1
|
Hayashi F, Inoue N, Iwatani Y, Yamashita Y, Yamada H, Miyauchi A, Watanabe M. Increased expression of membrane-bound TGF-β1, GITR, and GITR ligand in patients with autoimmune thyroid disease. Immunol Lett 2025:107036. [PMID: 40412445 DOI: 10.1016/j.imlet.2025.107036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 05/08/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
Regulatory T (Treg) cells, which play an important role in maintaining self-tolerance, are present in the thyroid-infiltrating lymphocytes of patients with autoimmune thyroid disease (AITD). We examined the expression of membrane-bound transforming growth factor-β1 (mTGF-β1), which mediates regulatory function and glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR). The protein in turn may inhibit regulatory function on Treg cells and TGF-β1 receptor II (TGF-βRII) and GITR expression. We also evaluated GITR ligand (GITRL) localization in thyroid tissues. mTGF-β1+ cells proportion in Treg cells was higher in the thyroid of patients with AITD than in their peripheral blood. GITR+ cells proportion among Tregs and Teff cells was also higher in the thyroid than in peripheral blood. GITRL expression in thyrocytes was higher in AITD patients than in healthy subjects. The interaction and balance of mTGF-β1, GITR, TGF-βRII, and GITRL especially thyrocyte GITRL expression, could be critical in AITD pathogenesis.
Collapse
Affiliation(s)
- Fumiaki Hayashi
- Department of Clinical Laboratory and Biomedical Sciences, The University of Osaka, Graduate School of Medicine, Yamadaoka 1-7 Suita, Osaka 565-0871, Japan
| | - Naoya Inoue
- Department of Clinical Laboratory and Biomedical Sciences, The University of Osaka, Graduate School of Medicine, Yamadaoka 1-7 Suita, Osaka 565-0871, Japan
| | - Yoshinori Iwatani
- Department of Clinical Laboratory and Biomedical Sciences, The University of Osaka, Graduate School of Medicine, Yamadaoka 1-7 Suita, Osaka 565-0871, Japan
| | - Yuka Yamashita
- Department of Clinical Laboratory and Biomedical Sciences, The University of Osaka, Graduate School of Medicine, Yamadaoka 1-7 Suita, Osaka 565-0871, Japan
| | - Hiroya Yamada
- Department of Clinical Laboratory and Biomedical Sciences, The University of Osaka, Graduate School of Medicine, Yamadaoka 1-7 Suita, Osaka 565-0871, Japan
| | | | - Mikio Watanabe
- Department of Clinical Laboratory and Biomedical Sciences, The University of Osaka, Graduate School of Medicine, Yamadaoka 1-7 Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Sureka N, Zaheer S. Regulatory T Cells in Tumor Microenvironment: Therapeutic Approaches and Clinical Implications. Cell Biol Int 2025. [PMID: 40365758 DOI: 10.1002/cbin.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/19/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025]
Abstract
Regulatory T cells (Tregs), previously referred to as suppressor T cells, represent a distinct subset of CD4+ T cells that are uniquely specialized for immune suppression. They are characterized by the constitutive expression of the transcription factor FoxP3 in their nuclei, along with CD25 (the IL-2 receptor α-chain) and CTLA-4 on their cell surface. Tregs not only restrict natural killer cell-mediated cytotoxicity but also inhibit the proliferation of CD4+ and CD8+ T-cells and suppress interferon-γ secretion by immune cells, ultimately impairing an effective antitumor immune response. Treg cells are widely recognized as a significant barrier to the effectiveness of tumor immunotherapy in clinical settings. Extensive research has consistently shown that Treg cells play a pivotal role in facilitating tumor initiation and progression. Conversely, the depletion of Treg cells has been linked to a marked delay in tumor growth and development.
Collapse
Affiliation(s)
- Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
3
|
Lysandrou M, Kefala D, Vinnakota JM, Savvopoulos N, Zeiser R, Spyridonidis A. Regulatory T cell therapy for Graft-versus-Host Disease. Bone Marrow Transplant 2025:10.1038/s41409-025-02553-x. [PMID: 40240498 DOI: 10.1038/s41409-025-02553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 02/17/2025] [Accepted: 03/11/2025] [Indexed: 04/18/2025]
Abstract
Graft-versus-Host Disease (GvHD) is the main cause of morbidity and mortality of allogeneic hematopoietic cell transplantation (allo-HCT). Conventional immunosuppressive pharmacotherapy remains the backbone of GvHD prevention and treatment with suboptimal outcomes especially for patients with refractory disease. Adoptive immunotherapy with regulatory T-cells (Treg) stands as an alternative approach that aims to restore immune tolerance and circumvent prolonged immunosuppression albeit preserving the beneficial Graft-versus-Leukaemia (GvL) effect. In this review, we summarise recent knowledge on Treg biology, clinical applications of various Tregs subtypes in the setting of GvHD and future endeavours of the field.
Collapse
Affiliation(s)
- Memnon Lysandrou
- Bone Marrow Transplantation Unit and Institute of Cell Therapy, University of Patras, Patras, Greece
- Department of Medicine I, Medical Center University of Freiburg, Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Dionysia Kefala
- Bone Marrow Transplantation Unit and Institute of Cell Therapy, University of Patras, Patras, Greece
| | - Janaki Manoja Vinnakota
- Department of Medicine I, Medical Center University of Freiburg, Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Nikolaos Savvopoulos
- Bone Marrow Transplantation Unit and Institute of Cell Therapy, University of Patras, Patras, Greece
| | - Robert Zeiser
- Department of Medicine I, Medical Center University of Freiburg, Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Alexandros Spyridonidis
- Bone Marrow Transplantation Unit and Institute of Cell Therapy, University of Patras, Patras, Greece.
| |
Collapse
|
4
|
Teramoto K, Ueda Y, Murai R, Ogasawara K, Nakayama M, Ishigaki H, Itoh Y. A hemoperfusion column selectively adsorbs LAP+ lymphocytes to improve anti-tumor immunity and survival of tumor-bearing rats. PLoS One 2025; 20:e0305153. [PMID: 40053558 PMCID: PMC11888139 DOI: 10.1371/journal.pone.0305153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 12/19/2024] [Indexed: 03/09/2025] Open
Abstract
Reducing the number of immunosuppressive cells in blood is a potential strategy for activating anti-tumor immunity, which provides a promising approach to cancer treatment. In this study, we developed an adsorbent designed to selectively target and adsorb lymphocytes expressing latency-associated peptide (LAP), which is abundantly expressed on the surface of CD4+ regulatory T cells (Tregs) and CD14+ monocytes. We investigated whether diethylenetriamine-conjugated polysulfone adsorbent-based direct hemoperfusion (DHP) enhances anti-tumor immunity in a rat cancer model with KDH-V liver cells. Our findings revealed that DHP significantly reduced LAP+ Tregs in both peripheral blood and tumor tissues in treated mice. Consequently, cytotoxic T-lymphocytes increased in tumor-bearing rats. The anti-tumor effect was negated by the addition of cells detached from the absorbent, indicating that these cells play a crucial role in inhibiting the observed therapeutic effect. The results suggest that depleting LAP+ immunosuppressive cells in blood can enhance anti-tumor immunity and improve survival of patients.
Collapse
Affiliation(s)
- Kazuo Teramoto
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Yuji Ueda
- Osaka General Hospital of West Japan Railway Company, Osaka, Japan
| | - Ryosuke Murai
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
- Department of Urology, Shiga University of Medical Science, Otsu, Japan
| | - Kazumasa Ogasawara
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Misako Nakayama
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Hirohito Ishigaki
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Yasushi Itoh
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
- Central Research Laboratory, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
5
|
Zhang P, Wang J, Miao J, Zhu P. The dual role of tissue regulatory T cells in tissue repair: return to homeostasis or fibrosis. Front Immunol 2025; 16:1560578. [PMID: 40114929 PMCID: PMC11922884 DOI: 10.3389/fimmu.2025.1560578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/18/2025] [Indexed: 03/22/2025] Open
Abstract
Tissue resident regulatory T cells (tissue Tregs) are vital for maintaining immune homeostasis and controlling inflammation. They aid in repairing damaged tissues and influencing the progression of fibrosis. However, despite extensive research on how tissue Tregs interact with immune and non-immune cells during tissue repair, their pro- and anti-fibrotic effects in chronic tissue injury remain unclear. Understanding how tissue Tregs interact with various cell types, as well as their roles in chronic injury and fibrosis, is crucial for uncovering the mechanisms behind these conditions. In this review, we describe the roles of tissue Tregs in repair and fibrosis across different tissues and explore potential strategies for regulating tissue homeostasis. These insights hold promise for providing new perspectives and approaches for the treatment of irreversible fibrotic diseases.
Collapse
Affiliation(s)
| | | | - Jinlin Miao
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Ping Zhu
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
6
|
Pham JA, Coronel MM. Unlocking Transplant Tolerance with Biomaterials. Adv Healthc Mater 2025; 14:e2400965. [PMID: 38843866 PMCID: PMC11834385 DOI: 10.1002/adhm.202400965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/31/2024] [Indexed: 07/04/2024]
Abstract
For patients suffering from organ failure due to injury or autoimmune disease, allogeneic organ transplantation with chronic immunosuppression is considered the god standard in terms of clinical treatment. However, the true "holy grail" of transplant immunology is operational tolerance, in which the recipient exhibits a sustained lack of alloreactivity toward unencountered antigen presented by the donor graft. This outcome is resultant from critical changes to the phenotype and genotype of the immune repertoire predicated by the activation of specific signaling pathways responsive to soluble and mechanosensitive cues. Biomaterials have emerged as a medium for interfacing with and reprogramming these endogenous pathways toward tolerance in precise, minimally invasive, and spatiotemporally defined manners. By viewing seminal and contemporary breakthroughs in transplant tolerance induction through the lens of biomaterials-mediated immunomodulation strategies-which include intrinsic material immunogenicity, the depot effect, graft coatings, induction and delivery of tolerogenic immune cells, biomimicry of tolerogenic immune cells, and in situ reprogramming-this review emphasizes the stunning diversity of approaches in the field and spotlights exciting future directions for research to come.
Collapse
Affiliation(s)
- John‐Paul A. Pham
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
- Elizabeth Caswell Diabetes InstituteUniversity of MichiganAnn ArborMI48109USA
| | - María M. Coronel
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
- Elizabeth Caswell Diabetes InstituteUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
7
|
Wang A, Wang Y, Liang R, Li B, Pan F. Improving regulatory T cell-based therapy: insights into post-translational modification regulation. J Genet Genomics 2025; 52:145-156. [PMID: 39357622 DOI: 10.1016/j.jgg.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Regulatory T (Treg) cells are pivotal for maintaining immune homeostasis and play essential roles in various diseases, such as autoimmune diseases, graft-versus-host disease (GVHD), tumors, and infectious diseases. Treg cells exert suppressive function via distinct mechanisms, including inhibitory cytokines, granzyme or perforin-mediated cytolysis, metabolic disruption, and suppression of dendritic cells. Forkhead Box P3 (FOXP3), the characteristic transcription factor, is essential for Treg cell function and plasticity. Cumulative evidence has demonstrated that FOXP3 activity and Treg cell function are modulated by a variety of post-translational modifications (PTMs), including ubiquitination, acetylation, phosphorylation, methylation, glycosylation, poly(ADP-ribosyl)ation, and uncharacterized modifications. This review describes Treg cell suppressive mechanisms and summarizes the current evidence on PTM regulation of FOXP3 and Treg cell function. Understanding the regulatory role of PTMs in Treg cell plasticity and function will be helpful in designing therapeutic strategies for autoimmune diseases, GVHD, tumors, and infectious diseases.
Collapse
Affiliation(s)
- Aiting Wang
- Center for Cancer Immunology Research, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Yanwen Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rui Liang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Fan Pan
- Center for Cancer Immunology Research, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
8
|
Lo Tartaro D, Aramini B, Masciale V, Paschalidis N, Lofaro FD, Neroni A, Borella R, Santacroce E, Ciobanu AL, Samarelli AV, Boraldi F, Quaglino D, Dubini A, Gaudio M, Manzotti G, Reggiani F, Torricelli F, Ciarrocchi A, Neri A, Bertolini F, Dominici M, Filosso PL, Stella F, Gibellini L, De Biasi S, Cossarizza A. Metabolically activated and highly polyfunctional intratumoral VISTA + regulatory B cells are associated with tumor recurrence in early-stage NSCLC. Mol Cancer 2025; 24:16. [PMID: 39810191 PMCID: PMC11730485 DOI: 10.1186/s12943-024-02209-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 12/24/2024] [Indexed: 01/16/2025] Open
Abstract
B cells have emerged as central players in the tumor microenvironment (TME) of non-small cell lung cancer (NSCLC). However, although there is clear evidence for their involvement in cancer immunity, scanty data exist on the characterization of B cell phenotypes, bioenergetic profiles and possible interactions with T cells in the context of NSCLC. In this study, using polychromatic flow cytometry, mass cytometry, and spatial transcriptomics we explored the intricate landscape of B cell phenotypes, bioenergetics, and their interaction with T cells in NSCLC. Our analysis revealed that TME contains diverse B cell clusters, including VISTA+ Bregs, with distinct metabolic and functional profiles. Target liquid chromatography-tandem mass spectrometry confirmed the expression of VISTA on B cells. VISTA+ Bregs displayed high metabolic demand and were able to produce different cytokines, including interleukin (IL)-10, transforming growth factor (TGF)-β, IL-6, tumor necrosis factor (TNF), and granulocyte-macrophage colony-stimulating factor (GM-CSF). Spatial analysis showed colocalization of B cells with CD4+/CD8+ T lymphocytes in TME. The computational analysis of intercellular communications that links ligands to target genes, performed by NicheNet, predicted B-T interactions via VISTA-PSGL-1 axis. Colocalization analyses revealed that PSGL-1 T cells and VISTA+ B cells are adjacent in the TME. Notably, tumor infiltrating CD8+ T cells expressing PSGL-1 exhibited enhanced metabolism and cytotoxicity. In NSCLC patients, prediction analysis performed by PENCIL revealed the presence of an association between PSGL-1+CD8+ T cells and VISTA+ Bregs with lung recurrence. Our findings suggest a potential interaction between Bregs and T cells through the VISTA-PSGL-1 axis, that could influence NSCLC recurrence.
Collapse
MESH Headings
- Humans
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/immunology
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Lung Neoplasms/immunology
- Tumor Microenvironment/immunology
- B7 Antigens/metabolism
- B-Lymphocytes, Regulatory/metabolism
- B-Lymphocytes, Regulatory/immunology
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Neoplasm Staging
- Female
- Male
- Middle Aged
- Biomarkers, Tumor
Collapse
Affiliation(s)
- Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences - DIMEC, University of Bologna, G.B. Morgagni -L. Pierantoni Hospital, Forlì, Italy
| | - Valentina Masciale
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | | | | | - Anita Neroni
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Rebecca Borella
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Elena Santacroce
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Alin Liviu Ciobanu
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Anna Valeria Samarelli
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Dubini
- Division of Pathology, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy
| | - Michele Gaudio
- Division of Pathology, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy
| | - Gloria Manzotti
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Francesca Reggiani
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Antonino Neri
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Federica Bertolini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
- Division of Oncology and Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
- Division of Oncology and Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Pier Luigi Filosso
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Franco Stella
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences - DIMEC, University of Bologna, G.B. Morgagni -L. Pierantoni Hospital, Forlì, Italy
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy.
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy.
- National Institute for Cardiovascular Research, Bologna, Italy.
| |
Collapse
|
9
|
Lee KY, Mei Y, Liu H, Schwarz H. CD137-expressing regulatory T cells in cancer and autoimmune diseases. Mol Ther 2025; 33:51-70. [PMID: 39668561 PMCID: PMC11764688 DOI: 10.1016/j.ymthe.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/25/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024] Open
Abstract
Regulatory T cells (Tregs) are essential for maintaining immune homeostasis, with critical roles in preventing aberrant immune responses that occur in autoimmune diseases and chronic inflammation. Conversely, the abundance of Tregs in cancer is associated with impaired anti-tumor immunity, and tumor immune evasion. Recent work demonstrates that CD137, a well-known costimulatory molecule for T cells, is highly expressed on Tregs in pathological conditions, while its expression is minimal or negligible on peripheral Tregs. The expression of CD137 marks Tregs with potent immunosuppressive phenotype that foster cancer progression and are protective against certain autoimmune diseases. Hence CD137 has emerged as a marker for Tregs. However, several important questions still remain regarding the expression and function of CD137 in Tregs. Here, we provide an overview of our current knowledge of Treg mechanisms of action, with a focus on the role of CD137 in modulating Treg activity. We also explore the implications of CD137+ Tregs in both cancer and autoimmune diseases, emphasizing the significance of targeting these cells for therapeutic intervention in these conditions.
Collapse
Affiliation(s)
- Kang Yi Lee
- NUS Immunology Programme, Life Sciences Institute, Department of Microbiology and Immunology, National University of Singapore, Singapore 117545, Singapore; NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore 117456, Singapore
| | - Yu Mei
- NUS Immunology Programme, Life Sciences Institute, Department of Microbiology and Immunology, National University of Singapore, Singapore 117545, Singapore; NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore 117456, Singapore
| | - Haiyan Liu
- NUS Immunology Programme, Life Sciences Institute, Department of Microbiology and Immunology, National University of Singapore, Singapore 117545, Singapore; NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore 117456, Singapore.
| | - Herbert Schwarz
- NUS Immunology Programme, Life Sciences Institute, Department of Microbiology and Immunology, National University of Singapore, Singapore 117545, Singapore; NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore 117456, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
| |
Collapse
|
10
|
Liao W, Huang M, Du X, Tang L, Li J, Tang Q. Comprehensive analysis of heat shock protein 110, 90, 70, 60 families and tumor immune microenvironment characterization in clear cell renal cell carcinoma. Sci Rep 2025; 15:469. [PMID: 39747468 PMCID: PMC11697189 DOI: 10.1038/s41598-024-84834-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025] Open
Abstract
Heat shock proteins (HSPs) are a kind of molecular chaperone that helps protein folding, which is closely related to cancer. However, the association between HSPs and clear cell renal clear cell carcinoma (ccRCC) is uncertain. We explored the prognostic value of HSP110, HSP90, HSP70 and HSP60 families in ccRCC and their role in tumor immune microenvironment. The data obtained from the Cancer Genome Atlas (TCGA) were applied to determine the differential expression of HSPs in normal tissues and ccRCC. We comprehensively analyzed the prognostic value of HSPs in ccRCC and constructed a prognostic signature. We further explored the differences of tumor immune microenvironment and targeted therapy based on the signature. Cell proliferation, invasion and metastasis were detected by CCK8 assay, wound healing and transwell. Three clusters were identified with differences in overall survival and tumor stage. 6-gene signature (HSPA8, HSP90B1, HSPA7, HSPA12B, HSPA4L, HSPA1L) was identified to predict ccRCC patients' prognosis. The signature was confirmed in the internal cohort. Survival analysis, receiver operating characteristic (ROC) curve, univariate and multivariate COX regression analysis demonstrated the accuracy and independence of signature. The expression of HSPA7, HSPA8 and HSP90B1 were validated with quantitative real-time PCR. Our signature played a pivotal role in predicting tumor immune microenvironment, immune checkpoint gene expression, drug sensitivity, and tumor mutational burden (TMB) in patients with ccRCC. Our cellular experiments confirmed HSPA7 promotes the proliferation, invasion and metastasis of ccCRC cells. The HSPs signature identified in this study could serve as potential biomarkers for predicting prognosis and treatment response in ccRCC patients. It may provide new ideas for the current research on targeted therapy and immunotherapy strategies for ccRCC patients.
Collapse
Affiliation(s)
- Wenjing Liao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mao Huang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyi Du
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liangdan Tang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junwu Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Tang
- Chongqing Health Center for Women and Children /Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China.
| |
Collapse
|
11
|
Pandit A, Shah SM, Shah RA, Qureshi S, Sethi RS, Bhat F, Malik A, Parray O, Yaqoob H, Saleem M. Regulatory T cells in bovine fertility: Current understanding and future prospects. Anim Reprod Sci 2025; 272:107655. [PMID: 39616725 DOI: 10.1016/j.anireprosci.2024.107655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/17/2024] [Accepted: 11/24/2024] [Indexed: 12/20/2024]
Abstract
Regulatory T cells (Tregs) have emerged as crucial players in maintaining maternal-fetal tolerance and promoting successful pregnancy outcomes. This review examines the importance of these cells in pregnancy, drawing on human and animal-based studies, with a focus on their role in bovine fertility. Tregs employ various mechanisms to mediate maternal-fetal tolerance, including regulation of effector T-cell responses, interactions with innate immune cells in the uterine microenvironment, and modulation of trophoblast function. In humans, Treg dynamics during normal pregnancy and alterations in pregnancy complications provide compelling evidence for their involvement in maintaining fetal-maternal harmony. Animal models, particularly mouse studies, have further elucidated the importance of Tregs in preventing fetal rejection and promoting successful pregnancy outcomes. The review also explores the characterization of bovine Tregs, highlighting their similarities and unique features compared to human and rodent counterparts. Recent studies have indicated the presence and potential significance of Tregs in the bovine uterine environment during early pregnancy. Translational applications of Treg research in livestock fertility are discussed, with a focus on immunomodulatory strategies for enhancing Treg function, such as antigen-specific tolerance induction, pharmacological targeting of Treg pathways, and cell-based therapies using autologous or allogeneic Tregs. The review concludes by emphasizing the potential impact of Treg-based strategies on the livestock industry and the broader implications for human reproductive health. Future research directions are outlined, underscoring the need for further investigations into the role of Tregs in bovine reproductive tissues and their relationship with fertility outcomes.
Collapse
Affiliation(s)
- Arif Pandit
- Center of Excellence in Animal Reproductive Biotechnology, Mountain Livestock Research Institute, Sher E Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India.
| | - Syed M Shah
- Center of Excellence in Animal Reproductive Biotechnology, Mountain Livestock Research Institute, Sher E Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Riaz A Shah
- Center of Excellence in Animal Reproductive Biotechnology, Mountain Livestock Research Institute, Sher E Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Sabia Qureshi
- Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Sciences, Sher E Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - R S Sethi
- College of Dairy Sciences, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Faheem Bhat
- Center of Excellence in Animal Reproductive Biotechnology, Mountain Livestock Research Institute, Sher E Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Abrar Malik
- Center of Excellence in Animal Reproductive Biotechnology, Mountain Livestock Research Institute, Sher E Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Oveas Parray
- Center of Excellence in Animal Reproductive Biotechnology, Mountain Livestock Research Institute, Sher E Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Hilal Yaqoob
- Center of Excellence in Animal Reproductive Biotechnology, Mountain Livestock Research Institute, Sher E Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Masood Saleem
- Directorate of Research, Sher E Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
12
|
Meza Monge K, Ardon-Lopez A, Pratap A, Idrovo JP. Targeting Inflammation After Hemorrhagic Shock as a Molecular and Experimental Journey to Improve Outcomes: A Review. Cureus 2025; 17:e77776. [PMID: 39981454 PMCID: PMC11841828 DOI: 10.7759/cureus.77776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/22/2025] Open
Abstract
Hemorrhagic shock continues to be a major contributor to trauma-related fatalities globally, posing a significant and intricate pathophysiological challenge. The condition is marked by injury and blood loss, which activate molecular cascades that can quickly become harmful. The inflammatory response exhibits a biphasic pattern, beginning with a hyper-inflammatory phase that transitions into immunosuppression, posing significant obstacles to effective therapeutic interventions. This review article explores the intricate molecular mechanisms driving inflammation in hemorrhagic shock, emphasizing cellular signaling pathways, endothelial dysfunction, and immune activation. We discuss the role of molecular biomarkers in tracking disease progression and stratifying risk, with a focus on markers of endothelial dysfunction and inflammatory mediators as potential prognostic tools. Additionally, we assess therapeutic strategies, spanning traditional approaches like hemostatic resuscitation to advanced immunomodulatory treatments. Despite promising advancements in molecular monitoring and targeted therapies, challenges persist in bridging experimental findings with clinical applications. Future efforts must prioritize understanding the dynamic progression of inflammatory pathways and refining the timing of interventions to improve outcomes in hemorrhagic shock management.
Collapse
Affiliation(s)
- Kenneth Meza Monge
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, University of Colorado, Aurora, USA
| | - Astrid Ardon-Lopez
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Colorado, Aurora, USA
| | - Akshay Pratap
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, University of Colorado, Aurora, USA
| | - Juan-Pablo Idrovo
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, University of Colorado, Aurora, USA
| |
Collapse
|
13
|
Vijayakumar A, Vasudevan S, John S, Ozbun MA, Bartee E, Palanisamy V. Navigating a complex dance: the interplay between RNA-binding proteins and T cells in oral epithelial plasticity. IMMUNOMETABOLISM (COBHAM, SURREY) 2025; 7:e00054. [PMID: 39816132 PMCID: PMC11731067 DOI: 10.1097/in9.0000000000000054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025]
Abstract
The oral epithelium, a dynamic interface constantly facing environmental challenges, relies on intricate molecular pathways to maintain its homeostasis. This comprehensive review delves into the nuanced interplay between T-lymphocytic cells (T cells) and RNA-binding proteins (RBPs) within the oral epithelium, elucidating their roles in orchestrating immune responses and influencing tissue plasticity. By synthesizing current knowledge, we aim to unravel the molecular intricacies that govern this interplay, with a focus on potential therapeutic implications for oral health and diseases. Understanding the regulatory networks shaped by T cells and RBPs in the oral epithelial microenvironment holds promise for innovative strategies in managing conditions associated with epithelial dysfunction.
Collapse
Affiliation(s)
- Anitha Vijayakumar
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Sekar Vasudevan
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Samu John
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Michelle A. Ozbun
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Eric Bartee
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Viswanathan Palanisamy
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
14
|
Shen Y, Wang H, Ma Z, Hao M, Wang S, Li J, Fang Y, Yu L, Huang Y, Wang C, Xiang J, Cai Z, Wang J, Jin H, Zhou J, Guo J, Ying P, Wang X. Sorafenib Promotes Treg Cell Differentiation To Compromise Its Efficacy via VEGFR/AKT/Foxo1 Signaling in Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol 2024; 19:101454. [PMID: 39743020 PMCID: PMC11946502 DOI: 10.1016/j.jcmgh.2024.101454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND & AIMS Sora is the first-line drug for advanced hepatocellular carcinoma (HCC). However, acquired resistance to Sora treatment largely hinders its therapeutic efficacy, and the mechanisms underlying Sora resistance remain poorly understood. Here, we revealed a new mechanism by which Sora promotes the differentiation of regulatory T (Treg) cells to suppress the immune response in the HCC tumor microenvironment (TME) and induce Sora resistance. METHODS Human liver tissues were obtained from HCC patients. Female C57BL/6J, OT-II, and Foxp3GFP mice were also used. Flow cytometry was used to analyze immune cells in TME. Flow cytometry, real-time polymerase chain reaction, and enzyme-linked immunosorbent assay were performed to evaluate Treg cell differentiation. Immunoblotting was conducted to identify relevant proteins. Mouse and human tumor tissues were evaluated via multiplex immunofluorescence staining. Sora-treated HCC tissues and Sora-treated Treg cells were subjected to RNA sequencing analysis. Tumor models were generated and treated with Sora, Sora combined with an anti-CD25 antibody, or Sora combined with the Foxo1 inhibitor AS1842856. RESULTS First, we found through bioinformatic analysis that Sora suppresses the immune response in HCC. Furthermore, Sora increased the Treg cell population to promote the formation of an immunosuppressive TME in HCC. In vitro, Sora promoted Treg cell differentiation and increased the immunosuppressive activity of Treg cells. Activating VEGF and AKT abolished the effect of Sora on Treg cell differentiation, whereas inhibiting Foxo1 compromised Sora-induced Treg cell differentiation, indicating that the induction of Treg cells by Sora is dependent on the VEGFR/AKT/Foxo1 pathway. Finally, Treg inactivation by an anti-CD25 antibody or the Foxo1 inhibitor AS1842856 in combination with Sora showed greater efficacy in the treatment of HCC. CONCLUSIONS Sora induced Treg cell differentiation by inhibiting VEGFR/AKT signaling and activating Foxo1, thus suppressing the immune response and reducing Sora efficacy. Treg inactivation might be a promising strategy to alleviate the immunosuppressive TME and overcome Sora resistance.
Collapse
Affiliation(s)
- Yingying Shen
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, Zhejiang, China
| | - Hanliang Wang
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, Zhejiang, China
| | - Zeyu Ma
- Department of Dermatology and Venerology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, Zhejiang, China
| | - Minyan Hao
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuowang Wang
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, Zhejiang, China
| | - Junwei Li
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yue Fang
- Institute of Immunology and Department of Orthopaedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lei Yu
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yingying Huang
- Core Facilities, School of Medicine Zhejiang University, Hangzhou, China
| | - Changrong Wang
- Department of Pathology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Jingjing Xiang
- Department of Pathology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Zhijian Cai
- Institute of Immunology and Department of Orthopaedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianli Wang
- Institute of Immunology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, China
| | - Hongchuan Jin
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, Zhejiang, China
| | - Jia Zhou
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, Zhejiang, China.
| | - Jufeng Guo
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| | - Pingting Ying
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xian Wang
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
15
|
Chu KH, Chiang BL. A Novel Subset of Regulatory T Cells Induced by B Cells Alleviate the Severity of Immunological Diseases. Clin Rev Allergy Immunol 2024; 67:73-82. [PMID: 39465485 DOI: 10.1007/s12016-024-09009-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Regulatory T (Treg) cells are crucial for maintaining immune tolerance by suppressing response to self-antigens and harmless antigens to prevent autoimmune diseases and uncontrolled immune responses. Therefore, using Treg cells is considered a therapeutic strategy treating inflammatory diseases. Based on their origin, Treg cells are classified into thymus-derived, peripherally induced, and in vitro induced Treg cells. Our group discovered a novel Treg cell subset, namely, Treg-of-B (Treg/B) cells, generated by culturing CD4+CD25- T cells with B cells, including Peyer's patch B cells, splenic B cells and peritoneal B1a cells, for 3 days. Treg/B cells express CD44, OX40 (CD134), cytotoxic T-lymphocyte-associated antigen-4 (CD152), glucocorticoid-induced tumor necrosis factor receptor family-related protein (CD357), interleukin-10 receptor, lymphocyte activation gene-3 (CD223), inducible co-stimulator (CD278), programmed-death 1 (CD279), tumor necrosis factor receptor II, and high levels of IL-10, but not forkhead box protein P3, similar to type 1 Treg (Tr1) cells. However, unlike Tr1 cells, Treg/B cells do not express CD103, CD226, and latency-associated peptide. Treg/B cells have been applied for the treatment of some murine models of inflammatory diseases, including allergic asthma, inflammatory bowel disease, collagen-induced arthritis, gout, psoriasis and primary biliary cholangitis. This review summarizes the current knowledge of Treg/B cells.
Collapse
Affiliation(s)
- Kuan-Hua Chu
- Department of Pediatrics, National Taiwan University Hospital, No. 7 Chung-Shan South Road, Taipei, 100, Taiwan
| | - Bor-Luen Chiang
- Department of Pediatrics, National Taiwan University Hospital, No. 7 Chung-Shan South Road, Taipei, 100, Taiwan.
- Genomes and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan.
- Allergy Center, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
16
|
Shang Y, Chen G, Liu L, Pan R, Li X, Shen H, Tan Y, Ma L, Tong X, Wang W, Chen X, Xia Z, Liu X, Zhou F. Clinical and immunological characteristics of high-risk double-hit multiple myeloma. BMC Cancer 2024; 24:1373. [PMID: 39523318 PMCID: PMC11552351 DOI: 10.1186/s12885-024-13124-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
At present, the characteristics of double-hit multiple myeloma (DHMM) are unknown. We retrospectively analyzed the clinical data from 433 new diagnosed MM patients and found that DHMM have a higher β2-MG level and percentage of bone marrow plasma cell. Cox regression analysis showed that the prognosis of DHMM was not limited by clinical indicators. The abnormal proliferation of bone marrow in DHMM is obvious, and the proportion of poorly differentiated plasma cell is high. By collecting specimens from our center and performing flow cytometry to analyze the immunophenotypic and functional characteristics of lymphocyte subpopulations, we found that DHMM had a higher ratio of Tregs cells, and the proportion of iTregs cells was also significantly higher than non-DHMM (P < 0.05). Moreover, DHMM had higher levels of TGF-β1 and IL-10, and TGF-β1 and IL-10 were positively correlated with iTregs (P < 0.05). In addition, DHMM was highly expressed PD-1 on CD8 + T cells and had a higher proportion of CD38highTregs cells. In vitro we have shown that the addition of TGF-β1 antibody or CD38 antibody can effectively inhibit the proportion of CD38high Tregs. This study describes the characteristics of DHMM based on bicentric data, which is helpful to better provide theoretical support for the treatment of DHMM.
Collapse
Grants
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
Collapse
Affiliation(s)
- Yufeng Shang
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, P.R. China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, P.R. China
| | - Guopeng Chen
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, P.R. China
| | - Li Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, P.R. China
| | - Ruiyang Pan
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, P.R. China
| | - Xinqi Li
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, P.R. China
| | - Hui Shen
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, P.R. China
| | - Yuxin Tan
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, P.R. China
| | - Linlu Ma
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, P.R. China
| | - Xiqin Tong
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, P.R. China
| | - Weida Wang
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P.R. China
| | - Xiaoqin Chen
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P.R. China
| | - Zhongjun Xia
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P.R. China
| | - Xiaoyan Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, P.R. China.
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, P.R. China.
| |
Collapse
|
17
|
Burlingham WJ. Extracellular vesicles in fetal-maternal immune tolerance. Biomed J 2024; 47:100785. [PMID: 39214456 PMCID: PMC11414648 DOI: 10.1016/j.bj.2024.100785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Two key problems of allo-tolerance during fetal-maternal co-existence are: 1) it's focus must be local, allowing the mother's continued peripheral immune competence to resist pathogens ubiquitously, and 2) it must propagate itself, i.e. continuously recruit new re-enforcements of the local tolerant state. Both are solved by the exosomal pathway of Tregs & Bregs. While the fetal-maternal accomodations of pregnancy terminate at the time of partrurition, geography, climate and the endemic pathogens of the environment surrounding the mother-baby pair would then define the short and long-term effects of their immunologic interaction.
Collapse
|
18
|
Aiyengar A, Romano M, Burch M, Lombardi G, Fanelli G. The potential of autologous regulatory T cell (Treg) therapy to prevent Cardiac Allograft Vasculopathy (CAV) in paediatric heart transplant recipients. Front Immunol 2024; 15:1444924. [PMID: 39315099 PMCID: PMC11416935 DOI: 10.3389/fimmu.2024.1444924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Paediatric heart transplant is an established treatment for end stage heart failure in children, however patients have to commit to lifelong medical surveillance and adhere to daily immunosuppressants to minimise the risk of rejection. Compliance with immunosuppressants can be burdensome with their toxic side effects and need for frequent blood monitoring especially in children. Though the incidence of early rejection episodes has significantly improved overtime, the long-term allograft health and survival is determined by Cardiac Allograft Vasculopathy (CAV) which affects a vast number of post-transplant patients. Once CAV has set in, there is no medical or surgical treatment to reverse it and graft survival is significantly compromised across all age groups. Current treatment strategies include novel immunosuppressant agents and drugs to lower blood lipid levels to address the underlying immunological pathophysiology and to manage traditional cardiac risk factors. Translational researchers are seeking novel immunological approaches that can lead to permanent acceptance of the allograft such as using regulatory T cell (Tregs) immunotherapy. Clinical trials in the setting of graft versus host disease, autoimmunity and kidney and liver transplantation using Tregs have shown the feasibility and safety of this strategy. This review will summarise current knowledge of the latest clinical therapies for CAV and pre-clinical evidence in support of Treg therapy for CAV. We will also discuss the different Treg sources and the considerations of translating this into a feasible immunotherapy in clinical practice in the paediatric population.
Collapse
Affiliation(s)
- Apoorva Aiyengar
- Department of Cardiology, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
- Research Department of Children’s Cardiovascular Disease, Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Marco Romano
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College, London, United Kingdom
| | - Michael Burch
- Department of Cardiology, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College, London, United Kingdom
| | - Giorgia Fanelli
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College, London, United Kingdom
| |
Collapse
|
19
|
Vagadiya A, Sehgal R, Trehanpati N, Pamecha V. Alterations in CD4 + T-cell Subsets in Living Donor Liver Transplantation Associated With Graft Rejection. J Clin Exp Hepatol 2024; 14:101428. [PMID: 38778902 PMCID: PMC11107238 DOI: 10.1016/j.jceh.2024.101428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/12/2024] [Indexed: 05/25/2024] Open
Abstract
Background and objectives Regulatory T-cells (Tregs) play a key role in immune homeostasis after organ transplantation. However, the role of CD4+ T cell subsets in early acute rejection is still not well understood. Therefore, our aim was to determine changes in CD4+ T-cell subsets in living donor liver transplantation (LDLT). Methods LDLT patients were assessed for T-cell subsets, Tregs frequencies and their functionality by flow-cytometry at peri- and post-transplant in the span of 1 year. Results 33 patients were followed up and 11 (33%) patients have developed early acute cellular rejection (ACR). At peri-transplant time point, MFI of Foxp3+ Tregs was significantly increased compared to HC (P = 0.04). However, CD4+CD25+Foxp3+/CD127- Tregs numbers and IL-10, IL-17 and TGF-β secreting functional Tregs were significantly decreased at 3 months compared to peri-transplant (P = 0.003). But in patients with rejection, CD4+CD25+FOXP3+ and CD4+CD25+CD127- Tregs were significantly decreased at day 3 compared to no rejection group (P = 0.048). Patients with rejection also showed significantly decreased numbers of IL-17 and TGF-β secreting CD4+CD25+FOXP3+ Tregs at peri-transplant time (P = 0.04, P = 0.03) compared to no rejection. Further, rejection group showed decreased terminally differentiated effector memory (TEMRA) at peri-transplant and day 7 (P = 0.048 and P = 0.01). Additionally, CD4+ central memory (CM) was decreased at peri-transplant (P = 0.05), 1 month (P = 0.04), and 3 to 6 month (P = 0.02). Interpretation and conclusion Tregs frequencies were significantly decreased in peri-TX in rejection patients. Further, decreased frequencies of CD4+ TEMRA and CD4+ CM at day 7 and 1 month were associated with rejection.
Collapse
Affiliation(s)
- Ankur Vagadiya
- Department of Hepato Pancreato Biliary and Liver Transplant Surgery, Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, New Delhi, India
| | - Rashi Sehgal
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, New Delhi, India
| | - Nirupma Trehanpati
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, New Delhi, India
| | - Viniyendra Pamecha
- Department of Hepato Pancreato Biliary and Liver Transplant Surgery, Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, New Delhi, India
| |
Collapse
|
20
|
Stepkowski S, Bekbolsynov D, Oenick J, Brar S, Mierzejewska B, Rees MA, Ekwenna O. The Major Role of T Regulatory Cells in the Efficiency of Vaccination in General and Immunocompromised Populations: A Review. Vaccines (Basel) 2024; 12:992. [PMID: 39340024 PMCID: PMC11436018 DOI: 10.3390/vaccines12090992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Since their conception with the smallpox vaccine, vaccines used worldwide have mitigated multiple pandemics, including the recent COVID-19 outbreak. Insightful studies have uncovered the complexities of different functional networks of CD4 T cells (T helper 1 (Th1); Th2, Th17) and CD8 T cells (T cytotoxic; Tc), as well as B cell (BIgM, BIgG, BIgA and BIgE) subsets, during the response to vaccination. Both T and B cell subsets form central, peripheral, and tissue-resident subsets during vaccination. It has also become apparent that each vaccination forms a network of T regulatory subsets, namely CD4+ CD25+ Foxp3+ T regulatory (Treg) cells and interleukin-10 (IL-10)-producing CD4+ Foxp3- T regulatory 1 (Tr1), as well as many others, which shape the quality/quantity of vaccine-specific IgM, IgG, and IgA antibody production. These components are especially critical for immunocompromised patients, such as older individuals and allograft recipients, as their vaccination may be ineffective or less effective. This review focuses on considering how the pre- and post-vaccination Treg/Tr1 levels influence the vaccination efficacy. Experimental and clinical work has revealed that Treg/Tr1 involvement evokes different immune mechanisms in diminishing vaccine-induced cellular/humoral responses. Alternative steps may be considered to improve the vaccination response, such as increasing the dose, changing the delivery route, and/or repeated booster doses of vaccines. Vaccination may be combined with anti-CD25 (IL-2Rα chain) or anti-programmed cell death protein 1 (PD-1) monoclonal antibodies (mAb) to decrease the Tregs and boost the T/B cell immune response. All of these data and strategies for immunizations are presented and discussed, aiming to improve the efficacy of vaccination in humans and especially in immunocompromised and older individuals, as well as organ transplant patients.
Collapse
Affiliation(s)
- Stanislaw Stepkowski
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH 43614, USA; (D.B.); (B.M.)
| | - Dulat Bekbolsynov
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH 43614, USA; (D.B.); (B.M.)
| | - Jared Oenick
- Neurological Surgery, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA;
| | - Surina Brar
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH 43614, USA; (D.B.); (B.M.)
| | - Beata Mierzejewska
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH 43614, USA; (D.B.); (B.M.)
| | - Michael A. Rees
- Department of Urology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (M.A.R.); (O.E.)
| | - Obi Ekwenna
- Department of Urology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (M.A.R.); (O.E.)
| |
Collapse
|
21
|
Tao B, Yi C, Ma Y, Li Y, Zhang B, Geng Y, Chen Z, Ma X, Chen J. A Novel TGF-β-Related Signature for Predicting Prognosis, Tumor Microenvironment, and Therapeutic Response in Colorectal Cancer. Biochem Genet 2024; 62:2999-3029. [PMID: 38062276 DOI: 10.1007/s10528-023-10591-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/07/2023] [Indexed: 07/31/2024]
Abstract
The transforming growth factor beta (TGF-β) signaling plays a critical role in immune evasion and tumor progression. However, its modulatory influences on prognosis, tumor microenvironment (TME), and therapeutic efficacy remain unknown in colorectal cancer (CRC). We summarized TGF-β-related genes and comprehensively estimated their expression pattern in 2142 CRC samples from 9 datasets. Two distinct cluster patterns were divided and biological characteristics of each pattern were further analyzed. Then, to quantify the TGF-β cluster pattern of individual CRC patient, we generated the TGF-β score (TGFBscore) model based on TGF-β cluster pattern-relevant differentially expressed genes (DEGs). Subsequently, we conducted correlation analysis for TGFBscore and clinical prognosis, consensus molecular subtypes (CMSs), TME characteristics, liver metastasis, drug response, and immunotherapeutic efficacy in CRC. We illustrated transcriptional and genetic alterations of TGF-β-relevant genes, which were closely linked with carcinogenic pathways. We identified two different TGF-β cluster patterns, characterized by a high and a low TGFBscore. The TGFBscore-high group was significantly linked with worse patient survival, epithelial-mesenchymal transition (EMT) activation, liver metastasis tendency, and the infiltration of immunosuppressive cells (regulatory T cells [Tregs], M2 macrophages, cancer-associated fibroblasts [CAFs], and myeloid-derived suppressor cells [MDSCs]), while the TGFBscore-low group was linked with a survival advantage, epithelial phenotype, early CRC staging, and the infiltration of immune-activated cells (B cell, CD4 T cell, natural killer T [NKT] cell, and T helper 1 [Th1] cell). In terms of predicting drug response, TGFBscore negatively correlated (sensitive to TGFBscore-high group) with drugs targeting PI3K/mTOR, JNK and p38, RTK signaling pathways, and positively correlated (sensitive to TGFBscore-low group) with drugs targeting EGFR signaling pathway. Also, TGFBscore could predict the efficacy of different anti-tumor therapies. TGFBscore-low patients might benefit more from anti-PDL1 immunotherapy, adjuvant chemotherapy (ACT), and ERBB targeted therapy, whereas TGFBscore-high patients might benefit more from antiangiogenic targeted therapy. Our study constructed a novel TGF-β scoring model that could predict prognosis, liver metastasis tendency, and TME characteristics for CRC patients. More importantly, this work emphasizes the potential clinical utility of TGFBscore in evaluating the efficacy of chemotherapy, targeted therapy, and immunotherapy, guiding individualized precision treatment in CRC.
Collapse
Affiliation(s)
- Baorui Tao
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, People's Republic of China
- Cancer Metastasis Institute, Fudan University, Shanghai, People's Republic of China
| | - Chenhe Yi
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, People's Republic of China
- Cancer Metastasis Institute, Fudan University, Shanghai, People's Republic of China
| | - Yue Ma
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, People's Republic of China
- Cancer Metastasis Institute, Fudan University, Shanghai, People's Republic of China
| | - Yitong Li
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, People's Republic of China
- Cancer Metastasis Institute, Fudan University, Shanghai, People's Republic of China
| | - Bo Zhang
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, People's Republic of China
- Cancer Metastasis Institute, Fudan University, Shanghai, People's Republic of China
| | - Yan Geng
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, People's Republic of China
- Cancer Metastasis Institute, Fudan University, Shanghai, People's Republic of China
| | - Zhenmei Chen
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, People's Republic of China
- Cancer Metastasis Institute, Fudan University, Shanghai, People's Republic of China
| | - Xiaochen Ma
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, People's Republic of China
- Cancer Metastasis Institute, Fudan University, Shanghai, People's Republic of China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, People's Republic of China.
- Cancer Metastasis Institute, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
22
|
Tian K, Jing D, Lan J, Lv M, Wang T. Commensal microbiome and gastrointestinal mucosal immunity: Harmony and conflict with our closest neighbor. Immun Inflamm Dis 2024; 12:e1316. [PMID: 39023417 PMCID: PMC11256888 DOI: 10.1002/iid3.1316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/06/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND The gastrointestinal tract contains a wide range of microorganisms that have evolved alongside the immune system of the host. The intestinal mucosa maintains balance within the intestines by utilizing the mucosal immune system, which is controlled by the complex gut mucosal immune network. OBJECTIVE This review aims to comprehensively introduce current knowledge of the gut mucosal immune system, focusing on its interaction with commensal bacteria. RESULTS The gut mucosal immune network includes gut-associated lymphoid tissue, mucosal immune cells, cytokines, and chemokines. The connection between microbiota and the immune system occurs through the engagement of bacterial components with pattern recognition receptors found in the intestinal epithelium and antigen-presenting cells. This interaction leads to the activation of both innate and adaptive immune responses. The interaction between the microbial community and the host is vital for maintaining the balance and health of the host's mucosal system. CONCLUSION The gut mucosal immune network maintains a delicate equilibrium between active immunity, which defends against infections and damaging non-self antigens, and immunological tolerance, which allows for the presence of commensal microbiota and dietary antigens. This balance is crucial for the maintenance of intestinal health and homeostasis. Disturbance of gut homeostasis leads to enduring or severe gastrointestinal ailments, such as colorectal cancer and inflammatory bowel disease. Utilizing these factors can aid in the development of cutting-edge mucosal vaccines that have the ability to elicit strong protective immune responses at the primary sites of pathogen invasion.
Collapse
Affiliation(s)
- Kexin Tian
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
| | - Dehong Jing
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
| | - Junzhe Lan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
| | - Mingming Lv
- Department of BreastWomen's Hospital of Nanjing Medical University, Nanjing Maternity, and Child Health Care HospitalNanjingChina
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
| |
Collapse
|
23
|
Contreras-Castillo E, García-Rasilla VY, García-Patiño MG, Licona-Limón P. Stability and plasticity of regulatory T cells in health and disease. J Leukoc Biol 2024; 116:33-53. [PMID: 38428948 DOI: 10.1093/jleuko/qiae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024] Open
Abstract
The mechanisms that negatively regulate inflammation upon a pathogenic stimulus are crucial for the maintenance of tissue integrity and organ function. T regulatory cells are one of the main drivers in controlling inflammation. The ability of T regulatory cells to adapt to different inflammatory cues and suppress inflammation is one of the relevant features of T regulatory cells. During this process, T regulatory cells express different transcription factors associated with their counterparts, Th helper cells, including Tbx21, GATA-3, Bcl6, and Rorc. The acquisition of this transcription factor helps the T regulatory cells to suppress and migrate to the different inflamed tissues. Additionally, the T regulatory cells have different mechanisms that preserve stability while acquiring a particular T regulatory cell subtype. This review focuses on describing T regulatory cell subtypes and the mechanisms that maintain their identity in health and diseases.
Collapse
Affiliation(s)
- Eugenio Contreras-Castillo
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - Verónica Yutsil García-Rasilla
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - María Guadalupe García-Patiño
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - Paula Licona-Limón
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| |
Collapse
|
24
|
Martínez-Shio EB, Marín-Jáuregui LS, Rodríguez-Ortega AC, Doníz-Padilla LM, González-Amaro R, Escobedo-Uribe CD, Monsiváis-Urenda AE. Regulatory T-cell frequency and function in acute myocardial infarction patients and its correlation with ventricular dysfunction. Clin Exp Immunol 2024; 216:262-271. [PMID: 38386899 PMCID: PMC11097913 DOI: 10.1093/cei/uxae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 01/19/2024] [Accepted: 02/21/2024] [Indexed: 02/24/2024] Open
Abstract
A high percentage of patients with acute coronary syndrome develop heart failure due to the ischemic event. Regulatory T (Treg) cells are lymphocytes with suppressive capacity that control the immune response and include the conventional CD4+ CD25hi Foxp3+ cells and the CD4+ CD25var CD69+ LAP+ Foxp3- IL-10+ cells. No human follow-up studies focus on Treg cells' behavior after infarction and their possible relationship with ventricular function as a sign of postischemic cardiac remodeling. This study aimed to analyze, by flow cytometry, the circulating levels of CD69+ Treg cells and CD4+ CD25hi Foxp3+ cells, their IL-10+ production as well as their function in patients with acute myocardial infarction (AMI), and its possible relation with ventricular dysfunction. We found a significant difference in the percentage of CD4+ CD25hi Foxp3+ cells and IL-10+ MFI in patients with AMI at 72 hours compared with the healthy control group, and the levels of these cells were reduced 6 months post-AMI. Regarding the suppressive function of CD4+ CD25+ regulatory cells, they were dysfunctional at 3 and 6 months post-AMI. The frequency of CD69+ Treg cells was similar between patients with AMI at 72 hours postinfarction and the control groups. Moreover, the frequency of CD69+ Treg cells at 3 and 6 months postischemic event did not vary over time. Treg cells play a role in regulating inflammation after an AMI, and its function may be compromised in this pathology. This work is the first report to evaluate CD69+ Foxp3- Treg cells in AMI patients.
Collapse
Affiliation(s)
- Elena Berenice Martínez-Shio
- Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de la Salud y Biomedicina, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Laura Sherell Marín-Jáuregui
- Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de la Salud y Biomedicina, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Alma Celeste Rodríguez-Ortega
- Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de la Salud y Biomedicina, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Lesly Marsol Doníz-Padilla
- Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de la Salud y Biomedicina, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Roberto González-Amaro
- Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de la Salud y Biomedicina, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | | | - Adriana Elizabeth Monsiváis-Urenda
- Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de la Salud y Biomedicina, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| |
Collapse
|
25
|
Zong Y, Deng K, Chong WP. Regulation of Treg cells by cytokine signaling and co-stimulatory molecules. Front Immunol 2024; 15:1387975. [PMID: 38807592 PMCID: PMC11131382 DOI: 10.3389/fimmu.2024.1387975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
CD4+CD25+Foxp3+ regulatory T cells (Tregs), a vital component of the immune system, are responsible for maintaining immune homeostasis and preventing excessive immune responses. This review explores the signaling pathways of the cytokines that regulate Treg cells, including transforming growth factor beta (TGF-β), interleukin (IL)-2, IL-10, and IL-35, which foster the differentiation and enhance the immunosuppressive capabilities of Tregs. It also examines how, conversely, signals mediated by IL-6 and tumor necrosis factor -alpha (TNF-α) can undermine Treg suppressive functions or even drive their reprogramming into effector T cells. The B7 family comprises indispensable co-stimulators for T cell activation. Among its members, this review focuses on the capacity of CTLA-4 and PD-1 to regulate the differentiation, function, and survival of Tregs. As Tregs play an essential role in maintaining immune homeostasis, their dysfunction contributes to the pathogenesis of autoimmune diseases. This review delves into the potential of employing Treg-based immunotherapy for the treatment of autoimmune diseases, transplant rejection, and cancer. By shedding light on these topics, this article aims to enhance our understanding of the regulation of Tregs by cytokines and their therapeutic potential for various pathological conditions.
Collapse
Affiliation(s)
- Yuan Zong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Kaihang Deng
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Wai Po Chong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| |
Collapse
|
26
|
Larson AC, Doty KR, Solheim JC. The double life of a chemotherapy drug: Immunomodulatory functions of gemcitabine in cancer. Cancer Med 2024; 13:e7287. [PMID: 38770637 PMCID: PMC11106691 DOI: 10.1002/cam4.7287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 05/22/2024] Open
Abstract
Although the development of immunotherapies has been revolutionary in the treatment of several cancers, many cancer types remain unresponsive to immune-based treatment and are largely managed by chemotherapy drugs. However, chemotherapeutics are not infallible and are frequently rendered ineffective as resistance develops from prolonged exposure. Recent investigations have indicated that some chemotherapy drugs have additional functions beyond their normative cytotoxic capacity and are in fact immune-modifying agents. Of the pharmaceuticals with identified immune-editing properties, gemcitabine is well-studied and of interest to clinicians and scientists alike. Gemcitabine is a chemotherapy drug approved for the treatment of multiple cancers, including breast, lung, pancreatic, and ovarian. Because of its broad applications, relatively low toxicity profile, and history as a favorable combinatory partner, there is promise in the recharacterization of gemcitabine in the context of the immune system. Such efforts may allow the identification of suitable immunotherapeutic combinations, wherein gemcitabine can be used as a priming agent to improve immunotherapy efficacy in traditionally insensitive cancers. This review looks to highlight documented immunomodulatory abilities of one of the most well-known chemotherapy agents, gemcitabine, relating to its influence on cells and proteins of the immune system.
Collapse
Affiliation(s)
- Alaina C. Larson
- Eppley Institute for Research in Cancer & Allied DiseasesUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Fred & Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Kenadie R. Doty
- Eppley Institute for Research in Cancer & Allied DiseasesUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Fred & Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Joyce C. Solheim
- Eppley Institute for Research in Cancer & Allied DiseasesUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Fred & Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Department of Biochemistry & Molecular BiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Department of Pathology, Microbiology, & ImmunologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
27
|
Cai N, Gao X, Yang L, Li W, Sun W, Zhang S, Zhao J, Qu J, Zhou Y. Discovery of novel NSAID hybrids as cPLA 2/COX-2 dual inhibitors alleviating rheumatoid arthritis via inhibiting p38 MAPK pathway. Eur J Med Chem 2024; 267:116176. [PMID: 38286094 DOI: 10.1016/j.ejmech.2024.116176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
A series of NSAIDs hybrid molecules were synthesized and characterized, and their ability to inhibit NO release in LPS-induced RAW264.7 macrophages was evaluated. Most of the compounds showed significant anti-inflammatory activity in vitro, of which (2E,6Z,9Z,12Z,15Z)-1,1,1-trifluorohenicosa-2,6,9,12,15-pentaen-2-yl 2-(4-benzoylphenyl) propanoate (VI-60) was the most optimal (IC50 = 3.85 ± 0.25 μΜ) and had no cytotoxicity. In addition, VI-60 notably reduced the production of PGE2 in LPS-stimulated RAW264.7 cells compared to ketoprofen. Futhur more, VI-60 significantly inhibited the expression of iNOS, cPLA2, and COX-2 and the phosphorylation of p38 MAPK in LPS-stimulated RAW264.7 cells. The binding of VI-60 to cPLA2 and COX-2 was directly verified by the CETSA technique. In vivo studies illustrated that VI-60 exerted an excellent therapeutic effect on adjuvant-induced arthritis in rats by regulating the balance between Th17 and Treg through inhibiting the p38 MAPK/cPLA2/COX-2/PGE2 pathway. Encouragingly, VI-60 showed a lower ulcerative potential in rats at a dose of 50 mg/kg compared to ketoprofen. In conclusion, the hybrid molecules of NSAIDs and trifluoromethyl enols are promising candidates worthy of further investigation for the treatment of inflammation, pain, and other symptoms in which cPLA2 and COX-2 play a role in their etiology.
Collapse
Affiliation(s)
- Nan Cai
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| | - Xiang Gao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| | - Li Yang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| | - Wenjing Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| | - Wuding Sun
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| | - Shuaibo Zhang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| | - Jinfeng Zhao
- Instrumental Analysis Center, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| | - Yuhan Zhou
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| |
Collapse
|
28
|
Hao Y, Chen P, Guo S, Li M, Jin X, Zhang M, Deng W, Li P, Lei W, Liang A, Qian W. Tumor-derived exosomes induce initial activation by exosomal CD19 antigen but impair the function of CD19-specific CAR T-cells via TGF-β signaling. Front Med 2024; 18:128-146. [PMID: 37870681 DOI: 10.1007/s11684-023-1010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/19/2023] [Indexed: 10/24/2023]
Abstract
Tumor-derived exosomes (TEXs) enriched in immune suppressive molecules predominantly drive T-cell dysfunction and impair antitumor immunity. Chimeric antigen receptor (CAR) T-cell therapy has emerged as a promising treatment for refractory and relapsed hematological malignancies, but whether lymphoma TEXs have the same impact on CAR T-cell remains unclear. Here, we demonstrated that B-cell lymphoma-derived exosomes induce the initial activation of CD19-CAR T-cells upon stimulation with exosomal CD19. However, lymphoma TEXs might subsequently induce CAR T-cell apoptosis and impair the tumor cytotoxicity of the cells because of the upregulated expression of the inhibitory receptors PD-1, TIM3, and LAG3 upon prolonged exposure. Similar results were observed in the CAR T-cells exposed to plasma exosomes from patients with lymphoma. More importantly, single-cell RNA sequencing revealed that CAR T-cells typically showed differentiated phenotypes and regulatory T-cell (Treg) phenotype conversion. By blocking transforming growth factor β (TGF-β)-Smad3 signaling with TGF-β inhibitor LY2109761, the negative effects of TEXs on Treg conversion, terminal differentiation, and immune checkpoint expression were rescued. Collectively, although TEXs lead to the initial activation of CAR T-cells, the effect of TEXs suppressed CAR T-cells, which can be rescued by LY2109761. A treatment regimen combining CAR T-cell therapy and TGF-β inhibitors might be a novel therapeutic strategy for refractory and relapsed B-cell lymphoma.
Collapse
Affiliation(s)
- Yuanyuan Hao
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China
- Department of Hematology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, China
| | - Panpan Chen
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Shanshan Guo
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Mengyuan Li
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Xueli Jin
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Minghuan Zhang
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Wenhai Deng
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Ping Li
- Department of Hematology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| | - Wen Lei
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Aibin Liang
- Department of Hematology, Tongji Hospital of Tongji University, Shanghai, 200065, China.
| | - Wenbin Qian
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
29
|
Lee J, Park N, Nicosia M, Park JY, Pruett SB, Seo KS. Stimulation Strength Determined by Superantigen Dose Controls Subcellular Localization of FOXP3 Isoforms and Suppressive Function of CD4+CD25+FOXP3+ T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:421-432. [PMID: 38108423 PMCID: PMC10784726 DOI: 10.4049/jimmunol.2300019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023]
Abstract
Staphylococcal superantigens induce massive activation of T cells and inflammation, leading to toxic shock syndrome. Paradoxically, increasing evidence indicates that superantigens can also induce immunosuppression by promoting regulatory T cell (Treg) development. In this study, we demonstrate that stimulation strength plays a critical role in superantigen-mediated induction of immunosuppressive human CD4+CD25+FOXP3+ T cells. Suboptimal stimulation by a low dose (1 ng/ml) of staphylococcal enterotoxin C1 (SEC1) led to de novo generation of Treg-like CD4+CD25+FOXP3+ T cells with strong suppressive activity. In contrast, CD4+CD25+ T cells induced by optimal stimulation with high-dose SEC1 (1 µg/ml) were not immunosuppressive, despite high FOXP3 expression. Signal transduction pathway analysis revealed differential activation of the PI3K signaling pathway and expression of PTEN in optimal and suboptimal stimulation with SEC1. Additionally, we identified that FOXP3 isoforms in Treg-like cells from the suboptimal condition were located in the nucleus, whereas FOXP3 in nonsuppressive cells from the optimal condition localized in cytoplasm. Sequencing analysis of FOXP3 isoform transcripts identified five isoforms, including a FOXP3 isoform lacking partial exon 3. Overexpression of FOXP3 isoforms confirmed that both an exon 2-lacking isoform and a partial exon 3-lacking isoform confer suppressive activity. Furthermore, blockade of PI3K in optimal stimulation conditions led to induction of suppressive Treg-like cells with nuclear translocation of FOXP3, suggesting that PI3K signaling impairs induction of Tregs in a SEC1 dose-dependent manner. Taken together, these data demonstrate that the strength of activation signals determined by superantigen dose regulates subcellular localization of FOXP3 isoforms, which confers suppressive functionality.
Collapse
Affiliation(s)
- Juyeun Lee
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS
| | - Nogi Park
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS
| | - Michael Nicosia
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Joo Youn Park
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS
| | - Stephen B. Pruett
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS
| | - Keun Seok Seo
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS
| |
Collapse
|
30
|
Santosh Nirmala S, Kayani K, Gliwiński M, Hu Y, Iwaszkiewicz-Grześ D, Piotrowska-Mieczkowska M, Sakowska J, Tomaszewicz M, Marín Morales JM, Lakshmi K, Marek-Trzonkowska NM, Trzonkowski P, Oo YH, Fuchs A. Beyond FOXP3: a 20-year journey unravelling human regulatory T-cell heterogeneity. Front Immunol 2024; 14:1321228. [PMID: 38283365 PMCID: PMC10811018 DOI: 10.3389/fimmu.2023.1321228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/19/2023] [Indexed: 01/30/2024] Open
Abstract
The initial idea of a distinct group of T-cells responsible for suppressing immune responses was first postulated half a century ago. However, it is only in the last three decades that we have identified what we now term regulatory T-cells (Tregs), and subsequently elucidated and crystallized our understanding of them. Human Tregs have emerged as essential to immune tolerance and the prevention of autoimmune diseases and are typically contemporaneously characterized by their CD3+CD4+CD25high CD127lowFOXP3+ phenotype. It is important to note that FOXP3+ Tregs exhibit substantial diversity in their origin, phenotypic characteristics, and function. Identifying reliable markers is crucial to the accurate identification, quantification, and assessment of Tregs in health and disease, as well as the enrichment and expansion of viable cells for adoptive cell therapy. In our comprehensive review, we address the contributions of various markers identified in the last two decades since the master transcriptional factor FOXP3 was identified in establishing and enriching purity, lineage stability, tissue homing and suppressive proficiency in CD4+ Tregs. Additionally, our review delves into recent breakthroughs in innovative Treg-based therapies, underscoring the significance of distinct markers in their therapeutic utilization. Understanding Treg subsets holds the key to effectively harnessing human Tregs for immunotherapeutic approaches.
Collapse
Affiliation(s)
| | - Kayani Kayani
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Department of Academic Surgery, Queen Elizabeth Hospital, University of Birmingham, Birmingham, United Kingdom
- Department of Renal Surgery, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Mateusz Gliwiński
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Yueyuan Hu
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| | | | | | - Justyna Sakowska
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Martyna Tomaszewicz
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Kavitha Lakshmi
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| | | | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Ye Htun Oo
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Liver Transplant and Hepatobiliary Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Birmingham Advanced Cellular Therapy Facility, University of Birmingham, Birmingham, United Kingdom
- Centre for Rare Diseases, European Reference Network - Rare Liver Centre, Birmingham, United Kingdom
| | - Anke Fuchs
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| |
Collapse
|
31
|
Di Ianni M, Liberatore C, Santoro N, Ranalli P, Guardalupi F, Corradi G, Villanova I, Di Francesco B, Lattanzio S, Passeri C, Lanuti P, Accorsi P. Cellular Strategies for Separating GvHD from GvL in Haploidentical Transplantation. Cells 2024; 13:134. [PMID: 38247827 PMCID: PMC10814899 DOI: 10.3390/cells13020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
GvHD still remains, despite the continuous improvement of transplantation platforms, a fearful complication of transplantation from allogeneic donors. Being able to separate GvHD from GvL represents the greatest challenge in the allogeneic transplant setting. This may be possible through continuous improvement of cell therapy techniques. In this review, current cell therapies are taken into consideration, which are based on the use of TCR alpha/beta depletion, CD45RA depletion, T regulatory cell enrichment, NK-cell-based immunotherapies, and suicide gene therapies in order to prevent GvHD and maximally amplify the GvL effect in the setting of haploidentical transplantation.
Collapse
Affiliation(s)
- Mauro Di Ianni
- Hematology Unit, Pescara Hospital, 65124 Pescara, Italy; (C.L.); (N.S.); (P.R.)
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, 66100 Chieti, Italy; (F.G.); (G.C.); (S.L.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
| | - Carmine Liberatore
- Hematology Unit, Pescara Hospital, 65124 Pescara, Italy; (C.L.); (N.S.); (P.R.)
| | - Nicole Santoro
- Hematology Unit, Pescara Hospital, 65124 Pescara, Italy; (C.L.); (N.S.); (P.R.)
| | - Paola Ranalli
- Hematology Unit, Pescara Hospital, 65124 Pescara, Italy; (C.L.); (N.S.); (P.R.)
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, 66100 Chieti, Italy; (F.G.); (G.C.); (S.L.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
| | - Francesco Guardalupi
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, 66100 Chieti, Italy; (F.G.); (G.C.); (S.L.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giulia Corradi
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, 66100 Chieti, Italy; (F.G.); (G.C.); (S.L.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
| | - Ida Villanova
- Blood Bank Unit, Pescara Hospital, 65124 Pescara, Italy; (I.V.); (B.D.F.); (C.P.); (P.A.)
| | - Barbara Di Francesco
- Blood Bank Unit, Pescara Hospital, 65124 Pescara, Italy; (I.V.); (B.D.F.); (C.P.); (P.A.)
| | - Stefano Lattanzio
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, 66100 Chieti, Italy; (F.G.); (G.C.); (S.L.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
| | - Cecilia Passeri
- Blood Bank Unit, Pescara Hospital, 65124 Pescara, Italy; (I.V.); (B.D.F.); (C.P.); (P.A.)
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, 66100 Chieti, Italy; (F.G.); (G.C.); (S.L.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
| | - Patrizia Accorsi
- Blood Bank Unit, Pescara Hospital, 65124 Pescara, Italy; (I.V.); (B.D.F.); (C.P.); (P.A.)
| |
Collapse
|
32
|
Kawakami R, Sakaguchi S. Regulatory T Cells for Control of Autoimmunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:67-82. [PMID: 38467973 DOI: 10.1007/978-981-99-9781-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Regulatory T (Treg) cells, which specifically express the master transcription factor FoxP3, are indispensable for the maintenance of immunological self-tolerance and homeostasis. Their functional or numerical anomalies can be causative of autoimmune and other inflammatory diseases. Recent advances in the research of the cellular and molecular basis of how Treg cells develop, exert suppression, and maintain their function have enabled devising various ways for controlling physiological and pathological immune responses by targeting Treg cells. It is now envisaged that Treg cells as a "living drug" are able to achieve antigen-specific immune suppression of various immune responses and reestablish immunological self-tolerance in the clinic.
Collapse
Affiliation(s)
- Ryoji Kawakami
- Kyoto University, Kyoto, Japan
- Osaka University, Osaka, Japan
| | | |
Collapse
|
33
|
Liu Z, Zhou J, Wu S, Chen Z, Wu S, Chen L, Zhu X, Li Z. Why Treg should be the focus of cancer immunotherapy: The latest thought. Biomed Pharmacother 2023; 168:115142. [PMID: 37806087 DOI: 10.1016/j.biopha.2023.115142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/26/2023] [Accepted: 07/07/2023] [Indexed: 10/10/2023] Open
Abstract
Regulatory T cells are a subgroup of T cells with immunomodulatory functions. Different from most cytotoxic T cells and helper T cells, they play a supporting role in the immune system. What's more, regulatory T cells often play an immunosuppressive role, which mainly plays a role in maintaining the stability of the immune system and regulating the immune response in the body. However, recent studies have shown that not only playing a role in autoimmune diseases, organ transplantation, and other aspects, regulatory T cells can also play a role in the immune escape of tumors in the body, through various mechanisms to help tumor cells escape from the demic immune system, weakening the anti-cancer effect in the body. For a better understanding of the role that regulatory T cells can play in cancer, and to be able to use regulatory T cells for tumor immunotherapy more quickly. This review focuses on the research progress of various mechanisms of regulatory T cells in the tumor environment, the related research of tumor cells acting on regulatory T cells, and the existing various therapeutic methods acting on regulatory T cells.
Collapse
Affiliation(s)
- Ziyu Liu
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Jiajun Zhou
- Kidney Department, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Shihui Wu
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Zhihong Chen
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Shuhong Wu
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Ling Chen
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou Medical College, Hangzhou, China.
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China.
| |
Collapse
|
34
|
Chin T, Lee XE, Ng PY, Lee Y, Dreesen O. The role of cellular senescence in skin aging and age-related skin pathologies. Front Physiol 2023; 14:1297637. [PMID: 38074322 PMCID: PMC10703490 DOI: 10.3389/fphys.2023.1297637] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2024] Open
Abstract
Aging is the result of a gradual functional decline at the cellular, and ultimately, organismal level, resulting in an increased risk of developing a variety of chronic illnesses, such as cardiovascular disease, stroke, cancer and diabetes. The skin is the largest organ of the human body, and the site where signs of aging are most visible. These signs include thin and dry skin, sagging, loss of elasticity, wrinkles, as well as aberrant pigmentation. The appearance of these features is accelerated by exposure to extrinsic factors such as ultraviolet (UV) radiation or pollution, as well as intrinsic factors including time, genetics, and hormonal changes. At the cellular level, aging is associated with impaired proteostasis and an accumulation of macromolecular damage, genomic instability, chromatin reorganization, telomere shortening, remodelling of the nuclear lamina, proliferation defects and premature senescence. Cellular senescence is a state of permanent growth arrest and a key hallmark of aging in many tissues. Due to their inability to proliferate, senescent cells no longer contribute to tissue repair or regeneration. Moreover, senescent cells impair tissue homeostasis, promote inflammation and extracellular matrix (ECM) degradation by secreting molecules collectively known as the "senescence-associated secretory phenotype" (SASP). Senescence can be triggered by a number of different stimuli such as telomere shortening, oncogene expression, or persistent activation of DNA damage checkpoints. As a result, these cells accumulate in aging tissues, including human skin. In this review, we focus on the role of cellular senescence during skin aging and the development of age-related skin pathologies, and discuss potential strategies to rejuvenate aged skin.
Collapse
Affiliation(s)
- Toby Chin
- Lee Kong Chiang School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Xin Er Lee
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Pei Yi Ng
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yaelim Lee
- Mechanobiology Institute, National University of Singapore, T-Lab, Singapore, Singapore
| | - Oliver Dreesen
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, T-Lab, Singapore, Singapore
| |
Collapse
|
35
|
Huang MT, Chiu CJ, Tsai CY, Lee YR, Liu WL, Chuang HL, Huang MT. Short-chain fatty acids ameliorate allergic airway inflammation via sequential induction of PMN-MDSCs and Treg cells. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2023; 2:100163. [PMID: 37781663 PMCID: PMC10509984 DOI: 10.1016/j.jacig.2023.100163] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/26/2023] [Accepted: 07/07/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Reinforcement of the immune-regulatory pathway is a feasible strategy for prevention and therapy of allergic asthma. The short-chain fatty acids (SCFAs) acetate, propionate, and butyrate are pleiotropic microbial fermentation products known to induce regulatory T (Treg) cells and exert an immune-regulatory effect. The cellular mechanism underlying SCFA immune regulation in asthma is not fully understood. OBJECTIVE We investigated the role of myeloid-derived suppressor cells (MDSCs) and Treg cells, the immune-regulatory cells of innate and adaptive origin, respectively, in SCFA-elicited protection against allergic airway inflammation. METHODS BALB/c mice were given SCFA-containing drinking water before being rendered asthmatic in response to ovalbumen. When indicated, mice were given a GR1-depleting antibody to investigate the function of MDSCs in allergic inflammation of the airways. MDSCs were sorted to examine their immunosuppressive function and interaction with T cells. RESULTS The mice receiving SCFAs developed less severe asthma that was accompanied by expansion of PMN-MDSCs and Treg cells. Mice depleted of PMN-MDSCs exhibited aggravated asthma, and the protective effect of SCFAs was abrogated after PMN-MDSC depletion. SCFAs were able to directly induce T-cell differentiation toward Treg cells. Additionally, we found that PMN-MDSCs enhanced Treg cell expansion in a cell contact-dependent manner. Whilst membrane-bound TGF-β has been shown to induce Treg cell differentiation, we found that MDSCs upregulated surface expression of TGF-β after coculture with T-cells and that MDSC-induced Treg cell differentiation was partially inhibited by TGF-β blockage. CONCLUSIONS Although previous studies revealed Treg cells as the effector mechanism of SCFA immune regulation, we found that SCFAs ameliorate allergic airway inflammation by relaying immune regulation, with sequential induction of PMN-MDSCs and Treg cells.
Collapse
Affiliation(s)
- Min-Ting Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chiao-Juno Chiu
- Graduate Institute of Clinical Medicine, School of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Yi Tsai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Yue-Ru Lee
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Liang Liu
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Hsiao-Li Chuang
- National Applied Research Laboratories, National Laboratory Animal Center, Taipei, Taiwan
| | - Miao-Tzu Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, School of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
36
|
Avery D, Morandini L, Gabriec M, Sheakley L, Peralta M, Donahue HJ, Martin RK, Olivares-Navarrete R. Contribution of αβ T cells to macrophage polarization and MSC recruitment and proliferation on titanium implants. Acta Biomater 2023; 169:605-624. [PMID: 37532133 PMCID: PMC10528595 DOI: 10.1016/j.actbio.2023.07.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
Physiochemical cues like topography and wettability can impact the inflammatory response and tissue integration after biomaterial implantation. T cells are essential for immunomodulation of innate immune cells and play an important role in the host response to biomaterial implantation. This study aimed to understand how CD4+ and CD8+ T cell subsets, members of the αβ T cell family, polarize in response to smooth, rough, or rough-hydrophilic titanium (Ti) implants and whether their presence modulates immune cell crosstalk and mesenchymal stem cell (MSC) recruitment following biomaterial implantation. Post-implantation in mice, we found that CD4+ and CD8+ T cell subsets polarized differentially in response to modified Ti surfaces. Additionally, mice lacking αβ T cells had significantly more pro-inflammatory macrophages, fewer anti-inflammatory macrophages, and reduced MSC recruitment in response to modified Ti post-implantation than αβ T cell -competent mice. Our results demonstrate that T cell activation plays a significant role during the inflammatory response to implanted biomaterials, contributing to macrophage polarization and MSC recruitment and proliferation, and the absence of αβ T cells compromises new bone formation at the implantation site. STATEMENT OF SIGNIFICANCE: T cells are essential for immunomodulation and play an important role in the host response to biomaterial implantation. Our results demonstrate that T cells actively participate during the inflammatory response to implanted biomaterials, controlling macrophage phenotype and recruitment of MSCs to the implantation site.
Collapse
Affiliation(s)
- Derek Avery
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Lais Morandini
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Melissa Gabriec
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Luke Sheakley
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Matthieu Peralta
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Henry J Donahue
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Rebecca K Martin
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
37
|
Nazki S, Reddy VRAP, Kamble N, Sadeyen JR, Iqbal M, Behboudi S, Shelton H, Broadbent AJ. CD4 +TGFβ + cells infiltrated the bursa of Fabricius following IBDV infection, and correlated with a delayed viral clearance, but did not correlate with disease severity, or immunosuppression. Front Immunol 2023; 14:1197746. [PMID: 37744374 PMCID: PMC10515216 DOI: 10.3389/fimmu.2023.1197746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Infectious Bursal Disease Virus (IBDV) causes immunosuppression in chickens. While B-cell destruction is the main cause of humoral immunosuppression, bursal T cells from IBDV-infected birds have been reported to inhibit the mitogenic response of splenocytes, indicating that some T cell subsets in the infected bursa have immunomodulatory activities. CD4+CD25+TGFβ+ cells have been recently described in chickens that have immunoregulatory properties and play a role in the pathogenesis of Marek's Disease Virus. Methods To evaluate if CD4+CD25+TGFβ+ cells infiltrated the bursa of Fabricius (BF) following IBDV infection, and influenced the outcome of infection, birds were inoculated at either 2 days or 2 weeks of age with vaccine strain (228E), classic field strain (F52/70), or PBS (mock), and bursal cell populations were quantified by flow cytometry. Results Both 228E and F52/70 led to atrophy of the BF, a significant reduction of Bu1+-B cells, and a significant increase in CD4+ and CD8α+ T cells in the BF, but only F52/70 caused suppression of immune responses to a test antigen in younger birds, and clinical signs in older birds. Virus was cleared from the BF more rapidly in younger birds than older birds. An infiltration of CD4+CD25+T cells into the BF, and elevated expression of bursal TGFβ-1+ mRNA was observed at all time points following infection, irrespective of the strain or age of the birds, but CD4+TGFβ+cells and CD4+CD25+TGFβ+ cells only appeared in the BF at 28 dpi in younger birds. In older birds, CD4+TGFβ+ cells and CD4+CD25+TGFβ+ cells were present at earlier time points, from 7dpi following 228E infection, and from 14 and 28 dpi following F52/70 infection, respectively. Discussion Our data suggest that an earlier infiltration of CD4+TGFβ+ cells into the BF correlated with a delayed clearance of virus. However, the influx of CD4+TGFβ+ cells and CD4+CD25+TGFβ+ into the BF did not correlate with increased pathogenicity, or immunosuppression.
Collapse
Affiliation(s)
- Salik Nazki
- The Pirbright Institute, Woking, United Kingdom
- Nuffield Department of Medicine, Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
| | | | | | | | - Munir Iqbal
- The Pirbright Institute, Woking, United Kingdom
| | - Shahriar Behboudi
- The Pirbright Institute, Woking, United Kingdom
- Department of Pathology and Infectious Disease, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | | | - Andrew J. Broadbent
- The Pirbright Institute, Woking, United Kingdom
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| |
Collapse
|
38
|
Wang J, Zhao X, Wan YY. Intricacies of TGF-β signaling in Treg and Th17 cell biology. Cell Mol Immunol 2023; 20:1002-1022. [PMID: 37217798 PMCID: PMC10468540 DOI: 10.1038/s41423-023-01036-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Balanced immunity is pivotal for health and homeostasis. CD4+ helper T (Th) cells are central to the balance between immune tolerance and immune rejection. Th cells adopt distinct functions to maintain tolerance and clear pathogens. Dysregulation of Th cell function often leads to maladies, including autoimmunity, inflammatory disease, cancer, and infection. Regulatory T (Treg) and Th17 cells are critical Th cell types involved in immune tolerance, homeostasis, pathogenicity, and pathogen clearance. It is therefore critical to understand how Treg and Th17 cells are regulated in health and disease. Cytokines are instrumental in directing Treg and Th17 cell function. The evolutionarily conserved TGF-β (transforming growth factor-β) cytokine superfamily is of particular interest because it is central to the biology of both Treg cells that are predominantly immunosuppressive and Th17 cells that can be proinflammatory, pathogenic, and immune regulatory. How TGF-β superfamily members and their intricate signaling pathways regulate Treg and Th17 cell function is a question that has been intensely investigated for two decades. Here, we introduce the fundamental biology of TGF-β superfamily signaling, Treg cells, and Th17 cells and discuss in detail how the TGF-β superfamily contributes to Treg and Th17 cell biology through complex yet ordered and cooperative signaling networks.
Collapse
Affiliation(s)
- Junying Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xingqi Zhao
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yisong Y Wan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
39
|
Cassano A, Chong AS, Alegre ML. Tregs in transplantation tolerance: role and therapeutic potential. FRONTIERS IN TRANSPLANTATION 2023; 2:1217065. [PMID: 38993904 PMCID: PMC11235334 DOI: 10.3389/frtra.2023.1217065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/14/2023] [Indexed: 07/13/2024]
Abstract
CD4+ Foxp3+ regulatory T cells (Tregs) are indispensable for preventing autoimmunity, and they play a role in cancer and transplantation settings by restraining immune responses. In this review, we describe evidence for the importance of Tregs in the induction versus maintenance of transplantation tolerance, discussing insights into mechanisms of Treg control of the alloimmune response. Further, we address the therapeutic potential of Tregs as a clinical intervention after transplantation, highlighting engineered CAR-Tregs as well as expansion of donor and host Tregs.
Collapse
Affiliation(s)
- Alexandra Cassano
- Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Anita S. Chong
- Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Maria-Luisa Alegre
- Department of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
40
|
Kizilbash N, Suhail N, Alzahrani AK, Basha WJ, Soliman M. Natural regulatory T cells increase significantly in pediatric patients with parasitic infections: Flow cytometry study. INDIAN J PATHOL MICR 2023; 66:556-559. [PMID: 37530338 DOI: 10.4103/ijpm.ijpm_1262_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Background The most accepted definition of regulatory T cells (Tregs) relies on the expression of several biomarkers, including CD4, CD25, and transcription factor, Foxp3. The Tregs maintain tolerance to self-antigens and prevent autoimmune diseases. Aim The purpose of this study was to determine the difference in natural Treg levels in Entamoeba histolytica, Schistosoma mansoni, Giardia lamblia, Enterobius vermicularis, and Hymenolepis nana infected patients. Setting and Design Fifty-one pediatric subjects (29 males and 22 females) were recruited from a tertiary care hospital, and were divided into infected and non-infected (control) groups. The mean age of the subjects was 8.7 years. Materials and Methods Blood samples were collected from infected and non-infected groups, and change in the level of Tregs in these subjects was investigated by flow cytometry. Statistical Analysis Used The statistical analysis of data was performed by SPSS software. Quantitative data used in this study included mean and standard deviation. Data from the two groups were compared by the Student's t-test. The age of the patient and infection status were used for multivariate logistic regression analysis. Odds ratios (ORs) were estimated within a 95% confidence interval, and a P value of <0.05 was considered significant. Results and Conclusions The levels of natural regulatory T cells, indicated by the biomarkers, CD4+, CD25+, and Foxp3+, increase significantly in patients infected by Entamoeba histolytica, Schistosoma mansoni, Giardia lamblia, Enterobius vermicularis, and Hymenolepis nana as compared to controls. They also increase in cases of mixed infection as compared to infection by a single parasite.
Collapse
Affiliation(s)
- Nadeem Kizilbash
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| | - Nida Suhail
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| | - A Khuzaim Alzahrani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| | - W Jamith Basha
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| | - Mohamed Soliman
- Department of Microbiology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
41
|
Mohanan MM, Shetty R, Bang-Berthelsen CH, Mudnakudu-Nagaraju KK. Role of Mesenchymal Stem Cells and Short Chain Fatty Acids in Allergy: A Prophylactic Therapy for Future. Immunol Lett 2023:S0165-2478(23)00096-2. [PMID: 37271295 DOI: 10.1016/j.imlet.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
Allergic diseases are broadly classified as IgE-mediated type-I hypersensitivity immune reactions due to exposure to typically harmless substances known as allergens. These allergenic substances activate antigen presenting cells, which further triggers T-helper 2 cells immune response and class switch B-cells for synthesis of allergen-specific IgE, followed by classical activation of inflammatory mast cells and eosinophils, which releases preformed mediators involved in the cascade of allergic symptoms. However, the role of Mesenchymal stem cells (MSCs) in tissue repair ability and immunomodulation, makes them as an appropriate tool for treatment of various allergic diseases. Several clinical and preclinical studies show that MSCs could be a promising alternative therapy to allergic diseases. Further, short chain fatty acids, produced from gut microbes by breaking down complex fibre-rich foods, acts through G-coupled receptor mediated activation of MSCs, and their role as key players involved in amelioration of allergic inflammation needs further investigation. Therefore, there is a need for understating the role of SCFAs on the activation of MSCs, which might shed light on the development of new therapeutic regime in allergy treatment. In summary, this review focuses on the underlying of therapeutic role of MSCs in different allergic diseases and the prospects of SCFA and MSC therapy.
Collapse
Affiliation(s)
- Mrudula M Mohanan
- Department of Biotechnology & Bioinformatics, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
| | - Radhakrishna Shetty
- Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, 2800, Kongens, Lyngby, Denmark
| | - Claus Heiner Bang-Berthelsen
- Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, 2800, Kongens, Lyngby, Denmark.
| | - Kiran Kumar Mudnakudu-Nagaraju
- Department of Biotechnology & Bioinformatics, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India..
| |
Collapse
|
42
|
Burlingham WJ, Jankowska-Gan E, Fechner JH, Little CJ, Wang J, Hong S, Molla M, Sullivan JA, Foley DP. Extracellular Vesicle-associated GARP/TGFβ:LAP Mediates "Infectious" Allo-tolerance. Transplant Direct 2023; 9:e1475. [PMID: 37250483 PMCID: PMC10212611 DOI: 10.1097/txd.0000000000001475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 05/31/2023] Open
Abstract
Here we test the hypothesis that, like CD81-associated "latent" IL35, the transforming growth factor (TGF)β:latency-associated peptide (LAP)/glycoprotein A repetitions predominant (GARP) complex was also tethered to small extracellular vesicles (sEVs), aka exosomes, produced by lymphocytes from allo-tolerized mice. Once these sEVs are taken up by conventional T cells, we also test whether TGFβ could be activated suppressing the local immune response. Methods C57BL/6 mice were tolerized by i.p. injection of CBA/J splenocytes followed by anti-CD40L/CD154 antibody treatment on days 0, 2, and 4. On day 35, spleen and lymph nodes were extracted and isolated lymphocytes were restimulated with sonicates of CBA splenocytes overnight. sEVs were extracted from culture supernatants by ultracentrifugation (100 000g) and assayed for (a) the presence of TGFβ:LAP associated with tetraspanins CD81,CD63, and CD9 by enzyme-linked immunosorbent assay; (b) GARP, critical to membrane association of TGFβ:LAP and to activation from its latent form, as well as various TGFβ receptors; and (c) TGFβ-dependent function in 1° and 2° immunosuppression of tetanus toxoid-immunized B6 splenocytes using trans-vivo delayed-type hypersensitivity assay. Results After tolerization, CBA-restimulated lymphocytes secreted GARP/TGFβ:LAP-coated extracellular vesicles. Like IL35 subunits, but unlike IL10, which was absent from ultracentrifuge pellets, GARP/TGFβ:LAP was mainly associated with CD81+ exosomes. sEV-bound GARP/TGFβ:LAP became active in both 1° and 2° immunosuppression, the latter requiring sEV uptake by "bystander" T cells and reexpression on the cell surface. Conclusions Like other immune-suppressive components of the Treg exosome, which are produced in a latent form, exosomal GARP/TGFβ:LAP produced by allo-specific regulatory T cells undergoes either immediate activation (1° suppression) or internalization by naive T cells, followed by surface reexpression and subsequent activation (2°), to become suppressive. Our results imply a membrane-associated form of TGFβ:LAP that, like exosomal IL35, can target "bystander" lymphocytes. This new finding implicates exosomal TGFβ:LAP along with Treg-derived GARP as part of the infectious tolerance network.
Collapse
Affiliation(s)
- William J. Burlingham
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Ewa Jankowska-Gan
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - John H. Fechner
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Christopher J. Little
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Jianxin Wang
- Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI
| | - Seungpyo Hong
- Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI
| | - Miraf Molla
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Jeremy A. Sullivan
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - David P. Foley
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
43
|
Wang M, Thomson AW, Yu F, Hazra R, Junagade A, Hu X. Regulatory T lymphocytes as a therapy for ischemic stroke. Semin Immunopathol 2023; 45:329-346. [PMID: 36469056 PMCID: PMC10239790 DOI: 10.1007/s00281-022-00975-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/17/2022] [Indexed: 12/09/2022]
Abstract
Unrestrained excessive inflammatory responses exacerbate ischemic brain injury and impede post-stroke brain recovery. CD4+CD25+Foxp3+ regulatory T (Treg) cells play important immunosuppressive roles to curtail inflammatory responses and regain immune homeostasis after stroke. Accumulating evidence confirms that Treg cells are neuroprotective at the acute stage after stroke and promote brain repair at the chronic phases. The beneficial effects of Treg cells are mediated by diverse mechanisms involving cell-cell interactions and soluble factor release. Multiple types of cells, including both immune cells and non-immune CNS cells, have been identified to be cellular targets of Treg cells. In this review, we summarize recent findings regarding the function of Treg cells in ischemic stroke and the underlying cellular and molecular mechanisms. The protective and reparative properties of Treg cells endorse them as good candidates for immune therapy. Strategies that boost the numbers and functions of Treg cells have been actively developing in the fields of transplantation and autoimmune diseases. We discuss the approaches for Treg cell expansion that have been tested in stroke models. The application of these approaches to stroke patients may bring new hope for stroke treatments.
Collapse
Affiliation(s)
- Miao Wang
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST, Pittsburgh, PA, 15213, USA
| | - Angus W Thomson
- Department of Surgery and Department of Immunology, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Fang Yu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST, Pittsburgh, PA, 15213, USA
| | - Rimi Hazra
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Aditi Junagade
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST, Pittsburgh, PA, 15213, USA
| | - Xiaoming Hu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA.
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
44
|
Fiyouzi T, Pelaez-Prestel HF, Reyes-Manzanas R, Lafuente EM, Reche PA. Enhancing Regulatory T Cells to Treat Inflammatory and Autoimmune Diseases. Int J Mol Sci 2023; 24:ijms24097797. [PMID: 37175505 PMCID: PMC10177847 DOI: 10.3390/ijms24097797] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Regulatory T cells (Tregs) control immune responses and are essential to maintain immune homeostasis and self-tolerance. Hence, it is no coincidence that autoimmune and chronic inflammatory disorders are associated with defects in Tregs. These diseases have currently no cure and are treated with palliative drugs such as immunosuppressant and immunomodulatory agents. Thereby, there is a great interest in developing medical interventions against these diseases based on enhancing Treg cell function and numbers. Here, we give an overview of Treg cell ontogeny and function, paying particular attention to mucosal Tregs. We review some notable approaches to enhance immunomodulation by Tregs with therapeutic purposes including adoptive Treg cell transfer therapy and discuss relevant clinical trials for inflammatory bowel disease. We next introduce ways to expand mucosal Tregs in vivo using microbiota and dietary products that have been the focus of clinical trials in various autoimmune and chronic-inflammatory diseases.
Collapse
Affiliation(s)
- Tara Fiyouzi
- Laboratory of Immunomedicine, Faculty of Medicine, University Complutense of Madrid, Ave Complutense S/N, 28040 Madrid, Spain
| | - Hector F Pelaez-Prestel
- Laboratory of Immunomedicine, Faculty of Medicine, University Complutense of Madrid, Ave Complutense S/N, 28040 Madrid, Spain
| | - Raquel Reyes-Manzanas
- Laboratory of Immunomedicine, Faculty of Medicine, University Complutense of Madrid, Ave Complutense S/N, 28040 Madrid, Spain
| | - Esther M Lafuente
- Laboratory of Immunomedicine, Faculty of Medicine, University Complutense of Madrid, Ave Complutense S/N, 28040 Madrid, Spain
| | - Pedro A Reche
- Laboratory of Immunomedicine, Faculty of Medicine, University Complutense of Madrid, Ave Complutense S/N, 28040 Madrid, Spain
| |
Collapse
|
45
|
Zala A, Thomas R. Antigen-specific immunotherapy to restore antigen-specific tolerance in Type 1 diabetes and Graves' disease. Clin Exp Immunol 2023; 211:164-175. [PMID: 36545825 PMCID: PMC10019129 DOI: 10.1093/cei/uxac115] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/23/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Type 1 diabetes and Graves' disease are chronic autoimmune conditions, characterized by a dysregulated immune response. In Type 1 diabetes, there is beta cell destruction and subsequent insulin deficiency whereas in Graves' disease, there is unregulated excessive thyroid hormone production. Both diseases result in significant psychosocial, physiological, and emotional burden. There are associated risks of diabetic ketoacidosis and hypoglycaemia in Type 1 diabetes and risks of thyrotoxicosis and orbitopathy in Graves' disease. Advances in the understanding of the immunopathogenesis and response to immunotherapy in Type 1 diabetes and Graves' disease have facilitated the introduction of targeted therapies to induce self-tolerance, and subsequently, the potential to induce long-term remission if effective. We explore current research surrounding the use of antigen-specific immunotherapies, with a focus on human studies, in Type 1 diabetes and Graves' disease including protein-based, peptide-based, dendritic-cell-based, and nanoparticle-based immunotherapies, including discussion of factors to be considered when translating immunotherapies to clinical practice.
Collapse
Affiliation(s)
- Aakansha Zala
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Ranjeny Thomas
- Correspondence: Ranjeny Thomas, Frazer Institute, The University of Queensland.
| |
Collapse
|
46
|
McCallion O, Bilici M, Hester J, Issa F. Regulatory T-cell therapy approaches. Clin Exp Immunol 2023; 211:96-107. [PMID: 35960852 PMCID: PMC10019137 DOI: 10.1093/cei/uxac078] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Regulatory T cells (Tregs) have enormous therapeutic potential to treat a variety of immunopathologies characterized by aberrant immune activation. Adoptive transfer of ex vivo expanded autologous Tregs continues to progress through mid- to late-phase clinical trials in several disease spaces and has generated promising preliminary safety and efficacy signals to date. However, the practicalities of this strategy outside of the clinical trial setting remain challenging. Here, we review the current landscape of regulatory T-cell therapy, considering emergent approaches and technologies presenting novel ways to engage Tregs, and reflect on the progress necessary to deliver their therapeutic potential to patients.
Collapse
Affiliation(s)
- Oliver McCallion
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Merve Bilici
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Joanna Hester
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Fadi Issa
- Correspondence. Fadi Issa, Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK.
| |
Collapse
|
47
|
Steiner R, Pilat N. The potential for Treg-enhancing therapies in transplantation. Clin Exp Immunol 2023; 211:122-137. [PMID: 36562079 PMCID: PMC10019131 DOI: 10.1093/cei/uxac118] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/21/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
Since the discovery of regulatory T cells (Tregs) as crucial regulators of immune tolerance against self-antigens, these cells have become a promising tool for the induction of donor-specific tolerance in transplantation medicine. The therapeutic potential of increasing in vivoTreg numbers for a favorable Treg to Teff cell ratio has already been demonstrated in several sophisticated pre-clinical models and clinical pilot trials. In addition to improving cell quantity, enhancing Treg function utilizing engineering techniques led to encouraging results in models of autoimmunity and transplantation. Here we aim to discuss the most promising approaches for Treg-enhancing therapies, starting with adoptive transfer approaches and ex vivoexpansion cultures (polyclonal vs. antigen specific), followed by selective in vivostimulation methods. Furthermore, we address next generation concepts for Treg function enhancement (CARs, TRUCKs, BARs) as well as the advantages and caveats inherit to each approach. Finally, this review will discuss the clinical experience with Treg therapy in ongoing and already published clinical trials; however, data on long-term results and efficacy are still very limited and many questions that might complicate clinical translation remain open. Here, we discuss the hurdles for clinical translation and elaborate on current Treg-based therapeutic options as well as their potencies for improving long-term graft survival in transplantation.
Collapse
Affiliation(s)
- Romy Steiner
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Nina Pilat
- Correspondence: Nina Pilat, PhD, Department of Cardiac Surgery, Center for Biomedical Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
48
|
Igney FH, Ebenhoch R, Schiele F, Nar H. Anti-GARP Antibodies Inhibit Release of TGF-β by Regulatory T Cells via Different Modes of Action, but Do Not Influence Their Function In Vitro. Immunohorizons 2023; 7:200-212. [PMID: 36928178 PMCID: PMC10563435 DOI: 10.4049/immunohorizons.2200072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 03/18/2023] Open
Abstract
Regulatory T cells (Treg) play a critical role in controlling immune responses in diseases such as cancer or autoimmunity. Activated Treg express the membrane protein GARP (LRRC32) in complex with the latent form of the immunosuppressive cytokine TGF-β (L-TGF-β). In this study, we confirmed that active TGF-β was generated from its latent form in an integrin-dependent manner and induced TGF-β receptor signaling in activated human Treg. We studied a series of Abs targeting the L-TGF-β/GARP complex with distinct binding modes. We found that TGF-β receptor signaling could be inhibited by anti-TGF-β and by some, but not all, Abs against the L-TGF-β/GARP complex. Cryogenic electron microscopy structures of three L-TGF-β/GARP complex-targeting Abs revealed their distinct epitopes and allowed us to elucidate how they achieve blockade of TGF-β activation. Three different modes of action were identified, including a novel unusual mechanism of a GARP-binding Ab. However, blockade of GARP or TGF-β by Abs did not influence the suppressive activity of human Treg in vitro. We were also not able to confirm a prominent role of GARP in other functions of human Treg, such as FOXP3 induction and Treg stability. These data show that the GARP/TGF-β axis can be targeted pharmacologically in different ways, but further studies are necessary to understand its complexity and to unleash its therapeutic potential.
Collapse
Affiliation(s)
- Frederik H. Igney
- Discovery Research, Cancer Immunology & Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Rebecca Ebenhoch
- Discovery Research, Structural Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Felix Schiele
- Discovery Research, Biotherapeutics Discovery, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Herbert Nar
- Discovery Research, Structural Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
49
|
Greca E, Kacimi O, Poudel S, Wireko AA, Abdul-Rahman T, Michel G, Marzban S, Michel J. Immunomodulatory effect of different statin regimens on regulatory T-cells in patients with acute coronary syndrome: a systematic review and network meta-analysis of randomized clinical trials. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2023; 9:122-128. [PMID: 36047962 DOI: 10.1093/ehjcvp/pvac047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/29/2022] [Accepted: 08/17/2022] [Indexed: 02/04/2023]
Abstract
AIMS We conducted a network meta-analysis (NMA) to determine the effects of low-dose (20 mg/day or less) conventional statin therapy (CST) and high-dose (40 mg/day or more) intensive statin therapy (IST) on the frequency of Tregs and their associated cytokines (IFN-γ, IL-10, TGF-β) compared with control. METHODS AND RESULTS PubMed, Cochrane Library, and EMBASE databases were searched for randomized clinical trials (RCTs) to identify relevant articles published until June 2021. We pooled data extracted from the included studies using the standardized mean difference (SMD). A random-effects model was used to conduct this NMA. Heterogeneity was evaluated using Cochran's Q test and the I2 test. The Grading of Recommendations, Assessment, Development and Evaluations (GRADE) was used to assess the quality of the study. Data analysis was conducted using R software.A total of 505 patients were enrolled in the five RCTs. NMA indicated a significant increase in Treg frequency in the CST group compared with the control group (SMD 1.77; 95% CI: 0.77-2.76; P = 0.0005) and a larger increase in the Treg frequency associated with the IST group compared with the control group (SMD 2.12; 95% CI: 1.15-3.10; P-value < 0.0001). However, there was significant heterogeneity and inconsistency among the included studies [τ2 = 0.6096; τ = 0.7808; I2 = 91.2% (80.5%; 96.0%)]. When compared with control, both CST and IST increased the levels of secreted IL-10 (SMD 2.69; 95% CI: 2.07-3.31; P-value < 0.0001 and SMD 2.14; 95% CI: 1.76-2.52; P-value < 0.0001). Compared with the control group, CST was associated with increased levels of TGF-β (SMD 3.83; 95% CI: 0.63-7.0; P-value = 0.0189); this association was not seen in the IST group. IFN-γ levels decreased significantly in both the IST and CST groups (SMD -1.52; 95% CI: -1.94-1.10; P-value < 0.0001 and SMD -2.34; 95% CI: -2.73-1.95; P-value < 0.0001, respectively). CONCLUSION The findings of our study indicated that both high- and low-dose statin groups increased Treg frequency compared with the control group. IST demonstrated greater benefits than CST. Furthermore, statin therapy increased IL-10 and TGF-β levels and decreased IFN-γ levels. Overall, these results have significant implications for patients with ACS who would benefit from Treg-induced immunomodulatory balance.
Collapse
Affiliation(s)
- Elona Greca
- Division of Research and Academic Affairs, Larkin Community Hospital, Miami, FL 5996, USA
| | - Ous Kacimi
- Faculty of Medicine, University of Tlemcen, Tlemcen, Algeria
| | - Sujan Poudel
- Division of Research and Academic Affairs, Larkin Community Hospital, Miami, FL 5996, USA
| | | | | | - George Michel
- Program Director of Internal Medicine, Larkin Community Hospital, Miami, FL 5996, USA
| | - Sima Marzban
- Division of Research and Academic Affairs, Larkin Community Hospital, Miami, FL 5996, USA
| | - Jack Michel
- Founder/Larkin Health System, Larkin Community Hospital, Miami, FL 5996, USA
| |
Collapse
|
50
|
Guan T, Zhou X, Zhou W, Lin H. Regulatory T cell and macrophage crosstalk in acute lung injury: future perspectives. Cell Death Dis 2023; 9:9. [PMID: 36646692 PMCID: PMC9841501 DOI: 10.1038/s41420-023-01310-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/18/2023]
Abstract
Acute lung injury (ALI) describes the injury to endothelial cells in the lungs and associated vessels due to various factors. Furthermore, ALI accompanied by inflammation and thrombosis has been reported as a common complication of SARS-COV-2 infection. It is widely accepted that inflammation and the cytokine storm are main causes of ALI. Two classical anti-inflammatory cell types, regulatory T cells (Tregs) and M2 macrophages, are theoretically capable of resisting uncontrolled inflammation. Recent studies have indicated possible crosstalk between Tregs and macrophages involving their mutual activation. In this review, we discuss the current findings related to ALI pathogenesis and the role of Tregs and macrophages. In particular, we review the molecular mechanisms underlying the crosstalk between Tregs and macrophages in ALI pathogenesis. Understanding the role of Tregs and macrophages will provide the potential targets for treating ALI.
Collapse
Affiliation(s)
- Tianshu Guan
- grid.260463.50000 0001 2182 8825Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, 330006 Nanchang, Jiangxi China ,grid.260463.50000 0001 2182 8825Queen Mary university, Nanchang University, 330006 Nanchang, Jiangxi Province China
| | - Xv Zhou
- grid.260463.50000 0001 2182 8825Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, 330006 Nanchang, Jiangxi China ,grid.260463.50000 0001 2182 8825Queen Mary university, Nanchang University, 330006 Nanchang, Jiangxi Province China
| | - Wenwen Zhou
- grid.260463.50000 0001 2182 8825Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, 330006 Nanchang, Jiangxi China
| | - Hui Lin
- grid.260463.50000 0001 2182 8825Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, 330006 Nanchang, Jiangxi China
| |
Collapse
|