1
|
Bhatt NS, Harris AC, Gorfinkel L, Ibanez K, Tkaczyk ER, Mitchell SA, Albuquerque S, Schechter T, Pavletic S, Duncan CN, Rotz SJ, Williams K, Carpenter PA, Cuvelier GDE. Pediatric Transplant and Cellular Therapy Consortium RESILIENT Conference on Pediatric Chronic Graft-Versus-Host Disease Survivorship After Hematopoietic Cell Transplantation: Part I. Phases of Chronic GVHD, Supportive Care, and Systemic Therapy Discontinuation. Transplant Cell Ther 2025; 31:69.e1-69.e18. [PMID: 39701289 PMCID: PMC11816905 DOI: 10.1016/j.jtct.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Current literature lacks details on the impact of pediatric chronic graft-versus-host disease (cGVHD) on long-term survivorship after allogeneic hematopoietic cell transplantation (HCT). Nonetheless, cGVHD remains a leading cause of post-transplant morbidity and mortality in children and adolescents, which is particularly relevant given the longer life-expectancy after HCT (measured in decades) compared to older adults. To address this knowledge gap, leaders of the Pediatric Transplant and Cellular Therapy Consortium convened a multidisciplinary taskforce of experts in pediatric cGVHD and HCT late effects known as RESILIENT after Chronic GVHD (Research and Education towards Solutions for Late effects to Innovate, Excel, and Nurture after cGVHD). Our goals were to define: (1) the current state of understanding about how cGVHD impacts long-term survivorship in children transplanted <18 yr of age; (2) practical aspects of care to help clinicians managing long-term pediatric cGVHD survivors; and (3) develop a research framework for the next decade to further our knowledge. Four working groups were formed, each tasked with addressing a unique theme: (1) cGVHD natural history (phases of cGVHD) and its impact on clinicians' ability to taper and durably discontinue systemic therapy; (2) organ dysfunction and immune reconstitution in relation to survivorship; (3) how cGVHD and its treatment impact growth, metabolism, and development in children; and (4) psychosocial health and patient reported outcomes. The 4 groups met before the 2024 BMT Tandem Meeting in San Antonio, Texas, and then convened a larger in-person RESILIENT conference held on February 20, 2024, at the Tandem meeting to put forth recommendations from their respective working groups and garner feedback. These recommendations are now presented in a series of 4 manuscripts. This current manuscript focuses on the first theme and discusses the phases of cGVHD, challenges in differentiating clinically active from quiescent cGVHD in clinical practice, and the resultant difficulties in determining when and if to taper systemic therapy. To overcome these challenges, we propose revised categorization of long-term cGVHD outcomes and practical recommendations for clinicians and researchers around the long-term follow-up for these patients, including determining when and if to taper systemic therapy, along with the integration of non-immunosuppressive supportive care interventions.
Collapse
Affiliation(s)
- Neel S Bhatt
- Clinical Research Division, Fred Hutchinson Cancer Center; Seattle, Washington
| | - Andrew C Harris
- Pediatric Transplantation and Cellular Therapies, Memorial Sloan Kettering Cancer Center; New York, New York
| | - Lev Gorfinkel
- Department of Pediatric Hematology-Oncology, Boston Children's Hospital, Dana Farber Cancer Institute; Boston, Massachusetts
| | - Katarzyna Ibanez
- Department of Neurology, Rehabilitation Service, Memorial Sloan Kettering Cancer Center; New York, New York
| | - Eric R Tkaczyk
- Department of Dermatology, Vanderbilt University Medical Center and Department of Veteran Affairs; Nashville, Tennessee
| | - Sandra A Mitchell
- Outcomes Research Branch, Division of Cancer Control and Population Sciences, National Cancer Institute; Rockville, Maryland
| | - Stacey Albuquerque
- Boston Children's Hospital Cancer and Blood Disorders Center, Dana Farber Cancer Institute; Boston, Massachusetts
| | - Tal Schechter
- Division of Pediatric Hematology, Oncology, BMT, and Cellular Therapy, The Hospital for Sick Children, University of Toronto; Toronto, Ontario, Canada
| | - Steven Pavletic
- Center for Cancer Research, National Cancer Institute, National Institutes of Health; Bethesda, Maryland
| | - Christine N Duncan
- Department of Pediatric Hematology-Oncology, Boston Children's Hospital, Dana Farber Cancer Institute; Boston, Massachusetts
| | - Seth J Rotz
- Division of Pediatric Hematology, Oncology, and Blood and Marrow Transplantation, Cleveland Clinic; Cleveland, Ohio
| | - Kirsten Williams
- Aflac Blood and Cancer Center, Children's Healthcare of Atlanta, Emory University; Atlanta, Georgia
| | - Paul A Carpenter
- Clinical Research Division, Fred Hutchinson Cancer Center; Seattle, Washington
| | - Geoffrey D E Cuvelier
- Department of Pediatric Oncology and Transplantation, Alberta Children's Hospital, University of Calgary; Calgary, Alberta, Canada.
| |
Collapse
|
2
|
Chayé MAM, van Hengel ORJ, Voskamp AL, Ozir-Fazalalikhan A, König MH, Stam KA, Manurung MD, Mouwenda YD, Aryeetey YA, Kurniawan A, Kruize YCM, Sartono E, Buisman AM, Yazdanbakhsh M, Tak T, Smits HH. Multi-dimensional analysis of B cells reveals the expansion of memory and regulatory B-cell clusters in humans living in rural tropical areas. Clin Exp Immunol 2025; 219:uxae074. [PMID: 39129562 PMCID: PMC11771192 DOI: 10.1093/cei/uxae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 07/06/2024] [Accepted: 08/09/2024] [Indexed: 08/13/2024] Open
Abstract
B-cells play a critical role in the formation of immune responses against pathogens by acting as antigen-presenting cells, by modulating immune responses, and by generating immune memory and antibody responses. Here, we studied B-cell subset distributions between regions with higher and lower microbial exposure, i.e. by comparing peripheral blood B-cells from people living in Indonesia or Ghana to those from healthy Dutch residents using a 36-marker mass cytometry panel. By applying an unbiased multidimensional approach, we observed differences in the balance between the naïve and memory compartments, with higher CD11c+ and double negative (DN-IgDnegCD27neg) memory (M)B-cells in individuals from rural tropical areas, and conversely lower naïve B-cells compared to residents from an area with less pathogen exposure. Furthermore, characterization of total B-cell populations, CD11c+, DN, and Breg cells showed the emergence of specific memory clusters in individuals living in rural tropical areas. Some of these differences were more pronounced in children compared to adults and suggest that a higher microbial exposure accelerates memory B-cell formation, which "normalizes" with age.
Collapse
Affiliation(s)
- Mathilde A M Chayé
- Leiden University Center for Infectious Diseases (LUCID), LUMC, Leiden, The Netherlands
| | - Oscar R J van Hengel
- Leiden University Center for Infectious Diseases (LUCID), LUMC, Leiden, The Netherlands
| | - Astrid L Voskamp
- Leiden University Center for Infectious Diseases (LUCID), LUMC, Leiden, The Netherlands
| | | | - Marion H König
- Leiden University Center for Infectious Diseases (LUCID), LUMC, Leiden, The Netherlands
| | - Koen A Stam
- Leiden University Center for Infectious Diseases (LUCID), LUMC, Leiden, The Netherlands
| | - Mikhael D Manurung
- Leiden University Center for Infectious Diseases (LUCID), LUMC, Leiden, The Netherlands
| | - Yoanne D Mouwenda
- Leiden University Center for Infectious Diseases (LUCID), LUMC, Leiden, The Netherlands
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Yvonne A Aryeetey
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Agnes Kurniawan
- Department of Parasitology, Universitas Indonesia, Jakarta, Indonesia
| | - Yvonne C M Kruize
- Leiden University Center for Infectious Diseases (LUCID), LUMC, Leiden, The Netherlands
| | - Erliyani Sartono
- Leiden University Center for Infectious Diseases (LUCID), LUMC, Leiden, The Netherlands
| | - Anne-Marie Buisman
- Laboratory for Immunology of Infectious Diseases and Vaccines, Center for Infectious Diseases Control, National Institute for Public Health and The Environment, Bilthoven, The Netherlands
| | - Maria Yazdanbakhsh
- Leiden University Center for Infectious Diseases (LUCID), LUMC, Leiden, The Netherlands
| | - Tamar Tak
- Leiden University Center for Infectious Diseases (LUCID), LUMC, Leiden, The Netherlands
| | - Hermelijn H Smits
- Leiden University Center for Infectious Diseases (LUCID), LUMC, Leiden, The Netherlands
| |
Collapse
|
3
|
Bao Y, Liu J, Li Z, Sun Y, Chen J, Ma Y, Li G, Wang T, Liu H, Zhang X, Yan R, Yao Z, Guo X, Fang R, Feng J, Xia W, Xiang AP, Chen X. Ex vivo-generated human CD1c + regulatory B cells by a chemically defined system suppress immune responses and alleviate graft-versus-host disease. Mol Ther 2024; 32:4372-4382. [PMID: 39489917 PMCID: PMC11638867 DOI: 10.1016/j.ymthe.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/06/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024] Open
Abstract
IL-10+ regulatory B cells (Bregs) show great promise in treating graft-versus-host disease (GVHD), a life-threatening complication of post-hematopoietic stem cell transplantation. However, obtaining high-quality human IL-10+ Bregs in vitro remains a challenge due to the lack of unique specific markers and the triggering of pro-inflammatory cytokine expression. Here, by uncovering the critical signaling pathways in Breg induction by mesenchymal stromal cells (MSCs), we first established an efficient Breg induction system based on MSCs and GSK-3β blockage (CHIR-99021), which had a robust capacity to induce IL-10+ Bregs while suppressing tumor necrosis factor α (TNF-α) expression. Furthermore, these Breg populations could be identified and enriched by CD1c+. Mechanistically, MSCs induced the expansion of Bregs through the PKA-mediated phosphorylation of cAMP response element-binding protein (CREB). Thus, we developed a chemically defined inducing protocol by PKA-CREB agonist, instead of MSCs, which can also effectively induce CD1c+ Bregs with lower TNF-α expression. Importantly, induced CD1c+ Bregs suppressed the proliferation of peripheral blood mononuclear cells and the inflammatory cytokine secretion of T cells. When adoptively transferred into a humanized mouse model of GVHD, induced CD1c+ Bregs effectively alleviated GVHD. Overall, we established an efficient ex vivo induction system for human Bregs, which has implications for developing novel Bregs-based therapies for GVHD.
Collapse
Affiliation(s)
- Yingying Bao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 5100080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 5100080, China; Institute of Gene and Cell Therapy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jialing Liu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 5100080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 5100080, China
| | - Zhishan Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 5100080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 5100080, China
| | - Yueming Sun
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 5100080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 5100080, China
| | - Junhua Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 5100080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 5100080, China
| | - Yuanchen Ma
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 5100080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 5100080, China; Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Gang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 5100080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 5100080, China
| | - Tao Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 5100080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 5100080, China
| | - Huanyi Liu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Xiaoran Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 5100080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 5100080, China
| | - Rong Yan
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 5100080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 5100080, China
| | - Zhenxia Yao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 5100080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 5100080, China
| | - Xiaolu Guo
- Center for Stem Cells Translational Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen 518067, Guangdong, China
| | - Rui Fang
- Center for Stem Cells Translational Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen 518067, Guangdong, China
| | - Jianqi Feng
- Center for Stem Cells Translational Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen 518067, Guangdong, China
| | - Wenjie Xia
- Institute of Blood Transfusion, Guangzhou Blood Centre, Guangzhou 510095, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 5100080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 5100080, China.
| | - Xiaoyong Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 5100080, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 5100080, China.
| |
Collapse
|
4
|
Su QY, Jiang ZQ, Song XY, Zhang SX. Regulatory B cells in autoimmune diseases: Insights and therapeutic potential. J Autoimmun 2024; 149:103326. [PMID: 39520834 DOI: 10.1016/j.jaut.2024.103326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/06/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Autoimmune diseases are characterized by the body's immune system attacking its own cells, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS). In recent studies, regulatory B cells (Bregs), which play a vital role in maintaining peripheral tolerance and controlling persistent autoimmune diseases (ADs), have shown great potential in treating ADs. This review synthesizes the latest advancements in targeted therapies for ADs, with a particular emphasis on the subgroups, phenotypic markers, and signal pathways associated with Bregs. Following an examination of these elements, the discussion pivots to innovative Breg-based therapeutic approaches for the management of ADs.
Collapse
Affiliation(s)
- Qin-Yi Su
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China
| | - Zhong-Qing Jiang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China
| | - Xuan-Yi Song
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China
| | - Sheng-Xiao Zhang
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
5
|
Bradford HF, Mauri C. Diversity of regulatory B cells: Markers and functions. Eur J Immunol 2024; 54:e2350496. [PMID: 39086053 DOI: 10.1002/eji.202350496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Regulatory B cells (Bregs) are a functionally distinct B-cell subset involved in the maintenance of homeostasis and inhibition of inflammation. Studies, from the last two decades, have increased our understanding of cellular and molecular mechanisms involved in their generation, function, and to a certain extent phenotype. Current research endeavours to unravel the causes and consequences of Breg defects in disease, with increasing evidence highlighting the relevance of Bregs in promoting tumorigenic responses. Here we provide historical and emerging findings of the significance of Bregs in autoimmunity and transplantation, and how these insights have translated into the cancer field.
Collapse
Affiliation(s)
- Hannah F Bradford
- Division of Infection and Immunity and Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, United Kingdom
| | - Claudia Mauri
- Division of Infection and Immunity and Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, United Kingdom
| |
Collapse
|
6
|
Li JY, Feng TS, Gao J, Yang XX, Li XC, Deng ZH, Xia YX, Wu ZS. Differentiation and immunosuppressive function of CD19 +CD24 hiCD27 + regulatory B cells are regulated through the miR-29a-3p/NFAT5 pathway. Hepatobiliary Pancreat Dis Int 2024; 23:472-480. [PMID: 38724321 DOI: 10.1016/j.hbpd.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 04/12/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Regulatory B cells (Bregs) is an indispensable element in inducing immune tolerance after liver transplantation. As one of the microRNAs (miRNAs), miR-29a-3p also inhibits translation by degrading the target mRNA, and yet the relationship between Bregs and miR-29a-3p has not yet been fully explored. This study aimed to investigate the impact of miR-29a-3p on the regulation of differentiation and immunosuppressive functions of memory Bregs (mBregs) and ultimately provide potentially effective therapies in inducing immune tolerance after liver transplantation. METHODS Flow cytometry was employed to determine the levels of Bregs in peripheral blood mononuclear cells. TaqMan low-density array miRNA assays were used to identify the expression of different miRNAs, electroporation transfection was used to induce miR-29a-3p overexpression and knockdown, and dual luciferase reporter assay was used to verify the target gene of miR-29a-3p. RESULTS In patients experiencing acute rejection after liver transplantation, the proportions and immunosuppressive function of mBregs in the circulating blood were significantly impaired. miR-29a-3p was found to be a regulator of mBregs differentiation. Inhibition of miR-29a-3p, which targeted nuclear factor of activated T cells 5 (NFAT5), resulted in a conspicuous boost in the differentiation and immunosuppressive function of mBregs. The inhibition of miR-29a-3p in CD19+ B cells was capable of raising the expression levels of NFAT5, thereby promoting B cells to differentiate into mBregs. In addition, the observed enhancement of differentiation and immunosuppressive function of mBregs upon miR-29a-3p inhibition was abolished by the knockdown of NFAT5 in B cells. CONCLUSIONS miR-29a-3p was found to be a crucial regulator for mBregs differentiation and immunosuppressive function. Silencing miR-29a-3p could be a potentially effective therapeutic strategy for inducing immune tolerance after liver transplantation.
Collapse
Affiliation(s)
- Jin-Yang Li
- Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China; NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing 210029, China
| | - Tian-Shuo Feng
- Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China; NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing 210029, China
| | - Ji Gao
- Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China; NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing 210029, China
| | - Xin-Xiang Yang
- Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China; NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing 210029, China
| | - Xiang-Cheng Li
- Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China; NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing 210029, China
| | - Zhen-Hua Deng
- Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China; NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing 210029, China
| | - Yong-Xiang Xia
- Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China; NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing 210029, China
| | - Zheng-Shan Wu
- Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China; NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
7
|
Fu XJ, Meng C, Guo L, Lin LE. Therapeutic efficacy of rituximab combined with cyclosporin A on B-cell dysregulation in chronic graft-versus-host disease. Clin Transl Oncol 2024:10.1007/s12094-024-03684-1. [PMID: 39231914 DOI: 10.1007/s12094-024-03684-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024]
Abstract
OBJECTIVE Chronic graft-versus-host disease (cGVHD) is a significant complication following allogenic hematopoietic stem cell transplantation, often necessitating therapeutic interventions such as rituximab (RTX) and cyclosporin A (CsA). This study aims to elucidate the mechanisms by which RTX and CsA jointly address B-cell dysregulation in cGVHD, providing a theoretical foundation and scientific rationale for the treatment and prognostic evaluation of this condition. METHODS A total of 30 cGVHD mouse models were established by subjecting recipient mice to total body irradiation followed by injection of a mixed suspension of bone marrow cells and splenocytes from donor mice. From Day 2 to Day 29 post-model establishment, the mice received subcutaneous administration of RTX and CsA. Throughout the study, body weight, clinical cGVHD scores, and survival rates were monitored. Blood samples were collected via the orbital venous plexus. Serum levels of B-cell activating factor (BAFF) and pro-inflammatory factors were measured using enzyme-linked immunosorbent assay (ELISA), and the ratio of regulatory B cells (Bregs) in the blood sample was assessed via flow cytometry. RESULTS Mice with cGVHD exhibited a 14.5% decrease in body weight, elevated clinical scores, and more severe symptoms compared to the control group. Notably, all mice in both the cGVHD and control groups survived until the conclusion of the study. Induction of cGVHD resulted in B-cell dysregulation, evidenced by elevated serum BAFF levels and a decreased proportion of Bregs. However, treatment with RTX combined with CsA ameliorated B-cell dysregulation and significantly reduced serum levels of pro-inflammatory factors in cGVHD mice, with decreases of 39.78% in TNF-α and 37.89% in IL-6. CONCLUSION The combination of RTX and CsA effectively mitigates B-cell dysregulation in cGVHD, thereby reducing the severity and progression of the disease.
Collapse
Affiliation(s)
- Xiang-Jun Fu
- Department of Hematology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, NO.19 Xiuhua Road, Xiuying District, Haikou, 570311, Hainan Province, China
| | - Can Meng
- Department of Hematology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, NO.19 Xiuhua Road, Xiuying District, Haikou, 570311, Hainan Province, China
| | - Li Guo
- Department of Hematology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, NO.19 Xiuhua Road, Xiuying District, Haikou, 570311, Hainan Province, China
| | - Li-E Lin
- Department of Hematology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, NO.19 Xiuhua Road, Xiuying District, Haikou, 570311, Hainan Province, China.
| |
Collapse
|
8
|
Yang Y, Chen X, Pan J, Ning H, Zhang Y, Bo Y, Ren X, Li J, Qin S, Wang D, Chen MM, Zhang Z. Pan-cancer single-cell dissection reveals phenotypically distinct B cell subtypes. Cell 2024; 187:4790-4811.e22. [PMID: 39047727 DOI: 10.1016/j.cell.2024.06.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 04/25/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Characterizing the compositional and phenotypic characteristics of tumor-infiltrating B cells (TIBs) is important for advancing our understanding of their role in cancer development. Here, we establish a comprehensive resource of human B cells by integrating single-cell RNA sequencing data of B cells from 649 patients across 19 major cancer types. We demonstrate substantial heterogeneity in their total abundance and subtype composition and observe immunoglobulin G (IgG)-skewness of antibody-secreting cell isotypes. Moreover, we identify stress-response memory B cells and tumor-associated atypical B cells (TAABs), two tumor-enriched subpopulations with prognostic potential, shared in a pan-cancer manner. In particular, TAABs, characterized by a high clonal expansion level and proliferative capacity as well as by close interactions with activated CD4 T cells in tumors, are predictive of immunotherapy response. Our integrative resource depicts distinct clinically relevant TIB subsets, laying a foundation for further exploration of functional commonality and diversity of B cells in cancer.
Collapse
Affiliation(s)
- Yu Yang
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Xueyan Chen
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Jieying Pan
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Huiheng Ning
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yaojun Zhang
- State Key Laboratory of Oncology in South China, Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yufei Bo
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Xianwen Ren
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Jiesheng Li
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Shishang Qin
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Dongfang Wang
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China.
| | - Min-Min Chen
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
9
|
Trunk AD, Guo M, Budvytyte L, Islam NS, Khera N, Hamilton BK, Amonoo HL. Hematopoietic Stem-Cell Transplantation: Exploring the Latest Advances and Gaps in Disparities, Psychosocial and Symptom Management Interventions, and Chronic Graft-Versus-Host Disease Care. Am Soc Clin Oncol Educ Book 2024; 44:e432186. [PMID: 38754066 DOI: 10.1200/edbk_432186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Although allogeneic hematopoietic cell transplantation (HCT) offers a potential for cure for many patients with advanced hematologic malignancies and bone marrow failure or immunodeficiency syndromes, it is an intensive treatment and accompanied by short- and long-term physical and psychological symptoms requiring specialized care. With substantial advances in therapeutic approaches for HCT and supportive care, HCT survivors experience less morbidity and mortality. However, disparities in both HCT access and outcomes persist, and HCT survivors and their caregivers often lack access to much-needed psychosocial care. Additionally, more medical and psychosocial resources are needed to holistically care for HCT survivors with chronic graft-versus-host disease (GVHD). Hence, this chapter focuses on three areas pertaining to advances and gaps in HCT care: disparities in access to and outcomes of HCT, psychosocial and physical symptom management with supportive care interventions, and GVHD prevention and management.
Collapse
Affiliation(s)
- Andrew D Trunk
- Blood and Marrow Transplant Program, Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Michelle Guo
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | | | | | | | - Betty K Hamilton
- Blood and Marrow Transplant Program, Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Hermioni L Amonoo
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
10
|
Veh J, Ludwig C, Schrezenmeier H, Jahrsdörfer B. Regulatory B Cells-Immunopathological and Prognostic Potential in Humans. Cells 2024; 13:357. [PMID: 38391970 PMCID: PMC10886933 DOI: 10.3390/cells13040357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024] Open
Abstract
The aim of the following review is to shed light on the putative role of regulatory B cells (Bregs) in various human diseases and highlight their potential prognostic and therapeutic relevance in humans. Regulatory B cells are a heterogeneous group of B lymphocytes capable of suppressing inflammatory immune reactions. In this way, Bregs contribute to the maintenance of tolerance and immune homeostasis by limiting ongoing immune reactions temporally and spatially. Bregs play an important role in attenuating pathological inflammatory reactions that can be associated with transplant rejection, graft-versus-host disease, autoimmune diseases and allergies but also with infectious, neoplastic and metabolic diseases. Early studies of Bregs identified IL-10 as an important functional molecule, so the IL-10-secreting murine B10 cell is still considered a prototype Breg, and IL-10 has long been central to the search for human Breg equivalents. However, over the past two decades, other molecules that may contribute to the immunosuppressive function of Bregs have been discovered, some of which are only present in human Bregs. This expanded arsenal includes several anti-inflammatory cytokines, such as IL-35 and TGF-β, but also enzymes such as CD39/CD73, granzyme B and IDO as well as cell surface proteins including PD-L1, CD1d and CD25. In summary, the present review illustrates in a concise and comprehensive manner that although human Bregs share common functional immunosuppressive features leading to a prominent role in various human immunpathologies, they are composed of a pool of different B cell types with rather heterogeneous phenotypic and transcriptional properties.
Collapse
Affiliation(s)
- Johanna Veh
- Institute for Transfusion Medicine, Ulm University Hospitals and Clinics, 89081 Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Donation Service Baden-Württemberg-Hessen, 89081 Ulm, Germany
| | - Carolin Ludwig
- Institute for Transfusion Medicine, Ulm University Hospitals and Clinics, 89081 Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Donation Service Baden-Württemberg-Hessen, 89081 Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, Ulm University Hospitals and Clinics, 89081 Ulm, Germany
| | - Bernd Jahrsdörfer
- Institute for Transfusion Medicine, Ulm University Hospitals and Clinics, 89081 Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Donation Service Baden-Württemberg-Hessen, 89081 Ulm, Germany
| |
Collapse
|
11
|
Baumrin E, Loren AW, Falk SJ, Mays JW, Cowen EW. Chronic graft-versus-host disease. Part I: Epidemiology, pathogenesis, and clinical manifestations. J Am Acad Dermatol 2024; 90:1-16. [PMID: 36572065 PMCID: PMC10287844 DOI: 10.1016/j.jaad.2022.12.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Chronic graft-versus-host disease is a major complication of allogeneic hematopoietic cell transplantation and a leading cause of long-term morbidity, nonrelapse mortality, and impaired health-related quality of life. The skin is commonly affected and presents heterogeneously, making the role of dermatologists critical in both diagnosis and treatment. In addition, new clinical classification and grading schemes inform treatment algorithms, which now include 3 U.S. Food and Drug Administration-approved therapies, and evolving transplant techniques are changing disease epidemiology. Part I reviews the epidemiology, pathogenesis, clinical manifestations, and diagnosis of chronic graft-versus-host disease. Part II discusses disease grading and therapeutic management.
Collapse
Affiliation(s)
- Emily Baumrin
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Alison W Loren
- Blood and Marrow Transplant, Cell Therapy and Transplant Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sandy J Falk
- Adult Survivorship Program, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Jacqueline W Mays
- Oral Immunobiology Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Edward W Cowen
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
12
|
Gail LM, Schell KJ, Łacina P, Strobl J, Bolton SJ, Steinbakk Ulriksen E, Bogunia-Kubik K, Greinix H, Crossland RE, Inngjerdingen M, Stary G. Complex interactions of cellular players in chronic Graft-versus-Host Disease. Front Immunol 2023; 14:1199422. [PMID: 37435079 PMCID: PMC10332803 DOI: 10.3389/fimmu.2023.1199422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/07/2023] [Indexed: 07/13/2023] Open
Abstract
Chronic Graft-versus-Host Disease is a life-threatening inflammatory condition that affects many patients after allogeneic hematopoietic stem cell transplantation. Although we have made substantial progress in understanding disease pathogenesis and the role of specific immune cell subsets, treatment options are still limited. To date, we lack a global understanding of the interplay between the different cellular players involved, in the affected tissues and at different stages of disease development and progression. In this review we summarize our current knowledge on pathogenic and protective mechanisms elicited by the major involved immune subsets, being T cells, B cells, NK cells and antigen presenting cells, as well as the microbiome, with a special focus on intercellular communication of these cell types via extracellular vesicles as up-and-coming fields in chronic Graft-versus-Host Disease research. Lastly, we discuss the importance of understanding systemic and local aberrant cell communication during disease for defining better biomarkers and therapeutic targets, eventually enabling the design of personalized treatment schemes.
Collapse
Affiliation(s)
- Laura Marie Gail
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Kimberly Julia Schell
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Piotr Łacina
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Johanna Strobl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Steven J. Bolton
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Hildegard Greinix
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Rachel Emily Crossland
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
13
|
Chayé MAM, Gasan TA, Ozir-Fazalalikhan A, Scheenstra MR, Zawistowska-Deniziak A, van Hengel ORJ, Gentenaar M, Manurung MD, Harvey MR, Codée JDC, Chiodo F, Heijke AM, Kalinowska A, van Diepen A, Hensbergen PJ, Yazdanbakhsh M, Guigas B, Hokke CH, Smits HH. Schistosoma mansoni egg-derived thioredoxin and Sm14 drive the development of IL-10 producing regulatory B cells. PLoS Negl Trop Dis 2023; 17:e0011344. [PMID: 37363916 DOI: 10.1371/journal.pntd.0011344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 05/02/2023] [Indexed: 06/28/2023] Open
Abstract
During chronic schistosome infections, a complex regulatory network is induced to regulate the host immune system, in which IL-10-producing regulatory B (Breg) cells play a significant role. Schistosoma mansoni soluble egg antigens (SEA) are bound and internalized by B cells and induce both human and mouse IL-10 producing Breg cells. To identify Breg-inducing proteins in SEA, we fractionated SEA by size exclusion chromatography and found 6 fractions able to induce IL-10 production by B cells (out of 18) in the high, medium and low molecular weight (MW) range. The high MW fractions were rich in heavily glycosylated molecules, including multi-fucosylated proteins. Using SEA glycoproteins purified by affinity chromatography and synthetic glycans coupled to gold nanoparticles, we investigated the role of these glycan structures in inducing IL-10 production by B cells. Then, we performed proteomics analysis on active low MW fractions and identified a number of proteins with putative immunomodulatory properties, notably thioredoxin (SmTrx1) and the fatty acid binding protein Sm14. Subsequent splenic murine B cell stimulations and hock immunizations with recombinant SmTrx1 and Sm14 showed their ability to dose-dependently induce IL-10 production by B cells both in vitro and in vivo. Identification of unique Breg cells-inducing molecules may pave the way to innovative therapeutic strategies for inflammatory and auto-immune diseases.
Collapse
Affiliation(s)
- Mathilde A M Chayé
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas A Gasan
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Maaike R Scheenstra
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anna Zawistowska-Deniziak
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Parasitology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Oscar R J van Hengel
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Max Gentenaar
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mikhael D Manurung
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael R Harvey
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Fabrizio Chiodo
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- Italian National Research Council, Institute of Biomolecular Chemistry, Pozzuoli, Italy
| | - Anouk M Heijke
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alicja Kalinowska
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Angela van Diepen
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul J Hensbergen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelis H Hokke
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hermelijn H Smits
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
14
|
Xu Y, Mao Y, Lv Y, Tang W, Xu J. B cells in tumor metastasis: friend or foe? Int J Biol Sci 2023; 19:2382-2393. [PMID: 37215990 PMCID: PMC10197893 DOI: 10.7150/ijbs.79482] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Metastasis is an important cause of cancer-related death. Immunotherapy may be an effective way to prevent and treat tumor metastasis in the future. Currently, many studies have focused on T cells, whereas fewer have focused on B cells and their subsets. B cells play an important role in tumor metastasis. They not only secrete antibodies and various cytokines but also function in antigen presentation to directly or indirectly participate in tumor immunity. Furthermore, B cells are involved in both inhibiting and promoting tumor metastasis, which demonstrates the complexity of B cells in tumor immunity. Moreover, different subgroups of B cells have distinct functions. The functions of B cells are also affected by the tumor microenvironment, and the metabolic homeostasis of B cells is also closely related to their function. In this review, we summarize the role of B cells in tumor metastasis, analyze the mechanisms of B cells, and discuss the current status and prospects of B cells in immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Wentao Tang
- ✉ Corresponding authors: Jianmin Xu, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China. E-mail: ; Wentao Tang, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China. E-mail:
| | - Jianmin Xu
- ✉ Corresponding authors: Jianmin Xu, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China. E-mail: ; Wentao Tang, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China. E-mail:
| |
Collapse
|
15
|
Ji R, Li Y, Huang R, Xiong J, Wang X, Zhang X. Recent Advances and Research Progress in Biomarkers for Chronic Graft Versus Host Disease. Crit Rev Oncol Hematol 2023; 186:103993. [PMID: 37061073 DOI: 10.1016/j.critrevonc.2023.103993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 03/24/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023] Open
Abstract
Chronic graft-versus host disease (cGVHD) is a major risk for patients undergoing allogeneic hematopoietic stem cell transplantation. With the emergence of novel therapies and the increased understanding of the mechanisms underlying cGVHD, there are more options for cGVHD treatment. Regardless of improvements in treatment, diagnosis mainly depends on identification of symptoms, which makes precise treatment a challenge. Numerous biomarkers for cGVHD have been validated and have demonstrated strong associations with prognosis and response to treatment. The most common biomarkers mainly include critical types of immune cells, chemokines, cytokines, microRNAs, and autoantibodies, all of which play important roles in the development of cGVHD. Compared to traditional tools, biomarkers have several advantages, for example, they can be applied for early diagnosis, to identify cGVHD risk before onset, and predict which therapy is most likely to benefit patients. In this review, we summarize biomarkers with potential clinical value and discuss future applications.
Collapse
Affiliation(s)
- Rui Ji
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Yue Li
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Ruihao Huang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Jingkang Xiong
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China.
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China; Jinfeng Laboratory, Chongqing 400037, China.
| |
Collapse
|
16
|
Imahashi N, Basar R, Huang Y, Wang F, Baran N, Banerjee PP, Lu J, Nunez Cortes AK, Uprety N, Ensley E, Muniz-Feliciano L, Laskowski TJ, Moyes JS, Daher M, Mendt M, Kerbauy LN, Shanley M, Li L, Lim FLWI, Shaim H, Li Y, Konopleva M, Green M, Wargo J, Shpall EJ, Chen K, Rezvani K. Activated B cells suppress T-cell function through metabolic competition. J Immunother Cancer 2022; 10:e005644. [PMID: 36543374 PMCID: PMC9772692 DOI: 10.1136/jitc-2022-005644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND B cells play a pivotal role in regulating the immune response. The induction of B cell-mediated immunosuppressive function requires B cell activating signals. However, the mechanisms by which activated B cells mediate T-cell suppression are not fully understood. METHODS We investigated the potential contribution of metabolic activity of activated B cells to T-cell suppression by performing in vitro experiments and by analyzing clinical samples using mass cytometry and single-cell RNA sequencing. RESULTS Here we show that following activation, B cells acquire an immunoregulatory phenotype and promote T-cell suppression by metabolic competition. Activated B cells induced hypoxia in T cells in a cell-cell contact dependent manner by consuming more oxygen via an increase in their oxidative phosphorylation (OXPHOS). Moreover, activated B cells deprived T cells of glucose and produced lactic acid through their high glycolytic activity. Activated B cells thus inhibited the mammalian target of rapamycin pathway in T cells, resulting in suppression of T-cell cytokine production and proliferation. Finally, we confirmed the presence of tumor-associated B cells with high glycolytic and OXPHOS activities in patients with melanoma, associated with poor response to immune checkpoint blockade therapy. CONCLUSIONS We have revealed for the first time the immunomodulatory effects of the metabolic activity of activated B cells and their possible role in suppressing antitumor T-cell responses. These findings add novel insights into immunometabolism and have important implications for cancer immunotherapy.
Collapse
Affiliation(s)
- Nobuhiko Imahashi
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Hematology, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Rafet Basar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yuefan Huang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Fang Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Natalia Baran
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Pinaki Prosad Banerjee
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Junjun Lu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ana Karen Nunez Cortes
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nadima Uprety
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Emily Ensley
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Luis Muniz-Feliciano
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tamara J Laskowski
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Judy S Moyes
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mayela Mendt
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lucila N Kerbauy
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Departments of Stem Cell Transplantation and Hemotherapy/Cellular Therapy, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP), Sao Paulo, Brazil
| | - Mayra Shanley
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Li Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Francesca Lorraine Wei Inng Lim
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hila Shaim
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ye Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael Green
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer Wargo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
17
|
Wang C, Xu H, Gao R, Leng F, Huo F, Li Y, Liu S, Xu M, Bai J. CD19 +CD24 hiCD38 hi regulatory B cells deficiency revealed severity and poor prognosis in patients with sepsis. BMC Immunol 2022; 23:54. [PMID: 36357845 PMCID: PMC9648441 DOI: 10.1186/s12865-022-00528-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/20/2022] [Indexed: 11/12/2022] Open
Abstract
Background Sepsis still remains a major challenge in intensive care medicine with unacceptably high mortality among patients with septic shock. Due to current limitations of human CD19+CD24hiCD38hi Breg cells (Bregs) studies among sepsis, here, we tried to evaluate Bregs in severity and prognostic value in patients with sepsis. Methods Peripheral blood from 58 patients with sepsis and 22 healthy controls was analyzed using flow cytometry to evaluate the frequency and number of Bregs. All cases were divided into non-survived or survived group after 28 days followed up. Spearman's correlation analysis was performed on Bregs frequency and clinical indices. The area under the curve was acquired using the receiver operating characteristic analysis to assess the sensitivity and specificity of Bregs for outcome of sepsis. Survival curve analysis and binary logistic regression were applied to estimate the value of Bregs in prognosis among cases with sepsis. Results Sepsis patients had decreased proportions and number of Bregs. Sepsis patients with low frequency of Bregs were associated with an increased risk of septic shock. Bregs frequency is inversely associated with lactate, SOFA, and APACHE II and positively correlated with Tregs frequency. Low levels of Bregs closely correlated with septic outcomes. Numbers of Bregs were prediction factors for poor prognosis. Conclusions Frequency and number of Bregs decreased, and Bregs deficiency revealed poor prognosis in patients with sepsis. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-022-00528-x.
Collapse
Affiliation(s)
- Chunmei Wang
- grid.89957.3a0000 0000 9255 8984Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Nanjing Medical University, Nanjing, 211166 Jiangsu Province China ,grid.24516.340000000123704535Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| | - Huihui Xu
- grid.9227.e0000000119573309Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Rui Gao
- grid.452252.60000 0004 8342 692XDepartment of Respiratory and Critical Care Medicine, Affiliated Hospital of Jining Medical University, Jining, 272067 Shandong Province China
| | - Fengying Leng
- grid.24516.340000000123704535Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| | - Fangjie Huo
- Department of Respiratory Medicine, Xi’an No. 4 Hospital, Xi’an, 710004 Shanxi Province China
| | - Yinzhen Li
- grid.24516.340000000123704535Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China ,grid.24516.340000000123704535Medical School, Tongji University, Shanghai, 200120 China
| | - Siting Liu
- grid.24516.340000000123704535Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| | - Mingzheng Xu
- grid.24516.340000000123704535Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| | - Jianwen Bai
- grid.89957.3a0000 0000 9255 8984Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Nanjing Medical University, Nanjing, 211166 Jiangsu Province China ,grid.24516.340000000123704535Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| |
Collapse
|
18
|
Milosevic E, Babic A, Iovino L, Markovic M, Grce M, Greinix H. Use of the NIH consensus criteria in cellular and soluble biomarker research in chronic graft-versus-host disease: A systematic review. Front Immunol 2022; 13:1033263. [DOI: 10.3389/fimmu.2022.1033263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivesChronic graft-versus-host disease (cGvHD) is the most frequent cause of late non-relapse mortality after allogeneic haematopoietic stem cell transplantation (alloHCT). Nevertheless, established biomarkers of cGvHD are still missing. The National Institutes of Health (NIH) Consensus Development Project on Criteria for Clinical Trials in cGvHD provided recommendations for biomarker research. We evaluated to which extent studies on cellular and soluble biomarkers in cGvHD published in the last 10 years complied with these recommendations. Also, we highlight the most promising biomarker candidates, verified in independent cohorts and/or repeatedly identified by separate studies.MethodsWe searched Medline and EMBASE for “cGvHD”, “biomarkers”, “soluble” and “cells” as MeSH terms or emtree subject headings, and their variations on July 28th, 2021, limited to human subjects, English language and last ten years. Reviews, case reports, conference abstracts and single nucleotide polymorphism studies were excluded. Criteria based on the set of recommendations from the NIH group for biomarker research in cGvHD were used for scoring and ranking the references.ResultsA total of 91 references encompassing 15,089 participants were included, 54 prospective, 17 retrospective, 18 cross-sectional, and 2 studies included both prospective and retrospective cohorts. Thirty-five papers included time-matched controls without cGvHD and 20 studies did not have any control subjects. Only 9 studies were randomized, and 8 were multicentric. Test and verification cohorts were included in 11 studies. Predominantly, diagnostic biomarkers were explored (n=54). Assigned scores ranged from 5-34. None of the studies fulfilled all 24 criteria (48 points). Nevertheless, the scores improved during the last years. Three cell subsets (CXCR3+CD56bright NK cells, CD19+CD21low and BAFF/CD19+ B cells) and several soluble factors (BAFF, IL-15, CD163, DKK3, CXCL10 and the panel of ST2, CXCL9, MMP3 and OPN) had the highest potential as diagnostic and/or prognostic biomarkers in cGvHD.ConclusionDespite several limitations of this review (limited applicability for paediatric population, definition of verification, missing data on comorbidities), we identified promising candidate biomarkers for further evaluation in multicentre collaborative studies. This review confirms the importance of the NIH consensus group criteria for improving the quality and reproducibility of cGvHD biomarker research.
Collapse
|
19
|
Garcia SG, Sandoval-Hellín N, Clos-Sansalvador M, Carreras-Planella L, Morón-Font M, Guerrero D, Borràs FE, Franquesa M. Mesenchymal stromal cells induced regulatory B cells are enriched in extracellular matrix genes and IL-10 independent modulators. Front Immunol 2022; 13:957797. [PMID: 36189264 PMCID: PMC9515545 DOI: 10.3389/fimmu.2022.957797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Regulatory B cells (Breg) are essential players in tolerance and immune homeostasis. However, lack of specific Breg markers limit their potential in clinical settings. Mesenchymal stromal cells (MSC) modulate B cell responses and are described to induce Breg in vitro. The aim of this work was to characterize MSC induced Breg (iBreg) and identify specific Breg biomarkers by RNAseq. After 7-day coculture with adipose tissue-derived MSC, B cells were enriched in transitional B cell populations, with increased expression and secretion of IL-10 and no TNFα. In addition, iBreg showed potential to modulate T cell proliferation at 2 to 1 cell ratios and their phenotype remained stable for 72h. RNAseq analysis of sorted IL-10 positive and negative iBreg populations identified over 1500 differentially expressed genes (DEG) among both populations. Analysis of biological processes of DEG highlighted an enrichment of immune regulation and extracellular matrix genes in IL-10- iBreg populations, while IL-10+ iBreg DEG were mostly associated with cell activation. This was supported by T cells modulation assays performed in the presence of anti-IL-10 neutralizing antibodies showing the non-essential role of IL-10 in the immunomodulatory capacity of iBregs on T cells. However, based on RNAseq results we explored the role of TGF-β and found out that it plays a major role on iBreg induction and iBreg immunomodulatory properties. Therefore, we report that MSC induce B cell populations characterized by the generation of extracellular matrix and immune modulation independently of IL-10.
Collapse
Affiliation(s)
- Sergio G. Garcia
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Bellaterra, Spain
| | - Noelia Sandoval-Hellín
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
| | - Marta Clos-Sansalvador
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Bellaterra, Spain
| | - Laura Carreras-Planella
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
| | - Miriam Morón-Font
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
| | - Dolores Guerrero
- Otorhinolaryngology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Francesc E. Borràs
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
- *Correspondence: Marcella Franquesa, ; Francesc E. Borràs,
| | - Marcella Franquesa
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
- *Correspondence: Marcella Franquesa, ; Francesc E. Borràs,
| |
Collapse
|
20
|
Burton H, McLaughlin L, Shiu KY, Shaw O, Mamode N, Spencer J, Dorling A. The phenotype of HLA-binding B cells from sensitized kidney transplant recipients correlates with clinically prognostic patterns of interferon-γ production against purified HLA proteins. Kidney Int 2022; 102:355-369. [PMID: 35483526 DOI: 10.1016/j.kint.2022.02.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/04/2022] [Accepted: 02/28/2022] [Indexed: 12/17/2022]
Abstract
B cells play crucial roles in cell-mediated alloimmune responses. In vitro, B cells can support or regulate indirect T-cell alloreactivity in response to donor antigens on ELISpot and these patterns associate with clinical outcome. Previous reports of associations between B-cell phenotype and function have examined global phenotypes and responses to polyclonal stimuli. We hypothesized that studying antigen-specific B cells, using samples from sensitized patients, would inform further study to identify novel targets for intervention. Using biotinylated HLA proteins, which bind HLA-specific B cells via the B-cell receptor in a dose-dependent fashion, we report the specific phenotype of HLA-binding B cells and define how they associated with patterns of anti-HLA response in interferon-γ ELISpot. HLA-binding class-switched and IgM+CD27+ memory cells associated strongly with B-dependent interferon-γ production and appeared not suppressible by endogenous Tregs. When the predominant HLA-binding phenotype was naïve B cells, the associated functional ELISpot phenotype was determined by other cells present. High numbers of non-HLA-binding transitional cells associated with B-suppressed interferon-γ production, especially if Tregs were present. However, high frequencies of HLA-binding marginal-zone precursors associated with B-dependent interferon-γ production that appeared suppressible by Tregs. Finally, non-HLA-binding marginal zone precursors may also suppress interferon-γ production, though this association only emerged when Tregs were absent from the ELISpot. Thus, our novel data provide a foundation on which to further define the complexities of interactions between HLA-specific T and B cells and identify new targets for intervention in new therapies for chronic rejection.
Collapse
Affiliation(s)
- Hannah Burton
- Department of Inflammation Biology, King's College London, London, UK
| | - Laura McLaughlin
- Department of Inflammation Biology, King's College London, London, UK
| | - Kin Yee Shiu
- Department of Inflammation Biology, King's College London, London, UK; Department of Renal Medicine (UCL), Royal Free Hospital, London, UK
| | - Olivia Shaw
- Clinical Transplantation Laboratory, Guy's Hospital, London, UK
| | - Nizam Mamode
- Department of Inflammation Biology, King's College London, London, UK
| | - Jo Spencer
- Department of Immunobiology, King's College London, London, UK
| | - Anthony Dorling
- Department of Inflammation Biology, King's College London, London, UK.
| |
Collapse
|
21
|
Yadav S, Singh S, Mandal P, Tripathi A. Immunotherapies in the treatment of immunoglobulin E‑mediated allergy: Challenges and scope for innovation (Review). Int J Mol Med 2022; 50:95. [PMID: 35616144 DOI: 10.3892/ijmm.2022.5151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/28/2022] [Indexed: 11/05/2022] Open
Abstract
Immunoglobulin E (IgE)‑mediated allergy or hypersensitivity reactions are generally defined as an unwanted severe symptomatic immunological reaction that occurs due to shattered or untrained peripheral tolerance of the immune system. Allergen‑specific immunotherapy (AIT) is the only therapeutic strategy that can provide a longer‑lasting symptomatic and clinical break from medications in IgE‑mediated allergy. Immunotherapies against allergic diseases comprise a successive increasing dose of allergen, which helps in developing the immune tolerance against the allergen. AITs exerttheirspecial effectiveness directly or indirectly by modulating the regulator and effector components of the immune system. The number of success stories of AIT is still limited and it canoccasionallyhave a severe treatment‑associated adverse effect on patients. Therefore, the formulation used for AIT should be appropriate and effective. The present review describes the chronological evolution of AIT, and provides a comparative account of the merits and demerits of different AITs by keeping in focus the critical guiding factors, such as sustained allergen tolerance, duration of AIT, probability of mild to severe allergic reactions and dose of allergen required to effectuate an effective AIT. The mechanisms by which regulatory T cells suppress allergen‑specific effector T cells and how loss of natural tolerance against innocuous proteins induces allergy are reviewed. The present review highlights the major AIT bottlenecks and the importantregulatory requirements for standardized AIT formulations. Furthermore, the present reviewcalls attention to the problem of 'polyallergy', which is still a major challenge for AIT and the emerging concept of 'component‑resolved diagnosis' (CRD) to address the issue. Finally, a prospective strategy for upgrading CRD to the next dimension is provided, and a potential technology for delivering thoroughly standardized AIT with minimal risk is discussed.
Collapse
Affiliation(s)
- Sarika Yadav
- Systems Toxicology and Health Risk Assessment Group, CSIR‑Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| | - Saurabh Singh
- Systems Toxicology and Health Risk Assessment Group, CSIR‑Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| | - Payal Mandal
- Food, Drugs and Chemical Toxicology Group, CSIR‑Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| | - Anurag Tripathi
- Systems Toxicology and Health Risk Assessment Group, CSIR‑Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| |
Collapse
|
22
|
McGrath JJC, Li L, Wilson PC. Memory B cell diversity: insights for optimized vaccine design. Trends Immunol 2022; 43:343-354. [PMID: 35393268 PMCID: PMC8977948 DOI: 10.1016/j.it.2022.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/02/2023]
Abstract
The overarching logos of mammalian memory B cells (MBCs) is to cache the potential for enhanced antibody production upon secondary exposure to cognate antigenic determinants. However, substantial phenotypic diversity has been identified across MBCs, hinting at the existence of unique origins or subfunctions within this compartment. Herein, we discuss recent advancements in human circulatory MBC subphenotyping as driven by high-throughput cell surface marker analysis and other approaches, as well as speculated and substantiated subfunctions. With this in mind, we hypothesize that the relative induction of specific circulatory MBC subsets might be used as a biomarker for optimally durable vaccines and inform vaccination strategies to subvert antigenic imprinting in the context of highly mutable pathogens such as influenza virus or SARS-CoV-2.
Collapse
Affiliation(s)
- Joshua J C McGrath
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Lei Li
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Patrick C Wilson
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
23
|
Agbogan VA, Gastineau P, Tejerina E, Karray S, Zavala F. CpG-Activated Regulatory B-Cell Progenitors Alleviate Murine Graft-Versus-Host-Disease. Front Immunol 2022; 13:790564. [PMID: 35479094 PMCID: PMC9035844 DOI: 10.3389/fimmu.2022.790564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Development of Graft Versus Host Disease (GVHD) represents a major impediment in allogeneic hematopoietic stem cell transplantation (HSCT). The observation that the presence of bone marrow and circulating hematogones correlated with reduced GVHD risks prompted us to evaluate whether B-cell progenitors, which provide protection in various autoimmune disease models following activation with the TLR-9 agonist CpG (CpG-proBs), could likewise reduce this allogeneic disorder. In a murine model of GVHD that recapitulates an initial phase of acute GVHD followed by a phase of chronic sclerodermatous GVHD, we found that CpG-proBs, adoptively transferred during the initial phase of disease, reduced the diarrhea score and mostly prevented cutaneous fibrosis. Progenitors migrated to the draining lymph nodes and to the skin where they mainly differentiated into follicular B cells. CpG activation and IFN-γ expression were required for the protective effect, which resulted in reduced CD4+ T-cell-derived production of critical cytokines such as TGF-β, IL-13 and IL-21. Adoptive transfer of CpG-proBs increased the T follicular regulatory to T follicular helper (Tfr/Tfh) ratio. Moreover, CpG-proBs privileged the accumulation of IL-10-positive CD8+ T cells, B cells and dendritic cells in the skin. However, CpG-proBs did not improve survival. Altogether, our findings support the notion that adoptively transferred CpG-proBs exert immunomodulating effect that alleviates symptoms of GVHD but require additional anti-inflammatory strategy to improve survival.
Collapse
Affiliation(s)
- Viviane A. Agbogan
- Université Paris Cité, INSERM U1151, CNRS UMR8152, Institut Necker Enfants Malades (INEM), Paris, France
| | - Pauline Gastineau
- Université Paris Cité, INSERM U1151, CNRS UMR8152, Institut Necker Enfants Malades (INEM), Paris, France
| | - Emmanuel Tejerina
- Université Paris Cité, INSERM U1151, CNRS UMR8152, Institut Necker Enfants Malades (INEM), Paris, France
| | - Saoussen Karray
- Université Paris Cité, INSERM U976, Institut de Recherche Saint-Louis (IRSL), Hôpital Saint-Louis, Paris, France
| | - Flora Zavala
- Université Paris Cité, INSERM U1151, CNRS UMR8152, Institut Necker Enfants Malades (INEM), Paris, France
- *Correspondence: Flora Zavala, ; orcid.org/0000-0002-2338-6802
| |
Collapse
|
24
|
Flores-Borja F, Blair P. "Mechanisms of induction of regulatory B cells in the tumour microenvironment and their contribution to immunosuppression and pro-tumour responses". Clin Exp Immunol 2022; 209:33-45. [PMID: 35350071 PMCID: PMC9307227 DOI: 10.1093/cei/uxac029] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/08/2022] [Accepted: 03/25/2022] [Indexed: 12/05/2022] Open
Abstract
The presence of tumour-infiltrating immune cells was originally associated with the induction of anti-tumour responses and good a prognosis. A more refined characterization of the tumour microenvironment has challenged this original idea and evidence now exists pointing to a critical role for immune cells in the modulation of anti-tumour responses and the induction of a tolerant pro-tumour environment. The coordinated action of diverse immunosuppressive populations, both innate and adaptive, shapes a variety of pro-tumour responses leading to tumour progression and metastasis. Regulatory B cells have emerged as critical modulators and suppressors of anti-tumour responses. As reported in autoimmunity and infection studies, Bregs are a heterogeneous population with diverse phenotypes and different mechanisms of action. Here we review recent studies on Bregs from animal models and patients, covering a variety of types of cancer. We describe the heterogeneity of Bregs, the cellular interactions they make with other immune cells and the tumour itself, and their mechanism of suppression that enables tumour escape. We also discuss the potential therapeutic tools that may inhibit Bregs function and promote anti-tumour responses.
Collapse
Affiliation(s)
- Fabian Flores-Borja
- Centre for Immunobiology and Regenerative Medicine, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, Blizard Institute, London
| | - Paul Blair
- Division of Infection & Immunity, Faculty of Medical Sciences, Department of Infection, Immunity, and Transplantation, University College London, London
| |
Collapse
|
25
|
Dai B, Ding L, Zhao L, Zhu H, Luo H. Contributions of Immune Cells and Stromal Cells to the Pathogenesis of Systemic Sclerosis: Recent Insights. Front Pharmacol 2022; 13:826839. [PMID: 35185577 PMCID: PMC8852243 DOI: 10.3389/fphar.2022.826839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/04/2022] [Indexed: 12/21/2022] Open
Abstract
Systemic sclerosis (SSc) is a multisystem rheumatic disease characterized by vascular dysfunction, autoimmune abnormalities, and progressive organ fibrosis. A series of studies in SSc patients and fibrotic models suggest that immune cells, fibroblasts, and endothelial cells participate in inflammation and aberrant tissue repair. Furthermore, the growing number of studies on single-cell RNA sequencing (scRNA-seq) technology in SSc elaborate on the transcriptomics and heterogeneities of these cell subsets significantly. In this review, we summarize the current knowledge regarding immune cells and stromal cells in SSc patients and discuss their potential roles in SSc pathogenesis, focusing on recent advances in the new subtypes by scRNA-seq.
Collapse
Affiliation(s)
- Bingying Dai
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Liqing Ding
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Lijuan Zhao
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Honglin Zhu
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- *Correspondence: Honglin Zhu, ; Hui Luo,
| | - Hui Luo
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- *Correspondence: Honglin Zhu, ; Hui Luo,
| |
Collapse
|
26
|
Garcia SG, Sandoval-Hellín N, Franquesa M. Regulatory B Cell Therapy in Kidney Transplantation. Front Pharmacol 2021; 12:791450. [PMID: 34950041 PMCID: PMC8689004 DOI: 10.3389/fphar.2021.791450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/22/2021] [Indexed: 01/22/2023] Open
Abstract
In the context of kidney injury, the role of Bregs is gaining interest. In a number of autoimmune diseases, the number and/or the function of Bregs has been shown to be impaired or downregulated, therefore restoring their balance might be a potential therapeutic tool. Moreover, in the context of kidney transplantation their upregulation has been linked to tolerance. However, a specific marker or set of markers that define Bregs as a unique cell subset has not been found and otherwise multiple phenotypes of Bregs have been studied. A quest on the proper markers and induction mechanisms is now the goal of many researchers. Here we summarize the most recent evidence on the role of Bregs in kidney disease by describing the relevance of in vitro and in vivo Bregs induction as well as the potential use of Bregs as cell therapy agents in kidney transplantation.
Collapse
Affiliation(s)
- Sergio G Garcia
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) and Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain.,Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Bellaterra, Spain
| | - Noelia Sandoval-Hellín
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) and Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
| | - Marcella Franquesa
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) and Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
| |
Collapse
|
27
|
Hamilton BK. Updates in chronic graft-versus-host disease. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:648-654. [PMID: 34889364 PMCID: PMC8791178 DOI: 10.1182/hematology.2021000301] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Chronic graft-versus-host disease (GVHD) is the leading cause of late morbidity and mortality after allogeneic hematopoietic cell transplantation. Symptoms and manifestations of chronic GVHD are heterogeneous and pleomorphic, and there are no standard treatments beyond corticosteroids. Therapy is typically prolonged, and chronic GVHD and its treatment are associated with adverse effects that have a significant impact on long-term quality of life and functional status. Several advances have been made over the last 2 decades to define the diagnosis of chronic GVHD as well as its severity and response criteria for clinical trials. Further understanding into the biologic mechanisms of the development of chronic GVHD has led to the investigation of several novel immunomodulatory and targeted therapies. Multi-institutional collaboration and pharmaceutical support in the development of therapies based on sound biologic mechanisms and clinical trials with defined end points and responses have led to several promising agents on the horizon of approval for treatment of chronic GVHD. This article reviews advances in our knowledge of chronic GVHD and its biologic framework to improve approaches to prevention and treatment.
Collapse
Affiliation(s)
- Betty K. Hamilton
- Blood and Marrow Transplant Program, Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
28
|
Lin S, Ma Z, Huang Y, Sun Y, Yi H. Chronic obstructive pulmonary disease is characterized by reduced levels and defective suppressive function of regulatory B cells in peripheral blood. Mol Immunol 2021; 141:87-93. [PMID: 34837778 DOI: 10.1016/j.molimm.2021.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/17/2021] [Accepted: 11/07/2021] [Indexed: 01/02/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by a progressive, persistent immune response to cigarette smoke, and it has been suggested that immune dysregulation is involved in its pathogenesis. A subset of regulatory B cells (Bregs) with high levels of the surface markers CD24 and CD38 (CD24hiCD38hi) has previously been shown to exert an immunosuppressive function. This study investigated the levels and activity of CD24hiCD38hi Bregs in stable COPD (sCOPD). Testing the peripheral blood from 65 patients with sCOPD and 39 control subjects for CD24hiCD38hi Breg subsets by flow cytometry showed that the patients with sCOPD had significantly lower levels of CD24hiCD38hi Bregs and IL-10+ B cells. The patients with sCOPD had lower serum interleukin-10 levels than the controls. The patients with most severe sCOPD had the lowest levels of CD24hiCD38hi Bregs. Spearman correlation analysis showed that the levels of CD24hiCD38hi Bregs in the patients with sCOPD positively correlated with serum interleukin-10 concentrations but not with levels of C-reactive protein. Compared to healthy controls, functional studies showed that Breg cells from patients with sCOPD exhibit a decreased suppressive function. We conclude that sCOPD is characterized by the exhaustion of CD24hiCD38hi regulatory B cells compartment. Therefore, CD24hiCD38hi Bregs may contribute to the pathogenesis of sCOPD.
Collapse
Affiliation(s)
- Shan Lin
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin, 130031, China; Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130031, China.
| | - Zhanchuan Ma
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin, 130031, China.
| | - Yuanping Huang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130031, China.
| | - Yu Sun
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130031, China.
| | - Huanfa Yi
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin, 130031, China.
| |
Collapse
|
29
|
Mu Y, Xu W, Liu J, Wang Y, Chen J, Zhou Q. Mesenchymal stem cells moderate experimental autoimmune uveitis by dynamic regulating Th17 and Breg cells response. J Tissue Eng Regen Med 2021; 16:26-35. [PMID: 34674378 DOI: 10.1002/term.3259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSCs) are adult stem cells from mesoderm with multi potential differentiation, and are being widely studied as a promising treatment for autoimmune diseases. The main inflammatory factors of experimental autoimmune uveitis (EAU) are T helper type 1 (Th1) and Th17. Regulatory B cells (Bregs) are a newly designated B cell subgroup, which has been proved to play a key role in regulating inflammation, autoimmunity and cancer. In this regard, we establish the EAU model by injecting interphotoreceptor retinoid-binding protein combined with complete Freund's adjuvant into the tail vein and bilateral thighs of rats, and inject MSCs or equal volume of phosphate buffer saline intraperitoneally on the day of immunization. Dynamic changes of cell subsets and cytokine expression are tested at different time periods to explore the relationship between MSCs treatment and disease prognosis during EAU course. Our results suggest that compared with the model control group, MSCs treatment can significantly reduce the production of Th1 and Th17 cytokines during EAU, while the production of regulatory B cells (Bregs) cytokines is significantly increased. At the same time, MSCs can reduce the proportion of Th17 in lymphocytes while the proportion of Bregs is elevated, thus inhibiting the differentiation and activity of interleukin in EAU rats. All this results provide more powerful evidence for cell therapy of autoimmune uveitis.
Collapse
Affiliation(s)
- Yajun Mu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wei Xu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of Ophthalmology, Affiliated Hexian Memorial Hospital of Southern Medical University, Guangzhou, China
| | - Jue Liu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yingwei Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Jian Chen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qing Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
30
|
Garcia-Lacarte M, Grijalba SC, Melchor J, Arnaiz-Leché A, Roa S. The PD-1/PD-L1 Checkpoint in Normal Germinal Centers and Diffuse Large B-Cell Lymphomas. Cancers (Basel) 2021; 13:4683. [PMID: 34572910 PMCID: PMC8471895 DOI: 10.3390/cancers13184683] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Besides a recognized role of PD-1/PD-L1 checkpoint in anti-tumour immune evasion, there is accumulating evidence that PD-1/PD-L1 interactions between B and T cells also play an important role in normal germinal center (GC) reactions. Even when smaller in number, T follicular helper cells (TFH) and regulatory T (TFR) or B (Breg) cells are involved in positive selection of GC B cells and may result critical in the lymphoma microenvironment. Here, we discuss a role of PD-1/PD-L1 during tumour evolution in diffuse large B cell lymphoma (DLBCL), a paradigm of GC-derived lymphomagenesis. We depict a progression model, in two phases, where malignant B cells take advantage of positive selection signals derived from correct antigen-presentation and PD-1/PD-L1 inter-cellular crosstalks to survive and initiate tumour expansion. Later, a constant pressure for the accumulation of genetic/epigenetic alterations facilitates that DLBCL cells exhibit higher PD-L1 levels and capacity to secrete IL-10, resembling Breg-like features. As a result, a complex immunosuppressive microenvironment is established where DLBCL cells sustain proliferation and survival by impairing regulatory control of TFR cells and limiting IL-21-mediated anti-tumour functions of TFH cells and maximize the use of PD-1/PD-L1 signaling to escape from CD8+ cytotoxic activity. Integration of these molecular and cellular addictions into a framework may contribute to the better understanding of the lymphoma microenvironment and contribute to the rationale for novel PD-1/PD-L1-based combinational immunotherapies in DLBCL.
Collapse
Affiliation(s)
- Marcos Garcia-Lacarte
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (M.G.-L.); (S.C.G.); (J.M.); (A.A.-L.)
- Hemato-Oncology Program, Cima University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Sara C. Grijalba
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (M.G.-L.); (S.C.G.); (J.M.); (A.A.-L.)
| | - Javier Melchor
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (M.G.-L.); (S.C.G.); (J.M.); (A.A.-L.)
- Hemato-Oncology Program, Cima University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Adrián Arnaiz-Leché
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (M.G.-L.); (S.C.G.); (J.M.); (A.A.-L.)
| | - Sergio Roa
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (M.G.-L.); (S.C.G.); (J.M.); (A.A.-L.)
- Hemato-Oncology Program, Cima University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Network Center for Biomedical Research in Cancer—Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
31
|
Podstawka J, Sinha S, Hiroki CH, Sarden N, Granton E, Labit E, Kim JH, Andonegui G, Lou Y, Snarr BD, Sheppard DC, Rosin NL, Biernaskie J, Yipp BG. Marginating transitional B cells modulate neutrophils in the lung during inflammation and pneumonia. J Exp Med 2021; 218:e20210409. [PMID: 34313733 PMCID: PMC8318832 DOI: 10.1084/jem.20210409] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/04/2021] [Accepted: 07/06/2021] [Indexed: 12/25/2022] Open
Abstract
Pulmonary innate immunity is required for host defense; however, excessive neutrophil inflammation can cause life-threatening acute lung injury. B lymphocytes can be regulatory, yet little is known about peripheral transitional IgM+ B cells in terms of regulatory properties. Using single-cell RNA sequencing, we discovered eight IgM+ B cell subsets with unique gene regulatory networks in the lung circulation dominated by transitional type 1 B and type 2 B (T2B) cells. Lung intravital confocal microscopy revealed that T2B cells marginate in the pulmonary capillaries via CD49e and require CXCL13 and CXCR5. During lung inflammation, marginated T2B cells dampened excessive neutrophil vascular inflammation via the specialized proresolving molecule lipoxin A4 (LXA4). Exogenous CXCL13 dampened excessive neutrophilic inflammation by increasing marginated B cells, and LXA4 recapitulated neutrophil regulation in B cell-deficient mice during inflammation and fungal pneumonia. Thus, the lung microvasculature is enriched in multiple IgM+ B cell subsets with marginating capillary T2B cells that dampen neutrophil responses.
Collapse
Affiliation(s)
- John Podstawka
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Carlos H. Hiroki
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicole Sarden
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Elise Granton
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Elodie Labit
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jung Hwan Kim
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Graciela Andonegui
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yuefei Lou
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Brendan D. Snarr
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Donald C. Sheppard
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Division of Infectious Diseases, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Medical Microbiology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Nicole L. Rosin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bryan G. Yipp
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
32
|
Chulanetra M, Chaicumpa W. Revisiting the Mechanisms of Immune Evasion Employed by Human Parasites. Front Cell Infect Microbiol 2021; 11:702125. [PMID: 34395313 PMCID: PMC8358743 DOI: 10.3389/fcimb.2021.702125] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
For the establishment of a successful infection, i.e., long-term parasitism and a complete life cycle, parasites use various diverse mechanisms and factors, which they may be inherently bestowed with, or may acquire from the natural vector biting the host at the infection prelude, or may take over from the infecting host, to outmaneuver, evade, overcome, and/or suppress the host immunity, both innately and adaptively. This narrative review summarizes the up-to-date strategies exploited by a number of representative human parasites (protozoa and helminths) to counteract the target host immune defense. The revisited information should be useful for designing diagnostics and therapeutics as well as vaccines against the respective parasitic infections.
Collapse
Affiliation(s)
- Monrat Chulanetra
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
33
|
Serpenti F, Lorentino F, Marktel S, Milani R, Messina C, Greco R, Girlanda S, Clerici D, Giglio F, Liberatore C, Farina F, Mastaglio S, Piemontese S, Guggiari E, Lunghi F, Marcatti M, Carrabba MG, Bernardi M, Bonini C, Assanelli A, Corti C, Peccatori J, Ciceri F, Lupo-Stanghellini MT. Immune Reconstitution-Based Score for Risk Stratification of Chronic Graft-Versus-Host Disease Patients. Front Oncol 2021; 11:705568. [PMID: 34367991 PMCID: PMC8341942 DOI: 10.3389/fonc.2021.705568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/09/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction Allogeneic stem cell transplantation survivors are at a relevant risk of developing chronic GvHD (cGvHD), which importantly affects quality of life and increases morbidity and mortality. Early identification of patients at risk of cGvHD-related morbidity could represent a relevant tool to tailor preventive strategies. The aim of this study was to evaluate the prognostic power of immune reconstitution (IR) at cGvHD onset through an IR-based score. Methods We analyzed data from 411 adult patients consecutively transplanted between January 2011 and December 2016 at our Institution: 151 patients developed cGvHD (median follow-up 4 years). A first set of 111 consecutive patients with cGvHD entered the test cohort while an additional consecutive 40 patients represented the validation cohort. A Cox multivariate model for OS (overall survival) in patients with cGvHD of any severity allowed the identification of six variables independently predicting OS and TRM (transplant-related mortality). A formula for a prognostic risk index using the β coefficients derived from the model was designed. Each patient was assigned a score defining three groups of risk (low, intermediate, and high). Results Our multivariate model defined the variables independently predicting OS at cGvHD onset: CD4+ >233 cells/mm3, NK <115 cells/mm3, IgA <0.43g/L, IgM <0.45g/L, Karnofsky PS <80%, platelets <100x103/mm3. Low-risk patients were defined as having a score ≤3.09, intermediate-risk patients >3.09 and ≤6.9, and high-risk patients >6.9. By ROC analysis, we identified a cut-off of 6.310 for both TRM and overall mortality. In the training cohort, the 6-year OS and TRM from cGvHD occurrence were 85% (95% CI, 70-92) and 13% (95% CI, 5-25) for low-risk, 64% (95% CI, 44-89) and 30% (95% CI, 15-47) for intermediate-risk, 26% (95% CI, 10-47), and 42% (95% CI, 19-63) for high-risk patients (OS p<0.0001; TRM p = 0.015). The validation cohort confirmed the model with a 6-year OS and TRM of 83% (95% CI, 48-96) and 8% (95% CI, 1-32) for low-risk, 78% (95% CI, 37-94) and 11% (95% CI, 1-41) for intermediate-risk, 37% (95% CI, 17-58), and 63% (95% CI, 36-81) for high-risk patients (OS p = 0.0075; TRM p = 0.0009). Conclusions IR score at diagnosis of cGvHD predicts GvHD severity and overall survival. IR score may contribute to the risk stratification of patients. If confirmed in a larger and multicenter-based study, IR score could be adopted to identify patients at high risk and modulate cGvHD treatments accordingly in the context of clinical trial.
Collapse
Affiliation(s)
- Fabio Serpenti
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Lorentino
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,PhD Program in Public Health, School of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| | - Sarah Marktel
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Raffaella Milani
- Immunohematology and Transfusion Medicine Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carlo Messina
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Raffaella Greco
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Girlanda
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Clerici
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Giglio
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carmine Liberatore
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Farina
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Mastaglio
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Simona Piemontese
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Guggiari
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Lunghi
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Magda Marcatti
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo G Carrabba
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Bernardi
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- University Vita-Salute, Milan, Italy.,Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Assanelli
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Consuelo Corti
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jacopo Peccatori
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Ciceri
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute, Milan, Italy
| | | |
Collapse
|
34
|
Wang J, Pan TZ, Huang PP, Sun ZM, Zhu HP. [Correlation between immune reconstitution and chronic graft-versus-host disease after unrelated cord blood transplantation and sibling peripheral blood stem cell transplantation]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:466-473. [PMID: 34384152 PMCID: PMC8295618 DOI: 10.3760/cma.j.issn.0253-2727.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Indexed: 11/05/2022]
Abstract
Objective: To explore the relationship between the reconstitution of immune cells in patients with hematological malignancies and the occurrence of chronic graft-versus-host disease (cGVHD) after treatment with unrelated cord blood transplantation (UCBT) and sibling peripheral blood stem cell transplantation (PBSCT) . Methods: A total of 124 patients undergoing allogenic hematopoietic stem cell transplantation (allo-HSCT) in the First Affiliated Hospital of University of Science and Technology of China from March 2018 to August 2019, including 96 patients with UCBT and 28 patients with PBSCT. Peripheral blood immune cells of patients with UCBT and PBSCT were detected at 1, 3, 6, 9, and 12 months after transplantation using flow cytometry, and both UCBT and PBSCT patients were divided into cGVHD and non-cGVHD groups based on whether cGVHD occurred to explore the correlation between the immune cells reconstitution of the two types of transplantation and cGVHD. Results: ①The cumulative incidence of the moderate to severe cGVHD in the UCBT group was significantly lower than that in the PBSCT group[9.38% (95% CI 3.35%-15.02%) vs 28.57% (95% CI 9.72%-43.50%) , P=0.008]; the 2-year cumulative incidence of cGVHD and moderate to severe cGVHD in the UCBT group was lower than that in the PBSCT group[15.60% (95% CI 9.20%-23.60%) vs 32.10% (95% CI 15.80%-49.70%) , P=0.047; 10.40% (95% CI 5.30%-17.50%) vs 28.60% (95% CI 13.30%-46.00%) , P=0.014]. ②The absolute counts of CD4(+)T cells in the UCBT group were higher than those in the PBSCT group at 6, 9, and 12 months after transplantation[59.00 (36.70-89.65) ×10(7)/L vs 31.40 (18.10-44.00) ×10(7)/L, P<0.001; 71.30 (49.60-101.45) ×10(7)/L vs 41.60 (25.82-56.27) ×10(7)/L, P<0.001; 83.00 (50.17-121.55) ×10(7)/L vs 44.85 (31.62-62.10) ×10(7)/L, P<0.001]; the proportions of CD4(+)T cells in the UCBT group were always higher than those in the PBSCT group (P<0.05) . The absolute counts and proportions of B cells in the PBSCT group were higher than those in the UCBT group at the first month after transplantation[0.70 (0.30-1.70) ×10(7)/L vs 0.10 (0-0.30) ×10(7)/L, P<0.001; 0.45% (0.30%-2.20%) vs 0.20% (0.10%-0.40%) , P=0.002]; the absolute counts and proportions of B cells in the UCBT group were higher than those in the PBSCT group at 9 and 12 months after transplantation[53.80 (28.00-103.20) ×10(7)/L vs 23.35 (5.07-35.00) ×10(7)/L, P<0.001; 21.45 (11.80-30.45) % vs 9.00% (3.08%-16.73%) , P<0.001. 66.70 (36.97-98.72) ×10(7)/L vs 20.85 (7.72-39.40) ×10(7)/L, P<0.001; 22.20% (14.93%-29.68%) vs 8.75% (5.80%-18.93%) , P<0.001]. The absolute counts and proportions of regulatory B (Breg) cells in the UCBT group were higher than those in the PBSCT group at 6, 9, and 12 months after transplantation[1.23 (0.38-3.52) ×10(7)/L vs 0.05 (0-0.84) ×10(7)/L, P<0.001; 5.35% (1.90%-12.20%) vs 1.45% (0-7.78%) , P=0.002. 2.25 (1.07-6.71) ×10(7)/L vs 0.12 (0-0.77) ×10(7)/L, P<0.001; 6.25% (2.00%-12.33%) vs 0.80% (0-5.25%) , P<0.001. 3.69 (0.83-8.66) ×10(7)/L vs 0.46 (0-0.93) ×10(7)/L, P<0.001; 6.15% (1.63%-11.75%) vs 1.40% (0.18%-5.85%) , P<0.001].The absolute counts and proportions of CD3(+)T cells, CD8(+)T cells, and Treg cells in the UCBT group were not significantly different from those in the PBSCT group. ③The absolute counts of B cells in the non-cGVHD group of UCBT patients were higher than those in the moderate to severe cGVHD group at 6 and 12 months after transplantation (P=0.038, P=0.043) ; the proportions of B cells in the non-cGVHD group were higher than those in the moderate to severe cGVHD group at 6 months after transplantation (P=0.049) . The absolute counts of Breg cells in the non-cGVHD group of patients with UCBT were higher than those in the moderate to severe cGVHD group at 6, 9, and 12 months after transplantation (P=0.006, P=0.028, P=0.050) ; the proportions of Breg cells in the non-cGVHD group were higher than those in the moderate to severe cGVHD group at 9 months after transplantation (P=0.038) . ④The absolute counts and proportions of B and Breg cells in the non-cGVHD group of patients with PBSCT were not statistically different than those in the moderate to severe cGVHD group. Conclusion: In the process of immune cell reconstitution, the Breg cells in the UCBT group were higher than those in the PBSCT group, and the Breg cells in the non-cGVHD group of the two types of transplantation were always higher than those in the moderate to severe cGVHD group, indicating that Breg cells can reduce the occurrence of cGVHD, revealing the possible reason for the lower incidence of cGVHD in the UCBT group.
Collapse
Affiliation(s)
- J Wang
- The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital) , Hefei 230001, China
| | - T Z Pan
- The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital) , Hefei 230001, China
| | - P P Huang
- The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital) , Hefei 230001, China
| | - Z M Sun
- The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital) , Hefei 230001, China Institute of Blood and Cell Therapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China
| | - H P Zhu
- The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital) , Hefei 230001, China Institute of Blood and Cell Therapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China
| |
Collapse
|
35
|
Kang S, Kang J, Shen H, Wu N. Advances in regulatory B cells in autoimmune thyroid diseases. Int Immunopharmacol 2021; 96:107770. [PMID: 34020391 DOI: 10.1016/j.intimp.2021.107770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023]
Abstract
Regulatory B cells (Bregs) are a subset of B cells that can downregulate the immune and inflammatory responses. The development of B cells in humans and mice is differs. The Positioning and targeted regulation of Bregs has a positive effect on autoimmune diseases. Autoimmune thyroid disease (AITD) is a common autoimmune disease. This review introduces the history and origins of Bregs. It summarizes the different phenotypes and functionalities of Breg cells related to AITD and analyzes the reasons for the differences in Breg expression frequencies in Graves disease (GD) and Hashimoto's Thyroiditis (HT). A number of functional defects of regulatory B cells may be the newly discovered cause of AITD. This paper sheds new light on the role and prospects of Bregs in the progression and treatment of AITD.
Collapse
Affiliation(s)
- Shaoyang Kang
- Student Affairs Department, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Junning Kang
- Student Affairs Department, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Haitao Shen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Na Wu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.
| |
Collapse
|
36
|
Ibrahim EH, Aly MG, Opelz G, Morath C, Zeier M, Süsal C, Sayed DM, Hassan E, Ekpoom N, Daniel V. Higher CD19+CD25 + Bregs are independently associated with better graft function in renal transplant recipients. BMC Nephrol 2021; 22:180. [PMID: 33993874 PMCID: PMC8127305 DOI: 10.1186/s12882-021-02374-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 04/22/2021] [Indexed: 11/10/2022] Open
Abstract
Background The Identification of B cell subsets with regulatory functions might open the way to new therapeutic strategies in the field of transplantation, which aim to reduce the dose of immunosuppressive drugs and prolong the graft survival. CD25 was proposed as a marker of a B-cell subset with an immunosuppressive action termed Bregs. The effect of CD19 + CD25 + Bregs on graft function in renal transplant recipients has not yet been elucidated. We investigated a potential impact of CD19 + CD25 + Bregs on renal graft function as well as a possible interaction of CD19 + CD25 + Bregs with peripheral Tregs in healthy controls, end-stage kidney disease patients (ESKD), and renal transplant recipients. Moreover, we aimed to investigate the association of CD19 + CD25 + Bregs with serum IL-10, TGF-ß1, and IFN-γ in the same study groups. Method Thirty-one healthy controls, ninety renal transplant recipients, and eighteen ESKD patients were enrolled. We evaluated the CD19 + CD25 + Bregs and Treg absolute counts. Next, we investigated CD19 + CD25 + Bregs as predictors of good graft function in multiple regression and ROC analyses. Finally, we evaluated the association between CD19 + CD25+ Bregs and serum IL-10, TGF-ß, and IFN-γ. Results ESKD patients and renal transplant recipients showed lower counts of CD19 + CD25+ Bregs compared to healthy controls (p < 0.001). Higher CD19 + CD25+ Breg counts were independently associated with a better GFR in renal transplant recipients (unstandardized B coefficient = 9, p = 0.02). In these patients, higher CD19 + CD25+ Bregs were independently associated with higher Treg counts (unstandardized B = 2.8, p = 0.004). In ROC analysis, cut-offs for CD19 + CD25 + Breg counts and serum TGF-ß1 of 0.12 cell/μl and 19,635.4 pg/ml, respectively, were shown to provide a good sensitivity and specificity in identifying GFR ≥ 30 ml/min (AUC = 0.67, sensitivity 77%, specificity 43%; AUC = 0.65, sensitivity 81%, specificity 50%, respectively). Finally, a significant positive association between CD19 + CD25+ Bregs and TGF-ß1 was shown in renal transplant recipients (r = 0.255, p = 0.015). Conclusions Our findings indicate that higher counts of CD19 + CD25+ Bregs are independently associated with better renal function and higher absolute Treg counts in renal transplant recipients. Supplementary Information The online version contains supplementary material available at 10.1186/s12882-021-02374-2.
Collapse
Affiliation(s)
- Eman H Ibrahim
- Transplantation Immunology, Institute of Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany.,Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, Asyut, Egypt
| | - Mostafa G Aly
- Transplantation Immunology, Institute of Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany. .,Department of Nephrology, University Hospital Heidelberg, Heidelberg, Germany. .,Nephrology Unit, Internal Medicine Department, Assiut University, Asyut, Egypt.
| | - Gerhard Opelz
- Transplantation Immunology, Institute of Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Christian Morath
- Department of Nephrology, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Zeier
- Department of Nephrology, University Hospital Heidelberg, Heidelberg, Germany
| | - Caner Süsal
- Transplantation Immunology, Institute of Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Douaa M Sayed
- Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, Asyut, Egypt
| | - Eman Hassan
- Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, Asyut, Egypt
| | - Naruemol Ekpoom
- Transplantation Immunology, Institute of Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Volker Daniel
- Transplantation Immunology, Institute of Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| |
Collapse
|
37
|
Catalán D, Mansilla MA, Ferrier A, Soto L, Oleinika K, Aguillón JC, Aravena O. Immunosuppressive Mechanisms of Regulatory B Cells. Front Immunol 2021; 12:611795. [PMID: 33995344 PMCID: PMC8118522 DOI: 10.3389/fimmu.2021.611795] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Regulatory B cells (Bregs) is a term that encompasses all B cells that act to suppress immune responses. Bregs contribute to the maintenance of tolerance, limiting ongoing immune responses and reestablishing immune homeostasis. The important role of Bregs in restraining the pathology associated with exacerbated inflammatory responses in autoimmunity and graft rejection has been consistently demonstrated, while more recent studies have suggested a role for this population in other immune-related conditions, such as infections, allergy, cancer, and chronic metabolic diseases. Initial studies identified IL-10 as the hallmark of Breg function; nevertheless, the past decade has seen the discovery of other molecules utilized by human and murine B cells to regulate immune responses. This new arsenal includes other anti-inflammatory cytokines such IL-35 and TGF-β, as well as cell surface proteins like CD1d and PD-L1. In this review, we examine the main suppressive mechanisms employed by these novel Breg populations. We also discuss recent evidence that helps to unravel previously unknown aspects of the phenotype, development, activation, and function of IL-10-producing Bregs, incorporating an overview on those questions that remain obscure.
Collapse
Affiliation(s)
- Diego Catalán
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Miguel Andrés Mansilla
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Ashley Ferrier
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Unidad de Dolor, Hospital Clínico, Universidad de Chile (HCUCH), Santiago, Chile
| | | | - Juan Carlos Aguillón
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Octavio Aravena
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
38
|
Hill GR, Betts BC, Tkachev V, Kean LS, Blazar BR. Current Concepts and Advances in Graft-Versus-Host Disease Immunology. Annu Rev Immunol 2021; 39:19-49. [PMID: 33428454 PMCID: PMC8085043 DOI: 10.1146/annurev-immunol-102119-073227] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Worldwide, each year over 30,000 patients undergo an allogeneic hema-topoietic stem cell transplantation with the intent to cure high-risk hematologic malignancy, immunodeficiency, metabolic disease, or a life-threatening bone marrow failure syndrome. Despite substantial advances in donor selection and conditioning regimens and greater availability of allograft sources, transplant recipients still endure the morbidity and mortality of graft-versus-host disease (GVHD). Herein, we identify key aspects of acute and chronic GVHD pathophysiology, including host/donor cell effectors, gut dysbiosis, immune system and cytokine imbalance, and the interface between inflammation and tissue fibrosis. In particular, we also summarize the translational application of this heightened understanding of immune dysregulation in the design of novel therapies to prevent and treat GVHD.
Collapse
Affiliation(s)
- Geoffrey R Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA;
- Division of Medical Oncology University of Washington, Seattle, Washington 98109, USA
| | - Brian C Betts
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Victor Tkachev
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; ,
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Leslie S Kean
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; ,
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, USA;
| |
Collapse
|
39
|
Oliveria JP, Agayby R, Gauvreau GM. Regulatory and IgE + B Cells in Allergic Asthma. Methods Mol Biol 2021; 2270:375-418. [PMID: 33479910 DOI: 10.1007/978-1-0716-1237-8_21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Allergic asthma is triggered by inhalation of environmental allergens resulting in bronchial constriction and inflammation, which leads to clinical symptoms such as wheezing, coughing, and difficulty breathing. Asthmatic airway inflammation is initiated by inflammatory mediators released by granulocytic cells. However, the immunoglobulin E (IgE) antibody is necessary for the initiation of the allergic cascade, and IgE is produced and released exclusively by memory B cells and plasma cells. Acute allergen exposure has also been shown to increase IgE levels in the airways of patients diagnosed with allergic asthma; however, more studies are needed to understand local airway inflammation. Additionally, regulatory B cells (Bregs) have been shown to modulate IgE-mediated inflammatory processes in allergic asthma pathogenesis, particularly in mouse models of allergic airway disease. However, the levels and function of these IgE+ B cells and Bregs remain to be elucidated in human models of asthma. The overall objective for this chapter is to provide detailed methodological, and insightful technological advances to study the biology of B cells in allergic asthma pathogenesis. Specifically, we will describe how to investigate the frequency and function of IgE+ B cells and Bregs in allergic asthma, and the kinetics of these cells after allergen exposure in a human asthma model.
Collapse
Affiliation(s)
- John Paul Oliveria
- School of Medicine, Department of Pathology, Stanford University, Stanford, CA, USA.,Department of Medicine, Division of Respirology, McMaster University, Hamilton, ON, Canada
| | - Rita Agayby
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, ON, Canada
| | - Gail M Gauvreau
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
40
|
Maeda Y. Immune reconstitution after T-cell replete HLA haploidentical hematopoietic stem cell transplantation using high-dose post-transplant cyclophosphamide. J Clin Exp Hematop 2021; 61:1-9. [PMID: 33551435 PMCID: PMC8053574 DOI: 10.3960/jslrt.20040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/08/2020] [Accepted: 10/16/2020] [Indexed: 12/30/2022] Open
Abstract
As HLA haploidentical related donors are quickly available, HLA haploidentical hematopoietic stem cell transplantation (haploHSCT) using high-dose post-transplant cyclophosphamide (PTCy) is now widely used. Recent basic and clinical studies revealed the details of immune reconstitution after T-cell replete haploHSCT using PTCy. T cells and NK cells in the graft proliferate abundantly at day 3 post-haploHSCT, and the PTCy eliminates these proliferating cells. After ablation of proliferating mature cells, donor-derived NK cell reconstitution occurs after the second week; however, recovering NK cells remain functionally impaired for at least several months after haploHSCT. PTCy depletes proliferating cells, resulting in the preferential accumulation of Treg and CD4+ T cells, especially the memory stem T cell (TSCM) phenotype. TSCM capable of both self-renewal and differentiation into effector T cells may play an important role in the first month of immune reconstitution. Subsequently, de novo T cells progressively recover but their levels remain well below those of donor CD4+ T cells at the first year after haploHSCT. The phenotype of recovering T cells after HSCT is predominantly effector memory, whereas B cells are predominantly phenotypically naive throughout the first year after haploHSCT. B cell recovery depends on de novo generation and they are not detected until week 4 after haploHSCT. At week 5, recovering B cells mostly exhibit an unconventional transitional cell phenotype and the cell subset undergoes maturation. Recent advances in immune reconstitution have improved our understanding of the relationship between haploHSCT with PTCy and the clinical outcome.
Collapse
Affiliation(s)
- Yoshinobu Maeda
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| |
Collapse
|
41
|
Implication of TIGIT + human memory B cells in immune regulation. Nat Commun 2021; 12:1534. [PMID: 33750787 PMCID: PMC7943800 DOI: 10.1038/s41467-021-21413-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/26/2021] [Indexed: 01/31/2023] Open
Abstract
Regulatory B cells (Bregs) contribute to immune regulation. However, the mechanisms of action of Bregs remain elusive. Here, we report that T cell immunoreceptor with Ig and ITIM domains (TIGIT) expressed on human memory B cells especially CD19+CD24hiCD27+CD39hiIgD-IgM+CD1c+ B cells is essential for effective immune regulation. Mechanistically, TIGIT on memory B cells controls immune response by directly acting on T cells and by arresting proinflammatory function of dendritic cells, resulting in the suppression of Th1, Th2, Th17, and CXCR5+ICOS+ T cell response while promoting immune regulatory function of T cells. TIGIT+ memory B cells are also superior to other B cells at expressing additional inhibitory molecules, including IL-10, TGFβ1, granzyme B, PD-L1, CD39/CD73, and TIM-1. Lack or decrease of TIGIT+ memory B cells is associated with increased donor-specific antibody and TFH response, and decreased Treg response in renal and liver allograft patients. Therefore, TIGIT+ human memory B cells play critical roles in immune regulation.
Collapse
|
42
|
Xiang W, Xie C, Guan Y. The identification, development and therapeutic potential of IL-10-producing regulatory B cells in multiple sclerosis. J Neuroimmunol 2021; 354:577520. [PMID: 33684831 DOI: 10.1016/j.jneuroim.2021.577520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/27/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
Regulatory B cells are a rare B-cell subset widely known to exert their immunosuppressive function via the production of interleukin-10 (IL-10) and other mechanisms. B10 cells are a special subset of regulatory B cells with immunoregulatory function that is fully attributed to IL-10. Their unique roles in the animal model of multiple sclerosis (MS) have been described, as well as their relevance in MS patients. This review specifically focuses on the identification and development of B10 cells, the signals that promote IL-10 production in B cells, the roles of B10 cells in MS, and the potential and major challenges of the application of B10-based therapies for MS.
Collapse
Affiliation(s)
- Weiwei Xiang
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Rd, Shanghai 200127, China
| | - Chong Xie
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Rd, Shanghai 200127, China
| | - Yangtai Guan
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Rd, Shanghai 200127, China.
| |
Collapse
|
43
|
Cherukuri A, Mohib K, Rothstein DM. Regulatory B cells: TIM-1, transplant tolerance, and rejection. Immunol Rev 2021; 299:31-44. [PMID: 33484008 PMCID: PMC7968891 DOI: 10.1111/imr.12933] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022]
Abstract
Regulatory B cells (Bregs) ameliorate autoimmune disease and prevent allograft rejection. Conversely, they hinder effective clearance of pathogens and malignancies. Breg activity is mainly attributed to IL-10 expression, but also utilizes additional regulatory mechanisms such as TGF-β, FasL, IL-35, and TIGIT. Although Bregs are present in various subsets defined by phenotypic markers (including canonical B cell subsets), our understanding of Bregs has been limited by the lack of a broadly inclusive and specific phenotypic or transcriptional marker. TIM-1, a broad marker for Bregs first identified in transplant models, plays a major role in Breg maintenance and induction. Here, we expand on the role of TIM-1+ Bregs in immune tolerance and propose TIM-1 as a unifying marker for Bregs that utilize various inhibitory mechanisms in addition to IL-10. Further, this review provides an in-depth assessment of our understanding of Bregs in transplantation as elucidated in murine models and clinical studies. These studies highlight the major contribution of Bregs in preventing allograft rejection, and their ability to serve as highly predictive biomarkers for clinical transplant outcomes.
Collapse
Affiliation(s)
- Aravind Cherukuri
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kanishka Mohib
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David M Rothstein
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
44
|
Yu Q, Wang H, Zhang L, Wei W. Advances in the treatment of graft-versus-host disease with immunomodulatory cells. Int Immunopharmacol 2021; 92:107349. [PMID: 33486323 DOI: 10.1016/j.intimp.2020.107349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/14/2020] [Accepted: 12/24/2020] [Indexed: 12/19/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) has been widely used to treat hematological malignancies and genetic diseases. Graft-versus-host disease (GVHD) induced by donor immune system is the most common complication, contributing to severe morbidity and mortality after allo-HSCT. Currently, in terms of the prevention and treatment of GVHD, the major first-line therapeutic drugs are corticosteroids. However, most patients with systemic corticosteroid treatment are prone to steroid-refractory and poor prognosis. The use of several immune cells including Tregs, Bregs and mesenchymal stromal cells (MSCs) as an alternative on prevention or therapy of GVHD has been demonstrated to be beneficial. However, there are still many defects to a certain degree. Based on immune cells, it is promising to develop new and better approaches to improve GVHD. In this article, we will review the current advance of immune cells (Tregs, Bregs, MSCs) with negative regulation in the treatment of GVHD and present emerging strategies for the prevention and treatment of GVHD by other immune regulatory cells and chimeric antigen receptor (CAR) Tregs. In addition, these new therapeutic options need to be further evaluated in well-designed prospective multicenter trials to determine the optimal treatment for GVHD patients and improve their prognosis.
Collapse
Affiliation(s)
- Qianqian Yu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei 230032, China
| | - Han Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei 230032, China
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei 230032, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei 230032, China.
| |
Collapse
|
45
|
Trend S, Leffler J, Teige I, Frendéus B, Kermode AG, French MA, Hart PH. FcγRIIb Expression Is Decreased on Naive and Marginal Zone-Like B Cells From Females With Multiple Sclerosis. Front Immunol 2021; 11:614492. [PMID: 33505402 PMCID: PMC7832177 DOI: 10.3389/fimmu.2020.614492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022] Open
Abstract
B cells are critical to the development of multiple sclerosis (MS), but the mechanisms by which they contribute to the disease are poorly defined. We hypothesised that the expression of CD32b (FcγRIIb), a receptor for the Fc region of IgG with inhibitory activities in B cells, is lower on B cell subsets from people with clinically isolated syndrome (CIS) or MS. CD32b expression was highest on post-naive IgM+ B cell subsets in healthy controls. For females with MS or CIS, significantly lower CD32b expression was identified on IgM+ B cell subsets, including naive and IgMhi MZ-like B cells, when compared with control females. Lower CD32b expression on these B cell subsets was associated with detectable anti-Epstein Barr Virus viral capsid antigen IgM antibodies, and higher serum levels of B cell activating factor. To investigate the effects of lower CD32b expression, B cells were polyclonally activated in the presence of IgG immune complexes, with or without a CD32b blocking antibody, and the expression of TNF and IL-10 in B cell subsets was assessed. The reduction of TNF but not IL-10 expression in controls mediated by IgG immune complexes was reversed by CD32b blockade in naive and IgMhi MZ-like B cells only. However, no consequence of lower CD32b expression on these cells from females with CIS or MS was detected. Our findings highlight a potential role for naive and marginal zone-like B cells in the immunopathogenesis of MS in females, which requires further investigation.
Collapse
Affiliation(s)
- Stephanie Trend
- Inflammation Laboratory, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.,Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, WA, Australia
| | - Jonatan Leffler
- Inflammation Laboratory, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Ingrid Teige
- Demyelinating Diseases Research Group, BioInvent International AB, Lund, Sweden
| | - Björn Frendéus
- Demyelinating Diseases Research Group, BioInvent International AB, Lund, Sweden
| | - Allan G Kermode
- Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, WA, Australia.,Institute for Immunology and Infectious Disease, Murdoch University, Perth, WA, Australia
| | - Martyn A French
- Medical School and School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Prue H Hart
- Inflammation Laboratory, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
46
|
Use of Toll-Like Receptor (TLR) Ligation to Characterize Human Regulatory B-Cells Subsets. Methods Mol Biol 2021; 2270:235-261. [PMID: 33479902 DOI: 10.1007/978-1-0716-1237-8_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors (PRRs), which constitute key components in the recognition of pathogens, thereby initiating innate immune responses and promoting adaptive immune responses. In B cells, TLR ligation is important for their activation and, together with CD40, for their differentiation. TLR ligands are also strong promoters of regulatory B (Breg)-cell development, by enhancing the production of IL-10 and their capacity to induce tolerance. In inflammatory diseases, such as autoimmunity or allergies, Breg-cell function is often impaired, while in chronic infections, such as with helminths, or cancer, Breg-cell function is boosted. Following pathogen exposure, B cells can respond directly by producing cytokines and/or IgM (innate response) and develop into various memory B (Bmem)-cell subsets with class-switched immunoglobulin receptors. Depending on the disease state or chronic infection conditions, various Breg subsets can be recognized as well. Currently, a large array of surface markers is known to distinguish between these large range of B-cell subsets. In recent years, the development of mass cytometers and spectral flow cytometry has allowed for high-dimensional detection of up to 48 markers, including both surface and intracellular/intranuclear markers. Therefore, this novel technology is highly suitable to provide a comprehensive overview of Bmem/Breg-cell subsets in different disease states and/or in clinical intervention trials. Here, we provide detailed instructions of the steps necessary to obtain high-quality data for high-dimensional analysis of multiple human Breg-cell subsets using various TLR ligands.
Collapse
|
47
|
Giaccone L, Faraci DG, Butera S, Lia G, Di Vito C, Gabrielli G, Cerrano M, Mariotti J, Dellacasa C, Felicetti F, Brignardello E, Mavilio D, Bruno B. Biomarkers for acute and chronic graft versus host disease: state of the art. Expert Rev Hematol 2020; 14:79-96. [PMID: 33297779 DOI: 10.1080/17474086.2021.1860001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Despite significant advances in treatment and prevention, graft-versus-host disease (GVHD) still represents the main cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Thus, considerable research efforts have been made to find and validate reliable biomarkers for diagnosis, prognosis, and risk stratification of GVHD. AREAS COVERED In this review the most recent evidences on different types of biomarkers studied for GVHD, such as genetic, plasmatic, cellular markers, and those associated with microbiome, were summarized. A comprehensive search of peer-review literature was performed in PubMed including meta-analysis, preclinical and clinical trials, using the terms: cellular and plasma biomarkers, graft-versus-host disease, cytokines, and allogeneic hematopoietic stem cell transplantation. EXPERT OPINION In the near future, several validated biomarkers will be available to help clinicians in the diagnosis of GVHD, the identification of patients at high risk of GVHD development and in patients' stratification according to its severity. Then, immunosuppressive treatment could be tailored to each patient's real needs. However, more efforts are needed to achieve this goal. Although most of the proposed biomarkers currently lack validation with large-scale clinical data, their study led to improved knowledge of the biological basis of GVHD, and ultimately to implementation of GHVD treatment.
Collapse
Affiliation(s)
- Luisa Giaccone
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| | - Danilo Giuseppe Faraci
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| | - Sara Butera
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| | - Giuseppe Lia
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| | - Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center , Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (Biometra), University of Milan , Milan, Italy
| | - Giulia Gabrielli
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| | - Marco Cerrano
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| | - Jacopo Mariotti
- Bone Marrow Transplant Unit, Humanitas Clinical and Research Center, IRCCS , Rozzano, Italy
| | - Chiara Dellacasa
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy
| | - Francesco Felicetti
- Transition Unit for Childhood Cancer Survivors, A.O.U. Città Della Salute E Della Scienza Di Torino , University of Torino , Torino, Italy
| | - Enrico Brignardello
- Transition Unit for Childhood Cancer Survivors, A.O.U. Città Della Salute E Della Scienza Di Torino , University of Torino , Torino, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center , Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (Biometra), University of Milan , Milan, Italy
| | - Benedetto Bruno
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| |
Collapse
|
48
|
Crossland RE, Perutelli F, Bogunia-Kubik K, Mooney N, Milutin Gašperov N, Pučić-Baković M, Greinix H, Weber D, Holler E, Pulanić D, Wolff D, Dickinson AM, Inngjerdingen M, Grce M. Potential Novel Biomarkers in Chronic Graft-Versus-Host Disease. Front Immunol 2020; 11:602547. [PMID: 33424849 PMCID: PMC7786047 DOI: 10.3389/fimmu.2020.602547] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Prognostic, diagnostic or predictive biomarkers are urgently needed for assessment of chronic graft-versus-host disease (cGvHD), a major risk for patients undergoing allogeneic hematopoietic stem cell transplantation. The main goal of this review generated within the COST Action EUROGRAFT "Integrated European Network on Chronic Graft Versus Host Disease" was to identify potential novel biomarkers for cGvHD besides the widely accepted molecular and cellular biomarkers. Thus, the focus was on cellular biomarkers, alloantibodies, glycomics, endothelial derived particles, extracellular vesicles, microbiome, epigenetic and neurologic changes in cGvHD patients. Both host-reactive antibodies in general, and particularly alloantibodies have been associated with cGvHD and require further consideration. Glycans attached to IgG modulate its activity and represent a promising predictive and/or stratification biomarker for cGVHD. Furthermore, epigenetic changes such as microRNAs and DNA methylation represent potential biomarkers for monitoring cGvHD patients and novel targets for developing new treatment approaches. Finally, the microbiome likely affects the pathophysiology of cGvHD; bacterial strains as well as microbial metabolites could display potential biomarkers for dysbiosis and risk for the development of cGvHD. In summary, although there are no validated biomarkers currently available for clinical use to better inform on the diagnosis, prognosis or prediction of outcome for cGvHD, many novel sources of potential markers have shown promise and warrant further investigation using well characterized, multi-center patient cohorts.
Collapse
Affiliation(s)
- Rachel E. Crossland
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Francesca Perutelli
- Department of Molecular Biotechnology and Health Sciences, School of Medicine, University of Torino, Torino, Italy
| | - Katarzyna Bogunia-Kubik
- Department of Clinical Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Nuala Mooney
- INSERM U976, Human Immunology, Pathophysiology and Immunotherapies, Hôpital Saint Louis, Paris, France
| | | | | | - Hildegard Greinix
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Daniela Weber
- Department of Internal Medicine III, Faculty of Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Ernst Holler
- Department of Internal Medicine III, Faculty of Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Dražen Pulanić
- Division of Hematology, Department of Internal Medicine, University Hospital Centre Zagreb, Medical School, University of Zagreb, Zagreb, Croatia
| | - Daniel Wolff
- Department of Internal Medicine III, Faculty of Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Anne M. Dickinson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Marit Inngjerdingen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Magdalena Grce
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
49
|
Li J, Gao J, Zhou H, Zhou J, Deng Z, Lu Y, Rao J, Ji G, Gu J, Yang X, Xia Y, Wang X. Inhibition of Glycogen Synthase Kinase 3β Increases the Proportion and Suppressive Function of CD19 +CD24 hiCD27 + Breg Cells. Front Immunol 2020; 11:603288. [PMID: 33343576 PMCID: PMC7746849 DOI: 10.3389/fimmu.2020.603288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/02/2020] [Indexed: 01/03/2023] Open
Abstract
CD19+CD24hiCD27+ memory Breg cells exhibit decreased abundance in patients with chronic graft-versus-host disease (cGVHD) after liver transplantation and produce less IL-10 than those from patients without cGVHD and healthy donors. Due to the lack of Breg cells and the difficulty in expanding them in vitro, in mouse models and early human clinical trials, the adoptive transfer of Breg cells to autoimmune diseases is greatly restricted. Glycogen synthase kinase 3β (GSK-3β) is a multifunctional serine/threonine (ser/thr) protein kinase that can participate in B cell growth, metabolic activity, and proliferation. Phosphoprotein array analysis showed that p-GSK-3β-s9 was highly expressed in mBreg cells. Furthermore, here, we demonstrated that GSK-3β expression in mBreg cells is lower than that observed in B cells by flow cytometry. We found that the treatment of B cells with the specific GSK-3β inhibitor SB216763 can significantly increase the proportion and immunosuppressive function of mBreg cells in vitro. Nuclear factor of activated T cells (NFAT) is one of a pivotal regulator of gene expression in adaptive immune system. Here, we observed that inhibition of GSK-3β by SB216763 results in enhanced expression of NFATc1 in B cells, which is essential in regulating the ability of B cells to secrete IL-10. By constructing a xGVHD mouse model, we observed that SB216763-treated mBreg cells effectively prevent xenogeneic GVHD. Here we propose a novel strategy using SB216763 to inhibit GSK-3β and then enhance the proportion and immunosuppressive function of mBreg cells by increasing the expression of NFATc1. This approach may be used as a therapy to ameliorate GVHD and inflammatory diseases.
Collapse
Affiliation(s)
- Jinyang Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, National Health Commission, Nanjing, China
| | - Ji Gao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, National Health Commission, Nanjing, China
| | - Haoming Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, National Health Commission, Nanjing, China
| | - Jinren Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, National Health Commission, Nanjing, China
| | - Zhenghua Deng
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, National Health Commission, Nanjing, China
| | - Yunjie Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, National Health Commission, Nanjing, China.,Hepatopancreatobiliary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jianhua Rao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, National Health Commission, Nanjing, China
| | - Guwei Ji
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, National Health Commission, Nanjing, China
| | - Jian Gu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, National Health Commission, Nanjing, China
| | - Xinxiang Yang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, National Health Commission, Nanjing, China
| | - Yongxiang Xia
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, National Health Commission, Nanjing, China
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, National Health Commission, Nanjing, China
| |
Collapse
|
50
|
Wan L, Jin Z, Hu B, Lv K, Lei L, Liu Y, Song Y, Zhu Y, Gong H, Xu M, Du Y, Xu Y, Liu H, Wu D, Liu Y. IL-Y Aggravates Murine Chronic Graft- Versus-Host Disease by Enhancing T and B Cell Responses. Front Immunol 2020; 11:559740. [PMID: 33329519 PMCID: PMC7719702 DOI: 10.3389/fimmu.2020.559740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022] Open
Abstract
IL-Y, a synthetic member of IL-12 cytokine family, was found to exert potent immunosuppressive effects by inhibiting the differentiation and activation of Th1 and Th17 cells. However, the role of IL-Y in the development of chronic graft-versus-host disease (cGVHD) remains unknown. Here, using murine models of scleroderma-like and lupus-like cGVHD, we examined the function of IL-Y in the pathogenesis of cGVHD by hydrodynamically injecting minicircle-IL-Y expressing plasmids (MC IL-Y). In contrast with the reported immune suppressive function of IL-Y, administration of MC IL-Y enhanced cGVHD severity reflected by deteriorated multi-organ pathologic damages. In lupus-like cGVHD model, urine protein and the serum anti-dsDNA antibody (IgG) were significantly upregulated by IL-Y treatment. Further study demonstrated that IL-Y impacts both donor T and B cell response. In T cells, IL-Y inhibited the generation of CD4+Foxp3+ regulator T (Treg) cells during the development of cGVHD. IL-Y may also increase the infiltration of pathogenic TNF-α producing CD4+ and CD8+ T cells through IL-27Rα in recipient spleens, as this effect was diminished in IL-27Rα deficient T cells. Moreover, IL-Y enhanced the differentiation of ICOS+ T follicular helper (Tfh) cells. In B cells, the percentage of germinal center (GC) B cells in recipient spleens was significantly upregulated by MC IL-Y plasmid administration. The levels of co-stimulatory molecules, MHC-II and CD86, on B cells were also enhanced by IL-Y expression. Taken together, our data indicated that IL-Y promoted the process of cGVHD by activating pathogenic T and B cells.
Collapse
Affiliation(s)
- Li Wan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Ziqi Jin
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Bo Hu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Kangkang Lv
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Lei Lei
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yonghao Liu
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, Yoo Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yuan Song
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, Yoo Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ying Zhu
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, Yoo Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Huanle Gong
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Mimi Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yuanyuan Du
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Haiyan Liu
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, Yoo Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yuejun Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|