1
|
Beyer AP, Moise PA, Wong M, Gao W, Xiang C, Shen P, Pavlakis M, Vincenti F, Wang W. Clinical events and healthcare resource utilization associated with neutropenia and leukopenia among adult kidney transplant recipients receiving valganciclovir. World J Transplant 2025; 15:102671. [DOI: 10.5500/wjt.v15.i2.102671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/09/2024] [Accepted: 01/23/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Cytomegalovirus (CMV) prophylaxis with valganciclovir and ganciclovir is associated with elevated neutropenia and leukopenia risk in kidney transplant recipients, although the impact of these events on healthcare resource utilization (HCRU) and clinical outcomes is unclear.
AIM To quantify clinical events and HCRU associated with neutropenia and leukopenia among adults receiving valganciclovir and/or ganciclovir post-kidney transplantation.
METHODS Adult kidney transplant recipients receiving valganciclovir and/or ganciclovir prophylaxis were identified in the TriNetX database from 2012 to 2021. Patient characteristics were evaluated in the 1-year period pre-first transplant. HCRU and adjusted event rates per person-year were evaluated in follow-up year 1 and years 2-5 after first kidney transplantation among cohorts with vs without neutropenia and/or leukopenia.
RESULTS Of 15398 identified patients, the average age was 52.39 years and 58.70% were male. Patients with neutropenia and/or leukopenia had greater risk of clinical events for CMV-related events, opportunistic infections, use of granulocyte colony stimulating factor, and hospitalizations (relative risk > 1 in year 1 and years 2-5). Patients with vs without neutropenia and/or leukopenia had higher HCRU in year 1 and years 2-5 post kidney transplantation, including the mean number of inpatient admissions (year 1: 3.47 vs 2.76; years 2-5: 2.70 vs 2.29) and outpatient visits (48.97 vs 34.42; 31.73 vs 15.59, respectively), as well as the mean number of labs (1654.55 vs 1182.27; 622.37 vs 327.89).
CONCLUSION Adults receiving valganciclovir and/or ganciclovir prophylaxis post-kidney transplantation had greater risk of neutropenia and/or leukopenia, which were associated with higher clinical event rates and HCRU up to 5 years post-transplantation. These findings suggest the need for alternative prophylaxis options with lower myelosuppressive effects to improve patient outcomes.
Collapse
Affiliation(s)
- Andrew P Beyer
- Department of Value and Implementation Outcomes Research, Merck & Co., Inc., Rahway, NJ 07065, United States
| | - Pamela A Moise
- Medical Affairs, Merck & Co., Inc., Rahway, NJ 07065, United States
| | - Michael Wong
- Scientific Affairs, Merck & Co., Inc., Rahway, NJ 07065, United States
| | - Wei Gao
- Analysis Group, Boston, MA 02199, United States
| | | | | | - Martha Pavlakis
- The Transplant Center, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
| | - Flavio Vincenti
- The Transplant Services, University of California San Francisco, San Francisco, CA 94143, United States
| | - Weijia Wang
- Department of Value and Implementation Outcomes Research, Merck & Co., Inc., Rahway, NJ 07065, United States
| |
Collapse
|
2
|
Pickering H, Arakawa-Hoyt J, Llamas M, Ishiyama K, Sun Y, Parmar R, Sen S, Bunnapradist S, Hays SR, Singer JP, Schaenman JM, Lanier LL, Reed EF, Calabrese DR, Greenland JR. Cytomegalovirus-associated CD57 + KLRG1 + CD8 + TEMRA T cells are associated with reduced risk of CMV viremia in kidney transplantation and chronic allograft dysfunction in lung transplantation. Hum Immunol 2025; 86:111285. [PMID: 40120236 DOI: 10.1016/j.humimm.2025.111285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/18/2025] [Accepted: 03/08/2025] [Indexed: 03/25/2025]
Abstract
Cytomegalovirus (CMV) infection threatens outcomes across solid organ transplantation, but organ-specific differences in CMV immunity are incompletely understood. We investigated whether lung and kidney CMV infection drove similar immune profiles, hypothesizing that CMV-associated T cells would be associated with graft function. We longitudinally examined 41 lung transplant (LTx) recipients and 31 kidney transplant (KTx) recipients with CMV viremia, alongside non-viremic controls. We performed flow cytometry and single-cell protein and transcriptomic profiling (CITE-seq) on blood cells. Chronic lung allograft dysfunction (CLAD)-free survival and glomerular filtration rate decline-free survival were assessed by Cox proportional-hazards models. Terminal effector memory (TEMRA) CD8+ T cells segregated by expression of CD57 and KLRG1. CMV viremia led to expansion of CD57+ TEMRA in both cohorts (P < 0.001). In KTx, increased frequency of CD57+KLRG1+ were associated with viremia control (P = 0.05). In LTx, frequency > median of CD57+KLRG1+ conferred a 67 % reduced risk for CLAD or death (95 % CI; 3-89 % P = 0.04). CD57+KLRG1+ TEMRA showed evidence of cytotoxic and effector function, whereas CD57-KLRG1+ TEMRA showed evidence of exhaustion. CD57+KLRG1+ TEMRA were most active against CMV and reduced risk for viremia in KTx and CLAD in LTx. This population merits increased attention for its potential role in mediating CMV-associated transplant outcomes.
Collapse
Affiliation(s)
- Harry Pickering
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Janice Arakawa-Hoyt
- Department of Microbiology and Immunology, University of California, San Francisco, CA, United States
| | - Megan Llamas
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Kenichi Ishiyama
- Department of Microbiology and Immunology, University of California, San Francisco, CA, United States
| | - Yumeng Sun
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Rajesh Parmar
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Subha Sen
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Suphamai Bunnapradist
- Divison of Nephrology, Department of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Steven R Hays
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Jonathan P Singer
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Joanna M Schaenman
- Division of Infectious Diseases, Department of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, CA, United States
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Daniel R Calabrese
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States; Medical Service, San Francisco VA Health Care System, San Francisco, CA, United States
| | - John R Greenland
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States; Medical Service, San Francisco VA Health Care System, San Francisco, CA, United States.
| |
Collapse
|
3
|
Jun CH, Kim SH, Kim J, Kim KM, Lee JW, Kong SM, Kwak J, Kwan BS, Cho HK, Park KJ, Kim HT, Wi YM. Quantitative PCR for early detection of human cytomegalovirus end-organ disease in immunocompetent host: A retrospective single-center study. J Infect Public Health 2024; 17:102542. [PMID: 39299079 DOI: 10.1016/j.jiph.2024.102542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Tissue-invasive end-organ disease (EOD) caused by cytomegalovirus (CMV) is less frequently reported in immunocompetent patients compared to immunocompromised patients. In this study, we investigated the association between CMV viremia and CMV end-organ disease in immunocompetent patients. METHODS Adult patients (≥18 years old) with CMV viremia were screened from January 2010 to June 2022. The primary outcome was the presence of CMV EOD. Risk factors associated with CMV EOD were analyzed, and a receiver operating characteristic curve was plotted to determine the most accurate cutoff value of the CMV titer for the prediction of CMV EOD. RESULTS Among the 106 immunocompetent patients with CMV viremia, 31 exhibited CMV EOD. Gastrointestinal tract disease was the most common. The log10 value of the CMV titer was significantly associated with the occurrence of CMV EOD in immunocompetent patients with CMV viremia. The optimal cut-off CMV titer for the prediction of CMV EOD was 749 IU/mL. CONCLUSIONS Our study suggests the potential association between high CMV titers and the development of CMV end-organ diseases and describes the diagnostic performance and utility of quantitative PCR as a surrogate marker for predicting the occurrence of CMV EOD in immunocompetent patients.
Collapse
Affiliation(s)
- Cheon-Hoo Jun
- Department of Infectious Diseases, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Si-Ho Kim
- Department of Infectious Diseases, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Junyoung Kim
- Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Kwang Min Kim
- Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Jung Won Lee
- Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Sung Min Kong
- Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Jiyeong Kwak
- Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Byung Soo Kwan
- Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Hyun Kyu Cho
- Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Kyoung-Jin Park
- Department of Laboratory Medicine and Genetics, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Hyoung Tae Kim
- Department of Laboratory Medicine and Genetics, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Yu Mi Wi
- Department of Infectious Diseases, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea.
| |
Collapse
|
4
|
Charles OJ, Venturini C, Goldstein RA, Breuer J. HerpesDRG: a comprehensive resource for human herpesvirus antiviral drug resistance genotyping. BMC Bioinformatics 2024; 25:279. [PMID: 39192205 DOI: 10.1186/s12859-024-05885-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
The prevention and treatment of many herpesvirus associated diseases is based on the utilization of antiviral therapies, however therapeutic success is limited by the development of drug resistance. Currently no single database cataloguing resistance mutations exists, which hampers the use of sequence data for patient management. We therefore developed HerpesDRG, a drug resistance mutation database that incorporates all the known resistance genes and current treatment options, built from a systematic review of available genotype to phenotype literature. The database is released along with an R package that provides a simple approach to resistance variant annotation and clinical implication analysis from common sanger and next generation sequencing data. This represents the first openly available and community maintainable database of drug resistance mutations for the human herpesviruses (HHV), developed for the community of researchers and clinicians tackling HHV drug resistance.
Collapse
Affiliation(s)
- O J Charles
- Department of Infection, Immunity and Inflammation, University College London, Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK.
| | - C Venturini
- Department of Infection, Immunity and Inflammation, University College London, Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - R A Goldstein
- Division of Infection and Immunity, University College London, London, WC1E 6BT, UK
| | - J Breuer
- Department of Infection, Immunity and Inflammation, University College London, Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
- Great Ormond Street Hospital for Children National Health Service Foundation Trust, London, WC1N 1LE, UK
| |
Collapse
|
5
|
Hu X, Karthigeyan KP, Herbek S, Valencia SM, Jenks JA, Webster H, Miller IG, Connors M, Pollara J, Andy C, Gerber LM, Walter EB, Edwards KM, Bernstein DI, Hou J, Koch M, Panther L, Carfi A, Wu K, Permar SR. Human Cytomegalovirus mRNA-1647 Vaccine Candidate Elicits Potent and Broad Neutralization and Higher Antibody-Dependent Cellular Cytotoxicity Responses Than the gB/MF59 Vaccine. J Infect Dis 2024; 230:455-466. [PMID: 38324766 PMCID: PMC11326847 DOI: 10.1093/infdis/jiad593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND MF59-adjuvanted gB subunit (gB/MF59) vaccine demonstrated approximately 50% efficacy against human cytomegalovirus (HCMV) acquisition in multiple clinical trials, suggesting that efforts to improve this vaccine design might yield a vaccine suitable for licensure. METHODS A messenger RNA (mRNA)-based vaccine candidate encoding HCMV gB and pentameric complex (PC), mRNA-1647, is currently in late-stage efficacy trials. However, its immunogenicity has not been compared to the partially effective gB/MF59 vaccine. We assessed neutralizing and Fc-mediated immunoglobulin G (IgG) effector antibody responses induced by mRNA-1647 in both HCMV-seropositive and -seronegative vaccinees from a first-in-human clinical trial through 1 year following third vaccination using a systems serology approach. Furthermore, we compared peak anti-gB antibody responses in seronegative mRNA-1647 vaccinees to that of seronegative gB/MF59 vaccine recipients. RESULTS mRNA-1647 vaccination elicited and boosted HCMV-specific IgG responses in seronegative and seropositive vaccinees, respectively, including neutralizing and Fc-mediated effector antibody responses. gB-specific IgG responses were lower than PC-specific IgG responses. gB-specific IgG and antibody-dependent cellular phagocytosis responses were lower than those elicited by gB/MF59. However, mRNA-1647 elicited higher neutralization and antibody-dependent cellular cytotoxicity (ADCC) responses. CONCLUSIONS Overall, mRNA-1647 vaccination induced polyfunctional and durable HCMV-specific antibody responses, with lower gB-specific IgG responses but higher neutralization and ADCC responses compared to the gB/MF59 vaccine. CLINICAL TRIALS REGISTRATION NCT03382405 (mRNA-1647) and NCT00133497 (gB/MF59).
Collapse
Affiliation(s)
- Xintao Hu
- Department of Pediatrics, Weill Cornell Medicine, New York, New York
| | | | - Savannah Herbek
- Department of Pediatrics, Weill Cornell Medicine, New York, New York
| | - Sarah M Valencia
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina
| | - Jennifer A Jenks
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina
| | - Helen Webster
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina
| | - Itzayana G Miller
- Department of Pediatrics, Weill Cornell Medicine, New York, New York
| | - Megan Connors
- Department of Pediatrics, Weill Cornell Medicine, New York, New York
| | - Justin Pollara
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina
| | - Caroline Andy
- Department of Population Health Sciences, Weill Cornell Medicine, New York, New York
| | - Linda M Gerber
- Department of Population Health Sciences, Weill Cornell Medicine, New York, New York
| | - Emmanuel B Walter
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina
| | - Kathryn M Edwards
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David I Bernstein
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Jacob Hou
- Moderna, Inc, Cambridge, Massachusetts
| | | | | | | | - Kai Wu
- Moderna, Inc, Cambridge, Massachusetts
| | - Sallie R Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, New York
| |
Collapse
|
6
|
Arevalo JF, Beatson B. Surgery for Infectious Retinitis - When Medical Therapy Is Not Sufficient: The Moacyr E. Alvaro Pan-American Lecture 2023. Ocul Immunol Inflamm 2024; 32:541-549. [PMID: 36758250 DOI: 10.1080/09273948.2023.2174883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/05/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND Viral retinitis composes a group of infectious ocular diseases with poor prognoses. With the advent of antivirals and HAART, the treatment of these diseases has evolved and ocular outcomes have improved. However, even with prompt medical treatment, a significant number of patients will experience complications that require surgical intervention. While there has been an abundance of research examining the medical treatment of CMV retinitis and acute retinal necrosis, the research examining surgical outcomes of complications such as retinitis-associated retinal detachment is comparatively limited. METHODS Literature review. RESULTS In this review, we discuss the current literature examining treatment of CMV retinitis and acute retinal necrosis, with a focus on surgical management of complications such as retinal detachment. CONCLUSIONS Despite significant improvements in the medical treatment of CMV retinitis and ARN over the last three decades, vision-threatening complications such as retinal detachment are relatively common and require surgical management via PPV, laser photocoagulation, and intraocular gas or silicone oil tamponade.
Collapse
Affiliation(s)
- J Fernando Arevalo
- Johns Hopkins University School of Medicine, Wilmer Eye Institute, Baltimore, Maryland, USA
| | - Bradley Beatson
- Johns Hopkins University School of Medicine, Wilmer Eye Institute, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Meller L, Jagadeesh V, Wilson K, Oca MC, Sestak T, Scott N. Bilateral Cytomegalovirus Retinitis After Chimeric Antigen Receptor T-cell Therapy for B-cell Lymphoma. Cureus 2024; 16:e56637. [PMID: 38646322 PMCID: PMC11032111 DOI: 10.7759/cureus.56637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
Cytomegalovirus (CMV) retinitis is commonly associated with immunosuppression and can cause irreversible vision loss. Chimeric antigen receptor T-cell (CAR-T) therapy has emerged as an effective cancer treatment option but requires immunosuppression, thereby increasing the possibility of acquiring opportunistic infections such as CMV. We present the case of a 76-year-old female with a history of hypertension and type 2 diabetes mellitus who initially presented with shortness of breath and was diagnosed with the activated B-cell subset of diffuse large B-cell lymphoma (DLBCL). She received multiple cycles of chemotherapy and experienced relapses with cardiac involvement. The patient developed vision loss in the right eye and was diagnosed with bilateral posterior vitritis. She underwent various treatments, including radiotherapy, systemic chemotherapy, cataract extraction, and vitrectomy. After CAR-T therapy, she developed bilateral CMV retinitis, confirmed through polymerase chain reaction testing and managed by valganciclovir. Overall, this case report describes the first reported case of bilateral CMV retinitis following CAR-T therapy for DLBCL. It emphasizes the need for early recognition and treatment of CMV retinitis to prevent permanent vision loss. The report also underscores the importance of regular ocular screening and consideration of prophylactic measures in patients undergoing CAR-T therapy.
Collapse
Affiliation(s)
- Leo Meller
- Viterbi Family Department of Ophthalmology at the Shiley Eye Institute, University of California San Diego School of Medicine, La Jolla, USA
| | - Vasan Jagadeesh
- Viterbi Family Department of Ophthalmology at the Shiley Eye Institute, University of California San Diego School of Medicine, La Jolla, USA
| | - Katherine Wilson
- Viterbi Family Department of Ophthalmology at the Shiley Eye Institute, University of California San Diego School of Medicine, La Jolla, USA
| | - Michael C Oca
- Viterbi Family Department of Ophthalmology at the Shiley Eye Institute, University of California San Diego School of Medicine, La Jolla, USA
| | - Timothy Sestak
- Viterbi Family Department of Ophthalmology at the Shiley Eye Institute, University of California San Diego School of Medicine, La Jolla, USA
| | - Nathan Scott
- Viterbi Family Department of Ophthalmology at the Shiley Eye Institute, University of California San Diego School of Medicine, La Jolla, USA
| |
Collapse
|
8
|
Miller MJ, Akter D, Mahmud J, Chan GC. Human cytomegalovirus modulates mTORC1 to redirect mRNA translation within quiescently infected monocytes. J Virol 2024; 98:e0188823. [PMID: 38289104 PMCID: PMC10878035 DOI: 10.1128/jvi.01888-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 02/21/2024] Open
Abstract
Human cytomegalovirus (HCMV) utilizes peripheral blood monocytes as a means to systemically disseminate throughout the host. Following viral entry, HCMV stimulates non-canonical Akt signaling leading to the activation of mTORC1 and the subsequent translation of select antiapoptotic proteins within infected monocytes. However, the full extent to which the HCMV-initiated Akt/mTORC1 signaling axis reshapes the monocyte translatome is unclear. We found HCMV entry alone was able to stimulate widescale changes to mRNA translation levels and that inhibition of mTOR, a component of mTORC1, dramatically attenuated HCMV-induced protein synthesis. Although monocytes treated with normal myeloid growth factors also exhibited increased levels of translation, mTOR inhibition had no effect, suggesting HCMV activation of mTOR stimulates the acquisition of a unique translatome within infected monocytes. Indeed, polyribosomal profiling of HCMV-infected monocytes identified distinct prosurvival transcripts that were preferentially loaded with ribosomes when compared to growth factor-treated cells. Sirtuin 1 (SIRT1), a deacetylase that exerts prosurvival effects through regulation of the PI3K/Akt pathway, was found to be highly enriched following HCMV infection in an mTOR-dependent manner. Importantly, SIRT1 inhibition led to the death of HCMV-infected monocytes while having minimal effect on uninfected cells. SIRT1 also supported a positive feedback loop to sustain Akt/mTORC1 signaling following viral entry. Taken together, HCMV profoundly reshapes mRNA translation in an mTOR-dependent manner to enhance the synthesis of select factors necessary for the survival of infected monocytes.IMPORTANCEHuman cytomegalovirus (HCMV) infection is a significant cause of morbidity and mortality among the immunonaïve and immunocompromised. Peripheral blood monocytes are a major cell type responsible for disseminating the virus from the initial site of infection. In order for monocytes to mediate viral spread within the host, HCMV must subvert the naturally short lifespan of these cells. In this study, we performed polysomal profiling analysis, which demonstrated HCMV to globally redirect mRNA translation toward the synthesis of cellular prosurvival factors within infected monocytes. Specifically, HCMV entry into monocytes induced the translation of cellular SIRT1 to generate an antiapoptotic state. Defining the precise mechanisms through which HCMV stimulates survival will provide insight into novel anti-HCMV drugs able to target infected monocytes.
Collapse
Affiliation(s)
- Michael J. Miller
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Dilruba Akter
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jamil Mahmud
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Gary C. Chan
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
9
|
Redruello-Romero A, Benitez-Cantos MS, Lopez-Perez D, García-Rubio J, Tamayo F, Pérez-Bartivas D, Moreno-SanJuan S, Ruiz-Palmero I, Puentes-Pardo JD, Vilchez JR, López-Nevot MÁ, García F, Cano C, León J, Carazo Á. Human adipose tissue as a major reservoir of cytomegalovirus-reactive T cells. Front Immunol 2023; 14:1303724. [PMID: 38053998 PMCID: PMC10694288 DOI: 10.3389/fimmu.2023.1303724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023] Open
Abstract
Introduction Cytomegalovirus (CMV) is a common herpesvirus with a high prevalence worldwide. After the acute infection phase, CMV can remain latent in several tissues. CD8 T cells in the lungs and salivary glands mainly control its reactivation control. White adipose tissue (WAT) contains a significant population of memory T cells reactive to viral antigens, but CMV specificity has mainly been studied in mouse WAT. Therefore, we obtained blood, omental WAT (oWAT), subcutaneous WAT (sWAT), and liver samples from 11 obese donors to characterize the human WAT adaptive immune landscape from a phenotypic and immune receptor specificity perspective. Methods We performed high-throughput sequencing of the T cell receptor (TCR) locus to analyze tissue and blood TCR repertoires of the 11 donors. The presence of TCRs specific to CMV epitopes was tested through ELISpot assays. Moreover, phenotypic characterization of T cells was carried out through flow cytometry. Results High-throughput sequencing analyses revealed that tissue TCR repertoires in oWAT, sWAT, and liver samples were less diverse and dominated by hyperexpanded clones when compared to blood samples. Additionally, we predicted the presence of TCRs specific to viral epitopes, particularly from CMV, which was confirmed by ELISpot assays. Remarkably, we found that oWAT has a higher proportion of CMV-reactive T cells than blood or sWAT. Finally, flow cytometry analyses indicated that most WAT-infiltrated lymphocytes were tissue-resident effector memory CD8 T cells. Discussion Overall, these findings postulate human oWAT as a major reservoir of CMV-specific T cells, presumably for latent viral reactivation control. This study enhances our understanding of the adaptive immune response in human WAT and highlights its potential role in antiviral defense.
Collapse
Affiliation(s)
| | - Maria S. Benitez-Cantos
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada, Spain
- GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | - David Lopez-Perez
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | | | | | - Daniel Pérez-Bartivas
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
| | - Sara Moreno-SanJuan
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Cytometry and Microscopy Research Service, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
| | - Isabel Ruiz-Palmero
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
| | - Jose D. Puentes-Pardo
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Jose R. Vilchez
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Clinical Analyses and Immunology Unit, Virgen de las Nieves University Hospital, Granada, Spain
| | - Miguel Á. López-Nevot
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada, Spain
- Clinical Analyses and Immunology Unit, Virgen de las Nieves University Hospital, Granada, Spain
| | - Federico García
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Clinical Microbiology Unit, San Cecilio University Hospital, Granada, Spain
- Centro de Investigación Biomédica en Red (CIBER) of Infectious Diseases, Health Institute Carlos III, Madrid, Spain
| | - Carlos Cano
- Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain
| | - Josefa León
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Digestive Unit, San Cecilio University Hospital, Granada, Spain
| | - Ángel Carazo
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Clinical Microbiology Unit, San Cecilio University Hospital, Granada, Spain
| |
Collapse
|
10
|
Oyeyemi DM, Chan E, Montano M, Belzer A, Ogbuagu O, Zapata H, Tuan JJ. Acute cytomegalovirus proctitis and epididymitis acquired via sexual transmission in an immunocompetent patient: a case report. J Med Case Rep 2023; 17:489. [PMID: 37946248 PMCID: PMC10636986 DOI: 10.1186/s13256-023-04216-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND We present a case report of an immunocompetent host with presumed sexually transmitted cytomegalovirus proctitis and epididymitis, where there currently is a sparsity of published data. CASE PRESENTATION A 21-year-old previously healthy Caucasian individual was admitted for severe rectal and testicular pain in the setting of proctitis and epididymitis. Serology and rectal pathology confirmed acute primary cytomegalovirus infection. CONCLUSIONS This report details his diagnostic workup and highlights cytomegalovirus as a rare cause of sexually transmitted disease among immunocompetent persons.
Collapse
Affiliation(s)
- Deborah M Oyeyemi
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Elizabeth Chan
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Mason Montano
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Annika Belzer
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Onyema Ogbuagu
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Section of Infectious Disease, Yale University School of Medicine, 135 College St., Suite 323, New Haven, CT, 06510, USA
| | - Heidi Zapata
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Section of Infectious Disease, Yale University School of Medicine, 135 College St., Suite 323, New Haven, CT, 06510, USA
| | - Jessica J Tuan
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
- Section of Infectious Disease, Yale University School of Medicine, 135 College St., Suite 323, New Haven, CT, 06510, USA.
| |
Collapse
|
11
|
Cheung J, Remiszewski S, Chiang LW, Ahmad E, Pal M, Rahman SA, Nikolovska-Coleska Z, Chan GC. Inhibition of SIRT2 promotes death of human cytomegalovirus-infected peripheral blood monocytes via apoptosis and necroptosis. Antiviral Res 2023; 217:105698. [PMID: 37562606 DOI: 10.1016/j.antiviral.2023.105698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Peripheral blood monocytes are the cells predominantly responsible for systemic dissemination of human cytomegalovirus (HCMV) and a significant cause of morbidity and mortality in immunocompromised patients. HCMV establishes a silent/quiescent infection in monocytes, which is defined by the lack of viral replication and lytic gene expression. The absence of replication shields the virus within infected monocytes from the current available antiviral drugs that are designed to suppress active replication. Our previous work has shown that HCMV stimulates a noncanonical phosphorylation of Akt and the subsequent upregulation of a distinct subset of prosurvival proteins in normally short-lived monocytes. In this study, we found that SIRT2 activity is required for the unique activation profile of Akt induced within HCMV-infected monocytes. Importantly, both therapeutic and prophylactic treatment with a novel SIRT2 inhibitor, FLS-379, promoted death of infected monocytes via both the apoptotic and necroptotic cell death pathways. Mechanistically, SIRT2 inhibition reduced expression of Mcl-1, an Akt-dependent antiapoptotic Bcl-2 family member, and enhanced activation of MLKL, the executioner kinase of necroptosis. We have previously reported HCMV to block necroptosis by stimulating cellular autophagy. Here, we additionally demonstrate that inhibition of SIRT2 suppressed Akt-dependent HCMV-induced autophagy leading to necroptosis of infected monocytes. Overall, our data show that SIRT2 inhibition can simultaneously promote death of quiescently infected monocytes by two distinct death pathways, apoptosis and necroptosis, which may be vital for limiting viral dissemination to peripheral organs in immunosuppressed patients.
Collapse
Affiliation(s)
- Jennifer Cheung
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Stacy Remiszewski
- Evrys Bio, LLC, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA
| | - Lillian W Chiang
- Evrys Bio, LLC, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA
| | - Ejaz Ahmad
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Mohan Pal
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Sm Ashikur Rahman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Zaneta Nikolovska-Coleska
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gary C Chan
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
12
|
Spatafore D, Warakomski D, Hofmann C, Christanti S, Wagner JM. Investigation into the use of gamma irradiated Cytodex-1 microcarriers to produce a human cytomegalovirus (HCMV) vaccine candidate in epithelial cells. J Biotechnol 2023; 365:62-71. [PMID: 36804577 DOI: 10.1016/j.jbiotec.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/26/2023] [Accepted: 02/16/2023] [Indexed: 02/21/2023]
Abstract
V160 is a viral vaccine candidate against human cytomegalovirus (HCMV) that is manufactured using Adult Retinal Pigment Epithelial cells (ARPE-19) grown on Cytodex-1 microcarriers. The microcarriers are generally hydrated, washed, and autoclaved prior to use, which can be limiting at large production scales. To minimize microcarrier preparation and sterilization, the use of gamma irradiated Cytodex-1 was investigated. Similar ARPE-19 cell growth was observed on heat-sterilized and gamma irradiated Cytodex-1; however, significantly reduced virus production was observed in cultures exposed to gamma irradiated Cytodex-1. Additional experiments suggest that infection inhibition is not exclusive to ARPE-19 but is most directly linked to HCMV V160, as evidenced by similar inhibition of V160 with Vero cells and no inhibition of Measles virus with either cell type. These observations suggest a putative impact on HCMV infection from the presence of extractable(s)/leachable(s) in the gamma irradiated microcarriers. Thorough aseptic rinsing of gamma irradiated Cytodex-1 prior to use can mitigate this impact and enable comparable process performance to heat-sterilized Cytodex-1. Though not fully a "ready-to-use" product for the HCMV V160 production process, utilization of Cytodex-1 microcarriers was possible without requiring heat sterilization, suggesting a potential path forward for large scale production of V160.
Collapse
Affiliation(s)
- Daniel Spatafore
- Process Research & Development, Merck & Co., Inc., Rahway, NJ, USA
| | - Donald Warakomski
- Vaccine Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, USA
| | - Carl Hofmann
- Vaccine Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, USA
| | - Sianny Christanti
- West Point Technical Operations Labs, Merck & Co., Inc., Rahway, NJ, USA
| | - James M Wagner
- Process Research & Development, Merck & Co., Inc., Rahway, NJ, USA.
| |
Collapse
|
13
|
The Frequency and Function of NKG2C +CD57 + Adaptive NK Cells in Cytomagalovirus Co-Infected People Living with HIV Decline with Duration of Antiretroviral Therapy. Viruses 2023; 15:v15020323. [PMID: 36851537 PMCID: PMC9959045 DOI: 10.3390/v15020323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Human cytomegalovirus (CMV) infection drives the expansion and differentiation of natural killer (NK) cells with adaptive-like features. We investigated whether age and time on antiretroviral therapy (ART) influenced adaptive NK cell frequency and functionality. Flow cytometry was used to evaluate the frequency of adaptive and conventional NK cells in 229 CMV+ individuals of whom 170 were people living with HIV (PLWH). The frequency of these NK cell populations producing CD107a, CCL4, IFN-γ or TNF-α was determined following a 6-h antibody dependent (AD) stimulation. Though ART duration and age were correlated, longer time on ART was associated with a reduced frequency of adaptive NK cells. In general, the frequency and functionality of NK cells following AD stimulation did not differ significantly between treated CMV+PLWH and CMV+HIV- persons, suggesting that HIV infection, per se, did not compromise AD NK cell function. AD activation of adaptive NK cells from CMV+PLWH induced lower frequencies of IFN-γ or TNF-α secreting cells in older persons, when compared with younger persons.
Collapse
|
14
|
Harnois MJ, Dennis M, Stöhr D, Valencia SM, Rodgers N, Semmes EC, Webster HS, Jenks JA, Barfield R, Pollara J, Chan C, Sinzger C, Permar SR. Characterization of Plasma Immunoglobulin G Responses in Elite Neutralizers of Human Cytomegalovirus. J Infect Dis 2022; 226:1667-1677. [PMID: 35970817 PMCID: PMC10205896 DOI: 10.1093/infdis/jiac341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/11/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Human cytomegalovirus (HCMV) is the most common infectious complication of organ transplantation and cause of birth defects worldwide. There are limited therapeutic options and no licensed vaccine to prevent HCMV infection or disease. To inform development of HCMV antibody-based interventions, a previous study identified individuals with potent and broad plasma HCMV-neutralizing activity, termed elite neutralizers (ENs), from a cohort of HCMV-seropositive (SP) blood donors. However, the specificities and functions of plasma antibodies associated with EN status remained undefined. METHODS We sought to determine the plasma antibody specificities, breadth, and Fc-mediated antibody effector functions associated with the most potent HCMV-neutralizing responses in plasma from ENs (n = 25) relative to that from SP donors (n = 19). We measured antibody binding against various HCMV strains and glycoprotein targets and evaluated Fc-mediated effector functions, antibody-dependent cellular cytotoxicity (ADCC), and antibody-dependent cellular phagocytosis (ADCP). RESULTS We demonstrate that ENs have elevated immunoglobulin G binding responses against multiple viral glycoproteins, relative to SP donors. Our study also revealed potent HCMV-specific antibody-dependent cellular cytotoxicity and antibody-dependent cellular phagocytosis activity of plasma from ENs. CONCLUSIONS We conclude that antibody responses against multiple glycoprotein specificities may be needed to achieve potent plasma neutralization and that potently HCMV elite-neutralizing plasma antibodies can also mediate polyfunctional responses.
Collapse
Affiliation(s)
- Melissa J Harnois
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Maria Dennis
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Dagmar Stöhr
- Institute for Virology, Ulm University Medical Center, Ulm, Baden-Württemberg, Germany
| | - Sarah M Valencia
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Nicole Rodgers
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Eleanor C Semmes
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
- Medical Scientist Training Program, Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Helen S Webster
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Jennifer A Jenks
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
- Medical Scientist Training Program, Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Richard Barfield
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina, USA
- Center for Human Systems Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Justin Pollara
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina, USA
- Center for Human Systems Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Christian Sinzger
- Institute for Virology, Ulm University Medical Center, Ulm, Baden-Württemberg, Germany
| | - Sallie R Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
15
|
Hu X, Wang HY, Otero CE, Jenks JA, Permar SR. Lessons from Acquired Natural Immunity and Clinical Trials to Inform Next-Generation Human Cytomegalovirus Vaccine Development. Annu Rev Virol 2022; 9:491-520. [PMID: 35704747 PMCID: PMC10154983 DOI: 10.1146/annurev-virology-100220-010653] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human cytomegalovirus (HCMV) infection, the most common cause of congenital disease globally, affecting an estimated 1 million newborns annually, can result in lifelong sequelae in infants, such as sensorineural hearing loss and brain damage. HCMV infection also leads to a significant disease burden in immunocompromised individuals. Hence, an effective HCMV vaccine is urgently needed to prevent infection and HCMV-associated diseases. Unfortunately, despite more than five decades of vaccine development, no successful HCMV vaccine is available. This review summarizes what we have learned from acquired natural immunity, including innate and adaptive immunity; the successes and failures of HCMV vaccine human clinical trials; the progress in related animal models; and the analysis of protective immune responses during natural infection and vaccination settings. Finally, we propose novel vaccine strategies that will harness the knowledge of protective immunity and employ new technology and vaccine concepts to inform next-generation HCMV vaccine development.
Collapse
Affiliation(s)
- Xintao Hu
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA;
| | - Hsuan-Yuan Wang
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA;
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Claire E Otero
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA;
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Jennifer A Jenks
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Sallie R Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA;
| |
Collapse
|
16
|
Maslinska M, Kostyra-Grabczak K. The role of virus infections in Sjögren’s syndrome. Front Immunol 2022; 13:823659. [PMID: 36148238 PMCID: PMC9488556 DOI: 10.3389/fimmu.2022.823659] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 08/09/2022] [Indexed: 11/26/2022] Open
Abstract
Primary Sjögren’s syndrome (pSS) is an autoimmune disease with a clinical picture of not only mainly exocrine gland involvement, with dryness symptoms, but also internal organ and systems involvement. The epithelial damage and releasing of antigens, which, in some circumstances, become autoantigens, underlay the pathogenesis of pSS. The activation of autoimmune processes in pSS leads to the hyperactivation of B cells with autoantibody production and other immunological phenomena such as hypergammaglobulinemia, production of cryoglobulins, or formation of extra-nodal lymphoid tissue. Among the risk factors for the development of this disease are viral infections, which themselves can activate autoimmune reactions and influence the host’s immune response. It is known that viruses, through various mechanisms, can influence the immune system and initiate autoimmune reactions. These mechanisms include molecular mimicry, bystander activation, production of superantigens—proteins encoded by viruses—or a programming to produce viral cytokines similar to host cytokines such as, e.g., interleukin-10. Of particular importance for pSS are viruses which not only, as expected, activate the interferon pathway but also play a particular role, directly or indirectly, in B cell activation or present tropism to organs also targeted in the course of pSS. This article is an attempt to present the current knowledge of the influence specific viruses have on the development and course of pSS.
Collapse
|
17
|
Watanabe M, Jergovic M, Davidson L, LaFleur BJ, Castaneda Y, Martinez C, Smithey MJ, Stowe RP, Haddad EK, Nikolich‐Žugich J. Inflammatory and immune markers in HIV-infected older adults on long-term antiretroviral therapy: Persistent elevation of sCD14 and of proinflammatory effector memory T cells. Aging Cell 2022; 21:e13681. [PMID: 35975357 PMCID: PMC9470897 DOI: 10.1111/acel.13681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/24/2022] [Accepted: 07/10/2022] [Indexed: 01/25/2023] Open
Abstract
HIV-positive patients whose viral loads are successfully controlled by active antiretroviral therapy (ART) show no clinical signs of AIDS. However, their lifespan is shorter compared with individuals with no HIV infection and they prematurely exhibit a multitude of chronic diseases typically associated with advanced age. It was hypothesized that immune system aging may correlate with, and provide useful biomarkers for, this premature loss of healthspan in HIV-positive subjects. Here, we tested whether the immune correlates of aging, including cell numbers and phenotypes, inflammatory status, and control of human cytomegalovirus (hCMV) in HIV-positive subjects on long-term successful ART (HIV+) may reveal increased "immunological age" compared with HIV-negative, age-matched cohort (HIV-) in participants between 50 and 69 years of age. Specifically, we expected that younger HIV+ subjects may immunologically resemble older individuals without HIV. We found no evidence to support this hypothesis. While T cells from HIV+ participants displayed differential expression in several differentiation and/or inhibitory/exhaustion markers in different T cell subpopulations, aging by a decade did not pronounce these changes. Similarly, while the HIV+ participants exhibited higher T cell responses and elevated inflammatory marker levels in plasma, indicative of chronic inflammation, this trait was not age-sensitive. We did find differences in immune control of hCMV, and, more importantly, a sustained elevation of sCD14 and of proinflammatory CD4 and CD8 T cell responses across age groups, pointing towards uncontrolled inflammation as a factor in reduced healthspan in successfully treated older HIV+ patients.
Collapse
Affiliation(s)
- Makiko Watanabe
- Department of ImmunobiologyUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA,Arizona Center on AgingUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA
| | - Mladen Jergovic
- Department of ImmunobiologyUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA,Arizona Center on AgingUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA
| | - Lisa Davidson
- Department of ImmunobiologyUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA,Arizona Center on AgingUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA
| | - Bonnie J. LaFleur
- BIO5 InstituteUniversity of ArizonaTucsonArizonaUSA,R. Ken Coit College of PharmacyUniveristy of ArizonaTucsonArizonaUSA
| | - Yvonne Castaneda
- Department of ImmunobiologyUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA,Arizona Center on AgingUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA
| | - Carmine Martinez
- Department of ImmunobiologyUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA,Arizona Center on AgingUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA
| | - Megan J. Smithey
- Department of ImmunobiologyUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA,Arizona Center on AgingUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA
| | | | - Elias K. Haddad
- Division of Infectious Diseases and HIV Medicine, Department of MedicineDrexel UniversityPhiladelphiaPennsylvaniaUSA
| | - Janko Nikolich‐Žugich
- Department of ImmunobiologyUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA,Arizona Center on AgingUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA,BIO5 InstituteUniversity of ArizonaTucsonArizonaUSA
| |
Collapse
|
18
|
Assessment of UL56 Mutations before Letermovir Therapy in Refractory Cytomegalovirus Transplant Recipients. Microbiol Spectr 2022; 10:e0019122. [PMID: 35343771 PMCID: PMC9045154 DOI: 10.1128/spectrum.00191-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
De novo mutations in the UL56 terminase subunit and its associated phenotypes were studied in the context of cytomegalovirus (CMV) transplant recipients clinically resistant to DNA-polymerase inhibitors, naive to letermovir. R246C was the only UL56 variant detected by standard and deep sequencing, located within the letermovir-resistance-associated region (residues 230–370). R246C emerged in 2/80 transplant recipients (1 hematopoietic and 1 heart) since first cytomegalovirus replication and responded transiently to various alternative antiviral treatments in vivo. Recombinant phenotyping showed R246C conferred an advanced viral fitness and was sensitive to ganciclovir, cidofovir, foscarnet, maribavir, and letermovir. These results demonstrate a low rate (2.5%) of natural occurring polymorphisms within the letermovir-resistant-associated region before its administration. Identification of high replicative capacity variants in patients not responding to treatment or experiencing relapses could be helpful to guide further therapy and dosing of antiviral molecules. IMPORTANCE We provide comprehensive data on the clinical correlates of both CMV genotypic follow-up by standard and deep sequencing and the clinical outcomes, as well as recombinant phenotypic results of this novel mutation. Our study emphasizes that the clinical follow-up in combination with genotypic and phenotypic studies is essential for the assessment and optimization of patients experiencing HCMV relapses or not responding to antiviral therapy. This information may be important for other researchers and clinicians working in the field to improve the care of transplant patients since drug-resistant CMV infections are an important emerging problem even with the new antiviral development.
Collapse
|
19
|
Deciphering the Potential Coding of Human Cytomegalovirus: New Predicted Transmembrane Proteome. Int J Mol Sci 2022; 23:ijms23052768. [PMID: 35269907 PMCID: PMC8911422 DOI: 10.3390/ijms23052768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/18/2022] [Accepted: 02/26/2022] [Indexed: 02/06/2023] Open
Abstract
CMV is a major cause of morbidity and mortality in immunocompromised individuals that will benefit from the availability of a vaccine. Despite the efforts made during the last decade, no CMV vaccine is available. An ideal CMV vaccine should elicit a broad immune response against multiple viral antigens including proteins involved in virus-cell interaction and entry. However, the therapeutic use of neutralizing antibodies targeting glycoproteins involved in viral entry achieved only partial protection against infection. In this scenario, a better understanding of the CMV proteome potentially involved in viral entry may provide novel candidates to include in new potential vaccine design. In this study, we aimed to explore the CMV genome to identify proteins with putative transmembrane domains to identify new potential viral envelope proteins. We have performed in silico analysis using the genome sequences of nine different CMV strains to predict the transmembrane domains of the encoded proteins. We have identified 77 proteins with transmembrane domains, 39 of which were present in all the strains and were highly conserved. Among the core proteins, 17 of them such as UL10, UL139 or US33A have no ascribed function and may be good candidates for further mechanistic studies.
Collapse
|
20
|
Pathogenesis of wild-type-like rhesus cytomegalovirus strains following oral exposure of immune-competent rhesus macaques. J Virol 2021; 96:e0165321. [PMID: 34788083 DOI: 10.1128/jvi.01653-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhesus cytomegalovirus (RhCMV) infection of rhesus macaques (Macaca mulatta) is a valuable nonhuman primate model of human CMV (HCMV) persistence and pathogenesis. In vivo studies predominantly use tissue culture-adapted variants of RhCMV that contain multiple genetic mutations compared to wild-type (WT) RhCMV. In many studies, animals have been inoculated by non-natural routes (e.g., subcutaneous, intravenous) that do not recapitulate disease progression via the normative route of mucosal exposure. Accordingly, the natural history of RhCMV would be more accurately reproduced by infecting macaques with strains of RhCMV that reflect the WT genome using natural routes of mucosal transmission. Herein, we tested two WT-like RhCMV strains, UCD52 and UCD59, and demonstrated that systemic infection and frequent, high-titer viral shedding in bodily fluids occurred following oral inoculation. RhCMV disseminated to a broad range of tissues, including the central nervous system and reproductive organs. Commonly infected tissues included the thymus, spleen, lymph nodes, kidneys, bladder, and salivary glands. Histological examination revealed prominent nodular hyperplasia in spleens and variable levels of lymphoid lymphofollicular hyperplasia in lymph nodes. One of six inoculated animals had limited viral dissemination and shedding, with commensurately weak antibody responses to RhCMV antigens. These data suggest that long-term RhCMV infection parameters might be restricted by local innate factors and/or de novo host immune responses in a minority of primary infections. Together, we have established an oral RhCMV infection model that mimics natural HCMV infection. The virological and immunological parameters characterized in this study will greatly inform HCMV vaccine designs for human immunization. IMPORTANCE Human cytomegalovirus (HCMV) is globally ubiquitous with high seroprevalence rates in all communities. HCMV infections can occur vertically following mother-to-fetus transmission across the placenta and horizontally following shedding of virus in bodily fluids in HCMV infected hosts and subsequent exposure of susceptible individuals to virus-laden fluids. Intrauterine HCMV has long been recognized as an infectious threat to fetal growth and development. Since vertical HCMV infections occur following horizontal HCMV transmission to the pregnant mother, the nonhuman primate model of HCMV pathogenesis was used to characterize the virological and immunological parameters of infection following primary mucosal exposures to rhesus cytomegalovirus.
Collapse
|
21
|
Eisfeld HS, Simonis A, Winter S, Chhen J, Ströh LJ, Krey T, Koch M, Theobald SJ, Rybniker J. Viral Glycoproteins Induce NLRP3 Inflammasome Activation and Pyroptosis in Macrophages. Viruses 2021; 13:v13102076. [PMID: 34696506 PMCID: PMC8538122 DOI: 10.3390/v13102076] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 01/03/2023] Open
Abstract
Infections with viral pathogens are widespread and can cause a variety of different diseases. In-depth knowledge about viral triggers initiating an immune response is necessary to decipher viral pathogenesis. Inflammasomes, as part of the innate immune system, can be activated by viral pathogens. However, viral structural components responsible for inflammasome activation remain largely unknown. Here we analyzed glycoproteins derived from SARS-CoV-1/2, HCMV and HCV, required for viral entry and fusion, as potential triggers of NLRP3 inflammasome activation and pyroptosis in THP-1 macrophages. All tested glycoproteins were able to potently induce NLRP3 inflammasome activation, indicated by ASC-SPECK formation and secretion of cleaved IL-1β. Lytic cell death via gasdermin D (GSDMD), pore formation, and pyroptosis are required for IL-1β release. As a hallmark of pyroptosis, we were able to detect cleavage of GSDMD and, correspondingly, cell death in THP-1 macrophages. CRISPR-Cas9 knockout of NLRP3 and GSDMD in THP-1 macrophages confirmed and strongly support the evidence that viral glycoproteins can act as innate immunity triggers. With our study, we decipher key mechanisms of viral pathogenesis by showing that viral glycoproteins potently induce innate immune responses. These insights could be beneficial in vaccine development and provide new impulses for the investigation of vaccine-induced innate immunity.
Collapse
Affiliation(s)
- Hannah S. Eisfeld
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (H.S.E.); (A.S.); (S.W.); (J.C.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Strasse 21, 50931 Cologne, Germany;
| | - Alexander Simonis
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (H.S.E.); (A.S.); (S.W.); (J.C.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Strasse 21, 50931 Cologne, Germany;
| | - Sandra Winter
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (H.S.E.); (A.S.); (S.W.); (J.C.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Strasse 21, 50931 Cologne, Germany;
| | - Jason Chhen
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (H.S.E.); (A.S.); (S.W.); (J.C.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Strasse 21, 50931 Cologne, Germany;
| | - Luisa J. Ströh
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; (L.J.S.); (T.K.)
| | - Thomas Krey
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; (L.J.S.); (T.K.)
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Luebeck, 23562 Luebeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 22607 Hamburg, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, 30625 Hannover, Germany
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
| | - Manuel Koch
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Strasse 21, 50931 Cologne, Germany;
- Institute for Dental Research and Oral Musculoskeletal Biology and Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Sebastian J. Theobald
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (H.S.E.); (A.S.); (S.W.); (J.C.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Strasse 21, 50931 Cologne, Germany;
- Correspondence: (S.J.T.); (J.R.)
| | - Jan Rybniker
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (H.S.E.); (A.S.); (S.W.); (J.C.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Strasse 21, 50931 Cologne, Germany;
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Correspondence: (S.J.T.); (J.R.)
| |
Collapse
|
22
|
Pavišić V, Mahmutefendić Lučin H, Blagojević Zagorac G, Lučin P. Arf GTPases Are Required for the Establishment of the Pre-Assembly Compartment in the Early Phase of Cytomegalovirus Infection. Life (Basel) 2021; 11:867. [PMID: 34440611 PMCID: PMC8399710 DOI: 10.3390/life11080867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/31/2022] Open
Abstract
Shortly after entering the cells, cytomegaloviruses (CMVs) initiate massive reorganization of cellular endocytic and secretory pathways, which results in the forming of the cytoplasmic virion assembly compartment (AC). We have previously shown that the formation of AC in murine CMV- (MCMV) infected cells begins in the early phase of infection (at 4-6 hpi) with the pre-AC establishment. Pre-AC comprises membranes derived from the endosomal recycling compartment, early endosomes, and the trans-Golgi network, which is surrounded by fragmented Golgi cisterns. To explore the importance of Arf GTPases in the biogenesis of the pre-AC, we infected Balb 3T3 cells with MCMV and analyzed the expression and intracellular localization of Arf proteins in the early phases (up to 16 hpi) of infection and the development of pre-AC in cells with a knockdown of Arf protein expression by small interfering RNAs (siRNAs). Herein, we show that even in the early phase, MCMVs cause massive reorganization of the Arf system of the host cells and induce the over-recruitment of Arf proteins onto the membranes of pre-AC. Knockdown of Arf1, Arf3, Arf4, or Arf6 impaired the establishment of pre-AC. However, the knockdown of Arf1 and Arf6 also abolished the establishment of infection. Our study demonstrates that Arf GTPases are required for different steps of early cytomegalovirus infection, including the establishment of the pre-AC.
Collapse
Affiliation(s)
- Valentino Pavišić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.P.); (H.M.L.); (P.L.)
| | - Hana Mahmutefendić Lučin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.P.); (H.M.L.); (P.L.)
- Nursing Department, University North, University Center Varaždin, Jurja Križanića 31b, 42000 Varaždin, Croatia
| | - Gordana Blagojević Zagorac
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.P.); (H.M.L.); (P.L.)
- Nursing Department, University North, University Center Varaždin, Jurja Križanića 31b, 42000 Varaždin, Croatia
| | - Pero Lučin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.P.); (H.M.L.); (P.L.)
- Nursing Department, University North, University Center Varaždin, Jurja Križanića 31b, 42000 Varaždin, Croatia
| |
Collapse
|
23
|
Anft M, Blazquez-Navarro A, Stervbo U, Skrzypczyk S, Witzke O, Wirth R, Choi M, Hugo C, Reinke P, Meister TL, Steinmann E, Pfaender S, Schenker P, Viebahn R, Westhoff TH, Babel N. Detection of pre-existing SARS-CoV-2-reactive T cells in unexposed renal transplant patients. J Nephrol 2021; 34:1025-1037. [PMID: 34228322 PMCID: PMC8259083 DOI: 10.1007/s40620-021-01092-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/09/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Recent data demonstrate potentially protective pre-existing T cells reactive against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in samples of healthy blood donors, collected before the SARS-CoV-2 pandemic. Whether pre-existing immunity is also detectable in immunosuppressed patients is currently not known. METHODS Fifty-seven patients were included in this case-control study. We compared the frequency of SARS-CoV-2-reactive T cells in the samples of 20 renal transplant (RTx) patients to 20 age/gender matched non-immunosuppressed/immune competent healthy individuals collected before the onset of the SARS-CoV-2 pandemic. Seventeen coronavirus disease 2019 (COVID-19) patients were used as positive controls. T cell reactivity against Spike-, Nucleocapsid-, and Membrane- SARS-CoV-2 proteins were analyzed by multi-parameter flow cytometry. Antibodies were analyzed by neutralization assay. RESULTS Pre-existing SARS-CoV-2-reactive T cells were detected in the majority of unexposed patients and healthy individuals. In RTx patients, 13/20 showed CD4+ T cells reactive against at least one SARS-CoV-2 protein. CD8+ T cells reactive against at least one SARS-CoV-2 protein were demonstrated in 12/20 of RTx patients. The frequency and Th1 cytokine expression pattern of pre-formed SARS-CoV-2 reactive T cells did not differ between RTx and non-immunosuppressed healthy individuals. CONCLUSIONS This study shows that the magnitude and functionality of pre-existing SARS-CoV-2 reactive T cell in transplant patients is non-inferior compared to the immune competent cohort. Although several pro-inflammatory cytokines were produced by the detected T cells, further studies are required to prove their antiviral protection.
Collapse
Affiliation(s)
- Moritz Anft
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625, Herne, Germany
| | - Arturo Blazquez-Navarro
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625, Herne, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117, Berlin, Germany
| | - Ulrik Stervbo
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625, Herne, Germany
| | - Sarah Skrzypczyk
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625, Herne, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Rainer Wirth
- Department of Geriatrics, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625, Herne, Germany
| | - Mira Choi
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117, Berlin, Germany
| | - Christian Hugo
- Department of Nephrology, Medical Department III, Universitätsklinikum Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Petra Reinke
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117, Berlin, Germany
| | - Toni Luise Meister
- Department of Molecular and Medical Virology, Ruhr University Bochum, Universitätsstrasse 50, 44801, Bochum, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Universitätsstrasse 50, 44801, Bochum, Germany
| | - Stephanie Pfaender
- Department of Molecular and Medical Virology, Ruhr University Bochum, Universitätsstrasse 50, 44801, Bochum, Germany
| | - Peter Schenker
- Department Surgery, Knappschaftskrankenhaus Bochum, University Hospital of the Ruhr-University Bochum, In der Schornau 23, 44892, Bochum, Germany
| | - Richard Viebahn
- Department Surgery, Knappschaftskrankenhaus Bochum, University Hospital of the Ruhr-University Bochum, In der Schornau 23, 44892, Bochum, Germany
| | - Timm H Westhoff
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625, Herne, Germany
| | - Nina Babel
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625, Herne, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
24
|
Wang HY, Valencia SM, Pfeifer SP, Jensen JD, Kowalik TF, Permar SR. Common Polymorphisms in the Glycoproteins of Human Cytomegalovirus and Associated Strain-Specific Immunity. Viruses 2021; 13:v13061106. [PMID: 34207868 PMCID: PMC8227702 DOI: 10.3390/v13061106] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022] Open
Abstract
Human cytomegalovirus (HCMV), one of the most prevalent viruses across the globe, is a common cause of morbidity and mortality for immunocompromised individuals. Recent clinical observations have demonstrated that mixed strain infections are common and may lead to more severe disease progression. This clinical observation illustrates the complexity of the HCMV genome and emphasizes the importance of taking a population-level view of genotypic evolution. Here we review frequently sampled polymorphisms in the glycoproteins of HCMV, comparing the variable regions, and summarizing their corresponding geographic distributions observed to date. The related strain-specific immunity, including neutralization activity and antigen-specific cellular immunity, is also discussed. Given that these glycoproteins are common targets for vaccine design and anti-viral therapies, this observed genetic variation represents an important resource for future efforts to combat HCMV infections.
Collapse
Affiliation(s)
- Hsuan-Yuan Wang
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA;
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA;
| | - Sarah M. Valencia
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA;
| | - Susanne P. Pfeifer
- Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; (S.P.P.); (J.D.J.)
| | - Jeffrey D. Jensen
- Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; (S.P.P.); (J.D.J.)
| | - Timothy F. Kowalik
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655, USA;
| | - Sallie R. Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA;
- Correspondence: ; Tel.: +1-212-746-4111
| |
Collapse
|
25
|
Hayes RP, Heo MR, Mason M, Reid J, Burlein C, Armacost KA, Tellers DM, Raheem I, Shaw AW, Murray E, McKenna PM, Abeywickrema P, Sharma S, Soisson SM, Klein D. Structural understanding of non-nucleoside inhibition in an elongating herpesvirus polymerase. Nat Commun 2021; 12:3040. [PMID: 34031403 PMCID: PMC8144222 DOI: 10.1038/s41467-021-23312-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/21/2021] [Indexed: 12/03/2022] Open
Abstract
All herpesviruses encode a conserved DNA polymerase that is required for viral genome replication and serves as an important therapeutic target. Currently available herpesvirus therapies include nucleoside and non-nucleoside inhibitors (NNI) that target the DNA-bound state of herpesvirus polymerase and block replication. Here we report the ternary complex crystal structure of Herpes Simplex Virus 1 DNA polymerase bound to DNA and a 4-oxo-dihydroquinoline NNI, PNU-183792 (PNU), at 3.5 Å resolution. PNU bound at the polymerase active site, displacing the template strand and inducing a conformational shift of the fingers domain into an open state. These results demonstrate that PNU inhibits replication by blocking association of dNTP and stalling the enzyme in a catalytically incompetent conformation, ultimately acting as a nucleotide competing inhibitor (NCI). Sequence conservation of the NCI binding pocket further explains broad-spectrum activity while a direct interaction between PNU and residue V823 rationalizes why mutations at this position result in loss of inhibition.
Collapse
Affiliation(s)
- Robert P Hayes
- Computational and Structural Chemistry, Merck & Co., Inc., West Point, PA, USA.
| | - Mee Ra Heo
- Computational and Structural Chemistry, Merck & Co., Inc., West Point, PA, USA
| | - Mark Mason
- Computational and Structural Chemistry, Merck & Co., Inc., West Point, PA, USA
| | - John Reid
- Computational and Structural Chemistry, Merck & Co., Inc., West Point, PA, USA
| | | | - Kira A Armacost
- Computational and Structural Chemistry, Merck & Co., Inc., West Point, PA, USA
| | | | - Izzat Raheem
- Discovery Chemistry, Merck & Co., Inc., West Point, PA, USA
| | - Anthony W Shaw
- Discovery Chemistry, Merck & Co., Inc., West Point, PA, USA
| | - Edward Murray
- Infectious Diseases and Vaccines, Merck & Co., Inc., West Point, PA, USA
| | - Philip M McKenna
- Infectious Diseases and Vaccines, Merck & Co., Inc., West Point, PA, USA
| | | | - Sujata Sharma
- Computational and Structural Chemistry, Merck & Co., Inc., West Point, PA, USA
| | - Stephen M Soisson
- Computational and Structural Chemistry, Merck & Co., Inc., West Point, PA, USA
| | - Daniel Klein
- Computational and Structural Chemistry, Merck & Co., Inc., West Point, PA, USA
| |
Collapse
|
26
|
Pezzullo L, Giudice V, Serio B, Fontana R, Guariglia R, Martorelli MC, Ferrara I, Mettivier L, Bruno A, Bianco R, Vaccaro E, Pagliano P, Montuori N, Filippelli A, Selleri C. Real-world evidence of cytomegalovirus reactivation in non-Hodgkin lymphomas treated with bendamustine-containing regimens. Open Med (Wars) 2021; 16:672-682. [PMID: 33981851 PMCID: PMC8082049 DOI: 10.1515/med-2021-0274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/28/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
Cytomegalovirus (CMV) reactivation during chemotherapy or after organ or hematopoietic stem cell transplantation is a major cause of morbidity and mortality, and the risk of reactivation increases with patients’ age. Bendamustine, an alkylating agent currently used for treatment of indolent and aggressive non-Hodgkin lymphomas, can augment the risk of secondary infections including CMV reactivation. In this real-world study, we described an increased incidence of CMV reactivation in older adults (age >60 years old) with newly diagnosed and relapsed/refractory indolent and aggressive diseases treated with bendamustine-containing regimens. In particular, patients who received bendamustine plus rituximab and dexamethasone were at higher risk of CMV reactivation, especially when administered as first-line therapy and after the third course of bendamustine. In addition, patients with CMV reactivation showed a significant depression of circulating CD4+ T cell count and anti-CMV IgG levels during active infection, suggesting an impairment of immune system functions which are not able to properly face viral reactivation. Therefore, a close and early monitoring of clinical and laboratory findings might improve clinical management and outcome of non-Hodgkin lymphoma patients by preventing the development of CMV disease in a subgroup of subjects treated with bendamustine more susceptible to viral reactivation.
Collapse
Affiliation(s)
- Luca Pezzullo
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, 84131, Italy
| | - Valentina Giudice
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, 84131, Italy.,Clinical Pharmacology, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, 84131, Italy.,Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, 84081, Salerno, Italy
| | - Bianca Serio
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, 84131, Italy
| | - Raffaele Fontana
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, 84131, Italy
| | - Roberto Guariglia
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, 84131, Italy
| | - Maria Carmen Martorelli
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, 84131, Italy
| | - Idalucia Ferrara
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, 84131, Italy
| | - Laura Mettivier
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, 84131, Italy
| | - Alessandro Bruno
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, 84131, Italy
| | - Rosario Bianco
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, 84131, Italy
| | - Emilia Vaccaro
- Transfusion Medicine, Molecular Biology Section, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, 84131, Italy
| | - Pasquale Pagliano
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, 84081, Salerno, Italy.,Infectious Disease Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, 84131, Italy
| | - Nunzia Montuori
- Department of Translational Medical Sciences, "Federico II" University, 80138, Naples, Italy
| | - Amelia Filippelli
- Clinical Pharmacology, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, 84131, Italy.,Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, 84081, Salerno, Italy
| | - Carmine Selleri
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, 84131, Italy.,Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, 84081, Salerno, Italy
| |
Collapse
|
27
|
Bhandari G, Tiwari V, Gupta A, Jain S, Gupta P, Bhargava V, Malik M, Gupta A, Bhalla AK, Rana DS. CMV presenting as a skin growth in renal transplant patient. Transpl Infect Dis 2021; 23:e13590. [PMID: 33641219 DOI: 10.1111/tid.13590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 12/01/2022]
Abstract
CMV infection is one of the most common opportunistic infection in kidney transplant patients. If not treated, it is associated with increased mortality and graft loss. It can present as viremia or CMV disease in the form of CMV syndrome or tissue invasive CMV disease. The cutaneous presentation of CMV disease is a rare finding. Its identification is vital as cutaneous CMV infection can signal systemic infection and poor prognosis. In our case, 46-year-old male who was a post renal allograft recipient (RAR) presented as a protuberant growth over the medial side of the left ankle. On skin biopsy, nucleomegaly and inclusion bodies were seen in the epithelial cells. Immunohistochemistry was positive for CMV infection. Patient was treated with Ganciclovir, however, he succumbed to death because of severe sepsis due to secondary bacterial infection. Thus, CMV disease should always be kept in mind in immunocompromised patients like post RAR patients who present with cutaneous features like ulcerative lesions or fungating growth.
Collapse
Affiliation(s)
- Gaurav Bhandari
- Department of Nephrology, Sir Ganga Ram Hospital, New Delhi, India
| | - Vaibhav Tiwari
- Department of Nephrology, Sir Ganga Ram Hospital, New Delhi, India
| | - Anurag Gupta
- Department of Nephrology, Sir Ganga Ram Hospital, New Delhi, India
| | - Sunila Jain
- Department of Nephrology, Sir Ganga Ram Hospital, New Delhi, India
| | - Pallav Gupta
- Department of Nephrology, Sir Ganga Ram Hospital, New Delhi, India
| | - Vinant Bhargava
- Department of Nephrology, Sir Ganga Ram Hospital, New Delhi, India
| | - Manish Malik
- Department of Nephrology, Sir Ganga Ram Hospital, New Delhi, India
| | - Ashwani Gupta
- Department of Nephrology, Sir Ganga Ram Hospital, New Delhi, India
| | | | | |
Collapse
|
28
|
Cytomegalovirus-Induced Gastrointestinal Bleeding and Pancreatitis Complicating Severe Covid-19 Pneumonia: A Paradigmatic Case. Mediterr J Hematol Infect Dis 2020; 12:e2020060. [PMID: 32952971 PMCID: PMC7485475 DOI: 10.4084/mjhid.2020.060] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/07/2020] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is a new pandemic disease whose pathophysiology and clinical description are still not completely defined. Besides respiratory symptoms and fever, gastrointestinal (GI) symptoms (including especially anorexia, diarrhea, and abdominal pain) represent the most frequent clinical manifestations. Emerging data point out that severe SARS-CoV-2 infection causes an immune dysregulation, which in turn may favor other infections. Here we describe a patient with severe COVID-19 pneumonia who developed in the resolving phase abdominal pain associated with cytomegalovirus (CMV)-induced duodenitis with bleeding and pancreatitis. A high level of suspicion toward multiple infections, including CMV, should be maintained in COVID-19 patients with heterogeneous clinical manifestations.
Collapse
|
29
|
Park J, Gill KS, Aghajani AA, Heredia JD, Choi H, Oberstein A, Procko E. Engineered receptors for human cytomegalovirus that are orthogonal to normal human biology. PLoS Pathog 2020; 16:e1008647. [PMID: 32559251 PMCID: PMC7329128 DOI: 10.1371/journal.ppat.1008647] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 07/01/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
A trimeric glycoprotein complex on the surface of human cytomegalovirus (HCMV) binds to platelet-derived growth factor (PDGF) receptor α (PDGFRα) to mediate host cell recognition and fusion of the viral and cellular membranes. Soluble PDGFRα potently neutralizes HCMV in tissue culture, and its potential use as an antiviral therapeutic has the benefit that any escape mutants will likely be attenuated. However, PDGFRα binds multiple PDGF ligands in the human body as part of developmental programs in embryogenesis and continuing through adulthood. Any therapies with soluble receptor therefore come with serious efficacy and safety concerns, especially for the treatment of congenital HCMV. Soluble virus receptors that are orthogonal to human biology might resolve these concerns. This engineering problem is solved by deep mutational scanning on the D2-D3 domains of PDGFRα to identify variants that maintain interactions with the HCMV glycoprotein trimer in the presence of competing PDGF ligands. Competition by PDGFs is conformation-dependent, whereas HCMV trimer binding is independent of proper D2-D3 conformation, and many mutations at the receptor-PDGF interface are suitable for functionally separating trimer from PDGF interactions. Purified soluble PDGFRα carrying a targeted mutation succeeded in displaying wild type affinity for HCMV trimer with a simultaneous loss of PDGF binding, and neutralizes trimer-only and trimer/pentamer-expressing HCMV strains infecting fibroblasts or epithelial cells. Overall, this work makes important progress in the realization of soluble HCMV receptors for clinical application. Human cytomegalovirus (HCMV) causes severe disease in transplant recipients and immunocompromised patients, and infections in a fetus or neonate are responsible for life-long neurological defects. Cell entry is in part mediated by a trimeric glycoprotein complex on the viral surface, which binds tightly to the host receptor PDGFRα. The soluble extracellular region of PDGFRα can be used as an antiviral agent to potently neutralize the virus in vitro. However, PDGFRα ordinarily binds growth factors in the human body to regulate developmental programs, which will limit the in vivo efficacy and safety of soluble PDGFRα. Using saturation mutagenesis and selections in human cell culture, mutations in PDGFRα are identified that eliminate off-target growth factor interactions while preserving HCMV binding and neutralization.
Collapse
Affiliation(s)
- Jihye Park
- Department of Biochemistry, University of Illinois, Urbana, Illinois, United States of America
| | - Kevin Sean Gill
- Department of Biochemistry, University of Illinois, Urbana, Illinois, United States of America
| | - Ali Asghar Aghajani
- Department of Biochemistry, University of Illinois, Urbana, Illinois, United States of America
| | - Jeremiah Dallas Heredia
- Department of Biochemistry, University of Illinois, Urbana, Illinois, United States of America
| | - Hannah Choi
- Department of Biochemistry, University of Illinois, Urbana, Illinois, United States of America
| | - Adam Oberstein
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Erik Procko
- Department of Biochemistry, University of Illinois, Urbana, Illinois, United States of America
- Cancer Center at Illinois (CCIL), University of Illinois, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
30
|
Human Cytomegalovirus Mediates Unique Monocyte-to-Macrophage Differentiation through the PI3K/SHIP1/Akt Signaling Network. Viruses 2020; 12:v12060652. [PMID: 32560319 PMCID: PMC7354488 DOI: 10.3390/v12060652] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/29/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
Blood monocytes mediate the hematogenous dissemination of human cytomegalovirus (HCMV) in the host. However, monocytes have a short 48-hour (h) lifespan and are not permissive for viral replication. We previously established that HCMV infection drives differentiation of monocytes into long-lived macrophages to mediate viral dissemination, though the mechanism was unclear. Here, we found that HCMV infection promoted monocyte polarization into distinct macrophages by inducing select M1 and M2 differentiation markers and that Akt played a central role in driving differentiation. Akt's upstream positive regulators, PI3K and SHIP1, facilitated the expression of the M1/M2 differentiation markers with p110δ being the predominant PI3K isoform inducing differentiation. Downstream of Akt, M1/M2 differentiation was mediated by caspase 3, whose activity was tightly regulated by Akt in a temporal manner. Overall, this study highlights that HCMV employs the PI3K/SHIP1/Akt pathway to regulate caspase 3 activity and drive monocyte differentiation into unique macrophages, which is critical for viral dissemination.
Collapse
|
31
|
Roark HK, Jenks JA, Permar SR, Schleiss MR. Animal Models of Congenital Cytomegalovirus Transmission: Implications for Vaccine Development. J Infect Dis 2020; 221:S60-S73. [PMID: 32134481 PMCID: PMC7057791 DOI: 10.1093/infdis/jiz484] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although cytomegaloviruses (CMVs) are species-specific, the study of nonhuman CMVs in animal models can help to inform and direct research aimed at developing a human CMV (HCMV) vaccine. Because the driving force behind the development of HCMV vaccines is to prevent congenital infection, the animal model in question must be one in which vertical transmission of virus occurs to the fetus. Fortunately, two such animal models-the rhesus macaque CMV and guinea pig CMV-are characterized by congenital infection. Hence, each model can be evaluated in "proof-of-concept" studies of preconception vaccination aimed at blocking transplacental transmission. This review focuses on similarities and differences in the respective model systems, and it discusses key insights from each model germane to the study of HCMV vaccines.
Collapse
Affiliation(s)
- Hunter K Roark
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Jennifer A Jenks
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Sallie R Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Mark R Schleiss
- Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Medical School, Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, Minneapolis, Minnesota, USA
| |
Collapse
|
32
|
Abstract
Encephalitis is an important cause of morbidity, mortality, and permanent neurologic sequelae globally. Causes are diverse and include viral and non-viral infections of the brain as well as autoimmune processes. In the West, the autoimmune encephalitides are now more common than any single infectious cause, but, in Asia, infectious causes are still more common. In 2006, the World Health Organization coined the term "acute encephalitis syndrome", which simply means acute onset of fever with convulsions or altered consciousness or both. In 2013, the International Encephalitis Consortium set criteria for diagnosis of encephalitis on basis of clinical and laboratory features. The most important infectious cause in the West is herpes simplex virus, but globally Japanese encephalitis (JE) remains the single largest cause. Etiologic diagnosis is difficult because of the large number of agents that can cause encephalitis. Also, the responsible virus may be detectable only in the brain and is either absent or transiently found in blood or cerebrospinal fluid (CSF). Virological diagnosis is complex, expensive, and time-consuming. Different centres could make their own algorithms for investigation in accordance with the local etiologic scenarios. Magnetic resonance imaging (MRI) and electroencephalography are specific for few agents. Clinically, severity may vary widely. A severe case may manifest with fever, convulsions, coma, neurologic deficits, and death. Autoimmune encephalitis (AIE) includes two major categories: (i) classic paraneoplastic limbic encephalitis (LE) with autoantibodies against intracellular neuronal antigens (Eg: Hu and Ma2) and (ii) new-type AIE with autoantibodies to neuronal surface or synaptic antigens (Eg: anti-N-methyl-D-aspartate receptor). AIE has prominent psychiatric manifestations: psychosis, aggression, mutism, memory loss, euphoria, or fear. Seizures, cognitive decline, coma, and abnormal movements are common. Symptoms may fluctuate rapidly. Treatment is largely supportive. Specific treatment is available for herpesvirus group and non-viral infections. Various forms of immunotherapy are used for AIE.
Collapse
Affiliation(s)
- Rashmi Kumar
- Department of Pediatrics, King George's Medical University, Lucknow, India
| |
Collapse
|
33
|
Shieh AC, Guler E, Tirumani SH, Dumot J, Ramaiya NH. Clinical, imaging, endoscopic findings, and management of patients with CMV colitis: a single-institute experience. Emerg Radiol 2020; 27:277-284. [DOI: 10.1007/s10140-020-01750-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022]
|
34
|
Poh KC, Zheng S. A rare case of CMV pneumonia in HIV-infection. Respir Med Case Rep 2019; 28:100945. [PMID: 31709138 PMCID: PMC6831852 DOI: 10.1016/j.rmcr.2019.100945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/07/2019] [Accepted: 10/12/2019] [Indexed: 02/01/2023] Open
Abstract
Cytomegalovirus (CMV) pneumonia is a rare opportunistic infection in the setting of HIV (Human Immunodeficiency Virus)-infection. Establishing accurate diagnosis of CMV pneumonia in HIV-infection can be challenging. Co-infections by multiple opportunistic pathogens are common and a high degree of clinical vigilance to evaluate for multiple infections, including CMV pneumonia, should be maintained. As there can be a degree of overlap in clinical and radiological features amongst different opportunistic infections affecting the lungs, definitive microbiological and cytohistologic evidences are needed. Reliance on microbiological evidence of CMV in respiratory specimens alone for the diagnosis of CMV pneumonia will lead to an over-diagnosis of the condition and unnecessary treatment. In our case report, we describe a 53-year-old man with recently diagnosed HIV-infection who presented with non-resolving pneumonia. A diagnosis of CMV pneumonia was reached through consistent clinical, radiological, microbiological and cytologic investigations. The patient made a full clinical recovery after being started on anti-CMV treatment.
Collapse
|
35
|
Immunization with a murine cytomegalovirus based vector encoding retrovirus envelope confers strong protection from Friend retrovirus challenge infection. PLoS Pathog 2019; 15:e1008043. [PMID: 31568492 PMCID: PMC6786657 DOI: 10.1371/journal.ppat.1008043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 10/10/2019] [Accepted: 08/25/2019] [Indexed: 02/04/2023] Open
Abstract
Immunization vectors based on cytomegalovirus (CMV) have attracted a lot of interest in recent years because of their high efficacy in the simian immunodeficiency virus (SIV) macaque model, which has been attributed to their ability to induce strong, unusually broad, and unconventionally restricted CD8+ T cell responses. To evaluate the ability of CMV-based vectors to mediate protection by other immune mechanisms, we evaluated a mouse CMV (MCMV)-based vector encoding Friend virus (FV) envelope (Env), which lacks any known CD8+ T cell epitopes, for its protective efficacy in the FV mouse model. When we immunized highly FV-susceptible mice with the Env-encoding MCMV vector (MCMV.env), we could detect high frequencies of Env-specific CD4+ T cells after a single immunization. While the control of an early FV challenge infection was highly variable, an FV infection applied later after immunization was tightly controlled by almost all immunized mice. Protection of mice correlated with their ability to mount a robust anamnestic neutralizing antibody response upon FV infection, but Env-specific CD4+ T cells also produced appreciable levels of interferon γ. Depletion and transfer experiments underlined the important role of antibodies for control of FV infection but also showed that while no Env-specific CD8+ T cells were induced by the MCMV.env vaccine, the presence of CD8+ T cells at the time of FV challenge was required. The immunity induced by MCMV.env immunization was long-lasting, but was restricted to MCMV naïve animals. Taken together, our results demonstrate a novel mode of action of a CMV-based vaccine for anti-retrovirus immunization that confers strong protection from retrovirus challenge, which is conferred by CD4+ T cells and antibodies. CMV-based vectors have attracted a lot of attention in the vaccine development field, since they were shown to induce unconventionally restricted CD8+ T cell responses and strong protection in the SIV rhesus macaque model. In a mouse retrovirus model, we show now that immunization with a mouse CMV-based vector encoding retrovirus envelope conferred very strong protection, even though it was not designed to induce any CD8+ T cell responses. In this MCMV.env immunization, protection relied on the induction of CD4+ T cells and the ability to mount a strong anamnestic neutralizing antibody response upon retrovirus infection, but it was restricted to MCMV pre-naïve mice. In our model system, the MCMV based vector shows very high efficacy that is comparable to an attenuated retrovirus-based vaccine, and encourages the pursuit of this vaccination strategy.
Collapse
|
36
|
Kawase T, Tanaka H, Kojima H, Uchida N, Ohashi K, Fukuda T, Ozawa Y, Ikegame K, Eto T, Mori T, Miyamoto T, Hidaka M, Shiratori S, Takanashi M, Atsuta Y, Ichinohe T, Kanda Y, Kanda J. Impact of High-Frequency HLA Haplotypes on Clinical Cytomegalovirus Reactivation in Allogeneic Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2019; 25:2482-2489. [PMID: 31400501 DOI: 10.1016/j.bbmt.2019.07.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 11/17/2022]
Abstract
Some studies support the hypothesis that HLA genes and haplotypes evolved by natural selection through their protective abilities against specific infectious pathogens. However, very little is known regarding the impact of high-frequency HLA haplotypes on the risk of relevant infectious diseases among a given ethnic group. We evaluated the impact of high-frequency HLA haplotypes on cytomegalovirus (CMV) reactivation and infection in allogeneic hematopoietic stem cell transplantation (allo-HSCT) in a Japanese population as a model of infectious disease that has coexisted with humans. A total of 21,127 donor-patient pairs were analyzed. HLA-A-B-DRB1 haplotypes were estimated using the maximum probability algorithm. Seven haplotypes with >1% frequency were defined as high-frequency haplotypes (HfHPs). Homozygotes of HfHP and heterozygotes had significantly lower risk of CMV reactivation and infection (hazard ratio [HR] = 0.88, P = .009 and HR = 0.93, P = .003, respectively) than homozygotes of low-frequency HLA haplotypes (LfHPs). In subgroup analyses of a different donor source, these associations were statistically significant in unrelated donor transplants. Finally, CMV risk for homozygotes and heterozygotes of each HfHP was compared with that of homozygotes of LfHPs. The 2 most predominant HfHP groups (A*24:02-B*52:01-DRB1*15:02 group and A*24:02-B*07:02-DRB1*01:01 group) had a significantly lower risk of CMV reactivation and infection (HR = 0.86, P < .001 and HR = 0.91, P = .033, respectively). Our findings suggest that HfHPs may be protective against CMV reactivation and infection and that increased care regarding CMV reactivation and infection may be necessary for patients with LfHP after allo-HSCT.
Collapse
Affiliation(s)
- Takakazu Kawase
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima, Japan.
| | | | | | - Naoyuki Uchida
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | - Kazuteru Ohashi
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Takahiro Fukuda
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Yukiyasu Ozawa
- Department of Hematology, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Kazuhiro Ikegame
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - Tetsuya Eto
- Department of Hematology, Hamanomachi Hospital, Fukuoka, Japan
| | - Takehiko Mori
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Toshihiro Miyamoto
- Hematology, Oncology & Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Michihiro Hidaka
- Department of Hematology, National Hospital Organization Kumamoto Medical Center, Kumamoto, Japan
| | - Souichi Shiratori
- Department of Hematology, Hokkaido University Hospital, Hokkaido, Japan
| | - Minoko Takanashi
- Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation, Aichi, Japan; Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima, Japan
| | - Yoshinobu Kanda
- Division of Hematology, Jichi Medical University, Tochigi, Japan
| | - Junya Kanda
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
37
|
Zulu MZ, Martinez FO, Gordon S, Gray CM. The Elusive Role of Placental Macrophages: The Hofbauer Cell. J Innate Immun 2019; 11:447-456. [PMID: 30970346 DOI: 10.1159/000497416] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/19/2019] [Indexed: 01/07/2023] Open
Abstract
In this review, we discuss the often overlooked tissue-resident fetal macrophages, Hofbauer cells, which are found within the chorionic villi of the human placenta. Hofbauer cells have been shown to have a phenotype associated with regulatory and anti-inflammatory functions. They are thought to play a crucial role in the regulation of pregnancy and in the maintenance of a homeostatic environment that is crucial for fetal development. Even though the numbers of these macrophages are some of the most abundant immune cells in the human placenta, which are sustained throughout pregnancy, there are very few studies that have identified their origin, their phenotype, and functions and why they are maintained throughout gestation. It is not yet understood how Hofbauer cells may change in function throughout normal pregnancy, and especially in those complicated by maternal gestational diabetes, preeclampsia, and viral infections, such as Zika, cytomegalovirus, and human immunodeficiency virus. We review what is known about the origin of these macrophages and explore how common complications of pregnancy dysregulate these cells leading to adverse birth outcomes in humans. Our synthesis sheds light on areas for human studies that can further define these innate regulatory cells.
Collapse
Affiliation(s)
- Michael Z Zulu
- Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Fernando O Martinez
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Siamon Gordon
- Chang Gung University, Graduate Institute of Biomedical Sciences, College of Medicine, Taoyuan City, Taiwan.,Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Clive M Gray
- Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa, .,National Health Laboratory Services/Groote Schuur Hospital, Cape Town, South Africa,
| |
Collapse
|
38
|
Holder KA, Grant MD. Human cytomegalovirus IL-10 augments NK cell cytotoxicity. J Leukoc Biol 2019; 106:447-454. [PMID: 30964577 DOI: 10.1002/jlb.2ab0418-158rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 03/22/2019] [Accepted: 03/28/2019] [Indexed: 01/02/2023] Open
Abstract
Human cytomegalovirus (HCMV) persistently infects most of the adult population with periods of productive and latent infection differentially orchestrated by multiple HCMV-encoded gene products. One HCMV gene (UL111a) encodes cmvIL-10, a virokine homologous to human IL (hIL)-10. Although the effects of cmvIL-10 on most human lymphocyte subsets have been extensively studied, its impact on NK cell function was unreported prior to this study. We investigated effects of short-term cmvIL-10 exposure on human NK cells and found it substantially enhanced NK cell cytotoxicity through natural cytotoxicity receptors NKp30 and NKp46 as well as through C-type lectin-like receptors NKG2C and NKG2D. Antibody-dependent cell-mediated cytotoxicity triggered through CD16 also increased significantly with short-term cmvIL-10 exposure. These effects of cmvIL-10 on NK cell cytotoxicity were rapid, dose dependent, neutralized by polyclonal anti-cmvIL-10 or monoclonal anti-IL-10 receptor (IL-10R) antibodies and independent of increased perforin synthesis or up-regulation of activating receptors. A low percentage (0.5-5.4%; n = 12) of NK cells expressed IL-10R and the impact of cmvIL-10 on NK cells degranulation following CD16 stimulation directly correlated with this percentage (P = 0.0218). Short-term exposure of human NK cells to cmvIL-10 did not introduce phenotypic changes reminiscent of NK adaptation to HCMV infection in vivo. Determining how expression of a viral protein that activates NK cells contributes to their function in vivo will increase understanding of HCMV infection and NK cell biology.
Collapse
Affiliation(s)
- Kayla A Holder
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Michael D Grant
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
39
|
Nehme Z, Pasquereau S, Herbein G. Control of viral infections by epigenetic-targeted therapy. Clin Epigenetics 2019; 11:55. [PMID: 30917875 PMCID: PMC6437953 DOI: 10.1186/s13148-019-0654-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/13/2019] [Indexed: 12/13/2022] Open
Abstract
Epigenetics is defined as the science that studies the modifications of gene expression that are not owed to mutations or changes in the genetic sequence. Recently, strong evidences are pinpointing toward a solid interplay between such epigenetic alterations and the outcome of human cytomegalovirus (HCMV) infection. Guided by the previous possibly promising experimental trials of human immunodeficiency virus (HIV) epigenetic reprogramming, the latter is paving the road toward two major approaches to control viral gene expression or latency. Reactivating HCMV from the latent phase ("shock and kill" paradigm) or alternatively repressing the virus lytic and reactivation phases ("block and lock" paradigm) by epigenetic-targeted therapy represent encouraging options to overcome latency and viral shedding or otherwise replication and infectivity, which could lead eventually to control the infection and its complications. Not limited to HIV and HCMV, this concept is similarly studied in the context of hepatitis B and C virus, herpes simplex virus, and Epstein-Barr virus. Therefore, epigenetic manipulations stand as a pioneering research area in modern biology and could constitute a curative methodology by potentially consenting the development of broad-spectrum antivirals to control viral infections in vivo.
Collapse
Affiliation(s)
- Zeina Nehme
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté, University of Bourgogne Franche-Comté, 16 route de Gray, F-25030 Besançon cedex, France
- Université Libanaise, Beirut, Lebanon
| | - Sébastien Pasquereau
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté, University of Bourgogne Franche-Comté, 16 route de Gray, F-25030 Besançon cedex, France
| | - Georges Herbein
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté, University of Bourgogne Franche-Comté, 16 route de Gray, F-25030 Besançon cedex, France
- Department of Virology, CHRU Besancon, F-25030 Besançon, France
| |
Collapse
|
40
|
Weimer A, Tagny CT, Tapko JB, Gouws C, Tobian AAR, Ness PM, Bloch EM. Blood transfusion safety in sub-Saharan Africa: A literature review of changes and challenges in the 21st century. Transfusion 2018; 59:412-427. [PMID: 30615810 DOI: 10.1111/trf.14949] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Access to a safe, adequate blood supply has proven challenging in sub-Saharan Africa, where systemic deficiencies spanning policy, collections, testing, and posttransfusion surveillance have long been recognized. Progress in transfusion safety in the early 2000s was in large part due to intervention by the World Health Organization and other foreign governmental bodies, coupled with an influx of external funding. STUDY DESIGN AND METHODS A review of the literature was conducted to identify articles pertaining to blood safety in sub-Saharan Africa from January 2009 to March 2018. The search was directed toward addressing the major elements of the blood safety chain, in the countries comprising the World Health Organization African region. Of 1380 articles, 531 met inclusion criteria and 136 articles were reviewed. RESULTS External support has been associated with increased recruitment of voluntary donors and expanded testing for the major transfusion-transmitted infections (TTIs). However, the rates of TTIs among donors remain high. Regional education and training initiatives have been implemented, and a tiered accreditation process has been adopted. However, a general decline in funding for transfusion safety (2009 onwards) has strained the ability to maintain or improve transfusion-related services. Critical areas of need include data collection and dissemination, epidemiological surveillance for TTIs, donor recruitment, quality assurance and oversight (notably laboratory testing), and hemovigilance. CONCLUSION Diminishing external support has been challenging for regional transfusion services. Critical areas of deficiency in regional blood transfusion safety remain. Nonetheless, substantive gains in education, training, and accreditation suggest durable gains in regional capacity.
Collapse
Affiliation(s)
- A Weimer
- Johns Hopkins University School of Medicine, Department of Pathology, Baltimore, Baltimore, MD
| | - C T Tagny
- Hematology and Blood Transfusion service, University Teaching Hospital, Yaoundé, Cameroon
| | - J B Tapko
- African Society of Blood Transfusion, Yaoundé, Cameroon
| | - C Gouws
- Blood Transfusion Service of Namibia, Windhoek, Namibia
| | - A A R Tobian
- Johns Hopkins University School of Medicine, Department of Pathology, Baltimore, Baltimore, MD
| | - P M Ness
- Johns Hopkins University School of Medicine, Department of Pathology, Baltimore, Baltimore, MD
| | - E M Bloch
- Johns Hopkins University School of Medicine, Department of Pathology, Baltimore, Baltimore, MD
| |
Collapse
|
41
|
Abstract
Prevention and management of opportunistic infections in children is particularly relevant in an era demonstrating an increased prevalence of immunocompromising conditions. The presence of an unusual organism which results in serious infection in a child should therefore always raise the consideration of immune compromise. The more common opportunistic infections have become easier to recognize in recent times due to improved awareness and more refined diagnostic testing. Targeted treatment is usually followed by long-term prophylactic medication. The impact of these conditions on patient outcome is of clear significance and certainly warrants further discussion.
Collapse
|
42
|
Duraisamy SK, Mammen S, Lakshminarayan SKR, Verghese S, Moorthy M, George B, Kannangai R, Varghese S, Srivastava A, Abraham AM. Performance of an in-house real-time PCR assay for detecting Cytomegalovirus infection among transplant patients from a tertiary care centre. Indian J Med Microbiol 2018; 36:241-246. [PMID: 30084418 DOI: 10.4103/ijmm.ijmm_18_126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background Quantitative Cytomegalovirus (CMV) polymerase chain reactions are increasingly being used for monitoring CMV DNAemia in haematopoietic stem cell transplants and solid organ transplants. Objective In this study, a commercial CMV viral load assay was compared with an in-house viral load assay. Materials and Methods A total of 176 whole-blood samples were tested for CMV DNAemia using both assays. Results Our evaluation showed a difference of 1 log10copies/ml between the two assay systems in determining CMV viral loads in the clinical samples. Conclusion The in-house viral load assay had a better correlation with clinical findings compared to the commercial assay. Quality assessment of these assays was done by the United Kingdom National External Quality Assessment Scheme (UKNEQAS), an external proficiency testing programme, and by the National Institute for Biological Standard and Control (NIBSC) standard. For UKNEQAS and NIBSC standards, the bias between the assays was 0.73 log10and 0.85 log10, respectively. This difference is well within the acceptable range already reported in the literature.
Collapse
Affiliation(s)
| | - Shoba Mammen
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, India
| | | | - Susan Verghese
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Mahesh Moorthy
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Biju George
- Department of Clinical Haematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Rajesh Kannangai
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Santosh Varghese
- Department of Nephrology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Alok Srivastava
- Department of Clinical Haematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Asha Mary Abraham
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
43
|
Aberrant regulation of the Akt signaling network by human cytomegalovirus allows for targeting of infected monocytes. Antiviral Res 2018; 158:13-24. [PMID: 30055197 DOI: 10.1016/j.antiviral.2018.07.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 12/18/2022]
Abstract
Primary peripheral blood monocytes are responsible for the hematogenous dissemination of human cytomegalovirus (HCMV) following a primary infection. In order to facilitate viral spread, HCMV extends the naturally short 48-h lifespan of monocytes by stimulating a non-canonical activation of Akt during viral entry, which leads to the increased expression of a specific subset of antiapoptotic proteins. In this study, global analysis of the Akt signaling network showed HCMV induced a more robust activation of the entire network when compared to normal myeloid growth factors. Furthermore, we found a unique interplay between HCMV-activated Akt and the stress response transcription heat shock factor 1 (HSF1) that allowed for the synthesis of both cap- and internal ribosome entry site (IRES)-containing antiapoptotic mRNAs such as myeloid cell leukemia-1 (Mcl-1) and X-linked inhibitor of apoptosis (XIAP), respectively. As generally a switch from cap-dependent to IRES-mediated translation occurs during cellular stress, the ability of HCMV to concurrently drive both types of translation produces a distinct milieu of prosurvival proteins needed for the viability of infected monocytes. Indeed, we found inhibition of XIAP led to death of ∼99% of HCMV-infected monocytes while having minimal effect on the viability of uninfected cells. Taken together, these data indicate that the aberrant activation of the Akt network by HCMV induces the upregulation of a unique subset of antiapoptotic proteins specifically required for the survival of infected monocytes. Consequently, our study highlights the possibility of exploiting these virus-induced changes to prevent viral spread in immunocompromised patients at high-risk for HCMV exposure.
Collapse
|
44
|
Suri D, Jindal AK, Gupta A, Gupta A, Bajgai P, Singh R, Singh MP, Minz RW, Arora S, Singh S. Cytomegalovirus Disease in HIV-infected Children-A Single-Centre Clinical Experience over 23 Years. J Trop Pediatr 2018; 64:215-224. [PMID: 29873796 DOI: 10.1093/tropej/fmx052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Cytomegalovirus (CMV) results in significant morbidity and mortality in Human Immunodeficiency Virus (HIV)-infected individuals. There is paucity of literature on paediatric CMV disease, especially from developing countries. METHODS A retrospective review of records of all HIV-infected children with evidence of CMV disease was done. RESULTS A total of 15 children were found to have CMV disease (retinitis in all, pneumonia in two and invasive gastrointestinal disease in one). Median CD4+ T cell count and percentage at diagnosis of CMV disease was 64.5 cells/µl and 3.6%, respectively. Intravenous ganciclovir was used in patients with active CMV disease. Of the 15 children, three died while two were lost to follow-up. Symptomatic patients had poor visual outcome and almost all children who were diagnosed on active screening attained normal vision. CONCLUSION Retinitis is the most common CMV disease in HIV-infected children. Early detection by active screening and initiation of systemic ganciclovir reduces the morbidity.
Collapse
Affiliation(s)
- Deepti Suri
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Ankur K Jindal
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Aman Gupta
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Anju Gupta
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Priya Bajgai
- Department of Ophthalmology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Ramandeep Singh
- Department of Ophthalmology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Mini P Singh
- Department Virology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Ranjana W Minz
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Sunil Arora
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Surjit Singh
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
45
|
Association of cytomegalovirus and Epstein-Barr virus with cognitive functioning and risk of dementia in the general population: 11-year follow-up study. Brain Behav Immun 2018; 69:480-485. [PMID: 29355820 DOI: 10.1016/j.bbi.2018.01.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/02/2018] [Accepted: 01/14/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Earlier studies have documented an association between cytomegalovirus and cognitive impairment, but results have been inconsistent. Few studies have investigated the association of cytomegalovirus and Epstein-Barr virus with cognitive decline longitudinally. Our aim was to examine whether cytomegalovirus and Epstein-Barr virus are associated with cognitive decline in adults. METHOD The study sample is from the Finnish Health 2000 Survey (BRIF8901, n = 7112), which is representative of the Finnish adult population. The sample was followed up after 11 years in the Health 2011 Survey. In addition, persons with dementia were identified from healthcare registers. RESULTS In the Finnish population aged 30 and over, the seroprevalence of cytomegalovirus was estimated to be 84% and the seroprevalence of Epstein-Barr virus 98%. Seropositivity of the viruses and antibody levels were mostly not associated with cognitive performance. In the middle-aged adult group, cytomegalovirus serointensity was associated with impaired performance in verbal learning. However, the association disappeared when corrected for multiple testing. No interactions between infection and time or between the two infections were significant when corrected for multiple testing. Seropositivity did not predict dementia diagnosis. CONCLUSIONS The results suggest that adult levels of antibodies to cytomegalovirus and Epstein-Barr virus may not be associated with a significant decline in cognitive function or with dementia at population level.
Collapse
|
46
|
Estekizadeh A, Landázur N, Bartek J, Beltoft Brøchner C, Davoudi B, Broholm H, Karimi M, Ekström TJ, Rahbar A. Increased cytomegalovirus replication by 5-Azacytidine and viral-induced cytoplasmic expression of DNMT‑1 in medulloblastoma and endothelial cells. Int J Oncol 2018; 52:1317-1327. [PMID: 29484388 DOI: 10.3892/ijo.2018.4286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/24/2018] [Indexed: 11/06/2022] Open
Abstract
Among all brain tumors diagnosed in children, medulloblastomas (MBs) are associated with a poor prognosis. The etiology of MB is not fully understood, yet the impact of epigenetic alterations of oncogenes has previously been established. During the past decade, the human cytomegalovirus (HCMV) has been detected in several types of cancer, including MB. Since DNA methylation occurs in the cell nucleus and this is considered a host defence response, we studied the impact of HCMV infection on DNA methyltransferase (DNMT‑1) in MB (D324) cells, human umbilical vein endothelial cells (HUVECs) as well as in MB tissue sections. We hypothesized that infection and DNMT‑1 intracellular localization are linked. Uninfected and HCMV‑infected D324 cells and HUVECs were analyzed for HCMV immediate early (HCMV‑IE) protein, HCMV‑glycoprotein B (HCMV‑gB) and DNMT‑1 using immunofluorescence staining and quantitative ELISA. DNMT‑1 localized to the nucleus of uninfected and HCMV‑IE- expressing D324 cells and HUVECs, but accumulated in the extra nuclear space in all HCMV‑gB-positive cells. Inhibition of HCMV late protein expression by Cymevene® (ganciclovir) prevented the cytoplasmic localization of DNMT‑1. Treatment of HCMV‑ infected D324 cells and HUVECs with the methylation inhibitor 5-Azacytidine (5AZA), significantly increased HCMV‑IE and HCMV‑gB gene transcription and protein expression. Immunohistochemical staining of DNMT‑1 and HCMV proteins in MB cancer tissue sections revealed both nuclear and cytoplasmic DNMT‑1 localization. In conclusion, DNMT‑1 resides in the cytoplasm of HCMV‑gB-expressing HUVECs and D324 cells. Increased viral protein synthesis in 5AZA-treated cells suggests that HCMV replication may benefit from a DNA methyltransferase-free cellular environment. Our findings emphasize the importance of assessing potential viral activation in the treatment of MB patients with epigenetic drugs.
Collapse
Affiliation(s)
- Atosa Estekizadeh
- Department of Clinical Neuroscience and Center for Molecular Medicine, Karolinska Institutet, SE_17176 Stockholm, Sweden
| | - Natalia Landázur
- Department of Clinical Neuroscience and Center for Molecular Medicine, Karolinska Institutet, SE_17176 Stockholm, Sweden
| | - Jiri Bartek
- Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, SE_17176 Stockholm, Sweden
| | | | - Belghis Davoudi
- Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, SE_17176 Stockholm, Sweden
| | - Helle Broholm
- Department of Pathology, Copenhagen University Hospital Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Mohsen Karimi
- Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, SE_17176 Stockholm, Sweden
| | - Tomas J Ekström
- Department of Clinical Neuroscience and Center for Molecular Medicine, Karolinska Institutet, SE_17176 Stockholm, Sweden
| | - Afsar Rahbar
- Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, SE_17176 Stockholm, Sweden
| |
Collapse
|
47
|
Hirani R, Tohidi-Esfahani I, Mondy P, Irving DO. An analysis on the fate of a selection of blood products derived from cytomegalovirus-seronegative donors at three tertiary referral hospitals in Australia. Transfusion 2017; 58:669-676. [PMID: 29250780 DOI: 10.1111/trf.14459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/16/2017] [Accepted: 11/17/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Supply of cytomegalovirus (CMV)-seronegative blood products in Australia is an ongoing challenge. Requests for CMV-negative products are increasing with prediction that the demand will exceed supply by 2019. Clinical information evaluating how these products are being utilized by health providers within Australia is limited. This study aimed to identify indications for use of CMV-negative blood products and gather data to support possible practice change. STUDY DESIGN AND METHODS All CMV-negative products issued to three tertiary Australian hospitals from May 1, 2016, to May 31, 2016, were identified (n = 1219). This equated to 1044 red blood cell units and 175 platelet units. Data were collected on the fate of each unit. Information collected included the indication and urgency of transfusion, reason for discard, product age, and recipient CMV immunoglobulin G status. RESULTS Of the units issued during the audit period, 32 (2.6%) were discarded by the hospitals. Transfusion data were collected on 411 units. Of these, 136 (33.1%) were transfused to CMV-positive recipients, in most cases for hematology indications, and 67 units (16.3%) were transfused to CMV-negative requiring recipients. A total of 144 (35%) CMV-negative units were selected based on their irradiation status. Other reasons for the selection of CMV-negative units included product close to expiry (n = 134, 32.6%) or specific patient phenotype requirements (n = 31, 7.5%). CONCLUSION In this study, the majority of CMV-negative blood products were not used for CMV-negative requiring recipients. Alterations to inventory management would be advantageous to ensure continued supply for CMV-negative requiring recipients.
Collapse
Affiliation(s)
- Rena Hirani
- The Australian Red Cross Blood Service, Sydney, Australia
| | | | - Phillip Mondy
- The Australian Red Cross Blood Service, Sydney, Australia
| | - David O Irving
- The Australian Red Cross Blood Service, Sydney, Australia
| |
Collapse
|
48
|
Hancer VS, Yarimcan FS, Buyukdogan M, Aki SZ, Oksuz B, Acar K, Acar M, Bulut P. A novel ganciclovir resistance mutation in the UL97 gene of the HHV-5 in an adult hematopoietic stem cell transplant recipient. Future Virol 2017. [DOI: 10.2217/fvl-2017-0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Therapeutic management of cytomegalovirus (CMV) disease in hematopoietic stem cell transplantation patients can become a challenge because of the emergence of anti-CMV drug resistance. This case report presents a patient with clinical ganciclovir resistance due to a new mutation: histidine-to-asparagine change at residue 393 of UL97. This mutation, which is located in the nonfunctional region of the UL97 gene, is very unusual. Having more information about the mutations leading to drug resistance in CMV is important for both improved clinical management and development of new diagnostic tests and drugs.
Collapse
Affiliation(s)
- Veysel Sabri Hancer
- Department of Medical Genetics, Faculty of Medicine, Istinye University, Istanbul
| | - Filiz Saglam Yarimcan
- Department of Medical Microbiology, Faculty of Medicine, Istinye University, Istanbul
| | - Murat Buyukdogan
- Department of Medical Genetics, Faculty of Medicine, Istinye University, Istanbul
| | - Sahika Zeynep Aki
- Division of Hematology, Department of Internal Medicine, Bahcesehir University, Istanbul
| | - Burcu Oksuz
- Istinye University Genetic Diagnosis Center, Istanbul
| | - Kadir Acar
- Division of Hematology, Department of Internal Medicine, Altinbas University, Istanbul
| | - Muradiye Acar
- Istinye University Genetic Diagnosis Center, Istanbul
| | - Pelin Bulut
- Istinye University Genetic Diagnosis Center, Istanbul
| |
Collapse
|
49
|
Peppa D. Natural Killer Cells in Human Immunodeficiency Virus-1 Infection: Spotlight on the Impact of Human Cytomegalovirus. Front Immunol 2017; 8:1322. [PMID: 29089947 PMCID: PMC5650968 DOI: 10.3389/fimmu.2017.01322] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/29/2017] [Indexed: 12/14/2022] Open
Abstract
Human cytomegalovirus (HCMV) has been closely associated with the human race across evolutionary time. HCMV co-infection is nearly universal in human immunodeficiency virus-1 (HIV-1)-infected individuals and remains an important cofactor in HIV-1 disease progression even in the era of effective antiretroviral treatment. HCMV infection has been shown to have a broad and potent influence on the human immune system and has been linked with the discovery and characterization of adaptive natural killer (NK) cells. Distinct NK-cell subsets, predominately expressing the activating receptor NKG2C and the marker of terminal differentiation CD57, expand in response to HCMV. These NK-cell populations engaged in the long-lasting interaction with HCMV, in addition to characteristic but variable expression of surface receptors, exhibit reduced expression of signaling proteins and transcription factors expressed by canonical NK cells. Broad epigenetic modifications drive the emergence and persistence of HCMV-adapted NK cells that have distinct functional characteristics. NKG2C+ NK-cell expansions have been observed in HIV-1 infected patients and other acute and chronic viral infections being systematically associated with HCMV seropositivity. The latter is potentially an important confounding variable in studies focused on the cellular NK-cell receptor repertoire and functional capacity. Here, focusing on HIV-1 infection we review the evidence in favor of “adaptive” changes likely induced by HCMV co-infection in NK-cell subsets. We highlight a number of key questions and how insights into the adaptive behavior of NK cells will inform new strategies exploiting their unique properties in the fight against HIV-1.
Collapse
Affiliation(s)
- Dimitra Peppa
- Division of Infection and Immunity, University College London, London, United Kingdom.,Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
50
|
López-Aladid R, Guiu A, Sanclemente G, López-Medrano F, Cofán F, Mosquera MM, Torre-Cisneros J, Vidal E, Moreno A, Aguado JM, Cordero E, Martin-Gandul C, Pérez-Romero P, Carratalá J, Sabé N, Niubó J, Cervera C, Cervilla A, Bodro M, Muñoz P, Fariñas C, Codina MG, Aranzamendi M, Montejo M, Len O, Marcos MA. Detection of cytomegalovirus drug resistance mutations in solid organ transplant recipients with suspected resistance. J Clin Virol 2017; 90:57-63. [PMID: 28359845 DOI: 10.1016/j.jcv.2017.03.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/02/2017] [Accepted: 03/16/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Current guidelines recommend that treatment of resistant cytomegalovirus (CMV) in solid organ transplant (SOT) recipients must be based on genotypic analysis. However, this recommendation is not systematically followed. OBJECTIVES To assess the presence of mutations associated with CMV resistance in SOT recipients with suspected resistance, their associated risk factors and the clinical impact of resistance. STUDY DESIGN Using Sanger sequencing we prospectively assessed the presence of resistance mutations in a nation-wide prospective study between September 2013-August 2015. RESULTS Of 39 patients studied, 9 (23%) showed resistance mutations. All had one mutation in the UL 97 gene and two also had one mutation in the UL54 gene. Resistance mutations were more frequent in lung transplant recipients (44% p=0.0068) and in patients receiving prophylaxis ≥6 months (57% vs. 17%, p=0.0180). The mean time between transplantation and suspicion of resistance was longer in patients with mutations (239 vs. 100days, respectively, p=0.0046) as was the median treatment duration before suspicion (45 vs. 16days, p=0.0081). There were no significant differences according to the treatment strategies or the mean CMV load at the time of suspicion. Of note, resistance-associated mutations appeared in one patient during CMV prophylaxis and also in a seropositive organ recipient. Incomplete suppression of CMV was more frequent in patients with confirmed resistance. CONCLUSIONS Our study confirms the need to assess CMV resistance mutations in any patient with criteria of suspected clinical resistance. Early confirmation of the presence of resistance mutations is essential to optimize the management of these patients.
Collapse
Affiliation(s)
- Rubén López-Aladid
- Department of Clinical Microbiology, Hospital Clinic, Universidad de Barcelona, Barcelona Institute for Global Health, Barcelona, (ISGlobal), Spain
| | - Alba Guiu
- Department of Clinical Microbiology, Hospital Clinic, Universidad de Barcelona, Barcelona Institute for Global Health, Barcelona, (ISGlobal), Spain
| | - Gemma Sanclemente
- Department of Infectious Diseases, Hospital Clinic, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Universidad de Barcelona, Barcelona, Spain
| | - Francisco López-Medrano
- Unit of Infectious Diseases, Instituto de Investigación Hospital 12 Octubre (i + 12) University Hospital 12 de Octubre, Universidad Complutense, Madrid, Spain
| | - Frederic Cofán
- Nephrology and Renal Transplant Department, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | - M Mar Mosquera
- Department of Clinical Microbiology, Hospital Clinic, Universidad de Barcelona, Barcelona Institute for Global Health, Barcelona, (ISGlobal), Spain
| | - Julián Torre-Cisneros
- Clinical Unit of Infectious Diseases, Hospital Universitario Reina Sofia-IMIBIC-UCO, Córdoba, Spain
| | - Elisa Vidal
- Clinical Unit of Infectious Diseases, Hospital Universitario Reina Sofia-IMIBIC-UCO, Córdoba, Spain
| | - Asunción Moreno
- Department of Infectious Diseases, Hospital Clinic, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Universidad de Barcelona, Barcelona, Spain
| | - Jose Maria Aguado
- Unit of Infectious Diseases, Instituto de Investigación Hospital 12 Octubre (i + 12) University Hospital 12 de Octubre, Universidad Complutense, Madrid, Spain
| | - Elisa Cordero
- Infectious Diseases Department, Hospital Universitario Virgen del Rocío, Sevilla, Instituto de Biomedicina de Sevilla (IBIS), Unit of Infectious Diseases, Microbiology and Preventive Medicine, University Hospital Virgen del Rocío, Spain
| | - Cecilia Martin-Gandul
- Infectious Diseases Department, Hospital Universitario Virgen del Rocío, Sevilla, Instituto de Biomedicina de Sevilla (IBIS), Unit of Infectious Diseases, Microbiology and Preventive Medicine, University Hospital Virgen del Rocío, Spain
| | - Pilar Pérez-Romero
- Infectious Diseases Department, Hospital Universitario Virgen del Rocío, Sevilla, Instituto de Biomedicina de Sevilla (IBIS), Unit of Infectious Diseases, Microbiology and Preventive Medicine, University Hospital Virgen del Rocío, Spain
| | - Jordi Carratalá
- Department of Infectious Diseases, Bellvitge University Hospital, IDIBELL, Barcelona, Spain
| | - Nuria Sabé
- Department of Infectious Diseases, Bellvitge University Hospital, IDIBELL, Barcelona, Spain
| | - Jordi Niubó
- Department of Clinical Microbiology, Bellvitge University Hospital, IDIBELL, Barcelona, Spain
| | - Carlos Cervera
- Department of Medicine, Division of Infectious Diseases, University of Alberto, Edmonton, Canada
| | - Anna Cervilla
- Department of Clinical Microbiology, Hospital Clinic, Universidad de Barcelona, Barcelona Institute for Global Health, Barcelona, (ISGlobal), Spain
| | - Marta Bodro
- Department of Infectious Diseases, Hospital Clinic, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Universidad de Barcelona, Barcelona, Spain
| | - Patricia Muñoz
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitario Gregorio Marañón, Madrid, Spain
| | - Carmen Fariñas
- Unidad de Enfermedades Infecciosas, Hospital Universitario Marqués de Valdecilla, Universidad de Cantabria, Santander, Spain
| | - M Gemma Codina
- Microbiology Service, Hospital Vall d'Hebron, Barcelona, Spain
| | | | - Miguel Montejo
- Unidad de Enfermedades Infecciosas, Hospital Universitario de Cruces, Bilbao, Spain
| | - Oscar Len
- Department of Infectious Diseases, Hospital Universitari Vall d'Hebrón, Uniiversitat Autónoma de Barcelona, Barcelona, Spain
| | - M Angeles Marcos
- Department of Clinical Microbiology, Hospital Clinic, Universidad de Barcelona, Barcelona Institute for Global Health, Barcelona, (ISGlobal), Spain.
| | | |
Collapse
|