1
|
Xu R, Yu Y, Chen T. Exploring the dark side of probiotics to pursue light: Intrinsic and extrinsic risks to be opportunistic pathogens. Curr Res Food Sci 2025; 10:101044. [PMID: 40235735 PMCID: PMC11999689 DOI: 10.1016/j.crfs.2025.101044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/17/2025] Open
Abstract
Probiotics, live microorganisms with multiple health benefits, have gained popularity for their roles in maintaining daily health and treating a variety of diseases. However, they have the potential to be opportunistic pathogens in some conditions. This review delves into the intrinsic and extrinsic risks associated with probiotics. Intrinsic risks involve the production of harmful substances, such as toxins and invasive factors, biofilm formation, bacteria emboli, antibiotic resistance with relevant genetic materials, genetic plasticity, and metabolic issues, while extrinsic risks include problems in regulatory oversight and public awareness, host health status and appropriately administration. It emphasizes the need for a balanced view of their therapeutic benefits and potential hazards, advocating for further research to understand the complex interactions between probiotics and the human microbiome, to optimize the safety and efficacy of probiotics.
Collapse
Affiliation(s)
- Ruiyan Xu
- Ophthalmologic Centre, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Yifeng Yu
- Ophthalmologic Centre, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Tingtao Chen
- Ophthalmologic Centre, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- National Engineering Research Centre for Bioengineering Drugs and the Technologies, Institution of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Bioengineering Drugs, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
2
|
Liu Y, Li X, Chen Y, Yao Q, Zhou J, Wang X, Meng Q, Ji J, Yu Z, Chen X. Fecal microbiota transplantation: application scenarios, efficacy prediction, and factors impacting donor-recipient interplay. Front Microbiol 2025; 16:1556827. [PMID: 40201444 PMCID: PMC11975908 DOI: 10.3389/fmicb.2025.1556827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/07/2025] [Indexed: 04/10/2025] Open
Abstract
Fecal microbiota transplantation (FMT) represents a therapeutic approach that directly regulates the gut microbiota of recipients, normalizes its composition and reaping therapeutic rewards. Currently, in addition to its general application in treating Clostridium difficile (C. difficile) infection (CDI), FMT treatment has also been extended to the fields of other gastrointestinal diseases, infections, gut-liver or gut-brain axis disorders, metabolic diseases and cancer, etc. Prior to FMT, rigorous donor screening is essential to reduce the occurrence of adverse events. In addition, it is imperative to evaluate whether the recipient can safely and effectively undergo FMT treatment. However, the efficacy of FMT is influenced by the complex interactions between the gut microbiota of donor and recipient, the degree of donor microbiota engraftment is not necessarily positively related with the success rate of FMT. Furthermore, an increasing number of novel factors affecting FMT outcomes are being identified in recent clinical trials and animal experiments, broadening our understanding of FMT treatment. This article provides a comprehensive review of the application scenarios of FMT, the factors influencing the safety and efficacy of FMT from the aspects of both the donors and the recipients, and summarizes how these emerging novel regulatory factors can be combined to predict the clinical outcomes of patients undergoing FMT.
Collapse
Affiliation(s)
- Yaxin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xinru Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuchao Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Qinyan Yao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinjie Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoxuan Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Qingguo Meng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiaxuan Ji
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Zihan Yu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
3
|
Beyoğlu D, Idle JR. The Microbiome and Metabolic Dysfunction-Associated Steatotic Liver Disease. Int J Mol Sci 2025; 26:2882. [PMID: 40243472 PMCID: PMC11988851 DOI: 10.3390/ijms26072882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a condition wherein excessive fat accumulates in the liver, leading to inflammation and potential liver damage. In this narrative review, we evaluate the tissue microbiota, how they arise and their constituent microbes, and the role of the intestinal and hepatic microbiota in MASLD. The history of bacteriophages (phages) and their occurrence in the microbiota, their part in the potential causation of MASLD, and conversely, "phage therapy" for antibiotic resistance, obesity, and MASLD, are all described. The microbiota metabolism of bile acids and dietary tryptophan and histidine is defined, together with the impacts of their individual metabolites on MASLD pathogenesis. Both periodontitis and intestinal microbiota dysbiosis may cause MASLD, and how individual microorganisms and their metabolites are involved in these processes is discussed. Novel treatment opportunities for MASLD involving the microbiota exist and include fecal microbiota transplantation, probiotics, prebiotics, synbiotics, tryptophan dietary supplements, intermittent fasting, and phages or their holins and endolysins. Although FDA is yet to approve phage therapy in clinical use, there are multiple FDA-approved clinical trials, and this may represent a new horizon for the future treatment of MASLD.
Collapse
Affiliation(s)
- Diren Beyoğlu
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA;
| | - Jeffrey R. Idle
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA;
- Department of Biomedical Research, University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
4
|
Li ZP, Sun JK, Fu WP, Zhang CJ. Optimizing risk management for post-amputation wound complications in diabetic patients: Focus on glycemic and immunosuppressive control. World J Diabetes 2025; 16:102899. [PMID: 40093273 PMCID: PMC11885971 DOI: 10.4239/wjd.v16.i3.102899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/21/2025] Open
Abstract
This study highlights the importance of identifying and addressing risk factors associated with wound complications following transtibial amputation in diabetic patients. These amputations, often necessitated by severe diabetic foot ulcers, carry significant risks of postoperative complications such as infection and delayed wound healing. Elevated hemoglobin A1c levels, indicative of poor glycemic control, and a history of kidney transplantation, due to required immunosuppressive therapy, are key factors influencing these outcomes. This paper emphasizes the need for enhanced glycemic management and personalized postoperative care, particularly for immunocompromised individuals, to minimize complications and improve patient prognosis. Future research should focus on prospective studies to validate targeted interventions and optimize care strategies, ultimately aiming to reduce the healthcare burden associated with diabetic foot complications.
Collapse
Affiliation(s)
- Zhi-Peng Li
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Tianjian Advanced Biomedical Laboratory, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Jin-Ke Sun
- Third Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Wei-Ping Fu
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Chang-Jiang Zhang
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| |
Collapse
|
5
|
Ramírez JD, Castañeda S, Weatherhead J, Poveda C. Parasite-microbiota interactions: a pathway to innovative interventions for Chagas disease, leishmaniasis, and ascariasis. Future Microbiol 2025; 20:149-161. [PMID: 39574234 PMCID: PMC11792847 DOI: 10.1080/17460913.2024.2431417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/15/2024] [Indexed: 02/02/2025] Open
Abstract
Parasitic infections are a major global health challenge, driven in part by complex interactions between parasites, host microbiota, and immune responses. Recent advances in microbiome research highlight the critical role of microbiota in influencing disease outcomes and treatment effectiveness. This review examines how changes in the microbiota impact parasite transmission, disease progression, and responses to treatment, focusing on key parasitic diseases such as Chagas disease, leishmaniasis, and ascariasis. The microbiota can either exacerbate or mitigate disease severity, depending on its composition, providing critical insights for novel therapeutic strategies. Emerging approaches discussed include the use of targeted probiotics, prebiotics, and microbiota-modulating drugs to influence parasite dynamics and enhance conventional therapies. The review also explores the potential of integrating microbiota knowledge into vaccine design and immunotherapy, aiming to develop vaccines that elicit stronger immune responses and identify new therapeutic targets. A multidisciplinary approach is essential for translating these findings into effective clinical solutions, with future research focusing on validating microbiota-based interventions in clinical settings. In conclusion, the interaction between microbiota and parasitic infections presents a promising avenue for innovative therapies, with the potential to significantly improve global health outcomes.
Collapse
Affiliation(s)
- Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Jill Weatherhead
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children´s Hospital, Center for Vaccine Development, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Cristina Poveda
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children´s Hospital, Center for Vaccine Development, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
6
|
Lian YQ, Li PF, Guo Y, Tao YL, Liu YN, Liang ZY, Zhu SF. Interaction between ischemia-reperfusion injury and intestinal microecology in organ transplantation and its therapeutic prospects. Front Immunol 2024; 15:1495394. [PMID: 39712022 PMCID: PMC11659223 DOI: 10.3389/fimmu.2024.1495394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/15/2024] [Indexed: 12/24/2024] Open
Abstract
Organ transplantation is a vital intervention for end-stage organ failure; however, ischemia-reperfusion injury is a complication of transplantation, affecting the prognosis and survival of transplant recipients. As a complex ecosystem, recent research has highlighted the role of the intestinal microecology in transplantation, revealing its significant interplay with ischemia-reperfusion injury. This review explores the interaction between ischemia-reperfusion injury and intestinal microecology, with a special focus on how ischemia-reperfusion injury affects intestinal microecology and how these microecological changes contribute to complications after organ transplantation, such as infection and rejection. Based on a comprehensive analysis of current research advances, this study proposes potential strategies to improve transplant outcomes, offering guidance for future research and clinical practice.
Collapse
Affiliation(s)
- Yong-qi Lian
- Department of Critical Care Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Peng-fei Li
- Department of Orthopaedics, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yan Guo
- Pathology Department, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yan-lin Tao
- Department of Surgery ICU, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Ya-nan Liu
- Department of Surgery ICU, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Zhao-yu Liang
- Department of Critical Care Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Shu-fen Zhu
- Physical Examination Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| |
Collapse
|
7
|
Karimi M, Shirsalimi N, Hashempour Z, Salehi Omran H, Sedighi E, Beigi F, Mortezazadeh M. Safety and efficacy of fecal microbiota transplantation (FMT) as a modern adjuvant therapy in various diseases and disorders: a comprehensive literature review. Front Immunol 2024; 15:1439176. [PMID: 39391303 PMCID: PMC11464302 DOI: 10.3389/fimmu.2024.1439176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
The human gastrointestinal (GI) tract microbiome is a complex and all-encompassing ecological system of trillions of microorganisms. It plays a vital role in digestion, disease prevention, and overall health. When this delicate balance is disrupted, it can lead to various health issues. Fecal microbiota transplantation (FMT) is an emerging therapeutic intervention used as an adjuvant therapy for many diseases, particularly those with dysbiosis as their underlying cause. Its goal is to restore this balance by transferring fecal material from healthy donors to the recipients. FMT has an impressive reported cure rate between 80% and 90% and has become a favored treatment for many diseases. While FMT may have generally mild to moderate transient adverse effects, rare severe complications underscore the importance of rigorous donor screening and standardized administration. FMT has enormous potential as a practical therapeutic approach; however, additional research is required to further determine its potential for clinical utilization, as well as its safety and efficiency in different patient populations. This comprehensive literature review offers increased confidence in the safety and effectiveness of FMT for several diseases affecting the intestines and other systems, including diabetes, obesity, inflammatory and autoimmune illness, and other conditions.
Collapse
Affiliation(s)
- Mehdi Karimi
- Bogomolets National Medical University (NMU), Kyiv, Ukraine
| | - Niyousha Shirsalimi
- Faculty of Medicine, Hamadan University of Medical Science (UMSHA), Hamadan, Iran
| | - Zahra Hashempour
- School of Medicine, Shiraz University of Medical Sciences (SUMS), Shiraz, Iran
| | - Hossein Salehi Omran
- School of Medicine, Shahid Beheshti University of Medical Sciences (SBMUS), Tehran, Iran
| | - Eshagh Sedighi
- Department of Veterinary Medicine, Islamic Azad University Branch of Urmia, Urmia, Iran
| | - Farzan Beigi
- Students Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Masoud Mortezazadeh
- Department of Internal Medicine, Sina Hospital, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
8
|
Chen Z, Chang X, Ye Q, Gao Y, Deng R. Kidney transplantation and gut microbiota. Clin Kidney J 2024; 17:sfae214. [PMID: 39170931 PMCID: PMC11336673 DOI: 10.1093/ckj/sfae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Indexed: 08/23/2024] Open
Abstract
Kidney transplantation is an effective way to improve the condition of patients with end-stage renal disease. However, maintaining long-term graft function and improving patient survival remain a key challenge after kidney transplantation. Dysbiosis of intestinal flora has been reported to be associated with complications in renal transplant recipients. The commensal microbiota plays an important role in the immunomodulation of the transplant recipient responses. However, several processes, such as the use of perioperative antibiotics and high-dose immunosuppressants in renal transplant recipients, can lead to gut dysbiosis and disrupt the interaction between the microbiota and the host immune responses, which in turn can lead to complications such as infection and rejection in organ recipients. In this review, we summarize and discuss the changes in intestinal flora and their influencing factors in patients after renal transplantation as well as the evidence related to the impact of intestinal dysbiosis on the prognosis of renal transplantation from in vivo and clinical studies, and conclude with a discussion of the use of microbial therapy in the transplant population. Hopefully, a deeper understanding of the function and composition of the microbiota in patients after renal transplantation may assist in the development of clinical strategies to restore a normal microbiota and facilitate the clinical management of grafts in the future.
Collapse
Affiliation(s)
- Zehuan Chen
- Organ Transplantation Center, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University First Affiliated Hospital
| | - Xinhua Chang
- Organ Transplantation Center, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University First Affiliated Hospital
| | - Qianyu Ye
- Organ Transplantation Center, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University First Affiliated Hospital
| | - Yifang Gao
- Organ Transplantation Center, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University First Affiliated Hospital
| | - Ronghai Deng
- Organ Transplantation Center, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University First Affiliated Hospital
| |
Collapse
|
9
|
Mehta N, Goodenough D, Gupta NK, Thomas S, Mehta C, Prakash R, Woodworth MH, Kraft CS, Fridkin SK. Recurrent Clostridioides difficile Infection and Outcome of Fecal Microbiota Transplantation Use: A Population-Based Assessment. Open Forum Infect Dis 2024; 11:ofae309. [PMID: 38975247 PMCID: PMC11227225 DOI: 10.1093/ofid/ofae309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024] Open
Abstract
Background Fecal microbiota transplantation (FMT) is recommended for the treatment of recurrent Clostridioides difficile infection (rCDI). In the current study, we evaluated rates of rCDI and subsequent FMT in a large metropolitan area. We compared demographic and clinical differences in FMT recipients and nonrecipients and quantified differences in outcomes based on treatment modality. Methods A retrospective community-wide cohort study was conducted using surveillance data from the Georgia Emerging Infections Program, the Georgia Discharge Data System, and locally maintained lists of FMTs completed across multiple institutions to evaluate all episodes of C. difficile infection (CDI) in this region between 2016 and 2019. Cases were limited to patients with rCDI and ≥1 documented hospitalization. A propensity-matched cohort was created to compare rates of recurrence and mortality among matched patients based on FMT receipt. Results A total of 3038 (22%) of 13 852 patients with CDI had rCDI during this period. In a propensity-matched cohort, patients who received an FMT had lower rates of rCDI (odds ratio, 0.6 [95% confidence interval, .38-.96) and a lower mortality rate (0.26 [.08-.82]). Of patients with rCDI, only 6% had received FMT. Recipients were more likely to be young, white, and female and less likely to have renal disease, diabetes, or liver disease, though these chronic illnesses were associated with higher rates of rCDI. Conclusions These data suggest FMT has been underused in a population-based assessment and that FMT substantially reduced risk of recurrence and death.
Collapse
Affiliation(s)
- Nirja Mehta
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Georgia Emerging Infections Program, Decatur, Georgia, USA
| | - Dana Goodenough
- Georgia Emerging Infections Program, Decatur, Georgia, USA
- Atlanta Veterans’ Affairs Medical Center, Decatur, Georgia, USA
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nitin K Gupta
- Atlanta Gastroenterology Associates, Georgia, USA
- United Digestive, Atlanta, Georgia, USA
- Northside Hospital, Department of Gastroenterology, Atlanta, Georgia, USA
| | - Stepy Thomas
- Georgia Emerging Infections Program, Decatur, Georgia, USA
- Atlanta Veterans’ Affairs Medical Center, Decatur, Georgia, USA
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Christina Mehta
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Radhika Prakash
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael H Woodworth
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Colleen S Kraft
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Scott K Fridkin
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Georgia Emerging Infections Program, Decatur, Georgia, USA
| |
Collapse
|
10
|
Di Bella S, Sanson G, Monticelli J, Zerbato V, Principe L, Giuffrè M, Pipitone G, Luzzati R. Clostridioides difficile infection: history, epidemiology, risk factors, prevention, clinical manifestations, treatment, and future options. Clin Microbiol Rev 2024; 37:e0013523. [PMID: 38421181 PMCID: PMC11324037 DOI: 10.1128/cmr.00135-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
SUMMARYClostridioides difficile infection (CDI) is one of the major issues in nosocomial infections. This bacterium is constantly evolving and poses complex challenges for clinicians, often encountered in real-life scenarios. In the face of CDI, we are increasingly equipped with new therapeutic strategies, such as monoclonal antibodies and live biotherapeutic products, which need to be thoroughly understood to fully harness their benefits. Moreover, interesting options are currently under study for the future, including bacteriophages, vaccines, and antibiotic inhibitors. Surveillance and prevention strategies continue to play a pivotal role in limiting the spread of the infection. In this review, we aim to provide the reader with a comprehensive overview of epidemiological aspects, predisposing factors, clinical manifestations, diagnostic tools, and current and future prophylactic and therapeutic options for C. difficile infection.
Collapse
Affiliation(s)
- Stefano Di Bella
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| | - Gianfranco Sanson
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| | - Jacopo Monticelli
- Infectious Diseases
Unit, Trieste University Hospital
(ASUGI), Trieste,
Italy
| | - Verena Zerbato
- Infectious Diseases
Unit, Trieste University Hospital
(ASUGI), Trieste,
Italy
| | - Luigi Principe
- Microbiology and
Virology Unit, Great Metropolitan Hospital
“Bianchi-Melacrino-Morelli”,
Reggio Calabria, Italy
| | - Mauro Giuffrè
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
- Department of Internal
Medicine (Digestive Diseases), Yale School of Medicine, Yale
University, New Haven,
Connecticut, USA
| | - Giuseppe Pipitone
- Infectious Diseases
Unit, ARNAS Civico-Di Cristina
Hospital, Palermo,
Italy
| | - Roberto Luzzati
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| |
Collapse
|
11
|
Mullish BH, Merrick B, Quraishi MN, Bak A, Green CA, Moore DJ, Porter RJ, Elumogo NT, Segal JP, Sharma N, Marsh B, Kontkowski G, Manzoor SE, Hart AL, Settle C, Keller JJ, Hawkey P, Iqbal TH, Goldenberg SD, Williams HRT. The use of faecal microbiota transplant as treatment for recurrent or refractory Clostridioides difficile infection and other potential indications: second edition of joint British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS) guidelines. Gut 2024; 73:1052-1075. [PMID: 38609165 DOI: 10.1136/gutjnl-2023-331550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/03/2024] [Indexed: 04/14/2024]
Abstract
The first British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS)-endorsed faecal microbiota transplant (FMT) guidelines were published in 2018. Over the past 5 years, there has been considerable growth in the evidence base (including publication of outcomes from large national FMT registries), necessitating an updated critical review of the literature and a second edition of the BSG/HIS FMT guidelines. These have been produced in accordance with National Institute for Health and Care Excellence-accredited methodology, thus have particular relevance for UK-based clinicians, but are intended to be of pertinence internationally. This second edition of the guidelines have been divided into recommendations, good practice points and recommendations against certain practices. With respect to FMT for Clostridioides difficile infection (CDI), key focus areas centred around timing of administration, increasing clinical experience of encapsulated FMT preparations and optimising donor screening. The latter topic is of particular relevance given the COVID-19 pandemic, and cases of patient morbidity and mortality resulting from FMT-related pathogen transmission. The guidelines also considered emergent literature on the use of FMT in non-CDI settings (including both gastrointestinal and non-gastrointestinal indications), reviewing relevant randomised controlled trials. Recommendations are provided regarding special areas (including compassionate FMT use), and considerations regarding the evolving landscape of FMT and microbiome therapeutics.
Collapse
Affiliation(s)
- Benjamin H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Blair Merrick
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College London, London, UK
| | - Mohammed Nabil Quraishi
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, London, UK
| | - Aggie Bak
- Healthcare Infection Society, London, UK
| | - Christopher A Green
- Department of Infectious Diseases & Tropical Medicine, University Hospitals NHS Foundation Trust, Birmingham Heartlands Hospital, Birmingham, UK
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - David J Moore
- Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Robert J Porter
- Department of Microbiology, Royal Devon and Exeter Hospitals, Barrack Road, UK
| | - Ngozi T Elumogo
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Norfolk and Norwich University Hospital, Norwich, UK
| | - Jonathan P Segal
- Department of Gastroenterology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Naveen Sharma
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, London, UK
| | - Belinda Marsh
- Lay representative for FMT Working Party, Healthcare Infection Society, London, UK
| | - Graziella Kontkowski
- Lay representative for FMT Working Party, Healthcare Infection Society, London, UK
- C.diff support, London, UK
| | - Susan E Manzoor
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK
| | - Ailsa L Hart
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Department of Gastroenterology and Inflammatory Bowel Disease Unit, St Mark's Hospital and Academic Institute, Middlesex, UK
| | | | - Josbert J Keller
- Department of Gastroenterology, Haaglanden Medisch Centrum, The Hague, The Netherlands
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Hawkey
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK
- Public Health Laboratory, Faculty of Medicine, University of Birmingham, Birmingham, UK
| | - Tariq H Iqbal
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, London, UK
| | - Simon D Goldenberg
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College London, London, UK
| | - Horace R T Williams
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
12
|
Mullish BH, Merrick B, Quraishi MN, Bak A, Green CA, Moore DJ, Porter RJ, Elumogo NT, Segal JP, Sharma N, Marsh B, Kontkowski G, Manzoor SE, Hart AL, Settle C, Keller JJ, Hawkey P, Iqbal TH, Goldenberg SD, Williams HRT. The use of faecal microbiota transplant as treatment for recurrent or refractory Clostridioides difficile infection and other potential indications: second edition of joint British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS) guidelines. J Hosp Infect 2024; 148:189-219. [PMID: 38609760 DOI: 10.1016/j.jhin.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
The first British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS)-endorsed faecal microbiota transplant (FMT) guidelines were published in 2018. Over the past 5 years, there has been considerable growth in the evidence base (including publication of outcomes from large national FMT registries), necessitating an updated critical review of the literature and a second edition of the BSG/HIS FMT guidelines. These have been produced in accordance with National Institute for Health and Care Excellence-accredited methodology, thus have particular relevance for UK-based clinicians, but are intended to be of pertinence internationally. This second edition of the guidelines have been divided into recommendations, good practice points and recommendations against certain practices. With respect to FMT for Clostridioides difficile infection (CDI), key focus areas centred around timing of administration, increasing clinical experience of encapsulated FMT preparations and optimising donor screening. The latter topic is of particular relevance given the COVID-19 pandemic, and cases of patient morbidity and mortality resulting from FMT-related pathogen transmission. The guidelines also considered emergent literature on the use of FMT in non-CDI settings (including both gastrointestinal and non-gastrointestinal indications), reviewing relevant randomised controlled trials. Recommendations are provided regarding special areas (including compassionate FMT use), and considerations regarding the evolving landscape of FMT and microbiome therapeutics.
Collapse
Affiliation(s)
- B H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK; Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - B Merrick
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College London, London, UK
| | - M N Quraishi
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK; Institute of Cancer and Genomic Sciences, University of Birmingham, London, UK
| | - A Bak
- Healthcare Infection Society, London, UK
| | - C A Green
- Department of Infectious Diseases & Tropical Medicine, University Hospitals NHS Foundation Trust, Birmingham Heartlands Hospital, Birmingham, UK; School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - D J Moore
- Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - R J Porter
- Department of Microbiology, Royal Devon and Exeter Hospitals, Barrack Road, UK
| | - N T Elumogo
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK; Norfolk and Norwich University Hospital, Norwich, UK
| | - J P Segal
- Department of Gastroenterology, Royal Melbourne Hospital, Melbourne, Victoria, Australia; Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - N Sharma
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK; Institute of Cancer and Genomic Sciences, University of Birmingham, London, UK
| | - B Marsh
- Lay Representative for FMT Working Party, Healthcare Infection Society, London, UK
| | - G Kontkowski
- Lay Representative for FMT Working Party, Healthcare Infection Society, London, UK; C.diff support, London, UK
| | - S E Manzoor
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK
| | - A L Hart
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK; Department of Gastroenterology and Inflammatory Bowel Disease Unit, St Mark's Hospital and Academic Institute, Middlesex, UK
| | - C Settle
- South Tyneside and Sunderland NHS Foundation Trust, South Shields, UK
| | - J J Keller
- Department of Gastroenterology, Haaglanden Medisch Centrum, The Hague, The Netherlands; Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - P Hawkey
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK; Public Health Laboratory, Faculty of Medicine, University of Birmingham, Birmingham, UK
| | - T H Iqbal
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK; Institute of Cancer and Genomic Sciences, University of Birmingham, London, UK
| | - S D Goldenberg
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College London, London, UK.
| | - H R T Williams
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK; Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK.
| |
Collapse
|
13
|
Amjad W, Hamaad Rahman S, Schiano TD, Jafri SM. Epidemiology and Management of Infections in Liver Transplant Recipients. Surg Infect (Larchmt) 2024; 25:272-290. [PMID: 38700753 DOI: 10.1089/sur.2023.346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
Background: Improvements in liver transplant (LT) outcomes are attributed to advances in surgical techniques, use of potent immunosuppressants, and rigorous pre-LT testing. Despite these improvements, post-LT infections remain the most common complication in this population. Bacteria constitute the most common infectious agents, while fungal and viral infections are also frequently encountered. Multi-drug-resistant bacterial infections develop because of polymicrobial overuse and prolonged hospital stays. Immediate post-LT infections are commonly caused by viruses. Conclusions: Appropriate vaccination, screening of both donor and recipients before LT and antiviral prophylaxis in high-risk individuals are recommended. Antimicrobial drug resistance is common in high-risk LT and associated with poor outcomes; epidemiology and management of these cases is discussed. Additionally, we also discuss the effect of coronavirus disease 2019 (COVID-19) infection and monkeypox in the LT population.
Collapse
Affiliation(s)
- Waseem Amjad
- Gastroenterology and Hepatology, University of Maryland, Baltimore, Maryland, USA
| | | | - Thomas D Schiano
- Recanati-Miller Transplantation Institute, Division of Liver Diseases, Mount Sinai Medical Center, New York, New York, USA
| | - Syed-Mohammed Jafri
- Gastroenterology and Hepatology, Henry Ford Hospital, Detroit, Michigan, USA
| |
Collapse
|
14
|
Tang M, Wang C, Xia Y, Tang J, Wang J, Shen L. Clostridioides difficile infection in inflammatory bowel disease: a clinical review. Expert Rev Anti Infect Ther 2024; 22:297-306. [PMID: 38676422 DOI: 10.1080/14787210.2024.2347955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
INTRODUCTION Strong clinical data demonstrate that inflammatory bowel disease (IBD) is an independent risk factor for Clostridiodes difficile infection (CDI) and suggest a globally increased prevalence and severity of C. difficile coinfection in IBD patients (CDI-IBD). In addition to elderly individuals, children are also at higher risk of CDI-IBD. Rapid diagnosis is essential since the clinical manifestations of active IBD and CDI-IBD are indistinguishable. Antibiotics have been well established in the treatment of CDI-IBD, but they do not prevent recurrence. AREAS COVERED Herein, the authors focus on reviewing recent research advances on the new therapies of CDI-IBD. The novel therapies include gut microbiota restoration therapies (such as prebiotics, probiotics and FMT), immunotherapy (such as vaccines and monoclonal antibodies) and diet strategies (such as groningen anti-inflammatory diet and mediterranean diet). Future extensive prospective and placebo-controlled studies are required to evaluate their efficacy and long-term safety. EXPERT OPINION Available studies show that the prevalence of CDI-IBD is not optimistic. Currently, potential treatment options for CDI-IBD include a number of probiotics and novel antibiotics. This review updates the knowledge on the management of CDI in IBD patients, which is timely and important for GI doctors and scientists.
Collapse
Affiliation(s)
- Mengjun Tang
- Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Chunhua Wang
- Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Ying Xia
- Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Jian Tang
- Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Jiao Wang
- Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, China
| | - Liang Shen
- Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
- Department of Clinical Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
15
|
Samaey A, Vázquez-Castellanos JF, Caenepeel C, Evenepoel P, Vermeire S, Raes J, Knops N. Effects of fecal microbiota transplantation for recurrent Clostridium difficile infection in children on kidney replacement therapy: a pilot study. Pediatr Nephrol 2024; 39:1201-1212. [PMID: 37775582 DOI: 10.1007/s00467-023-06168-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Recurrent Clostridium difficile infection (rCDI) is a rising problem in children with chronic diseases. Fecal microbiota transplantation (FMT) is a recent alternative for rCDI patients who do not respond to conventional treatment. FMT could have an additional positive effect on the intestinal dysbiosis and accumulation of uremic retention molecules (URM) associated with chronic kidney disease (CKD). Our aim was to investigate the clinical efficacy of FMT for rCDI in children with CKD together with the effect on dysbiosis and URM levels. METHODS We analyzed stool and blood samples before and until 3 months after FMT in 3 children between 4 and 8 years old with CKD and rCDI. The microbiome was analyzed by 16 s rRNA sequencing. URM were analyzed with ultra-performance liquid chromatography-tandem mass spectrometry. CRP and fecal calprotectin were analyzed as parameters for systemic and gut inflammation, respectively. RESULTS CDI resolved after FMT in all three without adverse events; one patient needed a second FMT. No significant effect on CRP and calprotectin was observed. Stool samples demonstrated a reduced richness and bacterial diversity which did not improve after FMT. We did observe a trend in the decrease of specific URM up to 3 months after FMT. CONCLUSION FMT is an effective treatment for rCDI in patients with CKD. Analysis of the microbiome showed an important intestinal dysbiosis that, besides a significant reduction in Clostridium difficile, did not significantly change after FMT. A trend for reduction was seen in some of the measured URM after FMT.
Collapse
Affiliation(s)
- An Samaey
- Department of Pediatric Nephrology and Solid Organ Transplantation, UZ Leuven, Leuven, Belgium.
| | - Jorge Francisco Vázquez-Castellanos
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Louvain, Belgium
| | - Clara Caenepeel
- Translational Research Center for Gastrointestinal Disorders (TARGID), UZ Leuven, Leuven, Belgium
| | - Pieter Evenepoel
- Department of Nephrology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Nephrology, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Department of Gastroenterology &, Hepatology University Hospitals Leuven, and Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
| | - Noël Knops
- Department of Pediatric Nephrology and Solid Organ Transplantation, UZ Leuven, Leuven, Belgium
- Department of Pediatrics, Groene Hart Ziekenhuis, Gouda, the Netherlands
| |
Collapse
|
16
|
Salvadori M, Rosso G. Update on the reciprocal interference between immunosuppressive therapy and gut microbiota after kidney transplantation. World J Transplant 2024; 14:90194. [PMID: 38576749 PMCID: PMC10989467 DOI: 10.5500/wjt.v14.i1.90194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 03/15/2024] Open
Abstract
Gut microbiota is often modified after kidney transplantation. This principally happens in the first period after transplantation. Antibiotics and, most of all, immunosuppressive drugs are the main responsible. The relationship between immunosuppressive drugs and the gut microbiota is bilateral. From one side immunosuppressive drugs modify the gut microbiota, often generating dysbiosis; from the other side microbiota may interfere with the immunosuppressant pharmacokinetics, producing products more or less active with respect to the original drug. These phenomena have influence over the graft outcomes and clinical consequences as rejections, infections, diarrhea may be caused by the dysbiotic condition. Corticosteroids, calcineurin inhibitors such as tacrolimus and cyclosporine, mycophenolate mofetil and mTOR inhibitors are the immunosuppressive drugs whose effect on the gut microbiota is better known. In contrast is well known how the gut microbiota may interfere with glucocorticoids, which may be transformed into androgens. Tacrolimus may be transformed by micro biota into a product called M1 that is 15-fold less active with respect to tacrolimus. The pro-drug mycophenolate mofetil is normally transformed in mycophenolic acid that according the presence or not of microbes producing the enzyme glu curonidase, may be transformed into the inactive product.
Collapse
Affiliation(s)
- Maurizio Salvadori
- Department of Renal Transplantation, Careggi University Hospital, Florence 50139, Tuscany, Italy
| | - Giuseppina Rosso
- Division of Nephrology, San Giovanni di Dio Hospital, Florence 50143, Toscana, Italy
| |
Collapse
|
17
|
Pipitone G, Granata G, Sartelli M, Gizzi A, Imburgia C, Marsala L, Cascio A, Iaria C. On the use of intravenous metronidazole for severe and complicated Clostridioides difficile infection: a review and meta-analysis. LE INFEZIONI IN MEDICINA 2024; 32:20-24. [PMID: 38456021 PMCID: PMC10917561 DOI: 10.53854/liim-3201-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/10/2024] [Indexed: 03/09/2024]
Abstract
The European Society of Clinical Microbiology and Infectious Disease (ESCMID) has advised against the use of metronidazole for fulminant Clostridioides difficile (C. difficile) infection (CDI) in their latest guidelines. They suggest using oral vancomycin alone instead. This recommendation is based on a few retrospective studies, which have multiple biases. We evaluated the three studies that led ESCMID to advise against intravenous metronidazole for fulminant CDI and performed a meta-analysis. The meta-analysis revealed a mild (2.7%), not statistically significant (p=0.8) difference in mortality between the two groups. The high heterogeneity (I2= 89%) should also be noted. The decision to add or remove metronidazole should be discussed in the near future. In the meantime, combination therapy could be a cautious treatment for fulminant CDI.
Collapse
Affiliation(s)
| | - Guido Granata
- Clinical and Research Department for Infectious Diseases, INMI Lazzaro Spallanzani IRCCS
| | | | - Andrea Gizzi
- Infectious Disease Unit, ARNAS Civico-Di Cristina, Palermo, Italy
- Infectious Disease Unit, University Hospital P. Giaccone, Palermo, Italy
| | - Claudia Imburgia
- Infectious Disease Unit, ARNAS Civico-Di Cristina, Palermo, Italy
| | - Laura Marsala
- Medical Direction Unit, ARNAS Civico-Di Cristina, Palermo, Italy
| | - Antonio Cascio
- Infectious Disease Unit, University Hospital P. Giaccone, Palermo, Italy
| | - Chiara Iaria
- Infectious Disease Unit, ARNAS Civico-Di Cristina, Palermo, Italy
| |
Collapse
|
18
|
Peery AF, Kelly CR, Kao D, Vaughn BP, Lebwohl B, Singh S, Imdad A, Altayar O. AGA Clinical Practice Guideline on Fecal Microbiota-Based Therapies for Select Gastrointestinal Diseases. Gastroenterology 2024; 166:409-434. [PMID: 38395525 DOI: 10.1053/j.gastro.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
BACKGROUND & AIMS Fecal microbiota-based therapies include conventional fecal microbiota transplant and US Food and Drug Administration-approved therapies, fecal microbiota live-jslm and fecal microbiota spores live-brpk. The American Gastroenterological Association (AGA) developed this guideline to provide recommendations on the use of fecal microbiota-based therapies in adults with recurrent Clostridioides difficile infection; severe to fulminant C difficile infection; inflammatory bowel diseases, including pouchitis; and irritable bowel syndrome. METHODS The guideline was developed using the GRADE (Grading of Recommendations, Assessment, Development, and Evaluation) framework to prioritize clinical questions, identify patient-centered outcomes, and conduct an evidence synthesis. The guideline panel used the Evidence-to-Decision framework to develop recommendations for the use of fecal microbiota-based therapies in the specified gastrointestinal conditions and provided implementation considerations for clinical practice. RESULTS The guideline panel made 7 recommendations. In immunocompetent adults with recurrent C difficile infection, the AGA suggests select use of fecal microbiota-based therapies on completion of standard of care antibiotics to prevent recurrence. In mildly or moderately immunocompromised adults with recurrent C difficile infection, the AGA suggests select use of conventional fecal microbiota transplant. In severely immunocompromised adults, the AGA suggests against the use of any fecal microbiota-based therapies to prevent recurrent C difficile. In adults hospitalized with severe or fulminant C difficile not responding to standard of care antibiotics, the AGA suggests select use of conventional fecal microbiota transplant. The AGA suggests against the use of conventional fecal microbiota transplant as treatment for inflammatory bowel diseases or irritable bowel syndrome, except in the context of clinical trials. CONCLUSIONS Fecal microbiota-based therapies are effective therapy to prevent recurrent C difficile in select patients. Conventional fecal microbiota transplant is an adjuvant treatment for select adults hospitalized with severe or fulminant C difficile infection not responding to standard of care antibiotics. Fecal microbiota transplant cannot yet be recommended in other gastrointestinal conditions.
Collapse
Affiliation(s)
- Anne F Peery
- University of North Carolina, Chapel Hill, North Carolina
| | - Colleen R Kelly
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dina Kao
- University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | - Osama Altayar
- Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
19
|
Elgarten CW, Margolis EB, Kelly MS. The Microbiome and Pediatric Transplantation. J Pediatric Infect Dis Soc 2024; 13:S80-S89. [PMID: 38417089 PMCID: PMC10901476 DOI: 10.1093/jpids/piad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/25/2023] [Indexed: 03/01/2024]
Abstract
The microbial communities that inhabit our bodies have been increasingly linked to host physiology and pathophysiology. This microbiome, through its role in colonization resistance, influences the risk of infections after transplantation, including those caused by multidrug-resistant organisms. In addition, through both direct interactions with the host immune system and via the production of metabolites that impact local and systemic immunity, the microbiome plays an important role in the establishment of immune tolerance after transplantation, and conversely, in the development of graft-versus-host disease and graft rejection. This review offers a comprehensive overview of the evidence for the role of the microbiome in hematopoietic cell and solid organ transplant complications, drivers of microbiome shift during transplantation, and the potential of microbiome-based therapies to improve pediatric transplantation outcomes.
Collapse
Affiliation(s)
- Caitlin W Elgarten
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elisa B Margolis
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Matthew S Kelly
- Departments of Pediatrics and Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
20
|
Ding UZ, Ooi L, Wu HHL, Chinnadurai R. Clostridioides difficile Infection in Kidney Transplant Recipients. Pathogens 2024; 13:140. [PMID: 38392878 PMCID: PMC10892420 DOI: 10.3390/pathogens13020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Clostridioides difficile (C. difficile) is a bacterial organism that typically infects the colon, which has had its homeostasis of healthy gut microbiota disrupted by antibiotics or other interventions. Patients with kidney transplantation are a group that are susceptible to C. difficile infection (CDI) and have poorer outcomes with CDI given that they conventionally require long-term immunosuppression to minimize their risk of graft rejection, weakening their responses to infection. Recognizing the risk factors and complex pathophysiological processes that exist between immunosuppression, dysbiosis, and CDI is important when making crucial clinical decisions surrounding the management of this vulnerable patient cohort. Despite the clinical importance of this topic, there are few studies that have evaluated CDI in the context of kidney transplant recipients and other solid organ transplant populations. The current recommendations on CDI management in kidney transplant and solid organ transplant recipients are mostly extrapolated from data relating to CDI management in the general population. We provide a narrative review that discusses the available evidence examining CDI in solid organ transplant recipients, with a particular focus on the kidney transplant recipient, from the epidemiology of CDI, clinical features and implications of CDI, potential risk factors of CDI, and, ultimately, prevention and management strategies for CDI, with the aim of providing areas for future research development in this topic area.
Collapse
Affiliation(s)
- UZhe Ding
- Department of Renal Medicine, Northern Care Alliance NHS Foundation Trust, Salford M6 8HD, UK; (U.D.); (L.O.); (R.C.)
| | - Lijin Ooi
- Department of Renal Medicine, Northern Care Alliance NHS Foundation Trust, Salford M6 8HD, UK; (U.D.); (L.O.); (R.C.)
| | - Henry H. L. Wu
- Renal Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, The University of Sydney, Sydney, NSW 2065, Australia
| | - Rajkumar Chinnadurai
- Department of Renal Medicine, Northern Care Alliance NHS Foundation Trust, Salford M6 8HD, UK; (U.D.); (L.O.); (R.C.)
- Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M1 7HR, UK
| |
Collapse
|
21
|
Kelly CR, Allegretti JR. Review Article: Gastroenterology and Clostridium difficile Infection: Past, Present, and Future. Clin Infect Dis 2023; 77:S463-S470. [PMID: 38051967 DOI: 10.1093/cid/ciad644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
Research and innovation around Clostridium difficile infection (CDI) has been a multidisciplinary endeavor since discovery of the organism in 1978. The field of gastroenterology has contributed to our understanding of CDI as a disease caused by disruptions in the gut microbiome and led to advances in therapeutic manipulation of gut microbiota, including fecal microbiota transplantation. The high incidence of CDI in patients with inflammatory bowel disease and treatment of the infection in this population have been of particular interest to gastroenterologists. The emergence of standardized, approved live biotherapeutic products for treatment of recurrent CDI is an inflection point in our management of this difficult clinical problem, and real-world performance of these therapies will inform optimal treatment algorithms.
Collapse
Affiliation(s)
- Colleen R Kelly
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jessica R Allegretti
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Woodworth MH, Conrad RE, Haldopoulos M, Pouch SM, Babiker A, Mehta AK, Sitchenko KL, Wang CH, Strudwick A, Ingersoll JM, Philippe C, Lohsen S, Kocaman K, Lindner BG, Hatt JK, Jones RM, Miller C, Neish AS, Friedman-Moraco R, Karadkhele G, Liu KH, Jones DP, Mehta CC, Ziegler TR, Weiss DS, Larsen CP, Konstantinidis KT, Kraft CS. Fecal microbiota transplantation promotes reduction of antimicrobial resistance by strain replacement. Sci Transl Med 2023; 15:eabo2750. [PMID: 37910603 PMCID: PMC10821315 DOI: 10.1126/scitranslmed.abo2750] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/05/2023] [Indexed: 11/03/2023]
Abstract
Multidrug-resistant organism (MDRO) colonization is a fundamental challenge in antimicrobial resistance. Limited studies have shown that fecal microbiota transplantation (FMT) can reduce MDRO colonization, but its mechanisms are poorly understood. We conducted a randomized, controlled trial of FMT for MDRO decolonization in renal transplant recipients called PREMIX (NCT02922816). Eleven participants were enrolled and randomized 1:1 to FMT or an observation period followed by delayed FMT if stool cultures were MDRO positive at day 36. Participants who were MDRO positive after one FMT were treated with a second FMT. At last visit, eight of nine patients who completed all treatments were MDRO culture negative. FMT-treated participants had longer time to recurrent MDRO infection versus PREMIX-eligible controls who were not treated with FMT. Key taxa (Akkermansia muciniphila, Alistipes putredinis, Phocaeicola dorei, Phascolarctobacterium faecium, Alistipes species, Mesosutterella massiliensis, Barnesiella intestinihominis, and Faecalibacterium prausnitzii) from the single feces donor used in the study that engrafted in recipients and metabolites such as short-chain fatty acids and bile acids in FMT-responding participants uncovered leads for rational microbiome therapeutic and diagnostic development. Metagenomic analyses revealed a previously unobserved mechanism of MDRO eradication by conspecific strain competition in an FMT-treated subset. Susceptible Enterobacterales strains that replaced baseline extended-spectrum β-lactamase-producing strains were not detectable in donor microbiota manufactured as FMT doses but in one case were detectable in the recipient before FMT. These data suggest that FMT may provide a path to exploit strain competition to reduce MDRO colonization.
Collapse
Affiliation(s)
- Michael H. Woodworth
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
- Emory Antibiotic Resistance Center; Atlanta, Georgia, 30322, USA
| | - Roth E Conrad
- Ocean Science & Engineering, School of Biological Sciences, Georgia Institute of Technology; Atlanta, Georgia, 30332, USA
| | | | - Stephanie M. Pouch
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
- Emory Antibiotic Resistance Center; Atlanta, Georgia, 30322, USA
| | - Ahmed Babiker
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
- Emory Antibiotic Resistance Center; Atlanta, Georgia, 30322, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
| | - Aneesh K. Mehta
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
- Emory Transplant Center; Atlanta, Georgia, 30322, USA
| | - Kaitlin L. Sitchenko
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
| | - Charlotte H. Wang
- Emory College of Arts and Sciences, Emory University; Atlanta, Georgia, 30322, USA
| | - Amanda Strudwick
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
| | - Jessica M. Ingersoll
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
| | - Cécile Philippe
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
| | - Sarah Lohsen
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
| | - Kumru Kocaman
- School of Civil and Environmental Engineering, Georgia Institute of Technology; Atlanta, Georgia, 30332, USA
| | - Blake G. Lindner
- School of Civil and Environmental Engineering, Georgia Institute of Technology; Atlanta, Georgia, 30332, USA
| | - Janet K. Hatt
- School of Civil and Environmental Engineering, Georgia Institute of Technology; Atlanta, Georgia, 30332, USA
| | - Rheinallt M. Jones
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
| | - Candace Miller
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
| | - Andrew S. Neish
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
| | - Rachel Friedman-Moraco
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
| | | | - Ken H. Liu
- Clinical Biomarkers Laboratory, Department of Medicine, Emory University; Atlanta, Georgia, 30322, USA
| | - Dean P. Jones
- Clinical Biomarkers Laboratory, Department of Medicine, Emory University; Atlanta, Georgia, 30322, USA
| | - C. Christina Mehta
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University; Atlanta, GA, 30322, USA
| | - Thomas R. Ziegler
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
| | - David S. Weiss
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
- Emory Antibiotic Resistance Center; Atlanta, Georgia, 30322, USA
| | | | | | - Colleen S. Kraft
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
- Emory Antibiotic Resistance Center; Atlanta, Georgia, 30322, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
| |
Collapse
|
23
|
Harris AD, Souli M, Pettigrew MM. The Next Generation: Mentoring and Diversity in the Antibacterial Resistance Leadership Group. Clin Infect Dis 2023; 77:S331-S335. [PMID: 37843116 PMCID: PMC10578050 DOI: 10.1093/cid/ciad532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
The Antibacterial Resistance Leadership Group (ARLG) Mentoring Program was established to develop and prepare the next generation of clinician-scientists for a career in antibacterial resistance research. The ARLG Diversity, Equity, and Inclusion Working Group partners with the Mentoring Committee to help ensure diversity and excellence in the clinician-scientist workforce of the future. To advance the field of antibacterial research while fostering inclusion and diversity, the Mentoring Program has developed a number of fellowships, awards, and programs, which are described in detail in this article.
Collapse
Affiliation(s)
- Anthony D Harris
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Maria Souli
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | | | | |
Collapse
|
24
|
Warraich F, Sohail SH, Knee A, Smith J, Schlecht H, Skiest D. Factors Associated With Fecal Microbiota Transplant Failure in the Treatment of Recurrent Clostridioides difficile Infection: A Single-Center Retrospective Study. Cureus 2023; 15:e45118. [PMID: 37842346 PMCID: PMC10569438 DOI: 10.7759/cureus.45118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Background Clostridioides difficile infection (CDI) is a major cause of hospital-acquired diarrhea and is associated with substantial morbidity and mortality. Recurrences following treatment are common. Fecal microbiota transplantation (FMT) is a therapeutic intervention in which stool from a healthy donor is administered to a patient with recurrent CDI. Studies to date of predictors of FMT failure have primarily included inpatients. In this study, we aimed to describe FMT failure rates within one year of FMT and evaluate factors associated with FMT failure. Methodology We conducted an exploratory retrospective study of consecutive patients who underwent outpatient FMT at a single tertiary care center in Western Massachusetts from December 2014 through September 2018. We collected patient data including demographics, CDI-related factors, and FMT-related factors. FMT failure was defined as non-response or recurrence of diarrhea, associated with positive stool C. difficile toxin or polymerase chain reaction. Unadjusted relative risk (RR) and 95% confidence intervals for factors associated with FMT failure were estimated using log-binomial regression. Results A total of 92 patients were included with a mean age of 64 years. CDI severity was mild or moderate in 73% and severe or fulminant in 27%. The most common FMT indication was recurrent CDI in 76% of patients. FMT failure occurred in 25 of 92 (27%) patients, with half occurring within 11 days. Factors associated with FMT failure were active malignancy (RR = 2.56), prior hospitalizations (RR = 2.42), and receipt of non-CDI antibiotics within six months of FMT (RR = 2.80). We did not observe strong associations for risk of FMT failure with age ≥65, sex, use of proton pump inhibitors or H2 receptor agonists, history of colectomy, immunosuppression, history of malignancy, diabetes, appendectomy, CDI severity, or probiotic use. Conclusions Active malignancy, prior CDI hospitalizations, and non-CDI antibiotics within six months before FMT were associated with FMT failure in the outpatient setting. Knowledge of the above factors may help inform shared decision-making with patients at risk for FMT failure.
Collapse
Affiliation(s)
- Fatima Warraich
- Internal Medicine, University of Massachusetts Chan Baystate Medical Center, Springfield, USA
| | - Syed H Sohail
- Internal Medicine, University of Massachusetts Chan Baystate Medical Center, Springfield, USA
| | - Alexander Knee
- Office of Research/Epidemiology/Biostatistics Research Core, University of Massachusetts Chan Baystate Medical Center, Springfield, USA
| | - Jacob Smith
- Infectious Disease, University of Massachusetts Chan Baystate Medical Center, Springfield, USA
| | - Hans Schlecht
- Infectious Disease, University of Massachusetts Chan Baystate Medical Center, Springfield, USA
| | - Daniel Skiest
- Infectious Disease, University of Massachusetts Chan Baystate Medical Center, Springfield, USA
| |
Collapse
|
25
|
Rodig NM, Weatherly M, Kaplan AL, Ballal SA, Elisofon SA, Daly KP, Kahn SA. Fecal Microbiota Transplant in Pediatric Solid Organ Transplant Recipients. Transplantation 2023; 107:2073-2077. [PMID: 37211643 DOI: 10.1097/tp.0000000000004656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
BACKGROUND Fecal microbiota transplant (FMT) is an effective treatment for recurrent Clostridioides difficile infection (CDI). Safety concerns around FMT are increased in immunocompromised populations, such as solid organ transplant (SOT) recipients. Outcomes among adult SOT recipients suggest FMT is efficacious and safe; however, pediatric SOT data are lacking. METHODS We describe the efficacy and safety of FMT among pediatric SOT recipients in a single-center retrospective study from March 2016 to December 2019. Successful FMT was defined as no recurrence of CDI within 2 mo of FMT. We identified 6 SOT recipients ages 4-18 y who received FMT a median of 5.3 y post-SOT. RESULTS Success after a single FMT was 83.3%. One liver recipient did not achieve cure after 3 FMTs and remains on low-dose vancomycin. One serious adverse event (SAE) occurred; cecal perforation and bacterial peritonitis occurred following colonoscopic FMT coordinated with intestinal biopsy in a kidney transplant recipient. He achieved full recovery and CDI cure. There were no other SAEs. There were no adverse events related to immunosuppression or transplantation status including: bacteremia, cytomegalovirus activation or reactivation, allograft rejection, or allograft loss. CONCLUSIONS In this limited series, efficacy of FMT in pediatric SOT is comparable to efficacy in the general pediatric recurrent CDI population. There may be an increased risk of procedure-related SAE in SOT patients and larger cohort studies are needed.
Collapse
Affiliation(s)
- Nancy M Rodig
- Division of Nephrology, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Boston Children's Hospital, Boston, MA
| | - Madison Weatherly
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA
| | - Abby L Kaplan
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA
| | - Sonia Arora Ballal
- Department of Pediatrics, Boston Children's Hospital, Boston, MA
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA
| | - Scott A Elisofon
- Department of Pediatrics, Boston Children's Hospital, Boston, MA
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA
| | - Kevin P Daly
- Department of Pediatrics, Boston Children's Hospital, Boston, MA
- Division of Advanced Cardiac Therapies, Department of Cardiology, Boston Children's Hospital, Boston, MA
| | - Stacy A Kahn
- Department of Pediatrics, Boston Children's Hospital, Boston, MA
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA
| |
Collapse
|
26
|
Fu X, Tan H, Huang L, Chen W, Ren X, Chen D. Gut microbiota and eye diseases: a bibliometric study and visualization analysis. Front Cell Infect Microbiol 2023; 13:1225859. [PMID: 37621873 PMCID: PMC10445766 DOI: 10.3389/fcimb.2023.1225859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/17/2023] [Indexed: 08/26/2023] Open
Abstract
Introduction Recently the role of gut microbial dysbiosis in many ocular disorders, including but not limited to uveitis, age-related macular degeneration (AMD), diabetic retinopathy (DR), dry eye, keratitis and orbitopathy is a hot research topic in the field. Targeting gut microbiota to treat these diseases has become an unstoppable trend. Bibliometric study and visualization analysis have become essential methods for literature analysis in the medical research field. We aim to depict this area's research hotspots and future directions by bibliometric software and methods. Methods We search all the related publications from the Web of Science Core Collection. Then, CiteSpace was applied to analyze and visualize the country distributions, dual-map overlay of journals, keyword bursts, and co-cited references. VOSviewer was employed to identify authors, co-cited authors, journals and co-cited journals and display the keyword co-occurrence networks. Results A total of 284 relevant publications were identified from 2009 to 2023. The number of studies has been small in the first five years and has grown steadily since 2016. These studies were completed by 1,376 authors from 41 countries worldwide, with the United States in the lead. Lin P has published the most papers while Horai R is the most co-cited author. The top journal and co-cited journal are both Investigative Ophthalmology & Visual Science. In the keyword co-occurrence network, except gut microbiota, inflammation becomes the keyword with the highest frequency. Co-citation analyses reveal that gut dysbiosis is involved in common immune- and inflammation-mediated eye diseases, including uveitis, diabetic retinopathy, age-related macular degeneration, dry eye, and Graves' orbitopathy, and the study of microbiomes is no longer limited to the bacterial populations. Therapeutic strategies that target the gut microbiota, such as probiotics, healthy diet patterns, and fecal microbial transplantation, are effective and critical to future research. Conclusions In conclusion, the bibliometric analysis displays the research hotspots and developmental directions of the involvement of gut microbiota in the pathogenesis and treatment of some ocular diseases. It provides an overview of this field's dynamic evolution and structural relationships.
Collapse
Affiliation(s)
- Xiangyu Fu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Haishan Tan
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Huang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wenyue Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Ren
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Danian Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Khanna S, Voth E. Therapeutics for Clostridioides difficile infection: molecules and microbes. Expert Rev Gastroenterol Hepatol 2023; 17:903-911. [PMID: 37606962 DOI: 10.1080/17474124.2023.2250716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/11/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
INTRODUCTION Clostridioides difficile infection (CDI) is a major healthcare problem in the developed world, and effective management of recurrent infection remains one of the biggest challenges. Several advances have occurred in the management of CDI, and in the last 15 years, multiple new agents have been tested. Since 2011, four new products have been approved by the US FDA for treatment of CDI or prevention of recurrent CDI. AREAS COVERED This review focuses on therapeutics of CDI and includes sections on primary prevention, management of active infection, and prevention of recurrent CDI. Specifically, data are included on fecal microbiota transplantation and live biotherapeutics. A comprehensive search of several databases including Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed Citations, and Daily, Ovid EMBASE, Ovid Cochrane Central Register of Controlled Trials, Ovid Cochrane Database of Systematic Reviews, and Scopus from inception to 1 May 2023 was conducted. EXPERT OPINION Metronidazole is no longer advised for management of outpatient CDI. The preferred medication of choice for a first episode is oral vancomycin or fidaxomicin. For those patients who recur after the first episode, vancomycin taper pulse or fidaxomicin can be used. Intravenous bezlotoxumab, a monoclonal antibody, is available to prevent recurrences. There are now two FDA-approved microbiome-based therapies or live biotherapeutics for prevention of recurrent CDI, for any recurrent CDI and not necessarily multiply recurrent C difficile. Fecal microbiota transplantation remains available in limited settings for recurrent CDI.
Collapse
Affiliation(s)
- Sahil Khanna
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Elida Voth
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
28
|
Reveles KR, Yang M, Garcia-Horton V, Edwards ML, Guo A, Lodise T, Bochan M, Tillotson G, Dubberke ER. Economic Impact of Recurrent Clostridioides difficile Infection in the USA: A Systematic Literature Review and Cost Synthesis. Adv Ther 2023; 40:3104-3134. [PMID: 37210680 PMCID: PMC10272265 DOI: 10.1007/s12325-023-02498-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/15/2023] [Indexed: 05/22/2023]
Abstract
INTRODUCTION Up to 35% of patients with a first episode of Clostridioides difficile infection (CDI) develop recurrent CDI (rCDI), and of those, up to 65% experience multiple recurrences. A systematic literature review (SLR) was conducted to review and summarize the economic impact of rCDI in the United States of America. METHODS English-language publications reporting real-world healthcare resource utilization (HRU) and/or direct medical costs associated with rCDI in the USA were searched in MEDLINE, MEDLINE In-Process, Embase, and the Cochrane Library databases over the past 10 years (2012-2022), as well as in selected scientific conferences that publish research on rCDI and its economic burden over the past 3 years (2019-2022). HRU and costs identified through the SLR were synthesized to estimate annual rCDI-attributable direct medical costs to inform the economic impact of rCDI from a US third-party payer's perspective. RESULTS A total of 661 publications were retrieved, and 31 of them met all selection criteria. Substantial variability was found across these publications in terms of data source, patient population, sample size, definition of rCDI, follow-up period, outcomes reported, analytic approach, and methods to adjudicate rCDI-attributable costs. Only one study reported rCDI-attributable costs over 12 months. Synthesizing across the relevant publications using a component-based cost approach, the per-patient per-year rCDI-attributable direct medical cost was estimated to range from $67,837 to $82,268. CONCLUSIONS While real-world studies on economic impact of rCDI in the USA suggested a high-cost burden, inconsistency in methodologies and results reporting warranted a component-based cost synthesis approach to estimate the annual medical cost burden of rCDI. Utilizing available literature, we estimated the average annual rCDI-attributable medical costs to allow for consistent economic assessments of rCDI and identify the budget impact on US payers.
Collapse
Affiliation(s)
- Kelly R Reveles
- College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Min Yang
- Analysis Group, 111 Huntington Avenue, 14th Floor, Boston, MA, 02199, USA.
| | | | | | - Amy Guo
- Medical Affairs, Ferring Pharmaceuticals, Parsippany, NJ, USA
| | - Thomas Lodise
- Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | | | | | - Erik R Dubberke
- Division of Infectious Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| |
Collapse
|
29
|
Jaramillo AP, Awosusi BL, Ayyub J, Dabhi KN, Gohil NV, Tanveer N, Hussein S, Pingili S, Makkena VK. Effectiveness of Fecal Microbiota Transplantation Treatment in Patients With Recurrent Clostridium difficile Infection, Ulcerative Colitis, and Crohn's Disease: A Systematic Review. Cureus 2023; 15:e42120. [PMID: 37602044 PMCID: PMC10439665 DOI: 10.7759/cureus.42120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Cronh's disease and ulcerative colitis (UC) are diseases with unknown etiologies that cause ongoing inflammation in the gastrointestinal system. Chron's disease causes immunological dysregulation, and UC causes intestinal harm due to immune reactions. According to our study, fecal microbiota transplantation (FMT) has many benefits in the treatment of inflammatory bowel disease (IBD) by restoring intestinal homeostasis and reducing clinical symptoms. In mildly symptomatic patients with UC, an FMT treatment combined with an anti-inflammatory diet can produce remission, which would then be followed by a diet that maintained the anti-inflammatory effects. The efficacy of FMT consists of preventing flares or the consequences of IBD. As a result, we must emphasize that more investigation should be done before developing a therapeutic procedure for FMT in IBD and its associated consequences.
Collapse
Affiliation(s)
- Arturo P Jaramillo
- General Practice, California Institute of Behavioral Neurosciences & Psychology, California, USA
| | - Babatope L Awosusi
- Pathology and Laboratory Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Javaria Ayyub
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Karan Nareshbhai Dabhi
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Namra V Gohil
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Internal Medicine, Baroda Medical College, Vadodara, IND
| | - Nida Tanveer
- Internal Medicine, Allied Hospital/Faisalabad Medical University, Faisalabad, PAK
| | - Sally Hussein
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Vijaya Krishna Makkena
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Internal Medicine, Osmania Medical College, Hyderabad, IND
| |
Collapse
|
30
|
Hoelz H, Heetmeyer J, Tsakmaklis A, Hiergeist A, Siebert K, De Zen F, Häcker D, Metwaly A, Neuhaus K, Gessner A, Vehreschild MJGT, Haller D, Schwerd T. Is Autologous Fecal Microbiota Transfer after Exclusive Enteral Nutrition in Pediatric Crohn’s Disease Patients Rational and Feasible? Data from a Feasibility Test. Nutrients 2023; 15:nu15071742. [PMID: 37049583 PMCID: PMC10096730 DOI: 10.3390/nu15071742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Background: Exclusive enteral nutrition (EEN) is a highly effective therapy for remission induction in pediatric Crohn’s disease (CD), but relapse rates after return to a regular diet are high. Autologous fecal microbiota transfer (FMT) using stool collected during EEN-induced clinical remission might represent a novel approach to maintaining the benefits of EEN. Methods: Pediatric CD patients provided fecal material at home, which was shipped at 4 °C to an FMT laboratory for FMT capsule generation and extensive pathogen safety screening. The microbial community composition of samples taken before and after shipment and after encapsulation was characterized using 16S rRNA amplicon sequencing. Results: Seven pediatric patients provided fecal material for nine test runs after at least three weeks of nutritional therapy. FMT capsules were successfully generated in 6/8 deliveries, but stool weight and consistency varied widely. Transport and processing of fecal material into FMT capsules did not fundamentally change microbial composition, but microbial richness was <30 genera in 3/9 samples. Stool safety screening was positive for potential pathogens or drug resistance genes in 8/9 test runs. Conclusions: A high pathogen burden, low-diversity microbiota, and practical deficiencies of EEN-conditioned fecal material might render autologous capsule-FMT an unsuitable approach as maintenance therapy for pediatric CD patients.
Collapse
Affiliation(s)
- Hannes Hoelz
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Jeannine Heetmeyer
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Anastasia Tsakmaklis
- Clinical Microbiome Research Group, Department of Internal Medicine I, University Hospital of Cologne, 50931 Cologne, Germany
| | - Andreas Hiergeist
- Institute for Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Kolja Siebert
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Federica De Zen
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Deborah Häcker
- Chair of Nutrition and Immunology, Technical University Munich, 85354 Freising-Weihenstephan, Germany
| | - Amira Metwaly
- Chair of Nutrition and Immunology, Technical University Munich, 85354 Freising-Weihenstephan, Germany
| | - Klaus Neuhaus
- ZIEL-Institute for Food and Health, Technical University Munich, 85354 Freising-Weihenstephan, Germany
| | - André Gessner
- Institute for Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Maria J. G. T. Vehreschild
- Clinical Microbiome Research Group, Department of Internal Medicine I, University Hospital of Cologne, 50931 Cologne, Germany
- Section of Infectious Diseases, Department of Internal Medicine II, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany
| | - Dirk Haller
- Chair of Nutrition and Immunology, Technical University Munich, 85354 Freising-Weihenstephan, Germany
- ZIEL-Institute for Food and Health, Technical University Munich, 85354 Freising-Weihenstephan, Germany
| | - Tobias Schwerd
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| |
Collapse
|
31
|
Elalouf A. Infections after organ transplantation and immune response. Transpl Immunol 2023; 77:101798. [PMID: 36731780 DOI: 10.1016/j.trim.2023.101798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/08/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
Organ transplantation has provided another chance of survival for end-stage organ failure patients. Yet, transplant rejection is still a main challenging factor. Immunosuppressive drugs have been used to avoid rejection and suppress the immune response against allografts. Thus, immunosuppressants increase the risk of infection in immunocompromised organ transplant recipients. The infection risk reflects the relationship between the nature and severity of immunosuppression and infectious diseases. Furthermore, immunosuppressants show an immunological impact on the genetics of innate and adaptive immune responses. This effect usually reactivates the post-transplant infection in the donor and recipient tissues since T-cell activation has a substantial role in allograft rejection. Meanwhile, different infections have been found to activate the T-cells into CD4+ helper T-cell subset and CD8+ cytotoxic T-lymphocyte that affect the infection and the allograft. Therefore, the best management and preventive strategies of immunosuppression, antimicrobial prophylaxis, and intensive medical care are required for successful organ transplantation. This review addresses the activation of immune responses against different infections in immunocompromised individuals after organ transplantation.
Collapse
Affiliation(s)
- Amir Elalouf
- Bar-Ilan University, Department of Management, Ramat Gan 5290002, Israel.
| |
Collapse
|
32
|
Conover KR, Absah I, Ballal S, Brumbaugh D, Cho S, Cardenas MC, Knackstedt ED, Goyal A, Jensen MK, Kaplan JL, Kellermayer R, Kociolek LK, Michail S, Oliva-Hemker M, Reed AW, Weatherly M, Kahn SA, Nicholson MR. Fecal Microbiota Transplantation for Clostridioides difficile Infection in Immunocompromised Pediatric Patients. J Pediatr Gastroenterol Nutr 2023; 76:440-446. [PMID: 36720105 PMCID: PMC10627107 DOI: 10.1097/mpg.0000000000003714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVES We sought to evaluate the safety and effectiveness of fecal microbiota transplantation (FMT) for recurrent Clostridioides difficile infection (CDI) in pediatric immunocompromised (IC) patients. METHODS This is a multicenter retrospective cohort study of pediatric participants who underwent FMT between March 2013 and April 2020 with 12-week follow-up. Pediatric patients were included if they met the definition of IC and were treated with FMT for an indication of recurrent CDI. We excluded patients over 18 years of age, those with incomplete records, insufficient follow-up, or not meeting study definition of IC. We also excluded those treated for Clostridioides difficile recurrence without meeting the study definition and those with inflammatory bowel disease without another immunocompromising condition. RESULTS Of 59 pediatric patients identified at 9 centers, there were 42 who met inclusion and no exclusion criteria. Included patients had a median age of 6.7 years. Etiology of IC included: solid organ transplantation (18, 43%), malignancy (12, 28%), primary immunodeficiency (10, 24%), or other chronic conditions (2, 5%). Success rate was 79% after first FMT and 86% after 1 or more FMT. There were no statistically significant differences in patient characteristics or procedural components when patients with a failed FMT were compared to those with a successful FMT. There were 15 total serious adverse events (SAEs) in 13 out of 42 (31%) patients that occurred during the follow-up period; 4 (9.5%) of which were likely treatment-related. There were no deaths or infections with multidrug resistant organisms during follow-up and all patients with a SAE fully recovered. CONCLUSIONS The success rate of FMT for recurrent CDI in this pediatric IC cohort is high and mirrors data for IC adults and immunocompetent children. FMT-related SAEs do occur (9.5%) and highlight the need for careful consideration of risk and benefit.
Collapse
Affiliation(s)
- Katie R Conover
- From the Department of General Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Imad Absah
- the Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Mayo Clinic Children's Center, Rochester, MN
| | - Sonia Ballal
- the Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA
| | - David Brumbaugh
- the Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital Colorado, Aurora, CO
| | - Stanley Cho
- the Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Texas Children's Hospital, Houston, TX
| | - Maria C Cardenas
- the Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Mayo Clinic Children's Center, Rochester, MN
| | - Elizabeth Doby Knackstedt
- the Division of Pediatric Infectious Disease, University of Utah, Primary Children's Hospital, Salt Lake City, UT
| | - Alka Goyal
- the Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Lucile Packard Children's Hospital, Palo Alto, CA
| | - M Kyle Jensen
- the Division of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Utah, Primary Children's Hospital, Salt Lake City, UT
| | - Jess L Kaplan
- the Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Mass General Hospital for Children, Boston, MA
| | - Richard Kellermayer
- the Division of Pediatric Infectious Disease, University of Utah, Primary Children's Hospital, Salt Lake City, UT
| | - Larry K Kociolek
- the Division of Pediatric Infectious Diseases, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Sonia Michail
- the Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital Los Angeles, Los Angeles, CA
| | - Maria Oliva-Hemker
- the Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Johns Hopkins Children's Center, Baltimore, MD
| | - Anna W Reed
- the Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Johns Hopkins Children's Center, Baltimore, MD
| | - Madison Weatherly
- the Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA
| | - Stacy A Kahn
- the Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA
| | - Maribeth R Nicholson
- the Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Monroe Carell Jr. Children's Hospital, Nashville, TN
| |
Collapse
|
33
|
Beran A, Sharma S, Ghazaleh S, Lee-Smith W, Aziz M, Kamal F, Acharya A, Adler DG. Predictors of Fecal Microbiota Transplant Failure in Clostridioides difficile Infection : An Updated Meta-analysis. J Clin Gastroenterol 2023; 57:389-399. [PMID: 35050941 DOI: 10.1097/mcg.0000000000001667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022]
Abstract
INTRODUCTION AND AIM Fecal microbiota transplantation (FMT) is an effective treatment for recurrent/refractory Clostridioides difficile infection (CDI) with a 10% to 20% risk of recurrence after a single FMT. In this meta-analysis, we aimed to evaluate the predictors of FMT failure. METHODS A comprehensive search of MEDLINE, Embase, Cochrane, and Web of Science databases through July 2021 was performed. All studies that evaluated risk factors associated with FMT failure in a multivariate model were included. We calculated pooled odds ratios with 95% confidence intervals for risk factors reported in ≥3 studies using a random-effects model. RESULTS Twenty studies involving 4327 patients (63.6% females) with recurrent/refractory CDI who underwent FMT were included. FMT failed in 705 patients (16.3%) with 2 to 3 months of follow-up in most studies. A total of 12 different risk factors were reported in a multivariate model in ≥3 studies. Meta-analysis showed that advanced age, severe CDI, inflammatory bowel disease, peri-FMT use of non-CDI antibiotics, prior CDI-related hospitalizations, inpatient status, and poor quality of bowel preparation were significant predictors of FMT failure. Charlson Comorbidity Index, female gender, immunosuppressed status, patient-directed donor, and number of CDI recurrences were not associated with FMT failure. CONCLUSIONS Adequate bowel preparation at the time of FMT and optimizing antibiotic stewardship practices in the peri-FMT period can improve the success of FMT. Patients with nonmodifiable risk factors should be counseled about the risk of FMT failure. Our results may help develop a risk stratification model to predict FMT failure in CDI patients.
Collapse
Affiliation(s)
| | - Sachit Sharma
- Department of Gastroenterology and Hepatology, Virginia Commonwealth University, Richmond, VA
| | | | - Wade Lee-Smith
- Mulford Health Sciences Library, The University of Toledo, Toledo, OH
| | | | - Faisal Kamal
- Department of Gastroenterology and Hepatology, The University of Tennessee, TN
| | | | - Douglas G Adler
- Center for Advanced Therapeutic Endoscopy (CATE), Centura Health, Denver, CO
| |
Collapse
|
34
|
Yuzefpolskaya M, Bohn B, Ladanyi A, Khoruts A, Colombo PC, Demmer RT. Oral and gut microbiome alterations in heart failure: Epidemiology, pathogenesis and response to advanced heart failure therapies. J Heart Lung Transplant 2023; 42:291-300. [PMID: 36586790 DOI: 10.1016/j.healun.2022.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/18/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Despite significant advances in therapies, heart failure (HF) remains a progressive disease that, once advanced, is associated with significant death and disability. Cardiac replacement therapies with left ventricular assist device (LVAD) and heart transplantation (HT) are the only treatment options for advanced HF, while lifesaving they can also be lifespan limiting due to the associated complications. Systemic inflammation is mechanistically important in HF pathophysiology and progression. However, directly targeting inflammation in HF has not been beneficial thus far. These failed attempts at therapeutics might be related to our limited understanding of the factors that cause inflammation in HF, and, therefore, to our inability to investigate these triggers in interventional studies. Observational studies have consistently demonstrated associations between alterations in the digestive (gut and oral) microbiome, inflammation and HF risk and progression. Additionally, recent data indicate that these microbial perturbations persist following LVAD and HT, along with residual inflammation and oxidative stress. Furthermore, there is rising recognition of the critical contribution of the microbiome to the metabolism of immunosuppressive drugs after HT. Cumulatively, these findings might posit a mechanistic link between microbiome alterations, systemic inflammation, and adverse outcomes in HF patients before and after cardiac replacement therapies. This review (1) provides an update on available data linking changes in digestive tract microbiota, inflammation, and oxidative stress, to HF pathogenesis and progression; (2) describes evolution of these relationships following LVAD and HT; and (3) outlines present and future intervention strategies that can manipulate the microbiome and possibly modify HF disease trajectory.
Collapse
Affiliation(s)
- Melana Yuzefpolskaya
- Division of Cardiovascular Medicine, Columbia University Irving Medical Center, New York City, New York.
| | - Bruno Bohn
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Annamaria Ladanyi
- Division of Cardiovascular Medicine, Columbia University Irving Medical Center, New York City, New York
| | - Alexander Khoruts
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine University of Minnesota, Minneapolis, Minnesota
| | - Paolo C Colombo
- Division of Cardiovascular Medicine, Columbia University Irving Medical Center, New York City, New York
| | - Ryan T Demmer
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota; Division of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
35
|
Ali H, Patel P, Pamarthy R, Fatakhova K, Bolick NL, Satapathy SK. Comparative analysis and trends in liver transplant hospitalizations with Clostridium difficile infections: A 10-year national cross-sectional study. Transpl Infect Dis 2022; 24:e13985. [PMID: 36305599 PMCID: PMC10078594 DOI: 10.1111/tid.13985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 12/24/2022]
Abstract
GOALS AND BACKGROUND Clostridium difficile infection (CDI) is the leading cause of antibiotic-associated diarrhea in the United States. We aimed to determine comparative trends in inpatient outcomes of liver transplant (LT) patients based on CDI during hospitalizations. METHODS The national inpatient sample database was used to conduct the present retrospective study regarding CDI among the LT hospitalizations from 2009 to 2019. Primary outcomes included 10-year comparative trends of the length of stay (LOS) and mean inpatient charges (MIC). Secondary outcomes included comparative mortality and LT rejection trends. RESULTS There was a 14.05% decrease in CDI in LT hospitalizations over the study period (p = .05). The trend in LOS did not significantly vary (p = .9). MIC increased significantly over the last decade in LT hospitalizations with CDI (p < .001). LT hospitalizations of autoimmune etiology compared against non-autoimmune did not increase association with CDI, adjusted odds ratio (aOR) 0.97 (95% confidence interval [CI] 0.75-1.26, p = .87). CDI was associated with increased mortality in LT hospitalizations, aOR 1.84 (95% CI 1.52-2.24, p < .001). In-hospital mortality for LT hospitalizations with CDI decreased by 7.75% over the study period (p = .3). CDI increased transplant rejections, aOR 1.3 (95% CI 1.08-1.65, p < .001). There was a declining trend in transplant rejection for LT hospitalization with CDI from 5% to 3% over the study period (p = .0048). CONCLUSION CDI prevalence does not increase based on autoimmune LT etiology. It increases mortality in LT hospitalizations; however, trend for mortality and transplant rejections has been declining over the last decade.
Collapse
Affiliation(s)
- Hassam Ali
- Department of Internal MedicineEast Carolina University/Vidant Medical CenterGreenvilleNorth CarolinaUSA
| | - Pratik Patel
- Department of GastroenterologyMather Hospital/Hofstra University School of MedicinePort JeffersonNew YorkUSA
| | - Rahul Pamarthy
- Department of Internal MedicineEast Carolina University/Vidant Medical CenterGreenvilleNorth CarolinaUSA
| | - Karina Fatakhova
- Department of GastroenterologyMather Hospital/Hofstra University School of MedicinePort JeffersonNew YorkUSA
| | - Nicole Leigh Bolick
- Department of DermatologyUniversity of New Mexico UniversityAlbuquerqueNew MexicoUSA
| | - Sanjaya Kumar Satapathy
- Department of HepatologyNorthshore University Hospital/Hofstra University School of MedicineManhassetNew YorkUSA
| |
Collapse
|
36
|
Suchman K, Luo Y, Grinspan A. Fecal Microbiota Transplant for Clostridioides Difficile Infection Is Safe and Efficacious in an Immunocompromised Cohort. Dig Dis Sci 2022; 67:4866-4873. [PMID: 35000023 DOI: 10.1007/s10620-021-07347-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/22/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Immunocompromised patients are particularly vulnerable to Clostridioides difficile infection (CDI), hospitalizations and recurrences. Studies have shown that fecal microbiota transplant (FMT) is safe and effective in immunocompromised patients. AIMS To examine the outcomes of FMT for CDI in a diverse cohort of immunocompromised patients stratified by medication class. METHODS We performed a retrospective, long-term follow-up study of FMT in immunocompromised patients, including those undergoing chemotherapy, with inflammatory bowel disease (IBD) on immunomodulators, prior solid organ transplant on immunosuppressants, on chronic steroids 20 mg/day or higher for a minimum of three months, or HIV positive. Primary outcomes included adjusted primary cure rate within 8 weeks, as well as rates of non-response, recurrences, relapses and adverse events. Secondary outcomes included adjusted overall cure rate. Primary cure rate was defined as patients not requiring repeat CDI treatment within 8 weeks after index FMT, and overall cure rate was defined as resolution of CDI symptoms after index FMT or second FMT. RESULTS Our cohort included 77 immunosuppressed patients (53.2% female, median age 39.1 years, range 7-95 years). The majority of our cohort were IBD patients on biologics (62.3%). Adjusting for colectomies and deaths, our primary and overall cure rates were 85.1% and 86.5%, respectively. Twelve patients received FMT for severe or fulminant CDI with a 3-month survival rate of 91.7%. 11.7% of patients experienced serious adverse events following FMT. CONCLUSIONS Our study supports the efficacy and safety of FMT in immunocompromised patients, though future research is needed to further ascertain the potential effects of immunosuppression on FMT outcomes.
Collapse
Affiliation(s)
- Kelly Suchman
- Department of Internal Medicine, Northshore Hospital, Barbara and Zucker School of Medicine for Hofstra/Northwell Health, 300 Community Drive, Manhasset, NY, 11030, USA.
| | - Yuying Luo
- The Henry D. Janowitz Division of Gastroenterology, Department of Gastroenterology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 11029, USA
| | - Ari Grinspan
- The Henry D. Janowitz Division of Gastroenterology, Department of Gastroenterology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 11029, USA
| |
Collapse
|
37
|
Qu Z, Tian P, Yang B, Zhao J, Wang G, Chen W. Fecal microbiota transplantation for diseases: Therapeutic potential, methodology, risk management in clinical practice. Life Sci 2022; 304:120719. [PMID: 35716734 DOI: 10.1016/j.lfs.2022.120719] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/02/2022] [Accepted: 06/12/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND More than 95 % of human diseases may be related to the disturbance of gut microbes. As a treatment method that extensively regulates the gut microbes, fecal microbiota transplantation (FMT) has proven to be an effective therapy for some diseases, becoming a topic of interest among clinicians, patients and scientists. AIM To review the latest clinical research results of FMT in the treatment of various diseases and the methodology and risk management in clinical application. METHODS Search PubMed and Web of Science for reliable research results of clinical treatment of FMT within 5-10 years, as well as application guidelines and risk management policies in different regions. RESULTS As a measure of allogeneic/autologous microbiota transplantation, FMT has been used to treat a variety of diseases. By reviewing the clinical studies of FMT in gastrointestinal diseases, metabolic diseases, neurological diseases and malignant tumors, the various mechanisms in the treatment of diseases are summarized. Such as regulation of receptor microbiota composition, specific metabolites, phage function and immune response. In addition, potential risk factors, donor stool screening indicators, recipient self-specificity and possible prognostic marker molecules in the course of FMT treatment were generalized. CONCLUSIONS The potential regulatory mechanisms, risk factors and targets of FMT in gastrointestinal diseases, metabolic diseases, malignancies and neurological diseases were reviewed and proposed. It provides a theoretical basis for the establishment of a standardized treatment system for FMT and a breakthrough in treatment technology.
Collapse
Affiliation(s)
- Zhihao Qu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Peijun Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
38
|
Wang Y, Zhang S, Borody TJ, Zhang F. Encyclopedia of fecal microbiota transplantation: a review of effectiveness in the treatment of 85 diseases. Chin Med J (Engl) 2022; 135:1927-1939. [PMID: 36103991 PMCID: PMC9746749 DOI: 10.1097/cm9.0000000000002339] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 01/06/2023] Open
Abstract
ABSTRACT Fecal microbiota transplantation (FMT) has been used as a core therapy for treating dysbiosis-related diseases by remodeling gut microbiota. The methodology and technology for improving FMT are stepping forward, mainly including washed microbiota transplantation (WMT), colonic transendoscopic enteral tubing (TET) for microbiota delivery, and purified Firmicutes spores from fecal matter. To improve the understanding of the clinical applications of FMT, we performed a systematic literature review on FMT published from 2011 to 2021. Here, we provided an overview of the reported clinical benefits of FMT, the methodology of processing FMT, the strategy of using FMT, and the regulations on FMT from a global perspective. A total of 782 studies were included for the final analysis. The present review profiled the effectiveness from all clinical FMT uses in 85 specific diseases as eight categories, including infections, gut diseases, microbiota-gut-liver axis, microbiota-gut-brain axis, metabolic diseases, oncology, hematological diseases, and other diseases. Although many further controlled trials will be needed, the dramatic increasing reports have shown the promising future of FMT for dysbiosis-related diseases in the gut or beyond the gut.
Collapse
Affiliation(s)
- Yun Wang
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Sheng Zhang
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | | | - Faming Zhang
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, Jiangsu 210011, China
- National Clinical Research Center for Digestive Diseases, Xi’an, Shaanxi 710032, China
| |
Collapse
|
39
|
Gut microbiome in modulating immune checkpoint inhibitors. EBioMedicine 2022; 82:104163. [PMID: 35841869 PMCID: PMC9297075 DOI: 10.1016/j.ebiom.2022.104163] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022] Open
Abstract
Funding
Collapse
|
40
|
Sun X, Xue L, Wang Z, Xie A. Update to the Treatment of Parkinson's Disease Based on the Gut-Brain Axis Mechanism. Front Neurosci 2022; 16:878239. [PMID: 35873830 PMCID: PMC9299103 DOI: 10.3389/fnins.2022.878239] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/20/2022] [Indexed: 12/27/2022] Open
Abstract
Gastrointestinal (GI) symptoms represented by constipation were significant non-motor symptoms of Parkinson’s disease (PD) and were considered early manifestations and aggravating factors of the disease. This paper reviewed the research progress of the mechanism of the gut-brain axis (GBA) in PD and discussed the roles of α-synuclein, gut microbiota, immune inflammation, neuroendocrine, mitochondrial autophagy, and environmental toxins in the mechanism of the GBA in PD. Treatment of PD based on the GBA theory has also been discussed, including (1) dietary therapy, such as probiotics, vitamin therapy, Mediterranean diet, and low-calorie diet, (2) exercise therapy, (3) drug therapy, including antibiotics; GI peptides; GI motility agents, and (4) fecal flora transplantation can improve the flora. (5) Vagotomy and appendectomy were associated but not recommended.
Collapse
Affiliation(s)
- Xiaohui Sun
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li Xue
- Recording Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zechen Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Anmu Xie
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
41
|
Kumari R, Yadav Y, Misra R, Das U, Das Adhikari U, Malakar P, Dubey GP. Emerging frontiers of antibiotics use and their impacts on the human gut microbiome. Microbiol Res 2022; 263:127127. [PMID: 35914416 DOI: 10.1016/j.micres.2022.127127] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/17/2022] [Accepted: 07/11/2022] [Indexed: 02/07/2023]
Abstract
Antibiotics, the primary drugs used to cure bacterial diseases, are increasingly becoming ineffective due to the emergence of multiple drug resistance (MDR) leading to recurrence of previously sensitive pathogens. Human gut microbiome (GM), known to play an important role in various physiological processes, consists of pool of diverse microbes. Indiscriminate use of antibiotics during the life span of an individual may lead to development of resistant microbes e.g. Vibrio, Acinetobacter, Escherichia, Klebsiella, Clostridia, etc. in the human GM. Transmission of antibiotic resistant genes (ARGs) between pathogenic and commensal bacteria occurs more frequently in microbiome communities wherein bacteria communicate and exchange cellular constituents both among themselves and with the host. Additionally, co-factors like 'early vs. late' exposure, type of antibiotics and duration of treatment modulate the adverse effects of antibiotics on GM maturation. Furthermore, factors like mode of birth, ethnicity, malnutrition, demography, diet, lifestyle, etc., which influence GM composition, can also indirectly alter the host response to antibiotics. Currently, advanced 'omics' and culturomics approaches are revealing novel avenues to study the interplay between antibiotics and the microbiome and to identify resistant genes in these bacterial communities. Here, we discuss the recent developments that have given insights into the effects of antibiotics on the homeostatic balance of the gut microbiome and thus on human health.
Collapse
Affiliation(s)
- Rekha Kumari
- Department of Zoology, Miranda House, University of Delhi, Delhi 110007, India.
| | - Yasha Yadav
- Department of Zoology, Miranda House, University of Delhi, Delhi 110007, India
| | - Richa Misra
- Department of Zoology, Sri Venkateswara College, University of Delhi, Delhi 1100021, India
| | - Utpal Das
- Department of Neurosciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Upasana Das Adhikari
- The Ragon Institute of MGH, MIT and Harvard, 400 Technology Square Cambridge, MA 02139, USA
| | - Pushkar Malakar
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gyanendra P Dubey
- Molecular Microbial Pathogenesis Unit, Institut Pasteur, 28 rue du Docteur Roux, 75724 Cedex 15 Paris, France.
| |
Collapse
|
42
|
Dogra H, Hind J. Innovations in Immunosuppression for Intestinal Transplantation. Front Nutr 2022; 9:869399. [PMID: 35782951 PMCID: PMC9241336 DOI: 10.3389/fnut.2022.869399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
It has been 57 years since the first intestinal transplant. An increased incidence of graft rejection has been described compared to other solid organ transplants due to high immunogenicity of the bowel, which in health allows the balance between of dietary antigen with defense against pathogens. Expanding clinical experience, knowledge of gastrointestinal physiology and immunology have progress post-transplant immunosuppressive drug regimens. Current regimes aim to find the window between prevention of rejection and the risk of infection (the leading cause of death) and malignancy. The ultimate aim is to achieve graft tolerance. In this review we discuss advances in mucosal immunology and technologies informing the development of new anti-rejection strategies with the hope of improved survival in the next generation of transplant recipients.
Collapse
|
43
|
Mehta N, Wang T, Friedman-Moraco RJ, Carpentieri C, Mehta AK, Rouphael N, Dhere T, Larsen CP, Kraft CS, Woodworth MH. Fecal Microbiota Transplantation Donor Screening Updates and Research Gaps for Solid Organ Transplant Recipients. J Clin Microbiol 2022; 60:e0016121. [PMID: 34133889 PMCID: PMC8849208 DOI: 10.1128/jcm.00161-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In this review, we discuss stool donor screening considerations to mitigate potential risks of pathogen transmission through fecal microbiota transplant (FMT) in solid organ transplant (SOT) recipients. SOT recipients have a higher risk for Clostridioides difficile infection (CDI) and are more likely to have severe CDI. FMT has been shown to be a valuable tool in the treatment of recurrent CDI (RCDI); however, guidelines for screening for opportunistic infections transmitted through FMT are underdeveloped. We review reported adverse effects of FMT as they pertain to an immunocompromised population and discuss the current understanding and recommendations for screening found in the literature while noting gaps in research. We conclude that while FMT is being performed in the SOT population, typically with positive results, there remain many unanswered questions which may have major safety implications and warrant further study.
Collapse
Affiliation(s)
- Nirja Mehta
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicinegrid.471395.d, Atlanta, Georgia, USA
| | - Tiffany Wang
- Emory University School of Medicinegrid.471395.d, Atlanta, Georgia, USA
| | - Rachel J. Friedman-Moraco
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicinegrid.471395.d, Atlanta, Georgia, USA
| | - Cynthia Carpentieri
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicinegrid.471395.d, Atlanta, Georgia, USA
| | - Aneesh K. Mehta
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicinegrid.471395.d, Atlanta, Georgia, USA
- Department of Surgery, Division of Transplantation, Emory University School of Medicinegrid.471395.d, Atlanta, Georgia, USA
| | - Nadine Rouphael
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicinegrid.471395.d, Atlanta, Georgia, USA
| | - Tanvi Dhere
- Department of Medicine, Division of Digestive Diseases, Emory University School of Medicinegrid.471395.d, Atlanta, Georgia, USA
| | - Christian P. Larsen
- Department of Surgery, Division of Transplantation, Emory University School of Medicinegrid.471395.d, Atlanta, Georgia, USA
| | - Colleen S. Kraft
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicinegrid.471395.d, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicinegrid.471395.d, Atlanta, Georgia, USA
| | - Michael H. Woodworth
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicinegrid.471395.d, Atlanta, Georgia, USA
| |
Collapse
|
44
|
Agrawal A, Ison MG, Danziger-Isakov L. Long-Term Infectious Complications of Kidney Transplantation. Clin J Am Soc Nephrol 2022; 17:286-295. [PMID: 33879502 PMCID: PMC8823942 DOI: 10.2215/cjn.15971020] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Infections remain a common complication of solid-organ transplantation. Most infections in the first month after transplant are typically health care-associated infections, whereas late infections, beyond 6-12 months, are community-acquired infections. Opportunistic infections most frequently present in the first 12 months post-transplant and can be modulated on prior exposures and use of prophylaxis. In this review, we summarize the current epidemiology of postkidney transplant infections with a focus on key viral (BK polyomavirus, cytomegalovirus, Epstein-Barr virus, and norovirus), bacterial (urinary tract infections and Clostridioides difficile colitis), and fungal infections. Current guidelines for safe living post-transplant are also summarized. Literature supporting prophylaxis and vaccination is also provided.
Collapse
Affiliation(s)
- Akansha Agrawal
- Division of Nephrology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Michael G. Ison
- Division of Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lara Danziger-Isakov
- Division of Pediatric Infectious Diseases, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
45
|
Gweon TG, Lee YJ, Kim KO, Yim SK, Soh JS, Kim SY, Park JJ, Shin SY, Lee TH, Choi CH, Cho YS, Yong D, Chung JW, Lee KJ, Lee OY, Choi MG, Choi M. Clinical Practice Guidelines for Fecal Microbiota Transplantation in Korea. J Neurogastroenterol Motil 2022; 28:28-42. [PMID: 34980687 PMCID: PMC8748844 DOI: 10.5056/jnm21221] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/08/2021] [Indexed: 12/05/2022] Open
Abstract
Fecal microbiota transplantation (FMT) is a highly efficacious and safe modality for the treatment of recurrent or refractory Clostridioides difficile infection (CDI), with overall success rates of 90%. Thus, FMT has been widely used for 10 years. The incidence and clinical characteristics of CDI, the main indication for FMT, differ between countries. To date, several guidelines have been published. However, most of them were published in Western countries and therefore cannot represent the Korean national healthcare systems. One of the barriers to performing FMT is a lack of national guidelines. Accordingly, multidisciplinary experts in this field have developed practical guidelines for FMT. The purpose of these guidelines is to aid physicians performing FMT, which can be adapted to treat CDI and other conditions.
Collapse
Affiliation(s)
- Tae-Geun Gweon
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yoo Jin Lee
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Kyeong Ok Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| | - Sung Kyun Yim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Jeollabuk-do, Korea
| | - Jae Seung Soh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Hallym College of Medicine, Hallym University, Anyang, Gyeonggi-do, Korea
| | - Seung Young Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju, Jeollabuk-do, Korea
| | - Jae Jun Park
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Yong Shin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Tae Hee Lee
- Institute for Digestive Research, Digestive Disease Center, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Chang Hwan Choi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Young-Seok Cho
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Jin-Won Chung
- Division of Infectious Diseases, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Kwang Jae Lee
- Department of Internal Medicine, Ajou University School of Medicine, Suwon, Gyeonggi-do, Korea
| | - Oh Young Lee
- Department of Internal Medicine, Hanyang University School of Medicine, Seoul, Korea
| | - Myung-Gyu Choi
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Miyoung Choi
- Division of Healthcare Technology Assessment Research, National Evidence-Based Healthcare Collaboration Agency, Seoul, Korea
| | | |
Collapse
|
46
|
Herman A, Herman AP. Could Candida Overgrowth Be Involved in the Pathophysiology of Autism? J Clin Med 2022; 11:442. [PMID: 35054136 PMCID: PMC8778531 DOI: 10.3390/jcm11020442] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/31/2021] [Accepted: 01/13/2022] [Indexed: 02/05/2023] Open
Abstract
The purpose of this review is to summarize the current acquiredknowledge of Candida overgrowth in the intestine as a possible etiology of autism spectrum disorder (ASD). The influence of Candida sp. on the immune system, brain, and behavior of children with ASD isdescribed. The benefits of interventions such as a carbohydrates-exclusion diet, probiotic supplementation, antifungal agents, fecal microbiota transplantation (FMT), and microbiota transfer therapy (MTT) will be also discussed. Our literature query showed that the results of most studies do not fully support the hypothesis that Candida overgrowth is correlated with gastrointestinal (GI) problems and contributes to autism behavioral symptoms occurrence. On the one hand, it was reported that the modulation of microbiota composition in the gut may decrease Candida overgrowth, help reduce GI problems and autism symptoms. On the other hand, studies on humans suggesting the beneficial effects of a sugar-free diet, probiotic supplementation, FMT and MTT treatment in ASD are limited and inconclusive. Due to the increasing prevalence of ASD, studies on the etiology of this disorder are extremely needed and valuable. However, to elucidate the possible involvement of Candida in the pathophysiology of ASD, more reliable and well-designed research is certainly required.
Collapse
Affiliation(s)
- Anna Herman
- Faculty of Health Sciences, Warsaw School of Engineering and Health, Bitwy Warszawskiej 20 18, 19 Street, 02-366 Warsaw, Poland
| | - Andrzej Przemysław Herman
- Department of Genetic Engineering, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, 05-110 Jabłonna, Poland;
| |
Collapse
|
47
|
Hou J, Tang Y, Chen Y, Chen D. The Role of the Microbiota in Graves' Disease and Graves' Orbitopathy. Front Cell Infect Microbiol 2022; 11:739707. [PMID: 35004341 PMCID: PMC8727912 DOI: 10.3389/fcimb.2021.739707] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 12/01/2021] [Indexed: 02/05/2023] Open
Abstract
Graves' disease (GD) is a clinical syndrome with an enlarged and overactive thyroid gland, an accelerated heart rate, Graves' orbitopathy (GO), and pretibial myxedema (PTM). GO is the most common extrathyroidal complication of GD. GD/GO has a significant negative impact on the quality of life. GD is the most common systemic autoimmune disorder, mediated by autoantibodies to the thyroid-stimulating hormone receptor (TSHR). It is generally accepted that GD/GO results from complex interactions between genetic and environmental factors that lead to the loss of immune tolerance to thyroid antigens. However, the exact mechanism is still elusive. Systematic investigations into GD/GO animal models and clinical patients have provided important new insight into these disorders during the past 4 years. These studies suggested that gut microbiota may play an essential role in the pathogenesis of GD/GO. Antibiotic vancomycin can reduce disease severity, but fecal material transfer (FMT) from GD/GO patients exaggerates the disease in GD/GO mouse models. There are significant differences in microbiota composition between GD/GO patients and healthy controls. Lactobacillus, Prevotella, and Veillonella often increase in GD patients. The commonly used therapeutic agents for GD/GO can also affect the gut microbiota. Antigenic mimicry and the imbalance of T helper 17 cells (Th17)/regulatory T cells (Tregs) are the primary mechanisms proposed for dysbiosis in GD/GO. Interventions including antibiotics, probiotics, and diet modification that modulate the gut microbiota have been actively investigated in preclinical models and, to some extent, in clinical settings, such as probiotics (Bifidobacterium longum) and selenium supplements. Future studies will reveal molecular pathways linking gut and thyroid functions and how they impact orbital autoimmunity. Microbiota-targeting therapeutics will likely be an essential strategy in managing GD/GO in the coming years.
Collapse
Affiliation(s)
- Jueyu Hou
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yunjing Tang
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yongjiang Chen
- The School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Danian Chen
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
48
|
Amjad W, Qureshi W, Malik A, Singh R, Jafri SM. The outcomes of Clostridioides difficile infection in inpatient liver transplant population. Transpl Infect Dis 2021; 24:e13750. [PMID: 34695277 DOI: 10.1111/tid.13750] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/22/2021] [Accepted: 10/08/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Chronic immunosuppression is a known cause of Clostridioides difficile, which presents with colon infection. It is associated with increased mortality and morbidity. Our aim is to determine the inpatient outcomes of liver transplant patients with Clostridioides difficile infection (CDI) and trends in the last few years. METHODS We utilized the national re-admission data (2010-2017) to study the outcomes of CDI in liver transplant patients. Association of C. difficile with re-admission was computed in a multivariable model adjusted for age, sex, gastrointestinal bleeding, hypertension, diabetes, hyperlipidemia, congestive heart failure, cerebrovascular disease, obesity, cancer, insurance, chronic kidney disease, chronic obstructive pulmonary disease, dementia, peripheral vascular disease, smoking, hospital location, and teaching status. RESULTS During 2010-2017, there were 310 222 liver transplant patients hospitalized. Out of these, 9826 had CDI. CDI infection in liver transplant patients was associated with higher 30-day re-admission (14.3% vs. 11.21%, hazard ratio [HR]: 1.14, 95% confidence interval [CI]: 1.01-1.28, p = .02) and in-hospital mortality (odds ratio [OR]: 1.36, 95% CI: 1.14-1.61, p < .001). The most common causes of re-admission in the CDI group were recurrent CDI (41.1%), liver transplant complications (16.5%), and sepsis (11.6%). The median cost for liver transplant patients with C. difficile was significantly higher, $53 064 (IQR $24 970-$134 830) compared to patients that did not have C. difficile, $35 703 ($18 793-$73 871) (p < .001). The median length of stay was also longer for patients with CDI, 6 days (4-14) vs. 4 days (2-7) (p < .001). CONCLUSION CDI in post-liver transplant patients was associated with higher mortality, re-admission, health care cost, and longer length of stay. The most common cause of re-admission was recurrent CDI, which raises the question of the efficacy of standard first-line therapy.
Collapse
Affiliation(s)
- Waseem Amjad
- Clinical Investigation, Harvard Medical School, Boston, Massachusetts, USA.,Internal Medicine, Albany Medical Center, Albany, New York, USA
| | - Waqas Qureshi
- Cardiovascular Medicine, University of Massachusetts, Worchester, Massachusetts, USA
| | - Adnan Malik
- Internal Medicine, Loyola Medical University, Chicago, Illinois, USA
| | - Ritu Singh
- Internal Medicine, Indiana University, Fort Wayne, Indiana, USA.,Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Syed-Mohammed Jafri
- Gastroenterology and Transplant Hepatology, Henry Ford Health System, Detroit, Michigan, USA
| |
Collapse
|
49
|
Ali H, Khurana S, Ma W, Peng Y, Jiang ZD, DuPont H, Zhang HC, Thomas AS, Okhuysen P, Wang Y. Safety and efficacy of fecal microbiota transplantation to treat and prevent recurrent Clostridioides difficile in cancer patients. J Cancer 2021; 12:6498-6506. [PMID: 34659541 PMCID: PMC8489149 DOI: 10.7150/jca.59251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/08/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Cancer patients are at increased risk of recurrent Clostridioides difficile infection (rCDI) due to malignancy itself, cancer therapy, and frequent antibiotic use and have a lower response rate to standard oral antibiotics. There are limited data on the safety and efficacy of fecal microbiota transplantation (FMT) for treating rCDI in cancer patients. We aim to describe our experience of using FMT to treat rCDI at a tertiary cancer center. Methods: We conducted a retrospective study of cancer patients who underwent FMT for rCDI at The University of Texas MD Anderson Cancer Center from June 2017 through January 2020. Baseline clinical data and risk factors related to rCDI and FMT were evaluated and compared between cancer types and between cases with remission and recurrence. Results: A total of 19 patients were studied: 12 with solid malignancies and 7 with hematologic malignancies. Most patients had stage IV cancer, and 21% of patients were in cancer remission. On average, patients had 2 episodes of CDI and received 3 courses of antibiotics within 1 year before FMT. 84% of patients with rCDI responded to FMT. Compared with patients who had CDI remission following FMT, non-remission cases were more likely to have received antibiotics following FMT. There were no serious adverse events or mortality within 30 days associated with FMT. Conclusions: FMT is safe, well-tolerated, and efficacious in treating rCDI in selected cancer patients. However, additional antibiotic use for complications from chemotherapy or immunosuppression negatively affected the efficacy of FMT in this population with advanced cancer.
Collapse
Affiliation(s)
- Hiba Ali
- Department of Internal Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Shruti Khurana
- Department of Internal Medicine/Pediatrics, The University of Texas Health Science Center at Houston, Houston, TX
| | - Weijie Ma
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yuanzun Peng
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Zhi-Dong Jiang
- Center for Infectious Diseases, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Herbert DuPont
- Center for Infectious Diseases, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hao Chi Zhang
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anusha S Thomas
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Pablo Okhuysen
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yinghong Wang
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
50
|
The Interplay between Gut Microbiota and the Immune System in Liver Transplant Recipients and Its Role in Infections. Infect Immun 2021; 89:e0037621. [PMID: 34460287 DOI: 10.1128/iai.00376-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver transplantation (LT) is a life-saving strategy for patients with end-stage liver disease, hepatocellular carcinoma, and acute liver failure. LT success can be hampered by several short-term and long-term complications. Among them, bacterial infections, especially those due to multidrug-resistant germs, are particularly frequent, with a prevalence between 19 and 33% in the first 100 days after transplantation. In the last decades, a number of studies have highlighted how the gut microbiota (GM) is involved in several essential functions to ensure intestinal homeostasis, becoming one of the most important virtual metabolic organs. The GM works through different axes with other organs, and the gut-liver axis is among the most relevant and investigated ones. Any alteration or disruption of the GM is defined as dysbiosis. Peculiar phenotypes of GM dysbiosis have been associated with several liver conditions and complications, such as chronic hepatitis, fatty liver disease, cirrhosis, and hepatocellular carcinoma. Moreover, there is growing evidence of the crucial role of the GM in shaping the immune response, both locally and systemically, against pathogens. This paves the way to the manipulation of the GM as a therapeutic instrument to modulate infectious risk and outcome. In this minireview, we provide an overview of the current understanding of the interplay between the gut microbiota and the immune system in liver transplant recipients and the role of the former in infections.
Collapse
|