1
|
Benevides VP, Saraiva MMS, Campos IC, Guerra PR, Silva SR, Miranda VFO, Almeida AM, Christensen H, Olsen JE, Berchieri Junior A. Salmonella Heidelberg isolates from poultry in Brazil and the United States share a large number of resistance and virulence determinants. Microb Pathog 2025; 204:107523. [PMID: 40180234 DOI: 10.1016/j.micpath.2025.107523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/20/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Salmonella enterica subps. enterica serovar Heidelberg (SH) is one of the most common serovars isolated from poultry and associated with severe infections in humans. Commonly considered multidrug-resistant, it represents a risk to public health. We analyzed 317 SH genomes, including 314 from the Enterobase database from Brazil and the United States (US), and added three recently sequenced Brazilian isolates. In genomes from both countries, the main identified resistance genes were: aac(6')-Iaa, fosA7, sul2, tet(A), and blaCMY-2. Mutations in GyrA (S83Y only from US genomes and S83F and D87N from Brazilian genomes) were observed in 17 % and 90.62 % of genomes from US and Brazil, respectively, and ParC mutation (T57S), was identified in all genomes. The plasmid replicons most identified in both countries were ColpVC, IncC, IncI1-I(Gamma), and IncX1. The core and soft-core genes were utilized as the basis for conducting a phylogenetic analysis, showing seven clusters of strains, of which only one was shared between strains from the US and Brazil. Overall, this study highlights the variation in genomic profiles of SH circulating in poultry production in both countries, emphasizing the need for improved surveillance measures to protect human and animal populations from potential outbreaks worldwide.
Collapse
Affiliation(s)
- Valdinete P Benevides
- Postgraduate Program in Agricultural Microbiology, São Paulo State University (UNESP), School of Agricultural and Veterinary Sciences, Jaboticabal, 14884-900, Brazil; São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, 14884-900, Brazil; Department of Veterinary and Animal Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark.
| | - Mauro M S Saraiva
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, 14884-900, Brazil; Department of Veterinary and Animal Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark.
| | - Isabella C Campos
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, 14884-900, Brazil.
| | - Priscila R Guerra
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark
| | - Saura R Silva
- Laboratory of Plant Systematics, Department of Biology, São Paulo State University (UNESP), School of Agricultural and Veterinary Sciences, Jaboticabal, 14884-900, Brazil.
| | - Vitor F O Miranda
- Laboratory of Plant Systematics, Department of Biology, São Paulo State University (UNESP), School of Agricultural and Veterinary Sciences, Jaboticabal, 14884-900, Brazil.
| | - Adriana M Almeida
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, 14884-900, Brazil.
| | - Henrik Christensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark.
| | - John E Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark.
| | - Angelo Berchieri Junior
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, 14884-900, Brazil.
| |
Collapse
|
2
|
Zhan Z, Cui Y, He S, Chang J, Shi X. Molecular characteristics of chromosome-mediated colistin resistance in foodborne Salmonella isolates in China. J Antimicrob Chemother 2025:dkaf155. [PMID: 40391708 DOI: 10.1093/jac/dkaf155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 05/02/2025] [Indexed: 05/22/2025] Open
Abstract
OBJECTIVE To determine the molecular characteristics and mechanisms of colistin-resistant (COLr) Salmonella isolates from 1224 chicken samples in Shanghai, China, between January 2021 and January 2022. METHODS Antimicrobial susceptibility testing, site-directed mutagenesis, RT-qPCR, and lipid A analysis was conducted to investigate the mechanisms of colistin resistance in Salmonella. RESULTS A total of 268 Salmonella isolates were obtained from chicken samples and 41 isolates were resistant to colistin. The uncommon extensively antimicrobial-resistant Salmonella Muenster was the predominant serotype, accounting for 87.8% (36/41) of the COLr isolates. Most (95.1%, 39/41) of the COLr isolates exhibited amino acid substitutions in the PmrAB. Ten different substitutions in PmrAB were identified, with Val161Gly (n = 14) and Gly206Glu (n = 10) in PmrB being the most prevalent. Four substitutions (Thr147Ser, Phe203Ser, Gly206Glu, and Asp250Tyr) in PmrB have not been reported before and were considered novel mutations. Additionally, it was demonstrated that these substitutions upregulated pmrE and pmrK expression, resulting in the production of L-Ara4N, which modified the lipid A and resulted in an 8-64-fold increase in the colistin MIC (2-8 mg/L). Finally, the deletion of pmrE or pmrK in mutants showed MIC values comparable to parental strains (0.25 mg/L), which suggested that colistin resistance may be conferred through the pmrE and pmrK pathways. CONCLUSIONS These findings illustrate the complex molecular mechanisms of colistin resistance in Salmonella, and the amino acid substitutions in PmrAB are the predominant molecular mechanisms. It is essential to implement monitoring and control measures for colistin resistance.
Collapse
Affiliation(s)
- Zeqiang Zhan
- MOST-USDA Joint Research Center for Food Safety and NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Cui
- MOST-USDA Joint Research Center for Food Safety and NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shoukui He
- MOST-USDA Joint Research Center for Food Safety and NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiang Chang
- MOST-USDA Joint Research Center for Food Safety and NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xianming Shi
- MOST-USDA Joint Research Center for Food Safety and NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Zhao J, Duan G, Chang J, Wang H, Zhu D, Li J, Zhu Y. Co-exposure to cyazofamid and polymyxin E: Variations in microbial community and antibiotic resistance in the soil-animal-plant system. ENVIRONMENTAL RESEARCH 2025; 273:121160. [PMID: 39986419 DOI: 10.1016/j.envres.2025.121160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
Human activity is accelerating the emergence of fungal pathogens, prompting substantial efforts to discover novel fungicides. Meanwhile, the runoff and spray drift from agricultural fields adversely affect aquatic and terrestrial nontarget organisms. However, few studies have examined the effects of co-contamination by agrochemical fungicides and pharmaceutical antibiotics on microorganisms and antibiotic resistance genes (ARGs) in the soil-animal-plant system. To further explore the mechanisms, an investigation was conducted into the individual and combined effects of a widely used fungicide (cyazofamid, CZF) and a last-resort antibiotic (colistin, polymyxin E, PME) in the soil-earthworm-tomato system. This study revealed that CZF and PME co-contamination exerted synergistic toxicity, significantly reducing earthworm survival and inhibiting tomato growth. This study found that the structure of microbial communities was more severely disturbed by the fungicide CZF than by the antibiotic PME, with the most severe impact being that of CZF + PME co-contamination. Fungicides and antibiotics had significantly distinct effects on bacterial functional pathways: CZF and CZF + PME treatments enhanced compound degradation, whereas PME treatments promoted biological nitrogen cycling. Moreover, co-contamination significantly increased the abundance of insertional and plasmid-associated genes and number of total ARGs in bulk and rhizosphere soil. In addition, the relationships between bacterial communities and the antibiotic resistome were investigated. The analysis revealed that Gram-positive bacteria (Sporosarcina, Bacillus, and Rhodococcus) capable of resistance and degradation, as well as the genes MexB (multidrug) and aadA2 (aminoglycoside) were enriched. Taken together, interactions between co-pollutants can significantly increase toxicity levels and the risk of ARG proliferation. The findings provide new insights into the potential impacts of co-contamination in complex real-life environments, such as soil-animal-plant systems.
Collapse
Affiliation(s)
- Jun Zhao
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guilan Duan
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jing Chang
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huili Wang
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dong Zhu
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Jianzhong Li
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongguan Zhu
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
4
|
Guibert F, Espinoza K, Taboada-Blanco C, Alonso CA, Oporto R, Castillo AK, Rojo-Bezares B, López M, Sáenz Y, Pons MJ, Ruiz J. Traditional marketed meats as a reservoir of multidrug-resistant Escherichia coli. Int Microbiol 2025; 28:27-43. [PMID: 37995017 DOI: 10.1007/s10123-023-00445-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/24/2023]
Abstract
This study aimed to analyze Escherichia coli from marketed meat samples in Peru. Sixty-six E. coli isolates were recovered from 21 meat samples (14 chicken, 7 beef), and antimicrobial resistance levels and the presence of mechanisms of antibiotic resistance, as well as clonal relationships and phylogeny of colistin-resistant isolates, were established. High levels of antimicrobial resistance were detected, with 93.9% of isolates being multi-drug resistant (MDR) and 76.2% of samples possessing colistin-resistant E. coli; of these, 6 samples from 6 chicken samples presenting mcr-1-producer E. coli. Colistin-resistant isolates were classified into 22 clonal groups, while phylogroup A (15 isolates) was the most common. Extended-spectrum β-lactamase- and pAmpC-producing E. coli were found in 18 and 8 samples respectively, with blaCTX-M-55 (28 isolates; 16 samples) and blaCIT (8 isolates; 7 samples) being the most common of each type. Additionally, blaCTX-M-15, blaCTX-M-65, blaSHV-27, blaOXA-5/10-like, blaDHA, blaEBC and narrow-spectrum blaTEM were detected. In addition, 5 blaCTX-M remained unidentified, and no sought ESBL-encoding gene was detected in other 6 ESBL-producer isolates. The tetA, tetE and tetX genes were found in tigecycline-resistant isolates. This study highlights the presence of MDR E. coli in Peruvian food-chain. The high relevance of CTX-M-55, the dissemination through the food-chain of pAmpC, as well as the high frequency of unrelated colistin-resistant isolates is reported.
Collapse
Affiliation(s)
- Fernando Guibert
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos - "One Health", Universidad Científica del Sur, Antigua Panamericana Sur Km 19, Villa El Salvador, 15067, Lima, Peru
| | - Kathya Espinoza
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos - "One Health", Universidad Científica del Sur, Antigua Panamericana Sur Km 19, Villa El Salvador, 15067, Lima, Peru
| | - Clara Taboada-Blanco
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, Logroño, Spain
| | - Carla A Alonso
- Servicio de Análisis Clínicos, Laboratorio de Microbiología, Hospital San Pedro, Logroño, Spain
| | - Rosario Oporto
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos - "One Health", Universidad Científica del Sur, Antigua Panamericana Sur Km 19, Villa El Salvador, 15067, Lima, Peru
| | - Angie K Castillo
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos - "One Health", Universidad Científica del Sur, Antigua Panamericana Sur Km 19, Villa El Salvador, 15067, Lima, Peru
| | - Beatriz Rojo-Bezares
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, Logroño, Spain
| | - María López
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, Logroño, Spain
| | - Yolanda Sáenz
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, Logroño, Spain
| | - Maria J Pons
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos - "One Health", Universidad Científica del Sur, Antigua Panamericana Sur Km 19, Villa El Salvador, 15067, Lima, Peru.
| | - Joaquim Ruiz
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos - "One Health", Universidad Científica del Sur, Antigua Panamericana Sur Km 19, Villa El Salvador, 15067, Lima, Peru.
| |
Collapse
|
5
|
Sridharan K. Nephrotoxicity risks of colistin-combination therapy: a USFDA adverse event reporting system analysis using disproportionality and interaction assessment. Expert Opin Drug Saf 2025:1-10. [PMID: 40285682 DOI: 10.1080/14740338.2025.2499672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Colistin, a last-resort antimicrobial, is often used in combination with other drugs to treat multidrug-resistant infections, but its nephrotoxic potential raises concerns, especially in combination therapies. RESEARCH DESIGN AND METHODS A retrospective analysis was performed on 29,163,222 reports from the USFDA Adverse Event Reporting System (AERS), identifying 125 reports meeting inclusion criteria for acute renal failure (ARF) associated with colistin-antimicrobial combinations. Disproportionality analysis using frequentists and Bayesian techniques were employed to evaluate ARF risk. Drug interaction and clinical outcomes were assessed using the Interaction-Adjusted SignalScores (INTSS) and mortality data, respectively. RESULTS The results showed significantly higher ARF risk for colistin combinations with ceftazidime, vancomycin, meropenem, and tigecycline, with particularly strong signals observed for colistin-ceftazidime combinations, corroborated by INTSS. Mortality rates were paradoxically higher in patients receiving colistin without nephrotoxic antimicrobials. Comprehensive signal detection metrics highlighted a consistent ARF risk for several other antimicrobial combinations. Clinical outcomes analysis revealed a complex relationship between combination therapy choices and patient mortality. CONCLUSION Colistin combinations with certain antimicrobials, especially ceftazidime, vancomycin, and tigecycline, carry significantly higher nephrotoxicity risks, warranting careful clinical consideration. Rigorous renal monitoring protocols are essential in managing these therapies, particularly in critically ill patients.
Collapse
Affiliation(s)
- Kannan Sridharan
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| |
Collapse
|
6
|
Yang J, Yue H, Wang W, Lin C, Li C, Chen J, Liu JH, Liu YY. Synergistic activity of menadione in combination with colistin against colistin-susceptible and colistin-resistant Gram-negative bacteria. Int J Antimicrob Agents 2025; 66:107523. [PMID: 40268256 DOI: 10.1016/j.ijantimicag.2025.107523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/07/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
OBJECTIVE Antibiotic resistance poses a formidable challenge, especially with the emergence of multidrug-resistant Gram-negative bacteria. Colistin serves as a last-resort antibiotic to combat multidrug-resistance, but it is limited by its nephrotoxicity and rising resistance. This study introduces menadione, a synthetic form of vitamin K, as a potential adjuvant to enhance colistin's efficacy against both susceptible and resistant strains of Gram-negative bacteria. METHODS Through checkerboard dilution assays, we demonstrate that menadione significantly lowers the MICs of colistin, with fractional inhibitory concentration indices ranging from 0.031 to 0.375. Furthermore, synergistic effects were confirmed via time-kill kinetics, indicating effective bacterial growth inhibition. The study also explores the mechanism underlying this synergy, revealing that menadione in combination with colistin disrupts the bacterial outer membrane, reduces the proton motive force and adenosine triphosphate content, and amplify the production of reactive oxygen species, contributing to bacterial cell death. RESULTS Menadione was shown to prevent the evolution of colistin resistance. CONCLUSIONS This research highlights the potential of using menadione as a colistin adjuvant to combat antibiotic-resistant Gram-negative bacteria, providing a promising approach to extend the utility of existing antibiotics in clinical settings.
Collapse
Affiliation(s)
- Jun Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huiying Yue
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangzhou, China
| | - Weifeng Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangzhou, China
| | - Caiying Lin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangzhou, China
| | - Chenchen Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangzhou, China
| | - Jiakuo Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangzhou, China
| | - Jian-Hua Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangzhou, China.
| | - Yi-Yun Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangzhou, China.
| |
Collapse
|
7
|
Schumann A, Gaballa A, Wiedmann M. Engineering of a monitorable expression system to characterize β-lactamase genes in Enterobacteriaceae. J Microbiol Methods 2025; 232-234:107120. [PMID: 40113096 DOI: 10.1016/j.mimet.2025.107120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Bacteria are becoming progressively more resistant to available antimicrobials. The increased ease and availability of genome sequencing has made it possible to identify putative, novel antimicrobial resistance (AMR) genes bioinformatically. However, no standardized system is available to phenotypically characterize the ability of novel AMR genes in Enterobacteriaceae to confer resistance and impact bacterial physiology and pathogenicity in relation to expression levels. We previously used plasmid pBAD24, which allows for arabinose-inducible expression of heterologous genes, and Escherichia coli Top10 to characterize mobile colistin resistance genes. Based on the pBAD24 backbone, we constructed a new plasmid (pBAD25) that carries a kanamycin resistance gene (instead of an ampicillin resistance gene). We show that our expression system allows for the characterization of five different blaOXA genes, which differ in their ability to confer susceptibility to β-lactams, detected protein levels, and impact on bacterial growth. We characterized blaOXA-48b, a close relative of blaOXA-48, previously uncharacterized in E. coli, to be phenotypically similar to blaOXA-48, and blaOXA-549, a previously uncharacterized gene of the blaOXA-548 family, as encoding a β-lactamase that is detected intra- but not extracellularly, has moderate growth defects, and decreases susceptibility to carbapenems and ampicillin. Additionally, we found that, in blaOXA expressing strains, (i) levels of intracellular proteins and bacterial growth negatively correlate and (ii) susceptibility to 2nd and 3rd generation cephalosporins and susceptibility to different carbapenems positively correlate. Our results demonstrate that the expression of AMR genes, specifically blaOXA genes, through pBAD25 allows for easy characterization of putative, novel AMR genes.
Collapse
Affiliation(s)
- Anna Schumann
- Department of Food Science, Cornell University, Ithaca, New York, USA; Graduate Field of Biomedical and Biological Sciences, Cornell University, Ithaca, New York, USA
| | - Ahmed Gaballa
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
8
|
Chen X, Sun Z, Chen J, Xu X, Wang M, Su J. The hidden threat: Klebsiella pneumoniae may develop co-resistance to colistin and cefiderocol under pressure of colistin. Int J Antimicrob Agents 2025; 65:107445. [PMID: 39827995 DOI: 10.1016/j.ijantimicag.2025.107445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/01/2025] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
OBJECTIVES Carbapenem-resistant Klebsiella pneumoniae (CRKP) has become a global concern owing to its difficult treatment. This study aimed to determine the impact of colistin resistance on susceptibility to cefiderocol. METHODS The colistin-susceptible clinical strain CRKP12-130 (colistin minimum inhibitory concentration [MIC] 0.5 mg/L) was cultured in medium containing 4× and 8× the MIC of colistin. Eight colistin-resistant derivatives were randomly selected for susceptibility testing of cefiderocol and zeta potential changes. To compare the impact of colistin resistance on bacterial uptake of iron, growth curve experiments were conducted in cation-adjusted Mueller-Hinton broth (CAMHB) and iron-depleted CAMHB (ID-CAMHB). Resistant strains and the original strain CRKP12-130 were subjected to next-generation sequencing. RESULTS Colistin MICs ranged from 16 to 128 mg/L for the eight colistin-resistant derivatives. The key genetic variants identified in colistin-resistant strains involved insertions and deletions in mgrB, and missense mutations in pmrB and phoQ. The colistin-resistant derivatives also exhibited reduced susceptibility to cefiderocol, with MICs increasing from 1 mg/L to 2-8 mg/L. Additionally, colistin-resistant strains demonstrated higher zeta potentials, ranging from -45.2 mV to levels between -32.8 mV and -14.2 mV. Resistant strains showed a more significant decrease in growth rate when cultivated in ID-CAMHB medium. CONCLUSION This study investigated the phenomenon of co-resistance to colistin and cefiderocol in CRKP under pressure of colistin. The simultaneous decrease in susceptibility poses a potential threat to the efficacy of clinical treatment of CRKP infections.
Collapse
Affiliation(s)
- Xin Chen
- Shanghai Institute of Infectious Disease and Biosecurity, Huashan Hospital, Fudan University, Shanghai, PR China; Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, PR China; Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of the People's Republic of China, Shanghai, PR China
| | - Zhewei Sun
- Shanghai Institute of Infectious Disease and Biosecurity, Huashan Hospital, Fudan University, Shanghai, PR China; Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, PR China; Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of the People's Republic of China, Shanghai, PR China
| | - Jinhong Chen
- Shanghai Institute of Infectious Disease and Biosecurity, Huashan Hospital, Fudan University, Shanghai, PR China; Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, PR China; Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of the People's Republic of China, Shanghai, PR China
| | - Xiaogang Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, PR China; Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of the People's Republic of China, Shanghai, PR China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Minggui Wang
- Shanghai Institute of Infectious Disease and Biosecurity, Huashan Hospital, Fudan University, Shanghai, PR China; Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, PR China; Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of the People's Republic of China, Shanghai, PR China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, PR China.
| | - Jiachun Su
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, PR China; Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of the People's Republic of China, Shanghai, PR China.
| |
Collapse
|
9
|
Khalifa HO, Mohammed T, Mohamed MYI, Hashem H, Habib I. In vitro assessment of the synergistic effects of cefotaxime, colistin, and fosfomycin combinations against foodborne resistant Escherichia coli and Salmonella isolates. J Antibiot (Tokyo) 2025; 78:265-273. [PMID: 39910346 DOI: 10.1038/s41429-025-00808-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 02/07/2025]
Abstract
The emergence of multidrug-resistant pathogens, particularly β-lactam, colistin, and fosfomycin-resistant Escherichia coli and Salmonella, is a significant public health concern. This study evaluated the in vitro synergistic effects of antimicrobial combinations against these resistant isolates. Ten isolates that originated from retail chicken meat, including five E. coli and five Salmonella isolates, were tested against cefotaxime (CTA), fosfomycin (FOS), and colistin (COL), both individually and in combinations. Antimicrobial susceptibility was assessed using the broth microdilution method, and synergistic interactions were evaluated using checkerboard and time-killing assays. All isolates were multidrug-resistant (MDR) and were resistant to CTA, COL, and FOS. The checkerboard assay showed varying levels of synergy: two out of five E. coli isolates exhibited synergy with FOS-COL, while one E. coli isolates out of four isolates showed synergy with CTA-COL. No E. coli isolates showed synergy with FOS-CTA. For Salmonella, two out of five isolates exhibited synergy with both FOS-CTA and FOS-COL, while three out of four isolates showed synergy with CTA-COL. The time-killing assay confirmed these results, with the FOS-COL combinations showing synergy against both E. coli and Salmonella strains. Notably, the FOS-COL combination demonstrated bactericidal effects against E. coli, and all three combinations were bactericidal against Salmonella. The study highlights the potential of antimicrobial combinations, particularly FOS-COL, in combating MDR E. coli and Salmonella. These findings support the use of combination therapy as a promising strategy to in effectively treating multi-drug-resistant foodborne infections, ensuring better medical outcomes and enhanced food safety, warranting further investigation into their mechanisms and clinical applications.
Collapse
Affiliation(s)
- Hazim O Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, Al Ain, UAE.
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 3351, Egypt.
| | - Temesgen Mohammed
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, Al Ain, UAE
| | - Mohamed-Yousif Ibrahim Mohamed
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, Al Ain, UAE
- ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, Al Ain P.O. Box 15551, Al Ain, UAE
| | - Hamada Hashem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt
| | - Ihab Habib
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, Al Ain, UAE
- ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, Al Ain P.O. Box 15551, Al Ain, UAE
| |
Collapse
|
10
|
Fneish FH, Domiati SA, Abd El Galil KH. Identification of mcr-2 and mcr-3 Genes in Colistin-Resistant E. coli O157:H7 Isolated From Raw Meat Samples in Beirut, Lebanon. Int J Microbiol 2025; 2025:8079270. [PMID: 40226838 PMCID: PMC11986958 DOI: 10.1155/ijm/8079270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 02/17/2025] [Indexed: 04/15/2025] Open
Abstract
Colistin is a last-resort antibiotic used to treat multidrug-resistant Gram-negative bacterial infections. The global emergence of colistin resistance has been attributed to plasmid-mediated mobile colistin resistance (mcr) genes. In Lebanon, bacteria carrying the mcr-1 gene have increasingly been identified in food animal sources. This study is aimed at detecting colistin-resistant Shiga toxigenic Escherichia coli O157:H7 in raw meat samples from local markets in the suburbs of Beirut and evaluating their antimicrobial resistance profiles. A total of 50 meat samples, including 25 minced beef and 25 burger samples, were collected and analyzed. Antimicrobial resistance patterns were determined using the Kirby-Bauer method, while colistin resistance and the presence of mcr-2 and mcr-3 genes were assessed using broth microdilution and PCR amplification techniques. Among these samples, 23 (46%) tested positive for E. coli O157:H7. Resistance to ampicillin and amoxicillin/clavulanic acid was observed in 96% of the samples, while 61% were resistant to trimethoprim/sulfamethoxazole, and 43% to chloramphenicol. Notably, 87% of the samples displayed colistin resistance, with a minimum inhibitory concentration (MIC) of ≥ 4 μg/mL. The mcr-2 gene was present in four isolates (17.4%), and the mcr-3 gene was identified in 10 isolates (43.4%). This study is the first to document the presence of plasmid-mediated colistin resistance genes, mcr-2 and mcr-3, in E. coli O157:H7 strains in Lebanon. These findings highlight a serious public health concern for the Lebanese community. Therefore, the responsible use of antibiotics across all healthcare sectors, combined with strict hygiene measures in food handling, is essential to control the spread of colistin-resistant genes.
Collapse
Affiliation(s)
- Fatima H. Fneish
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Souraya A. Domiati
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Khaled H. Abd El Galil
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
11
|
Zhang Y, Chen J, Yang X, Wu Y, Wang Z, Xu Y, Zhou L, Wang J, Jiao X, Sun L. Emerging Mobile Colistin Resistance Gene Mcr-1 and Mcr-10 in Enterobacteriaceae Isolates From Urban Sewage in China. Infect Drug Resist 2025; 18:1035-1048. [PMID: 39990786 PMCID: PMC11847452 DOI: 10.2147/idr.s502067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/08/2025] [Indexed: 02/25/2025] Open
Abstract
Purpose This study aimed to investigate the epidemiology and dissemination of mcr-positive Enterobacteriaceae in urban sewage in Yangzhou, China. Methods A total of 366 sewage samples were collected from the Yangzhou Wastewater Treatment Plant in Jiangsu Province. Colistin-resistant Enterobacteriaceae was identified through PCR targeting mcr-1 to mcr-10 genes. The isolates underwent antimicrobial susceptibility testing, and whole-genome sequencing was performed to analyze their genomic features. Additionally, conjugation experiments were conducted to assess the transferability of mcr-positive plasmids. Results Three mcr-positive Enterobacteriaceae isolates were identified, representing an isolation rate of 0.82%. These included one mcr-1-positive Escherichia coli (ST167) and two mcr-10-positive Klebsiella pneumoniae complex strains with novel sequence types ST6801 and ST6825. The mcr-1 gene was located on an IncI2 plasmid (pYZ22WS208_3) and successfully transferred to recipient strains. In contrast, the mcr-10 gene was carried on IncF plasmids (pYZ22WS067_1 and pYZ22WS223_1) but was not transferable in this study. Phylogenetic analysis revealed that the mcr-1-positive E. coli strain clustered within Clade II, alongside strains from various countries and sources. Phylogenomic analysis of mcr-10-positive isolates showed their sporadic distribution across 13 countries, with associations to diverse hosts and environments, indicating potential for widespread transmission. Conclusion This study demonstrates the presence of mcr-1 and mcr-10-positive Enterobacteriaceae in wastewater, emphasizing the importance of wastewater surveillance for tracking antibiotic resistance. The horizontal transfer of mcr-1 and potential spread of mcr-10 across various hosts underscore the need for ongoing monitoring and preventive measures.
Collapse
Affiliation(s)
- Yujing Zhang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Jiajie Chen
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xinyu Yang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yangshiyu Wu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Zhenyu Wang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yawen Xu
- Yangzhou Center for Disease Control and Prevention, Yangzhou, People’s Republic of China
| | - Le Zhou
- Yangzhou Center for Disease Control and Prevention, Yangzhou, People’s Republic of China
| | - Jing Wang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Lin Sun
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
12
|
Fonseca-Silva D, Gomes R, Martins-Oliveira I, Silva-Dias A, Ramos MH, Pina-Vaz C. Rapid Determination of Colistin Susceptibility by Flow Cytometry Directly from Positive Urine Samples-Preliminary Results. Int J Mol Sci 2025; 26:883. [PMID: 39940652 PMCID: PMC11817263 DOI: 10.3390/ijms26030883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 02/16/2025] Open
Abstract
Urinary tract infections caused by Gram-negative bacteria (GNB) are among the most common infections and a significant cause of sepsis. The increasing prevalence of multidrug-resistant (MDR) bacteria poses challenges to empirical treatment. Colistin may be used a last-resort antibiotic for treating MDR infections, but this requires the rapid determination of susceptibility to colistin. Traditional susceptibility testing methods can take up to 48 h, and there are specific challenges in determining colistin susceptibility. This study evaluates a novel, rapid method for determining colistin susceptibility directly from positive urine samples using the FASTcolistin MIC kit from FASTinov®. A total of 100 urine samples positive for Gram-negative bacilli when screened by the UF-1000i system were included in this study. After a simple sample prep, the same bacterial suspension was used for identification on MALDI-TOF and inoculated in the FASTcolistin MIC panel for our AST; after incubation at 37 °C for 1 h, it was analyzed via flow cytometry using a CytoFLEX cytometer (Beckman Coulter, Brea, CA, USA). The categorical susceptibility to colistin according to EUCAST or CLSI standards as well as the MIC values were given by bioFAST software (bioFAST 2.0). The essential agreement (EA) and bias were calculated. Different species of Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter spp. were correctly identified by MALDI-TOF directly from the FASTcolistin MIC sample prep. The essential agreement between the two methods was 99%, with a bias of -17%. Both identification and susceptibility were obtained in less than 2 h. This study presents a rapid and accurate method for determining colistin MIC directly from urine samples. The shortness of time required to produce a result, 2 h versus 48 h with the conventional methods, will significantly impact treatment decisions, especially in urinary tract infections difficult to treat.
Collapse
Affiliation(s)
- Daniela Fonseca-Silva
- Department of Clinical Pathology, Instituto Português de Oncologia, 4200-072 Porto, Portugal;
| | - Rosário Gomes
- FASTinov SA, 4200-135 Porto, Portugal; (R.G.); (I.M.-O.); (A.S.-D.)
| | | | - Ana Silva-Dias
- FASTinov SA, 4200-135 Porto, Portugal; (R.G.); (I.M.-O.); (A.S.-D.)
- RISE—Health Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Maria Helena Ramos
- Department of Microbiology, Centro Hospitalar e Universitário do Porto, 4099-001 Porto, Portugal;
| | - Cidália Pina-Vaz
- FASTinov SA, 4200-135 Porto, Portugal; (R.G.); (I.M.-O.); (A.S.-D.)
- RISE—Health Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Microbiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
13
|
Kaul A, Souque C, Holland M, Baym M. Genomic resistance in historical clinical isolates increased in frequency and mobility after the age of antibiotics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633422. [PMID: 39868160 PMCID: PMC11761691 DOI: 10.1101/2025.01.16.633422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Antibiotic resistance is frequently observed shortly after the clinical introduction of an antibiotic. Whether and how frequently that resistance occurred before the introduction is harder to determine, as isolates could not have been tested for resistance before an antibiotic was discovered. Historical collections, like the British National Collection of Type Cultures (NCTC), stretching back to 1885, provide a window into this history. Here we match 1,817 sequenced high-quality genomes from the NCTC collection to their respective year of isolation to study resistance genes before and concurrent with the age of antibiotics. Concordant with previous work, we find resistance genes in both pathogens and environmental samples before the age of antibiotics. While generally rare before the introduction of an antibiotic, we find an associated increase in frequency with antibiotic introduction. Finally, we observe a trend of resistance elements becoming both increasingly mobile and nested within multiple mobile elements as time goes on. More broadly, our findings suggest that likely-functional antibiotic resistance genes were circulating in clinically relevant isolates before the age of antibiotics, but human usage is associated with increasing both their overall prevalence and mobility.
Collapse
Affiliation(s)
- Arya Kaul
- Departments of Biomedical Informatics and Microbiology, and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Célia Souque
- Departments of Biomedical Informatics and Microbiology, and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Infection Control and Vaccines, Norwegian Institute of Public Health, PO Box 222 Skøyen, N-0213 Oslo, Norway
| | - Mische Holland
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Michael Baym
- Departments of Biomedical Informatics and Microbiology, and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
14
|
Abdullah S, Mushtaq MA, Ullah K, Hassan B, Azam M, Zahoor MA, Wang J, Xu J, Toleman MA, Mohsin M. Dissemination of clinical Escherichia coli harboring the mcr-1 gene in Pakistan. Front Microbiol 2025; 15:1502528. [PMID: 39839122 PMCID: PMC11747048 DOI: 10.3389/fmicb.2024.1502528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/06/2024] [Indexed: 01/23/2025] Open
Abstract
Background Colistin is an antibiotic used as a last resort to treat multidrug-resistant Gram-negative bacterial infections. Plasmid-mediated mobile colistin-resistant (mcr) genes in Escherichia coli (E. coli) are disseminated globally and are considered to be a major public health threat. This study aimed to determine the molecular characteristics of colistin-resistant Escherichia coli isolates in clinical settings in Pakistan. Methods A total of 240 clinical E. coli strains isolated from urine and pus cultures were collected from two hospitals in Faisalabad and analyzed for phenotypic resistance to colistin by cultivation on CHROMagar plates supplemented with colistin 2 ug/ml. Molecular characteristics of colistin-resistant isolates were analyzed using conventional PCR, whole genome sequencing, and bioinformatics analysis. Results PCR and whole genome analysis confirmed the presence of the mcr-1 gene in 10 E. coli isolates. The minimum inhibitory concentration for colistin ranged from 4 ug/ml to 32 ug/ml. ResFinder analysis revealed the presence of multiple resistance determinants conferring co-resistance to β-lactams, aminoglycosides, trimethoprim, sulfonamides, tetracycline, quinolones, florfenicol, and macrolides. Hybrid genomic assembly indicated that mcr-1 is carried on IncI2 plasmids. Plasmid replicon typing indicated that IncI2-type plasmids (n = 10) were the most prevalent plasmids in these strains, followed by IncFIB (n = 8), IncFIC (n = 7), IncFIA (n = 6), IncFII (4), IncQ1 (n = 3), IncI1 (n = 1), IncY (n = 1), and IncN (n = 1). The Achtman MLST typing scheme revealed a large diversity of STs among the mcr-1-positive E. coli. VirulenceFinder analysis revealed the presence of numerous virulence factors ranging from 4 to 19. Conclusion Our study revealed the emergence and dissemination of colistin-resistant E. coli isolates carrying mcr-1 in hospital settings, posing a potential risk to anti-infective therapy. More efforts should be taken to monitor the prevalence of mcr-1-carrying bacteria in Pakistan.
Collapse
Affiliation(s)
- Sabahat Abdullah
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
- Department of Bioinformatics, Shantou University Medical College, Shantou, China
| | | | - Kalim Ullah
- Department of Bioinformatics, Shantou University Medical College, Shantou, China
| | - Brekhna Hassan
- School of Medicine, Department of Medical Microbiology, Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Mariya Azam
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | | | - Juan Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jianzhen Xu
- Department of Bioinformatics, Shantou University Medical College, Shantou, China
| | - Mark A. Toleman
- School of Medicine, Department of Medical Microbiology, Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Mashkoor Mohsin
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
15
|
Simões de Oliveira G, Lentz SAM, Müller CZ, Guerra RR, Dalmolin TV, Volpato FCZ, de Lima-Morales D, Lamb Wink P, Barth AL, Rabinowitz P, Martins AF. Resistome and plasmidome genomic features of mcr-1.1-harboring Escherichia coli: a One Health approach. J Appl Microbiol 2025; 136:lxaf019. [PMID: 39809568 DOI: 10.1093/jambio/lxaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/02/2024] [Accepted: 01/13/2025] [Indexed: 01/16/2025]
Abstract
AIMS This study evaluated the phenotypic and genotypic traits of mcr-1.1-harboring Escherichia coli isolates from chickens, pigs, humans, and farm environments. The resistome and the mobile genetic elements associated with the spread of mcr-1.1 in Southern Brazil were also characterized. METHODS AND RESULTS The 22 mcr-1.1-harboring E. coli isolates from different origins were selected for antimicrobial susceptibility testing and whole genome sequencing for characterization of the resistome, plasmids, and sequence types. All isolates presented several resistance genes and harbored the mcr-1.1 gene in a highly similar IncX4 plasmid. Furthermore, the mcr-1.1 gene co-occurred with the mcr-3.12 gene in a multidrug-resistant isolate from the farm environment. CONCLUSIONS These findings demonstrate that the mcr-1.1 gene in E. coli isolates from Brazil is spreading mainly by horizontal transfer of the IncX4 plasmid. The co-occurrence of mcr-1.1 and mcr-3.12 highlights pig farming as an important reservoir of colistin resistance.
Collapse
Affiliation(s)
- Gabriela Simões de Oliveira
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, 90035-903, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90610-000, Brazil
- Laboratório de Microbiologia e Saúde Única, Instituto de Ciências Básicas de Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Silvia Adriana Mayer Lentz
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Camila Zanfelice Müller
- Laboratório de Microbiologia e Saúde Única, Instituto de Ciências Básicas de Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Rafaela Ramalho Guerra
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90610-000, Brazil
- Laboratório de Microbiologia e Saúde Única, Instituto de Ciências Básicas de Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Tanise Vendruscolo Dalmolin
- Laboratório de Microbiologia e Imunologia Clínica, Departamento de Farmácia, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, Distrito Federal, 70910-900, Brazil
| | | | - Daiana de Lima-Morales
- Laboratório de Pesquisa em Resistência Bacteriana, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, 90035-903, Brazil
| | - Priscila Lamb Wink
- Laboratório de Pesquisa em Resistência Bacteriana, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, 90035-903, Brazil
| | - Afonso Luís Barth
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, 90035-903, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90610-000, Brazil
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
- Laboratório de Pesquisa em Resistência Bacteriana, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, 90035-903, Brazil
| | - Peter Rabinowitz
- Department of Environmental and Occupational Health Sciences, Center of One Health Research, University of Washington, Seattle, WA, 98195, United States
| | - Andreza Francisco Martins
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, 90035-903, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90610-000, Brazil
- Laboratório de Microbiologia e Saúde Única, Instituto de Ciências Básicas de Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
- Laboratório de Pesquisa em Resistência Bacteriana, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, 90035-903, Brazil
| |
Collapse
|
16
|
Jian Z, Liu Y, Wang Z, Liu P, Wang J, Yan Q, Liu W. Prevalence and molecular characteristics of colistin-resistant isolates among carbapenem-resistant Klebsiella pneumoniae in Central South China: a multicenter study. Ann Clin Microbiol Antimicrob 2025; 24:1. [PMID: 39755702 PMCID: PMC11700468 DOI: 10.1186/s12941-024-00769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/19/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND The emergence of colistin resistance in carbapenem-resistant Klebsiella pneumoniae (CRKP) is a significant public health concern, as colistin has been the last resort for treating such infections. This study aimed to investigate the prevalence and molecular characteristics of colistin-resistant CRKP isolates in Central South China. METHODS CRKP isolates from twelve hospitals in Central South China were screened for colistin resistance using broth microdilution. The epidemiological characteristics, virulome, resistome, plasmid replicons and two-component systems associated with colistin resistance of colistin-resistant isolates were explored by whole-genome sequencing. The mgrB gene and the relative expression of the pmrC and pmrK genes were analyzed by polymerase chain reaction (PCR) and real-time quantitative PCR, respectively. The bacterial virulence was evaluated through a Galleria mellonella larvae infection model. RESULTS Of the 429 nonduplicate CRKP isolates, 26 (6.1%) were colistin-resistant and they included eight clonal clusters. Six distinct sequence type (ST)-capsule loci (KL) types were identified: ST11-KL64, ST11-KL47, ST963-KL16, ST307-KL102, ST751-KL64 and ST5254-KL47. 88.5% (23/26) of them were found to carry at least one carbapenemase gene, including blaKPC-2 (65.4%, 17/26) and blaNDM-1 (7.7%, 2/26), as well as coharbouring blaKPC-2 and blaNDM-1 (15.4%, 4/26). Diverse mutations of colistin resistance-related genes were observed, with mgrB inactivation by insertions and the T157P deleterious mutation in pmrB being detected in 57.7% and 42.3% of the colistin-resistant isolates, respectively. In addition, a novel deleterious mutation, R248P, in the crrB gene was found in two ST11 isolates. 88.5% of the 26 isolates presented an increase in pmrK transcription, and 69.2% of them had an overexpression of the pmrC gene. All the 16 ST11-KL64 isolates and one ST751-KL64 isolate (65.4%, 17/26) carried at least two hypervirulence biomarkers and showed high virulence in vivo. CONCLUSIONS This study highlights the presence of different colistin resistance mechanisms in isolates belonging to the same clone and identified multiple clonal transmission clusters in colistin resistant isolates, including the globally high-risk ST11 and ST307 clones, of which a significant proportion exhibited high virulence. Consequently, it is crucial to enforce measures to prevent the ongoing spread of colistin resistance.
Collapse
Affiliation(s)
- Zijuan Jian
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Yanjun Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Zhiqian Wang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Peilin Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Jiahui Wang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Qun Yan
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Wenen Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
17
|
Li N, Ebrahimi E, Sholeh M, Dousti R, Kouhsari E. A systematic review and meta-analysis: rising prevalence of colistin resistance in ICU-acquired Gram-negative bacteria. APMIS 2025; 133:e13508. [PMID: 39710513 DOI: 10.1111/apm.13508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 12/03/2024] [Indexed: 12/24/2024]
Abstract
Colistin is a last-resort treatment for multidrug-resistant Gram-negative bacterial infections, particularly in critically ill patients. Nevertheless, it remains a major threat to public health. We assessed the proportion of colistin-resistant Gram-negative isolates from intensive care unit (ICU) infections in different years, areas, pathogens, and antimicrobial susceptibility tests (AST). We searched the studies in PubMed, Scopus, Embase, and Web of Science (until November 2021). Statistical analyses were conducted using STATA software (ver. 14.0). The overall rate of colistin resistance was 5.18% (95% CI 2.70%-8.22%). The proportion of colistin resistance was 4% (95% CI 2%-7%) before 2015 and 6% (95% CI 4%-9%) in 2015-2019. The rates of colistin resistance in Europe, America, Asia, and Africa were 8.24%, 3.78%, 3.60%, and 0%, respectively. The proportion of colistin-resistant non-fermenting Gram-negative bacilli isolated from the ICU was 2.25% (Acinetobacter baumannii [1.68%] and Pseudomonas aeruginosa [3.30%]). A 4-fold increase in colistin resistance was observed when comparing EUCAST and CLSI. We described the global epidemiology of colistin resistance over time and shown the distribution of colistin-resistant strains in different countries. Robust antimicrobial stewardship programs can increase the success of ICU physicians in improving patient outcomes.
Collapse
Affiliation(s)
- Na Li
- Zhejiang Provincial Headquarters Hospital of the Chinese People's Armed Police Force Zhejiang, Hangzhou, China
| | - Elaheh Ebrahimi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sholeh
- Department of Medical Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Reyhane Dousti
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ebrahim Kouhsari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
18
|
Soria-Segarra C, Soria-Segarra C, Gutierrez-Fernandez J. Epidemiology of colistin resistance mediated by mcr-1 in carbapenemase-producing Enterobacterales in Ecuador in three periods from 2016 to 2022. Rev Argent Microbiol 2025; 57:33-38. [PMID: 39875307 DOI: 10.1016/j.ram.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/12/2024] [Accepted: 12/17/2024] [Indexed: 01/30/2025] Open
Abstract
Carbapenemase-producing Enterobacterales (CPE) have increased in the last decade. In low-income countries, colistin is considered a last resort antimicrobial to treat CPE infections, whose most worrisome mechanism of resistance is MCR-1 production. This study aims to understand the epidemiology of colistin resistance in CPE in the region, through the surveillance of the mcr-1 gene in CPE isolates in Ecuador. A total of 361 CPE isolates were collected across three periods, from 2016 to 2022. Colistin resistance was assessed using the broth microdilution method and the most frequent carbapenemase-encoding genes and the mcr-1 gene were studied. Colistin resistance rate increased from 3.76% to 23.74% during the study period. The mcr-1 gene was not identified in any of the isolates studied and Klebsiella pneumoniaeblaKPC was the most prevalent microorganism (n=322; 89.20%). In conclusion, colistin resistance increased in CPE in Ecuador and was not mediated by the mcr-1 gene. Our results highlight the need to closely monitor national politics on antimicrobial resistance under the One Health Approach.
Collapse
Affiliation(s)
- Claudia Soria-Segarra
- Sosecali, Medical Services, Guayaquil, EC 090308, Ecuador; Universidad de Guayaquil, Facultad de Ciencias Médicas, Guayaquil, Ecuador; Department of Microbiology, School of Medicine and PhD Program in Clinical Medicine and Public Health, University of Granada & Ibs, Granada, Spain.
| | - Carmen Soria-Segarra
- Sosecali, Medical Services, Guayaquil, EC 090308, Ecuador; Department of Internal Medicine, School of Medicine, Universidad Católica de Santiago de Guayaquil, Guayaquil, Ecuador
| | - José Gutierrez-Fernandez
- Department of Microbiology, School of Medicine and PhD Program in Clinical Medicine and Public Health, University of Granada & Ibs, Granada, Spain; Department of Microbiology, Hospital Virgen de las Nieves, Institute for Biosanitary Research-Ibs, Granada, Spain
| |
Collapse
|
19
|
Attalla ET, Khalil AM, Zakaria AS, Evans R, Tolba NS, Mohamed NM. Efficacy of colistin-based combinations against pandrug-resistant whole-genome-sequenced Klebsiella pneumoniae isolated from hospitalized patients in Egypt: an in vitro/vivo comparative study. Gut Pathog 2024; 16:73. [PMID: 39627871 PMCID: PMC11616336 DOI: 10.1186/s13099-024-00667-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/13/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Colistin resistance significantly constrains available treatment options and results in the emergence of pandrug-resistant (PDR) strains. Treating PDR infections is a major public health issue. A promising solution lies in using colistin-based combinations. Despite the availability of in vitro data evaluating these combinations, the in vivo studies remain limited. RESULTS Thirty colistin-resistant Klebsiella pneumoniae (ColRKp) isolates were collected from hospitalized patients. Colistin resistance was detected using broth microdilution, and antimicrobial susceptibility was tested using the Kirby-Bauer method against 18 antibiotics. Extremely high resistance levels were detected, with 17% of the isolates being PDR. Virulence profiling, assessed using Anthony capsule staining, the string test, and the crystal violet assay, indicated the predominance of non-biofilm formers and non-hypermucoid strains. The isolates were screened for mcr genes using polymerase chain reaction. Whole-genome sequencing (WGS) and bioinformatics analysis were performed to characterize the genomes of PDR isolates. No plasmid-borne mcr genes were detected, and WGS analysis revealed that PDR isolates belonged to the high-risk clones: ST14 (n = 1), ST147 (n = 2), and ST383 (n = 2). They carried genes encoding extended-spectrum β-lactamases and carbapenemases, blaCTX-M-15 and blaNDM-5, on conjugative IncHI1B/IncFIB plasmids, illustrating the convergence of virulence and resistance genes. The most common mechanism of colistin resistance involved alterations in mgrB. Furthermore, deleterious amino acid substitutions were also detected within PhoQ, PmrC, CrrB, ArnB, and ArnT. Seven colistin-containing combinations were compared using the checkerboard experiment. Synergy was observed when combining colistin with tigecycline, doxycycline, levofloxacin, ciprofloxacin, sulfamethoxazole/trimethoprim, imipenem, or meropenem. The efficacy of colistin combined with either doxycycline or levofloxacin was assessed in vitro using a resistance modulation assay, and in vivo, using a murine infection model. In vitro, doxycycline and levofloxacin reversed colistin resistance in 80% and 73.3% of the population, respectively. In vivo, the colistin + doxycycline combination demonstrated superiority over colistin + levofloxacin, rescuing 80% of infected animals, and reducing bacterial bioburden in the liver and kidneys while preserving nearly intact lung histology. CONCLUSIONS This study represents the first comparative in vitro and in vivo investigation of the efficacy of colistin + doxycycline and colistin + levofloxacin combinations in clinical PDR ColRKp isolates characterized at a genomic level.
Collapse
Affiliation(s)
- Eriny T Attalla
- Microbiology and Immunology Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Amal M Khalil
- Microbiology and Immunology Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Azza S Zakaria
- Microbiology and Immunology Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | | | - Nesrin S Tolba
- Pathology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Nelly M Mohamed
- Microbiology and Immunology Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
20
|
Nuske MR, Zhong J, Huang R, Sarojini V, Chen JLY, Squire CJ, Blaskovich MAT, Leung IKH. Adjuvant strategies to tackle mcr-mediated polymyxin resistance. RSC Med Chem 2024:d4md00654b. [PMID: 39539347 PMCID: PMC11556429 DOI: 10.1039/d4md00654b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The emergence of the mobile colistin resistance (mcr) gene is a demonstrable threat contributing to the worldwide antibiotic resistance crisis. The gene is encoded on plasmids and can easily spread between different bacterial strains. mcr encodes a phosphoethanolamine (pEtN) transferase, which catalyses the transfer of the pEtN moiety from phosphatidylethanolamine to lipid A, the head group of lipopolysaccharides (LPS). This neutralises the overall negative charge of the LPS and prevents the binding of polymyxins to bacterial membranes. We believe that the development of polymyxin adjuvants could be a promising approach to prolong the use of this important class of last-resort antibiotics. This review discusses recent progress in the identification, design and development of adjuvants to restore polymyxin sensitivity in these resistant bacteria, and focuses on both MCR inhibitors as well as alternative approaches that modulate polymyxin resistance.
Collapse
Affiliation(s)
- Madison R Nuske
- School of Chemistry, The University of Melbourne Parkville Victoria 3010 Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne Parkville Victoria 3010 Australia
| | - Junlang Zhong
- School of Chemistry, The University of Melbourne Parkville Victoria 3010 Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne Parkville Victoria 3010 Australia
| | - Renjie Huang
- School of Chemical Sciences, The University of Auckland Auckland 1010 New Zealand
| | | | - Jack L Y Chen
- Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology Auckland 1010 New Zealand
- Department of Biotechnology, Chemistry and Pharmaceutical Sciences, Università degli Studi di Siena 53100 Siena Italy
| | - Christopher J Squire
- School of Biological Sciences, The University of Auckland Auckland 1010 New Zealand
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland St. Lucia Queensland 4072 Australia
| | - Ivanhoe K H Leung
- School of Chemistry, The University of Melbourne Parkville Victoria 3010 Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne Parkville Victoria 3010 Australia
- School of Chemical Sciences, The University of Auckland Auckland 1010 New Zealand
| |
Collapse
|
21
|
Dragon D, Jansen W, Dumont H, Wiggers L, Coupeau D, Saulmont M, Taminiau B, Muylkens B, Daube G. Conventionally Reared Wallon Meat Lambs Carry Transiently Multi-Drug-Resistant Escherichia coli with Reduced Sensitivity to Colistin Before Slaughter. Animals (Basel) 2024; 14:3038. [PMID: 39457968 PMCID: PMC11505500 DOI: 10.3390/ani14203038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Major efforts have been made to reduce the use of colistin in livestock since the discovery of the plasmid-borne mobile colistin resistance (mcr) gene in E. coli a decade ago, to curb the burden of its potential transmission to other bacterial species, spread between animals, humans and the environment. This study explored the longitudinal prevalence and characteristics of colistin-resistant and extended-spectrum beta-lactamase-producing (ESBL) E. coli via in vivo fecal and ex vivo carcass swabs from two batches of conventional indoor and organic outdoor Wallon meat sheep from birth to slaughter in 2020 and 2021. Antimicrobial susceptibility testing via broth microdilution revealed that n = 16/109 (15%) E. coli isolates from conventional meat lamb fecal samples had a reduced colistin sensitivity (MIC = 0.5 μg/mL) and thereof, n = 9/109 (8%) were multi-drug-resistant E. coli, while no resistant isolates were recovered from their carcasses. Sequencing revealed causative pmrB genes, indicating that the reduced sensitivity to colistin was not plasmid-borne. While the sample size was small (n = 32), no colistin-resistant and ESBL-producing E. coli were isolated from the organic meat sheep and their carcasses, potentially due to the different husbandry conditions. Prudent and judicious antimicrobial use and strict slaughter hygiene remain imperative for effective risk management to protect consumers in a sustainable One Health approach.
Collapse
Affiliation(s)
- Delphine Dragon
- Integrated Veterinary Research Unit, Faculty of Science, Université de Namur, Rue de Bruxelles 61, 5000 Namur, Belgium (W.J.); (H.D.); (D.C.)
- Department of Food Sciences, Microbiology, Fundamental and Applied Research for Animal & Health (FARAH), Faculty of Veterinary Medicine, Université de Liège, Avenue de Cureghem 10, 4000 Liège, Belgium; (B.T.); (G.D.)
| | - Wiebke Jansen
- Integrated Veterinary Research Unit, Faculty of Science, Université de Namur, Rue de Bruxelles 61, 5000 Namur, Belgium (W.J.); (H.D.); (D.C.)
- Federation of Veterinarians of Europe (FVE), Rue Victor Oudart 7, 1030 Brussels, Belgium
| | - Helene Dumont
- Integrated Veterinary Research Unit, Faculty of Science, Université de Namur, Rue de Bruxelles 61, 5000 Namur, Belgium (W.J.); (H.D.); (D.C.)
| | - Laetitia Wiggers
- Integrated Veterinary Research Unit, Faculty of Science, Université de Namur, Rue de Bruxelles 61, 5000 Namur, Belgium (W.J.); (H.D.); (D.C.)
| | - Damien Coupeau
- Integrated Veterinary Research Unit, Faculty of Science, Université de Namur, Rue de Bruxelles 61, 5000 Namur, Belgium (W.J.); (H.D.); (D.C.)
| | - Marc Saulmont
- Regional Animal Health and Identification Association (ARSIA), 5590 Ciney, Belgium;
| | - Bernard Taminiau
- Department of Food Sciences, Microbiology, Fundamental and Applied Research for Animal & Health (FARAH), Faculty of Veterinary Medicine, Université de Liège, Avenue de Cureghem 10, 4000 Liège, Belgium; (B.T.); (G.D.)
| | - Benoit Muylkens
- Integrated Veterinary Research Unit, Faculty of Science, Université de Namur, Rue de Bruxelles 61, 5000 Namur, Belgium (W.J.); (H.D.); (D.C.)
| | - Georges Daube
- Department of Food Sciences, Microbiology, Fundamental and Applied Research for Animal & Health (FARAH), Faculty of Veterinary Medicine, Université de Liège, Avenue de Cureghem 10, 4000 Liège, Belgium; (B.T.); (G.D.)
| |
Collapse
|
22
|
Liu M, Wu J, Zhao J, Xi Y, Jin Y, Yang H, Chen S, Long J, Duan G. Global epidemiology and genetic diversity of mcr-positive Klebsiella pneumoniae: A systematic review and genomic analysis. ENVIRONMENTAL RESEARCH 2024; 259:119516. [PMID: 38950813 DOI: 10.1016/j.envres.2024.119516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/03/2024]
Abstract
The rapid increase of mcr-positive Klebsiella pneumoniae (K. pneumoniae) has received considerable attention and poses a major public health concern. Here, we systematically analyzed the global distribution of mcr-positive K. pneumoniae isolates based on published articles as well as publicly available genomes. Combining strain information from 78 articles and 673 K. pneumoniae genomes, a total of 1000 mcr-positive K. pneumoniae isolates were identified. We found that mcr-positive K. pneumoniae has disseminated widely worldwide, especially in Asia, with a higher diversity of sequence types (STs). These isolates were disseminated in 57 countries and were associated with 12 different hosts. Most of the isolates were found in China and were isolated from human sources. Moreover, MLST analysis showed that ST15 and ST11 accounted for the majority of mcr-positive K. pneumoniae, which deserve sustained attention in further surveillance programs. mcr-1 and mcr-9 were the dominant mcr variants in mcr-positive K. pneumoniae. Furthermore, a Genome-wide association study (GWAS) demonstrated that mcr-1- and mcr-9-producing genomes exhibited different antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), thereby indicating a distinct evolutionary path. Notably, the phylogenetic analysis suggested that certain mcr-positive K. pneumoniae genomes from various geographical areas and hosts harbored a high degree of genetic similarities (<20 SNPs), suggesting frequent cross-region and cross-host clonal transmission. Overall, our results emphasize the significance of monitoring and exploring the transmission and evolution of mcr-positive K. pneumoniae in the context of "One health".
Collapse
Affiliation(s)
- Mengyue Liu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jie Wu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiaxue Zhao
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yanyan Xi
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jinzhao Long
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
23
|
Butters A, Jovel J, Gow S, Liljebjelke K, Waldner C, Checkley SL. PmrB Y358N, E123D amino acid substitutions are not associated with colistin resistance but with phylogeny in Escherichia coli. Microbiol Spectr 2024; 12:e0053224. [PMID: 39162501 PMCID: PMC11451601 DOI: 10.1128/spectrum.00532-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/16/2024] [Indexed: 08/21/2024] Open
Abstract
Colistin resistance in Escherichia coli is of public health significance for its use to treat multidrug-resistant Gram-negative infections. Amino acid variations in PmrB have been implicated in colistin resistance in E. coli. In this cross-sectional study, 288 generic E. coli isolates from surveillance of broiler chicken and feedlot cattle feces, retail meat, wastewater, and well water were whole-genome sequenced. Phylogroup designation and screening for two amino acid substitutions in PmrB putatively linked to colistin resistance (Y358N, E123D) were performed in silico. Three additional data sets of publicly available E. coli assemblies were similarly scrutinized: (i) E. coli isolates from studies identifying the Y358N or E123D substitutions, (ii) colistin-susceptible E. coli isolates reported in the literature, and (iii) a random sampling of 14,700 E. coli assemblies available in the National Center for Biotechnology Information public database. Within all data sets, ≥95% of phylogroup B1 and C isolates have the PmrB Y358N variation. The PmrB E123D amino acid substitution was only identified in phylogroup B2 isolates, of which 94%-100% demonstrate the substitution. Both PmrB amino acid variations were infrequent in other phylogroups. Among published colistin susceptible isolates, colistin minimum inhibitory concentrations (MICs) were not higher in isolates bearing the E123D and Y358N amino acid variations than in isolates without these PmrB substitutions. The E123D and Y358N PmrB amino acid substitutions in E. coli appear strongly associated with phylogroup. The previously observed associations between Y358N and E123D amino acid substitutions in PmrB and colistin resistance in E. coli may be spurious. IMPORTANCE Colistin is a critical last-resort treatment for extensively drug-resistant Gram-negative infections in humans. Therefore, accurate identification of the genetic mechanisms of resistance to this antimicrobial is crucial to effectively monitor and mitigate the spread of resistance. Examining over 16,000 whole-genome sequenced Escherichia coli isolates, this study identifies that PmrB E123D and Y358N amino acid substitutions previously associated with colistin resistance in E. coli are strongly associated with phylogroup and are alone not sufficient to confer a colistin-resistant phenotype. This is a critical clarification, as both substitutions are identified as putative mechanisms of colistin resistance in many publications and a common bioinformatic tool. Given the potential spurious nature of initial associations of these substitutions with colistin resistance, this study's findings emphasize the importance of appropriate experimental design and consideration of relevant biological factors such as phylogroup when ascribing causal mechanisms of resistance to chromosomal variations.
Collapse
Affiliation(s)
- Alyssa Butters
- Faculty of Veterinary
Medicine, University of Calgary,
Calgary, Alberta,
Canada
- AMR—One Health
Consortium, Calgary,
Alberta, Canada
| | - Juan Jovel
- Faculty of Veterinary
Medicine, University of Calgary,
Calgary, Alberta,
Canada
| | - Sheryl Gow
- Canadian Integrated
Program for Antimicrobial Resistance Surveillance/FoodNet, Public Health
Agency of Canada, Ottawa,
Ontario, Canada
- Department of Large
Animal Clinical Sciences, Western College of Veterinary Medicine,
University of Saskatchewan,
Saskatoon, Saskatchewan,
Canada
| | - Karen Liljebjelke
- Faculty of Veterinary
Medicine, University of Calgary,
Calgary, Alberta,
Canada
- AMR—One Health
Consortium, Calgary,
Alberta, Canada
| | - Cheryl Waldner
- Department of Large
Animal Clinical Sciences, Western College of Veterinary Medicine,
University of Saskatchewan,
Saskatoon, Saskatchewan,
Canada
| | - Sylvia L. Checkley
- Faculty of Veterinary
Medicine, University of Calgary,
Calgary, Alberta,
Canada
- AMR—One Health
Consortium, Calgary,
Alberta, Canada
| |
Collapse
|
24
|
Liu H, Zhang Y, Zhong Z, Gong Y, Yu P, Yang Y, Zhang Y, Zhou T, Chen L. Immunomodulator AS101 restores colistin susceptibility of clinical colistin-resistant Escherichia coli and Klebsiella pneumoniae in vitro and in vivo. Int J Antimicrob Agents 2024; 64:107285. [PMID: 39111708 DOI: 10.1016/j.ijantimicag.2024.107285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 10/04/2024]
Abstract
OBJECTIVES Colistin (COL) was once considered to be the last line of defence against multidrug-resistant bacteria belonging to the family Enterobacteriaceae. Due to the misuse of COL, COL-resistant (COL-R) Enterobacteriaceae have emerged. To address this clinical issue and combat COL resistance, novel approaches are urgently needed. METHODS In this study, the in vitro and in vivo antimicrobial and antibiofilm effects of the immunomodulator AS101 were investigated in combination with COL against COL-R Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae). RESULTS Checkerboard assay, time-kill assay, and scanning electron microscopy confirmed the in vitro antimicrobial phenotype, whereas, crystal violet staining and multidimensional confocal laser scanning microscopy with live/dead staining confirmed the antibiofilm capability of the combination therapy. Moreover, the Galleria mellonella infection model and the mouse infection model indicated the high in vivo efficacy of the combination therapy. Additionally, cytotoxicity experiments performed using human kidney-derived HK-2 cells and haemolysis assays performed using human erythrocytes collectively demonstrated safety at effective combination concentrations. Furthermore, quantification of the expression of inflammatory cytokines via enzyme-linked immunosorbent assay confirmed the anti-inflammatory advantage of combination therapy. At the mechanistic level, changes in outer and inner membrane permeability and accumulation of ROS levels, which might be potential mechanisms for synergistic antimicrobial effects. CONCLUSIONS This study found that AS101 can restore COL susceptibility in clinical COL-R E. coli and K. pneumoniae and also has synergistic antibiofilm and anti-inflammatory capabilities. This study provided a novel strategy to combat clinical infections caused by COL-R E. coli and K. pneumoniae.
Collapse
Affiliation(s)
- Haifeng Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Ying Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Zeyong Zhong
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanchun Gong
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Pingting Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Yuhan Yang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yichi Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Lijiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China.
| |
Collapse
|
25
|
Liu Y, Wang Q, Qi T, Zhang M, Chen R, Si Z, Li J, Jin Y, Xu Q, Li P, Hao Y. Molecular Epidemiology of mcr-1-Positive Polymyxin B-Resistant Escherichia coli Producing Extended-Spectrum β-Lactamase (ESBL) in a Tertiary Hospital in Shandong, China. Pol J Microbiol 2024; 73:363-375. [PMID: 39268958 PMCID: PMC11395425 DOI: 10.33073/pjm-2024-032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/23/2024] [Indexed: 09/15/2024] Open
Abstract
Escherichia coli, a rod-shaped Gram-negative bacterium, is a significant causative agent of severe clinical bacterial infections. This study aimed to analyze the epidemiology of extended-spectrum β-lactamase (ESBL)-producing mcr-1 -positive E. coli in Shandong, China. We collected 668 non-duplicate ESBL-producing E. coli strains from clinical samples at Shandong Provincial Hospital between January and December 2018, and estimated their minimum inhibitory concentrations (MICs) using a VITEK® 2 compact system and broth microdilution. Next-generation sequencing and bioinformatic analyses identified the mcr-1 gene and other resistance genes in the polymyxin B-resistant strains. The conjugation experiment assessed the horizontal transfer capacity of the mcr-1 gene. Of the strains collected, 24 polymyxin B-resistant strains were isolated with a positivity rate of 3.59% and among the 668 strains, 19 clinical strains carried the mobile colistin resistance gene mcr-1, with a positivity rate of approximately 2.8%. All 19 clinical strains were resistant to ampicillin, cefazolin, ceftriaxone, ciprofloxacin, levofloxacin, and polymyxin B. Seventeen strains successfully transferred the mcr-1 gene into E. coli J53. All transconjugants were resistant to polymyxin B, and carried the drug resistance gene mcr-1. The 19 clinical strains had 14 sequence types (STs), with ST155 (n = 4) being the most common. The whole-genome sequencing results of pECO-POL-29_mcr1 revealed that no ISApl1 insertion sequences were found on either side of the mcr-1 gene. Our study uncovered the molecular epidemiology of mcr-1-carrying ESBL-producing E. coli in the region and suggested horizontal transmission mediated by plasmids as the main mode of mcr-1 transmission.
Collapse
Affiliation(s)
- Yue Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qian Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ting Qi
- Department of Clinical Laboratory, Jinan Gangcheng District People’s Hospital, Jinan, China
| | - Meng Zhang
- Department of Clinical Laboratory, Liaocheng Second People’s Hospital, Liaocheng, China
| | - Ran Chen
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zaifeng Si
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jinmei Li
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Clinical Laboratory, Jinan Seventh People’s Hospital, Jinan, China
| | - Yan Jin
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qingbing Xu
- Central Laboratory of Liaocheng People’s Hospital, Liaocheng, China
| | - Ping Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yingying Hao
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
26
|
Lobertti CA, Cabezudo I, Gizzi FO, Blancato V, Magni C, Furlán RLE, García Véscovi E. An allosteric inhibitor of the PhoQ histidine kinase with therapeutic potential against Salmonella infection. J Antimicrob Chemother 2024; 79:1820-1830. [PMID: 38853496 DOI: 10.1093/jac/dkae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/30/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND The upsurge of antimicrobial resistance demands innovative strategies to fight bacterial infections. With traditional antibiotics becoming less effective, anti-virulence agents or pathoblockers, arise as an alternative approach that seeks to disarm pathogens without affecting their viability, thereby reducing selective pressure for the emergence of resistance mechanisms. OBJECTIVES To elucidate the mechanism of action of compound N'-(thiophen-2-ylmethylene)benzohydrazide (A16B1), a potent synthetic hydrazone inhibitor against the Salmonella PhoP/PhoQ system, essential for virulence. MATERIALS AND METHODS The measurement of the activity of PhoP/PhoQ-dependent and -independent reporter genes was used to evaluate the specificity of A16B1 to the PhoP regulon. Autokinase activity assays with either the native or truncated versions of PhoQ were used to dissect the A16B1 mechanism of action. The effect of A16B1 on Salmonella intramacrophage replication was assessed using the gentamicin protection assay. The checkerboard assay approach was used to analyse potentiation effects of colistin with the hydrazone. The Galleria mellonella infection model was chosen to evaluate A16B1 as an in vivo therapy against Salmonella. RESULTS A16B1 repressed the Salmonella PhoP/PhoQ system activity, specifically targeting PhoQ within the second transmembrane region. A16B1 demonstrates synergy with the antimicrobial peptide colistin, reduces the intramacrophage proliferation of Salmonella without being cytotoxic and enhances the survival of G. mellonella larvae systemically infected with Salmonella. CONCLUSIONS A16B1 selectively inhibits the activity of the Salmonella PhoP/PhoQ system through a novel inhibitory mechanism, representing a promising synthetic hydrazone compound with the potential to function as a Salmonella pathoblocker. This offers innovative prospects for combating Salmonella infections while mitigating the risk of antimicrobial resistance emergence.
Collapse
Affiliation(s)
- Carlos A Lobertti
- Instituto de Biología Molecular y Celular de Rosario Consejo Nacional de Investigaciones Científicas y Técnicas and Facultad de Ciencias Bioquímicas y Farmacéuticas, Departamento de Microbiología, Universidad Nacional de Rosario, Rosario S2000EZP, Argentina
| | - Ignacio Cabezudo
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario 2000, Argentina
| | - Fernán O Gizzi
- Instituto de Biología Molecular y Celular de Rosario Consejo Nacional de Investigaciones Científicas y Técnicas and Facultad de Ciencias Bioquímicas y Farmacéuticas, Departamento de Microbiología, Universidad Nacional de Rosario, Rosario S2000EZP, Argentina
| | - Víctor Blancato
- Instituto de Biología Molecular y Celular de Rosario Consejo Nacional de Investigaciones Científicas y Técnicas and Facultad de Ciencias Bioquímicas y Farmacéuticas, Departamento de Microbiología, Universidad Nacional de Rosario, Rosario S2000EZP, Argentina
| | - Christian Magni
- Instituto de Biología Molecular y Celular de Rosario Consejo Nacional de Investigaciones Científicas y Técnicas and Facultad de Ciencias Bioquímicas y Farmacéuticas, Departamento de Microbiología, Universidad Nacional de Rosario, Rosario S2000EZP, Argentina
| | - Ricardo L E Furlán
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario 2000, Argentina
| | - Eleonora García Véscovi
- Instituto de Biología Molecular y Celular de Rosario Consejo Nacional de Investigaciones Científicas y Técnicas and Facultad de Ciencias Bioquímicas y Farmacéuticas, Departamento de Microbiología, Universidad Nacional de Rosario, Rosario S2000EZP, Argentina
| |
Collapse
|
27
|
Jia Y, Zhang T, He M, Yang B, Wang Z, Liu Y. Melatonin Protects Against Colistin-Induced Intestinal Inflammation and Microbiota Dysbiosis. J Pineal Res 2024; 76:e12989. [PMID: 38978438 DOI: 10.1111/jpi.12989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024]
Abstract
Colistin is renowned as a last-resort antibiotic due to the emergence of multidrug-resistant pathogens. However, its potential toxicity significantly hampers its clinical utilization. Melatonin, chemically known as N-acetyl-5-hydroxytryptamine, is an endogenous hormone produced by the pineal gland and possesses diverse biological functions. However, the protective role of melatonin in alleviating antibiotic-induced intestinal inflammation remains unknown. Herein, we reveal that colistin stimulation markedly elevates intestinal inflammatory levels and compromises the gut barrier. In contrast, pretreatment with melatonin safeguards mice against intestinal inflammation and mucosal damage. Microbial diversity analysis indicates that melatonin supplementation prevents a reduction in the abundance of Erysipelotrichales and Bifidobacteriales, as well as an increase in Desulfovibrionales abundance, following colistin exposure. Remarkably, short-chain fatty acids (SCFAs) analysis shows that propanoic acid contributes to the protective effect of melatonin on colistin-induced intestinal inflammation. Furthermore, the protection effects of melatonin and propanoic acid on LPS-induced cellular inflammation in RAW 264.7 cells are confirmed. Mechanistic investigations suggest that intervention with melatonin and propanoic acid can repress the activation of the TLR4 signal and its downstream NF-κB and MAPK signaling pathways, thereby mitigating the toxic effects of colistin. Our work highlights the unappreciated role of melatonin in preventing the potential detrimental effects of colistin on intestinal health and suggests a combined therapeutic strategy to effectively manage intestinal infectious diseases.
Collapse
Affiliation(s)
- Yuqian Jia
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tingting Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Mengping He
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Bingqing Yang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yuan Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
28
|
Yang J, Zhang L, He X, Gou X, Zong Z, Luo Y. In vitro and in vivo enhancement effect of glabridin on the antibacterial activity of colistin, against multidrug resistant Escherichia coli strains. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155732. [PMID: 38776738 DOI: 10.1016/j.phymed.2024.155732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/19/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The increase in antimicrobial resistance leads to complications in treatments, prolonged hospitalization, and increased mortality. Glabridin (GLA) is a hydroxyisoflavan from Glycyrrhiza glabra L. that exhibits multiple pharmacological activities. Colistin (COL), a last-resort antibiotic, is increasingly being used in clinic against Gram-negative bacteria. Previous reports have shown that GLA is able to sensitize first line antibiotics such as norfloxacin and vancomycin on Staphylococcus aureus, implying that the use of GLA as an antibiotic adjuvant is a promising strategy for addressing the issue of drug resistance. However, the adjuvant effect on other antibiotics, especially COL, on Gram-negative bacteria such as Escherichia coli has not been studied. PURPOSE The objective of our study was to investigate the targets of GLA and the synergistic effect of GLA and COL in E. coli, and to provide further evidence for the use of GLA as an antibiotic adjuvant to alleviate the problem of drug resistance. METHODS We first investigated the interaction between GLA and enoyl-acyl carrier protein reductase, also called "FabI", through enzyme inhibition assay, differential scanning fluorimetry, isothermal titration calorimetry and molecular docking assay. We tested the transmembrane capacity of GLA on its own and combined it with several antibiotics. The antimicrobial activities of GLA and COL were evaluated against six different susceptible and resistant E. coli in vitro. Their interactions were analyzed using checkerboard assay, time-kill curve and CompuSyn software. A series of sensitivity tests was conducted in E. coli overexpressing the fabI gene. The development of COL resistance in the presence of GLA was tested. The antimicrobial efficacy of GLA and COL in a mouse model of urinary tract infection was assessed. The anti-biofilm effects of GLA and COL were investigated. RESULTS In this study, enzyme kinetic analysis and thermal analysis provided evidence for the interaction between GLA and FabI in E. coli. GLA enhanced the antimicrobial effect of COL and synergistically suppressed six different susceptible and resistant E. coli with COL. Overexpression experiments showed that targeted inhibition of FabI was a key mechanism by which GLA synergistically enhanced COL activity. The combination of GLA and COL slowed the development of COL resistance in E. coli. Combined GLA and COL treatment significantly reduced bacterial load and mitigated urinary tract injury in a mouse model of E. coli urinary tract infection. Additionally, GLA + COL inhibited the formation and eradication of biofilms and the synthesis of curli. CONCLUSION Our findings indicate that GLA synergistically enhances antimicrobial activities of COL by targeting inhibition of FabI in E. coli. GLA is expected to continue to be developed as an antibiotic adjuvant to address drug resistance issues.
Collapse
Affiliation(s)
- Jiaxing Yang
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Laiying Zhang
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinlian He
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xupeng Gou
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Youfu Luo
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
29
|
Hatrongjit R, Wongsurawat T, Jenjaroenpun P, Chopjitt P, Boueroy P, Akeda Y, Okada K, Iida T, Hamada S, Kerdsin A. Genomic analysis of carbapenem- and colistin-resistant Klebsiella pneumoniae complex harbouring mcr-8 and mcr-9 from individuals in Thailand. Sci Rep 2024; 14:16836. [PMID: 39039157 PMCID: PMC11263567 DOI: 10.1038/s41598-024-67838-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024] Open
Abstract
The surge in mobile colistin-resistant genes (mcr) has become an increasing public health concern, especially in carbapenem-resistant Enterobacterales (CRE). Prospective surveillance was conducted to explore the genomic characteristics of clinical CRE isolates harbouring mcr in 2015-2020. In this study, we aimed to examine the genomic characteristics and phonotypes of mcr-8 and mcr-9 harbouring carbapenem-resistant K. pneumoniae complex (CRKpnC). Polymerase chain reaction test and genome analysis identified CRKpnC strain AMR20201034 as K. pneumoniae (CRKP) ST147 and strain AMR20200784 as K. quasipneumoniae (CRKQ) ST476, harbouring mcr-8 and mcr-9, respectively. CRKQ exhibited substitutions in chromosomal-mediated colistin resistance genes (pmrB, pmrC, ramA, and lpxM), while CRKP showed two substitutions in crrB, pmrB, pmrC, lpxM and lapB. Both species showed resistance to colistin, with minimal inhibitory concentrations of 8 µg/ml for mcr-8-carrying CRKP isolate and 32 µg/ml for mcr-9-carrying CRKQ isolate. In addition, CRKP harbouring mcr-8 carried blaNDM, while CRKQ harbouring mcr-9 carried blaIMP, conferring carbapenem resistance. Analysis of plasmid replicon types carrying mcr-8 and mcr-9 showed FIA-FII (96,575 bp) and FIB-HI1B (287,118 bp), respectively. In contrast with the plasmid carrying the carbapenemase genes, the CRKQ carried blaIMP-14 on an IncC plasmid, while the CRKP harboured blaNDM-1 on an FIB plasmid. This finding provides a comprehensive insight into another mcr-carrying CRE from patients in Thailand. The other antimicrobial-resistant genes in the CRKP were blaCTX-M-15, blaSHV-11, blaOXA-1, aac(6')-Ib-cr, aph(3')-VI, ARR-3, qnrS1, oqxA, oqxB, sul1, catB3, fosA, and qacE, while those detected in CRKQ were blaOKP-B-15, qnrA1, oqxA, oqxB, sul1, fosA, and qacE. This observation highlights the importance of strengthening official active surveillance efforts to detect, control, and prevent mcr-harbouring CRE and the need for rational drug use in all sectors.
Collapse
Affiliation(s)
- Rujirat Hatrongjit
- Department of General Sciences, Faculty of Science and Engineering, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Thidathip Wongsurawat
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piroon Jenjaroenpun
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Peechanika Chopjitt
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Parichart Boueroy
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | | | - Kazuhisa Okada
- Japan-Thailand Research Collaboration Centre On Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tetsuya Iida
- Japan-Thailand Research Collaboration Centre On Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shigeyuki Hamada
- Japan-Thailand Research Collaboration Centre On Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand.
| |
Collapse
|
30
|
Maybin M, Ranade AM, Schombel U, Gisch N, Mamat U, Meredith TC. IS 1-mediated chromosomal amplification of the arn operon leads to polymyxin B resistance in Escherichia coli B strains. mBio 2024; 15:e0063424. [PMID: 38904391 PMCID: PMC11253626 DOI: 10.1128/mbio.00634-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
Polymyxins [colistin and polymyxin B (PMB)] comprise an important class of natural product lipopeptide antibiotics used to treat multidrug-resistant Gram-negative bacterial infections. These positively charged lipopeptides interact with lipopolysaccharide (LPS) located in the outer membrane and disrupt the permeability barrier, leading to increased uptake and bacterial cell death. Many bacteria counter polymyxins by upregulating genes involved in the biosynthesis and transfer of amine-containing moieties to increase positively charged residues on LPS. Although 4-deoxy-l-aminoarabinose (Ara4N) and phosphoethanolamine (PEtN) are highly conserved LPS modifications in Escherichia coli, different lineages exhibit variable PMB susceptibilities and frequencies of resistance for reasons that are poorly understood. Herein, we describe a mechanism prevalent in E. coli B strains that depends on specific insertion sequence 1 (IS1) elements that flank genes involved in the biosynthesis and transfer of Ara4N to LPS. Spontaneous and transient chromosomal amplifications mediated by IS1 raise the frequency of PMB resistance by 10- to 100-fold in comparison to strains where a single IS1 element located 90 kb away from the end of the arn operon has been deleted. Amplification involving IS1 becomes the dominant resistance mechanism in the absence of PEtN modification. Isolates with amplified arn operons gradually lose their PMB-resistant phenotype with passaging, consistent with classical PMB heteroresistance behavior. Analysis of the whole genome transcriptome profile showed altered expression of genes residing both within and outside of the duplicated chromosomal segment, suggesting complex phenotypes including PMB resistance can result from tandem amplification events.IMPORTANCEPhenotypic variation in susceptibility and the emergence of resistant subpopulations are major challenges to the clinical use of polymyxins. While a large database of genes and alleles that can confer polymyxin resistance has been compiled, this report demonstrates that the chromosomal insertion sequence (IS) content and distribution warrant consideration as well. Amplification of large chromosomal segments containing the arn operon by IS1 increases the Ara4N content of the lipopolysaccharide layer in Escherichia coli B lineages using a mechanism that is orthogonal to transcriptional upregulation through two-component regulatory systems. Altogether, our work highlights the importance of IS elements in modulating gene expression and generating diverse subpopulations that can contribute to phenotypic polymyxin B heteroresistance.
Collapse
Affiliation(s)
- Michael Maybin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Aditi M. Ranade
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ursula Schombel
- Division of Bioanalytical Chemistry, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Uwe Mamat
- Division of Cellular Microbiology, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Leibniz Research Alliance INFECTIONS, Borstel, Germany
| | - Timothy C. Meredith
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
31
|
Jiménez-Castellanos JC, Waclaw B, Meynert A, McAteer SP, Schneiders T. Rapid evolution of colistin resistance in a bioreactor model of infection of Klebsiella pneumoniae. Commun Biol 2024; 7:794. [PMID: 38951173 PMCID: PMC11217424 DOI: 10.1038/s42003-024-06378-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/23/2024] [Indexed: 07/03/2024] Open
Abstract
Colistin remains an important antibiotic for the therapeutic management of drug-resistant Klebsiella pneumoniae. Despite the numerous reports of colistin resistance in clinical strains, it remains unclear exactly when and how different mutational events arise resulting in reduced colistin susceptibility. Using a bioreactor model of infection, we modelled the emergence of colistin resistance in a susceptible isolate of K. pneumoniae. Genotypic, phenotypic and mathematical analyses of the antibiotic-challenged and un-challenged population indicates that after an initial decline, the population recovers within 24 h due to a small number of "founder cells" which have single point mutations mainly in the regulatory genes encoding crrB and pmrB that when mutated results in up to 100-fold reduction in colistin susceptibility. Our work underlines the rapid development of colistin resistance during treatment or exposure of susceptible K. pneumoniae infections having implications for the use of cationic antimicrobial peptides as a monotherapy.
Collapse
Affiliation(s)
- Juan-Carlos Jiménez-Castellanos
- Chemical Biology of Antibiotics, Centre for Infection & Immunity (CIIL), Pasteur Institute, INSERM U1019-CNRS UMR 9017, Lille, France
| | - Bartlomiej Waclaw
- School of Physics and Astronomy, The University of Edinburgh, JCMB, Edinburgh, UK.
- Dioscuri Centre for Physics and Chemistry of Bacteria, Institute of Physical Chemistry, Warsaw, Poland.
| | - Alison Meynert
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Sean P McAteer
- Department of Bacteriology, The Roslin Institute and R(D) SVS, The University of Edinburgh, Easter Bush Campus, Midlothian, Edinburgh, UK
| | - Thamarai Schneiders
- Centre for Inflammation Research, Institute of Regeneration and Repair, Edinburgh Medical School, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
32
|
Tajer L, Paillart JC, Dib H, Sabatier JM, Fajloun Z, Abi Khattar Z. Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides in the Modern Era: An Updated Review. Microorganisms 2024; 12:1259. [PMID: 39065030 PMCID: PMC11279074 DOI: 10.3390/microorganisms12071259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a serious global health concern, resulting in a significant number of deaths annually due to infections that are resistant to treatment. Amidst this crisis, antimicrobial peptides (AMPs) have emerged as promising alternatives to conventional antibiotics (ATBs). These cationic peptides, naturally produced by all kingdoms of life, play a crucial role in the innate immune system of multicellular organisms and in bacterial interspecies competition by exhibiting broad-spectrum activity against bacteria, fungi, viruses, and parasites. AMPs target bacterial pathogens through multiple mechanisms, most importantly by disrupting their membranes, leading to cell lysis. However, bacterial resistance to host AMPs has emerged due to a slow co-evolutionary process between microorganisms and their hosts. Alarmingly, the development of resistance to last-resort AMPs in the treatment of MDR infections, such as colistin, is attributed to the misuse of this peptide and the high rate of horizontal genetic transfer of the corresponding resistance genes. AMP-resistant bacteria employ diverse mechanisms, including but not limited to proteolytic degradation, extracellular trapping and inactivation, active efflux, as well as complex modifications in bacterial cell wall and membrane structures. This review comprehensively examines all constitutive and inducible molecular resistance mechanisms to AMPs supported by experimental evidence described to date in bacterial pathogens. We also explore the specificity of these mechanisms toward structurally diverse AMPs to broaden and enhance their potential in developing and applying them as therapeutics for MDR bacteria. Additionally, we provide insights into the significance of AMP resistance within the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Layla Tajer
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
| | - Jean-Christophe Paillart
- CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, 2 Allée Konrad Roentgen, F-67000 Strasbourg, France;
| | - Hanna Dib
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
- Department of Biology, Faculty of Sciences 3, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Ziad Abi Khattar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, P.O. Box 100, Tripoli, Lebanon
| |
Collapse
|
33
|
Hatzianastasiou S, Vlachos P, Stravopodis G, Elaiopoulos D, Koukousli A, Papaparaskevas J, Chamogeorgakis T, Papadopoulos K, Soulele T, Chilidou D, Kolovou K, Gkouziouta A, Bonios M, Adamopoulos S, Dimopoulos S. Incidence, risk factors and clinical outcome of multidrug-resistant organisms after heart transplantation. World J Transplant 2024; 14:93567. [PMID: 38947964 PMCID: PMC11212582 DOI: 10.5500/wjt.v14.i2.93567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/05/2024] [Accepted: 05/20/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Transplant recipients commonly harbor multidrug-resistant organisms (MDROs), as a result of frequent hospital admissions and increased exposure to antimicrobials and invasive procedures. AIM To investigate the impact of patient demographic and clinical characteristics on MDRO acquisition, as well as the impact of MDRO acquisition on intensive care unit (ICU) and hospital length of stay, and on ICU mortality and 1-year mortality post heart transplantation. METHODS This retrospective cohort study analyzed 98 consecutive heart transplant patients over a ten-year period (2013-2022) in a single transplantation center. Data was collected regarding MDROs commonly encountered in critical care. RESULTS Among the 98 transplanted patients (70% male), about a third (32%) acquired or already harbored MDROs upon transplantation (MDRO group), while two thirds did not (MDRO-free group). The prevalent MDROs were Acinetobacter baumannii (14%), Pseudomonas aeruginosa (12%) and Klebsiella pneumoniae (11%). Compared to MDRO-free patients, the MDRO group was characterized by higher body mass index (P = 0.002), higher rates of renal failure (P = 0.017), primary graft dysfunction (10% vs 4.5%, P = 0.001), surgical re-exploration (34% vs 14%, P = 0.017), mechanical circulatory support (47% vs 26% P = 0.037) and renal replacement therapy (28% vs 9%, P = 0.014), as well as longer extracorporeal circulation time (median 210 vs 161 min, P = 0.003). The median length of stay was longer in the MDRO group, namely ICU stay was 16 vs 9 d in the MDRO-free group (P = 0.001), and hospital stay was 38 vs 28 d (P = 0.006), while 1-year mortality was higher (28% vs 7.6%, log-rank-χ 2: 7.34). CONCLUSION Following heart transplantation, a predominance of Gram-negative MDROs was noted. MDRO acquisition was associated with higher complication rates, prolonged ICU and total hospital stay, and higher post-transplantation mortality.
Collapse
Affiliation(s)
- Sophia Hatzianastasiou
- Microbiology Department and Infection Control Office, Onassis Cardiac Surgery Center, Athens 17674, Greece
| | - Paraskevas Vlachos
- Heart Transplantation Unit, Onassis Cardiac Surgery Center, Athens 17674, Greece
| | - Georgios Stravopodis
- Microbiology Department and Infection Control Office, Onassis Cardiac Surgery Center, Athens 17674, Greece
| | - Dimitrios Elaiopoulos
- Cardiac Surgery Intensive Care Unit, Onassis Cardiac Surgery Center, Athens 17674, Greece
| | - Afentra Koukousli
- Microbiology Department and Infection Control Office, Onassis Cardiac Surgery Center, Athens 17674, Greece
| | - Josef Papaparaskevas
- Microbiology Department and Infection Control Office, Onassis Cardiac Surgery Center, Athens 17674, Greece
| | | | - Kyrillos Papadopoulos
- Cardiac Surgery Intensive Care Unit, Onassis Cardiac Surgery Center, Athens 17674, Greece
| | - Theodora Soulele
- Cardiac Surgery Intensive Care Unit, Onassis Cardiac Surgery Center, Athens 17674, Greece
| | - Despoina Chilidou
- Heart Transplantation Unit, Onassis Cardiac Surgery Center, Athens 17674, Greece
| | - Kyriaki Kolovou
- Cardiac Surgery Intensive Care Unit, Onassis Cardiac Surgery Center, Athens 17674, Greece
| | - Aggeliki Gkouziouta
- Heart Transplantation Unit, Onassis Cardiac Surgery Center, Athens 17674, Greece
| | - Michail Bonios
- Heart Transplantation Unit, Onassis Cardiac Surgery Center, Athens 17674, Greece
| | | | - Stavros Dimopoulos
- Cardiac Surgery Intensive Care Unit, Onassis Cardiac Surgery Center, Athens 17674, Greece
| |
Collapse
|
34
|
García-Romero I, Srivastava M, Monjarás-Feria J, Korankye SO, MacDonald L, Scott NE, Valvano MA. Drug efflux and lipid A modification by 4-L-aminoarabinose are key mechanisms of polymyxin B resistance in the sepsis pathogen Enterobacter bugandensis. J Glob Antimicrob Resist 2024; 37:108-121. [PMID: 38552872 DOI: 10.1016/j.jgar.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 04/26/2024] Open
Abstract
OBJECTIVES A concern with the ESKAPE pathogen, Enterobacter bugandensis, and other species of the Enterobacter cloacae complex, is the frequent appearance of multidrug resistance against last-resort antibiotics, such as polymyxins. METHODS Here, we investigated the responses to polymyxin B (PMB) in two PMB-resistant E. bugandensis clinical isolates by global transcriptomics and deletion mutagenesis. RESULTS In both isolates, the genes of the CrrAB-regulated operon, including crrC and kexD, displayed the highest levels of upregulation in response to PMB. ∆crrC and ∆kexD mutants became highly susceptible to PMB and lost the heteroresistant phenotype. Conversely, heterologous expression of CrrC and KexD proteins increased PMB resistance in a sensitive Enterobacter ludwigii clinical isolate and in the Escherichia coli K12 strain, W3110. The efflux pump, AcrABTolC, and the two component regulators, PhoPQ and CrrAB, also contributed to PMB resistance and heteroresistance. Additionally, the lipid A modification with 4-L-aminoarabinose (L-Ara4N), mediated by the arnBCADTEF operon, was critical to determine PMB resistance. Biochemical experiments, supported by mass spectrometry and structural modelling, indicated that CrrC is an inner membrane protein that interacts with the membrane domain of the KexD pump. Similar interactions were modeled for AcrB and AcrD efflux pumps. CONCLUSION Our results support a model where drug efflux potentiated by CrrC interaction with membrane domains of major efflux pumps combined with resistance to PMB entry by the L-Ara4N lipid A modification, under the control of PhoPQ and CrrAB, confers the bacterium high-level resistance and heteroresistance to PMB.
Collapse
Affiliation(s)
- Inmaculada García-Romero
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, United Kingdom; Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Mugdha Srivastava
- Functional Genomics & Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, University of Wuerzburg, Wuerzburg, Germany; Core Unit Systems Medicine, University of Wuerzburg, Wuerzburg, Germany
| | - Julia Monjarás-Feria
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Samuel O Korankye
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Lewis MacDonald
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Miguel A Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, United Kingdom.
| |
Collapse
|
35
|
Zmerli O, Bellali S, Haddad G, Iwaza R, Hisada A, Matsumoto E, Ominami Y, Raoult D, Bou Khalil J. Antimicrobial Susceptibility Testing for Colistin: Extended Application of Novel Quantitative and Morphologic Assay Using Scanning Electron Microscopy. Int J Microbiol 2024; 2024:8917136. [PMID: 38827502 PMCID: PMC11144066 DOI: 10.1155/2024/8917136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/08/2024] [Accepted: 05/09/2024] [Indexed: 06/04/2024] Open
Abstract
Background Colistin (Polymyxin E) has reemerged in the treatment of MDR Gram-negative infections. Traditional Colistin AST methods have long turnaround times and are cumbersome for routine use. We present a SEM-AST technique enabling rapid detection of Colistin resistance through direct observation of morphological and quantitative changes in bacteria exposed to Colistin. Methods Forty-four Gram-negative reference organisms were chosen based on their Colistin susceptibility profiles. Bacterial suspensions of ∼107 CFU/mL were exposed to Colistin at EUCAST-ECOFF, with controls not exposed, incubated at 37°C, and then sampled at 0, 15, 30, 60, and 120 minutes. Phosphotungstic Acid (PTA) staining was applied, followed by SEM imaging using Hitachi TM4000PlusII-Tabletop-SEM at ×2000, ×5000 and ×7000 magnifications. Bacterial viability analysis was performed for all conditions by quantifying viable and dead organisms based on PTA-staining and morphologic changes. Results We identified a significant drop in the percentage of viable organisms starting 30 minutes after exposure in susceptible strains, as compared to nonsignificant changes in resistant strains across all tested organisms. The killing effect of Colistin was best observed after 120 minutes of incubation with the antibiotic, with significant changes in morphologic features, including bacterial inflation, fusion, and lysis, observed as early as 30 minutes. Our observation matched the results of the gold standard-based broth microdilution method. Conclusions We provide an extended application of the proof of concept for the utilization of the SEM-AST assay for Colistin for a number of clinically relevant bacterial species, providing a rapid and reliable susceptibility profile for a critical antibiotic.
Collapse
Affiliation(s)
- Omar Zmerli
- Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, France
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), UMR Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| | - Sara Bellali
- Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, France
| | - Gabriel Haddad
- Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, France
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), UMR Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| | - Rim Iwaza
- Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, France
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), UMR Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| | - Akiko Hisada
- Hitachi, Ltd., Research & Development Group, Tokyo, Japan
| | | | - Yusuke Ominami
- Hitachi High-Tech Corporation, 882 Ichige, Hitachinaka-shi, Ibaraki-ken 312-8504, Japan
| | - Didier Raoult
- Consulting Infection Marseille, 16 Rue de Lorraine, Marseille, France
| | - Jacques Bou Khalil
- Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, France
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), UMR Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| |
Collapse
|
36
|
Ali MW, Karmakar S, Utsho KS, Kabir A, Arif M, Islam MS, Rahman MT, Hassan J. First detection and characterization of mcr-1 colistin resistant E. coli from wild rat in Bangladesh. PLoS One 2024; 19:e0296109. [PMID: 38743696 PMCID: PMC11093362 DOI: 10.1371/journal.pone.0296109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/14/2024] [Indexed: 05/16/2024] Open
Abstract
Colistin resistance is a global concern warning for a one health approach to combat the challenge. Colistin resistant E. coli and their resistance determinants are widely distributed in the environment, and rats could be a potential source of these isolates and resistant determinants to a diverse environmental setting. This study was aimed to determine the presence of colistin resistant E. coli (CREC) in wild rats, their antimicrobial resistance (AMR) phenotypes, and genotypic analysis of mcr-1 CREC through whole genome sequencing (WGS). A total of 39 rats were examined and CREC was isolated from their fecal pellets onto MacConkey agar containing colistin sulfate (1 μg/ mL). AMR of the CREC was determined by disc diffusion and broth microdilution was employed to determine MIC to colistin sulfate. CREC were screened for mcr genes (mcr-1 to mcr-8) and phylogenetic grouping by PCR. Finally, WGS of one mcr-1 CREC was performed to explore its genetic characteristics especially resistomes and virulence determinants. 43.59% of the rats carried CREC with one (2.56%) of them carrying CREC with mcr-1 gene among the mcr genes examined. Examination of seventeen (17) isolates from the CREC positive rats (n = 17) revealed that majority of them belonging to the pathogenic phylogroup D (52.94%) and B2 (11.76%). 58.82% of the CREC were MDR on disc diffusion test. Shockingly, the mcr-1 CREC showed phenotypic resistance to 16 antimicrobials of 8 different classes and carried the ARGs in its genome. The mcr-1 gene was located on a 60 kb IncI2 plasmid. On the other hand, ARGs related to aminoglycosides, phenicols, sulfonamides, tetracyclines and trimethoprims were located on a 288 kb mega-plasmid separately. The mcr-1 CREC carried 58 virulence genes including genes related to adhesion, colonization, biofilm formation, hemolysis and immune-evasion. The isolate belonged to ST224 and closely related to E. coli from different sources including UPEC clinical isolates from human based on cgMLST analysis. The current research indicates that rats might be a possible source of CREC, and the presence of mcr-1 and other ARGs on plasmid increases the risk of ARGs spreading and endangering human health and other environmental components through this infamous pest.
Collapse
Affiliation(s)
- Md. Wohab Ali
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Susmita Karmakar
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Kishor Sosmith Utsho
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Ajran Kabir
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Arif
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Shafiqul Islam
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Tanvir Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Jayedul Hassan
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
37
|
Carrera Páez LC, Olivier M, Gambino AS, Poklepovich T, Aguilar AP, Quiroga MP, Centrón D. Sporadic clone Escherichia coli ST615 as a vector and reservoir for dissemination of crucial antimicrobial resistance genes. Front Cell Infect Microbiol 2024; 14:1368622. [PMID: 38741889 PMCID: PMC11089171 DOI: 10.3389/fcimb.2024.1368622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/27/2024] [Indexed: 05/16/2024] Open
Abstract
There is scarce information concerning the role of sporadic clones in the dissemination of antimicrobial resistance genes (ARGs) within the nosocomial niche. We confirmed that the clinical Escherichia coli M19736 ST615 strain, one of the first isolates of Latin America that harbors a plasmid with an mcr-1 gene, could receive crucial ARG by transformation and conjugation using as donors critical plasmids that harbor bla CTX-M-15, bla KPC-2, bla NDM-5, bla NDM-1, or aadB genes. Escherichia coli M19736 acquired bla CTX-M-15, bla KPC-2, bla NDM-5, bla NDM-1, and aadB genes, being only blaNDM-1 maintained at 100% on the 10th day of subculture. In addition, when the evolved MDR-E. coli M19736 acquired sequentially bla CTX-M-15 and bla NDM-1 genes, the maintenance pattern of the plasmids changed. In addition, when the evolved XDR-E. coli M19736 acquired in an ulterior step the paadB plasmid, a different pattern of the plasmid's maintenance was found. Interestingly, the evolved E. coli M19736 strains disseminated simultaneously the acquired conjugative plasmids in different combinations though selection was ceftazidime in all cases. Finally, we isolated and characterized the extracellular vesicles (EVs) from the native and evolved XDR-E. coli M19736 strains. Interestingly, EVs from the evolved XDR-E. coli M19736 harbored bla CTX-M-15 though the pDCAG1-CTX-M-15 was previously lost as shown by WGS and experiments, suggesting that EV could be a relevant reservoir of ARG for susceptible bacteria. These results evidenced the genetic plasticity of a sporadic clone of E. coli such as ST615 that could play a relevant transitional link in the clinical dynamics and evolution to multidrug/extensively/pandrug-resistant phenotypes of superbugs within the nosocomial niche by acting simultaneously as a vector and reservoir of multiple ARGs which later could be disseminated.
Collapse
Affiliation(s)
- Laura Camila Carrera Páez
- Laboratorio de Investigaciones en Mecanismos de Resistencia a Antibióticos, Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - Martin Olivier
- The Research Institute of the McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Anahí Samanta Gambino
- Laboratorio de Investigaciones en Mecanismos de Resistencia a Antibióticos, Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - Tomás Poklepovich
- Plataforma de Genómica y Bioinformática, Instituto Nacional de Enfermedades Infecciosas - La Administración Nacional de Laboratorios e Institutos de Salud (INEI-ANLIS) “Dr. Carlos G. Malbrán”, Buenos Aires, Argentina
| | - Andrea Pamela Aguilar
- Laboratorio de Investigaciones en Mecanismos de Resistencia a Antibióticos, Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - María Paula Quiroga
- Laboratorio de Investigaciones en Mecanismos de Resistencia a Antibióticos, Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - Daniela Centrón
- Laboratorio de Investigaciones en Mecanismos de Resistencia a Antibióticos, Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| |
Collapse
|
38
|
Wang CH, Siu LK, Chang FY, Tsai YK, Huang LY, Lin JC. Influence of PhoPQ and PmrAB two component system alternations on colistin resistance from non-mcr colistin resistant clinical E. Coli strains. BMC Microbiol 2024; 24:109. [PMID: 38565985 PMCID: PMC10986093 DOI: 10.1186/s12866-024-03259-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND The current understanding of acquired chromosomal colistin resistance mechanisms in Enterobacterales primarily involves the disruption of the upstream PmrAB and PhoPQ two-component system (TCS) control caused by mutations in the regulatory genes. Interestingly, previous studies have yielded conflicting results regarding the interaction of regulatory genes related to colistin resistance in Escherichia coli, specifically those surrounding PhoPQ and PmrAB TCS. RESULTS In our study, we focused on two clinical non-mcr colistin-resistant strains of E. coli, TSAREC02 and TSAREC03, to gain a better understanding of their resistance mechanisms. Upon analysis, we discovered that TSAREC02 had a deletion (Δ27-45) in MgrB, as well as substitutions (G206R, Y222H) in PmrB. On the other hand, TSAREC03 exhibited a long deletion (Δ84-224) in PhoP, along with substitutions (M1I, L14P, P178S, T235N) in PmrB. We employed recombinant DNA techniques to explore the interaction between the PhoPQ and PmrAB two-component systems (TCSs) and examine the impact of the mutated phoPQ and pmrB genes on the minimum inhibitory concentrations (MICs) of colistin. We observed significant changes in the expression of the pmrD gene, which encodes a connector protein regulated by the PhoPQ TCS, in the TSAREC02 wild-type (WT)-mgrB replacement mutant and the TSAREC03 WT-phoP replacement mutant, compared to their respective parental strains. However, the expressions of pmrB/pmrA, which reflect PmrAB TCS activity, and the colistin MICs remained unchanged. In contrast, the colistin MICs and pmrB/pmrA expression levels were significantly reduced in the pmrB deletion mutants from both TSAREC02 and TSAREC03, compared to their parental strains. Moreover, we were able to restore colistin resistance and the expressions of pmrB/pmrA by transforming a plasmid containing the parental mutated pmrB back into the TSAREC02 and TSAREC03 mutants, respectively. CONCLUSION While additional data from clinical E. coli isolates are necessary to validate whether our findings could be broadly applied to the E. coli population, our study illuminates distinct regulatory pathway interactions involving colistin resistance in E. coli compared to other species of Enterobacterales. The added information provided by our study contribute to a deeper understanding of the complex pathway interactions within Enterobacterales.
Collapse
Affiliation(s)
- Ching-Hsun Wang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan
| | - L Kristopher Siu
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Feng-Yee Chang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan
| | - Yu-Kuo Tsai
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Li-Yueh Huang
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Jung-Chung Lin
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan.
| |
Collapse
|
39
|
Rzymski P, Gwenzi W, Poniedziałek B, Mangul S, Fal A. Climate warming, environmental degradation and pollution as drivers of antibiotic resistance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123649. [PMID: 38402936 DOI: 10.1016/j.envpol.2024.123649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Antibiotic resistance is a major challenge to public health, but human-caused environmental changes have not been widely recognized as its drivers. Here, we provide a comprehensive overview of the relationships between environmental degradation and antibiotic resistance, demonstrating that the former can potentially fuel the latter with significant public health outcomes. We describe that (i) global warming favors horizontal gene transfer, bacterial infections, the spread of drug-resistant pathogens due to water scarcity, and the release of resistance genes with wastewater; (ii) pesticide and metal pollution act as co-selectors of antibiotic resistance mechanisms; (iii) microplastics create conditions promoting and spreading antibiotic resistance and resistant bacteria; (iv) changes in land use, deforestation, and environmental pollution reduce microbial diversity, a natural barrier to antibiotic resistance spread. We argue that management of antibiotic resistance must integrate environmental goals, including mitigation of further increases in the Earth's surface temperature, better qualitative and quantitative protection of water resources, strengthening of sewage infrastructure and improving wastewater treatment, counteracting the microbial diversity loss, reduction of pesticide and metal emissions, and plastic use, and improving waste recycling. These actions should be accompanied by restricting antibiotic use only to clinically justified situations, developing novel treatments, and promoting prophylaxis. It is pivotal for health authorities and the medical community to adopt the protection of environmental quality as a part of public health measures, also in the context of antibiotic resistance management.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland.
| | - Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, 380 New Adylin, Marlborough, Harare, Zimbabwe; Alexander von Humboldt Fellow and Guest Professor, Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Witzenhausen, Germany; Alexander von Humboldt Fellow and Guest Professor, Leibniz Institute for Agricultural Engineering and Bioeconomy, Potsdam, Germany
| | - Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Serghei Mangul
- Titus Family Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
| | - Andrzej Fal
- Department of Allergy, Lung Diseases and Internal Medicine Central Clinical Hospital, Ministry of Interior, Warsaw, Poland; Collegium Medicum, Warsaw Faculty of Medicine, Cardinal Stefan Wyszyński University, Warsaw, Poland
| |
Collapse
|
40
|
Popivanov G, Markovska R, Gergova I, Konaktchieva M, Cirocchi R, Kjossev K, Mutafchiyski V. An Intra-Hospital Spread of Colistin-Resistant K. pneumoniae Isolates-Epidemiological, Clinical, and Genetic Analysis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:511. [PMID: 38541237 PMCID: PMC10972034 DOI: 10.3390/medicina60030511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 11/12/2024]
Abstract
Background and Objective: Klebsiella pneumoniae appears to be a significant problem due to its ability to accumulate antibiotic-resistance genes. After 2013, alarming colistin resistance rates among carbapenem-resistant K. pneumoniae have been reported in the Balkans. The study aims to perform an epidemiological, clinical, and genetic analysis of a local outbreak of COLr CR-Kp. Material and Methods: All carbapenem-resistant and colistin-resistant K. pneumoniae isolates observed among patients in the ICU unit of Military Medical Academy, Sofia, from 1 January to 31 October 2023, were included. The results were analyzed according to the EUCAST criteria. All isolates were screened for blaVIM, blaIMP, blaKPC, blaNDM, and blaOXA-48. Genetic similarity was determined using the Dice coefficient as a similarity measure and the unweighted pair group method with arithmetic mean (UPGMA). mgrB genes and plasmid-mediated colistin resistance determinants (mcr-1, mcr-2, mcr-3, mcr-4, and mcr-5) were investigated. Results: There was a total of 379 multidrug-resistant K. pneumoniae isolates, 88% of which were carbapenem-resistant. Of these, there were nine (2.7%) colistin-resistant isolates in six patients. A time and space cluster for five patients was found. Epidemiology typing showed that two isolates belonged to clone A (pts. 1, 5) and the rest to clone B (pts. 2-4) with 69% similarity. Clone A isolates were coproducers of blaNDM-like and blaOXA-48-like and had mgrB-mediated colistin resistance (40%). Clone B isolates had only blaOXA-48-like and intact mgrB genes. All isolates were negative for mcr-1, -2, -3, -4, and -5 genes. Conclusions: The study describes a within-hospital spread of two clones of COLr CR-Kp with a 60% mortality rate. Clone A isolates were coproducers of NDM-like and OXA-48-like enzymes and had mgrB-mediated colistin resistance. Clone B isolates had only OXA-48-like enzymes and intact mgrB genes. No plasmid-mediated resistance was found. The extremely high mortality rate and limited treatment options warrant strict measures to prevent outbreaks.
Collapse
Affiliation(s)
- Georgi Popivanov
- Department of Surgery, Military Medical Academy, 1606 Sofia, Bulgaria; (K.K.); (V.M.)
| | - Rumyana Markovska
- Department of Medical Microbiology, Medical Faculty, Medical University, 1431 Sofia, Bulgaria;
| | - Ivanka Gergova
- Department of Microbiology and Virology, Military Medical Academy, 1606 Sofia, Bulgaria;
| | - Marina Konaktchieva
- Department of Gastroenterology and Hepatology, Military Medical Academy, 1606 Sofia, Bulgaria;
| | - Roberto Cirocchi
- Department of Surgical Science, University of Perugia, 06100 Perugia, Italy;
| | - Kirien Kjossev
- Department of Surgery, Military Medical Academy, 1606 Sofia, Bulgaria; (K.K.); (V.M.)
| | | |
Collapse
|
41
|
Lencina FA, Bertona M, Stegmayer MA, Olivero CR, Frizzo LS, Zimmermann JA, Signorini ML, Soto LP, Zbrun MV. Prevalence of colistin-resistant Escherichia coli in foods and food-producing animals through the food chain: A worldwide systematic review and meta-analysis. Heliyon 2024; 10:e26579. [PMID: 38434325 PMCID: PMC10904249 DOI: 10.1016/j.heliyon.2024.e26579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
The purpose of this systematic review and meta-analysis was to summarize the available scientific evidence on the prevalence of colistin-resistant Escherichia coli strains isolated from foods and food-producing animals, the mobile colistin-resistant genes involved, and the impact of the associated variables. A systematic review was carried out in databases according to selection criteria and search strategies established a priori. Random-effect meta-analysis models were fitted to estimate the prevalence of colistin-resistant Escherichia coli and to identify the factors associated with the outcome. In general, 4.79% (95% CI: 3.98%-5.76%) of the food and food-producing animal samples harbored colistin-resistant Escherichia coli (total number of colistin-resistant Escherichia coli/total number of samples), while 5.70% (95% confidence interval: 4.97%-6.52%) of the E. coli strains isolated from food and food-producing animal samples harbored colistin resistance (total number of colistin-resistant Escherichia coli/total number of Escherichia coli isolated samples). The prevalence of colistin-resistant Escherichia coli increased over time (P < 0.001). On the other hand, 65.30% (95% confidence interval: 57.77%-72.14%) of colistin resistance was mediated by the mobile colistin resistance-1 gene. The mobile colistin resistance-1 gene prevalence did not show increases over time (P = 0.640). According to the findings, other allelic variants (mobile colistin resistance 2-10 genes) seem to have less impact on prevalence. A higher prevalence of colistin resistance was estimated in developing countries (P < 0.001), especially in samples (feces and intestinal content, meat, and viscera) derived from poultry and pigs (P < 0.001). The mobile colistin resistance-1 gene showed a global distribution with a high prevalence in most of the regions analyzed (>50%). The prevalence of colistin-resistant Escherichia coli and the mobile colistin resistance-1 gene has a strong impact on the entire food chain. The high prevalence estimated in the retail market represents a potential risk for consumers' health. There is an urgent need to implement based-evidence risk management measures under the "One Health" approach to guarantee public health, food safety, and a sustainable future.
Collapse
Affiliation(s)
- Florencia Aylen Lencina
- Laboratory of Food Analysis, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral, National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Argentina
| | - Matías Bertona
- Department of Public Health, Faculty of Veterinary Science – Litoral National University, Esperanza, Argentina
| | - María Angeles Stegmayer
- Laboratory of Food Analysis, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral, National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Argentina
| | - Carolina Raquel Olivero
- Laboratory of Food Analysis, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral, National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Argentina
| | - Laureano Sebastián Frizzo
- Laboratory of Food Analysis, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral, National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Argentina
- Department of Public Health, Faculty of Veterinary Science – Litoral National University, Esperanza, Argentina
| | - Jorge Alberto Zimmermann
- Laboratory of Food Analysis, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral, National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Argentina
| | - Marcelo Lisandro Signorini
- Department of Public Health, Faculty of Veterinary Science – Litoral National University, Esperanza, Argentina
- Instituto de Investigación de la Cadena Láctea (INTA-CONICET), Estación Experimental Agropecuaria Rafaela, Ruta 34 Km 227, Rafaela, Santa Fe, Argentina
| | - Lorena Paola Soto
- Laboratory of Food Analysis, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral, National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Argentina
- Department of Public Health, Faculty of Veterinary Science – Litoral National University, Esperanza, Argentina
| | - María Virginia Zbrun
- Department of Public Health, Faculty of Veterinary Science – Litoral National University, Esperanza, Argentina
- Instituto de Investigación de la Cadena Láctea (INTA-CONICET), Estación Experimental Agropecuaria Rafaela, Ruta 34 Km 227, Rafaela, Santa Fe, Argentina
| |
Collapse
|
42
|
Puljko A, Barišić I, Dekić Rozman S, Križanović S, Babić I, Jelić M, Maravić A, Udiković-Kolić N. Molecular epidemiology and mechanisms of carbapenem and colistin resistance in Klebsiella and other Enterobacterales from treated wastewater in Croatia. ENVIRONMENT INTERNATIONAL 2024; 185:108554. [PMID: 38479059 DOI: 10.1016/j.envint.2024.108554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 03/02/2024] [Indexed: 03/26/2024]
Abstract
Among the most problematic bacteria with clinical relevance are the carbapenem-resistant Enterobacterales (CRE), as there are very limited options for their treatment. Treated wastewater can be a route for the release of these bacteria into the environment and the population. The aim of this study was to isolate CRE from treated wastewater from the Zagreb wastewater treatment plant and to determine their phenotypic and genomic characteristics. A total of 200 suspected CRE were isolated, 148 of which were confirmed as Enterobacterales by MALDI-TOF MS. The predominant species was Klebsiella spp. (n = 47), followed by Citrobacter spp. (n = 40) and Enterobacter cloacae complex (cplx.) (n = 35). All 148 isolates were carbapenemase producers with a multidrug-resistant phenotype. Using multi-locus sequence typing and whole-genome sequencing (WGS), 18 different sequence types were identified among these isolates, 14 of which were associated with human-associated clones. The virulence gene analysis of the sequenced Klebsiella isolates (n = 7) revealed their potential pathogenicity. PCR and WGS showed that the most frequent carbapenemase genes in K. pneumoniae were blaOXA-48 and blaNDM-1, which frequently occurred together, while blaKPC-2 together with blaNDM-1 was mainly detected in K. oxytoca, E. cloacae cplx. and Citrobacter spp. Colistin resistance was observed in 40% of Klebsiella and 57% of Enterobacter isolates. Underlying mechanisms identified by WGS include known and potentially novel intrinsic mechanisms (point mutations in the pmrA/B, phoP/Q, mgrB and crrB genes) and acquired mechanisms (mcr-4.3 gene). The mcr-4.3 gene was identified for the first time in K. pneumoniae and is probably located on the conjugative IncHI1B plasmid. In addition, WGS analysis of 13 isolates revealed various virulence genes and resistance genes to other clinically relevant antibiotics as well as different plasmids possibly associated with carbapenemase genes. Our study demonstrates the important role that treated municipal wastewater plays in harboring and spreading enterobacterial pathogens that are resistant to last-resort antibiotics.
Collapse
Affiliation(s)
- Ana Puljko
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Ivan Barišić
- Molecular Diagnostics, Austrian Institute of Technology, Giefinggasse 4, 1210 Vienna, Austria
| | - Svjetlana Dekić Rozman
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Stela Križanović
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Ivana Babić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Marko Jelić
- Department of Clinical Microbiology, University Hospital for Infectious Diseases, Mirogojska 8, 10 000 Zagreb, Croatia
| | - Ana Maravić
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21 000 Split, Croatia
| | - Nikolina Udiković-Kolić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia.
| |
Collapse
|
43
|
Barola C, Brambilla G, Galarini R, Moretti S, Morabito S. Assessment of the combined inputs of antimicrobials from top soil improvers and irrigation waters on green leafy vegetable fields. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:313-324. [PMID: 38295296 DOI: 10.1080/19440049.2024.2306930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/12/2024] [Indexed: 02/02/2024]
Abstract
Sustainable food systems involve the recycling of biowaste and water. This study characterizes thirty-one top soil improvers of anthropogenic, animal, and green waste origin, along with eleven irrigation waters from rivers, channels, and civil wastewater treatment plants (cWWTPs) for the presence of antimicrobials. Liquid chromatography coupled with hybrid High-Resolution Mass Spectrometry (LC-HRMS/MS) was employed to identify forty-eight drugs belonging to the classes of sulfonamides (11), tetracyclines (7), fluoroquinolones (10), macrolides (12), amphenicols (3), pleuromutilins (2), diaminopyrimidines (1), rifamycins (1) and licosamides (1). Sludge from cWWTPs, animal manure, slurry, and poultry litter exhibited the highest loads for sulfonamides, tetracyclines, fluoroquinolones and macrolides (80, 470, 885, and 4,487 ng g-1 wet weight, respectively) with nor- and ciprofloxacin serving as markers for anthropogenic sources. In compost and digestate, antimicrobials were found to be almost always below the limits of quantification. Reused water from cWWTPs for irrigation in open-field lettuce production were contaminated in the range of 12-221 ng L-1 with sulfonamides, tetracyclines, and fluoroquinolones, compared to very few detected in channels and surface waters. The Antimicrobials Hazard Index (HI), based on the Predicted No Effect Concentration for Antimicrobial Resistance (PNECAMR), was significantly >100 in contaminated topsoil improvers from urban and animal sources. Accounting for worst-case inputs from topsoil improvers and irrigation water, as well as dilution factors in amended soil, fluoroquinolones only exhibited an HI around 1 in open fields for lettuce production. The origin of topsoil improvers plays a pivotal role in ensuring safe and sustainable leafy vegetable production, thereby mitigating the risk of Antimicrobial Resistance (AMR) onset in food-borne diseases and the transfer of AMR elements to the human gut flora.
Collapse
Affiliation(s)
- Carolina Barola
- Centro Specialistico Sviluppo Metodi Analitici, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Gianfranco Brambilla
- Food Borne Diseases and One Health Unit, Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Roberta Galarini
- Centro Specialistico Sviluppo Metodi Analitici, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Simone Moretti
- Centro Specialistico Sviluppo Metodi Analitici, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Stefano Morabito
- Food Borne Diseases and One Health Unit, Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
44
|
De Koster S, Xavier BB, Lammens C, Perales Selva N, van Kleef-van Koeveringe S, Coenen S, Glupczynski Y, Leroux-Roels I, Dhaeze W, Hoebe CJPA, Dewulf J, Stegeman A, Kluytmans-Van den Bergh M, Kluytmans J, Goossens H, i-4-1-Health Study Group. One Health surveillance of colistin-resistant Enterobacterales in Belgium and the Netherlands between 2017 and 2019. PLoS One 2024; 19:e0298096. [PMID: 38394276 PMCID: PMC10890735 DOI: 10.1371/journal.pone.0298096] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Colistin serves as the last line of defense against multidrug resistant Gram-negative bacterial infections in both human and veterinary medicine. This study aimed to investigate the occurrence and spread of colistin-resistant Enterobacterales (ColR-E) using a One Health approach in Belgium and in the Netherlands. METHODS In a transnational research project, a total of 998 hospitalized patients, 1430 long-term care facility (LTCF) residents, 947 children attending day care centres, 1597 pigs and 1691 broilers were sampled for the presence of ColR-E in 2017 and 2018, followed by a second round twelve months later for hospitalized patients and animals. Colistin treatment incidence in livestock farms was used to determine the association between colistin use and resistance. Selective cultures and colistin minimum inhibitory concentrations (MIC) were employed to identify ColR-E. A combination of short-read and long-read sequencing was utilized to investigate the molecular characteristics of 562 colistin-resistant isolates. Core genome multi-locus sequence typing (cgMLST) was applied to examine potential transmission events. RESULTS The presence of ColR-E was observed in all One Health sectors. In Dutch hospitalized patients, ColR-E proportions (11.3 and 11.8% in both measurements) were higher than in Belgian patients (4.4 and 7.9% in both measurements), while the occurrence of ColR-E in Belgian LTCF residents (10.2%) and children in day care centres (17.6%) was higher than in their Dutch counterparts (5.6% and 12.8%, respectively). Colistin use in pig farms was associated with the occurrence of colistin resistance. The percentage of pigs carrying ColR-E was 21.8 and 23.3% in Belgium and 14.6% and 8.9% in the Netherlands during both measurements. The proportion of broilers carrying ColR-E in the Netherlands (5.3 and 1.5%) was higher compared to Belgium (1.5 and 0.7%) in both measurements. mcr-harboring E. coli were detected in 17.4% (31/178) of the screened pigs from 7 Belgian pig farms. Concurrently, four human-related Enterobacter spp. isolates harbored mcr-9.1 and mcr-10 genes. The majority of colistin-resistant isolates (419/473, 88.6% E. coli; 126/166, 75.9% Klebsiella spp.; 50/75, 66.7% Enterobacter spp.) were susceptible to the critically important antibiotics (extended-spectrum cephalosporins, fluoroquinolones, carbapenems and aminoglycosides). Chromosomal colistin resistance mutations have been identified in globally prevalent high-risk clonal lineages, including E. coli ST131 (n = 17) and ST1193 (n = 4). Clonally related isolates were detected in different patients, healthy individuals and livestock animals of the same site suggesting local transmission. Clonal clustering of E. coli ST10 and K. pneumoniae ST45 was identified in different sites from both countries suggesting that these clones have the potential to spread colistin resistance through the human population or were acquired by exposure to a common (food) source. In pig farms, the continuous circulation of related isolates was observed over time. Inter-host transmission between humans and livestock animals was not detected. CONCLUSIONS The findings of this study contribute to a broader understanding of ColR-E prevalence and the possible pathways of transmission, offering insights valuable to both academic research and public health policy development.
Collapse
Affiliation(s)
- Sien De Koster
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Basil Britto Xavier
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- Department of Clinical Sciences, Institute of Tropical Medicine, HIV/STI Unit, Antwerp, Belgium
- Hospital Outbreak Support Team-HOST, ZNA Middelheim, Antwerp, Belgium
- Hospital Outbreak Support Team-HOST, GZA Ziekenhuizen, Wilrijk, Belgium
| | - Christine Lammens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | | | | | - Samuel Coenen
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Youri Glupczynski
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Isabel Leroux-Roels
- Laboratory of Medical Microbiology and Infection Control Department, Ghent University Hospital, Ghent, Belgium
| | | | - Christian J. P. A. Hoebe
- Department of Social Medicine, Maastricht University, Maastricht, the Netherlands
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, Maastricht University Medical Center+, Maastricht, The Netherlands
- Living Lab Public Health, Public Health Service South Limburg, Heerlen, the Netherlands
| | - Jeroen Dewulf
- Faculty of Veterinary Medicine, Department of Internal Medicine, Reproduction and Population Medicine, Veterinary Epidemiology Unit, Ghent University, Merelbeke, Belgium
| | - Arjan Stegeman
- Faculty of Veterinary Medicine, Department of Population Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Marjolein Kluytmans-Van den Bergh
- Department of Infection Control, Amphia Hospital, Breda, The Netherlands
- Amphia Academy Infectious Disease Foundation, Amphia Hospital, Breda, The Netherlands
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jan Kluytmans
- Department of Infection Control, Amphia Hospital, Breda, The Netherlands
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Microvida Laboratory for Microbiology, Amphia Hospital, Breda, The Netherlands
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
45
|
Sanikhani R, Akbari M, Hosseinzadeh M, Siavash M, Badmasti F, Solgi H. Outbreak of colistin and carbapenem-resistant Klebsiella pneumoniae ST16 co-producing NDM-1 and OXA-48 isolates in an Iranian hospital. BMC Microbiol 2024; 24:59. [PMID: 38368365 PMCID: PMC10874040 DOI: 10.1186/s12866-024-03207-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/28/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND Colistin and carbapenem-resistant Klebsiella pneumoniae (Col-CRKP) represent a significant and constantly growing threat to global public health. We report here an outbreak of Col-CRKP infections during the fifth wave of COVID-19 pandemic. METHODS The outbreak occurred in an intensive care unit with 22 beds at a teaching university hospital, Isfahan, Iran. We collected eight Col-CRKP strains from seven patients and characterized these strains for their antimicrobial susceptibility, determination of hypermucoviscous phenotype, capsular serotyping, molecular detection of virulence and resistance genes. Clonal relatedness of the isolates was performed using MLST. RESULTS The COVID-19 patients were aged 24-75 years with at least 50% pulmonary involvement and were admitted to the intensive care unit. They all had superinfection caused by Col-CRKP, and poor responses to antibiotic treatment and died. With the exception of one isolate that belonged to the ST11, all seven representative Col-CRKP strains belonged to the ST16. Of these eight isolates, one ST16 isolate carried the iucA and ybtS genes was identified as serotype K20 hypervirulent Col-CRKP. The blaSHV and blaNDM-1 genes were the most prevalent resistance genes, followed by blaOXA-48 and blaCTX-M-15 and blaTEM genes. Mobilized colistin-resistance genes were not detected in the isolates. CONCLUSIONS The continual emergence of ST16 Col-CRKP strains is a major threat to public health worldwide due to multidrug-resistant and highly transmissible characteristics. It seems that the potential dissemination of these clones highlights the importance of appropriate monitoring and strict infection control measures to prevent the spread of resistant bacteria in hospitals.
Collapse
Affiliation(s)
| | - Mojtaba Akbari
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Majid Hosseinzadeh
- Department of Genetics and Molecular Biology, School of Medicine Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansour Siavash
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
| | - Hamid Solgi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
- Department of Laboratory Medicine, Amin Hospital, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
46
|
Zhao J, Duan G, Zhu D, Li J, Zhu Y. Microbial-influenced pesticide removal co-occurs with antibiotic resistance gene variation in soil-earthworm-maize system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123010. [PMID: 38012967 DOI: 10.1016/j.envpol.2023.123010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/01/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Within human-influenced landscapes, pesticides cooccur with a variety of antibiotic stressors. However, the relationship between pesticides removal process and antibiotic resistance gene variation are not well understood. This study explored pesticide (topramezone, TPZ) and antibiotic (polymyxin E, PME) co-contamination using liquid chromatography-tandem mass spectrometry (LC-MS/MS), bacterial-16 S rRNA sequencing and high-throughput quantitative polymerase chain reaction (HT-qPCR) in a soil-earthworm-maize system. After incubating soil for 28 days with TPZ and PME (10 mg kg-1 dry weight), earthworm weight-gain, mortality rates, and maize plant weight-gain only differed slightly, but height-gain significantly decreased. PME significantly increased TPZ-removal in the soil. Accumulation of TPZ in earthworm's tissues may pose potential risks in the food chain. Combined pollution altered the microbial community structure and increased the abundance of functional microorganisms involved in aromatic compound degradation. Furthermore, maize rhizosphere can raise resistance genes, however earthworms can reduce resistance genes. Co-contamination increased absolute abundance of mobile genetic elements (MGEs) in bulk-soil samples, antibiotic resistance genes (ARGs) in skin samples and number of ARGs in bulk-soil samples, while decreased absolute abundance of transposase gene in bulk-soil samples and number of ARGs in rhizosphere-soil samples. Potential hosts harbouring ARGs may be associated with the antagonistic effect during resistance and detoxification of TPZ and PMB co-occurrence. These findings provide insights into the mechanism underlining pesticide removal regarding occurrence of ARGs in maize agroecosystem.
Collapse
Affiliation(s)
- Jun Zhao
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guilan Duan
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Dong Zhu
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Jianzhong Li
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yongguan Zhu
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
47
|
Chen H, Hu P, Liu H, Liu S, Liu Y, Chen L, Feng L, Chen L, Zhou T. Combining with domiphen bromide restores colistin efficacy against colistin-resistant Gram-negative bacteria in vitro and in vivo. Int J Antimicrob Agents 2024; 63:107066. [PMID: 38135012 DOI: 10.1016/j.ijantimicag.2023.107066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/20/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Today, colistin is considered a last-resort antibiotic for treating multidrug-resistant (MDR) Gram-negative bacteria (GNB). However, the increased and improper use of colistin has led to the emergence of colistin-resistant (Col-R) GNB. Thus, it is urgent to develop new drugs and therapies in response to the ongoing emergence of colistin resistance. In this study, we investigated the antibacterial and antibiofilm activities of the quaternary ammonium compound domiphen bromide (DB) in combination with colistin against clinical Col-R GNB both in vitro and in vivo. Checkerboard assay and time-kill analysis demonstrated significant synergistic antibacterial effects of the colistin/DB combination. The synergistic antibiofilm activity was confirmed through crystal violet staining and scanning electron microscopy (SEM). Furthermore, the colistin/DB combination exhibited increased survival rates in infected larvae and reduced bacterial loads in a mouse thigh infection model. The cytotoxicity measurement and hemolysis test showed that the combination did not adversely affect cell viability at synergistic concentrations. The alkaline phosphatase (ALP) leak test and propidium iodide (PI) staining analysis further revealed that the colistin/DB combination enhanced the therapeutic effect of colistin by altering bacterial membrane permeability. The ROS assays revealed that the combination induced the accumulation of bacterial ROS, leading to bacterial death. In conclusion, our study is the first to identify DB as a colistin potentiator, effectively restoring the sensitivity of bacteria to colistin. It provides a promising alternative approach for combating Col-R GNB infections.
Collapse
Affiliation(s)
- Huanchang Chen
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Panjie Hu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haifeng Liu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sichen Liu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Liu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lei Chen
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Luozhu Feng
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijiang Chen
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tieli Zhou
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
48
|
Faidah H. An Update on Colistin in Clinical Healthcare Unit in the Kingdom of Saudi Arabia: A Narrative Review. Curr Pharm Des 2024; 30:2829-2834. [PMID: 39108120 DOI: 10.2174/0113816128303422240723091231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/19/2024] [Indexed: 10/22/2024]
Abstract
Globally, gram-negative bacteria are a significant cause of morbidity. Multi-drug resistance bacteria are responsible for an increasing surge in infections that place a high cost on healthcare systems around the world. Recently, colistin, an antibiotic belonging to the polymyxin family, was reintroduced to combat multidrug- resistant gram-negative bacteria. Excessive and persistent use of colistin has led to the development and spread of colistin-resistant gram-negative bacteria throughout the globe. Healthcare units in various countries, including Saudi Arabia, are currently battling colistin-resistant gram-negative bacteria. Recently, colistin-resistant gram-negative bacteria have become a major health concern in Saudi Arabia. Hence, extensive epidemiological surveys and studies are required to understand the current status of the colistin antibiotic. Examining the knowledge currently available to the medical community on the molecular mechanism, clinical effectiveness, molecular epidemiology, and bacterial resistance to colistin in Saudi Arabia is the aim of this review.
Collapse
Affiliation(s)
- Hani Faidah
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
49
|
Furlan JPR, Ramos MS, Dos Santos LDR, da Silva Rosa R, Stehling EG. Multidrug-resistant Shiga toxin-producing Escherichia coli and hybrid pathogenic strains of bovine origin. Vet Res Commun 2023; 47:1907-1913. [PMID: 37199834 DOI: 10.1007/s11259-023-10141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Antimicrobial-resistant Escherichia coli strains have been circulating in various sectors and can be cross-transferred between them. Among pathogenic E. coli strains, Shiga toxin-producing E. coli (STEC) and hybrid pathogenic E. coli (HyPEC) emerged as responsible for outbreaks worldwide. As bovine are reservoir of STEC strains, these pathogens primarily spread to food products, exposing humans to risk. Therefore, this study aimed to characterize antimicrobial-resistant and potentially pathogenic E. coli strains from fecal samples of dairy cattle. In this regard, most E. coli strains (phylogenetic groups A, B1, B2, and E) were resistant to β-lactams and non-β-lactams and were classified as multidrug-resistant (MDR). Antimicrobial resistance genes (ARGs) related to multidrug resistance profiles were detected. Furthermore, mutations in fluoroquinolone and colistin resistance determinants were also identified, highlighting the deleterious mutation His152Gln in PmrB that may have contributed to the high level (> 64 mg/L) of colistin resistance. Virulence genes of diarrheagenic and extraintestinal pathogenic E. coli (ExPEC) pathotypes were shared among strains and even within the same strain, evidencing the presence of HyPEC (i.e., ExPEC/STEC), which were assigned as unusual B2-ST126-H3 and B1-ST3695-H31. These findings provide phenotypic and molecular data of MDR, ARGs-producing, and potentially pathogenic E. coli strains in dairy cattle, contributing to the monitoring of antimicrobial resistance and pathogens in healthy animals and alerting to potential bovine-associated zoonotic infections.
Collapse
Affiliation(s)
- João Pedro Rueda Furlan
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, S/N, Monte Alegre, Ribeirão Preto, 14040-903, Brazil
| | - Micaela Santana Ramos
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, S/N, Monte Alegre, Ribeirão Preto, 14040-903, Brazil
| | - Lucas David Rodrigues Dos Santos
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, S/N, Monte Alegre, Ribeirão Preto, 14040-903, Brazil
| | - Rafael da Silva Rosa
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, S/N, Monte Alegre, Ribeirão Preto, 14040-903, Brazil
| | - Eliana Guedes Stehling
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, S/N, Monte Alegre, Ribeirão Preto, 14040-903, Brazil.
| |
Collapse
|
50
|
Wang T, Wang X, Chen S, Zhu J, Zhu Z, Qu F, Chen L, Du H. Emergence of colistin-heteroresistant and carbapenem-resistant hypervirulent Klebsiella pneumoniae. J Glob Antimicrob Resist 2023; 35:237-243. [PMID: 37858865 DOI: 10.1016/j.jgar.2023.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/21/2023] Open
Abstract
OBJECTIVES To investigate the clinical emergence of colistin-heteroresistant, hypervirulent, and multidrug-resistant Klebsiella pneumoniae, and characterize the underlying molecular mechanisms. METHODS The population analysis profiles (PAPs) method was used to detect colistin heteroresistance. The time-killing assay was used to examine the effect of colistin on carbapenem-resistant Klebsiella pneumoniae (CRKP) in vitro. Galleria mellonella larvae infection model was used to test the potential virulence. qRT-PCR assay was conducted to compare the expression levels of efflux pump genes. Next and third-generation sequencing were conducted to analyse the genomic features. RESULTS Two colistin-heteroresistant isolates were detected from a multi-center carbapenem-resistant Enterobacterales (CRE) surveillance study in China, which exhibited similar survival rates as the K2 hypervirulent reference strain ATCC 43816 in a G. mellonella larvae model. The two isolates belonged to ST11, harbouring the iucABCD, iutA, iroBCD, and rpmA2 hypervirulent genes and pLVPK-like virulence plasmids. Colistin showed a weak effect on the heteroresistant strains in vitro. The efflux pump genes acrA, acrB, tolC, oqxA, and oqxB were upregulated in this subpopulation compared to the parental strains. CONCLUSIONS This study showed the clinical emergence of colistin-heteroresistant, hypervirulent, and multidrug-resistant Klebsiella pneumoniae. AcrAB-TolC and OqxAB efflux overexpression were involved in mediating colistin heteroresistance.
Collapse
Affiliation(s)
- Tao Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China; Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaojun Wang
- Department of Clinical Laboratory, Suzhou Wuzhong People's Hospital, Suzhou, Jiangsu, PR China
| | - Suming Chen
- The Clinical Laboratory, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jie Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China
| | - Zhichen Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China
| | - Fen Qu
- Laboratory Medicine Center Aviation General Hospital, Beijing, 100012, China
| | - Liang Chen
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey; Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China.
| |
Collapse
|