1
|
Ji P, Li Y, Wang Z, Jia S, Jiang X, Chen H, Wang Q. Advances in precision gene editing for liver fibrosis: From technology to therapeutic applications. Biomed Pharmacother 2024; 177:117003. [PMID: 38908207 DOI: 10.1016/j.biopha.2024.117003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
This review presents a comprehensive exploration of gene editing technologies and their potential applications in the treatment of liver fibrosis, a condition often leading to serious complications such as liver cancer. Through an in-depth review of current literature and critical analysis, the study delves into the intricate signaling pathways underlying liver fibrosis development and examines the promising role of gene editing in alleviating this disease burden. Gene editing technologies offer precise, efficient, and reproducible tools for manipulating genetic material, holding significant promise for basic research and clinical practice. The manuscript highlights the challenges and potential risks associated with gene editing technology. By synthesizing existing knowledge and exploring future perspectives, this study aims to provide valuable insights into the potential of precision gene editing to combat liver fibrosis and its associated complications, ultimately contributing to advances in liver fibrosis research and therapy.
Collapse
Affiliation(s)
- Peng Ji
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, PR China; Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310000, PR China
| | - Yan Li
- Department of International Medicine, The Second Hospital of Dalian Medical University, Dalian 116000, PR China
| | - Zihan Wang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, PR China
| | - Siyu Jia
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, PR China
| | - Xinyi Jiang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, PR China
| | - Hui Chen
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, PR China
| | - Qun Wang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, PR China.
| |
Collapse
|
2
|
Chang J, Huang C, Li S, Jiang X, Chang H, Li M. Research Progress Regarding the Effect and Mechanism of Dietary Polyphenols in Liver Fibrosis. Molecules 2023; 29:127. [PMID: 38202710 PMCID: PMC10779665 DOI: 10.3390/molecules29010127] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The development of liver fibrosis is a result of chronic liver injuries may progress to liver cirrhosis and liver cancer. In recent years, liver fibrosis has become a major global problem, and the incidence rate and mortality are increasing year by year. However, there are currently no approved treatments. Research on anti-liver-fibrosis drugs is a top priority. Dietary polyphenols, such as plant secondary metabolites, have remarkable abilities to reduce lipid metabolism, insulin resistance and inflammation, and are attracting more and more attention as potential drugs for the treatment of liver diseases. Gradually, dietary polyphenols are becoming the focus for providing an improvement in the treatment of liver fibrosis. The impact of dietary polyphenols on the composition of intestinal microbiota and the subsequent production of intestinal microbial metabolites has been observed to indirectly modulate signaling pathways in the liver, thereby exerting regulatory effects on liver disease. In conclusion, there is evidence that dietary polyphenols can be therapeutically useful in preventing and treating liver fibrosis, and we highlight new perspectives and key questions for future drug development.
Collapse
Affiliation(s)
- Jiayin Chang
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
| | - Congying Huang
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
| | - Siqi Li
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
| | - Xiaolei Jiang
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
| | - Hong Chang
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
| | - Minhui Li
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
- Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot 010020, China
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou 014040, China
| |
Collapse
|
3
|
Liao YJ, Lee CY, Twu YC, Suk FM, Lai TC, Chang YC, Lai YC, Yuan JW, Jhuang HM, Jian HR, Huang LC, Chen KP, Hsu MH. Isolation and Biological Evaluation of Alfa-Mangostin as Potential Therapeutic Agents against Liver Fibrosis. Bioengineering (Basel) 2023; 10:1075. [PMID: 37760177 PMCID: PMC10526009 DOI: 10.3390/bioengineering10091075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
The increased proliferation and activation of hepatic stellate cells (HSCs) are associated with liver fibrosis development. To date, there are no FDA-approved drugs for the treatment of liver cirrhosis. Augmentation of HSCs apoptosis is one of the resolutions for liver fibrosis. In this study, we extracted α-mangostin (1,3,6-trihydroxy-7-methoxy-2,8-bis(3-methyl-2-butenyl)-9H-xanthen-9-one) from the fruit waste components of mangosteen pericarp. The isolated α-mangostin structure was determined and characterized with nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS) and compared with those known compounds. The intracellular signaling pathway activities of α-mangostin on Transforming growth factors-beta 1 (TGF-β1) or Platelet-derived growth factor subunit B (PDGF-BB) induced HSCs activation and were analyzed via Western blot and Real-time Quantitative Polymerase Chain Reaction (Q-PCR). α-Mangostin-induced mitochondrial dysfunction and apoptosis in HSCs were measured by seahorse assay and caspase-dependent cleavage. The in vivo anti-fibrotic effect of α-mangostin was assessed by carbon tetrachloride (CCl4) treatment mouse model. The data showed that α-mangostin treatment inhibited TGF-β1-induced Smad2/3 phosphorylation and alpha-smooth muscle actin (α-SMA) expression in HSCs in a dose-dependent manner. Regarding the PDGF-BB-induced HSCs proliferation signaling pathways, α-mangostin pretreatment suppressed the phosphorylation of extracellular-signal-regulated kinase (ERK) and p38. The activation of caspase-dependent apoptosis and dysfunction of mitochondrial respiration (such as oxygen consumption rate, ATP production, and maximal respiratory capacity) were observed in α-mangostin-treated HSCs. The CCl4-induced liver fibrosis mouse model showed that the administration of α-mangostin significantly decreased the expression of the fibrosis markers (α-SMA, collagen-a2 (col1a2), desmin and matrix metalloproteinase-2 (MMP-2)) as well as attenuated hepatic collagen deposition and liver damage. In conclusion, this study demonstrates that α-mangostin attenuates the progression of liver fibrosis through inhibiting the proliferation of HSCs and triggering apoptosis signals. Thus, α-mangostin may be used as a potential novel therapeutic agent against liver fibrosis.
Collapse
Affiliation(s)
- Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (Y.-J.L.)
| | - Chun-Ya Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (Y.-J.L.)
| | - Yuh-Ching Twu
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Fat-Moon Suk
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Tzu-Chieh Lai
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| | - Ya-Ching Chang
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| | - Yi-Cheng Lai
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| | - Jing-Wei Yuan
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| | - Hong-Ming Jhuang
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| | - Huei-Ruei Jian
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| | - Li-Chia Huang
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| | - Kuang-Po Chen
- Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan
| | - Ming-Hua Hsu
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| |
Collapse
|
4
|
Choi D, Kang W, Park S, Son B, Park T. Identification of Glucocorticoid Receptor Target Genes That Potentially Inhibit Collagen Synthesis in Human Dermal Fibroblasts. Biomolecules 2023; 13:978. [PMID: 37371558 DOI: 10.3390/biom13060978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Over several decades, excess glucocorticoids (GCs) of endogenous or exogenous origin have been recognized to significantly inhibit collagen synthesis and accelerate skin aging. However, little is known regarding their molecular mechanisms. We hypothesized that the action of GCs on collagen production is at least partially through the glucocorticoid receptor (GR) and its target genes, and therefore aimed to identify GR target genes that potentially inhibit collagen synthesis in Hs68 human dermal fibroblasts. We first confirmed that dexamethasone, a synthetic GC, induced canonical GR signaling in dermal fibroblasts. We then collected 108 candidates for GR target genes reported in previous studies on GR target genes and verified that 17 genes were transcriptionally upregulated in dexamethasone-treated dermal fibroblasts. Subsequently, by individual knockdown of the 17 genes, we identified that six genes, AT-rich interaction domain 5B, FK506 binding protein 5, lysyl oxidase, methylenetetrahydrofolate dehydrogenase (NADP + dependent) 2, zinc finger protein 36, and zinc fingers and homeoboxes 3, are potentially involved in GC-mediated inhibition of collagen synthesis. The present study sheds light on the molecular mechanisms of GC-mediated skin aging and provides a basis for further research on the biological characteristics of individual GR target genes.
Collapse
Affiliation(s)
- Dabin Choi
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Wesuk Kang
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Soyoon Park
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Bomin Son
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Taesun Park
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| |
Collapse
|
5
|
Park J, An G, Lim W, Song G. Aclonifen induces bovine mammary gland epithelial cell death by disrupting calcium homeostasis and inducing ROS production. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 181:105011. [PMID: 35082034 DOI: 10.1016/j.pestbp.2021.105011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/01/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Herbicides play key roles in agriculture. Aclonifen is a diphenyl ether herbicide that is widely used for sunflower, potato, corn, and wheat crops. Since it has a long half-life, it is considered persistent and can easily accumulate in the environment. Therefore, livestock and humans are at risk of exposure to aclonifen. Importantly, aclonifen is toxic to several mammals such as rats, mice, and dogs. However, the toxicity of aclonifen in cattle remains unclear. Therefore, we sought to investigate its toxicity in cattle using bovine mammary gland epithelial cells (MAC-T). We found that aclonifen induces sub-G1 phase arrest and represses MAC-T proliferation. In addition, aclonifen caused mitochondrial dysfunction, as evidenced by excessive ROS production and loss of mitochondrial membrane potential. Furthermore, cytosolic and mitochondrial calcium homeostases were disrupted after aclonifen treatment. Moreover, aclonifen treatment caused alterations in the PI3K/AKT and MAPK signaling pathways, which are involved in the regulation of cell survival and death. In conclusion, aclonifen causes MAC-T cell death through mitochondrial dysfunction and the collapse of calcium homeostasis.
Collapse
Affiliation(s)
- Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
6
|
Li BL, Yuan J, Wu JW. A Review on the Phytochemical and Pharmacological Properties of Rosa laevigata: A Medicinal and Edible Plant. Chem Pharm Bull (Tokyo) 2021; 69:421-431. [PMID: 33952852 DOI: 10.1248/cpb.c20-00743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Rosa laevigata Michx., a medicinal and edible plant in China, has exerted a variety of medicinal values and health benefits. This present review aims to achieve a comprehensive and up-to-date investigation in the phytochemistry and pharmacology of R. laevigata. According to these findings in the literature, approximately 123 chemical ingredients covering triterpenoids, flavonoids, tannis, lignans and polysaccharides, have been characterized from various parts of this species. Among these isolates, 77 triterpenoids have been isolated and thus regarded as the primary and characteristic substance. Based on the chemical structures, most of the obtained triterpenoids can be classified into polyhydroxy triterpenoids and readily divided into four categories: ursane-type, oleanane-type, lupinane-type, as well as seco-triterpenoids. The crude extracts and the purified compounds have demonstrated various pharmacological effects in vitro and in vivo, such as antioxidant activity, immunomodulatory effect, anti-inflammatory effect, liver protection, kidney protection, cardiovascular protection, neuroprotective effect and improvement of diabetic cataract. Noticeably, these pharmacological results of R. laevigata provide evidences for its traditional uses. In addition, these different chemical ingredients existing in the title plant may have synergistic effects. In conclusion, the chemical profiles, including ingredients and structures, together with the modern pharmacological properties have been adequately summarized. These evidences have revealed this plant to be a valuable source for therapeutic foodstuff and more attention should be paid to a better utilization of this plant.
Collapse
Affiliation(s)
- Bai-Lin Li
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine
| | - Jie Yuan
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine
| | - Jie-Wei Wu
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine
| |
Collapse
|
7
|
Wang T, Wagner A, Gehwolf R, Yan W, Passini FS, Thien C, Weissenbacher N, Lin Z, Lehner C, Teng H, Wittner C, Zheng Q, Dai J, Ni M, Wang A, Papadimitriou J, Leys T, Tuan RS, Senck S, Snedeker JG, Tempfer H, Jiang Q, Zheng MH, Traweger A. Load-induced regulation of tendon homeostasis by SPARC, a genetic predisposition factor for tendon and ligament injuries. Sci Transl Med 2021; 13:13/582/eabe5738. [PMID: 33627488 DOI: 10.1126/scitranslmed.abe5738] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/03/2021] [Indexed: 01/18/2023]
Abstract
Tendons and tendon interfaces have a very limited regenerative capacity, rendering their injuries clinically challenging to resolve. Tendons sense muscle-mediated load; however, our knowledge on how loading affects tendon structure and functional adaption remains fragmentary. Here, we provide evidence that the matricellular protein secreted protein acidic and rich in cysteine (SPARC) is critically involved in the mechanobiology of tendons and is required for tissue maturation, homeostasis, and enthesis development. We show that tendon loading at the early postnatal stage leads to tissue hypotrophy and impaired maturation of Achilles tendon enthesis in Sparc -/- mice. Treadmill training revealed a higher prevalence of spontaneous tendon ruptures and a net catabolic adaptation in Sparc -/- mice. Tendon hypoplasia was attenuated in Sparc -/- mice in response to muscle unloading with botulinum toxin A. In vitro culture of Sparc -/- three-dimensional tendon constructs showed load-dependent impairment of ribosomal S6 kinase activation, resulting in reduced type I collagen synthesis. Further, functional calcium imaging revealed that lower stresses were required to trigger mechanically induced responses in Sparc -/- tendon fascicles. To underscore the clinical relevance of the findings, we further demonstrate that a missense mutation (p.Cys130Gln) in the follistatin-like domain of SPARC, which causes impaired protein secretion and type I collagen fibrillogenesis, is associated with tendon and ligament injuries in patients. Together, our results demonstrate that SPARC is a key extracellular matrix protein essential for load-induced tendon tissue maturation and homeostasis.
Collapse
Affiliation(s)
- Tao Wang
- Centre for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, Western Australia 6009,Australia.,Division of Orthopaedic Surgery, Department of Surgery, Guangdong Provincial People'sHospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510000, China
| | - Andrea Wagner
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University-Spinal Cord Injury and Tissue Regeneration Center Salzburg, 5020 Salzburg, Austria.,Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Renate Gehwolf
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University-Spinal Cord Injury and Tissue Regeneration Center Salzburg, 5020 Salzburg, Austria.,Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Wenjin Yan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Fabian S Passini
- University Hospital Balgrist, University of Zurich, Zürich, Switzerland.,Institute for Biomechanics, ETH Zurich, 8008 Zürich, Switzerland
| | - Christine Thien
- Centre for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, Western Australia 6009,Australia
| | - Nadja Weissenbacher
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University-Spinal Cord Injury and Tissue Regeneration Center Salzburg, 5020 Salzburg, Austria.,Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Zhen Lin
- Centre for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, Western Australia 6009,Australia.,Division of Orthopaedic Surgery, Department of Surgery, Guangdong Provincial People'sHospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510000, China
| | - Christine Lehner
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University-Spinal Cord Injury and Tissue Regeneration Center Salzburg, 5020 Salzburg, Austria.,Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Huajian Teng
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210008, China
| | - Claudia Wittner
- Computed Tomography Research Group, University of Applied Sciences Upper Austria, 4600 Wels, Austria
| | - Qiujian Zheng
- Division of Orthopaedic Surgery, Department of Surgery, Guangdong Provincial People'sHospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510000, China
| | - Jin Dai
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Ming Ni
- Centre for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, Western Australia 6009,Australia.,Department of Orthopaedics, General Hospital of Chinese People's Liberation Army, Beijing 100853, China
| | - Allan Wang
- Centre for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, Western Australia 6009,Australia
| | - John Papadimitriou
- Centre for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, Western Australia 6009,Australia.,PathWest Laboratories, Nedlands, Western Australia 6009, Australia
| | - Toby Leys
- Centre for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, Western Australia 6009,Australia
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Institute for Tissue Engineering and Regenerative Medicine, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sasha Senck
- Computed Tomography Research Group, University of Applied Sciences Upper Austria, 4600 Wels, Austria
| | - Jess G Snedeker
- University Hospital Balgrist, University of Zurich, Zürich, Switzerland.,Institute for Biomechanics, ETH Zurich, 8008 Zürich, Switzerland
| | - Herbert Tempfer
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University-Spinal Cord Injury and Tissue Regeneration Center Salzburg, 5020 Salzburg, Austria.,Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Ming H Zheng
- Centre for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, Western Australia 6009,Australia. .,Perron Institute for Neurological and Translational Science, Nedlands, Western Australia 6009, Australia
| | - Andreas Traweger
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University-Spinal Cord Injury and Tissue Regeneration Center Salzburg, 5020 Salzburg, Austria. .,Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
8
|
Jiang Y, Zhao Y, He F, Wang H. Artificial MicroRNA-Mediated Tgfbr2 and Pdgfrb Co-Silencing Ameliorates Carbon Tetrachloride-Induced Hepatic Fibrosis in Mice. Hum Gene Ther 2018; 30:179-196. [PMID: 30024280 DOI: 10.1089/hum.2018.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatic stellate cells (HSCs) are the primary cell type responsible for liver fibrogenesis. Transforming growth factor beta 1 (TGF-β1) and platelet-derived growth factor (PDGF) are key profibrotic cytokines that regulate HSC activation and proliferation with functional convergence. Dual RNA interference against their receptors may achieve therapeutic effects. A novel RNAi strategy based on HSC-specific GFAP promoter-driven and lentiviral-expressed artificial microRNAs (amiRNAs) was devised that consists of an microRNA-30a backbone and effective shRNAs against mouse Pdgfrβ and Tgfbr2. Then, its antifibrotic efficacy was tested in primary and cultured HSCs and in mice affected with carbon tetrachloride-induced hepatic fibrosis. The study shows that amiRNA-mediated Pdgfrβ and Tgfbr2 co-silencing inhibits HSC activation and proliferation. After recombinant lentiviral particles were delivered into the liver via tail-vein injection, therapeutic amiRNAs were preferentially expressed in HSCs and efficiently co-knocked down in situ Tgfbr2 and Pdgfrβ expression, which correlates with downregulated expression of target or effector genes of their signaling, which include Pai-1, P70S6K, and D-cyclins. amiRNA-based HSC-specific co-silencing of Tgfbr2 and Pdgfrβ significantly suppressed hepatic expression of fibrotic markers α-Sma and Col1a1, extracellular matrix regulators Mmps and Timp1, and phenotypically ameliorated liver fibrosis, as indicated by reductions in serum alanine aminotransferase activity, collagen deposition, and α-Sma-positive staining. The findings provide proof of concept for the use of amiRNA-mediated co-silencing of two profibrogenic pathways in liver fibrosis treatment and highlight the therapeutic potential of concatenated amiRNAs for gene therapy.
Collapse
Affiliation(s)
- Yan Jiang
- 1 The Fifth People's Hospital of Shanghai, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yuanyuan Zhao
- 1 The Fifth People's Hospital of Shanghai, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Fuchu He
- 1 The Fifth People's Hospital of Shanghai, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, P.R. China.,2 State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Haijian Wang
- 1 The Fifth People's Hospital of Shanghai, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, P.R. China
| |
Collapse
|
9
|
Wei R, Liu H, Chen R, Sheng Y, Liu T. Astragaloside IV combating liver cirrhosis through the PI3K/Akt/mTOR signaling pathway. Exp Ther Med 2018; 17:393-397. [PMID: 30651810 PMCID: PMC6307369 DOI: 10.3892/etm.2018.6966] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 10/23/2018] [Indexed: 01/18/2023] Open
Abstract
Astragaloside IV (AS-IV) in improving liver cirrhosis injury in rats and its effect on the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mechanistic target of rapamycin (mTOR) signaling pathway were observed. Rat model of liver cirrhosis was induced by injection of carbon tetrachloride (CCl4). A total of 36 Sprague-Dawley (SD) rats were randomly divided into three groups: the normal control group (n=10), the model control group (n=13), and the AS-IV group (n=13). The normal control group was injected with olive oil and given carboxymethyl cellulose (CMC)-Na (10 ml/kg/day), the model control group was given CMC-Na (10 ml/kg/day), and the AS-IV group underwent intragastric administration of AS-IV (20 ml/kg/day). The content of alanine transaminase (ALT) and aspartate transaminase (AST) of rats was detected. The levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-1β in serum were detected via enzyme-linked immunosorbent assay (ELISA). Hematoxylin and eosin (H&E) staining was applied to observe morphological changes in liver tissues. The expression of collagens in liver tissues was detected via Masson's trichrome staining. Additionally, the expression of proteins in liver tissues was detected via western blotting. Compared with those in the blank group, the levels of AST, ALT, TNF-α, IL-6 and IL-1β were higher, the expression level of collagens in liver tissues was increased, and the expression ratios of phosphorylated (p)-PI3K/PI3K, p-Akt/Akt and p-mTOR/mTOR proteins were increased in the model group. Compared with the model group, AS-IV could significantly decrease the content of AST, ALT, TNF-α, IL-6 and IL-β in serum of rats, obviously inhibit the expression of collagens in liver tissues and decrease the expression ratios of p-PI3K/PI3K, p-Akt/Akt and p-mTOR/mTOR proteins in liver tissues. AS-IV can inhibit the inflammatory response so as to reduce the expression of collagens, and its mechanism may play a key role by inhibiting the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Rendong Wei
- Department of Hepatology, The Sixth People's Hospital of Qingdao, Qingdao, Shandong 266033, P.R. China
| | - Haidong Liu
- Department of Digestive Diseases, The Sixth People's Hospital of Qingdao, Qingdao, Shandong 266033, P.R. China
| | - Ru Chen
- Department of Hepatology, The Sixth People's Hospital of Qingdao, Qingdao, Shandong 266033, P.R. China
| | - Yunjian Sheng
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Tao Liu
- Department of Hepatology, The Sixth People's Hospital of Qingdao, Qingdao, Shandong 266033, P.R. China
| |
Collapse
|
10
|
Xu W, Liu P, Mu YP. Research progress on signaling pathways in cirrhotic portal hypertension. World J Clin Cases 2018; 6:335-343. [PMID: 30283796 PMCID: PMC6163134 DOI: 10.12998/wjcc.v6.i10.335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/27/2018] [Accepted: 08/04/2018] [Indexed: 02/05/2023] Open
Abstract
Portal hypertension (PHT) is an important consequence of liver cirrhosis, which can lead to complications that adversely affect a patient’s quality of life and survival, such as upper gastrointestinal bleeding, ascites, and portosystemic encephalopathy. In recent years, advances in molecular biology have led to major discoveries in the pathological processes of PHT, including the signaling pathways that may be involved: PI3K-AKT-mTOR, RhoA/Rho-kinase, JAK2/STAT3, and farnesoid X receptor. However, the pathogenesis of PHT is complex and there are numerous pathways involved. Therefore, the targeting of signaling pathways for medical management is lagging. This article summarizes the progress that has been made in understanding the signaling pathways in PHT, and provides ideas for treatment of the disorder.
Collapse
Affiliation(s)
- Wen Xu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Shanghai 201203, China
- Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Shanghai University of TCM, Shanghai 201203, China
- Clinical key laboratory of TCM of Shanghai, Shanghai 201203, China
| | - Ping Liu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Shanghai 201203, China
- Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Shanghai University of TCM, Shanghai 201203, China
- Clinical key laboratory of TCM of Shanghai, Shanghai 201203, China
| | - Yong-Ping Mu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Shanghai 201203, China
- Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Shanghai University of TCM, Shanghai 201203, China
- Clinical key laboratory of TCM of Shanghai, Shanghai 201203, China
| |
Collapse
|
11
|
Peng M, Yang XF. Relationship between mTOR signaling pathway and hepatic stellate cells function. Shijie Huaren Xiaohua Zazhi 2017; 25:3141-3148. [DOI: 10.11569/wcjd.v25.i35.3141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The activation of hepatic stellate cells (HSCs) is generally considered to be the central link in the formation of hepatic fibrosis. Various factors can regulate the function of HSCs through multiple signaling pathways, of which the mammalian target of rapamycin (mTOR) signaling pathway is especially important. Elucidating the relationship between the mTOR signaling pathway and the proliferation, apoptosis, autophagy, and senescence of HSCs can provide new therapeutic targets and methods for the clinical treatment of hepatic fibrosis. This paper discusses the relationship between the mTOR signaling pathway and the function of HSCs.
Collapse
Affiliation(s)
- Min Peng
- Department of Gastroenterology, Affiliated Nanhua Hospital, University of South China, Hengyang 421002, Hunan Province, China
| | - Xue-Feng Yang
- Department of Gastroenterology, Affiliated Nanhua Hospital, University of South China, Hengyang 421002, Hunan Province, China
| |
Collapse
|
12
|
Thiyagarajan V, Lee KW, Leong MK, Weng CF. Potential natural mTOR inhibitors screened by in silico approach and suppress hepatic stellate cells activation. J Biomol Struct Dyn 2017; 36:4220-4234. [DOI: 10.1080/07391102.2017.1411295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Varadharajan Thiyagarajan
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Shoufeng, Hualien, 97401, Taiwan
| | - Kuan-Wei Lee
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Shoufeng, Hualien, 97401, Taiwan
| | - Max K. Leong
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Shoufeng, Hualien, 97401, Taiwan
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien, 97401, Taiwan
| | - Ching-Feng Weng
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Shoufeng, Hualien, 97401, Taiwan
| |
Collapse
|
13
|
Wang Z, Han Z, Tao J, Wang J, Liu X, Zhou W, Xu Z, Zhao C, Wang Z, Tan R, Gu M. Role of endothelial-to-mesenchymal transition induced by TGF-β1 in transplant kidney interstitial fibrosis. J Cell Mol Med 2017; 21:2359-2369. [PMID: 28374926 PMCID: PMC5618680 DOI: 10.1111/jcmm.13157] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 02/12/2017] [Indexed: 01/18/2023] Open
Abstract
Chronic allograft dysfunction (CAD) induced by kidney interstitial fibrosis is the main cause of allograft failure in kidney transplantation. Endothelial‐to‐mesenchymal transition (EndMT) may play an important role in kidney fibrosis. We, therefore, undertook this study to characterize the functions and potential mechanism of EndMT in transplant kidney interstitial fibrosis. Proteins and mRNAs associated with EndMT were examined in human umbilical vein endothelial cells (HUVECs) treated with transforming growth factor‐beta1 (TGF‐β1) at different doses or at different intervals with western blotting, qRT‐PCR and ELISA assays. Cell motility and migration were evaluated with motility and migration assays. The mechanism of EndMT induced by TGF‐β1 was determined by western blotting analysis of factors involved in various canonical and non‐canonical pathways. In addition, human kidney tissues from control and CAD group were also examined for these proteins by HE, Masson's trichrome, immunohistochemical, indirect immunofluorescence double staining and western blotting assays. TGF‐β1 significantly promoted the development of EndMT in a time‐dependent and dose‐dependent manner and promoted the motility and migration ability of HUVECs. The TGF‐β/Smad and Akt/mTOR/p70S6K signalling pathways were found to be associated with the pathogenesis of EndMT induced by TGF‐β1, which was also proven in vivo by the analysis of specimens from the control and CAD groups. EndMT may promote transplant kidney interstitial fibrosis by targetting the TGF‐β/Smad and Akt/mTOR/p70S6K signalling pathways, and hence, result in the development of CAD in kidney transplant recipients.
Collapse
Affiliation(s)
- Zijie Wang
- Department of Urology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zhijian Han
- Department of Urology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jun Tao
- Department of Urology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jun Wang
- Department of Urology, the Affiliated Nanjing Children's Hospital, Nanjing Medical University, Nanjing, China
| | - Xuzhong Liu
- Department of Urology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Wanli Zhou
- Department of Urology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zhen Xu
- Department of Urology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Chunchun Zhao
- Department of Urology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- Department of Urology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Ruoyun Tan
- Department of Urology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Min Gu
- Department of Urology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Activation of Insulin-PI3K/Akt-p70S6K Pathway in Hepatic Stellate Cells Contributes to Fibrosis in Nonalcoholic Steatohepatitis. Dig Dis Sci 2017; 62:968-978. [PMID: 28194671 DOI: 10.1007/s10620-017-4470-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 01/20/2017] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS Hyperinsulinemia and insulin resistance are hallmark features of nonalcoholic fatty liver disease and steatohepatitis (NASH). It remains unclear whether and how insulin contributes to the development of fibrosis in NASH. In this study, we explored insulin signaling in the regulation of hepatic stellate cell (HSC) activation and the progression of NASH-fibrosis. METHODS Phosphorylation of Akt and p70S6K were examined in primary HSC and in a rat model of NASH-fibrosis induced by high-fat and high-cholesterol diet for 24 weeks. HSC activation was analyzed for the changes in cell morphology, intracellular lipid droplets, expression of α-SMA and cell proliferation. The serum markers and histology for NASH-fibrosis were also characterized in animals. RESULTS Insulin enhanced the expression of smooth muscle actin-α in quiescent but not in activated HSC in culture. Insulin-mediated activation of the PI3K/Akt-p70S6K pathway was involved in the regulation of profibrogenic effects of insulin. Although insulin did not stimulate HSC proliferation directly, the insulin-PI3K/Akt-p70S6K pathway was necessary for serum-enhanced cell proliferation during initial HSC activation. In a rat model of NASH-fibrosis induced by high-fat and high-cholesterol diet, hyperinsulinemia is associated with the activation of p70S6K and enhanced fibrosis. CONCLUSION The insulin-PI3K/Akt-p70S6K pathway plays an important role in the early activation of HSC. The profibrogenic effect of insulin is dependent on the activation stage of HSC. Dysregulation of the insulin pathway likely correlates with the development of fibrosis in NASH, suggesting a potentially novel antifibrotic target of inhibiting insulin signaling in HSC.
Collapse
|
15
|
The stellate cell system (vitamin A-storing cell system). Anat Sci Int 2017; 92:387-455. [PMID: 28299597 DOI: 10.1007/s12565-017-0395-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/15/2017] [Indexed: 01/18/2023]
Abstract
Past, present, and future research into hepatic stellate cells (HSCs, also called vitamin A-storing cells, lipocytes, interstitial cells, fat-storing cells, or Ito cells) are summarized and discussed in this review. Kupffer discovered black-stained cells in the liver using the gold chloride method and named them stellate cells (Sternzellen in German) in 1876. Wake rediscovered the cells in 1971 using the same gold chloride method and various modern histological techniques including electron microscopy. Between their discovery and rediscovery, HSCs disappeared from the research history. Their identification, the establishment of cell isolation and culture methods, and the development of cellular and molecular biological techniques promoted HSC research after their rediscovery. In mammals, HSCs exist in the space between liver parenchymal cells (PCs) or hepatocytes and liver sinusoidal endothelial cells (LSECs) of the hepatic lobule, and store 50-80% of all vitamin A in the body as retinyl ester in lipid droplets in the cytoplasm. SCs also exist in extrahepatic organs such as pancreas, lung, and kidney. Hepatic (HSCs) and extrahepatic stellate cells (EHSCs) form the stellate cell (SC) system or SC family; the main storage site of vitamin A in the body is HSCs in the liver. In pathological conditions such as liver fibrosis, HSCs lose vitamin A, and synthesize a large amount of extracellular matrix (ECM) components including collagen, proteoglycan, glycosaminoglycan, and adhesive glycoproteins. The morphology of these cells also changes from the star-shaped HSCs to that of fibroblasts or myofibroblasts.
Collapse
|
16
|
The common dietary flavonoid myricetin attenuates liver fibrosis in carbon tetrachloride treated mice. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201600392] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 01/18/2023]
|
17
|
Thomes PG, Brandon-Warner E, Li T, Donohue TM, Schrum LW. Rev-erb agonist and TGF-β similarly affect autophagy but differentially regulate hepatic stellate cell fibrogenic phenotype. Int J Biochem Cell Biol 2016; 81:137-147. [PMID: 27840152 DOI: 10.1016/j.biocel.2016.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/28/2016] [Accepted: 11/09/2016] [Indexed: 01/18/2023]
Abstract
We demonstrated that ligand-activated nuclear receptor Rev-erbα mitigates CCl4-induced liver fibrosis. Rev-erbα is also a novel regulator of autophagy, a crucial eukaryotic catabolic system in which lysosomes degrade substrates for energy generation. In hepatic stellate cells (HSC) autophagy is reportedly required for this purpose to activate HSCs during fibrogenesis. Here, we examined whether pharmacological activation of Rev-erb with its synthetic ligand SR9009 or treatment with the pro-fibrotic cytokine, TGF-β, each differentially modulate autophagy to regulate the HSC phenotype. We measured the effects of SR9009 on autophagy markers in a CCl4-induced liver fibrosis model. Using primary and immortalized HSCs in vitro, we quantified SR9009 and TGF-β effects on autophagy flux. Compared with vehicle-treated controls, livers from CCl4-treated mice exhibited lower AMPK, higher P70S6K phosphorylation, elevated P62 and lower levels of ATG proteins, indicating a disruption of autophagosome (AV) formation. SR9009 treatment prevented CCl4-induced P70S6K phosphorylation but did not affect CCl4-induced changes in AMPK, ATG proteins or P62. Analysis of autophagy markers and autophagy flux in primary HSCs or an immortalized human HSC line (LX2), revealed that SR9009 exposure down-regulated AV biogenesis. These events were associated with lower levels of fibrogenic gene expression, P70S6K phosphorylation and HSC proliferation. However, HSC exposure to TGF-β enhanced fibrogenic gene expression, P70S6K phosphorylation and HSC proliferation, while it simultaneously decelerated AV synthesis. The autophagy activator rapamycin and the autophagy inhibitor wortmannin each decreased HSC activation, P70S6K phosphorylation and HSC proliferation. Furthermore, knock-down of P70S6K using siRNA blocked basal and TGF-β-induced cell proliferation in human activated LX2. We conclude that SR9009 and TGF-β both similarly affected autophagy but, differentially regulated HSC fibrogenic phenotype through modulation of P70S6K, which is crucial for cell proliferation and fibrogenesis.
Collapse
Affiliation(s)
- Paul G Thomes
- Department of Internal Medicine, Carolinas Medical Center, Charlotte, NC, USA.
| | | | - Ting Li
- Department of Internal Medicine, Carolinas Medical Center, Charlotte, NC, USA
| | - Terrence M Donohue
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Laura W Schrum
- Department of Internal Medicine, Carolinas Medical Center, Charlotte, NC, USA.
| |
Collapse
|
18
|
Saeedi Saravi SS, Ghazi-Khansari M, Ejtemaei Mehr S, Nobakht M, Mousavi SE, Dehpour AR. Contribution of mammalian target of rapamycin in the pathophysiology of cirrhotic cardiomyopathy. World J Gastroenterol 2016; 22:4685-4694. [PMID: 27217700 PMCID: PMC4870075 DOI: 10.3748/wjg.v22.i19.4685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 02/27/2016] [Accepted: 03/13/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the role of mammalian target of rapamycin (mTOR) in the pathogenesis of cirrhotic cardiomyopathy and the potential of rapamycin to improve this pathologic condition. METHODS Male albino Wistar rats weighing 100-120 g were treated with tetrachloride carbon (CCl4) for 8 wk to induce cirrhosis. Subsequently, animals were administered rapamycin (2 mg/kg per day). The QTc intervals were calculated in a 5-min electrocardiogram. Then, the left ventricular papillary muscles were isolated to examine inotropic responsiveness to β-adrenergic stimulation using a standard organ bath equipped by Powerlab system. Phosphorylated-mTOR localization in left ventricles was immunohistochemically assessed, and ventricular tumor necrosis factor (TNF)-α was measured. Western blot was used to measure levels of ventricular phosphorylated-mTOR protein. RESULTS Cirrhosis was confirmed by hematoxylin and eosin staining of liver tissues, visual observation of lethargy, weight loss, jaundice, brown urine, ascites, liver stiffness, and a significant increase of spleen weight (P < 0.001). A significant prolongation in QTc intervals occurred in cirrhotic rats exposed to CCl4 (P < 0.001), while this prolongation was decreased with rapamycin treatment (P < 0.01). CCl4-induced cirrhosis caused a significant decrease of contractile responsiveness to isoproterenol stimulation and a significant increase in cardiac TNF-α. These findings were correlated with data from western blot and immunohistochemical studies on phosphorylated-mTOR expression in left ventricles. Phosphorylated-mTOR was significantly enhanced in cirrhotic rats, especially in the endothelium, compared to controls. Rapamycin treatment significantly increased contractile force and myocardial localization of phosphorylated-mTOR and decreased cardiac TNF-α concentration compared to cirrhotic rats with no treatment. CONCLUSION In this study, we demonstrated a potential role for cardiac mTOR in the pathophysiology of cirrhotic cardiomyopathy. Rapamycin normalized the inotropic effect and altered phosphorylated-mTOR expression and myocardial localization in cirrhotic rats.
Collapse
Affiliation(s)
- Seyed Soheil Saeedi Saravi
- Seyed Soheil Saeedi Saravi, Mahmoud Ghazi-Khansari, Shahram Ejtemaei Mehr, Seyyedeh Elaheh Mousavi, Ahmad Reza Dehpour, Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145, Iran
| | - Mahmoud Ghazi-Khansari
- Seyed Soheil Saeedi Saravi, Mahmoud Ghazi-Khansari, Shahram Ejtemaei Mehr, Seyyedeh Elaheh Mousavi, Ahmad Reza Dehpour, Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145, Iran
| | - Shahram Ejtemaei Mehr
- Seyed Soheil Saeedi Saravi, Mahmoud Ghazi-Khansari, Shahram Ejtemaei Mehr, Seyyedeh Elaheh Mousavi, Ahmad Reza Dehpour, Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145, Iran
| | - Maliheh Nobakht
- Seyed Soheil Saeedi Saravi, Mahmoud Ghazi-Khansari, Shahram Ejtemaei Mehr, Seyyedeh Elaheh Mousavi, Ahmad Reza Dehpour, Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145, Iran
| | - Seyyedeh Elaheh Mousavi
- Seyed Soheil Saeedi Saravi, Mahmoud Ghazi-Khansari, Shahram Ejtemaei Mehr, Seyyedeh Elaheh Mousavi, Ahmad Reza Dehpour, Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145, Iran
| | - Ahmad Reza Dehpour
- Seyed Soheil Saeedi Saravi, Mahmoud Ghazi-Khansari, Shahram Ejtemaei Mehr, Seyyedeh Elaheh Mousavi, Ahmad Reza Dehpour, Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145, Iran
| |
Collapse
|
19
|
Geng Y, Wang J, Sun Q, Xie M, Lu ZM, Xu HY, Shi JS, Xu ZH. Identification of antrodin B from Antrodia camphorata as a new anti-hepatofibrotic compound using a rapid cell screening method and biological evaluation. Hepatol Res 2016; 46:E15-25. [PMID: 25753357 DOI: 10.1111/hepr.12516] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 02/28/2015] [Accepted: 03/02/2015] [Indexed: 02/08/2023]
Abstract
AIM Liver fibrosis is the excessive accumulation of extracellular matrix (ECM) resulting from chronic liver diseases. Efficient and well-tolerated drugs for its treatment are urgently needed. This study aims to identify the active ingredients of Antrodia camphorata by a bioassay-guided fractionation approach and explore the acting mechanism by using a hepatic stellate cell (HSC) line CFSC-8B stimulated by transforming growth factor-β1 (TGF-β1). METHODS The accumulation of collagens was evaluated using chromogenic precipitation reaction with picro-sirius red (PSR) dye solution and quantified by spectrophotometric analysis of the dissolved stain. MTT assay, cell migration assay, quantitative polymerase chain reaction and western blotting analysis were used to determine the cell viability, cell migration and gene expression. RESULTS We established a rapid colorimetric assay suitable for screening of anti-hepatofibrotic reagents. Stimulation with 10 ng/mL TGF-β1 for 48 h and 200 μL PSR dye solution were optimal for the colorimetric assay in CFSC-8B cells. We used SB431542, silybin and another 11 antifibrotic reagents to verify the cellular model. Within the safe doses, they attenuated ECM production induced by TGF-β1. Bioactivity-guided fractionation led to the identification of antrodin B from A. camphorata. Antrodin B significantly ameliorated cell proliferation, cell migration, suppressed HSC activation marker α-smooth muscle actin expression and ECM components Col1, Col3 and Fn expression, and blocked the phosphorylation of Smad2/3 induced by TGF-β1 in CFSC-8B cells in a dose-dependent manner. CONCLUSION We developed a simple assay based on TGF-β1-induced total collagen accumulation in CFSC-8B cells and identified antrodin B which may serve as a potential candidate for treatment of liver fibrosis.
Collapse
Affiliation(s)
- Yan Geng
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China
| | - Jing Wang
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China
| | - Qing Sun
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China
| | - Minfeng Xie
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China
| | - Zhen-Ming Lu
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China
| | - Hong-Yu Xu
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China
| | - Jin-Song Shi
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China
| | - Zheng-Hong Xu
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China.,Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
20
|
Pulli B, Ali M, Iwamoto Y, Zeller MWG, Schob S, Linnoila JJ, Chen JW. Myeloperoxidase-Hepatocyte-Stellate Cell Cross Talk Promotes Hepatocyte Injury and Fibrosis in Experimental Nonalcoholic Steatohepatitis. Antioxid Redox Signal 2015; 23:1255-69. [PMID: 26058518 PMCID: PMC4677570 DOI: 10.1089/ars.2014.6108] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AIMS Myeloperoxidase (MPO), a highly oxidative enzyme secreted by leukocytes has been implicated in human and experimental nonalcoholic steatohepatitis (NASH), but the underlying mechanisms remain unknown. In this study, we investigated how MPO contributes to progression from steatosis to NASH. RESULTS In C57Bl/6J mice fed a diet deficient in methionine and choline to induce NASH, neutrophils and to a lesser extent inflammatory monocytes are markedly increased compared with sham mice and secrete abundant amounts of MPO. Through generation of HOCl, MPO directly causes hepatocyte death in vivo. In vitro experiments demonstrate mitochondrial permeability transition pore induction via activation of SAPK/JNK and PARP. MPO also contributes to activation of hepatic stellate cells (HSCs), the most important source of collagen in the liver. In vitro MPO-activated HSCs have an activation signature (MAPK and PI3K-AKT phosphorylation) and upregulate COL1A1, α-SMA, and CXCL1. MPO-derived oxidative stress also activates transforming growth factor β (TGF-β) in vitro, and TGF-β signaling inhibition with SB-431542 decreased steatosis and fibrosis in vivo. Conversely, congenital absence of MPO results in reduced hepatocyte injury, decreased levels of TGF-β, fewer activated HSCs, and less severe fibrosis in vivo. INNOVATION AND CONCLUSION Cumulatively, these findings demonstrate important cross talk between inflammatory myeloid cells, hepatocytes, and HSCs via MPO and establish MPO as part of a proapoptotic and profibrotic pathway of progression in NASH, as well as a potential therapeutic target to ameliorate this disease.
Collapse
Affiliation(s)
- Benjamin Pulli
- 1 Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts.,2 Department of Radiology, Massachusetts General Hospital , Boston, Massachusetts
| | - Muhammad Ali
- 1 Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| | - Yoshiko Iwamoto
- 1 Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| | - Matthias W G Zeller
- 1 Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| | - Stefan Schob
- 1 Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| | - Jenny J Linnoila
- 1 Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| | - John W Chen
- 1 Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts.,2 Department of Radiology, Massachusetts General Hospital , Boston, Massachusetts
| |
Collapse
|
21
|
Wang Q, Wen R, Lin Q, Wang N, Lu P, Zhu X. Wogonoside Shows Antifibrotic Effects in an Experimental Regression Model of Hepatic Fibrosis. Dig Dis Sci 2015; 60:3329-3339. [PMID: 26130019 DOI: 10.1007/s10620-015-3751-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 06/06/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUD Wogonoside (WO), a flavonoid extracted from Huangqin, plays multiple physiological roles. However, it has remained elusive how WO regulates hepatic fibrogenesis until now. AIM The purpose of the study was to investigate the potential protective effects of WO against liver fibrosis induced by carbon tetrachloride (CCl4). METHODS In this study, male rats were randomly allocated into four groups: a control group, the CCl4 group, the CCl4 and WO (4 mg/kg) group, and CCl4 and WO (8 mg/kg) group. Hepatic fibrosis was induced by subcutaneous injection of CCl4 twice a week for a continuous 6-week period. Then the rats were intragastrically administrated with WO daily for 4 weeks before being killed. RESULTS As expected, histopathological assessment, Masson trichrome staining, and Sirius red staining demonstrated that WO drastically ameliorated the hepatic fibrosis caused by CCl4. WO significantly attenuated the CCl4-induced upregulations of liver indices including alanine aminotransferase, aspartate aminotransferase, tumor necrosis factor-α, interleukin-1β, IL-6, hexadecenoic acid and laminin in serum, as well as hydroxyproline, malondialdehyde and phosphatidylinositol 3-kinase (PI3K)/protein Kinase B(Akt)/mechanistic target of rapamycin (mTOR)/nuclear factor-kappa B signalings in liver. Meanwhile, WO also effectively recovered the depletions of superoxide dismutase, glutathione and IL-10. Furthermore, we evaluated the effects of WO on the alpha smooth muscle actin, type I collagen expressions, and PI3K/Akt/ mTOR/ribosomal protein S6 kinase 70 kDa (p70S6K) signaling in transforming growth factor (TGF-β) stimulated hepatic stellate cell-T6 cells. CONCLUSIONS These results suggested that WO had significant protective effects against liver fibrosis induced by CCl4.
Collapse
Affiliation(s)
- Qichao Wang
- Translational Center for Stem Cell Research, Tongji Hospital, Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, 200065, China
| | - Rui Wen
- Department of Resources Science of Traditional Chinese Medicines, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Qinghua Lin
- Department of Natural Medicinal Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Na Wang
- Translational Center for Stem Cell Research, Tongji Hospital, Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, 200065, China
| | - Ping Lu
- Translational Center for Stem Cell Research, Tongji Hospital, Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xianmin Zhu
- Translational Center for Stem Cell Research, Tongji Hospital, Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|
22
|
Zhong L, Sun YL, Shi WL, Ma X, Chen Z, Wang JB, Li RS, Song XA, Liu HH, Zhao YL, Xiao XH. Protective effect of fu-qi granule on carbon tetrachloride-induced liver fibrosis in rats. World J Pharmacol 2015; 4:227-235. [DOI: 10.5497/wjp.v4.i2.227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 01/09/2015] [Accepted: 04/09/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the efficacy of fu-qi granule (FQG) on carbon tetrachloride (CCl4) induced liver fibrosis in rats and the underlying mechanisms.
METHODS: Sixty rats were randomly divided into six groups: normal control group, CCl4 induced liver fibrosis group, AnluoHuaxianWan group and three treatment groups of FQG. Treatment of rats with intraperitoneal injection of carbon tetrachloride solution at 0.3 mL per 100 g body weigh twice a week for 8 wk. The normal control group the rats were given the media (olive oil) at the same time. In the first 2 wk, rats were raised with feedstuff (80% corn meal, 20% lard, 0.5% cholesterol). Serum samples were collected for alanine transaminase, aspartate aminotransferase, alkaline phosphatase, albumin, total protein assay and typical histopathological changes was observed in Hematoxylin-eosin staining sections. Smooth muscle alpha actin (α-SMA) was analyzed with immunohistochemistry. Mammalian target of rapamycin (mTOR) and hypoxia-inducible factor-1 (HIF-1α) expressions were detected by Western blotting. Tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) and matrix metalloproteinases-9 (MMP-9) were measured with semi-quantitative reverse transcriptase-polymerase chain reaction.
RESULTS: FQG significantly reduced the serum levels of alanine transaminase, aspartate aminotransferase, alkaline phosphatase and increased the serum contents of albumin, total protein in rats with liver fibrosis. Moreover, FQG promoted extracellular matrix degradation by increasing MMP-9 and inhibiting TIMP-1 and α-SMA. mTOR and HIF-1α expression in liver significantly decreased in the rats treated with FQG.
CONCLUSION: The results indicated that FQG significantly reverse fibrosis induced by CCl4, which should be developed as a new and promising preparation for the prevention of liver fibrosis.
Collapse
|
23
|
Bridle KR, Sobbe AL, de Guzman CE, Santrampurwala N, Jaskowski LA, Clouston AD, Campbell CM, Nathan Subramaniam V, Crawford DHG. Lack of efficacy of mTOR inhibitors and ACE pathway inhibitors as antifibrotic agents in evolving and established fibrosis in Mdr2⁻/⁻ mice. Liver Int 2015; 35:1451-63. [PMID: 24517519 DOI: 10.1111/liv.12494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/04/2014] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Mammalian target of rapamycin and angiotensin-converting enzyme inhibition has been shown to have antifibrotic activity in models of liver fibrosis. The aim of our study was to determine the efficacy of rapamycin, everolimus, irbesartan and captopril, alone and in combination, as antifibrotic agents in the Mdr2(-/-) model of cholestasis both in early injury and established disease. METHODS Mdr2(-/-) mice were treated for 4 weeks with vehicle, rapamycin (1 mg/kg) or everolimus (5 mg/kg) every second day or with captopril (30 mg/kg/day), irbesartan (10 mg/kg/day) or vehicle. Further groups of 3-week-old Mdr2(-/-) mice were treated with rapamycin and irbesartan in combination (1 mg/kg/day and 10 mg/kg/day) or with rapamycin (2 mg/kg/day) for 4 weeks. Liver injury and fibrosis were compared between treated and untreated animals. RESULTS There were no significant improvements in liver injury, histology, hepatic hydroxyproline or profibrogenic gene expression following treatment with rapamycin, everolimus, captopril or irbesartan at any time point studied. Likewise, there were no improvements in liver histology or profibrogenic gene expression following combination therapy or high-dose rapamycin treatment. CONCLUSIONS The antifibrotic effects of rapamycin, everolimus, captopril and irbesartan seen in other models of fibrosis were not replicated in the Mdr2(-/-) model in this study. This highlights the clear need to test specific antifibrotic agents in a number of different animal models. We believe this animal model is ideal to study usefulness of antifibrotic agents in cholestatic liver disease because of the similarity in genetics and hepatic histopathology to human cholestatic liver disease.
Collapse
Affiliation(s)
- Kim R Bridle
- The University of Queensland School of Medicine and the Gallipoli Medical Research Foundation, Greenslopes Private Hospital, Envoi Specialist Pathologists and The Queensland Institute of Medical Research, Brisbane, Qld, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
The inhibition of activated hepatic stellate cells proliferation by arctigenin through G0/G1 phase cell cycle arrest: Persistent p27Kip1 induction by interfering with PI3K/Akt/FOXO3a signaling pathway. Eur J Pharmacol 2015; 747:71-87. [DOI: 10.1016/j.ejphar.2014.11.040] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 11/06/2014] [Accepted: 11/20/2014] [Indexed: 01/18/2023]
|
25
|
Zhu D, Wang J, Sun X, Chen J, Duan Y, Pan J, Xu T, Qin Y, He X, Huang C. Septin4_i1 regulates apoptosis in hepatic stellate cells through peroxisome proliferator-activated receptor-γ/Akt/B-cell lymphoma 2 pathway. J Histochem Cytochem 2014; 63:163-9. [PMID: 25527525 DOI: 10.1369/0022155414567230] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Apoptosis of activated hepatic stellate cells (HSCs) has been verified as a potential mechanism to aid in hepatic fibrosis remission. Earlier research suggests that Septin4_i1 may sensitize hepatocellular carcinoma cells to serum starvation-induced apoptosis. Here, we aimed to investigate the effect of Septin4_i1 on HSC apoptosis and explore the associated signaling pathways. We found that Septin4_i1 can induce apoptosis in LX-2 cells and that this is accompanied by an up-regulation in cleaved-caspase-3 and peroxisome proliferator-activated receptor-γ (PPAR-γ) expression and a down-regulation in α-SMA expression. Over-expression of Septin4_i1 reduced phosphorylated Akt and B-cell lymphoma 2 (Bcl-2) expression but had no effect on the expression of p53 and death receptor (DR)-5. The decreased expression of Bcl-2 and the increased expression of cleaved-caspase-3 induced by Sept4_i1 could be reversed by GW501516, a PPAR-β/δ agonist that has been reported by others to enhance Akt signaling. In addition, GW9662, an antagonist of PPAR-γ, could also inhibit apoptosis in LX-2 cells induced by Sept4_i1. In conclusion, our data suggest that Sept4_i1 induces HSC apoptosis by inhibiting Akt and Bcl-2 expression and up-regulating PPAR-γ expression.
Collapse
Affiliation(s)
- Dandan Zhu
- Department of Pathogen Biology, School of Medicine, Nantong University, People's Republic of China (DZ, JW, XS, JC, YD, JP, TX, YQ, XH, CH)
| | - Jianxin Wang
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, People's Republic of China (JW)
| | - Xiaolei Sun
- Department of Pathogen Biology, School of Medicine, Nantong University, People's Republic of China (DZ, JW, XS, JC, YD, JP, TX, YQ, XH, CH)
| | - Jinling Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, People's Republic of China (DZ, JW, XS, JC, YD, JP, TX, YQ, XH, CH)
| | - Yinong Duan
- Department of Pathogen Biology, School of Medicine, Nantong University, People's Republic of China (DZ, JW, XS, JC, YD, JP, TX, YQ, XH, CH)
| | - Jing Pan
- Department of Pathogen Biology, School of Medicine, Nantong University, People's Republic of China (DZ, JW, XS, JC, YD, JP, TX, YQ, XH, CH)
| | - Tianhua Xu
- Department of Pathogen Biology, School of Medicine, Nantong University, People's Republic of China (DZ, JW, XS, JC, YD, JP, TX, YQ, XH, CH)
| | - Yongwei Qin
- Department of Pathogen Biology, School of Medicine, Nantong University, People's Republic of China (DZ, JW, XS, JC, YD, JP, TX, YQ, XH, CH)
| | - Xingxin He
- Department of Pathogen Biology, School of Medicine, Nantong University, People's Republic of China (DZ, JW, XS, JC, YD, JP, TX, YQ, XH, CH)
| | - Caiqun Huang
- Department of Pathogen Biology, School of Medicine, Nantong University, People's Republic of China (DZ, JW, XS, JC, YD, JP, TX, YQ, XH, CH)
| |
Collapse
|
26
|
Hepatic stellate cell is activated by microRNA-181b via PTEN/Akt pathway. Mol Cell Biochem 2014; 398:1-9. [PMID: 25148875 DOI: 10.1007/s11010-014-2199-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 08/13/2014] [Indexed: 01/18/2023]
Abstract
Activation of hepatic stellate cells (HSCs) is an essential event in the initiation and progression of liver fibrosis. MicroRNAs have been shown to play a pivotal role in regulating HSC functions such as cell proliferation, differentiation, and apoptosis. Recently, miR-181b has been reported to promote HSCs proliferation by targeting p27. But whether alpha-smooth muscle actin (α-SMA) or collagens could be promoted by miR-181b in activated HSCs is still not clear. Therefore, the understanding of the role of miR-181b in liver fibrosis remains limited. Our results showed that miR-181b expression was increased much higher than miR-181a expression in vitro in transforming growth factor-β1-induced HSC activation as well as in vivo in carbon tetrachloride-induced rat liver fibrosis. Of note, overexpression of miR-181b significantly increased the expressions level of α-SMA and type I collagen, and further promoted HSCs proliferation. Furthermore, phosphatase and tensin homologs deleted on chromosome 10 (PTEN), a negative regulator of PI3K/Akt pathway, were confirmed as a direct target of miR-181b. We demonstrated that miR-181b could suppress PTEN expression and increase Akt phosphorylation in HSCs. Interestingly, the effects of miR-181b on the activation of HSCs were blocked down by Akt inhibitor LY294002. Our results revealed a profibrotic role of miR-181b in HSC activation and demonstrated that miR-181b could activate HSCs, at least in part, via PTEN/Akt pathway.
Collapse
|
27
|
Wang J, Xu F, Zhu D, Duan Y, Chen J, Sun X, He X, Li P, Sun W, Feng J. Schistosoma japonicum soluble egg antigens facilitate hepatic stellate cell apoptosis by downregulating Akt expression and upregulating p53 and DR5 expression. PLoS Negl Trop Dis 2014; 8:e3106. [PMID: 25144704 PMCID: PMC4140669 DOI: 10.1371/journal.pntd.0003106] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 07/09/2014] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The induction of hepatic stellate cell (HSC) apoptosis has potential as a potent strategy to diminish the progression of liver fibrosis. Previous studies have demonstrated the ability of soluble egg antigens (SEA) from schistosomes to inhibit HSC activation and to induce apoptosis in vitro. In this study, we aimed to explore the mechanism of SEA-induced apoptosis in HSCs. METHODOLOGY/PRINCIPAL FINDINGS In this study, we found that SEA could upregulate p53 and DR5 and downregulate the p-Akt. The apoptosis of HSCs induced by SEA could be reduced in HSCs that were treated with p53-specific siRNA and in HSCs that were treated with DR5-specific shRNA. In addition, GW501516, which enhances the expression of Akt, could also decrease the SEA-induced HSC apoptosis. We also found that the increased expression of p53 and DR5 induced by SEA through Mdm2 were reduced by GW501516. CONCLUSIONS/SIGNIFICANCE Our data suggest that SEA can induce HSC apoptosis by downregulating Akt expression and upregulating p53-dependent DR5 expression.
Collapse
Affiliation(s)
- Jianxin Wang
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Feifan Xu
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Dandan Zhu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Yinong Duan
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
- * E-mail:
| | - Jinling Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Xiaolei Sun
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Xue He
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Pan Li
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Wei Sun
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Jinrong Feng
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| |
Collapse
|
28
|
Xu WH, Hu HG, Tian Y, Wang SZ, Li J, Li JZ, Deng X, Qian H, Qiu L, Hu ZL, Wu QY, Chai YF, Guo C, Xie WF, Zhang JP. Bioactive compound reveals a novel function for ribosomal protein S5 in hepatic stellate cell activation and hepatic fibrosis. Hepatology 2014; 60:648-60. [PMID: 24668691 DOI: 10.1002/hep.27138] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 03/10/2014] [Accepted: 03/20/2014] [Indexed: 01/18/2023]
Abstract
UNLABELLED Liver fibrosis and its endstage, cirrhosis, represent a major public health problem worldwide. Activation of hepatic stellate cells (HSCs) is a central event in hepatic fibrosis. However, the proteins that control HSC activation are incompletely understood. Here we show that (6aS, 10S, 11aR, 11bR, 11cS)-10-methylamino-dodecahydro-3a, 7a-diaza-benzo [de]anthracene-8-thione (MASM) exhibits potent inhibitory activity against liver fibrosis in vitro and in vivo associated with the reduction of Akt phosphorylation. Furthermore, ribosomal protein S5 (RPS5) was identified as a direct target of MASM, which stabilized RPS5 in cultured HSCs and in the liver of experimental animals after dimethylnitrosamine (DMN) or bile duct ligation (BDL). Functional studies revealed that RPS5 could prevent HSC activation. RPS5 overexpression in HSCs resulted in Akt dephosphorylation at both Ser473 and Thr308, and led to subsequent dephosphorylation of GSK3β or P70S6K. Progression of DMN- and BDL-induced hepatic fibrosis was aggravated by Rps5 knockdown and alleviated by RPS5 overexpression, which correlated with the modulation of Akt phosphorylation and HSC number in the fibrotic livers. Moreover, RPS5 was substantially reduced in the transdifferentiated HSCs, experimental fibrotic livers, and human cirrhosis samples. CONCLUSION These results demonstrate that RPS5 is implicated in hepatic fibrogenesis and may represent a promising target for potential therapeutic intervention in liver fibrotic diseases.
Collapse
Affiliation(s)
- Wei-Heng Xu
- College of Pharmacy, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Fernández-Yunquera A, Ripoll C, Bañares R, Puerto M, Rincón D, Yepes I, Catalina V, Salcedo M. Everolimus immunosuppression reduces the serum expression of fibrosis markers in liver transplant recipients. World J Transplant 2014; 4:133-140. [PMID: 25032102 PMCID: PMC4094948 DOI: 10.5500/wjt.v4.i2.133] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/29/2014] [Accepted: 02/19/2014] [Indexed: 02/05/2023] Open
Abstract
AIM: To evaluate the expression of serum fibrosis markers in liver transplantation (LT) recipients on everolimus monotherapy compared to patients on an anti-calcineurin regimen.
METHODS: This cross-sectional case-control study included LT patients on everolimus monotherapy (cases) (E) (n = 30) and matched controls on an anti-calcineurin regimen (calcineurin inhibitors, CNI), paired by etiology of liver disease and time since LT (n = 30). Clinical characteristics, blood tests and elastography were collected. Serum levels of transforming growth factor-β (TGF-β), angiopoietin-1, tumor necrosis factor (TNF), platelet derived growth factor, amino-terminal propeptide of type III procollagen (PIIINP), hyaluronic acid (HA), VCM-1 (ng/mL), interleukin (IL)-10, interferon-inducible protein 10 (IP-10), vascular endothelial growth factor and hepatocyte growth factor (HGF) (pg/mL) were determined by enzyme-linked immunosorbent assay. Expression of these markers between E and CNI was compared. Stratified analysis was done according to factors that may influence liver fibrosis. Variables are described with medians (interquartillic range) or percentages.
RESULTS: A total of 60 patients [age: 59 (49-64), hepatitis C virus (HCV): n = 21 (35%), time from LT: 73 mo (16-105)] were included. Patients had been on everolimus for a median of 15 mo. No differences in inflammatory activity, APRI test or liver elastography were found between the groups. No significant differences were observed between the groups in serum levels of PIIINP, metalloproteinase type = 1, angiopoietin, HGF, IP-10, TNF-α, IL-10 and vascular cell adhesion molecule. Patients on E had a lower expression of TGF-β [E: 12.7 (3.7-133.6), CNI: 152.5 (14.4-333.2), P = 0.009] and HA [E: 702.89 (329.4-838.2), CNI: 1513.6 (691.9-1951.4), P = 0.001] than those on CNI. This difference was maintained in the stratified analysis when recipient age is more than 50 years (TFG-β1: P = 0.06; HA: P = 0.005), in patients without active neoplasia (TFG-β1, P = 0.009; HA: P = 0.01), according to time since LT (> than 5 years, TFG-β1: P = 0.001; HA: P = 0.002), related to previous history of biliary complications (HA: P = 0.01) and HCV recurrence (HA: P = 0.004). Liver transplant recipients with everolimus monotherapy had less serum expression of TGF-β y HA than matched patients with anti-calcineurins. This difference remains when classifying patients according to donor age and time since LT. Due to the small sample size, when examining patients with a prior history of biliary complications or recurrent HCV, the difference was non-significant but trends towards the lower expression of TFG-β1 in the everolimus group. Mammalian target of rapamycin (mTOR) plays a role in the transformation of quiescent hepatocellular stellate cell to their active profibrotic state, and experimental models have demonstrated the potential activity of mTOR inhibition in attenuating fibrogenesis.
CONCLUSION: This study supports a possible role of everolimus in liver fibrosis modulation after LT in a clinical setting and suggests that tailoring immunosuppression could avoid fibrosis progression in the allograft.
Collapse
|
30
|
Kelly MA, Kaplan M, Nydam T, Wachs M, Bak T, Kam I, Zimmerman MA. Sirolimus reduces the risk of significant hepatic fibrosis after liver transplantation for hepatitis C virus: a single-center experience. Transplant Proc 2014; 45:3325-8. [PMID: 24182811 DOI: 10.1016/j.transproceed.2013.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/23/2013] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Hepatitis C virus (HCV) recurrence following orthotopic liver transplantation is an expected outcome in all patients transplanted for a primary diagnosis of HCV. HCV recurrence has been shown to be associated with graft fibrosis and graft loss. Recent studies suggest that sirolimus (SRL) therapy may slow or inhibit hepatic fibrosis following liver transplant in patients positive for HCV at the time of transplant. METHODS Among 313 patients who underwent orthotopic liver transplantation for HCV between 2000 and 2009, 251 qualified for inclusion in the study. Per protocol liver biopsies were performed on all patients at 1 year following liver transplantation and/or at the time of a clinical diagnosis of HCV recurrence. Biopsies were scored for fibrosis using the Batts-Ludwig staging system (0-4); significant fibrosis was defined as fibrosis ≥ stage 2. RESULTS Overall, there was no difference in overall survival or graft loss in the SRL compared with the control group. Multivariate analysis revealed SRL therapy to be associated with decreased odds of significant hepatic fibrosis at year 1 postoperatively and over the study duration. CONCLUSIONS This retrospective, single-center study showed sirolimus-based immunosuppression to be associated with a lower risk of significant graft fibrosis, both at year 1 and throughout the study period, following liver transplantation in HCV-infected recipients.
Collapse
Affiliation(s)
- M A Kelly
- Division of Transplant Surgery, University of Colorado Health Sciences Center, Aurora, Colorado, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Everolimus is a potent inhibitor of activated hepatic stellate cell functions in vitro and in vivo, while demonstrating anti-angiogenic activities. Clin Sci (Lond) 2014; 126:775-84. [DOI: 10.1042/cs20130081] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present study demonstrates the therapeutic potential of everolimus for the treatment of hepatocellular carcinomas in the fibrotic liver by inhibiting hepatic stellate cell activation and angiogenesis.
Collapse
|
32
|
Peng Y, Yang H, Wang N, Ouyang Y, Yi Y, Liao L, Shen H, Hu G, Wang Z, Tao L. Fluorofenidone attenuates hepatic fibrosis by suppressing the proliferation and activation of hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 2014; 306:G253-63. [PMID: 24337009 DOI: 10.1152/ajpgi.00471.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fluorofenidone (AKF-PD) is a novel pyridone agent. The purpose of this study is to investigate the inhibitory effects of AKF-PD on liver fibrosis in rats and the involved molecular mechanism related to hepatic stellate cells (HSCs). Rats treated with dimethylnitrosamine or CCl4 were randomly divided into normal, model, AKF-PD treatment, and pirfenidone (PFD) treatment groups. The isolated primary rat HSCs were treated with AKF-PD and PFD respectively. Cell proliferation and cell cycle distribution were analyzed by bromodeoxyuridine and flow cytometry, respectively. The expression of collagen I and α-smooth muscle actin (α-SMA) were determined by Western blot, immunohistochemical staining, and real-time RT-PCR. The expression of cyclin D1, cyclin E, and p27(kip1) and phosphorylation of MEK, ERK, Akt, and 70-kDa ribosomal S6 kinase (p70S6K) were detected by Western blot. AKF-PD significantly inhibited PDGF-BB-induced HSC proliferation and activation by attenuating the expression of collagen I and α-SMA, causing G0/G1 phase cell cycle arrest, reducing expression of cyclin D1 and cyclin E, and promoting expression of p27(kip1). AKF-PD also downregulated PDGF-BB-induced MEK, ERK, Akt, and p70S6K phosphorylation in HSCs. In rat liver fibrosis, AKF-PD alleviated hepatic fibrosis by decreasing necroinflammatory score and semiquantitative score, and reducing expression of collagen I and α-SMA. AKF-PD attenuated the progression of hepatic fibrosis by suppressing HSCs proliferation and activation via the ERK/MAPK and PI3K/Akt signaling pathways. AKF-PD may be used as a potential novel therapeutic agent against liver fibrosis.
Collapse
Affiliation(s)
- Yu Peng
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wang W, Yan J, Wang H, Shi M, Zhang M, Yang W, Peng C, Li H. Rapamycin ameliorates inflammation and fibrosis in the early phase of cirrhotic portal hypertension in rats through inhibition of mTORC1 but not mTORC2. PLoS One 2014; 9:e83908. [PMID: 24404143 PMCID: PMC3880276 DOI: 10.1371/journal.pone.0083908] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 11/08/2013] [Indexed: 01/18/2023] Open
Abstract
Objective Hepatic stellate cells (HSCs) transdifferentiation and subsequent inflammation are important pathological processes involved in the formation of cirrhotic portal hypertension. This study characterizes the pathogenetic mechanisms leading to cholestatic liver fibrosis and portal hypertension, and focuses on mammalian target of rapamycin (mTOR) pathway as a potential modulator in the early phase of cirrhotic portal hypertension. Methods Early cirrhotic portal hypertension was induced by bile duct ligation (BDL) for three weeks. One week after operation, sham-operated (SHAM) and BDL rats received rapamycin (2 mg/kg/day) by intraperitoneal injection for fourteen days. Vehicle-treated SHAM and BDL rats served as controls. Fibrosis, inflammation, and portal pressure were evaluated by histology, morphometry, and hemodynamics. Expressions of pro-fibrogenic and pro-inflammatory genes in liver were measured by RT-PCR; alpha smooth muscle actin (α-SMA) and antigen Ki67 were detected by immunohistochemistry; expressions of AKT/mTOR signaling molecules, extracellular-signal-regulated kinase 1/2 (ERK1/2), p-ERK1/2, and interleukin-1 beta (IL-1β) were assessed by western blot. Results The AKT/mTOR signaling pathway was markedly activated in the early phase of cirrhotic portal hypertension induced by BDL in rats. mTOR blockade by rapamycin profoundly improved liver function by limiting inflammation, fibrosis and portal pressure. Rapamycin significantly inhibited the expressions of phosphorylated 70KD ribosomal protein S6 kinase (p-P70S6K) and phosphorylated ribosomal protein S6 (p-S6) but not p-AKT Ser473 relative to their total proteins in BDL-Ra rats. Those results suggested that mTOR Complex 1 (mTORC1) rather than mTORC2 was inhibited by rapamycin. Interestingly, we also found that the level of p-ERK1/2 to ERK1/2 was significantly increased in BDL rats, which was little affected by rapamycin. Conclusions The AKT/mTOR signaling pathway played an important role in the early phase of cirrhotic portal hypertension in rats, which could be a potential target for therapeutic intervention in the early phase of such pathophysiological progress.
Collapse
Affiliation(s)
- Weijie Wang
- Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Key Laboratory of Systems Biomedicine verified by Ministry of Education, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiqi Yan
- Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Key Laboratory of Systems Biomedicine verified by Ministry of Education, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- * E-mail:
| | - Huakai Wang
- Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Key Laboratory of Systems Biomedicine verified by Ministry of Education, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Minmin Shi
- Key Laboratory of Systems Biomedicine verified by Ministry of Education, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mingjun Zhang
- Key Laboratory of Systems Biomedicine verified by Ministry of Education, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weiping Yang
- Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chenghong Peng
- Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hongwei Li
- Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Tibaldi E, Zonta F, Bordin L, Magrin E, Gringeri E, Cillo U, Idotta G, Pagano MA, Brunati AM. The tyrosine phosphatase SHP-1 inhibits proliferation of activated hepatic stellate cells by impairing PDGF receptor signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:288-98. [PMID: 24140598 DOI: 10.1016/j.bbamcr.2013.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/20/2013] [Accepted: 10/11/2013] [Indexed: 02/08/2023]
Abstract
The dimerization and auto-transphosphorylation of platelet-derived growth factor receptor (PDGFR) upon engagement by platelet-derived growth factor (PDGF) activates signals promoting the mitogenic response of hepatic stellate cells (HSCs) due to liver injury, thus contributing to the development of hepatic fibrosis. We demonstrate that the tyrosine phosphatases Src homology 2 domain-containing phosphatase 1 and 2 (SHP-1 and SHP-2) act as crucial regulators of a complex signaling network orchestrated by PDGFR activation in a spatio-temporal manner with diverse and opposing functions in HSCs. In fact, silencing of either phosphatase shows that SHP-2 is committed to PDGFR-mediated cell proliferation, whereas SHP-1 dephosphorylates PDGFR hence abrogating the downstream signaling pathways that result in HSC activation. In this regard, SHP-1 as an off-switch of PDGFR signaling appears to emerge as a valuable molecular target to trigger as to prevent HSC proliferation and the fibrogenic effects of HSC activation. We show that boswellic acid, a multitarget compound with potent anti-inflammatory action, exerts an anti-proliferative effect on HSCs, as in other cell models, by upregulating SHP-1 with subsequent dephosphorylation of PDGFR-β and downregulation of PDGF-dependent signaling after PDGF stimulation. Moreover, the synergism resulting from the combined use of boswellic acid and imatinib, which directly inhibits PDGFR-β activity, on activated HSCs offers new perspectives for the development of therapeutic strategies that could implement molecules affecting diverse players of this molecular circuit, thus paving the way to multi-drug low-dose regimens for liver fibrosis.
Collapse
Affiliation(s)
- Elena Tibaldi
- Department of Molecular Medicine, University of Padua, Viale G. Colombo 3, 35131 Padua, Italy
| | - Francesca Zonta
- Department of Molecular Medicine, University of Padua, Viale G. Colombo 3, 35131 Padua, Italy
| | - Luciana Bordin
- Department of Molecular Medicine, University of Padua, Viale G. Colombo 3, 35131 Padua, Italy
| | - Elisa Magrin
- Department of Molecular Medicine, University of Padua, Viale G. Colombo 3, 35131 Padua, Italy
| | - Enrico Gringeri
- Department of Surgical and Gastroenterological Sciences, University of Padua, Via Giustiniani 2, 35128 Padua, Italy
| | - Umberto Cillo
- Department of Surgical and Gastroenterological Sciences, University of Padua, Via Giustiniani 2, 35128 Padua, Italy
| | - Giuseppe Idotta
- Department of Medical Specialties, Hospital of Cittadella, Via Casa di Ricovero 40, 35013 Padua, Italy
| | - Mario Angelo Pagano
- Department of Molecular Medicine, University of Padua, Viale G. Colombo 3, 35131 Padua, Italy.
| | - Anna Maria Brunati
- Department of Molecular Medicine, University of Padua, Viale G. Colombo 3, 35131 Padua, Italy.
| |
Collapse
|
35
|
Sharvit E, Abramovitch S, Reif S, Bruck R. Amplified inhibition of stellate cell activation pathways by PPAR-γ, RAR and RXR agonists. PLoS One 2013; 8:e76541. [PMID: 24098526 PMCID: PMC3788137 DOI: 10.1371/journal.pone.0076541] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 08/28/2013] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator activator receptors (PPAR) ligands such as 15-Δ12,13-prostaglandin L(2) [PJ] and all trans retinoic acid (ATRA) have been shown to inhibit the development of liver fibrosis. The role of ligands of retinoic X receptor (RXR) and its ligand, 9-cis, is less clear. The purpose of this study was to investigate the effects of combined treatment of the three ligends, PJ, ATRA and 9-cis, on key events during liver fibrosis in rat primary hepatic stellate cells (HSCs). We found that the anti-proliferative effect of the combined treatment of PJ, ATRA and 9-cis on HSCs was additive. Further experiments revealed that this inhibition was due to cell cycle arrest at the G0/G1 phase as demonstrated by FACS analysis. In addition, the combined treatment reduced cyclin D1 expression and increased p21 and p27 protein levels. Furthermore, we found that the three ligands down regulated the phosphorylation of mTOR and p70(S6K). The activation of HSCs was also inhibited by the three ligands as shown by inhibition of vitamin A lipid droplets depletion from HSCs. Studies using real time PCR and western blot analysis showed marked inhibition of collagen Iα1 and αSMA by the combination of the three ligands. These findings suggest that the combined use of PJ, ATRA and 9-cis causes inhibition of cell proliferation by cell cycle arrest and down-regulation of fibrotic markers to a greater extent compared to each of the ligands alone.
Collapse
Affiliation(s)
- Efrat Sharvit
- Institute of Gastroenterology and Liver Diseases, Tel Aviv Sourasky Medical Center, and Sackler Faculty of Medicine, Tel Aviv, Israel
- Pediatric Gastroenterology Unit, Dana Children’s Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shirley Abramovitch
- Pediatric Gastroenterology Unit, Dana Children’s Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Shimon Reif
- Institute of Gastroenterology and Liver Diseases, Tel Aviv Sourasky Medical Center, and Sackler Faculty of Medicine, Tel Aviv, Israel
- Pediatric Gastroenterology Unit, Dana Children’s Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Rafael Bruck
- Institute of Gastroenterology and Liver Diseases, Tel Aviv Sourasky Medical Center, and Sackler Faculty of Medicine, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
36
|
Fang L, Zhan S, Huang C, Cheng X, Lv X, Si H, Li J. TRPM7 channel regulates PDGF-BB-induced proliferation of hepatic stellate cells via PI3K and ERK pathways. Toxicol Appl Pharmacol 2013; 272:713-25. [PMID: 23958495 DOI: 10.1016/j.taap.2013.08.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/22/2013] [Accepted: 08/08/2013] [Indexed: 01/18/2023]
Abstract
TRPM7, a non-selective cation channel of the TRP channel superfamily, is implicated in diverse physiological and pathological processes including cell proliferation. Recently, TRPM7 has been reported in hepatic stellate cells (HSCs). Here, we investigated the contribution role of TRPM7 in activated HSC-T6 cell (a rat hepatic stellate cell line) proliferation. TRPM7 mRNA and protein were measured by RT-PCR and Western blot in rat model of liver fibrosis in vivo and PDGF-BB-activated HSC-T6 cells in vitro. Both mRNA and protein of TRPM7 were dramatically increased in CCl4-treated rat livers. Stimulation of HSC-T6 cells with PDGF-BB resulted in a time-dependent increase of TRPM7 mRNA and protein. However, PDGF-BB-induced HSC-T6 cell proliferation was inhibited by non-specific TRPM7 blocker 2-aminoethoxydiphenyl borate (2-APB) or synthetic siRNA targeting TRPM7, and this was accompanied by downregulation of cell cycle proteins, cyclin D1, PCNA and CDK4. Blockade of TRPM7 channels also attenuated PDGF-BB induced expression of myofibroblast markers as measured by the induction of α-SMA and Col1α1. Furthermore, the phosphorylation of ERK and AKT, associated with cell proliferation, decreased in TRPM7 deficient HSC-T6 cells. These observations suggested that TRPM7 channels contribute to perpetuated fibroblast activation and proliferation of PDGF-BB induced HSC-T6 cells via the activation of ERK and PI3K pathways. Therefore, TRPM7 may constitute a useful target for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Ling Fang
- School of Pharmacy, Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032, China; Institute for Liver Diseases of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032, China.
| | | | | | | | | | | | | |
Collapse
|
37
|
Shah R, Reyes-Gordillo K, Arellanes-Robledo J, Lechuga CG, Hernández-Nazara Z, Cotty A, Rojkind M, Lakshman MR. TGF-β1 up-regulates the expression of PDGF-β receptor mRNA and induces a delayed PI3K-, AKT-, and p70(S6K) -dependent proliferative response in activated hepatic stellate cells. Alcohol Clin Exp Res 2013; 37:1838-48. [PMID: 23895226 DOI: 10.1111/acer.12167] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/01/2013] [Indexed: 01/18/2023]
Abstract
BACKGROUND Transforming growth factor beta 1 (TGF-β1) is a pleiotropic cytokine that activates hepatic stellate cell (HSC) proliferation, but inhibits parenchymal cell proliferation. Therefore, we hypothesize that TGF-β1 regulates HSC proliferation and elucidated its molecular action. METHODS In order to elucidate the molecular mechanism whereby TGF-β1 up-regulates platelet derived growth factor beta (PDGF-β) receptor mRNA and induces a delayed proliferation of HSC, we used proliferation and apoptosis assays as well as RT-PCR, Western blot analysis, immunostaining, and flow cytometry in mouse and rat HSC. RESULTS We show that TGF-β1 markedly induces the proliferation of mouse HSC in culture with concomitant 2.1-fold (p < 0.001) stimulation in [(3) H]-thymidine incorporation into cellular DNA. This induction is maximal between 24 and 36 hours postcytokine exposure that is triggered by 7.6-fold (p < 0.001) up-regulation of PDGF-β receptor mRNA and associated increase in PDGF-β receptor protein after 48 hours. TGF-β1-dependent HSC proliferation is mimicked by H2 O2 that is inhibited by catalase, implying that TGF-β1 action is mediated via reactive oxygen species. HSC proliferation is blunted by PDGF-β receptor-neutralizing antibody as well as by specific inhibitors of PI3 kinase (PI3K), AKT, and p70(S6K) , indicating that the action of TGF-β1 involves the activation of PDGF-β receptor via the PI3K/AKT/p70(S6K) signaling pathway. TGF-β1 also induces a reorganization of actin and myosin filaments and cell morphology leading to the formation of palisades although their myosin and actin contents remained constant. These findings suggest that TGF-β1-mediated oxidative stress causes the transdifferentiation of HSC and primes them for extracellular matrix (ECM) deposition and scar contraction. CONCLUSIONS We conclude that liver injury up-regulates TGF-β1 that inhibits parenchymal cell proliferation, but stimulates HSC proliferation leading to the production of ECM and type I collagen resulting in fibrosis.
Collapse
Affiliation(s)
- Ruchi Shah
- Lipid Research Laboratory, VA Medical Center, Washington, District of Columbia; Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, Washington, District of Columbia
| | | | | | | | | | | | | | | |
Collapse
|
38
|
MicroRNA-21 activates hepatic stellate cells via PTEN/Akt signaling. Biomed Pharmacother 2013; 67:387-92. [PMID: 23643356 DOI: 10.1016/j.biopha.2013.03.014] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 03/04/2013] [Indexed: 01/18/2023] Open
Abstract
Activation of hepatic stellate cells is the key event in the liver fibrosis. miRs have been shown to play fundamental role in diverse biological and pathological processes. In the present study, we investigated the fibrogenic role of miR-21 in human hepatic stellate LX-2 cells and explored underlying mechanisms. The results showed that treatment of LX-2 cells with platelet-derived growth factor (PDGF)-BB significantly stimulated α1(I) collagen mRNA synthesis and the protein expression of α-SMA, which are characteristics of activation of hepatic stellate cells and simultaneously increased miR-21 expression. Downregulation of miR-21 expression by transfection of anti-miR-21 into LX-2 cells prevented PDGF-BB-induced LX-2 cell activation. Overexpression of miR-21 expression alone also stimulated LX-2 cell activation, while downregulation of miR-21 expression suppressed LX-2 cell activation. miR-21 also played a role in mRNA expression and activity of matrix metalloproteinase 2 (MMP2) in LX-2 cells. Moreover, overexpression of miR-21 decreased protein expression of PTEN in LX-2 cells, resulting in activation of the Akt. Inhibition of Akt signaling by specific inhibitor LY 294002 blocked miR-21-induced fibrogenic effects in LX-2 cells. In summary, miR-21 is an important mediator in LX-2 cell activation. The fibrogenic effects of miR-21 on LX-2 cell activation are mediated through PTEN/Akt pathway. miR-21 may be a potential novel molecular target for the liver fibrosis.
Collapse
|
39
|
Huang W, Zhu X. Correlation between PDGFs and their receptor and liver fibrosis. Shijie Huaren Xiaohua Zazhi 2013; 21:773-778. [DOI: 10.11569/wcjd.v21.i9.773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis occurs as a result of various injurious processes and is the common pathologic basis for all chronic hepatic diseases. Platelet-derived growth factors (PDGFs) are homodimers or heterodimers consisting of two polypeptide chains. Previous studies have proved that PDGFs are closely related to the occurrence and development of liver fibrosis. In this article, we review the advances in research on the role of PDGFs and their receptor in pathogenesis and therapy of liver fibrosis.
Collapse
|
40
|
Lian H, Ma Y, Feng J, Dong W, Yang Q, Lu D, Zhang L. Heparin-binding EGF-like growth factor induces heart interstitial fibrosis via an Akt/mTor/p70s6k pathway. PLoS One 2012. [PMID: 22984591 DOI: 10.1371/jour] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is essential for maintaining normal function of the adult heart and is known to play an important role in myocardial remodeling. In the present study, we observed that heart-specific HB-EGF transgenic (TG) mice had systolic dysfunction with decreased fractional shortening (FS%), increased end-systolic diameter (LVIDs) at 5 months of age, increased heart fibrosis, and increased mRNA expression of Col1α1 and Col3α1 at 1, 3, 5 and 7 months of age compared to nontransgenic (NTG) littermates. However, the left ventricular anterior wall thickness at end-systole (LVAWs) of the TG mice was not different than the NTG mice. Phosphorylation levels of Akt, mTor and p70s6k were increased due to HB-EGF expression in TG mice compared with the NTG mice at 3 and 7 months of age. Additionally, activated Akt, mTor and p70s6k were co-localized with vimentin to cardiac fibroblasts isolated from TG mice. Furthermore, HB-EGF significantly increased phosphorylation levels of Akt, mTor and p70s6k and increased expression of type I collagen in cultured primary cardiac fibroblasts. Rapamycin (Rapa) and CRM197, inhibitors of mTor and HB-EGF respectively, could inhibit the expression of type I collagen in the cultured primary cardiac fibroblasts and Rapa suppressed interstitial fibrosis of the heart tissues in vivo. In addition, a BrdU assay showed that HB-EGF increased proliferation of cardiac fibroblasts by 30% compared with cells without HB-EGF treatment. HB-EGF-induced proliferation was completely diminished in the presence of Rapa. These results suggest that HB-EGF induced heart fibrosis and proliferation of cardiac fibroblasts occurs through activation of the Akt/mTor/p70s6k pathway.
Collapse
Affiliation(s)
- Hong Lian
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Lian H, Ma Y, Feng J, Dong W, Yang Q, Lu D, Zhang L. Heparin-binding EGF-like growth factor induces heart interstitial fibrosis via an Akt/mTor/p70s6k pathway. PLoS One 2012; 7:e44946. [PMID: 22984591 PMCID: PMC3440333 DOI: 10.1371/journal.pone.0044946] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 08/14/2012] [Indexed: 01/18/2023] Open
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is essential for maintaining normal function of the adult heart and is known to play an important role in myocardial remodeling. In the present study, we observed that heart-specific HB-EGF transgenic (TG) mice had systolic dysfunction with decreased fractional shortening (FS%), increased end-systolic diameter (LVIDs) at 5 months of age, increased heart fibrosis, and increased mRNA expression of Col1α1 and Col3α1 at 1, 3, 5 and 7 months of age compared to nontransgenic (NTG) littermates. However, the left ventricular anterior wall thickness at end-systole (LVAWs) of the TG mice was not different than the NTG mice. Phosphorylation levels of Akt, mTor and p70s6k were increased due to HB-EGF expression in TG mice compared with the NTG mice at 3 and 7 months of age. Additionally, activated Akt, mTor and p70s6k were co-localized with vimentin to cardiac fibroblasts isolated from TG mice. Furthermore, HB-EGF significantly increased phosphorylation levels of Akt, mTor and p70s6k and increased expression of type I collagen in cultured primary cardiac fibroblasts. Rapamycin (Rapa) and CRM197, inhibitors of mTor and HB-EGF respectively, could inhibit the expression of type I collagen in the cultured primary cardiac fibroblasts and Rapa suppressed interstitial fibrosis of the heart tissues in vivo. In addition, a BrdU assay showed that HB-EGF increased proliferation of cardiac fibroblasts by 30% compared with cells without HB-EGF treatment. HB-EGF-induced proliferation was completely diminished in the presence of Rapa. These results suggest that HB-EGF induced heart fibrosis and proliferation of cardiac fibroblasts occurs through activation of the Akt/mTor/p70s6k pathway.
Collapse
Affiliation(s)
- Hong Lian
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuanwu Ma
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Juan Feng
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Dong
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing Yang
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Lu
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail:
| |
Collapse
|
42
|
An P, Tian Y, Chen M, Luo H. Ca(2+) /calmodulin- dependent protein kinase II mediates transforming growth factor-β-induced hepatic stellate cells proliferation but not in collagen α1(I) production. Hepatol Res 2012; 42:806-818. [PMID: 22414022 DOI: 10.1111/j.1872-034x.2012.00983.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AIM Hepatic stellate cells (HSC) are the major players in hepatic fibrosis. As a most potent mitogen, transforming growth factor-β (TGF-β) strongly activates HSC and increases intracellular Ca(2+) concentration. Here, we assessed the potential role of Ca(2+) /calmodulin-dependent protein kinase II (CaMKII), a main downstream effector of the Ca(2+) signal in liver fibrogenesis cascade. METHODS A human immortal HSC cell line, LX-2, and primary rat hepatic stellate cells were used in current study. CaMKII blockage and Akt inhibition were performed by KN-93/CaMKIIα siRNA and LY294002, respectively. HSC proliferation was detected by 5-bromodeoxyuridine incorporation assay. Real-time polymerase chain reaction, western blot and enzyme-linked immunosorbent assay were used to measure mRNA, cellular protein and protein in medium, respectively. Procollagen α1(I) expression was detected by immunocytochemistry. The role of CaMKII on TGF-β/Smad-induced collagen α1(I) expression was determined by (CAGA)(12) -MLP luciferase activity assay. RESULTS TGF-β dramatically increased CaMKII mRNA, and total and phosphorylated CaMKII expression. KN-93 and CaMKIIα siRNA suppressed TGF-β-mediated HSC proliferation. CaMKII interruption blocked TGF-β-elicited Akt activation. LY294002 arrested HSC proliferation and collagen α1(I) production but had no effect on CaMKII. Furthermore, CaMKII led to increased p21 and p27 expression. KN-93 and CaMKIIα siRNA inhibited TGF-β-induced and basal collagen α1(I) production but had no effect on the activity of (CAGA)(12) -MLP luciferase in response to TGF-β stimulation. CONCLUSION CaMKII is a pivotal signal in TGF-β-induced fibrogenic cascades by means of stimulating HSC proliferation, and involved in a basal collagen production. Therefore, CaMKII will be a potentially effective target in the development of therapeutic intervention strategies to attenuate hepatic fibrosis.
Collapse
Affiliation(s)
- Ping An
- Division of Gastroenterology, Renmin Hospital of Wuhan University Department of Anatomy and Embryology, Wuhan University School of Medicine, Wuhan, China
| | | | | | | |
Collapse
|
43
|
Bian EB, Huang C, Ma TT, Tao H, Zhang H, Cheng C, Lv XW, Li J. DNMT1-mediated PTEN hypermethylation confers hepatic stellate cell activation and liver fibrogenesis in rats. Toxicol Appl Pharmacol 2012; 264:13-22. [PMID: 22841775 DOI: 10.1016/j.taap.2012.06.022] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 06/06/2012] [Accepted: 06/29/2012] [Indexed: 01/18/2023]
Abstract
Hepatic stellate cell (HSC) activation is an essential event during liver fibrogenesis. Phosphatase and tension homolog deleted on chromosome 10 (PTEN), a tumor suppressor, is a negative regulator of this process. PTEN promoter hypermethylation is a major epigenetic silencing mechanism in tumors. The present study aimed to investigate whether PTEN promoter methylation was involved in HSC activation and liver fibrosis. Treatment of activated HSCs with the DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-azadC) decreased aberrant hypermethylation of the PTEN gene promoter and prevented the loss of PTEN expression that occurred during HSC activation. Silencing DNA methyltransferase 1 (DNMT1) gene also decreased the PTEN gene promoter methylation and upregulated the PTEN gene expression in activated HSC-T6 cells. In addition, knockdown of DNMT1 inhibited the activation of both ERK and AKT pathways in HSC-T6 cells. These results suggest that DNMT1-mediated PTEN hypermethylation caused the loss of PTEN expression, followed by the activation of the PI3K/AKT and ERK pathways, resulting in HSC activation.
Collapse
Affiliation(s)
- Er-Bao Bian
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Autophagy and hepatic stellate cell activation - partners in crime? J Hepatol 2011; 55:1176-7. [PMID: 21856271 DOI: 10.1016/j.jhep.2011.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 08/11/2011] [Indexed: 01/18/2023]
|
45
|
|
46
|
Latasa MU, Gil-Puig C, Fernández-Barrena MG, Rodríguez-Ortigosa CM, Banales JM, Urtasun R, Goñi S, Méndez M, Arcelus S, Juanarena N, Recio JA, Lotersztajn S, Prieto J, Berasain C, Corrales FJ, Lecanda J, Ávila MA. Oral methylthioadenosine administration attenuates fibrosis and chronic liver disease progression in Mdr2-/- mice. PLoS One 2010; 5:e15690. [PMID: 21209952 PMCID: PMC3012093 DOI: 10.1371/journal.pone.0015690] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 11/21/2010] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Inflammation and fibrogenesis are directly related to chronic liver disease progression, including hepatocellular carcinoma (HCC) development. Currently there are few therapeutic options available to inhibit liver fibrosis. We have evaluated the hepatoprotective and anti-fibrotic potential of orally-administered 5'-methylthioadenosine (MTA) in Mdr2(-/-) mice, a clinically relevant model of sclerosing cholangitis and spontaneous biliary fibrosis, followed at later stages by HCC development. METHODOLOGY MTA was administered daily by gavage to wild type and Mdr2(-/-) mice for three weeks. MTA anti-inflammatory and anti-fibrotic effects and potential mechanisms of action were examined in the liver of Mdr2(-/-) mice with ongoing fibrogenesis and in cultured liver fibrogenic cells (myofibroblasts). PRINCIPAL FINDINGS MTA treatment reduced hepatomegaly and liver injury. α-Smooth muscle actin immunoreactivity and collagen deposition were also significantly decreased. Inflammatory infiltrate, the expression of the cytokines IL6 and Mcp-1, pro-fibrogenic factors like TGFβ2 and tenascin-C, as well as pro-fibrogenic intracellular signalling pathways were reduced by MTA in vivo. MTA inhibited the activation and proliferation of isolated myofibroblasts and down-regulated cyclin D1 gene expression at the transcriptional level. The expression of JunD, a key transcription factor in liver fibrogenesis, was also reduced by MTA in activated myofibroblasts. CONCLUSIONS/SIGNIFICANCE Oral MTA administration was well tolerated and proved its efficacy in reducing liver inflammation and fibrosis. MTA may have multiple molecular and cellular targets. These include the inhibition of inflammatory and pro-fibrogenic cytokines, as well as the attenuation of myofibroblast activation and proliferation. Downregulation of JunD and cyclin D1 expression in myofibroblasts may be important regarding the mechanism of action of MTA. This compound could be a good candidate to be tested for the treatment of (biliary) liver fibrosis.
Collapse
Affiliation(s)
- M. Ujue Latasa
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
| | - Carmen Gil-Puig
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
- Digna Biotech, Madrid, Spain
| | - Maite G. Fernández-Barrena
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
- CIBERehd, University Clinic, University of Navarra, Pamplona, Spain
| | - Carlos M. Rodríguez-Ortigosa
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
- CIBERehd, University Clinic, University of Navarra, Pamplona, Spain
| | - Jesús M. Banales
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
- CIBERehd, University Clinic, University of Navarra, Pamplona, Spain
| | - Raquel Urtasun
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
| | - Saioa Goñi
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
| | - Miriam Méndez
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
| | - Sara Arcelus
- CIBERehd, University Clinic, University of Navarra, Pamplona, Spain
| | - Nerea Juanarena
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
| | - Juan A. Recio
- Vall d'Hebron Research Institute, Institute of Oncology and Hospital, Barcelona, Spain
| | - Sophie Lotersztajn
- Inserm, U955, Créteil, France
- Université Paris-Est, Faculté de Médecine, UMR-S955, Créteil, France
| | - Jesús Prieto
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
- CIBERehd, University Clinic, University of Navarra, Pamplona, Spain
| | - Carmen Berasain
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
| | - Fernando J. Corrales
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
| | - Jon Lecanda
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
- Digna Biotech, Madrid, Spain
| | - Matías A. Ávila
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
| |
Collapse
|
47
|
Velasco-Loyden G, Pérez-Carreón JI, Agüero JFC, Romero PC, Vidrio-Gómez S, Martínez-Pérez L, Yáñez-Maldonado L, Hernández-Muñoz R, Macías-Silva M, de Sánchez VC. Prevention of in vitro hepatic stellate cells activation by the adenosine derivative compound IFC305. Biochem Pharmacol 2010; 80:1690-9. [PMID: 20813095 DOI: 10.1016/j.bcp.2010.08.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 08/21/2010] [Accepted: 08/23/2010] [Indexed: 01/31/2023]
Abstract
We have previously shown that adenosine and the aspartate salt of adenosine (IFC305) reverse pre-established CCl(4)-induced cirrhosis in rats. However, their molecular mechanism of action is not clearly understood. Hepatic stellate cells (HSC) play a pivotal role in liver fibrogenesis leading to cirrhosis, mainly through their activation, changing from a quiescent adipogenic state to a proliferative myofibrogenic condition. Therefore, we decided to investigate the effect of IFC305 on primary cultured rat HSC. Our results reveal that this compound suppressed the activation of HSC, as demonstrated by the maintenance of a quiescent cell morphology, including lipid droplets content, inhibition of α-smooth muscle actin (α-SMA) and collagen α1(I) expression, and up-regulation of MMP-13, Smad7, and PPARγ expression, three key antifibrogenic genes. Furthermore, IFC305 was able to repress the platelet-derived growth factor (PDGF)-induced proliferation of HSC. This inhibition was independent of adenosine receptors stimulation; instead, IFC305 was incorporated into cells by adenosine transporters and converted to AMP by adenosine kinase. On the other hand, addition of pyrimidine ribonucleoside as uridine reversed the suppressive effect of IFC305 on the proliferation and activation of HSC, suggesting that intracellular pyrimidine starvation would be involved in the molecular mechanism of action of IFC305. In conclusion, IFC305 inhibits HSC activation and maintains their quiescence in vitro; these results could explain in part the antifibrotic liver beneficial effect previously described for this compound on the animal model.
Collapse
Affiliation(s)
- Gabriela Velasco-Loyden
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), México 04510, D.F., Apdo. postal 70-243, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Liu Q, Chen J, Wang X, Yu L, Hu LH, Shen X. Withagulatin A inhibits hepatic stellate cell viability and procollagen I production through Akt and Smad signaling pathways. Acta Pharmacol Sin 2010; 31:944-52. [PMID: 20644552 DOI: 10.1038/aps.2010.72] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AIM To investigate the effects of the natural product Withagulatin A on hepatic stellate cell (HSC) viability and type I procollagen production. The potential mechanism underlying the pharmacological actions was also explored. METHODS The effect of Withagulatin A on cell viability was evaluated in HSC and LX-2 cells using a sulforhodamine B (SRB) assay. Cell cycle distribution was analyzed using flow cytometry. Type I procollagen gene expression was determined using real-time PCR. Regulation of signaling molecules by Withagulatin A was detected using Western blotting. RESULTS Primary rat HSCs and the human hepatic stellate cell line LX-2 treated with Withagulatin A (0.625-20 micromol/L) underwent a dose-dependent decrease in cell viability, which was associated with S phase arrest and the induction of cell apoptosis. In addition, the natural product decreased phosphorylation of the Akt/mTOR/p70S6K pathway that controls cell proliferation and survival. Furthermore, Withagulatin A (1, 2 mumol/L) inhibited transforming growth factor-beta (TGF-beta) stimulated type I procollagen gene expression, which was attributable to the suppression of TGF-beta stimulated Smad2 and Smad3 phosphorylation. CONCLUSION Our results demonstrated that Withagulatin A potently inhibited HSC viability and type I procollagen production, thereby implying that this natural product has potential use in the development of anti-fibrogenic reagents for the treatment of hepatic fibrosis.
Collapse
|
49
|
Leukamenin F suppresses liver fibrogenesis by inhibiting both hepatic stellate cell proliferation and extracellular matrix production. Acta Pharmacol Sin 2010; 31:839-48. [PMID: 20562900 DOI: 10.1038/aps.2010.64] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AIM To investigate the inhibitory effect of the natural product Leukamenin F on liver fibrosis and explore its potential underlying mechanisms. METHODS Carbon tetrachloride (CCl(4))-treated mouse model in vivo and in hepatic stellate cells (HSC) in vitro were used. The effect on CCl(4)-induced liver fibrosis was studied using histochemical and biochemical analysis, while the inhibition on HSC was assessed using cell proliferation/apoptosis assay and collagen I production using real-time PCR. The inhibitory effects of Leukamenin F on Akt/mTOR/p70S6K and TGFbeta/Smad pathways was studied using Western blot and cell image analysis. RESULTS Leukamenin F (0.1-1 mg/kg, ip, q.d.x28) significantly reduced alpha-SMA and collagen specific Sirius red staining areas in CCl(4) -treated mouse livers. This compound at 1-2 micromol/L dose-dependently inhibited alpha-SMA expression, cell proliferation and type I procollagen mRNA expression in activated HSC. Furthermore it inhibited the Akt/mTOR/p70S6K pathway and suppressed TGFbeta -induced Smad2/Smad3 phosphorylation and nuclear translocation in HSC. CONCLUSION Our results demonstrated that Leukamenin F could attenuate CCl(4)-induced liver fibrogenesis in mice as an efficient inhibitor against both HSC proliferation and ECM production. This natural product provides a valuable structural hint for the development of anti-liver fibrosis reagents.
Collapse
|
50
|
Wang Y, Gao J, Zhang D, Zhang J, Ma J, Jiang H. New insights into the antifibrotic effects of sorafenib on hepatic stellate cells and liver fibrosis. J Hepatol 2010; 53:132-44. [PMID: 20447716 DOI: 10.1016/j.jhep.2010.02.027] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Revised: 01/27/2010] [Accepted: 02/16/2010] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS During the process of liver fibrosis, hepatic stellate cells (HSCs) play a critical role in the excessive production of extracellular matrix (ECM). We evaluated the therapeutic effects of sorafenib, a multiple receptor tyrosine kinase inhibitor, targeting platelet-derived growth factor (PDGF) receptor and the Raf/extracellular-signal-regulated kinase (ERK) signaling pathway, on liver fibrosis and HSC proliferation. METHODS The in vivo effects of sorafenib were monitored in the livers of rats with liver fibrosis, and simultaneously proliferation assays, apoptosis induction studies, and collagen synthesis measurement were conducted in vitro in rat and human HSCs and primary HSCs. RESULTS Sorafenib treatment attenuated liver fibrosis and was associated with a significant decrease in intrahepatic fibrogenesis, hydroxyproline accumulation and collagen deposition. Sorafenib reduced HSC proliferation and resulted in significantly higher levels of apoptosis. Moreover, sorafenib downregulated Cyclin D1 and Cyclin-dependent kinase 4 (Cdk-4), simultaneously increased expression of Fas, Fas-L, and Caspase-3, and decreased the ratio of Bcl-2 to Bax. Sorafenib treatment increased the ratio of matrix metalloproteinases (MMPs) to tissue inhibitor of matrix metalloproteinases (TIMPs) and reduced collagen synthesis in HSCs. Sorafenib inhibited the phosphorylation of ERK, Akt and 70-kDa ribosomal S6 kinase (p70S6K), both in vitro and in vivo. CONCLUSIONS Sorafenib induces the suppression of collagen accumulation and HSC growth warranting the use of sorafenib as a potential therapeutic agent in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Yan Wang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei, China
| | | | | | | | | | | |
Collapse
|