse
|
5
|
Rapamycin Alternatively Modifies Mitochondrial Dynamics in Dendritic Cells to Reduce Kidney Ischemic Reperfusion Injury. Int J Mol Sci 2021; 22:ijms22105386. [PMID: 34065421 PMCID: PMC8160749 DOI: 10.3390/ijms22105386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells (DCs) are unique immune cells that can link innate and adaptive immune responses and Immunometabolism greatly impacts their phenotype. Rapamycin is a macrolide compound that has immunosuppressant functions and is used to prevent graft loss in kidney transplantation. The current study evaluated the therapeutic potential of ex-vivo rapamycin treated DCs to protect kidneys in a mouse model of acute kidney injury (AKI). For the rapamycin single (S) treatment (Rapa-S-DC), Veh-DCs were treated with rapamycin (10 ng/mL) for 1 h before LPS. In contrast, rapamycin multiple (M) treatment (Rapa-M-DC) were exposed to 3 treatments over 7 days. Only multiple ex-vivo rapamycin treatments of DCs induced a persistent reprogramming of mitochondrial metabolism. These DCs had 18-fold more mitochondria, had almost 4-fold higher oxygen consumption rates, and produced more ATP compared to Veh-DCs (Veh treated control DCs). Pathway analysis showed IL10 signaling as a major contributing pathway to the altered immunophenotype after Rapamycin treatment compared to vehicle with significantly lower cytokines Tnfa, Il1b, and Il6, while regulators of mitochondrial content Pgc1a, Tfam, and Ho1 remained elevated. Critically, adoptive transfer of rapamycin-treated DCs to WT recipients 24 h before bilateral kidney ischemia significantly protected the kidneys from injury with a significant 3-fold improvement in kidney function. Last, the infusion of DCs containing higher mitochondria numbers (treated ex-vivo with healthy isolated mitochondria (10 µg/mL) one day before) also partially protected the kidneys from IRI. These studies demonstrate that pre-emptive infusion of ex-vivo reprogrammed DCs that have higher mitochondria content has therapeutic capacity to induce an anti-inflammatory regulatory phenotype to protect kidneys from injury.
Collapse
|
6
|
Modulatory effect of rapamycin and tacrolimus on monocyte-derived dendritic cells phenotype and function. Immunobiology 2020; 226:152031. [PMID: 33278711 DOI: 10.1016/j.imbio.2020.152031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 10/16/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Immunosuppressive-drugs are needed after solid organ transplantation to prevent allograft rejection but induce severe side effects. Understanding the alloimmune response is critical to modulate it and to achieve graft operational tolerance. The role of regulatory T cells and tolerogenic dendritic cells (Tol-DCs) is undoubtedly essential in tolerance induction. Tacrolimus is considered as the cornerstone of immunosuppression in solid organ transplantation. mTOR inhibitor such as rapamycin are thought to induce tolerance and are used as anticancer drugs in several cancers. The aim of this study was to better understand the effect of these immunosuppressive drugs on the differentiation, maturation and function of human monocyte derived dendritic cells (DCs). MATERIAL AND METHODS DCs were differentiated from monocytes of healthy donors with either rapamycin (Rapa-DCs) or tacrolimus (Tac-DCs). The phenotype was evaluated by flow cytometry analysis. The production of pro- and anti-inflammatory cytokines was assessed by ELISA. The mRNA expression level of IDO and PD-L1 was assessed by RTqPCR. Mixed leukocytes reactions were performed to analyse suppressive activity of DCs. RESULTS Rapa-DC were characterised by a lower expression of the co-stimulatory molecules and CD83 than control-DCs (CTR-DC) (p < 0.05). In contrast, tacrolimus had no effect on the expression of surface markers compared to CTR-DCs. Rapamycin reduced both IL-12 and IL-10 secretions (p < 0.05). Rapa-DCs had a suppressive effect on CD4+ allogenic T cells compared to CTR-DCs (p < 0.05). However, neither Rapa-DCs nor Tac-DCs favoured the emergence of a CD4+CD25highFoxp3+ population compared to CTR-DCs. Surprisingly, Rapa-DCs had a reduced expression of IDO and PD-L1 compared to Tac-DCs and CTR-DCs. CONCLUSION Rapa-DCs exhibit an incomplete phenotypic tolerogenic profile. To our knowledge this is the first paper showing a reduction of expression of pro-tolerogenic enzyme IDO in DCs. Tacrolimus does not change the phenotypical or functional characteristics of moDCs.
Collapse
|
7
|
Comparative Study of the Immunoregulatory Capacity of In Vitro Generated Tolerogenic Dendritic Cells, Suppressor Macrophages, and Myeloid-Derived Suppressor Cells. Transplantation 2018; 100:2079-2089. [PMID: 27653226 DOI: 10.1097/tp.0000000000001315] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Regulatory myeloid cell (RMC) therapy is a promising strategy for the treatment of immunological disorders such as autoimmune disease and allograft transplant rejection. Various RMC subsets can be derived from total bone marrow using different protocols, but their phenotypes often overlap, raising questions about whether they are truly distinct. METHODS In this study, we directly compared the phenotype and function of 3 types of RMCs, tolerogenic dendritic cells, suppressor macrophages, and myeloid-derived suppressor cells, generated in vitro from the same mouse strain in a single laboratory. RESULTS We show that the 3 RMC subsets tested in this study share some phenotypic markers, suppress T cell proliferation in vitro and were all able to prolong allograft survival in a model of skin transplantation. However, our results highlight distinct mechanisms of action that are specific to each cell population. CONCLUSIONS This study shows for the first time a side-by-side comparison of 3 types of RMCs using the same phenotypic and functional assays, thus providing a robust analysis of their similarities and differences.
Collapse
|
8
|
Abstract
Over the past century, solid organ transplantation has been improved both at a surgical and postoperative level. However, despite the improvement in efficiency, safety, and survival, we are still far from obtaining full acceptance of all kinds of allograft in the absence of concomitant treatments. Today, transplanted patients are treated with immunosuppressive drugs (IS) to minimize immunological response in order to prevent graft rejection. Nevertheless, the lack of specificity of IS leads to an increase in the risk of cancer and infections. At this point, cell therapies have been shown as a novel promising resource to minimize the use of IS in transplantation. The main strength of cell therapy is the opportunity to generate allograft-specific tolerance, promoting in this way long-term allograft survival. Among several other regulatory cell types, tolerogenic monocyte-derived dendritic cells (Tol-MoDCs) appear to be an interesting candidate for cell therapy due to their ability to perform specific antigen presentation and to polarize immune response to immunotolerance. In this review, we describe the characteristics and the mechanisms of action of both human Tol-MoDCs and rodent tolerogenic bone marrow-derived DCs (Tol-BMDCs). Furthermore, studies performed in transplantation models in rodents and non-human primates corroborate the potential of Tol-BMDCs for immunoregulation. In consequence, Tol-MoDCs have been recently evaluated in sundry clinical trials in autoimmune diseases and shown to be safe. In addition to autoimmune diseases clinical trials, Tol-MoDC is currently used in the first phase I/II clinical trials in transplantation. Translation of Tol-MoDCs to clinical application in transplantation will also be discussed in this review.
Collapse
Affiliation(s)
- Eros Marín
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Nephrologie (ITUN), CHU Nantes, Nantes, France
| | - Maria Cristina Cuturi
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Nephrologie (ITUN), CHU Nantes, Nantes, France
| | - Aurélie Moreau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Nephrologie (ITUN), CHU Nantes, Nantes, France
| |
Collapse
|
9
|
Abstract
Background The human regulatory macrophage (Mreg) has emerged as a promising cell type for use as a cell-based adjunct immunosuppressive therapy in solid organ transplant recipients. In this brief report, dehydrogenase/reductase 9 (DHRS9) is identified as a robust marker of human Mregs. Methods The cognate antigen of a mouse monoclonal antibody raised against human Mregs was identified as DHRS9 by immunoprecipitation and MALDI-MS sequencing. Expression of DHRS9 within a panel of monocyte-derived macrophages was investigated by quantitative PCR, immunoblotting and flow cytometry. Results DHRS9 expression discriminated human Mregs from a panel of in vitro derived macrophages in other polarisation states. Likewise, DHRS9 expression distinguished Mregs from a variety of human monocyte-derived tolerogenic antigen-presenting cells in current development as cell-based immunotherapies, including Tol-DC, Rapa-DC, DC-10, and PGE2-induced myeloid-derived suppressor cells. A subpopulation of DHRS9-expressing human splenic macrophages was identified by immunohistochemistry. Expression of DHRS9 was acquired gradually during in vitro development of human Mregs from CD14+ monocytes and was further enhanced by IFN-γ treatment on day 6 of culture. Stimulating Mregs with 100 ng/mL lipopolysaccharide for 24 hours did not extinguish DHRS9 expression. Dhrs9 was not an informative marker of mouse Mregs. Conclusion DHRS9 is a specific and stable marker of human Mregs. A brief definitive report that dehydrogenase/reductase 9 (DHRS9) is a robust marker of human, but not mouse, Mregs.
Collapse
|
10
|
Obreque J, Vega F, Torres A, Cuitino L, Mackern-Oberti JP, Viviani P, Kalergis A, Llanos C. Autologous tolerogenic dendritic cells derived from monocytes of systemic lupus erythematosus patients and healthy donors show a stable and immunosuppressive phenotype. Immunology 2017; 152:648-659. [PMID: 28763099 DOI: 10.1111/imm.12806] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/23/2017] [Accepted: 07/20/2017] [Indexed: 12/20/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease with unrestrained T-cell and B-cell activity towards self-antigens. Evidence shows that apoptotic cells (ApoCells) trigger an autoreactive response against nuclear antigens in susceptible individuals. In this study, we focus on generating and characterizing tolerogenic dendritic cells (tolDCs) to restore tolerance to ApoCells. Monocyte-derived dendritic cells (DCs) from healthy controls and patients with SLE were treated with dexamethasone and rosiglitazone to induce tolDCs. Autologous apoptotic lymphocytes generated by UV irradiation were given to tolDCs as a source of self-antigens. Lipopolysaccharide (LPS) was used as a maturation stimulus to induce the expression of co-stimulatory molecules and secretion of cytokines. TolDCs generated from patients with SLE showed a reduced expression of co-stimulatory molecules after LPS stimulation compared with mature DCs. The same phenomenon was observed in tolDCs treated with ApoCells and LPS. In addition, ApoCell-loaded tolDCs stimulated with LPS secreted lower levels of interleukin-6 (IL-6) and IL-12p70 than mature DCs without differences in IL-10 secretion. The functionality of tolDCs was assessed by their capacity to prime allogeneic T cells. TolDCs displayed suppressor properties as demonstrated by a significantly reduced capacity to induce allogeneic T-cell proliferation and activation. ApoCell-loaded tolDCs generated from SLE monocytes have a stable immature/tolerogenic phenotype that can modulate CD4+ T-cell activation. These properties make them suitable for an antigen-specific immunotherapy for SLE.
Collapse
Affiliation(s)
- Javiera Obreque
- Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fabián Vega
- Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andy Torres
- Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Loreto Cuitino
- Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan P Mackern-Oberti
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, Mendoza, Argentina.,Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Paola Viviani
- Departamento de Salud Pública, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Llanos
- Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
11
|
Mesenchymal stem cells can induce regulatory T cells via modulating miR-126a but not miR-10a. Gene 2017; 627:327-336. [PMID: 28600182 DOI: 10.1016/j.gene.2017.06.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/04/2017] [Accepted: 06/05/2017] [Indexed: 12/26/2022]
Abstract
Among the different immunosuppressive properties attributed to mesenchymal stem cells (MSCs), one relies on their ability to induce regulatory T cells (iTregs) from conventional T cells under particular inflammatory context. Stable Foxp3 expression plays a major role in the phenotypic and functional stability of iTregs. However, the mechanism behind Foxp3 induction in iTregs by MSCs remains unknown. Here, we assessed the possible effect of MSCs on miR-126a and miR-10a expression in iTregs and, consequently on Foxp3 stability, a regulatory pathway that has not yet been explored. We first demonstrated that in vitro MSC-iTreg generation was directly associated with strong modifications of miR-126a. We next infused high doses of MSCs in a murine model of allogeneic skin transplantation (C57BL/6 into Balb/c). This treatment significantly prolonged skin allograft survival compared to PBS treated mice. When splenocytes from grafted mice were collected, we observed that the expression of Foxp3 gene was elevated at day 5 and 10 post-graft merely in MSCs treated mice. Moreover, Foxp3 expression was not associated with modified miR-10a expression comparable to in vitro experiments. Thus, our data identify a solid mechanism where MSCs induce conversion of conventional T cells to iTregs through strong modifications of miR-126a. Although miR-10a expression level remains unchanged in vitro and in vivo, we observed expression of this miR in MSC-DC condition.
Collapse
|
12
|
Hutchinson JA, Ahrens N, Geissler EK. MITAP-compliant characterization of human regulatory macrophages. Transpl Int 2017; 30:765-775. [PMID: 28543878 DOI: 10.1111/tri.12988] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/06/2017] [Accepted: 05/17/2017] [Indexed: 12/26/2022]
Abstract
This article provides a transparent description of Mreg_UKR cell products, including manufacture and quality-control processes, using the structure and vocabulary of the 'Minimum Information about Tolerogenic Antigen-presenting Cells' reporting guidelines. This information is intended as a resource for those in the field, as well as a stimulus to develop a new wave of immunoregulatory and tissue-reparative monocyte-derived cell therapies.
Collapse
Affiliation(s)
- James A Hutchinson
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Nobert Ahrens
- Department of Transfusion Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Edward K Geissler
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
13
|
Moreau A, Alliot-Licht B, Cuturi MC, Blancho G. Tolerogenic dendritic cell therapy in organ transplantation. Transpl Int 2016; 30:754-764. [DOI: 10.1111/tri.12889] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/13/2016] [Accepted: 11/09/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Aurélie Moreau
- INSERM UMR1064; Center for Research in Transplantation and Immunology; Nantes France
- CHU de Nantes; Institut de Transplantation Urologie Nephrologie (ITUN); Nantes France
- Université de Nantes; Nantes France
| | - Brigitte Alliot-Licht
- INSERM UMR1064; Center for Research in Transplantation and Immunology; Nantes France
- CHU de Nantes; Institut de Transplantation Urologie Nephrologie (ITUN); Nantes France
- Université de Nantes; Nantes France
| | - Maria-Cristina Cuturi
- INSERM UMR1064; Center for Research in Transplantation and Immunology; Nantes France
- CHU de Nantes; Institut de Transplantation Urologie Nephrologie (ITUN); Nantes France
- Université de Nantes; Nantes France
| | - Gilles Blancho
- INSERM UMR1064; Center for Research in Transplantation and Immunology; Nantes France
- CHU de Nantes; Institut de Transplantation Urologie Nephrologie (ITUN); Nantes France
- Université de Nantes; Nantes France
| |
Collapse
|
14
|
Marín E, Cuturi MC, Moreau A. Potential of Tolerogenic Dendritic Cells in Transplantation. CURRENT TRANSPLANTATION REPORTS 2016. [DOI: 10.1007/s40472-016-0109-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Gargaro M, Pirro M, Romani R, Zelante T, Fallarino F. Aryl Hydrocarbon Receptor-Dependent Pathways in Immune Regulation. Am J Transplant 2016; 16:2270-6. [PMID: 26751261 DOI: 10.1111/ajt.13716] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/31/2015] [Accepted: 01/04/2016] [Indexed: 01/25/2023]
Abstract
The idea of possible involvement of the aryl hydrocarbon receptor (AhR) in transplant tolerance can be traced back >30 years, when very low doses of dioxin-the most potent AhR ligand-were found to markedly reduce the generation of cytotoxic T lymphocytes in response to alloantigen challenge in vivo. AhR is a ligand-activated transcription factor that is activated by dioxins and other environmental pollutants. We now know that AhR can bind a broad variety of activating ligands that are disparate in nature, including endogenous molecules and those formed in the gut from food and bacterial products. Consequently, in addition to its classical role as a toxicological signal mediator, AhR is emerging as a transcription factor involved in the regulation of both innate and adaptive immune responses in various immune cell types, including lymphocytes and antigen-presenting cells (APCs). Allograft rejection is mostly a T cell-mediated alloimmune response initiated by the recognition of alloantigens presented by donor and recipient APCs to recipient CD4(+) and CD8(+) T cells. Based on those findings, AhR may function as a critical sensor of outside and inside environments, leading to changes in the immune system that may have relevance in transplantation.
Collapse
Affiliation(s)
- M Gargaro
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - M Pirro
- Department of Medicine, Perugia, Italy
| | - R Romani
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - T Zelante
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - F Fallarino
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
16
|
Effects of Adoptive Transfer of Tolerogenic Dendritic Cells on Allograft Survival in Organ Transplantation Models: An Overview of Systematic Reviews. J Immunol Res 2016; 2016:5730674. [PMID: 27547767 PMCID: PMC4980535 DOI: 10.1155/2016/5730674] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/06/2016] [Accepted: 05/12/2016] [Indexed: 02/05/2023] Open
Abstract
Objective. To dissect the efficacy of Tol-DC therapy with or without IS in multiple animal models of transplantation. Methods and Results. PubMed, Medline, Embase, and the Cochrane Library were searched for reviews published up to April 2015. Six systematic reviews and a total of 61 articles were finally included. Data were grouped by organ transplantation models and applied to meta-analysis. Our meta-analysis shows that Tol-DC therapy successfully prolonged allograft survival to varying extents in all except the islet transplantation models and with IS drugs further prolonged the survival of heart, skin, and islet allografts in mice, but not of heart allografts in rats. Compared with IS drugs alone, Tol-DC therapy with IS extended islet allograft survival in rats but failed to influence the survival of skin, small intestine, and heart allografts in rats or of heart and skin allografts in mice. Conclusion. Tol-DC therapy significantly prolonged multiple allograft survival and further prolonged survival with IS. However, standardized protocols for modification of Tol-DC should be established before its application in clinic.
Collapse
|
17
|
Karimi MH, Barzkar Z, Babaee M, Naghdi M. Evaluating Effect of Mesenchymal Stem Cells on Expression of TLR2 and TLR4 in Mouse DCs. Adv Pharm Bull 2016; 6:179-86. [PMID: 27478779 DOI: 10.15171/apb.2016.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 03/20/2016] [Accepted: 04/02/2016] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Mesenchymal stem cells (MSCs) are multipotent cells and recent findings suggest immunomodulatory effect of them on immune cells including T cells and dendritic cells (DCs). DCs are the most potent antigen presenting cells. It seems because of immunoregulatory properties of MSCs, they can affect the maturation and differentiation of DCs. DCs express a kind of surface receptors called toll-like receptors (TLRs) and play a key role in maturation process and activation of DCs. The aim of this study was to evaluate expression of TLR2 and TLR4 on DCs after exposure to mesenchymal stem cell's supernatant in culture media containing LPS and devoid of it. METHODS In this experimental study, MSCs and DCs were extracted from adult Balb/c mouse bone marrow and spleen, respectively. MSCs supernatant were collected 24 and 48 h after 5(th) passage, and in adjusted with DCs culture. Isolated DCs were co-cultured with MSCs supernatant, incubation time were 24 and 48 hours. mRNA levels of TLR2 and TLR4 were evaluated using real time PCR technique. RESULTS The results demonstrated that although, expressions of these two receptors were up-regulated in culture media lacking LPS in comparison with the control group but the increase was not significant. There were no significant associations between LPS stimulated DCs with and without MSCs supernatants. CONCLUSION According to the results presented here, it appears that TLR2 and TLR4 gene expressions on the DCs are not affected by MSCs supernatant.
Collapse
Affiliation(s)
| | - Zahra Barzkar
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Maryam Babaee
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Naghdi
- Department of Anatomical Science, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
18
|
Yu T, Rajendran V, Griffith M, Forrester JV, Kuffová L. High-risk corneal allografts: A therapeutic challenge. World J Transplant 2016; 6:10-27. [PMID: 27011902 PMCID: PMC4801785 DOI: 10.5500/wjt.v6.i1.10] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/03/2015] [Accepted: 12/04/2015] [Indexed: 02/05/2023] Open
Abstract
Corneal transplantation is the most common surgical procedure amongst solid organ transplants with a high survival rate of 86% at 1-year post-grafting. This high success rate has been attributed to the immune privilege of the eye. However, mechanisms originally thought to promote immune privilege, such as the lack of antigen presenting cells and vessels in the cornea, are challenged by recent studies. Nevertheless, the immunological and physiological features of the cornea promoting a relatively weak alloimmune response is likely responsible for the high survival rate in “low-risk” settings. Furthermore, although corneal graft survival in “low-risk” recipients is favourable, the prognosis in “high-risk” recipients for corneal graft is poor. In “high-risk” grafts, the process of indirect allorecognition is accelerated by the enhanced innate and adaptive immune responses due to pre-existing inflammation and neovascularization of the host bed. This leads to the irreversible rejection of the allograft and ultimately graft failure. Many therapeutic measures are being tested in pre-clinical and clinical studies to counter the immunological challenge of “high-risk” recipients. Despite the prevailing dogma, recent data suggest that tissue matching together with use of systemic immunosuppression may increase the likelihood of graft acceptance in “high-risk” recipients. However, immunosuppressive drugs are accompanied with intolerance/side effects and toxicity, and therefore, novel cell-based therapies are in development which target host immune cells and restore immune homeostasis without significant side effect of treatment. In addition, developments in regenerative medicine may be able to solve both important short comings of allotransplantation: (1) graft rejection and ultimate graft failure; and (2) the lack of suitable donor corneas. The advances in technology and research indicate that wider therapeutic choices for patients may be available to address the worldwide problem of corneal blindness in both “low-risk” and “high-risk” hosts.
Collapse
|
19
|
Dendritic Cells and Their Role in Cardiovascular Diseases: A View on Human Studies. J Immunol Res 2016; 2016:5946807. [PMID: 27088098 PMCID: PMC4818818 DOI: 10.1155/2016/5946807] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/22/2016] [Accepted: 02/22/2016] [Indexed: 02/07/2023] Open
Abstract
The antigen-presenting dendritic cells (DCs) are key to the immunological response, with different functions ascribed ranging from cellular immune activation to induction of tolerance. Such immunological responses are involved in the pathophysiological mechanisms of cardiovascular diseases, with DCs shown to play a role in atherosclerosis, hypertension, and heart failure and most notably following heart transplantation. A better understanding of the interplay between the immune system and cardiovascular diseases will therefore be critical for developing novel therapeutic treatments as well as innovative monitoring tools for disease progression. As such, the present review will provide an overview of DCs involvement in the pathophysiology of cardiovascular diseases and how targeting these cells may have beneficial effects for the prognosis of patients.
Collapse
|
20
|
Yoo S, Ha SJ. Generation of Tolerogenic Dendritic Cells and Their Therapeutic Applications. Immune Netw 2016; 16:52-60. [PMID: 26937232 PMCID: PMC4770100 DOI: 10.4110/in.2016.16.1.52] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/05/2016] [Accepted: 02/07/2016] [Indexed: 02/06/2023] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells (APCs) that bridge innate and adaptive immune responses, thereby leading to immune activation. DCs have been known to recognize pathogen-associated molecular patterns such as lipopolysaccharides (LPS) and nucleic acids via their pattern recognition receptors, which trigger signaling of their maturation and effector functions. Furthermore, DCs take up and process antigens as a form of peptide loaded on the major histocompatibility complex (MHC) and present them to T cells, which are responsible for the adaptive immune response. Conversely, DCs can also play a role in inducing immune suppression under specific circumstances. From this perspective, the role of DCs is related to tolerance rather than immunity. Immunologists refer to these special DCs as tolerogenic DCs (tolDCs). However, the definition of tolDCs is controversial, and there is limited information on their development and characteristics. In this review, we discuss the current concept of tolDCs, cutting-edge methods for generating tolDCs in vitro, and future applications of tolDCs, including clinical use.
Collapse
Affiliation(s)
- Seungbo Yoo
- System Immunology Laboratory, Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Sang-Jun Ha
- System Immunology Laboratory, Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
21
|
Thomson AW, Zahorchak AF, Ezzelarab MB, Butterfield LH, Lakkis FG, Metes DM. Prospective Clinical Testing of Regulatory Dendritic Cells in Organ Transplantation. Front Immunol 2016; 7:15. [PMID: 26858719 PMCID: PMC4729892 DOI: 10.3389/fimmu.2016.00015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/12/2016] [Indexed: 01/03/2023] Open
Abstract
Dendritic cells (DC) are rare, professional antigen-presenting cells with ability to induce or regulate alloimmune responses. Regulatory DC (DCreg) with potential to down-modulate acute and chronic inflammatory conditions that occur in organ transplantation can be generated in vitro under a variety of conditions. Here, we provide a rationale for evaluation of DCreg therapy in clinical organ transplantation with the goal of promoting sustained, donor-specific hyporesponsiveness, while lowering the incidence and severity of rejection and reducing patients’ dependence on anti-rejection drugs. Generation of donor- or recipient-derived DCreg that suppress T cell responses and prolong transplant survival in rodents or non-human primates has been well-described. Recently, good manufacturing practice (GMP)-grade DCreg have been produced at our Institution for prospective use in human organ transplantation. We briefly review experience of regulatory immune therapy in organ transplantation and describe our experience generating and characterizing human monocyte-derived DCreg. We propose a phase I/II safety study in which the influence of donor-derived DCreg combined with conventional immunosuppression on subclinical and clinical rejection and host alloimmune responses will be examined in detail.
Collapse
Affiliation(s)
- Angus W Thomson
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alan F Zahorchak
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| | - Mohamed B Ezzelarab
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| | - Lisa H Butterfield
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fadi G Lakkis
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Diana M Metes
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
22
|
Tolerogenic Dendritic Cells on Transplantation: Immunotherapy Based on Second Signal Blockage. J Immunol Res 2015; 2015:856707. [PMID: 26543876 PMCID: PMC4620289 DOI: 10.1155/2015/856707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/23/2015] [Accepted: 06/29/2015] [Indexed: 12/16/2022] Open
Abstract
Dendritic cells (DCs), the most important professional antigen-presenting cells (APC), play crucial role in both immunity and tolerance. It is well known that DCs are able to mount immune responses against foreign antigens and simultaneously tolerate self-antigens. Since DCs can be modulated depending on the surrounding microenvironment, they can act as a bridge between innate and adaptive immunity. However, the mechanisms that support this dual role are not entirely clear. Recent studies have shown that DCs can be manipulated ex vivo in order to trigger their tolerogenic profile, what can be a tool to be used in clinical trials aiming the treatment of various diseases and the prevention of transplant rejection. In this sense, the blockage of costimulatory molecules on DC, in the attempt of inhibiting the second signal in the immunological synapse, can be considered as one of the main strategies under development. This review brings an update on current therapies using tolerogenic dendritic cells modulated with costimulatory blockers with the aim of reducing transplant rejection. However, although there are current clinical trials using tolerogenic DC to treat allograft rejection, the actual challenge is to modulate these cells in order to maintain a permanent tolerogenic profile.
Collapse
|
23
|
Abstract
The mononuclear phagocytes (dendritic cells and macrophages) are closely related immune cells with central roles in anti-infectious defense and maintenance of organ integrity. The canonical function of dendritic cells is the activation of T cells, whereas macrophages remove apoptotic cells and microbes by phagocytosis. In the kidney, these cell types form an intricate system of mononuclear phagocytes that surveys against injury and infection and contributes to organ homeostasis and tissue repair but may also promote progression of CKD. This review summarizes the general functions and classification of dendritic cells and macrophages in the immune system and recapitulates why overlapping definitions and historically separate research have created controversy about their tasks. Their roles in acute kidney disease, CKD, and renal transplantation are described, and therapeutic strategy to modify these cells for therapeutic purposes is discussed.
Collapse
Affiliation(s)
- Christina K Weisheit
- Institute of Experimental Immunology, University Clinic, Rheinische Friedrich-Wilhelms University, Bonn, Germany and Clinic for Anesthesiology and Intensive Care, University Clinic, Rheinische Friedrich-Wilhelms University, Bonn, Germany; and
| | - Daniel R Engel
- Institute of Experimental Immunology, University Clinic, Rheinische Friedrich-Wilhelms University, Bonn, Germany and Institute for Experimental Immunology and Imaging, University Duisburg-Essen and University Hospital Essen, Essen, Germany
| | - Christian Kurts
- Institute of Experimental Immunology, University Clinic, Rheinische Friedrich-Wilhelms University, Bonn, Germany and
| |
Collapse
|
24
|
|
25
|
Amodio G, Annoni A, Gregori S. Dendritic Cell Immune Therapy to Break or Induce Tolerance. CURRENT STEM CELL REPORTS 2015. [DOI: 10.1007/s40778-015-0024-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Fryer M, Grahammer J, Khalifian S, Furtmüller GJ, Lee WPA, Raimondi G, Brandacher G. Exploring cell-based tolerance strategies for hand and face transplantation. Expert Rev Clin Immunol 2015; 11:1189-204. [DOI: 10.1586/1744666x.2015.1078729] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
27
|
Versatile polyion complex micelles for peptide and siRNA vectorization to engineer tolerogenic dendritic cells. Eur J Pharm Biopharm 2015; 92:216-27. [DOI: 10.1016/j.ejpb.2015.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 03/06/2015] [Accepted: 03/10/2015] [Indexed: 11/20/2022]
|
28
|
Han Y, Zhao S. Protection by LPS-induced inhibitory CD11b(+) cells on corneal allograft. Int J Clin Exp Med 2015; 8:4101-4107. [PMID: 26064316 PMCID: PMC4443150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/28/2015] [Indexed: 06/04/2023]
Abstract
OBJECTIVE It is widely reported that CD11b(+)Gr1+ myeloid-derived suppressor cells can cause allograft tolerance in mice and human, however, little is known on the therapy role in chronic transplantation rejection. In this paper, their role in corneal transplantation was studied for the first time. METHOD Inhibitory CD11b(+) cells were obtained by murine LPS-induced septic model. Phenotype, endocytosis, antigen presenting ability, and T cell suppression assays were performed by flow cytometry analysis. The suppressive ability in vivo was analyzed by targeting allogeneic corneal transplantation. RESULTS LPS was intraperitoneally injected into C57BL/6 mice, the percentage of CD11b(+) Gr1+ cells was increased in mice spleen, blood, and bone marrow, respectively. Compared with control mice, Ly6C, TLR2, and MHC-11 expression were higher in LPS treated mice. CD11b(+) Gr1+ cells could inhibit allogenic corneal reaction in vivo after adoptive transfer, in consistent with an observation of inhibition effect on the antigen presenting cells (APCs) and CD4+ T cells proliferation in vitro. CONCLUSION CD11b(+) cells induced by LPS could function as inhibitory APCs, suppress CD4+ T cells proliferation and improve corneal allograft survival. Predictly, its application for cells transfer therapy in clinic in the further.
Collapse
Affiliation(s)
- Yuping Han
- Department of Corneal and Refractive Disease, Tianjin Medical University Eye HospitalTianjin 300384, P. R. China
- Department of Corneal Disease, Shanxi Eye HospitalTaiyuan 030002, Shanxi, P. R. China
| | - Shaozhen Zhao
- Department of Corneal and Refractive Disease, Tianjin Medical University Eye HospitalTianjin 300384, P. R. China
| |
Collapse
|
29
|
Engman C, Wen Y, Meng WS, Bottino R, Trucco M, Giannoukakis N. Generation of antigen-specific Foxp3+ regulatory T-cells in vivo following administration of diabetes-reversing tolerogenic microspheres does not require provision of antigen in the formulation. Clin Immunol 2015; 160:103-23. [PMID: 25773782 DOI: 10.1016/j.clim.2015.03.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 03/05/2015] [Indexed: 11/20/2022]
Abstract
We have developed novel antisense oligonucleotide-formulated microspheres that can reverse hyperglycemia in newly-onset diabetic mice. Dendritic cells taking up the microspheres adopt a restrained co-stimulation ability and migrate to the pancreatic lymph nodes when injected into an abdominal region that is drained by those lymph nodes. Furthermore, we demonstrate that the absolute numbers of antigen-specific Foxp3+ T regulatory cells are increased only in the lymph nodes draining the site of administration and that these T-cells proliferate independently of antigen supply in the microspheres. Taken together, our data add to the emerging model where antigen supply may not be a requirement in "vaccines" for autoimmune disease, but the site of administration - subserved by lymph nodes draining the target organ - is in fact critical to foster the generation of antigen-specific regulatory cells. The implications of these observations on "vaccine" design for autoimmunity are discussed and summarized.
Collapse
MESH Headings
- Animals
- B7-1 Antigen/genetics
- B7-2 Antigen/genetics
- Blood Glucose/drug effects
- CD11c Antigen/metabolism
- CD40 Antigens/genetics
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Dendritic Cells/immunology
- Diabetes Mellitus, Experimental/therapy
- Diabetes Mellitus, Type 1/therapy
- Female
- Forkhead Transcription Factors/analysis
- Gene Knockdown Techniques
- Hyperglycemia/therapy
- Leukocyte Common Antigens/metabolism
- Lymph Nodes/cytology
- Lymph Nodes/immunology
- Lymphocyte Activation/immunology
- Macaca fascicularis
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred NOD
- Mice, Transgenic
- Microspheres
- Oligonucleotides, Antisense/genetics
- Pancreas/immunology
- Receptors, Antigen, T-Cell/genetics
- T-Lymphocytes, Regulatory/cytology
- Vaccines/administration & dosage
- Vaccines/immunology
Collapse
Affiliation(s)
- Carl Engman
- Institute of Cellular Therapeutics, 11th Floor South Tower, Allegheny Health Network, 320 East North Avenue, Pittsburgh, PA, 15212, USA.
| | - Yi Wen
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Mellon 413, 600 Forbes Avenue, Pittsburgh, PA 15282, USA
| | - Wilson S Meng
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Mellon 413, 600 Forbes Avenue, Pittsburgh, PA 15282, USA.
| | - Rita Bottino
- Institute of Cellular Therapeutics, 11th Floor South Tower, Allegheny Health Network, 320 East North Avenue, Pittsburgh, PA, 15212, USA.
| | - Massimo Trucco
- Institute of Cellular Therapeutics, 11th Floor South Tower, Allegheny Health Network, 320 East North Avenue, Pittsburgh, PA, 15212, USA.
| | - Nick Giannoukakis
- Institute of Cellular Therapeutics, 11th Floor South Tower, Allegheny Health Network, 320 East North Avenue, Pittsburgh, PA, 15212, USA.
| |
Collapse
|
30
|
Hutchinson JA, Geissler EK. Now or never? The case for cell-based immunosuppression in kidney transplantation. Kidney Int 2015; 87:1116-24. [PMID: 25738251 DOI: 10.1038/ki.2015.50] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 12/20/2014] [Accepted: 01/02/2015] [Indexed: 02/07/2023]
Abstract
By exploiting mechanisms of immunological regulation against donor alloantigen, it may be possible to reduce the dependence of kidney transplant recipients upon calcineurin inhibitor-based maintenance immunosuppression. One means to strengthen regulatory responses is treating recipients with preparations of regulatory cells obtained by ex vivo manipulation. This strategy, which is a well-established experimental method, has been developed to the point that early-phase clinical trials in kidney transplantation are now feasible. Cell-based therapies represent a radical departure from conventional treatment, so what grounds are there for this new approach? This article offers a three-part justification for trialing cell-based therapies in kidney transplantation: first, a clinical need for alternatives to standard immunosuppression is identified, based on the inadequacies of calcineurin inhibitor-based regimens in preventing late allograft loss; second, a mechanistic explanation of how cell-based therapies might address this clinical need is given; and third, the possible benefit to patients is weighed against the potential risks of cell-based immunosuppressive therapy. It is concluded that the safety of cell-based immunosuppressive therapy will not be greatly improved by further basic scientific and preclinical development. Only trials in humans can now tell us whether cell-based therapy is likely to benefit kidney transplant recipients, but these should be conservative in design to minimize any potential harm to patients.
Collapse
Affiliation(s)
- James A Hutchinson
- Department of Surgery, Section of Experimental Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Edward K Geissler
- Department of Surgery, Section of Experimental Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
31
|
Mansilla MJ, Sellès-Moreno C, Fàbregas-Puig S, Amoedo J, Navarro-Barriuso J, Teniente-Serra A, Grau-López L, Ramo-Tello C, Martínez-Cáceres EM. Beneficial effect of tolerogenic dendritic cells pulsed with MOG autoantigen in experimental autoimmune encephalomyelitis. CNS Neurosci Ther 2014; 21:222-30. [PMID: 25403984 DOI: 10.1111/cns.12342] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Treatment with tolerogenic dendritic cells (TolDC) is a promising, cell-based strategy to regulate autoimmune diseases such as multiple sclerosis (MS) in an antigen-specific way. This technique involves the use of TolDC from MS patients cultured in the presence of vitamin D(3) (VitD3) and pulsed with myelin peptides to induce a stable hyporesponsiveness in myelin-specific autologous T cells. AIM The purpose of this study was to analyze the in vivo effect of VitD3-TolDC treatment on experimental autoimmune encephalomyelitis, an animal model of MS. METHODS Bone marrow-derived TolDC cultured in the presence of VitD3 and pulsed with peptide 40-55 of the myelin oligodendrocyte glycoprotein (MOG(40-55)) were administrated preventively, preclinically, and therapeutically to EAE-induced mice. RESULTS We found that VitD3-TolDC-MOG treatment showed a beneficial effect, not only decreasing the incidence of the disease but also reducing the severity of the clinical signs mediated by induction of regulatory T cells (Treg), as well as IL-10 production and reduction of Ag-specific lymphoproliferation. Our results support VitD3-TolDC-peptide(s) treatment as a potential strategy to restore tolerance in autoimmune diseases such as MS.
Collapse
Affiliation(s)
- María José Mansilla
- Division of Immunology, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain; Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
5-Aminolevulinic acid with ferrous iron induces permanent cardiac allograft acceptance in mice via induction of regulatory cells. J Heart Lung Transplant 2014; 34:254-63. [PMID: 25455753 DOI: 10.1016/j.healun.2014.09.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 08/22/2014] [Accepted: 09/24/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND 5-Aminolevulinic acid (5-ALA), a precursor of heme biosynthesis, plays a fundamentally important role in aerobic energy metabolism. Heme oxygenase (HO)-1 cleaves heme to form biliverdin, carbon monoxide (CO) and iron (Fe(2+)). The anti-inflammatory properties of biliverdin and CO help to alleviate ischemia/reperfusion injury as well as acute and/or chronic allograft rejection. We investigated whether 5-ALA and Fe(2+) exerts salutary effects in the setting of organ transplantation. METHODS An in vitro mixed-lymphocyte reaction (MLR) assay and cardiac allotransplantation model (CBA to C57BL/10) were used to evaluate the effects of 5-ALA and Fe(2+) on transplantation tolerance. RESULTS Treatment with 5-ALA and sodium ferrous citrate (SFC) resulted in permanent acceptance in the murine cardiac allografts in a dose-, SFC- and HO-1-dependent manner. The number of graft-infiltrating CD8 T cells was lower and the survival response of recipient spleen T cells to donor-type alloantigens was less compared with control recipients; however, numbers of both regulatory T cells and dendritic cells were significantly increased in 5-ALA/SFC-treated recipients. CONCLUSIONS Our findings show that 5-ALA/SFC inhibits T-cell proliferation in response to alloantigens and an increased number of regulatory cells, resulting in permanent cardiac allograft acceptance in mice. These findings highlight the major roles of CO and/or HO-1 in inducing tolerance and suggest that 5-ALA/SFC may be a clinically effective treatment for allograft rejection.
Collapse
|
33
|
Mackern-Oberti JP, Vega F, Llanos C, Bueno SM, Kalergis AM. Targeting dendritic cell function during systemic autoimmunity to restore tolerance. Int J Mol Sci 2014; 15:16381-417. [PMID: 25229821 PMCID: PMC4200801 DOI: 10.3390/ijms150916381] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/29/2014] [Accepted: 09/05/2014] [Indexed: 12/11/2022] Open
Abstract
Systemic autoimmune diseases can damage nearly every tissue or cell type of the body. Although a great deal of progress has been made in understanding the pathogenesis of autoimmune diseases, current therapies have not been improved, remain unspecific and are associated with significant side effects. Because dendritic cells (DCs) play a major role in promoting immune tolerance against self-antigens (self-Ags), current efforts are focusing at generating new therapies based on the transfer of tolerogenic DCs (tolDCs) during autoimmunity. However, the feasibility of this approach during systemic autoimmunity has yet to be evaluated. TolDCs may ameliorate autoimmunity mainly by restoring T cell tolerance and, thus, indirectly modulating autoantibody development. In vitro induction of tolDCs loaded with immunodominant self-Ags and subsequent cell transfer to patients would be a specific new therapy that will avoid systemic immunosuppression. Herein, we review recent approaches evaluating the potential of tolDCs for the treatment of systemic autoimmune disorders.
Collapse
Affiliation(s)
- Juan P Mackern-Oberti
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Portugal 49, Santiago 8330025, Chile.
| | - Fabián Vega
- Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 350, Santiago 8330033, Chile.
| | - Carolina Llanos
- Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 350, Santiago 8330033, Chile.
| | - Susan M Bueno
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Portugal 49, Santiago 8330025, Chile.
| | - Alexis M Kalergis
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Portugal 49, Santiago 8330025, Chile.
| |
Collapse
|
34
|
Hargadon KM. Murine and Human Model Systems for the Study of Dendritic Cell Immunobiology. Int Rev Immunol 2014; 35:85-115. [DOI: 10.3109/08830185.2014.952413] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
35
|
Managh AJ, Hutchinson RW, Riquelme P, Broichhausen C, Wege AK, Ritter U, Ahrens N, Koehl GE, Walter L, Florian C, Schlitt HJ, Reid HJ, Geissler EK, Sharp BL, Hutchinson JA. Laser Ablation–Inductively Coupled Plasma Mass Spectrometry: An Emerging Technology for Detecting Rare Cells in Tissue Sections. THE JOURNAL OF IMMUNOLOGY 2014; 193:2600-8. [DOI: 10.4049/jimmunol.1400869] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
36
|
In question: the scientific value of preclinical safety pharmacology and toxicology studies with cell-based therapies. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14026. [PMID: 26015968 PMCID: PMC4362366 DOI: 10.1038/mtm.2014.26] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/27/2014] [Accepted: 05/27/2014] [Indexed: 12/26/2022]
Abstract
A new cell-based medicinal product containing human regulatory macrophages, known as Mreg_UKR, has been developed and conforms to expectations of a therapeutic drug. Here, Mreg_UKR was subjected to pharmacokinetic, safety pharmacology, and toxicological testing, which identified no adverse reactions. These results would normally be interpreted as evidence of the probable clinical safety of Mreg_UKR; however, we contend that, owing to their uncertain biological relevance, our data do not fully support this conclusion. This leads us to question whether there is adequate scientific justification for preclinical safety testing of similar novel cell-based medicinal products using animal models. In earlier work, two patients were treated with regulatory macrophages prior to kidney transplantation. In our opinion, the absence of acute or chronic adverse effects in these cases is the most convincing available evidence of the likely safety of Mreg_UKR in future recipients. On this basis, we consider that safety information from previous clinical investigations of related cell products should carry greater weight than preclinical data when evaluating the safety profile of novel cell-based medicinal products. By extension, we argue that omitting extensive preclinical safety studies before conducting small-scale exploratory clinical investigations of novel cell-based medicinal products data may be justifiable in some instances.
Collapse
|
37
|
Yang Y, Xin Z, Chu J, Li N, Sun T. Involvement of Caveolin-1 in CD83 Internalization in Mouse Dendritic Cells. Cell Transplant 2014; 24:1395-404. [PMID: 24898475 DOI: 10.3727/096368914x682116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
To become potent T-cell stimulators, DCs need to mature. Treatment with soluble CD83 (sCD83) induces immune tolerance and protects against transplant rejection by maintaining dendritic cells in an immature, tolerogenic state. Until now, the mechanism through which sCD83 keeps DCs immature has not been investigated. The internalizing pathway of CD83 was screened by Western blot, and the direct interactions between internalized proteins were verified through coimmunoprecipitation (co-IP) and transmission electron microscopy (TEM). CD83 plasma membrane levels were detected by Western blot using a plasma membrane protein extraction protocol. The changes in CD83 surface levels in DCs were detected by flow cytometry. Caveolin-1 function was detected in a kidney transplant model. In this study, we demonstrated that caveolin-1 could affect CD83 level during endocytosis in mouse DCs. Caveolin-1 coprecipitates with CD83, as demonstrated by co-IP analysis. TEM morphometric analysis of the entire CD83 distribution associated with internalized caveolin-1 demonstrated a significant interaction in cellular vesicles. sCD83 reduces endogenous CD83 plasma membrane levels, and caveolin-1 knockdown reverts CD83 levels in plasma membrane. sCD83 treatment decreases CD83 surface levels in DCs. siRNA to caveolin-1 in DCs inhibits this effect of sCD83. The effects of sCD83-treated DCs were proved in CD1 mice. Knocking down caveolin-1 in DCs obstructs the effects of sCD83 on kidney transplant. In conclusion, our data indicated that a caveolin-dependent endocytic pathway is involved in CD83 internalization in DCs and that caveolin-1 is involved in the activity of DCs.
Collapse
Affiliation(s)
- Yuejing Yang
- The 2nd Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | | | | | | | | |
Collapse
|
38
|
Hutchinson JA, Ahrens N, Riquelme P, Walter L, Gruber M, Böger CA, Farkas S, Scherer MN, Broichhausen C, Bein T, Schlitt HJ, Fändrich F, Banas B, Geissler EK. Clinical management of patients receiving cell-based immunoregulatory therapy. Transfusion 2014; 54:2336-43. [PMID: 24697195 DOI: 10.1111/trf.12641] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/08/2014] [Accepted: 01/16/2014] [Indexed: 12/20/2022]
Abstract
Administering immunoregulatory cells as medicinal agents is a revolutionary approach to the treatment of immunologically mediated diseases. Isolating, propagating, and modifying cells before applying them to patients allows complementation of specific cellular functions, which opens astonishing new possibilities for gain-of-function antigen-specific treatments in autoimmunity, chronic inflammatory disorders, and transplantation. This critical review presents a systematic assessment of the potential clinical risks posed by cell-based immunotherapy, focusing on treatment of renal transplant recipients with regulatory macrophages as a concrete example.
Collapse
Affiliation(s)
- James A Hutchinson
- Department of Surgery, Experimental Surgery Division, University Hospital Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
John K, Dieterlen MT, Tarnok A, Garbade J, Bittner HB, Mohr FW, Barten MJ. Role of dendritic cells in the context of acute cellular rejection: comparison between tacrolimus- or cyclosporine A-treated heart transplanted recipients. CYTOMETRY PART B-CLINICAL CYTOMETRY 2014; 86:362-7. [PMID: 24668729 DOI: 10.1002/cyto.b.21169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 01/21/2014] [Accepted: 02/14/2014] [Indexed: 11/08/2022]
Abstract
BACKGROUND In the last years many studies have been designed to predict risk of acute rejection and to adapt the immunosuppressive therapy. The importance of dendritic cells (DCs) in the immune response, especially their role in tolerance is known. Thus, we investigated the influence of tacrolimus (TAC)-based and of cyclosporine A (CsA)-based immunosuppressive therapies on dendritic cells and the incidence of rejection in heart transplant recipients. METHODS Groups consisted of 14 CsA treated and 15 TAC treated patients. At different study time points (0, 3 and 6 months after study begin) peripheral blood from the patients was drawn to analyse (1) blood concentration of CsA or TAC (trough value) and (2) percentages of plasmacytoid and myeloid DC (p and mDC) subsets using flow cytometry. Histological rejection grading was performed of endomyocardial biopsies. RESULTS TAC treated patients had significantly higher values of pDCs (CsA group 53.9%±13.0%; TAC group 67.5%±8.4%; p<0.05) and significantly lower values of mDCs than CsA treated patients (CsA group 58%±19.0%; TAC group 45.2%±10.7%; p<0.05). In general, HTx patients with rejection grade of ≥2 had significant lower values of pDCs (55.1%±16.2%) compared to patients without rejection (63.6%±10.5%; p<0.05). TAC-treated patients had significantly less rejections CsA-treated patients (CsA group 0.86±0.95; TAC group 0.2±0.4; p<0.05). CONCLUSIONS Our results showed that HTx patients with high pDCs had a lower risk for rejection and that TAC-treated patients had higher pDCs values compared to CsA-treated patients. Future studies need to define individual pDC values to predict acute cellular rejection.
Collapse
Affiliation(s)
- Katja John
- University Leipzig, Department of Cardiac Surgery, Heart Center, Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Regulatory myeloid cells (RMC) are emerging as novel targets for immunosuppressive (IS) agents and hold considerable promise as cellular therapeutic agents. Herein, we discuss the ability of regulatory macrophages, regulatory dendritic cells, and myeloid-derived suppressor cells to regulate alloimmunity, their potential as cellular therapeutic agents, and the IS agents that target their function. We consider protocols for the generation of RMC and the selection of donor- or recipient-derived cells for adoptive cell therapy. Additionally, the issues of cell trafficking and antigen (Ag) specificity after RMC transfer are discussed. Improved understanding of the immunobiology of these cells has increased the possibility of moving RMC into the clinic to reduce the burden of current IS agents and to promote Ag-specific tolerance. In the second half of this review, we discuss the influence of established and experimental IS agents on myeloid cell populations. IS agents believed historically to act primarily on T cell activation and proliferation are emerging as important regulators of RMC function. Better insights into the influence of IS agents on RMC will enhance our ability to develop cell therapy protocols to promote the function of these cells. Moreover, novel IS agents may be designed to target RMC in situ to promote Ag-specific immune regulation in transplantation and to usher in a new era of immune modulation exploiting cells of myeloid origin.
Collapse
Affiliation(s)
- Brian R. Rosborough
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Dàlia Raïch-Regué
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Heth R. Turnquist
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Angus W. Thomson
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
41
|
Meier D, Rumbo M, Gondolesi GE. Current Status of Allograft Tolerance in Intestinal Transplantation. Int Rev Immunol 2013; 33:245-60. [DOI: 10.3109/08830185.2013.829468] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
42
|
Morel PA. Dendritic cell subsets in type 1 diabetes: friend or foe? Front Immunol 2013; 4:415. [PMID: 24367363 PMCID: PMC3853773 DOI: 10.3389/fimmu.2013.00415] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/13/2013] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes (T1D) is a T cell mediated autoimmune disease characterized by immune mediated destruction of the insulin-producing β cells in the islets of Langerhans. Dendritic cells (DC) have been implicated in the pathogenesis of T1D and are also used as immunotherapeutic agents. Plasmacytoid (p)DC have been shown to have both protective and pathogenic effects and a newly described merocytic DC population has been shown to break tolerance in the mouse model of T1D, the non-obese diabetic (NOD) mouse. We have used DC populations to prevent the onset of T1D in NOD mice and clinical trials of DC therapy in T1D diabetes have been initiated. In this review we will critically examine the recent published literature on the role of DC subsets in the induction and regulation of the autoimmune response in T1D.
Collapse
Affiliation(s)
- Penelope A Morel
- Department of Immunology, University of Pittsburgh , Pittsburgh, PA , USA
| |
Collapse
|
43
|
Streitz M, Miloud T, Kapinsky M, Reed MR, Magari R, Geissler EK, Hutchinson JA, Vogt K, Schlickeiser S, Kverneland AH, Meisel C, Volk HD, Sawitzki B. Standardization of whole blood immune phenotype monitoring for clinical trials: panels and methods from the ONE study. Transplant Res 2013; 2:17. [PMID: 24160259 PMCID: PMC3827923 DOI: 10.1186/2047-1440-2-17] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 09/24/2013] [Indexed: 12/13/2022] Open
Abstract
Background Immune monitoring by flow cytometry is a fast and highly informative way of studying the effects of novel therapeutics aimed at reducing transplant rejection or treating autoimmune diseases. The ONE Study consortium has recently initiated a series of clinical trials aimed at using different cell therapies to promote tolerance to renal allografts. To compare the effectiveness of different cell therapies, the consortium developed a robust immune monitoring strategy, including procedures for whole blood (WB) leukocyte subset profiling by flow cytometry. Methods Six leukocyte profiling panels computing 7- to 9-surface marker antigens for monitoring the major leukocyte subsets as well as characteristics of T cell, B cell, and dendritic cell (DC) subsets were designed. The precision and variability of these panels were estimated. The assay was standardized within eight international laboratories using Flow-Set Pro beads for mean fluorescence intensity target definition and the flow cytometer setup procedure. Standardization was demonstrated by performing inter-site comparisons. Results Optimized methods for sample collection, storage, preparation, and analysis were established, including protocols for gating target subsets. WB specimen age testing demonstrated that staining must be performed within 4 hours of sample collection to keep variability low, meaning less than or equal to 10% for the majority of defined leukocyte subsets. Inter-site comparisons between all participating centers testing shipped normal WB revealed good precision, with a variability of 0.05% to 30% between sites. Intra-assay analyses revealed a variability of 0.05% to 20% for the majority of subpopulations. This was dependent on the frequency of the particular subset, with smaller subsets showing higher variability. The intra-assay variability performance defined limits of quantitation (LoQ) for subsets, which will be the basis for assessing statistically significant differences achieved by the different cell therapies. Conclusions Local performance and central analysis of the ONE Study flow cytometry panel yields acceptable variability in a standardized assay at multiple international sites. These panels and procedures with WB allow unmanipulated analysis of changes in absolute cell numbers of leukocyte subsets in single- or multicenter clinical trials. Accordingly, we propose the ONE Study panel may be adopted as a standardized method for monitoring patients in clinical trials enrolling transplant patients, particularly trials of novel tolerance promoting therapies, to facilitate fair and meaningful comparisons between trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Birgit Sawitzki
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany.
| |
Collapse
|
44
|
Dendritic cell-based approaches for therapeutic immune regulation in solid-organ transplantation. J Transplant 2013; 2013:761429. [PMID: 24307940 PMCID: PMC3824554 DOI: 10.1155/2013/761429] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/16/2013] [Indexed: 12/18/2022] Open
Abstract
To avoid immune rejection, allograft recipients require drug-based immunosuppression, which has significant toxicity. An emerging approach is adoptive transfer of immunoregulatory cells. While mature dendritic cells (DCs) present donor antigen to the immune system, triggering rejection, regulatory DCs interact with regulatory T cells to promote immune tolerance. Intravenous injection of immature DCs of either donor or host origin at the time of transplantation have prolonged allograft survival in solid-organ transplant models. DCs can be treated with pharmacological agents before injection, which may attenuate their maturation in vivo. Recent data suggest that injected immunosuppressive DCs may inhibit allograft rejection, not by themselves, but through conventional DCs of the host. Genetically engineered DCs have also been tested. Two clinical trials in type-1 diabetes and rheumatoid arthritis have been carried out, and other trials, including one trial in kidney transplantation, are in progress or are imminent.
Collapse
|
45
|
Cell therapy as a strategy to minimize maintenance immunosuppression in solid organ transplant recipients. Curr Opin Organ Transplant 2013; 18:408-15. [PMID: 23838645 DOI: 10.1097/mot.0b013e328363319d] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW This review presents a clinically focussed introduction to cell-based immunotherapy in solid organ transplantation. The potential benefits and risks of cell-based immunotherapeutics are critically discussed. RECENT FINDINGS The use of immunoregulatory cells as medicinal agents is very much in its infancy, but the field is expanding rapidly. In principle, this approach permits manipulation of specific immunological functions, opening new possibilities in the field of tolerance-promoting therapies. Several immunoregulatory cell types have reached the point of preclinical and clinical development that should allow them to be tested in early-phase clinical trials. Solid organ transplantation represents an important potential indication for the use of cell-based immunosuppressive agents because promoting immunological regulation towards allografts remains a promising strategy for preventing chronic rejection. SUMMARY Remarkable progress is being made in the implementation of novel cell-based immunotherapeutics in solid organ transplantation studies. It is hoped that these new immunoregulatory therapies will afford better long-term transplant outcomes by mitigating chronic graft injury.
Collapse
|
46
|
Suárez-Álvarez B, Baragaño Raneros A, Ortega F, López-Larrea C. Epigenetic modulation of the immune function: a potential target for tolerance. Epigenetics 2013; 8:694-702. [PMID: 23803720 PMCID: PMC3781188 DOI: 10.4161/epi.25201] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Great efforts in the field of solid organ transplantation are being devoted to identifying biomarkers that allow a transplanted patient's immune status to be established. Recently, it has been well documented that epigenetic mechanisms like DNA methylation and histone modifications regulate the expression of immune system-related genes, modifying the development of the innate and adaptive immune responses. An in-depth knowledge of these epigenetic mechanisms could modulate the immune response after transplantation and to develop new therapeutic strategies. Epigenetic modifiers, such as histone deacetylase (HDAC) inhibitors have considerable potential as anti-inflammatory and immunosuppressive agents, but their effect on transplantation has not hitherto been known. Moreover, the detection of epigenetic marks in key immune genes could be useful as biomarkers of rejection and progression among transplanted patients. Here, we describe recent discoveries concerning the epigenetic regulation of the immune system, and how this knowledge could be translated to the field of transplantation.
Collapse
|
47
|
Riquelme P, Geissler EK, Hutchinson JA. Alternative approaches to myeloid suppressor cell therapy in transplantation: comparing regulatory macrophages to tolerogenic DCs and MDSCs. Transplant Res 2012; 1:17. [PMID: 23369628 PMCID: PMC3561050 DOI: 10.1186/2047-1440-1-17] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 09/18/2012] [Indexed: 01/08/2023] Open
Abstract
Several types of myeloid suppressor cell are currently being developed as cell-based immunosuppressive agents. Despite detailed knowledge about the molecular and cellular functions of these cell types, expert opinions differ on how to best implement such therapies in solid organ transplantation. Efforts in our laboratory to develop a cell-based medicinal product for promoting tolerance in renal transplant patients have focused on a type of suppressor macrophage, which we call the regulatory macrophage (M reg). Our favoured clinical strategy is to administer donor-derived M regs to recipients one week prior to transplantation. In contrast, many groups working with tolerogenic dendritic cells (DCs) advocate post-transplant administration of recipient-derived cells. A third alternative, using myeloid-derived suppressor cells, presumably demands that cells are given around the time of transplantation, so that they can infiltrate the graft to create a suppressive environment. On present evidence, it is not possible to say which cell type and treatment strategy might be clinically superior. This review seeks to position our basic scientific and early-stage clinical studies of human regulatory macrophages within the broader context of myeloid suppressor cell therapy in transplantation.
Collapse
Affiliation(s)
- Paloma Riquelme
- Department of Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg, 93053, Germany.
| | | | | |
Collapse
|