1
|
Meuleman MS, Roquigny J, Brousse R, El Sissy C, Durieux G, Quintrec ML, Van Huyen JPD, Frémeaux-Bacchi V, Chauvet S. Acquired and genetic determinants of disease phenotype and therapeutic strategies in C3 glomerulopathy and immunoglobulin-associated MPGN. Nephrol Dial Transplant 2025; 40:842-851. [PMID: 39537192 DOI: 10.1093/ndt/gfae245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Indexed: 11/16/2024] Open
Abstract
C3 glomerulopathy (C3G), a prototype of complement-mediated disease, is characterized by significant heterogeneity, in terms of not only clinical, histological and biological presentation but also prognosis, and response to existing therapies. Recent advancements in understanding the factors responsible for alternative pathway dysregulation in the disease have highlighted its even more complex nature. Here, we propose a reexamination of the diversity of C3G presentations in light of the drivers of complement activation. Autoantibodies targeting complement proteins, genetic abnormalities in complement genes and monoclonal immunoglobulins are now well-known to drive disease occurrence. This review discusses how these drivers contribute to the heterogeneity in disease phenotype and outcomes, providing insights into tailored diagnostic and therapeutic approaches. In recent years, a broad spectrum of complement inhibitory therapies has emerged, soon to be available in clinical practice. The recognition of specific clinical, biological and histological patterns associated with different forms of C3G is crucial for personalized management, particularly treatment strategies.
Collapse
Affiliation(s)
- Marie-Sophie Meuleman
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, ILe de France, Paris, France
| | - Julia Roquigny
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, ILe de France, Paris, France
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Romain Brousse
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, ILe de France, Paris, France
| | - Carine El Sissy
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, ILe de France, Paris, France
- Department of Immunology, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), ILe de France, Paris, France
| | - Guillaume Durieux
- Department of Nephrology, European Hospital Georges Pompidou, APHP, Paris, France, CRMR MARHEA and ARMAC
| | - Moglie Le Quintrec
- Department of Nephrology, Montpellier University Hospital, Montpellier, France
| | - Jean-Paul Duong Van Huyen
- Department of Anathomopathology, Necker Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Ile de France, Paris, France
- Paris Cité University, Paris, France
| | - Véronique Frémeaux-Bacchi
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, ILe de France, Paris, France
- Department of Immunology, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), ILe de France, Paris, France
| | - Sophie Chauvet
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, ILe de France, Paris, France
- Department of Nephrology, European Hospital Georges Pompidou, APHP, Paris, France, CRMR MARHEA and ARMAC
- Paris Cité University, Paris, France
| |
Collapse
|
2
|
Sato S, Miwa T, Gullipalli D, Golla M, Mohammadyari E, Zhou L, Palmer M, Song WC. Improved therapeutic efficacy of a bifunctional anti-C5 mAb-FH SCR1-5 fusion protein over anti-C5 mAb in an accelerated mouse model of C3 glomerulopathy. Immunohorizons 2025; 9:vlae006. [PMID: 39865974 PMCID: PMC11841979 DOI: 10.1093/immhor/vlae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 01/28/2025] Open
Abstract
C3 glomerulopathy (C3G), a rare kidney disease caused by dysregulation of alternative pathway complement activation, is characterized by glomerular C3 deposition, proteinuria, crescentic glomerulonephritis, and renal failure. The anti-C5 monoclonal antibody (mAb) drug eculizumab has shown therapeutic effects in some but not all patients with C3G, and no approved therapy is currently available. Here, we developed and used a triple transgenic mouse model of fast progressing lethal C3G (FHm/mP-/-hFDKI/KI) to compare the therapeutic efficacy of a bifunctional anti-C5 mAb fused to a functional factor H (FH) fragment (short consensus repeat 1-5 [SCR1-5]) and the anti-C5 mAb itself. The new C3G mouse model is derived by humanizing factor D (hFDKI/KI) in a previously described FHm/mP-/- mouse that developed lethal C3G. We tested the effectiveness of these 2 complement inhibitors in triple transgenic mice with established C3G and glomerular disease. No FHm/mP-/-hFDKI/KI mice treated with vehicle survived the 30-d study period. All FHm/mP-/-hFDKI/KI mice treated with the C5 mAb-FH SCR1-5 fusion protein and 50% of mice treated with the anti-C5 mAb survived the 30-d treatment period. Moreover, mice treated with the C5 mAb-FH SCR1-5 fusion protein, but not those treated with the anti-C5 mAb, showed restored plasma alternative pathway complement control. The C5 mAb-FH SCR1-5 fusion protein reversed glomerular disease to a greater degree than the anti-C5 mAb. These data suggest that simultaneously inhibiting the terminal and proximal complement pathways, by anti-C5 mAb and FH SCR1-5, respectively, can reverse established C3G and is more efficacious than inhibiting the terminal pathway alone. A similar approach may be effective in treating human C3G.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Mice
- Complement C5/immunology
- Complement C5/antagonists & inhibitors
- Mice, Transgenic
- Complement C3/metabolism
- Complement C3/immunology
- Humans
- Recombinant Fusion Proteins/therapeutic use
- Recombinant Fusion Proteins/pharmacology
- Recombinant Fusion Proteins/genetics
- Antibodies, Monoclonal
- Complement Factor H/genetics
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Glomerulonephritis/drug therapy
- Glomerulonephritis/immunology
- Glomerulonephritis, Membranoproliferative/drug therapy
- Glomerulonephritis, Membranoproliferative/immunology
- Complement Pathway, Alternative/drug effects
Collapse
Affiliation(s)
- Sayaka Sato
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Takashi Miwa
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Damodar Gullipalli
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Madhu Golla
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Eshagh Mohammadyari
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Lin Zhou
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Matthew Palmer
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Wen-Chao Song
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
3
|
Ghani M, Alisan B, Barmas-Alamdari D, Attieh RM, Jhaveri KD. The Difficulties of Treating Complement-3-Mediated Glomerulopathy. Am J Ther 2024; 31:e652-e658. [PMID: 39792491 DOI: 10.1097/mjt.0000000000001763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
BACKGROUND C3 glomerulopathy (C3G) is a rare disease affecting the complement alternative pathway, categorized into dense deposit disease and C3 glomerulonephritis. Dense deposit disease predominantly affects younger individuals, while C3 glomerulonephritis tends to manifest in older populations. The diseases are characterized by dysregulation of the complement alternative pathway, leading to the deposition of complement components in the glomeruli and subsequent renal dysfunction. Notably, the incidence of C3G in the United States is low, with 1-3 cases per 1,000,000 and a prevalence of 5 cases per 1,000,000. AREAS OF UNCERTAINTY Numerous uncertainties persist in comprehending the etiology and pathophysiology of C3G. While biomarkers such as C3 nephritic factor, autoantibodies, and relevant genetic mutations have been identified, their pathogenicity and clinical utility remain unclear. Standard workups involve complement assays and autoantibody panels, yet the definitive diagnostic test remains a kidney biopsy. Nuanced challenges lie in deciphering the sensitivity and specificity of these diagnostic tools, especially in the presence of phenotypical variations among individuals. THERAPEUTIC ADVANCEMENT Current therapeutic approaches, albeit lacking robust evidence, encompass a spectrum ranging from supportive care to targeted B-cell therapy and immunosuppression with mycophenolate mofetil and glucocorticoids. For severe and refractory cases, the monoclonal antibody eculizumab, targeting C5 in the complement cascade, is recommended. These treatments, while offering some relief, pose challenges related to their cost and obtaining insurance approval. Exploratory avenues delve into the potential of plasma exchange and innovative treatments such as oral complement inhibitors, reflecting the ongoing quest for effective therapeutic modalities. Trials investigating various complement inhibitors underscore the dynamic landscape of therapeutic advancements in C3G management. CONCLUSION In conclusion, the article highlights the complexities of C3G management. The need for further understanding, large-scale trials, and ongoing investigations into disease etiology and pathophysiology is emphasized.
Collapse
Affiliation(s)
- Maham Ghani
- Northwell, New Hyde Park, NY, Department of Medicine, Manhasset, NY
| | - Bedir Alisan
- Penn State, Milton S Hershey Medical Center, Hershey, PA
| | - Daniel Barmas-Alamdari
- Division of Ophthalmology, Northwell Eye Institute, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY; and
| | - Rose Mary Attieh
- Northwell, New Hyde Park, NY, Department of Medicine, Manhasset, NY
- Division of Kidney Diseases and Hypertension, Glomerular Center at Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY
| | - Kenar D Jhaveri
- Northwell, New Hyde Park, NY, Department of Medicine, Manhasset, NY
- Division of Kidney Diseases and Hypertension, Glomerular Center at Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY
| |
Collapse
|
4
|
Borovitz Y, Landau D, Dagan A, Alfandari H, Haskin O, Levi S, Hamdani G, Levy Erez D, Tzvi-Behr S, Weinbrand-Goichberg J, Tobar Foigelman A, Rahamimov R. Childhood onset C3 glomerulopathy: recurrence after kidney transplantation-a case series. Front Pediatr 2024; 12:1460525. [PMID: 39497737 PMCID: PMC11532817 DOI: 10.3389/fped.2024.1460525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/30/2024] [Indexed: 11/07/2024] Open
Abstract
Background C3 Glomerulopathy (C3G) is a complement-mediated disease, with predominant C3 deposits, where pathogenic genetic variants in complement system components and circulating autoantibodies result in loss of control of the alternative pathway, have been described. A high incidence of disease recurrence including graft failure has been reported after kidney transplantation (KTx). Currently treatment modalities for preventing and treating post KTx C3G recurrence (plasma exchange, rituximab and eculizumab) in adults have yielded inconsistent results. Data on post KTx C3G recurrence in childhood-onset C3G is still unknown. Methods A comprehensive case study of patients diagnosed with C3G as children or adolescents, who underwent KTx between the years 2015-2023. Data collected included complement workup, treatment modalities, and outcomes. Results 19 patients with C3G were identified during the study period. Five patients developed ESRD and received a kidney transplant. C3G recurrence was diagnosed post KTx in 100% of patients. Graft function improved in 3 of these patients (two with anti-factor H antibodies) after eculizumab treatment, one patient reached graft failure 9 months after transplantation despite eculizumab, recieved a second successful transplantation with pre-emptive eculizumab treatment and one patient showed histologic signs of disease recurrence without clinical signs. Conclusions C3G recurrence after KTx in patients diagnosed as children or adolescents may be higher than previously described. Treatment with eculizumab is beneficial in some patients. New treatments are needed for improving post-transplant outcome in patients with C3G.
Collapse
Affiliation(s)
- Yael Borovitz
- Nephrology Institute, Schneider Children’s Medical Center, Petah Tikva, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Landau
- Nephrology Institute, Schneider Children’s Medical Center, Petah Tikva, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amit Dagan
- Nephrology Institute, Schneider Children’s Medical Center, Petah Tikva, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hadas Alfandari
- Nephrology Institute, Schneider Children’s Medical Center, Petah Tikva, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orly Haskin
- Nephrology Institute, Schneider Children’s Medical Center, Petah Tikva, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shelly Levi
- Nephrology Institute, Schneider Children’s Medical Center, Petah Tikva, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gilad Hamdani
- Nephrology Institute, Schneider Children’s Medical Center, Petah Tikva, Israel
| | - Daniella Levy Erez
- Nephrology Institute, Schneider Children’s Medical Center, Petah Tikva, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shimrit Tzvi-Behr
- Division of Pediatric Nephrology, Shaare Zedek Medical Center, Jerusalem, Israel
| | | | - Ana Tobar Foigelman
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Pathology, Rabin Medical Center, Beilinson Campus, Petach Tikva, Israel
| | - Ruth Rahamimov
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Nephrology and Hypertension, Rabin Medical Center, Beilinson Campus, Petach Tikva, Israel
| |
Collapse
|
5
|
Meuleman MS, Petitprez F, Pickering MC, Le Quintrec M, Artero MR, Duval A, Rabant M, Gilmore A, Boyer O, Hogan J, Servais A, Provot F, Gnemmi V, Eloudzeri M, Grunenwald A, Buob D, Boffa JJ, Moktefi A, Audard V, Goujon JM, Bridoux F, Thervet E, Karras A, Roumenina LT, Frémeaux Bacchi V, Duong Van Huyen JP, Chauvet S. Complement Terminal Pathway Activation and Intrarenal Immune Response in C3 Glomerulopathy. J Am Soc Nephrol 2024; 35:1034-1044. [PMID: 38709564 PMCID: PMC11377803 DOI: 10.1681/asn.0000000000000373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
Key Points
We evidenced terminal pathway activation (C5b-9 deposits) in most of the glomeruli on kidney biopsy of C3 glomerulopathy.The amount of C5b-9 deposits correlated with disease prognosis in C3 glomerulopathy.Increased terminal pathway activation was found predominantly in a subgroup exhibiting an immuno-fibroblastic signature.
Background
C3 glomerulopathy is a rare disease resulting from an overactivation of the complement alternative pathway. Although there is also evidence of terminal pathway activation, its occurrence and consequences on the disease have been poorly studied.
Methods
We retrospectively studied a cohort of 42 patients diagnosed with C3 glomerulopathy. We performed centralized extensive characterization of histological parameters. Kidney C5b-9 staining was performed as a marker of terminal pathway activation; intrarenal immune response was characterized through transcriptomic analysis.
Results
Eighty-eight percent of biopsies showed C5b-9 deposits in glomeruli. Biopsies were grouped according to the amount of C5b-9 deposits (no or low n=15/42, 36%; intermediate n=15/42, 36%; and high n=12/42, 28%). Patients with high C5b-9 deposits significantly differed from the two other groups of patients and were characterized by a significant higher histological chronicity score (P = 0.005) and lower outcome-free survival (P = 0.001). In multivariable analysis, higher glomerular C5b-9 remained associated with poor kidney prognosis after adjustment. One third of the 847 studied immune genes were upregulated in C3 glomerulopathy biopsies compared with controls. Unsupervised clustering on differentially expressed genes identified a group of kidney biopsies enriched in high glomerular C5b-9 with high immune and fibroblastic signature and showed high chronicity scores on histological examination.
Conclusions
In a cohort of patients with C3 glomerulopathy, intrarenal terminal pathway activation was associated with specific histological phenotype and disease prognosis.
Collapse
Affiliation(s)
- Marie-Sophie Meuleman
- Inflammation, Complement and Cancer Team, Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France
| | - Florent Petitprez
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew C Pickering
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College, London, United Kingdom
| | - Moglie Le Quintrec
- Department of Nephrology, Montpellier University Hospital, Montpellier, France
| | - Mikel Rezola Artero
- Inflammation, Complement and Cancer Team, Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France
| | - Anna Duval
- Inflammation, Complement and Cancer Team, Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France
- Department of Nephrology, Strasbourg University Hospital, Strasbourg, France
| | - Marion Rabant
- Department of Anathomopathology, Necker Hospital, APHP, Paris, France
- Département Croissance et Signalisation, INSERM U1151, CNRS UMR 8253, Institut Necker-Enfants Malades, Paris, France
| | - Alyssa Gilmore
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College, London, United Kingdom
| | - Olivia Boyer
- Pediatric Nephrology, Necker-Enfants Malades University Hospital, MARHEA reference center, APHP, Institut Imagine, Université Paris Cité, Paris, France
| | - Julien Hogan
- Department of pediatric Nephrology, Robert Debré Hospital, APHP, Paris, France
| | - Aude Servais
- Department of Nephrology, Necker-Enfants Malades Hospital, APHP, Paris, France
| | - François Provot
- Department of Nephrology, Lille University Hospital, Lille, France
| | - Vivianne Gnemmi
- Department of Pathology, Lille University Hospital, Lille, France
| | - Maeva Eloudzeri
- Département Croissance et Signalisation, INSERM U1151, CNRS UMR 8253, Institut Necker-Enfants Malades, Paris, France
| | - Anne Grunenwald
- Inflammation, Complement and Cancer Team, Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France
- Department of Nephrology, Poissy Intercommunal Hospital, Poissy, France
| | - David Buob
- Department of Pathology, Tenon Hospital, APHP, Paris, France
| | | | - Anissa Moktefi
- Department of Pathology, Henri Mondor Hospital, APHP, Créteil, France
| | - Vincent Audard
- Assistance Publique des Hôpitaux de Paris (AP-HP), Nephrology and Renal Transplantation Department, Henri Mondor Hospital University, Centre de Référence Maladie Rare Syndrome Néphrotique Idiopathique, Fédération Hospitalo-Universitaire Innovative therapy for immune disorders, Créteil, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Univ Paris Est Créteil, Créteil, France
| | | | - Frank Bridoux
- Department of Nephrology, Poitiers University Hospital, Poitiers, France
| | - Eric Thervet
- Department of Nephrology, European Hospital Georges Pompidou, APHP, Paris, France
- Paris Cité University, Paris, France
| | - Alexandre Karras
- Department of Nephrology, European Hospital Georges Pompidou, APHP, Paris, France
- Paris Cité University, Paris, France
| | - Lubka T Roumenina
- Inflammation, Complement and Cancer Team, Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France
| | - Véronique Frémeaux Bacchi
- Inflammation, Complement and Cancer Team, Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France
- Department of Immunology, European Hospital Georges Pompidou, APHP, Paris, France
| | - Jean-Paul Duong Van Huyen
- Inflammation, Complement and Cancer Team, Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France
- Department of Anathomopathology, Necker Hospital, APHP, Paris, France
- Paris Cité University, Paris, France
| | - Sophie Chauvet
- Inflammation, Complement and Cancer Team, Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France
- Department of Nephrology, European Hospital Georges Pompidou, APHP, Paris, France
- Paris Cité University, Paris, France
| |
Collapse
|
6
|
Zotta F, Diomedi-Camassei F, Gargiulo A, Cappoli A, Emma F, Vivarelli M. Successful treatment with avacopan (CCX168) in a pediatric patient with C3 glomerulonephritis. Pediatr Nephrol 2023; 38:4197-4201. [PMID: 37306717 DOI: 10.1007/s00467-023-06035-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/14/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND C3 glomerulonephritis (C3GN) is a subtype of C3 glomerulopathy (C3G), characterized by dysregulation of the alternative pathway of complement and by dominant C3 by immunofluorescence on the kidney biopsy. There is no approved treatment for patients with C3G. Immunosuppressive drugs as well as biologics have been used with limited success. In recent decades, substantial advances in the understanding of the complement system have led to the development of new complement inhibitors. Avacopan (CCX168) is an orally administered small-molecule C5aR antagonist that blocks the effects of C5a, one of the most potent pro-inflammatory mediators of the complement system. CASE REPORT We describe a child with biopsy-proven C3GN treated with avacopan. She was enrolled in the ACCOLADE double-blind placebo-controlled Phase 2 study (NCT03301467), where during the first 26 weeks she was randomized to receive an avacopan-matching placebo orally twice daily, while in the following 26 weeks, the study was open-label and she received avacopan. After a wash-out period, she was restarted on avacopan through an expanded access program. CONCLUSIONS In this case, use of avacopan in a pediatric patient with C3GN was safe and well tolerated. On avacopan, the patient was able to discontinue mycophenolate mofetil (MMF) while maintaining remission.
Collapse
Affiliation(s)
- Federica Zotta
- Division of Nephrology and Dialysis, Department of Pediatric Subspecialties, Bambino Gesù Pediatric Hospital IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy.
| | | | - Antonio Gargiulo
- Division of Nephrology and Dialysis, Department of Pediatric Subspecialties, Bambino Gesù Pediatric Hospital IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Andrea Cappoli
- Division of Nephrology and Dialysis, Department of Pediatric Subspecialties, Bambino Gesù Pediatric Hospital IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Francesco Emma
- Division of Nephrology and Dialysis, Department of Pediatric Subspecialties, Bambino Gesù Pediatric Hospital IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Marina Vivarelli
- Division of Nephrology and Dialysis, Department of Pediatric Subspecialties, Bambino Gesù Pediatric Hospital IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| |
Collapse
|
7
|
Mansour I, Murugapandian S, Tanriover B, Thajudeen B. Contemporary Monoclonal Antibody Utilization in Glomerular Diseases. Mayo Clin Proc Innov Qual Outcomes 2023; 7:276-290. [PMID: 37448529 PMCID: PMC10338194 DOI: 10.1016/j.mayocpiqo.2023.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023] Open
Abstract
Therapeutic monoclonal antibodies (MAbs) have been one of the fastest growing drug classes in the past 2 decades and are indicated in the treatment of cancer, autoimmune disorders, solid organ transplantation, and glomerular diseases. The Food and Drug Administration has approved 100 MAbs between 1986 and 2021, and MAbs account for 20% of Food and Drug Administration's new drug approval every year. MAbs are preferred over traditional immunosuppressive agents because of their high specificity, reduced number of drug-drug interactions, and low toxicity, which make them a prime example of personalized medicine. In this review article, we provide an overview of the taxonomy, pharmacology, and therapeutic applications of MAbs in glomerular diseases. We searched the literature through PubMed using the following search terms: monoclonal antibodies, glomerular diseases, pharmacokinetics, pharmacodynamics, immunoglobulin, murine, chimeric,humanized, and fully human, and limited our search to years 2018-2023. We selected peer-reviewed journal articles with an evidence-based approach, prioritizing randomized control trials in specific glomerular diseases, if available. Advances in the MAb field have resulted in a significant paradigm shift in targeted treatment of immune-mediated glomerular diseases, and multiple randomized control trials are currently being conducted. Increased recognition is critical to expand their use in experimental research and personalized medicine.
Collapse
Affiliation(s)
- Iyad Mansour
- Division of Nephrology, College of Medicine, The University of Arizona, Tucson
| | | | - Bekir Tanriover
- Division of Nephrology, College of Medicine, The University of Arizona, Tucson
| | - Bijin Thajudeen
- Division of Nephrology, College of Medicine, The University of Arizona, Tucson
| |
Collapse
|
8
|
Trambas IA, Coughlan MT, Tan SM. Therapeutic Potential of Targeting Complement C5a Receptors in Diabetic Kidney Disease. Int J Mol Sci 2023; 24:ijms24108758. [PMID: 37240105 DOI: 10.3390/ijms24108758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetic kidney disease (DKD) affects 30-40% of patients with diabetes and is currently the leading cause of end-stage renal disease (ESRD). The activation of the complement cascade, a highly conserved element of the innate immune system, has been implicated in the pathogenesis of diabetes and its complications. The potent anaphylatoxin C5a is a critical effector of complement-mediated inflammation. Excessive activation of the C5a-signalling axis promotes a potent inflammatory environment and is associated with mitochondrial dysfunction, inflammasome activation, and the production of reactive oxygen species. Conventional renoprotective agents used in the treatment of diabetes do not target the complement system. Mounting preclinical evidence indicates that inhibition of the complement system may prove protective in DKD by reducing inflammation and fibrosis. Targeting the C5a-receptor signaling axis is of particular interest, as inhibition at this level attenuates inflammation while preserving the critical immunological defense functions of the complement system. In this review, the important role of the C5a/C5a-receptor axis in the pathogenesis of diabetes and kidney injuries will be discussed, and an overview of the status and mechanisms of action of current complement therapeutics in development will be provided.
Collapse
Affiliation(s)
- Inez A Trambas
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Melinda T Coughlan
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Sih Min Tan
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
9
|
Jandal A, Zhong W, Gopal D, Horner V, Frater-Rubsam L, Djamali A, Bhutani G. What lies in-between: C3 glomerulopathy with non-hemolytic renal microangiopathy and an ultra-rare C3 variant. Am J Med Sci 2023; 365:286-293. [PMID: 36473547 DOI: 10.1016/j.amjms.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 08/31/2022] [Accepted: 10/12/2022] [Indexed: 12/12/2022]
Abstract
We report a 36-year-old female with mixed nephritic-nephrotic syndrome and recurrent pancreatitis. Kidney biopsy showed a crescentic membranoproliferative glomerulonephritis with dominant C3 staining on immunofluorescence (IF) but only scant deposits on electron microscopy (EM) and instead, evidence of severe acute and chronic microangiopathy - endothelial swelling, sub-endothelial fluff, and segmental basement membrane remodeling. Her serum C3 was normal, Factor Ba, and serum Membrane attack complex (sMAC) levels were elevated, and Properdin was low. Genetic testing revealed a heterozygous ultra rare C3 variant of unknown significance (c.4838G>T, p.Gly1613Val) as well as a heterozygous deletion of CFHR3-CFHR1. She showed an initial response to terminal complement blockade with eculizumab, but her renal disease progressed in the next year. Notably, our patient never demonstrated microangiopathic hemolysis, yet pancreatitis of unclear etiology recurred periodically. Our case suggests the existence of a "C3G/aHUS overlap" clinicopathologic syndrome and highlights the challenges of treating complement-mediated kidney disease.
Collapse
Affiliation(s)
- Ali Jandal
- Divsion of Nephrology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Weixiong Zhong
- Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Deepak Gopal
- Divsion of Gastroenterology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Vanessa Horner
- Wisconsin State Laboratory of Hygiene, University of Wisconsin, Madison, Wisconsin, United States; Department of Pediatrics, University of Wisconsin, Madison, United States
| | - Leah Frater-Rubsam
- Wisconsin State Laboratory of Hygiene, University of Wisconsin, Madison, Wisconsin, United States; Department of Pediatrics, University of Wisconsin, Madison, United States
| | - Arjang Djamali
- Divsion of Nephrology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Gauri Bhutani
- Divsion of Nephrology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States.
| |
Collapse
|
10
|
Welte T, Arnold F, Westermann L, Rottmann FA, Hug MJ, Neumann-Haefelin E, Ganner A. Eculizumab as a treatment for C3 glomerulopathy: a single-center retrospective study. BMC Nephrol 2023; 24:8. [PMID: 36631797 PMCID: PMC9832765 DOI: 10.1186/s12882-023-03058-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND C3 Glomerulopathy (C3G) is a rare glomerular disease caused by dysregulation of the complement pathway. Based on its pathophysiology, treatment with the monoclonal antibody eculizumab targeting complement C5 may be a therapeutic option. Due to the rarity of the disease, observational data on the clinical response to eculizumab treatment is scarce. METHODS Fourteen patients (8 female, 57%) treated for C3 glomerulopathy at the medical center of the University of Freiburg between 2013 and 2022 were included. Subjects underwent biopsy before enrollment. Histopathology, clinical data, and response to eculizumab treatment were analyzed. Key parameters to determine the primary outcome were changes of estimated glomerular filtration rate (eGFR) over time. Positive outcome was defined as > 30% increase, stable outcome as ±30%, negative outcome as decrease > 30% of eGFR. RESULTS Eleven patients (78.8%) were treated with eculizumab, three received standard of care (SoC, 27.2%). Median follow-up time was 68 months (IQR: 45-98 months). Median eculizumab treatment duration was 10 months (IQR 5-46 months). After eculizumab treatment, five patients showed a stable outcome, six patients showed a negative outcome. Among patients receiving SoC, one patient showed a stable outcome, two patients showed a negative outcome. CONCLUSIONS The benefit of eculizumab in chronic progressive C3 glomerulopathy is limited.
Collapse
Affiliation(s)
- Thomas Welte
- Department of Nephrology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Frederic Arnold
- grid.5963.9Department of Nephrology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany ,grid.5963.9Institute for Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas Westermann
- grid.5963.9Department of Nephrology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Felix A. Rottmann
- grid.5963.9Department of Nephrology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin J. Hug
- grid.5963.9Pharmacy, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elke Neumann-Haefelin
- grid.5963.9Department of Nephrology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Athina Ganner
- Department of Nephrology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
11
|
Xu Z, Tao L, Su H. The Complement System in Metabolic-Associated Kidney Diseases. Front Immunol 2022; 13:902063. [PMID: 35924242 PMCID: PMC9339597 DOI: 10.3389/fimmu.2022.902063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolic syndrome (MS) is a group of clinical abnormalities characterized by central or abdominal obesity, hypertension, hyperuricemia, and metabolic disorders of glucose or lipid. Currently, the prevalence of MS is estimated about 25% in general population and is progressively increasing, which has become a challenging public health burden. Long-term metabolic disorders can activate the immune system and trigger a low-grade chronic inflammation named “metaflammation.” As an important organ involved in metabolism, the kidney is inevitably attacked by immunity disequilibrium and “metaflammation.” Recently, accumulating studies have suggested that the complement system, the most important and fundamental component of innate immune responses, is actively involved in the development of metabolic kidney diseases. In this review, we updated and summarized the different pathways through which the complement system is activated in a series of metabolic disturbances and the mechanisms on how complement mediate immune cell activation and infiltration, renal parenchymal cell damage, and the deterioration of renal function provide potential new biomarkers and therapeutic options for metabolic kidney diseases.
Collapse
|
12
|
Schmidt T, Afonso S, Perie L, Heidenreich K, Wulf S, Krebs CF, Zipfel PF, Wiech T. An Interdisciplinary Diagnostic Approach to Guide Therapy in C3 Glomerulopathy. Front Immunol 2022; 13:826513. [PMID: 35693785 PMCID: PMC9186056 DOI: 10.3389/fimmu.2022.826513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Since the re-classification of membranoproliferative glomerulonephritis the new disease entity C3 glomerulopathy is diagnosed if C3 deposition is clearly dominant over immunoglobulins in immunohistochemistry or immunofluorescence. Although this new definition is more orientated at the pathophysiology as mediated by activity of the alternative complement pathway C3 glomerulopathy remains a heterogenous group of disorders. Genetic or autoimmune causes are associated in several but not in all patients with this disease. However, prognosis is poorly predictable, and clinicians cannot directly identify patients that might benefit from therapy. Moreover, therapy may range from supportive care alone, unspecific immune suppression, plasma treatment, or plasma exchange to complement inhibition. The current biopsy based diagnostic approaches sometimes combined with complement profiling are not sufficient to guide clinicians neither (i) whether to treat an individual patient, nor (ii) to choose the best therapy. With this perspective, we propose an interdisciplinary diagnostic approach, including detailed analysis of the kidney biopsy for morphological alterations and immunohistochemical staining, for genetic analyses of complement genes, complement activation patterning in plasma, and furthermore for applying novel approaches for convertase typing and complement profiling directly in renal tissue. Such a combined diagnostic approach was used here for a 42-year-old female patient with a novel mutation in the Factor H gene, C3 glomerulopathy and signs of chronic endothelial damage. We present here an approach that might in future help to guide therapy of renal diseases with relevant complement activation, especially since diverse new anti-complement agents are under clinical investigation.
Collapse
Affiliation(s)
- Tilman Schmidt
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sara Afonso
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Luce Perie
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | | | - Sonia Wulf
- Nephropathology Section, Institute of Pathology, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Christian F Krebs
- Division of Translational Immunology, III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Thorsten Wiech
- Nephropathology Section, Institute of Pathology, University Hospital Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
13
|
Sethi S, De Vriese AS, Fervenza FC. Acute glomerulonephritis. Lancet 2022; 399:1646-1663. [PMID: 35461559 DOI: 10.1016/s0140-6736(22)00461-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 02/10/2022] [Accepted: 02/28/2022] [Indexed: 12/12/2022]
Abstract
Glomerulonephritis is a heterogeneous group of disorders that present with a combination of haematuria, proteinuria, hypertension, and reduction in kidney function to a variable degree. Acute presentation with full blown nephritic syndrome or rapidly progressive glomerulonephritis is uncommon and is mainly restricted to patients with post-infectious glomerulonephritis, anti-neutrophil cytoplasmic antibodies-associated vasculitis, and anti-glomerular basement membrane disease. Most frequently, patients present with asymptomatic haematuria and proteinuria with or without reduced kidney function. All glomerulonephritis disorders can show periods of exacerbation, but disease flairs characteristically occur in patients with IgA nephropathy or C3 glomerulopathy. The gold standard for the diagnosis of a glomerulonephritis is a kidney biopsy, with a hallmark glomerular inflammation that translates into various histopathological patterns depending on the location and severity of the glomerular injury. Traditionally, glomerulonephritis was classified on the basis of the different histopathological patterns of injury. In the last few years, substantial progress has been made in unravelling the underlying causes and pathogenetic mechanisms of glomerulonephritis and a causal approach to the classification of glomerulonephritis is now favoured over a pattern-based approach. As such, glomerulonephritis can be broadly classified as immune-complex glomerulonephritis (including infection-related glomerulonephritis, IgA nephropathy, lupus nephritis, and cryoglobulinaemic glomerulonephritis), anti-neutrophil cytoplasmic antibodies-associated (pauci-immune) glomerulonephritis, anti-glomerular basement membrane glomerulonephritis, C3 glomerulopathy, and monoclonal immunoglobulin-associated glomerulonephritis. We provide an overview of the clinical presentation, pathology, and the current therapeutic approach of the main representative disorders in the spectrum of glomerulonephritis.
Collapse
Affiliation(s)
- Sanjeev Sethi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - An S De Vriese
- Division of Nephrology and Infectious Diseases, AZ Sint-Jan Brugge, Brugge, Belgium; Department of Internal Medicine, Ghent University, Ghent, Belgium
| | | |
Collapse
|
14
|
Vivarelli M, van de Kar N, Labbadia R, Diomedi-Camassei F, Thurman JM. A clinical approach to children with C3 glomerulopathy. Pediatr Nephrol 2022; 37:521-535. [PMID: 34002292 DOI: 10.1007/s00467-021-05088-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/28/2021] [Accepted: 04/20/2021] [Indexed: 11/28/2022]
Abstract
C3 glomerulopathy is a relatively new clinical entity that represents a challenge both to diagnose and to treat. As new therapeutic agents that act as complement inhibitors become available, many with an oral formulation, a better understanding of this disease and of the underlying complement dysregulation driving it has become increasingly useful to optimize patient care. Moreover, recent advances in research have clarified the role of complement in other glomerular diseases in which its role was less established, namely in immune-complex membranoproliferative glomerulonephritis (IC-MPGN), ANCA-vasculitis, IgA nephropathy, and idiopathic membranous nephropathy. Complement inhibitors are being studied in adult and adolescent clinical trials for these indications. This review summarizes current knowledge and future perspectives on every aspect of the diagnosis and management of C3 glomerulopathy and elucidates current understanding of the role of complement in this condition and in other glomerular diseases in children. An overview of ongoing trials involving therapeutic agents targeting complement in glomerular diseases is also provided.
Collapse
Affiliation(s)
- Marina Vivarelli
- Division of Nephrology and Dialysis, Department of Pediatric Subspecialties, Bambino Gesù Pediatric Hospital IRCCS, Piazza S Onofrio 4, 00165, Rome, Italy.
| | - Nicole van de Kar
- Department of Pediatric Nephrology, Amalia Children's Hospital, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Raffaella Labbadia
- Division of Nephrology and Dialysis, Department of Pediatric Subspecialties, Bambino Gesù Pediatric Hospital IRCCS, Piazza S Onofrio 4, 00165, Rome, Italy
| | | | - Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
15
|
Complement C3-targeted therapy in C3 glomerulopathy, a prototype of complement-mediated kidney diseases. Semin Immunol 2022; 60:101634. [PMID: 35817659 DOI: 10.1016/j.smim.2022.101634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 01/15/2023]
Abstract
C3 glomerulopathy (C3G) is a rare and complex kidney disease that primarily affects young adults. Renal outcomes remain poor in the absence of specific treatment. C3G is driven by uncontrolled overactivation of the alternative complement pathway, which is mainly of acquired origin. Functional characterization of complement abnormalities (i.e., autoantibodies targeting complement components and variants in complement genes) identified in patients and experimental models of the disease improved the understanding of the disease, making C3G a prototype of complement-mediated diseases. The contribution of C3 convertase, as well as C5 convertase, in disease occurrence, phenotype, and severity is now well established, offering various potential therapeutic interventions. However, the lack of sufficient efficiency in anti-C5 therapy highlights the extreme complexity of the disease and the need for new therapeutic approaches based on C3 and C3 convertase axis inhibition. Here, we provide an overview of the complement activation mechanism involved in C3G and discuss therapeutic options based on complement inhibitors, with a specific focus on C3 inhibition.
Collapse
|
16
|
Macrophage Depletion Reduces Disease Pathology in Factor H-Dependent Immune Complex-Mediated Glomerulonephritis. J Immunol Res 2022; 2022:1737419. [PMID: 35097132 PMCID: PMC8794693 DOI: 10.1155/2022/1737419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/03/2022] [Indexed: 12/05/2022] Open
Abstract
Complement factor H (FH) is a key regulator of the alternative pathway of complement, in man and mouse. Earlier, our studies revealed that the absence of FH causes the C57BL6 mouse to become susceptible to chronic serum sickness (CSS) along with an increase in the renal infiltration of macrophages compared to controls. To understand if the increased recruitment of macrophages (Mϕs) to the kidney was driving inflammation and propagating injury, we examined the effect of Mϕ depletion with clodronate in FH knockout mice with CSS. Eight-week-old FHKO mice were treated with apoferritin (4 mg/mouse) for 5 wks and with either vehicle (PBS) or clodronate (50 mg/kg ip, 3 times/wk for the last 3 weeks). The administration of clodronate decreased monocytes and Mϕs in the kidneys by >80%. Kidney function assessed by BUN and albumin remained closer to normal on depletion of Mϕs. Clodronate treatment prevented the alteration in cytokines, TNFα and IL-6, and increase in gene expression of connective tissue growth factor (CTGF), TGFβ-1, matrix metalloproteinase-9 (MMP9), fibronectin, laminin, and collagen in FHKO mice with CSS (P < 0.05). Clodronate treatment led to relative protection from immune complex- (IC-) mediated disease pathology during CSS as assessed by the significantly reduced glomerular pathology (GN) and extracellular matrix. Our results suggest that complement activation is one of the mechanism that regulates the macrophage landscape and thereby fibrosis. The exact mechanism remains to be deciphered. In brief, our data shows that Mϕs play a critical role in FH-dependent ICGN and Mϕ depletion reduces disease progression.
Collapse
|
17
|
Long-term follow-up including extensive complement analysis of a pediatric C3 glomerulopathy cohort. Pediatr Nephrol 2022; 37:601-612. [PMID: 34476601 PMCID: PMC8921070 DOI: 10.1007/s00467-021-05221-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND C3 glomerulopathy (C3G) is a rare kidney disorder characterized by predominant glomerular depositions of complement C3. C3G can be subdivided into dense deposit disease (DDD) and C3 glomerulonephritis (C3GN). This study describes the long-term follow-up with extensive complement analysis of 29 Dutch children with C3G. METHODS Twenty-nine C3G patients (19 DDD, 10 C3GN) diagnosed between 1992 and 2014 were included. Clinical and laboratory findings were collected at presentation and during follow-up. Specialized assays were used to detect rare variants in complement genes and measure complement-directed autoantibodies and biomarkers in blood. RESULTS DDD patients presented with lower estimated glomerular filtration rate (eGFR). C3 nephritic factors (C3NeFs) were detected in 20 patients and remained detectable over time despite immunosuppressive treatment. At presentation, low serum C3 levels were detected in 84% of all patients. During follow-up, in about 50% of patients, all of them C3NeF-positive, C3 levels remained low. Linear mixed model analysis showed that C3GN patients had higher soluble C5b-9 (sC5b-9) and lower properdin levels compared to DDD patients. With a median follow-up of 52 months, an overall benign outcome was observed with only six patients with eGFR below 90 ml/min/1.73 m2 at last follow-up. CONCLUSIONS We extensively described clinical and laboratory findings including complement features of an exclusively pediatric C3G cohort. Outcome was relatively benign, persistent low C3 correlated with C3NeF presence, and C3GN was associated with higher sC5b-9 and lower properdin levels. Prospective studies are needed to further elucidate the pathogenic mechanisms underlying C3G and guide personalized medicine with complement therapeutics.
Collapse
|
18
|
Freiwald T, Afzali B. Renal diseases and the role of complement: Linking complement to immune effector pathways and therapeutics. Adv Immunol 2021; 152:1-81. [PMID: 34844708 PMCID: PMC8905641 DOI: 10.1016/bs.ai.2021.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The complement system is an ancient and phylogenetically conserved key danger sensing system that is critical for host defense against pathogens. Activation of the complement system is a vital component of innate immunity required for the detection and removal of pathogens. It is also a central orchestrator of adaptive immune responses and a constituent of normal tissue homeostasis. Once complement activation occurs, this system deposits indiscriminately on any cell surface in the vicinity and has the potential to cause unwanted and excessive tissue injury. Deposition of complement components is recognized as a hallmark of a variety of kidney diseases, where it is indeed associated with damage to the self. The provenance and the pathophysiological role(s) played by complement in each kidney disease is not fully understood. However, in recent years there has been a renaissance in the study of complement, with greater appreciation of its intracellular roles as a cell-intrinsic system and its interplay with immune effector pathways. This has been paired with a profusion of novel therapeutic agents antagonizing complement components, including approved inhibitors against complement components (C)1, C3, C5 and C5aR1. A number of clinical trials have investigated the use of these more targeted approaches for the management of kidney diseases. In this review we present and summarize the evidence for the roles of complement in kidney diseases and discuss the available clinical evidence for complement inhibition.
Collapse
Affiliation(s)
- Tilo Freiwald
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, MD, United States; Department of Nephrology, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Behdad Afzali
- Department of Nephrology, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany.
| |
Collapse
|
19
|
Muff-Luett M, Sanderson KR, Engen RM, Zahr RS, Wenderfer SE, Tran CL, Sharma S, Cai Y, Ingraham S, Winnicki E, Weaver DJ, Hunley TE, Kiessling SG, Seamon M, Woroniecki R, Miyashita Y, Xiao N, Omoloja AA, Kizilbash SJ, Mansuri A, Kallash M, Yu Y, Sherman AK, Srivastava T, Nester CM. Eculizumab exposure in children and young adults: indications, practice patterns, and outcomes-a Pediatric Nephrology Research Consortium study. Pediatr Nephrol 2021; 36:2349-2360. [PMID: 33693990 PMCID: PMC8263513 DOI: 10.1007/s00467-021-04965-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/07/2021] [Accepted: 01/21/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Eculizumab is approved for the treatment of atypical hemolytic uremic syndrome (aHUS). Its use off-label is frequently reported. The aim of this study was to describe the broader use and outcomes of a cohort of pediatric patients exposed to eculizumab. METHODS A retrospective, cohort analysis was performed on the clinical and biomarker characteristics of eculizumab-exposed patients < 25 years of age seen across 21 centers of the Pediatric Nephrology Research Consortium. Patients were included if they received at least one dose of eculizumab between 2008 and 2015. Traditional summary statistics were applied to demographic and clinical data. RESULTS A total of 152 patients were identified, mean age 9.1 (+/-6.8) years. Eculizumab was used "off-label" in 44% of cases. The most common diagnoses were aHUS (47.4%), Shiga toxin-producing Escherichia coli HUS (12%), unspecified thrombotic microangiopathies (9%), and glomerulonephritis (9%). Genetic testing was available for 60% of patients; 20% had gene variants. Dosing regimens were variable. Kidney outcomes tended to vary according to diagnosis. Infectious adverse events were the most common adverse event (33.5%). No cases of meningitis were reported. Nine patients died of noninfectious causes while on therapy. CONCLUSIONS This multi-center retrospective cohort analysis indicates that a significant number of children and young adults are being exposed to C5 blockade for off-label indications. Dosing schedules were highly variable, limiting outcome conclusions. Attributable adverse events appeared to be low. Cohort mortality (6.6%) was not insignificant. Prospective studies in homogenous disease cohorts are needed to support the role of C5 blockade in kidney outcomes.
Collapse
Affiliation(s)
- Melissa Muff-Luett
- Department of Pediatrics, Pediatric Nephrology, University of Nebraska Medical School, Children's Hospital and Medical Center, 8200 Dodge St., Omaha, NE, 68114-4113, USA.
| | - Keia R Sanderson
- Department of Medicine-Nephrology, University of North Carolina, Chapel Hill, NC, USA
| | - Rachel M Engen
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Rima S Zahr
- Division of Pediatric Nephrology and Hypertension, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Scott E Wenderfer
- Pediatric Nephrology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Cheryl L Tran
- Division of Pediatric Nephrology, Mayo Clinic, Rochester, MN, USA
| | - Sheena Sharma
- Division of Nephrology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yi Cai
- Division of Nephrology, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Susan Ingraham
- Kapi'olani Medical Center for Women and Children, Honolulu, HI, USA
| | - Erica Winnicki
- Department of Pediatrics, University of California Davis, Sacramento, CA, USA
| | - Donald J Weaver
- Division of Pediatric Nephrology and Hypertension, Atrium Health Levine Children's Hospital, Charlotte, NC, USA
| | - Tracy E Hunley
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Stefan G Kiessling
- Division of Pediatric Nephrology, Department of Pediatrics, University of Kentucky, Lexington, KY, USA
| | | | - Robert Woroniecki
- Pediatric Nephrology and Hypertension, Stony Brook Children's Hospital, Stony Brook, NY, USA
| | - Yosuke Miyashita
- Department of Pediatrics, Division of Pediatric Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Abiodun A Omoloja
- Nephrology Department, The Children's Medical Center, Dayton, OH, USA
| | - Sarah J Kizilbash
- Department of Pediatric Nephrology, University of Minnesota, Minneapolis, MN, USA
| | - Asif Mansuri
- Children's Hospital of Georgia, Augusta University, Augusta, GA, USA
| | - Mahmoud Kallash
- Division of Nephrology, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Yichun Yu
- Department of Medicine-Nephrology, University of North Carolina, Chapel Hill, NC, USA
| | - Ashley K Sherman
- Division of Health Services and Outcomes Research, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Tarak Srivastava
- Division of Pediatric Nephrology, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Carla M Nester
- Departments of Internal Medicine and Pediatrics, Division of Nephrology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
20
|
Codina S, Manonelles A, Tormo M, Sola A, Cruzado JM. Chronic Kidney Allograft Disease: New Concepts and Opportunities. Front Med (Lausanne) 2021; 8:660334. [PMID: 34336878 PMCID: PMC8316649 DOI: 10.3389/fmed.2021.660334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) is increasing in most countries and kidney transplantation is the best option for those patients requiring renal replacement therapy. Therefore, there is a significant number of patients living with a functioning kidney allograft. However, progressive kidney allograft functional deterioration remains unchanged despite of major advances in the field. After the first post-transplant year, it has been estimated that this chronic allograft damage may cause a 5% graft loss per year. Most studies focused on mechanisms of kidney graft damage, especially on ischemia-reperfusion injury, alloimmunity, nephrotoxicity, infection and disease recurrence. Thus, therapeutic interventions focus on those modifiable factors associated with chronic kidney allograft disease (CKaD). There are strategies to reduce ischemia-reperfusion injury, to improve the immunologic risk stratification and monitoring, to reduce calcineurin-inhibitor exposure and to identify recurrence of primary renal disease early. On the other hand, control of risk factors for chronic disease progression are particularly relevant as kidney transplantation is inherently associated with renal mass reduction. However, despite progress in pathophysiology and interventions, clinical advances in terms of long-term kidney allograft survival have been subtle. New approaches are needed and probably a holistic view can help. Chronic kidney allograft deterioration is probably the consequence of damage from various etiologies but can be attenuated by kidney repair mechanisms. Thus, besides immunological and other mechanisms of damage, the intrinsic repair kidney graft capacity should be considered to generate new hypothesis and potential therapeutic targets. In this review, the critical risk factors that define CKaD will be discussed but also how the renal mechanisms of regeneration could contribute to a change chronic kidney allograft disease paradigm.
Collapse
Affiliation(s)
- Sergi Codina
- Department of Nephrology, Hospital Universitari Bellvitge, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Anna Manonelles
- Department of Nephrology, Hospital Universitari Bellvitge, Barcelona, Spain
| | - Maria Tormo
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Anna Sola
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Josep M. Cruzado
- Department of Nephrology, Hospital Universitari Bellvitge, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
21
|
Koopman JJE, van Essen MF, Rennke HG, de Vries APJ, van Kooten C. Deposition of the Membrane Attack Complex in Healthy and Diseased Human Kidneys. Front Immunol 2021; 11:599974. [PMID: 33643288 PMCID: PMC7906018 DOI: 10.3389/fimmu.2020.599974] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
The membrane attack complex-also known as C5b-9-is the end-product of the classical, lectin, and alternative complement pathways. It is thought to play an important role in the pathogenesis of various kidney diseases by causing cellular injury and tissue inflammation, resulting in sclerosis and fibrosis. These deleterious effects are, consequently, targeted in the development of novel therapies that inhibit the formation of C5b-9, such as eculizumab. To clarify how C5b-9 contributes to kidney disease and to predict which patients benefit from such therapy, knowledge on deposition of C5b-9 in the kidney is essential. Because immunohistochemical staining of C5b-9 has not been routinely conducted and never been compared across studies, we provide a review of studies on deposition of C5b-9 in healthy and diseased human kidneys. We describe techniques to stain deposits and compare the occurrence of deposits in healthy kidneys and in a wide spectrum of kidney diseases, including hypertensive nephropathy, diabetic nephropathy, membranous nephropathy, IgA nephropathy, lupus nephritis, C3 glomerulopathy, and thrombotic microangiopathies such as the atypical hemolytic uremic syndrome, vasculitis, interstitial nephritis, acute tubular necrosis, kidney tumors, and rejection of kidney transplants. We summarize how these deposits are related with other histological lesions and clinical characteristics. We evaluate the prognostic relevance of these deposits in the light of possible treatment with complement inhibitors.
Collapse
Affiliation(s)
- Jacob J E Koopman
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Mieke F van Essen
- Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Helmut G Rennke
- Division of Renal Pathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Aiko P J de Vries
- Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Cees van Kooten
- Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
22
|
Turkmen K, Baloglu I, Ozer H. C3 glomerulopathy and atypical hemolytic uremic syndrome: an updated review of the literature on alternative complement pathway disorders. Int Urol Nephrol 2021; 53:2067-2080. [PMID: 33389509 DOI: 10.1007/s11255-020-02729-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 12/02/2020] [Indexed: 11/30/2022]
Abstract
The complement system plays a significant role within the pathological process of C3 glomerulopathy (C3GP) and atypical hemolytic uremic syndrome (aHUS). In daily practice, clinicians should differentiate the subgroups of C3GP because of they should apply different treatment modalities. In the past, C3GP was considered as a part of membranoproliferative glomerulonephritis (MPGN). MPGN is defined as glomerular capillary thickening secondary to the synthesis of the new glomerular basement membrane and mesangial cellular hyperplasia with mesangial matrix expansion. Atypical hemolytic uremic syndrome is an ultra-rare disease that can be outlined by the triad of Coombs negative microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. Recent advances demonstrated that these diseases share common abnormalities of the control of the alternative complement system. Therefore, nowadays, most researchers advocate that there may be overlap in the pathogenesis of C3GP and aHUS. This review will provide recent novel mechanisms and treatment options in these diseases. For the purposes that we mentioned above and to help clinicians, we aimed to describe the etiology, pathophysiology, and treatment of C3GP and aHUS in this comprehensive review.
Collapse
Affiliation(s)
- Kultigin Turkmen
- Department of Nephrology, Necmettin Erbakan University Meram School of Medicine, Konya, Turkey.
| | - Ismail Baloglu
- Department of Nephrology, Necmettin Erbakan University Meram School of Medicine, Konya, Turkey
| | - Hakan Ozer
- Department of Nephrology, Necmettin Erbakan University Meram School of Medicine, Konya, Turkey
| |
Collapse
|
23
|
Devalaraja-Narashimha K, Meagher K, Luo Y, Huang C, Kaplan T, Muthuswamy A, Halasz G, Casanova S, O'Brien J, Peyser Boiarsky R, McWhirter J, Gartner H, Bai Y, MacDonnell S, Liu C, Hu Y, Latuszek A, Wei Y, Prasad S, Huang T, Yancopoulos G, Murphy A, Olson W, Zambrowicz B, Macdonald L, Morton LG. Humanized C3 Mouse: A Novel Accelerated Model of C3 Glomerulopathy. J Am Soc Nephrol 2021; 32:99-114. [PMID: 33288630 PMCID: PMC7894673 DOI: 10.1681/asn.2020050698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/16/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND C3 glomerulopathy (C3G) is characterized by the alternative-pathway (AP) hyperactivation induced by nephritic factors or complement gene mutations. Mice deficient in complement factor H (CFH) are a classic C3G model, with kidney disease that requires several months to progress to renal failure. Novel C3G models can further contribute to understanding the mechanism behind this disease and developing therapeutic approaches. METHODS A novel, rapidly progressing, severe, murine model of C3G was developed by replacing the mouse C3 gene with the human C3 homolog using VelociGene technology. Functional, histologic, molecular, and pharmacologic assays characterize the presentation of renal disease and enable useful pharmacologic interventions in the humanized C3 (C3hu/hu) mice. RESULTS The C3hu/hu mice exhibit increased morbidity early in life and die by about 5-6 months of age. The C3hu/hu mice display elevated biomarkers of kidney dysfunction, glomerulosclerosis, C3/C5b-9 deposition, and reduced circulating C3 compared with wild-type mice. Administration of a C5-blocking mAb improved survival rate and offered functional and histopathologic benefits. Blockade of AP activation by anti-C3b or CFB mAbs also extended survival and preserved kidney function. CONCLUSIONS The C3hu/hu mice are a useful model for C3G because they share many pathologic features consistent with the human disease. The C3G phenotype in C3hu/hu mice may originate from a dysregulated interaction of human C3 protein with multiple mouse complement proteins, leading to unregulated C3 activation via AP. The accelerated disease course in C3hu/hu mice may further enable preclinical studies to assess and validate new therapeutics for C3G.
Collapse
|
24
|
Eculizumab for pediatric dense deposit disease: A case report and literature review. Clin Nephrol Case Stud 2020; 8:96-102. [PMID: 33329990 PMCID: PMC7737524 DOI: 10.5414/cncs110309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/29/2020] [Indexed: 01/04/2023] Open
Abstract
Dense deposit disease (DDD), a subtype of complement component 3 (C3) glomerulopathy (C3G), results from alternative complement pathway hyperactivity leading to membrane attack complex formation. DDD treatment strategies are limited. We report a case of a 13-year-old girl diagnosed with DDD at 9 years of age, with nephritic and nephrotic syndrome and C3 nephritic factor-negative alternative complement pathway activation. Initial treatment with prednisolone, methylprednisolone pulses (MPs), and mizoribines was effective for 3 years, after which she relapsed. Despite MP treatment followed by prednisolone and mycophenolate mofetil (MMF), her kidney function and proteinuria deteriorated with a high soluble (s)C5b-9 level; she also developed dyspnea and pleural effusion (PE). Three days after the first eculizumab (ECZ) infusion, urine volume increased, respiratory condition improved, PE resolved, and proteinuria decreased in 1 month. Serum creatinine level decreased, and kidney function completely normalized within 7 weeks. The sC5b-9 level normalized, and although proteinuria decreased, nephrotic range proteinuria persisted during ECZ treatment with MMF for 53 weeks, even with increased treatment interval. Thus, complement activation pathway-targeted therapy may be useful for rapidly progressing DDD. Our data support the role of complement pathway abnormalities in C3G with DDD.
Collapse
|
25
|
Kirpalani A, Jawa N, Smoyer WE, Licht C. Long-Term Outcomes of C3 Glomerulopathy and Immune-Complex Membranoproliferative Glomerulonephritis in Children. Kidney Int Rep 2020; 5:2313-2324. [PMID: 33305125 PMCID: PMC7710848 DOI: 10.1016/j.ekir.2020.09.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/15/2020] [Indexed: 02/08/2023] Open
Abstract
Introduction The reclassification of membranoproliferative glomerulonephritis (MPGN) into immune-complex MPGN (IC-MPGN) and C3 glomerulopathy (C3G) has provided insights into 2 distinct diseases. Although outcomes in adults are poor in both diseases, the pediatric literature is scarce and limited to small, single-center cohorts. Methods We conducted a retrospective analysis of 165 pediatric patients across 17 hospitals to compare outcomes between children with IC-MPGN and C3G. Results Forty-two percent of patients initially diagnosed with MPGN were reclassified as C3G after a review of renal biopsy reports. There was a trend toward higher serum creatinine levels in patients with C3G compared with IC-MPGN both at diagnosis (mean 168.9 [range 45.4–292.4] vs. 93.7 [range 70.7–116.6] μmol/l, P = 0.25) and after a mean follow-up time of 4 years (mean 145.0 (range −8.1 to 298.1) vs 99.1 (range 46.3–151.9) μmol/l, P = 0.47), although the estimated glomerular filtration rate (eGFR) was not significantly different. Steroid treatment was associated with a significant improvement in eGFR versus no steroids in C3G (mean +43.0 (range 12.9–73.0) vs. −3.0 (range −23.1 to 17.2) ml/min per 1.73 m2, P = 0.02) but not in IC-MPGN. Overall kidney function was preserved in both groups although hypertension remained prevalent in 42.5% of the cohort at the last follow-up, and the urine protein/creatinine ratio remained elevated (mean 253.8 [range 91.9–415.7] mg/mmol). Conclusion This large pediatric IC-MPGN/C3G cohort revealed nearly half of the patients were misclassified, and there may be a trend toward worse renal prognosis in C3G although they may have greater steroid responsiveness. The overall prognosis appears to be more favorable than in adults; however, persistent hypertension and proteinuria suggest suboptimal disease control.
Collapse
Affiliation(s)
- Amrit Kirpalani
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Natasha Jawa
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - William E Smoyer
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Christoph Licht
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada.,Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
26
|
Complement-mediated kidney diseases. Mol Immunol 2020; 128:175-187. [DOI: 10.1016/j.molimm.2020.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/16/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022]
|
27
|
Treatment of C3 Glomerulopathy in Adult Kidney Transplant Recipients: A Systematic Review. Med Sci (Basel) 2020; 8:medsci8040044. [PMID: 33096866 PMCID: PMC7712822 DOI: 10.3390/medsci8040044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND C3 glomerulopathy (C3G), a rare glomerular disease mediated by alternative complement pathway dysregulation, is associated with a high rate of recurrence and graft loss after kidney transplantation (KTx). We aimed to assess the efficacy of different treatments for C3G recurrence after KTx. METHODS Databases (MEDLINE, EMBASE, and Cochrane Database) were searched from inception through 3 May, 2019. Studies were included that reported outcomes of adult KTx recipients with C3G. Effect estimates from individual studies were combined using the random-effects, generic inverse variance method of DerSimonian and Laird., The protocol for this meta-analysis is registered with PROSPERO (no. CRD42019125718). RESULTS Twelve studies (7 cohort studies and 5 case series) consisting of 122 KTx patients with C3G (73 C3 glomerulonephritis (C3GN) and 49 dense deposit disease (DDD)) were included. The pooled estimated rates of allograft loss among KTx patients with C3G were 33% (95% CI: 12-57%) after eculizumab, 42% (95% CI: 2-89%) after therapeutic plasma exchange (TPE), and 81% (95% CI: 50-100%) after rituximab. Subgroup analysis based on type of C3G was performed. Pooled estimated rates of allograft loss in C3GN KTx patients were 22% (95% CI: 5-46%) after eculizumab, 56% (95% CI: 6-100%) after TPE, and 70% (95% CI: 24-100%) after rituximab. Pooled estimated rates of allograft loss in DDD KTx patients were 53% (95% CI: 0-100%) after eculizumab. Data on allograft loss in DDD after TPE (1 case series, 0/2 (0%) allograft loss at 6 months) and rituximab (1 cohort, 3/3 (100%) allograft loss) were limited. Among 66 patients (38 C3GN, 28 DDD) who received no treatment (due to stable allograft function at presentation and/or clinical judgment of physicians), pooled estimated rates of allograft loss were 32% (95% CI: 7-64%) and 53% (95% CI: 28-77%) for C3GN and DDD, respectively. Among treated C3G patients, data on soluble membrane attack complex of complement (sMAC) were limited to patients treated with eculizumab (N = 7). 80% of patients with elevated sMAC before eculizumab responded to treatment. In addition, all patients who responded to eculizumab had normal sMAC levels after post-eculizumab. CONCLUSIONS Our study suggests that the lowest incidence of allograft loss (33%) among KTX patients with C3G are those treated with eculizumab. Among those who received no treatment for C3G due to stable allograft function, there is a high incidence of allograft loss of 32% in C3GN and 53% in DDD. sMAC level may help to select good responders to eculizumab.
Collapse
|
28
|
Pharmacology, Pharmacokinetics and Pharmacodynamics of Eculizumab, and Possibilities for an Individualized Approach to Eculizumab. Clin Pharmacokinet 2020; 58:859-874. [PMID: 30758736 PMCID: PMC6584251 DOI: 10.1007/s40262-019-00742-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Eculizumab is the first drug approved for the treatment of complement-mediated diseases, and current dosage schedules result in large interindividual drug concentrations. This review provides insight into the pharmacokinetic and pharmacodynamic properties of eculizumab, both for reported on-label (paroxysmal nocturnal hemoglobinuria, atypical hemolytic uremic syndrome, generalized myasthenia gravis) and off-label (hematopoietic stem cell transplantation-associated thrombotic microangiopathy) indications. Furthermore, we discuss the potential of therapeutic drug monitoring to individualize treatment and reduce costs.
Collapse
|
29
|
Renal Survival in Children with Glomerulonephritis with Crescents: A Pediatric Nephrology Research Consortium Cohort Study. J Clin Med 2020; 9:jcm9082385. [PMID: 32722612 PMCID: PMC7464981 DOI: 10.3390/jcm9082385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/18/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022] Open
Abstract
There is no evidence-based definition for diagnosing crescentic glomerulonephritis. The prognostic implications of crescentic lesions on kidney biopsy have not been quantified. Our objective was to determine risk factors for end-stage kidney disease (ESKD) in patients with glomerulonephritis and crescents on kidney biopsy. A query of the Pediatric Nephrology Research Consortium’s Pediatric Glomerulonephritis with Crescents registry identified 305 patients from 15 centers. A retrospective cohort study was performed with ESKD as the primary outcome. Median age at biopsy was 11 years (range 1–21). The percentage of crescents was 3–100% (median 20%). Etiologies included IgA nephropathy (23%), lupus (21%), IgA vasculitis (19%) and ANCA-associated GN (13%), post-infectious GN (5%), and anti-glomerular basement membrane disease (3%). The prevalence of ESKD was 12% at one year and 16% at last follow-up (median = 3 years, range 1–11). Median time to ESKD was 100 days. Risk factors for ESKD included %crescents, presence of fibrous crescents, estimated GFR, and hypertension at biopsy. For each 1% increase in %crescents, there was a 3% decrease in log odds of 1-year renal survival (p = 0.003) and a 2% decrease in log odds of renal survival at last follow-up (p < 0.001). These findings provide an evidence base for enrollment criteria for crescentic glomerulonephritis in future clinical trials.
Collapse
|
30
|
Mastrangelo A, Serafinelli J, Giani M, Montini G. Clinical and Pathophysiological Insights Into Immunological Mediated Glomerular Diseases in Childhood. Front Pediatr 2020; 8:205. [PMID: 32478016 PMCID: PMC7235338 DOI: 10.3389/fped.2020.00205] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/03/2020] [Indexed: 11/13/2022] Open
Abstract
The kidney is often the target of immune system dysregulation in the context of primary or systemic disease. In particular, the glomerulus represents the anatomical entity most frequently involved, generally as the expression of inflammatory cell invasion or circulant or in situ immune-complex deposition. Glomerulonephritis is the most common clinical and pathological manifestation of this involvement. There are no universally accepted classifications for glomerulonephritis. However, recent advances in our understanding of the pathophysiological mechanisms suggest the assessment of immunological features, biomarkers, and genetic analysis. At the same time, more accurate and targeted therapies have been developed. Data on pediatric glomerulonephritis are scarce and often derived from adult studies. In this review, we update the current understanding of the etiologic events and genetic factors involved in the pathogenesis of pediatric immunologically mediated primitive forms of glomerulonephritis, together with the clinical spectrum and prognosis. Possible new therapeutic targets are also briefly discussed.
Collapse
Affiliation(s)
- Antonio Mastrangelo
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Jessica Serafinelli
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Marisa Giani
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanni Montini
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
31
|
Atypical hemolytic uremic syndrome and complement blockade: established and emerging uses of complement inhibition. Curr Opin Nephrol Hypertens 2020; 28:278-287. [PMID: 30865166 DOI: 10.1097/mnh.0000000000000499] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Atypical hemolytic uremic syndrome (aHUS) is a diagnosis that has captured the interest of specialists across multiple fields. The hallmark features of aHUS are microangiopathic hemolysis and thrombocytopenia, which creates a diagnostic dilemma because of the occurrence of these findings in a wide variety of clinical disorders. RECENT FINDINGS In most of the instances, aHUS is a diagnosis of exclusion after ruling out causes such as Shigella toxin, acquired or genetic a disintegrin and metalloproteinase thrombospondin motif 13 deficiency (thrombotic thrombocytopenic purpura), and vitamin B12 deficiency. In the purest sense, aHUS is a genetic condition that is activated (or unmasked) by an environmental exposure. However, it is now evident that complement activation is a feature of many diseases. Variants in complement regulatory genes predispose to microangiopathic hemolysis in many rheumatologic, oncologic, and drug-induced vascular, obstetric, peritransplant, and infectious syndromes. SUMMARY Many 'hemolysis syndromes' overlap clinically with aHUS, and we review the literature on the treatment of these conditions with complement inhibition. New reports on the treatment of C3 glomerulopathy, Shiga toxin-related classic hemolytic uremic syndrome, and medication-related thrombotic microangiopathy will be reviewed as well.
Collapse
|
32
|
Garg N, Zhang Y, Nicholson-Weller A, Khankin EV, Borsa NG, Meyer NC, McDermott S, Stillman IE, Rennke HG, Smith RJ, Pavlakis M. C3 glomerulonephritis secondary to mutations in factors H and I: rapid recurrence in deceased donor kidney transplant effectively treated with eculizumab. Nephrol Dial Transplant 2019; 33:2260-2265. [PMID: 29370420 DOI: 10.1093/ndt/gfx369] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/10/2017] [Indexed: 12/27/2022] Open
Abstract
Background C3 glomerulonephritis (C3GN) is caused by alternate complement pathway over-activation. It frequently progresses to end-stage renal disease, recurs in two-thirds of transplants and in half of these cases progresses to allograft loss. There is currently no proven treatment for C3GN. Case Presentation We describe a family segregating pathogenic alleles of complement factor H and I (CFH and CFI). The only member carrying both mutations developed C3GN. Prolonged delayed graft function after deceased donor transplantation, heavy proteinuria and isolated C3 hypocomplementemia prompted an allograft biopsy confirming diagnosis of recurrent C3GN. Discussion This is the first report of early recurrence of C3GN in an allograft in a patient with known mutations in complement regulatory genes and no preexisting para-proteinemia. Complement activation resulting from ischemia-reperfusion injury from prolonged cold ischemia time unabated in the setting of deficiency of two major complement regulators likely led to the early and severe recurrence. In atypical hemolytic uremic syndrome, the terminal complement cascade activation in the sentinel event initiating endothelial injury; blockade at the level of C5 convertase with eculizumab is uniformly highly effective in management. C3 glomerulopathies (C3GN and dense deposit disease) are a more complex and heterogeneous group. The relative degree of dysregulation at the levels of C3 and C5 convertases and therefore response to eculizumab varies among patients. In our patient, the clinical response to eculizumab was dramatic with recovery of allograft function and complete resolution of proteinuria. We review all cases of recurrent C3 glomerulopathy treated with eculizumab and discuss how complement biomarkers may aid in predicting response to therapy.
Collapse
Affiliation(s)
- Neetika Garg
- Department of Medicine, Nephrology Division, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Yuzhou Zhang
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Anne Nicholson-Weller
- Department of Medicine, Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Eliyahu V Khankin
- Department of Medicine, Nephrology Division, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Nicolò Ghiringhelli Borsa
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Nicole C Meyer
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Susan McDermott
- Department of Medicine, Nephrology Division, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Isaac E Stillman
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Helmut G Rennke
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Richard J Smith
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA, USA
| | - Martha Pavlakis
- Department of Medicine, Nephrology Division, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
33
|
Complement Activation in Progression of Chronic Kidney Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:423-441. [PMID: 31399977 DOI: 10.1007/978-981-13-8871-2_20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chronic kidney disease (CKD) is a public health problem worldwide, with increasing incidence and prevalence. The mechanisms underlying the progression to end-stage renal disease (ESRD) is not fully understood. The complement system was traditionally regarded as an important part of innate immunity required for host protection against infection and for maintaining host hemostasis. However, compelling evidence from both clinical and experimental studies has strongly incriminated complement activation as a pivotal pathogenic mediator of the development of multiple renal diseases and progressive replacement of functioning nephrons by fibrosis. Both anaphylatoxins, i.e., C3a and C5a, and membrane attack complex (MAC) contribute to the damage that occurs during chronic renal progression through various mechanisms including direct proinflammatory and fibrogenic activity, chemotactic effect, activation of the renal renin-angiotensin system, and enhancement of T-cell immunity. Evolving understanding of the mechanisms of complement-mediated renal injury has led to the emergence of complement-targeting therapeutics. A variety of specific antibodies and inhibitors targeting complement components have shown efficacy in reducing disease in animal models. Moreover, building on these advances, targeting complement has gained encouraging success in treating patients with renal diseases such as atypical hemolytic uremic syndrome (aHUS). Nevertheless, it still requires a great deal of effort to develop inhibitors that can be applied to treat more patients effectively in routine clinical practice.
Collapse
|
34
|
Zelek WM, Xie L, Morgan BP, Harris CL. Compendium of current complement therapeutics. Mol Immunol 2019; 114:341-352. [PMID: 31446305 DOI: 10.1016/j.molimm.2019.07.030] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 12/13/2022]
Abstract
The complement system is well known for its role in innate immunity and in maintenance of tissue homeostasis, providing a first line of defence against infection and playing a key role in flagging apoptotic cells and debris for disposal. Unfortunately, complement also contributes to pathogenesis of many diseases, in some cases driving pathology, and in others amplifying or exacerbating the inflammatory and damaging impact of non-complement disease triggers. The driving role of complement in a single disease, paroxysmal nocturnal hemoglobinuria (PNH), provoked the development and eventual FDA (US Food and Drug Administration) approval of eculizumab (Soliris™), an anti-C5 antibody, for therapy. Although PNH is very rare, eculizumab provided clinical validation and demonstrated that inhibiting the complement system was not only well-tolerated, but also provided rapid therapy and saved lives. This clinical validation, together with advances in genetic analyses that demonstrated strong associations between complement and common diseases, drove new drug discovery programmes in both academic laboratories and large pharmaceutical companies. Numerous drugs have entered clinical development and several are in phase 3 trials; however, many have fallen by the wayside. Despite this high attrition rate, crucial lessons have been learnt and hurdles to development have become clear. These insights have driven development of next generation anti-complement drugs designed to avoid pitfalls and facilitate patient access. In this article, we do not set out to provide a text-heavy review of complement therapeutics but instead will simply highlight the targets, modalities and current status of the plethora of drugs approved or in clinical development. With such a fast-moving drug development landscape, such a compendium will inevitably become out-dated; however, we provide a snapshot of the current field and illustrate the increased choice that clinicians might enjoy in the future in selecting the best drug for their application, decisions based not only on efficacy but also cost, mechanistic target, modality and route of delivery.
Collapse
Affiliation(s)
- Wioleta M Zelek
- Systems Immunity Research Institute and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Long Xie
- Complement Therapeutics Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - B Paul Morgan
- Systems Immunity Research Institute and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Claire L Harris
- Complement Therapeutics Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK; National Renal Complement Therapeutics Centre, Building 26, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK.
| |
Collapse
|
35
|
Kojc N, Bahovec A, Levart TK. C3 glomerulopathy in children: Is there still a place for anti-cellular immunosuppression? Nephrology (Carlton) 2019; 24:188-194. [PMID: 30393898 DOI: 10.1111/nep.13522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2018] [Indexed: 01/02/2023]
Abstract
AIM To contribute additional clinical experience to the paucity of reports on C3 glomerulopathy (C3GP) in children, we are reporting our cohort of 11 children with C3GP, emphasizing the therapeutic options in this peculiar entity. METHODS We describe the incidence, manifestation, histopathology findings, follow-up, treatment and outcome of C3GP in 11 children with C3GP by retrospectively analyzing their clinical charts and renal biopsy reports. RESULTS Eleven C3GP patients were identified among 240 children who had undergone renal biopsy, accounting for a 4.6% incidence of C3GP. A light microscopy examination showed a membranoproliferative pattern (n = 8), mesangial proliferation (n = 1), a mesangial/membranoproliferative pattern (n = 1) and endocapillary proliferation (n = 1). All children presented with proteinuria of varying degrees, the majority of them with additional hematuria, three with full-blown nephrotic-nephritic syndrome, and two with renal insufficiency at presentation. Very diverse treatments were applied in our cohort of patients, from no specific treatment to different mono or combined anti-cellular immunosuppression treatments, as well as a trial of plasma therapy or eculizumab. Our results are in to some extend in concordance with other studies revealing that an optimal therapy for C3GP is still unknown, but we believe that a trial of classical immunosuppression before eculizumab is still worth trying, while eculizumab can have a beneficial effect, but not in all patients. CONCLUSION A diverse histological pattern and clinical picture and no known optimal therapy are a hallmark of C3GP.
Collapse
Affiliation(s)
- Nika Kojc
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Ljubljana, Slovenia
| | - Alenka Bahovec
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Kersnik Levart
- Department of Nephrology, Division of Paediatrics, University Medical Centre, Ljubljana, Slovenia
| |
Collapse
|
36
|
Regunathan-Shenk R, Avasare RS, Ahn W, Canetta PA, Cohen DJ, Appel GB, Bomback AS. Kidney Transplantation in C3 Glomerulopathy: A Case Series. Am J Kidney Dis 2018; 73:316-323. [PMID: 30413277 DOI: 10.1053/j.ajkd.2018.09.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 09/03/2018] [Indexed: 02/08/2023]
Abstract
RATIONALE & OBJECTIVE C3 glomerulopathy (C3G), a form of glomerulonephritis associated with dysregulation of the alternative complement pathway, occurs either as dense deposit disease (DDD) or C3 glomerulonephritis (C3GN). Few studies have reported outcomes of patients with C3G after transplantation since its formal classification and the advent of complement-targeting therapies such as eculizumab. STUDY DESIGN Case series of C3G. SETTING & PARTICIPANTS We reviewed laboratory testing, native and allograft biopsy reports, and clinical charts of the 19 patients (12, C3GN; and 7, DDD) from our C3G registry who underwent transplantation between 1999 and 2016. RESULTS During a median follow-up of 76 months, 16 patients had recurrent disease (10 of 12, C3GN; and 6 of 7, DDD), with median time to recurrence of 14 months in C3GN versus 15 months in DDD. Graft failure was more frequent in patients with DDD (6 of 7) than in patients with C3GN (3 of 12), occurred at a median time of 42 months posttransplantation, and was attributed to recurrent disease in half the failures. A rare genetic variant or autoantibody associated with alternative complement pathway abnormalities was detected in 9 of 10 screened patients. Treatment of 7 patients (8 allografts) with eculizumab was associated with variable clinical outcomes. LIMITATIONS Incomplete testing for complement pathway abnormalities and genetic defects, incomplete records of HLA antigen matching, lack of centralized biopsy review, and limited sample size. CONCLUSIONS In a case series of C3G transplant recipients, the proportion of disease recurrence was high in both C3GN and DDD, although graft loss appeared to occur more frequently in DDD. In a small subset of study patients, eculizumab therapy was not consistently followed by salutary outcomes.
Collapse
Affiliation(s)
- Renu Regunathan-Shenk
- Division of Kidney Disease and Hypertension, Department of Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC.
| | - Rupali S Avasare
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, OR
| | - Wooin Ahn
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY
| | - Pietro A Canetta
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY
| | - David J Cohen
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY
| | - Gerald B Appel
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY
| | - Andrew S Bomback
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY
| |
Collapse
|
37
|
Abbas F, El Kossi M, Kim JJ, Shaheen IS, Sharma A, Halawa A. Complement-mediated renal diseases after kidney transplantation - current diagnostic and therapeutic options in de novo and recurrent diseases. World J Transplant 2018; 8:203-219. [PMID: 30370231 PMCID: PMC6201327 DOI: 10.5500/wjt.v8.i6.203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/09/2018] [Accepted: 08/28/2018] [Indexed: 02/05/2023] Open
Abstract
For decades, kidney diseases related to inappropriate complement activity, such as atypical hemolytic uremic syndrome and C3 glomerulopathy (a subtype of membranoproliferative glomerulonephritis), have mostly been complicated by worsened prognoses and rapid progression to end-stage renal failure. Alternative complement pathway dysregulation, whether congenital or acquired, is well-recognized as the main driver of the disease process in these patients. The list of triggers include: surgery, infection, immunologic factors, pregnancy and medications. The advent of complement activation blockade, however, revolutionized the clinical course and outcome of these diseases, rendering transplantation a viable option for patients who were previously considered as non-transplantable cases. Several less-costly therapeutic lines and likely better efficacy and safety profiles are currently underway. In view of the challenging nature of diagnosing these diseases and the long-term cost implications, a multidisciplinary approach including the nephrologist, renal pathologist and the genetic laboratory is required to help improve overall care of these patients and draw the optimum therapeutic plan.
Collapse
Affiliation(s)
- Fedaey Abbas
- Nephrology Department, Jaber El Ahmed Military Hospital, Safat 13005, Kuwait
- Faculty of Health and Science, University of Liverpool, Institute of Learning and Teaching, School of Medicine, Liverpool L69 3GB, United Kingdom
| | - Mohsen El Kossi
- Faculty of Health and Science, University of Liverpool, Institute of Learning and Teaching, School of Medicine, Liverpool L69 3GB, United Kingdom
- Doncaster Royal Infirmary, Doncaster DN2 5LT, United Kingdom
| | - Jon Jin Kim
- Faculty of Health and Science, University of Liverpool, Institute of Learning and Teaching, School of Medicine, Liverpool L69 3GB, United Kingdom
- Nottingham Children Hospital, Nottingham NG7 2UH, United Kingdom
| | - Ihab Sakr Shaheen
- Faculty of Health and Science, University of Liverpool, Institute of Learning and Teaching, School of Medicine, Liverpool L69 3GB, United Kingdom
- Royal Hospital for Children, Glasgow G51 4TF, United Kingdom
| | - Ajay Sharma
- Faculty of Health and Science, University of Liverpool, Institute of Learning and Teaching, School of Medicine, Liverpool L69 3GB, United Kingdom
- Royal Liverpool University Hospitals, Liverpool L7 8XP, United Kingdom
| | - Ahmed Halawa
- Faculty of Health and Science, University of Liverpool, Institute of Learning and Teaching, School of Medicine, Liverpool L69 3GB, United Kingdom
- Sheffield Teaching Hospitals, Sheffield S57AU, United Kingdom
| |
Collapse
|
38
|
Harris CL, Pouw RB, Kavanagh D, Sun R, Ricklin D. Developments in anti-complement therapy; from disease to clinical trial. Mol Immunol 2018; 102:89-119. [PMID: 30121124 DOI: 10.1016/j.molimm.2018.06.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 02/06/2023]
Abstract
The complement system is well known for its role in innate immunity and in maintenance of tissue homeostasis, providing a first line of defence against infection and playing a key role in flagging apoptotic cells and debris for disposal. Unfortunately complement also contributes to pathogenesis of a number of diseases; in some cases driving pathology, and in others amplifying or exacerbating the inflammatory and damaging impact of non-complement disease triggers. The role of complement in pathogenesis of an expanding number of diseases has driven industry and academia alike to develop an impressive arsenal of anti-complement drugs which target different proteins and functions of the complement cascade. Evidence from genetic and biochemical analyses, combined with improved identification of complement biomarkers and supportive data from sophisticated animal models of disease, has driven a drug development landscape in which the indications selected for clinical trial cluster in three 'target' tissues: the kidney, eye and vasculature. While the disease triggers may differ, complement activation and amplification is a common feature in many diseases which affect these three tissues. An abundance of drugs are in clinical development, some show favourable progression whereas others experience significant challenges. However, these hurdles in themselves drive an ever-evolving portfolio of 'next-generation' drugs with improved pharmacokinetic and pharmacodynamics properties. In this review we discuss the indications which are in the drug development 'spotlight' and review the relevant indication validation criteria. We present current progress in clinical trials, highlighting successes and difficulties, and look forward to approval of a wide selection of drugs for use in man which give clinicians choice in mechanistic target, modality and route of delivery.
Collapse
Affiliation(s)
- Claire L Harris
- Complement Therapeutics Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK; National Renal Complement Therapeutics Centre, Building 26, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK.
| | - Richard B Pouw
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056, Basel, Switzerland
| | - David Kavanagh
- Complement Therapeutics Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK; National Renal Complement Therapeutics Centre, Building 26, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK
| | - Ruyue Sun
- Complement Therapeutics Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Daniel Ricklin
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056, Basel, Switzerland.
| |
Collapse
|
39
|
Román E, Mendizábal S, Jarque I, de la Rubia J, Sempere A, Morales E, Praga M, Ávila A, Górriz JL. Secondary thrombotic microangiopathy and eculizumab: A reasonable therapeutic option. Nefrologia 2018; 37:478-491. [PMID: 28946961 DOI: 10.1016/j.nefro.2017.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 01/03/2017] [Accepted: 01/14/2017] [Indexed: 12/16/2022] Open
Abstract
Understanding the role of the complement system in the pathogenesis of atypical haemolytic uraemic syndrome and other thrombotic microangiopathies (TMA) has led to the use of anti-complement therapy with eculizumab in these diseases, in addition to its original use in patients with paroxysmal nocturnal haemoglobinuria andatypical haemolytic uraemic syndrome. Scientific evidence shows that both primary and secondary TMAs with underlying complement activation are closely related. For this reasons, control over the complement system is a therapeutic target. There are 2scenarios in which eculizumab is used in patients with TMA: primary or secondary TMA that is difficult to differentiate (including incomplete clinical presentations) and complement-mediated damage in various processes in which eculizumab proves to be efficacious. This review summarises the evidence on the role of the complement activation in the pathophysiology of secondary TMAs and the efficacy of anti-complement therapy in TMAs secondary to pregnancy, drugs, transplant, humoral rejection, systemic diseases and glomerulonephritis. Although experience is scarce, a good response to eculizumab has been reported in patients with severe secondary TMAs refractory to conventional treatment. Thus, the role of the anti-complement therapy as a new treatment option in these patients should be investigated.
Collapse
Affiliation(s)
- Elena Román
- Servicio de Nefrología Pediátrica, Hospital Universitario y Politécnico La Fe, Valencia, España.
| | - Santiago Mendizábal
- Servicio de Nefrología Pediátrica, Hospital Universitario y Politécnico La Fe, Valencia, España
| | - Isidro Jarque
- Servicio de Hematología, Hospital Universitario y Politécnico La Fe, Valencia, España
| | - Javier de la Rubia
- Servicio de Hematología, Hospital Universitario Dr. Peset, Valencia, España
| | - Amparo Sempere
- Servicio de Hematología, Hospital Universitario y Politécnico La Fe, Valencia, España
| | - Enrique Morales
- Servicio de Nefrología, Hospital Universitario 12 de Octubre, Madrid, España
| | - Manuel Praga
- Servicio de Nefrología, Hospital Universitario 12 de Octubre, Madrid, España
| | - Ana Ávila
- Servicio de Nefrología, Hospital Universitario Dr. Peset, Valencia, España
| | - José Luis Górriz
- Servicio de Nefrología, Hospital Universitario Dr. Peset, Valencia, España
| |
Collapse
|
40
|
Wang X, Van Lookeren Campagne M, Katschke KJ, Gullipalli D, Miwa T, Ueda Y, Wang Y, Palmer M, Xing G, Song WC. Prevention of Fatal C3 Glomerulopathy by Recombinant Complement Receptor of the Ig Superfamily. J Am Soc Nephrol 2018; 29:2053-2059. [PMID: 29895552 DOI: 10.1681/asn.2018030270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/11/2018] [Indexed: 12/22/2022] Open
Abstract
Background C3 glomerulopathy (C3G) is a life-threatening kidney disease caused by dysregulation of the alternative pathway of complement (AP) activation. No approved specific therapy is available for C3G, although an anti-C5 mAb has been used off-label in some patients with C3G, with mixed results. Thus, there is an unmet medical need to develop other inhibitors of complement for C3G.Methods We used a murine model of lethal C3G to test the potential efficacy of an Fc fusion protein of complement receptor of the Ig superfamily (CRIg-Fc) in the treatment of C3G. CRIg-Fc binds C3b and inhibits C3 and C5 convertases of the AP. Mice with mutations in the factor H and properdin genes (FHm/mP-/-) develop early-onset C3G, with AP consumption, high proteinuria, and lethal crescentic GN.Results Treatment of FHm/mP-/- mice with CRIg-Fc, but not a control IgG, inhibited AP activation and diminished the consumption of plasma C3, factor B, and C5. CRIg-Fc-treated FHm/mP-/- mice also had significantly improved survival and reduced proteinuria, hematuria, BUN, glomerular C3 fragment, C9 and fibrin deposition, and GN pathology scores.Conclusions Therapeutics developed on the basis of the mechanism of action of soluble CRIg may be effective for the treatment of C3G and should be explored clinically.
Collapse
Affiliation(s)
- Xiaoxu Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Departments of Systems Pharmacology and Translational Therapeutics and
| | | | | | | | - Takashi Miwa
- Departments of Systems Pharmacology and Translational Therapeutics and
| | - Yoshiyasu Ueda
- Departments of Systems Pharmacology and Translational Therapeutics and
| | - Yuan Wang
- Departments of Systems Pharmacology and Translational Therapeutics and
| | - Matthew Palmer
- Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Guolan Xing
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wen-Chao Song
- Departments of Systems Pharmacology and Translational Therapeutics and
| |
Collapse
|
41
|
Moog P, Jost PJ, Büttner-Herold M. Eculizumab as salvage therapy for recurrent monoclonal gammopathy-induced C3 glomerulopathy in a kidney allograft. BMC Nephrol 2018; 19:106. [PMID: 29724174 PMCID: PMC5934889 DOI: 10.1186/s12882-018-0904-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 04/22/2018] [Indexed: 01/14/2023] Open
Abstract
Background Monoclonal gammopathy causes several kinds of renal pathology. A rare and special form is monoclonal gammopathy-induced C3 glomerulopathy (MG-C3G). Like idiopathic C3G, MG-C3G frequently leads to end-stage renal disease. MG-C3G frequently recurs after renal transplantation, leading to graft failure in most of the patients. While there is some evidence for successful treatment of recurrent idiopathic C3 glomerulopathy with eculizumab after renal transplantation, nothing is known about its efficacy in the setting of recurrent MG-C3G. Case presentation We report a patient with recurrent MG-C3G in a renal allograft that was successfully treated with eculizumab in addition to standard immunosuppression. He had early recurrence of MG-C3G 2 months after transplantation. His graft function successively declined despite high dose steroids and plasmapheresis. Only after therapy with three cycles of bortezomib and continuous therapy with eculizumab, his graft function stabilized. He was still in clinical remission after 28 months of follow-up without having experienced major infectious complications. Conclusions Eculizumab may be a safe and effective treatment of recurrent MG-C3G. Because of the high and early recurrence risk, renal transplantation should be reviewed carefully for every individual patient. Subsequent hematopoietic stem cell transplantation may ameliorate long-term renal allograft survival. Eculizumab might serve as a bridging therapy until stem cell transplantation.
Collapse
Affiliation(s)
- Philipp Moog
- Department of Nephrology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Philipp J Jost
- III. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
42
|
Deshayes S, Martin Silva N, Chatelet V, Chantepie S, Le Quintrec M, Comoz F, Bridoux F, Dragon-Durey MA, Aouba A. Eculizumab reversed severe distal ischemic syndrome and glomerulonephritis with isolated C3 deposits associated with anti-factor H autoantibodies: a case report. Clin Rheumatol 2018. [PMID: 29516279 DOI: 10.1007/s10067-018-4058-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
B-cell clones can produce a monoclonal immunoglobulin, which may be responsible for visceral involvements. Kidney involvement is frequent, affecting 20 to 50% of patients with multiple myeloma. One mechanism underlying this involvement is a dysregulation of the complement alternative pathway, leading to C3 glomerulopathies. We report a patient who had a multiple myeloma, C3 glomerulopathy related to factor H autoantibody, and digital ischemia, who was treated successfully with eculizumab, an anti-complement therapy, without any relapse in 2 years of follow-up.
Collapse
Affiliation(s)
- Samuel Deshayes
- Department of Internal Medicine and Clinical Immunology, CHU Côte de Nacre-Université Basse Normandie, Avenue de la Côte de Nacre, 14000, Caen, France.
| | - Nicolas Martin Silva
- Department of Internal Medicine and Clinical Immunology, CHU Côte de Nacre-Université Basse Normandie, Avenue de la Côte de Nacre, 14000, Caen, France
| | | | | | - Moglie Le Quintrec
- Service de Transplantation et Néphrologie, CHU de Lapeyronie, 34000, Montpellier, France
| | - François Comoz
- Department of Anatomopathology, CHU de Caen, 14000, Caen, France
| | - Frank Bridoux
- Department of Nephrology and Transplantation and Centre national de référence maladies rares: amylose AL et autres maladies à depôts d'immunoglobulines monoclonales, CHU de Poitiers, 86000, Poitiers, France
| | - Marie-Agnès Dragon-Durey
- Department of Biological Immunology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, 75000, Paris, France
| | - Achille Aouba
- Department of Internal Medicine and Clinical Immunology, CHU Côte de Nacre-Université Basse Normandie, Avenue de la Côte de Nacre, 14000, Caen, France
| |
Collapse
|
43
|
Avasare RS, Canetta PA, Bomback AS, Marasa M, Caliskan Y, Ozluk Y, Li Y, Gharavi AG, Appel GB. Mycophenolate Mofetil in Combination with Steroids for Treatment of C3 Glomerulopathy: A Case Series. Clin J Am Soc Nephrol 2018; 13:406-413. [PMID: 29326307 PMCID: PMC5967675 DOI: 10.2215/cjn.09080817] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 12/14/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND OBJECTIVES C3 glomerulopathy is a form of complement-mediated GN. Immunosuppressive therapy may be beneficial in the treatment of C3 glomerulopathy. Mycophenolate mofetil is an attractive treatment option given its role in the treatment of other complement-mediated diseases and the results of the Spanish Group for the Study of Glomerular Diseases C3 Study. Here, we study the outcomes of patients with C3 glomerulopathy treated with steroids and mycophenolate mofetil. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We conducted a retrospective chart review of patients in the C3 glomerulopathy registry at Columbia University and identified patients treated with mycophenolate mofetil for at least 3 months and follow-up for at least 1 year. We studied clinical, histologic, and genetic data for the whole group and compared data for those who achieved complete or partial remission (responders) with those who did not achieve remission (nonresponders). We compared remission with mycophenolate mofetil with remission with other immunosuppressive regimens. RESULTS We identified 30 patients who met inclusion criteria. Median age was 25 years old (interquartile range, 18-36), median creatinine was 1.07 mg/dl (interquartile range, 0.79-1.69), and median proteinuria was 3200 mg/g creatinine (interquartile range, 1720-6759). The median follow-up time was 32 months (interquartile range, 21-68). Twenty (67%) patients were classified as responders. There were no significant differences in baseline characteristics between responders and nonresponders, although initial proteinuria was lower (median 2468 mg/g creatinine) in responders compared with nonresponders (median 5000 mg/g creatinine) and soluble membrane attack complex levels were higher in responders compared with nonresponders. For those tapered off mycophenolate mofetil, relapse rate was 50%. Genome-wide analysis on complement genes was done, and in 12 patients, we found 18 variants predicted to be damaging. None of these variants were previously reported to be pathogenic. Mycophenolate mofetil with steroids outperformed other immunosuppressive regimens. CONCLUSIONS Among patients who tolerated mycophenolate mofetil, combination therapy with steroids induced remission in 67% of this cohort. Heavier proteinuria at the start of therapy and lower soluble membrane attack complex levels were associated with treatment resistance.
Collapse
Affiliation(s)
- Rupali S. Avasare
- Division of Nephrology, Department of Medicine, Oregon Health Science University, Portland, Oregon
| | - Pietro A. Canetta
- Division of Nephrology, Department of Medicine, Columbia University Medical Center, New York, New York; and
| | - Andrew S. Bomback
- Division of Nephrology, Department of Medicine, Columbia University Medical Center, New York, New York; and
| | - Maddalena Marasa
- Division of Nephrology, Department of Medicine, Columbia University Medical Center, New York, New York; and
| | - Yasar Caliskan
- Division of Nephrology, Department of Internal Medicine and
| | - Yasemin Ozluk
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Yifu Li
- Division of Nephrology, Department of Medicine, Columbia University Medical Center, New York, New York; and
| | - Ali G. Gharavi
- Division of Nephrology, Department of Medicine, Columbia University Medical Center, New York, New York; and
| | - Gerald B. Appel
- Division of Nephrology, Department of Medicine, Columbia University Medical Center, New York, New York; and
| |
Collapse
|
44
|
Le Quintrec M, Lapeyraque AL, Lionet A, Sellier-Leclerc AL, Delmas Y, Baudouin V, Daugas E, Decramer S, Tricot L, Cailliez M, Dubot P, Servais A, Mourey-Epron C, Pourcine F, Loirat C, Frémeaux-Bacchi V, Fakhouri F. Patterns of Clinical Response to Eculizumab in Patients With C3 Glomerulopathy. Am J Kidney Dis 2018; 72:84-92. [PMID: 29429752 DOI: 10.1053/j.ajkd.2017.11.019] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/24/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Cases reports and small series of patients with C3 glomerulopathy have reported variable efficacy of eculizumab. STUDY DESIGN Case series of C3 glomerulopathy. SETTING & PARTICIPANTS Pediatric and adult patients with C3 glomerulopathy treated with eculizumab between 2010 and 2016 were identified through the C3 glomerulopathy French registry database, and a questionnaire was sent to participating French pediatric and adult nephrology centers, as well as one pediatric referral center in Québec, Canada. OUTCOMES Global or partial clinical renal response. MEASUREMENTS Evolution of serum creatinine and proteinuria values. RESULTS 26 patients (13 children/adolescents) were included. 22 (85%) patients had received steroids, plasma exchange, or immunosuppressive therapy before eculizumab, and 3 of them had rapid progression of their kidney disease despite treatment. At the initiation of eculizumab therapy, 11 (42%) patients had chronic kidney disease, 7 (27%) had rapidly progressive disease, and 3 (12%) required dialysis. After eculizumab treatment (median duration, 14 months), 6 (23%) patients had a global clinical response; 6 (23%), a partial clinical response; and 14 (54%), no response. Compared with those who had a partial clinical or no response, patients who had a global clinical response had lower estimated glomerular filtration rates, a more rapidly progressive course, and more extracapillary proliferation on kidney biopsy. Age, extent of renal fibrosis, frequency of nephrotic syndrome, low serum C3 and C3 nephritic factor and elevated soluble C5b-9 concentrations, or complement gene variants did not differ between responders and nonresponders. LIMITATIONS Retrospective design without a control group, relatively small number of cases, inclusion of pediatric and adult cases. CONCLUSIONS Eculizumab appears to be a potential treatment for patients with crescentic rapidly progressive C3 glomerulopathy. Its benefit in patients with non-rapidly progressing forms seems to be limited.
Collapse
Affiliation(s)
- Moglie Le Quintrec
- Department of Nephrology, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Anne-Laure Lapeyraque
- Division of Nephrology, Department of Pediatrics, Centre Hospitalier Universitaire Sainte Justine and University of Montreal, Montréal, Québec, Canada
| | - Arnaud Lionet
- Department of Nephrology, Hôpital Huriez, Centre Hospitalier Universitaire de Lille, Lille
| | | | - Yahsou Delmas
- Department of Nephrology, Centre Hospitalier Universitaire de Bordeaux, Bordeaux
| | - Véronique Baudouin
- Department of Pediatric Nephrology, Centre Hospitalier Universitaire Robert Debré
| | - Eric Daugas
- Department of Nephrology, Centre Hospitalier Universitaire Bichat, Paris
| | - Stéphane Decramer
- Department of Pediatric Nephrology, Centre Hospitalier Universitaire de Toulouse, Toulouse
| | - Leila Tricot
- Department of Nephrology, Hôpital Foch, Suresnes
| | - Mathilde Cailliez
- Department of Pediatric Nephrology, Centre Hospitalier Universitaire de la Timone, Marseille
| | - Philippe Dubot
- Department of Nephrology, Centre hospitalier William Morey, Chalon sur Saône
| | - Aude Servais
- Department of Nephrology, Centre Hospitalier Universitaire Necker, Paris
| | | | - Franck Pourcine
- Department of Nephrology, Centre Hospitalier Universitaire Henri Mondor, Créteil
| | - Chantal Loirat
- Department of Pediatric Nephrology, Centre Hospitalier Universitaire Robert Debré
| | | | - Fadi Fakhouri
- Department of Nephrology and Immunology, Centre Hospitalier Universitaire de Nantes, Nantes, France.
| |
Collapse
|
45
|
Bajwa R, DePalma JA, Khan T, Cheema A, Kalathil SA, Hossain MA, Haroon A, Madhurima A, Zheng M, Nayer A, Asif A. C3 Glomerulopathy and Atypical Hemolytic Uremic Syndrome: Two Important Manifestations of Complement System Dysfunction. Case Rep Nephrol Dial 2018; 8:25-34. [PMID: 29594148 PMCID: PMC5836224 DOI: 10.1159/000486848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/15/2018] [Indexed: 01/10/2023] Open
Abstract
The advances in our understanding of the alternative pathway have emphasized that uncontrolled hyperactivity of this pathway causes 2 distinct disorders that adversely impact the kidney. In the so-called atypical hemolytic uremic syndrome (aHUS), renal dysfunction occurs along with thrombocytopenia, anemia, and target organ injury to multiple organs, most commonly the kidney. On the other hand, in the so-termed C3 glomerulopathy, kidney involvement is not associated with thrombocytopenia, anemia, or other system involvement. In this report, we present 2 cases of alternative pathway dysfunction. The 60-year-old female patient had biopsy-proven C3 glomerulopathy, while the 32-year-old female patient was diagnosed with aHUS based on renal dysfunction, thrombocytopenia, anemia, and normal ADAMTS-13 level. The aHUS patient was successfully treated with the monoclonal antibody (eculizumab) for complement blockade. The patient with C3 glomerulopathy did not receive the monoclonal antibody. In this patient, management focused on blood pressure and proteinuria control with an angiotensin-converting enzyme inhibitor. This article focuses on the clinical differences, pathophysiology, and treatment of aHUS and C3 glomerulopathy.
Collapse
Affiliation(s)
- Ravneet Bajwa
- aDepartment of Internal Medicine, Jersey Shore University Medical Center, Neptune, NJ, USA
| | - John A DePalma
- aDepartment of Internal Medicine, Jersey Shore University Medical Center, Neptune, NJ, USA
| | - Taimoor Khan
- aDepartment of Internal Medicine, Jersey Shore University Medical Center, Neptune, NJ, USA
| | - Anmol Cheema
- aDepartment of Internal Medicine, Jersey Shore University Medical Center, Neptune, NJ, USA
| | - Sheila A Kalathil
- aDepartment of Internal Medicine, Jersey Shore University Medical Center, Neptune, NJ, USA
| | - Mohammad A Hossain
- aDepartment of Internal Medicine, Jersey Shore University Medical Center, Neptune, NJ, USA
| | - Attiya Haroon
- aDepartment of Internal Medicine, Jersey Shore University Medical Center, Neptune, NJ, USA
| | - Anne Madhurima
- bDepartment of Hematology/Oncology, Jersey Shore University Medical Center, Neptune, NJ, USA
| | - Min Zheng
- cDepartment of Pathology, Jersey Shore University Medical Center, Neptune, NJ, USA
| | - Ali Nayer
- dMiami Renal Institute, North Miami Beach, FL, USA
| | - Arif Asif
- aDepartment of Internal Medicine, Jersey Shore University Medical Center, Neptune, NJ, USA
| |
Collapse
|
46
|
Welte T, Arnold F, Kappes J, Seidl M, Häffner K, Bergmann C, Walz G, Neumann-Haefelin E. Treating C3 glomerulopathy with eculizumab. BMC Nephrol 2018; 19:7. [PMID: 29329521 PMCID: PMC5767001 DOI: 10.1186/s12882-017-0802-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022] Open
Abstract
Background C3 glomerulopathy (C3G) is a rare, but severe glomerular disease with grim prognosis. The complex pathogenesis is just unfolding, and involves acquired as well as inherited dysregulation of the alternative pathway of the complement cascade. Currently, there is no established therapy. Treatment with the C5 complement inhibitor eculizumab may be a therapeutic option. However, due to rarity of the disease, parameters predicting treatment response remain largely unknown. Methods Seven patients with C3G (five with C3 glomerulonephritis and two with dense deposit disease) were treated with eculizumab. Subjects underwent biopsy before enrollment. The histopathology, clinical data, and response to eculizumab treatment were analyzed. The key parameters to determine outcome were changes of serum creatinine and urinary protein over time. Results After treatment with eculizumab, four subjects showed significantly improved or stable renal function and urinary protein. A positive response occurred between 2 weeks and 6 months after therapy initiation. One subject (with allograft recurrent C3 glomerulonephritis) initially showed a positive response, but relapsed when eculizumab was discontinued, and did not respond after re-initiation of treatment. Two subjects showed impaired renal function and increasing urinary protein despite therapy with eculizumab. Conclusions Eculizumab may be a therapeutic option for a subset of C3G patients. The response to eculizumab is heterogeneous, and early as well as continuous treatment may be necessary to prevent disease progression. These findings emphasize the need for studies identifying genetic and functional complement abnormalities that may help to guide eculizumab treatment and predict response. Electronic supplementary material The online version of this article (10.1186/s12882-017-0802-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Welte
- Department of Nephrology, Medical Center-University of Freiburg, Germany, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Frederic Arnold
- Department of Nephrology, Medical Center-University of Freiburg, Germany, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Julia Kappes
- Department of Pneumology, Medical Center-University of Freiburg, Germany, Killianstrasse 4, 79106, Freiburg, Germany
| | - Maximilian Seidl
- Department of Pathology, Medical Center-University of Freiburg, Germany, Breisacher Strasse 115A, 79106, Freiburg, Germany
| | - Karsten Häffner
- Department of Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Germany, Heiliggeiststrasse 1, 79106, Freiburg, Germany
| | - Carsten Bergmann
- Center for Human Genetics, Bioscientia, Ingelheim, Germany, Konrad-Adenauer-Strasse 17, 55218, Ingelheim, Germany
| | - Gerd Walz
- Department of Nephrology, Medical Center-University of Freiburg, Germany, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Elke Neumann-Haefelin
- Department of Nephrology, Medical Center-University of Freiburg, Germany, Hugstetter Strasse 55, 79106, Freiburg, Germany.
| |
Collapse
|
47
|
Wong EKS, Kavanagh D. Diseases of complement dysregulation-an overview. Semin Immunopathol 2018; 40:49-64. [PMID: 29327071 PMCID: PMC5794843 DOI: 10.1007/s00281-017-0663-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/01/2017] [Indexed: 02/07/2023]
Abstract
Atypical hemolytic uremic syndrome (aHUS), C3 glomerulopathy (C3G), and paroxysmal nocturnal hemoglobinuria (PNH) are prototypical disorders of complement dysregulation. Although complement overactivation is common to all, cell surface alternative pathway dysregulation (aHUS), fluid phase alternative pathway dysregulation (C3G), or terminal pathway dysregulation (PNH) predominates resulting in the very different phenotypes seen in these diseases. The mechanism underlying the dysregulation also varies with predominant acquired autoimmune (C3G), somatic mutations (PNH), or inherited germline mutations (aHUS) predisposing to disease. Eculizumab has revolutionized the treatment of PNH and aHUS although has been less successful in C3G. With the next generation of complement therapeutic in late stage development, these archetypal complement diseases will provide the initial targets.
Collapse
Affiliation(s)
- Edwin K S Wong
- The National Renal Complement Therapeutics Centre, aHUS Service, Building 26, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK.,Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - David Kavanagh
- The National Renal Complement Therapeutics Centre, aHUS Service, Building 26, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK. .,Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
48
|
Abbas F, El Kossi M, Jin JK, Sharma A, Halawa A. De novo glomerular diseases after renal transplantation: How is it different from recurrent glomerular diseases? World J Transplant 2017; 7:285-300. [PMID: 29312858 PMCID: PMC5743866 DOI: 10.5500/wjt.v7.i6.285] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/31/2017] [Accepted: 11/10/2017] [Indexed: 02/05/2023] Open
Abstract
The glomerular diseases after renal transplantation can occur de novo, i.e., with no relation to the native kidney disease, or more frequently occur as a recurrence of the original disease in the native kidney. There may not be any difference in clinical features and histological pattern between de novo glomerular disease and recurrence of original glomerular disease. However, structural alterations in transplanted kidney add to dilemma in diagnosis. These changes in architecture of histopathology can happen due to: (1) exposure to the immunosuppression specifically the calcineurin inhibitors (CNI); (2) in vascular and tubulointerstitial alterations as a result of antibody mediated or cell-mediated immunological onslaught; (3) post-transplant viral infections; (4) ischemia-reperfusion injury; and (5) hyperfiltration injury. The pathogenesis of the de novo glomerular diseases differs with each type. Stimulation of B-cell clones with subsequent production of the monoclonal IgG, particularly IgG3 subtype that has higher affinity to the negatively charged glomerular tissue, is suggested to be included in PGNMID pathogenesis. De novo membranous nephropathy can be seen after exposure to the cryptogenic podocyte antigens. The role of the toxic effects of CNI including tissue fibrosis and the hemodynamic alterations may be involved in the de novo FSGS pathophysiology. The well-known deleterious effects of HCV infection and its relation to MPGN disease are frequently reported. The new concepts have emerged that demonstrate the role of dysregulation of alternative complement pathway in evolution of MPGN that led to classifying into two subgroups, immune complex mediated MPGN and complement-mediated MPGN. The latter comprises of the dense deposit disease and the C3 GN disease. De novo C3 disease is rather rare. Prognosis of de novo diseases varies with each type and their management continues to be empirical to a large extent.
Collapse
Affiliation(s)
- Fedaey Abbas
- Department of Nephrology, Jaber El Ahmed Military Hospital, Safat 13005, Kuwait
- Faculty of Health and Science, University of Liverpool, Institute of Learning and Teaching, School of Medicine, Liverpool L69 3GB, United Kingdom
| | - Mohsen El Kossi
- Faculty of Health and Science, University of Liverpool, Institute of Learning and Teaching, School of Medicine, Liverpool L69 3GB, United Kingdom
- Doncaster Royal Infirmary, Doncaster DN2 5LT, United Kingdom
| | - Jon Kim Jin
- Faculty of Health and Science, University of Liverpool, Institute of Learning and Teaching, School of Medicine, Liverpool L69 3GB, United Kingdom
- Nottingham Children Hospital, Nottingham NG7 2UH, United Kingdom
| | - Ajay Sharma
- Faculty of Health and Science, University of Liverpool, Institute of Learning and Teaching, School of Medicine, Liverpool L69 3GB, United Kingdom
- Royal Liverpool University Hospitals, Liverpool L7 8XP, United Kingdom
| | - Ahmed Halawa
- Faculty of Health and Science, University of Liverpool, Institute of Learning and Teaching, School of Medicine, Liverpool L69 3GB, United Kingdom
- Department of Transplantation Surgery, Sheffield Teaching Hospitals, Sheffield S5 7AU, United Kingdom
| |
Collapse
|
49
|
Abbas F, El Kossi M, Jin JK, Sharma A, Halawa A. Recurrence of primary glomerulonephritis: Review of the current evidence. World J Transplant 2017; 7:301-316. [PMID: 29312859 PMCID: PMC5743867 DOI: 10.5500/wjt.v7.i6.301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 09/24/2017] [Accepted: 11/22/2017] [Indexed: 02/05/2023] Open
Abstract
In view of the availability of new immunosuppression strategies, the recurrence of allograft glomerulonephritis (GN) are reported to be increasing with time post transplantation. Recent advances in understanding the pathogenesis of the GN recurrent disease provided a better chance to develop new strategies to deal with the GN recurrence. Recurrent GN diseases manifest with a variable course, stubborn behavior, and poor response to therapy. Some types of GN lead to rapid decline of kidney function resulting in a frustrating return to maintenance dialysis. This subgroup of aggressive diseases actually requires intensive efforts to ascertain their pathogenesis so that strategy could be implemented for better allograft survival. Epidemiology of native glomerulonephritis as the cause of end-stage renal failure and subsequent recurrence of individual glomerulonephritis after renal transplantation was evaluated using data from various registries, and pathogenesis of individual glomerulonephritis is discussed. The following review is aimed to define current protocols of the recurrent primary glomerulonephritis therapy.
Collapse
Affiliation(s)
- Fedaey Abbas
- Department of Nephrology, Jaber El Ahmed Military Hospital, Safat 13005, Kuwait
- Faculty of Health and Science, University of Liverpool, Institute of Learning and Teaching, School of Medicine, Liverpool L69 3GB, United Kingdom
| | - Mohsen El Kossi
- Faculty of Health and Science, University of Liverpool, Institute of Learning and Teaching, School of Medicine, Liverpool L69 3GB, United Kingdom
- Doncaster Royal Infirmary, Doncaster DN2 5LT, United Kingdom
| | - Jon Kim Jin
- Faculty of Health and Science, University of Liverpool, Institute of Learning and Teaching, School of Medicine, Liverpool L69 3GB, United Kingdom
- Nottingham Children Hospital, Nottingham NG7 2UH, United Kingdom
| | - Ajay Sharma
- Faculty of Health and Science, University of Liverpool, Institute of Learning and Teaching, School of Medicine, Liverpool L69 3GB, United Kingdom
- Royal Liverpool University Hospitals, Liverpool L7 8XP, United Kingdom
| | - Ahmed Halawa
- Faculty of Health and Science, University of Liverpool, Institute of Learning and Teaching, School of Medicine, Liverpool L69 3GB, United Kingdom
- Department of Transplantation Surgery, Sheffield Teaching Hospitals, Sheffield S5 7AU, United Kingdom
| |
Collapse
|
50
|
Legendre C, Sberro-Soussan R, Zuber J, Frémeaux-Bacchi V. The role of complement inhibition in kidney transplantation. Br Med Bull 2017; 124:5-17. [PMID: 29069327 DOI: 10.1093/bmb/ldx037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 09/25/2017] [Indexed: 12/31/2022]
Abstract
INTRODUCTION AND BACKGROUND The complement system which belongs to the innate immune system acts both as a first line of defence against various pathogens and as a guardian of host homeostasis. The role of complement has been recently highlighted in several aspects of kidney transplantation: ischaemia-reperfusion, antibody-mediated rejection and native kidney disease recurrence. SOURCES OF DATA Experimental data, availability of complement-blocking molecules (mainly the anti-C5 monoclonal antibody, eculizumab) and several trials in human kidney transplant recipients has led to some areas of agreement and some disappointment. AREAS OF AGREEMENT AND CONTROVERSIES So far, eculizumab has shown great efficacy in treatment and prevention of atypical haemolytic and uraemic syndrome, some efficacy in the prevention of antibody-mediated and so far no efficacy in the prevention of delayed graft function. GROWING POINTS Among the numerous potentially available drugs potentially interfering with complement, recent focus has been made on C1 blockers in the setting of antibody-mediated rejection with promising results. AREAS TIMELY FOR DEVELOPING RESEARCH Complement is now recognized as a major player in transplant immunology, several targets are going to be tested to define precisely which ones may be potentially useful in clinical practice.
Collapse
Affiliation(s)
- C Legendre
- Service de Néphrologie-Transplantation, Hôpital Necker, Assistance Publique-Hôpitaux de Paris, Paris, France.,Université Sorbonne Paris Cité, Paris, France.,Inserm U1151, INEM, Hôpital necker, Paris, France
| | - R Sberro-Soussan
- Service de Néphrologie-Transplantation, Hôpital Necker, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - J Zuber
- Service de Néphrologie-Transplantation, Hôpital Necker, Assistance Publique-Hôpitaux de Paris, Paris, France.,Université Sorbonne Paris Cité, Paris, France.,Inserm UMRS 1163, Imagine Institute, Hôpital Necker, Paris, France
| | - V Frémeaux-Bacchi
- Laboratoire d'Immunologie Biologique, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de paris, Paris, France.,INSERM UMRS-1138, Cordeliers Research Center, Complement and Diseases Team, Paris, France
| |
Collapse
|