1
|
Li W, Qiu X, Chen J, Chen K, Chen M, Wang Y, Sun W, Su J, Chen Y, Liu X, Chu C, Wang J. Disentangling the Switching Behavior in Functional Connectivity Dynamics in Autism Spectrum Disorder: Insights from Developmental Cohort Analysis and Molecular-Cellular Associations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2403801. [PMID: 40344520 DOI: 10.1002/advs.202403801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/21/2025] [Indexed: 05/11/2025]
Abstract
Characterizing the transition or switching behavior between multistable brain states in functional connectivity dynamics (FCD) holds promise for uncovering the underlying neuropathology of Autism Spectrum Disorder (ASD). However, whether and how switching behaviors in FCD change in patients with developmental ASD, as well as their cellular and molecular basis, remains unexplored. This study develops a region-wise FCD switching index (RFSI) to investigate the drivers of FCD. This work finds that brain regions within the salience, default mode, and frontoparietal networks serve as abnormal drivers of FCD in ASD across different developmental stages. Additionally, changes in RFSI at different developmental stages of ASD correlated with transcriptomic profiles and neurotransmitter density maps. Importantly, the abnormal RFSI identifies in humans has also been observed in genetically edited ASD monkeys. Finally, single-nucleus RNA sequencing data from patients with developmental ASD are analyzed and aberrant switching behaviors in FCD may be mediated by somatostatin-expressing interneurons and altered differentiation patterns in astrocyte State2. In conclusion, this study provides the first evidence of abnormal drivers of FCD across different stages of ASD and their associated cellular and molecular mechanisms. These findings deepen the understanding of ASD neuropathology and offer valuable insights into treatment strategies.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
- Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xia Qiu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jin Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Kexuan Chen
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Meiling Chen
- Department of Clinical Psychology, the First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650500, China
| | - Yinyan Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Wenjie Sun
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jing Su
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yongchang Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiaobao Liu
- Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Congying Chu
- Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, 650500, China
| |
Collapse
|
2
|
Yuan S, Pang C, Wu L, Yi L, Guo K, Jiang YH, Zhang YQ, Han S. Autism-like atypical face processing in Shank3 mutant dogs. SCIENCE ADVANCES 2025; 11:eadu3793. [PMID: 40173245 PMCID: PMC11963970 DOI: 10.1126/sciadv.adu3793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/26/2025] [Indexed: 04/04/2025]
Abstract
Atypical face processing is a neurocognitive basis of social deficits in autism spectrum disorder (ASD) and a candidate cognitive marker for the disease. Although hundreds of risk genes have been identified in ASD, it remains unclear whether mutations in a specific gene may cause ASD-like atypical face processing. Dogs have acquired exquisite face processing abilities during domestication and may serve as an effective animal model for studying genetic associations of ASD-like atypical face processing. Here, we showed that dogs with Shank3 mutations exhibited behavioral and attentional avoidance of faces, contrasting with wild-type controls. Moreover, neural responses specific to faces (versus objects) recorded from the electrodes over the temporal cortex were significantly decreased and delayed in Shank3 mutants compared to wild-type controls. Cortical responses in the frontal/parietal region underlying categorization of faces by species/breeds were reduced in Shank3 mutants. Our findings of atypical face processing in dogs with Shank3 mutations provide a useful animal model for studying ASD mechanisms and treatments.
Collapse
Affiliation(s)
- Siqi Yuan
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Chenyu Pang
- School of Psychological and Cognitive Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Liang Wu
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Li Yi
- School of Psychological and Cognitive Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Kun Guo
- School of Psychology, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK
| | - Yong-hui Jiang
- Department of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Yong Q. Zhang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Hubei University, Wuhan 430415, China
| | - Shihui Han
- School of Psychological and Cognitive Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| |
Collapse
|
3
|
Alvarez-Dieppa AC, Griffin K, Cavalier S, Souza RR, Engineer CT, McIntyre CK. Vagus nerve stimulation rescues impaired fear extinction and social interaction in a rat model of autism spectrum disorder. J Affect Disord 2025; 374:505-512. [PMID: 39837463 PMCID: PMC11830517 DOI: 10.1016/j.jad.2025.01.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/20/2024] [Accepted: 01/18/2025] [Indexed: 01/23/2025]
Abstract
Clinical diagnosis of anxiety disorders is highly prevalent in autism spectrum disorders (ASD). Available treatments for anxiety offer limited efficacy in the ASD population. Vagus nerve stimulation (VNS) has an anxiolytic effect in rats and, when coupled with fear extinction training, VNS enhances extinction of fear in healthy rats. The valproic acid (VPA)-induced rat model of autism shows impaired extinction of fear and deficits in social interaction. This study was designed to test the potential of VNS to rescue extinction learning and influence social behaviors in VPA-exposed rats. After VNS or sham surgery, VPA-exposed rats or controls were subjected to auditory fear conditioning followed by extinction training paired with VNS or sham stimulation. Another cohort was exposed to a social interaction task paired with VNS or sham stimulation. Time spent freezing was not significantly reduced during retention testing 24 h after extinction training in VPA-exposed rats given sham stimulation (p = .26), but freezing levels were significantly lower during the retention test in saline control and in VPA-VNS rats (p < .05), indicating that VNS reverses extinction deficits in VPA-exposed rats. In addition, social interaction scores were significantly lower in VPA-sham rats (p < .0005), but VPA-VNS rats were not significantly different from saline controls (p = .19), suggesting that VNS also alleviates social interaction deficits in VPA-exposed rats. VNS is approved for use in humans for treatment of epilepsy, depression, and stroke. These findings suggest that VNS may be a useful tool for overcoming treatment resistant anxiety in ASD.
Collapse
Affiliation(s)
- Amanda C Alvarez-Dieppa
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Kimberly Griffin
- Molecular and Cell Biology Program, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Sheridan Cavalier
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Rimenez R Souza
- Texas Biomedical Device Center (TxBDC), The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Crystal T Engineer
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA; Texas Biomedical Device Center (TxBDC), The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Christa K McIntyre
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA; Texas Biomedical Device Center (TxBDC), The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA.
| |
Collapse
|
4
|
Koko M, Satterstrom FK, Warrier V, Martin H. Contribution of autosomal rare and de novo variants to sex differences in autism. Am J Hum Genet 2025; 112:599-614. [PMID: 39954678 PMCID: PMC11947420 DOI: 10.1016/j.ajhg.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/17/2025] Open
Abstract
Autism is four times more prevalent in males than females. To study whether this reflects a difference in genetic predisposition attributed to autosomal rare variants, we evaluated sex differences in effect size of damaging protein-truncating and missense variants on autism predisposition in 47,061 autistic individuals using a liability model with differing thresholds. Given the sex differences in the rates of cognitive impairment among autistic individuals, we also compared effect sizes of rare variants between individuals with and without cognitive impairment or motor delay. Although these variants mediated different likelihoods of autism with versus without cognitive or motor difficulties, their effect sizes on the liability scale did not differ significantly by sex exome wide or in genes sex-differentially expressed in the cortex. De novo mutations were enriched in genes with male-biased expression in the adult cortex, but these genes did not show a significant sex difference on the liability scale, nor did the liability conferred by these genes differ significantly from other genes with similar loss-of-function intolerance and sex-averaged cortical expression. Exome-wide female bias in de novo protein-truncating mutation rates on the observed scale was driven by high-confidence and syndromic autism-predisposition genes. In summary, autosomal rare and damaging coding variants confer similar liability for autism in females and males.
Collapse
Affiliation(s)
- Mahmoud Koko
- Human Genetics, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - F Kyle Satterstrom
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Varun Warrier
- Department of Psychiatry, Autism Research Centre, University of Cambridge, Cambridge, Cambridgeshire CB2 8AH, UK.
| | - Hilary Martin
- Human Genetics, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK.
| |
Collapse
|
5
|
Tian Y, Qiao H, Odamah K, Zhu LQ, Man HY. Role of androgen receptors in sexually dimorphic phenotypes in UBE3A-dependent autism spectrum disorder. iScience 2025; 28:111868. [PMID: 39991542 PMCID: PMC11847089 DOI: 10.1016/j.isci.2025.111868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/04/2024] [Accepted: 01/20/2025] [Indexed: 02/25/2025] Open
Abstract
Autism spectrum disorders (ASDs) involve social, communication, and behavioral challenges. ASDs display a remarkable sex difference with a 4:1 male to female prevalence ratio; however, the underlying mechanism remains largely unknown. Using the UBE3A-overexpressing mouse model for ASD, we studied sexually dimorphic changes at behavioral, genetic, and molecular levels. We found that male mice with extra copies of Ube3A exhibited greater impairments in social communication, long-term memory, and pain sensitivity compared to females. UBE3A-mediated degradation reduced androgen receptor (AR) levels in both sexes but only male mice showed significant dysregulation in the expression of AR target genes. Importantly, restoring AR levels in the brain normalized levels of AR target genes, and rescued the deficits in social preference, grooming, and memory in male UBE3A-overexpressing mice, without affecting females. These findings reveal the critical role of AR signaling in sex-specific changes linked to UBE3A-dependent ASD.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Hui Qiao
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - KathrynAnn Odamah
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Heng-Ye Man
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Avenue, Boston, MA 02215, USA
| |
Collapse
|
6
|
Qureshi AY, Nielsen JA, Sepulcre J. Differential links in 16p11.2 deletion carriers reveal aberrant connections between large-scale networks. Cereb Cortex 2025; 35:bhae474. [PMID: 40007052 PMCID: PMC11859958 DOI: 10.1093/cercor/bhae474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/25/2024] [Accepted: 12/02/2024] [Indexed: 02/27/2025] Open
Abstract
Qualitatively different topographical patterns of connections are thought to underlie individual differences in thought and behavior, particularly at heteromodal association areas. As such, we hypothesized that connections unique to 16p11.2 deletion carriers compared to controls, rather than hyper- or hypo-connectivity, would serve as a better model to explain the cognitive and behavioral changes observed in individuals carrying this autism-risk copy number variation. Using a spatially-unbiased, data-driven approach we found that differential links clustered non-uniformly across the cortex-particularly at the superior temporal gyrus and sulcus, posterior insula, cingulate sulcus, and inferior parietal lobule bilaterally. At these hotspots, altered local connectivity that spanned across the borders of cortical large-scale networks coincided with aberrant distant interconnectivity between large-scale networks. This was most evident between the auditory and the dorsomedial default (DNb) networks-such that greater between-network interconnectivity was associated with greater communication and social impairment. Entangled connectivity between large-scale networks may preclude each network from having the necessary fidelity to operate properly, particularly when the 2 networks have opposing organization principles-namely, local specialization (segregation) versus global coherency (integration).
Collapse
Affiliation(s)
- Abid Y Qureshi
- Department of Neurology, University of Kansas Medical Center, 2100 W 36th Ave, Suite 130J, Kansas City, KS 66103, United States
| | - Jared A Nielsen
- Department of Psychology and Neuroscience Center, KMBL 1001, Brigham Young University, Provo, UT 84602, United States
| | - Jorge Sepulcre
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale University, 330 Cedar St, New Haven, CT 06520, United States
- Gordon Center for Medical Imaging, Department of Radiology, Mass General Brigham, 125 Nashua Street, Boston, MA 02114, United States
| |
Collapse
|
7
|
Ćuk M, Unal B, Bagarić M, Krakar G, Walker M, Hayes CP, Gašpić B, Skular G, Ghazani AA. Novel TBR1 c.1303C>T Variant Led to Diagnosis of Intellectual Developmental Disorder with Autism and Speech Delay: Application of Comprehensive Family-Based Whole-Genome Analysis. Genes (Basel) 2025; 16:120. [PMID: 40004448 PMCID: PMC11855923 DOI: 10.3390/genes16020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/12/2025] [Accepted: 01/19/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Intellectual developmental disorder with autism and speech delay (IDDAS) is a rare and complex neurological disorder characterized by the presence of both intellectual and speech impairment and features of autism spectrum disorder (ASD). The prevalence of IDDAS is unknown but genetically, it is caused by heterozygous variants in the TBR1 gene. METHODS A 7-year-old female with autistic features and delayed speech development was presented with unaffected parents. Trio-joint analysis was conducted on whole-genome sequencing (WGS) data from the proband and unaffected parents. A phenotype-driven analysis was conducted to investigate variants related to the patient's clinical presentation. A zygosity-focused analysis was performed to investigate de novo and compound heterozygote variants related to the etiology. RESULTS The joint-genome analysis identified a novel NM_006593.4(TBR1):c.1303C>T p.Gln435* nonsense variant in the proband. The de novo analysis confirmed the absence of the variant in the parents. No additional causative variants were identified in genes associated with the proband's phenotype. CONCLUSIONS This is the first report of the NM_006593.4(TBR1):c.1303C>T variant in a patient with IDDAS. This study presents the clinical features of the patient and highlights details of trio-WGS analysis in the molecular diagnosis of this complex disease. Sharing these details is important, as they contribute to the understanding of the spectrum of this rare syndrome.
Collapse
Affiliation(s)
- Mario Ćuk
- Department of Pediatrics, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Busra Unal
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Matea Bagarić
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | | | - McKenzie Walker
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Connor P. Hayes
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | | | | | - Arezou A. Ghazani
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Lee KS, Lee T, Kim M, Ignatova E, Ban HJ, Sung MK, Kim Y, Kim YJ, Han JH, Choi JK. Shared rare genetic variants in multiplex autism families suggest a social memory gene under selection. Sci Rep 2025; 15:696. [PMID: 39753649 PMCID: PMC11698849 DOI: 10.1038/s41598-024-83839-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/17/2024] [Indexed: 01/06/2025] Open
Abstract
Autism spectrum disorder (ASD) affects up to 1 in 59 children, and is one of the most common neurodevelopmental disorders. Recent genomic studies have highlighted the role of rare variants in ASD. This study aimed to identify genes affected by rare variants shared by siblings with ASD and validate the function of a candidate gene FRRS1L. By integrating the whole genome sequencing data of 866 multiplex families from the Hartwell Foundation's Autism Research and Technology Initiative and Autism Speaks MSSNG project, we identified rare variants shared by two or more siblings with ASD. Using shared rare variants (SRVs), we selected candidate genes for ASD. Gene prioritization by evolutionary features and expression alterations on autism identified FRRS1L in two families, including one with impaired social behaviors. One variant in this family was 6 bp away from human-specific trinucleotide fixation. Additionally, CRISPR/Cas9 experiments demonstrated downregulation by a family variant and upregulation by a fixed site. Population genetics further demonstrated that upregulation of this gene has been favored during human evolution. Various mouse behavioral tests showed that Frrs1l knockout specifically impairs social novelty recognition without altering other behavioral phenotypes. Furthermore, we constructed humanized mice by introducing human sequences into a mouse genome. These knockin mice showed improved abilities to retain social memory over time. The results of our population genetic and evolutionary analyses, behavior experiments, and genome editing propose a molecular mechanism that may confer a selective advantage through social memory enhancement and may cause autism-related social impairment when disrupted in humans. These findings highlight the role of FRRS1L, the AMPA receptor subunit, in social behavior and evolution.
Collapse
Affiliation(s)
- Kang Seon Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Taeyeop Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- Department of Psychiatry, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
- Translational Biomedical Research Group, Asan Institute for Life Science, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Mujun Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Elizaveta Ignatova
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Hyo-Jeong Ban
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Min Kyung Sung
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Younghoon Kim
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Youn-Jae Kim
- Specific Organs Cancer Branch, National Cancer Center, Gyeonggi, 10408, Republic of Korea
| | - Jin-Hee Han
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea.
| | - Jung Kyoon Choi
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
9
|
Corrigan RR, Mashburn-Warren LM, Yoon H, Bedrosian TA. Somatic Mosaicism in Brain Disorders. ANNUAL REVIEW OF PATHOLOGY 2025; 20:13-32. [PMID: 39227323 DOI: 10.1146/annurev-pathmechdis-111523-023528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Research efforts over the past decade have defined the genetic landscape of somatic variation in the brain. Neurons accumulate somatic mutations from development through aging with potentially profound functional consequences. Recent studies have revealed the contribution of somatic mosaicism to various brain disorders including focal epilepsy, neuropsychiatric disease, and neurodegeneration. One notable finding is that the effect of somatic mosaicism on clinical outcomes can vary depending on contextual factors, such as the developmental origin of a variant or the number and type of cells affected. In this review, we highlight current knowledge regarding the role of somatic mosaicism in brain disorders and how biological context can mediate phenotypes. First, we identify the origins of brain somatic variation throughout the lifespan of an individual. Second, we explore recent discoveries that suggest somatic mosaicism contributes to various brain disorders. Finally, we discuss neuropathological associations of brain mosaicism in different biological contexts and potential clinical utility.
Collapse
Affiliation(s)
- Rachel R Corrigan
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA;
| | | | - Hyojung Yoon
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA;
| | - Tracy A Bedrosian
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA;
| |
Collapse
|
10
|
Wright D, Kenny A, Mizen LAM, McKechanie AG, Stanfield AC. Profiling Autism and Attention Deficit Hyperactivity Disorder Traits in Children with SYNGAP1-Related Intellectual Disability. J Autism Dev Disord 2025; 55:297-309. [PMID: 38055183 PMCID: PMC11802683 DOI: 10.1007/s10803-023-06162-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 12/07/2023]
Abstract
SYNGAP1-related ID is a genetic condition characterised by global developmental delay and epilepsy. Individuals with SYNGAP1-related ID also commonly show differences in attention and social communication/interaction and frequently receive additional diagnoses of Autism Spectrum Disorder (ASD) or Attention Deficit Hyperactivity Disorder (ADHD). We thus set out to quantify ASD and ADHD symptoms in children with this syndrome. To assess ASD and ADHD, parents and caregivers of a child with SYNGAP1-related ID (N = 34) or a typically developing control (N = 21) completed the Social Responsiveness Scale-2, the Social Communication Questionnaire with a subset of these also completing the Conners-3. We found that those with SYNGAP1-related ID demonstrated higher levels of autistic traits on both the SRS and SCQ than typically developing controls. On the SRS, those with SYNGAP1-related ID scored highest for restricted repetitive behaviours, and were least impaired in social awareness. On the Conners-3, those with SYNGAP1-related ID also showed a high prevalence of ADHD traits, with scores demonstrating difficulties with peer relations but relatively low occurrence of symptoms for DSM-5 conduct disorder and DSM-5 oppositional defiant disorder. Hierarchical clustering analysis highlighted distinct SYNGAP1-related ID subgroups for both ASD and ADHD traits. These findings provide further characterisation of the SYNGAP1-related ID behavioural phenotype, guiding diagnosis, assessment and potential interventions.
Collapse
Affiliation(s)
- Damien Wright
- Patrick Wild Centre, Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, University of Edinburgh, EH10 5HF, Edinburgh, UK.
| | - Aisling Kenny
- Patrick Wild Centre, Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, University of Edinburgh, EH10 5HF, Edinburgh, UK
| | - Lindsay A M Mizen
- Patrick Wild Centre, Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, University of Edinburgh, EH10 5HF, Edinburgh, UK
| | - Andrew G McKechanie
- Patrick Wild Centre, Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, University of Edinburgh, EH10 5HF, Edinburgh, UK
| | - Andrew C Stanfield
- Patrick Wild Centre, Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, University of Edinburgh, EH10 5HF, Edinburgh, UK
| |
Collapse
|
11
|
Cezar LC, da Fonseca CCN, Klein MO, Kirsten TB, Felicio LF. Prenatal Valproic Acid Induces Autistic-Like Behaviors in Rats via Dopaminergic Modulation in Nigrostriatal and Mesocorticolimbic Pathways. J Neurochem 2025; 169:e16282. [PMID: 39801243 DOI: 10.1111/jnc.16282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 05/02/2025]
Abstract
Autism spectrum disorder (ASD) is a complex developmental disorder characterized by several behavioral impairments, especially in socialization, communication, and the occurrence of stereotyped behaviors. In rats, prenatal exposure to valproic acid (VPA) induces autistic-like behaviors. Previous studies by our group have suggested that the autistic-like phenotype is possibly related to dopaminergic system modulation because tyrosine hydroxylase (TH) expression was affected. The objective of the present study was to understand the dopaminergic role in autism. Wistar rats on gestational day 12.5 received VPA (400 mg/kg) and behaviors related to rat models of ASD were evaluated in juvenile offspring. Neurochemical and genetic dopaminergic components were studied in different brain areas of both juvenile and adult rats. Prenatal VPA-induced autistic-like behaviors in comparison to a control group: decreased maternal solicitations by ultrasonic vocalizations, cognitive inflexibility and stereotyped behavior in the T-maze test, decreased social interaction and play behavior, as well as motor hyperactivity. Prenatal VPA also decreased dopamine synthesis and activity in the striatum and prefrontal cortex, as well as dopamine transporter, D1 and D2 receptors, and TH expressions. Moreover, prenatal VPA increased TH+ immunoreactive neurons of the ventral tegmental area-substantia nigra complex. In conclusion, the dopaminergic hypoactivity associated with the behavioral impairments exhibited by the rats that received prenatal VPA suggests the important role of this system in the establishment of the characteristic symptoms of ASD in juvenile and adult males. Dopamine was demonstrated to be an important biomarker and a potential pharmacological target for ASD.
Collapse
Affiliation(s)
- Luana C Cezar
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Sao Paulo, Brazil
| | | | - Marianne O Klein
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Thiago B Kirsten
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, Sao Paulo, Brazil
| | - Luciano F Felicio
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Sao Paulo, Brazil
| |
Collapse
|
12
|
Kong C, Bing Z, Yang L, Huang Z, Wang W, Grebogi C. Transcriptomic Evidence Reveals the Dysfunctional Mechanism of Synaptic Plasticity Control in ASD. Genes (Basel) 2024; 16:11. [PMID: 39858558 PMCID: PMC11764921 DOI: 10.3390/genes16010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND/OBJECTIVES A prominent endophenotype in Autism Spectrum Disorder (ASD) is the synaptic plasticity dysfunction, yet the molecular mechanism remains elusive. As a prototype, we investigate the postsynaptic signal transduction network in glutamatergic neurons and integrate single-cell nucleus transcriptomics data from the Prefrontal Cortex (PFC) to unveil the malfunction of translation control. METHODS We devise an innovative and highly dependable pipeline to transform our acquired signal transduction network into an mRNA Signaling-Regulatory Network (mSiReN) and analyze it at the RNA level. We employ Cell-Specific Network Inference via Integer Value Programming and Causal Reasoning (CS-NIVaCaR) to identify core modules and Cell-Specific Probabilistic Contextualization for mRNA Regulatory Networks (CS-ProComReN) to quantitatively reveal activated sub-pathways involving MAPK1, MKNK1, RPS6KA5, and MTOR across different cell types in ASD. RESULTS The results indicate that specific pivotal molecules, such as EIF4EBP1 and EIF4E, lacking Differential Expression (DE) characteristics and responsible for protein translation with long-term potentiation (LTP) or long-term depression (LTD), are dysregulated. We further uncover distinct activation patterns causally linked to the EIF4EBP1-EIF4E module in excitatory and inhibitory neurons. CONCLUSIONS Importantly, our work introduces a methodology for leveraging extensive transcriptomics data to parse the signal transduction network, transforming it into mSiReN, and mapping it back to the protein level. These algorithms can serve as potent tools in systems biology to analyze other omics and regulatory networks. Furthermore, the biomarkers within the activated sub-pathways, revealed by identifying convergent dysregulation, illuminate potential diagnostic and prognostic factors in ASD.
Collapse
Affiliation(s)
- Chao Kong
- School of Systems Science, Beijing Normal University, Beijing 100875, China;
| | - Zhitong Bing
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lei Yang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zigang Huang
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Wenxu Wang
- School of Systems Science, Beijing Normal University, Beijing 100875, China;
| | - Celso Grebogi
- Institute for Complex Systems and Mathematical Biology, King’s College, University of Aberdeen, Old Aberdeen AB24 3UE, UK
| |
Collapse
|
13
|
Bo M, Carta A, Cipriani C, Cavassa V, Simula ER, Huyen NT, Phan GTH, Noli M, Matteucci C, Sotgiu S, Balestrieri E, Sechi LA. HERVs Endophenotype in Autism Spectrum Disorder: Human Endogenous Retroviruses, Specific Immunoreactivity, and Disease Association in Different Family Members. Microorganisms 2024; 13:9. [PMID: 39858776 PMCID: PMC11767913 DOI: 10.3390/microorganisms13010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
Increasing evidence indicates that human endogenous retroviruses (HERVs) are important to human health and are an underexplored component of many diseases. Certain HERV families show unique expression patterns and immune responses in autism spectrum disorder (ASD) patients compared to healthy controls, suggesting their potential as biomarkers. Despite these interesting findings, the role of HERVs in ASD needs to be further investigated. In this review, we discuss recent advances in genetic research on ASD, with a particular emphasis on the implications of HERVs on neurodevelopment and future genomic initiatives aimed at discovering ASD-related genes through Artificial Intelligence. Given their pro-inflammatory and autoimmune characteristics, the existing literature suggests that HERVs may contribute to the onset or worsening of ASD in individuals with a genetic predisposition. Therefore, we propose that investigating their fundamental properties could not only improve existing therapies but also pave the way for new therapeutic strategies.
Collapse
Affiliation(s)
- Marco Bo
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy; (M.B.); (E.R.S.); (M.N.); (L.A.S.)
- Struttura Complessa Microbiologia e Virologia, Azienda Ospedaliera Universitaria Sassari, 07100 Sassari, Italy
| | - Alessandra Carta
- Unit of Child Neuropsychiatry, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.)
| | - Chiara Cipriani
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (C.C.); (C.M.)
| | - Vanna Cavassa
- Unit of Child Neuropsychiatry, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.)
| | - Elena Rita Simula
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy; (M.B.); (E.R.S.); (M.N.); (L.A.S.)
| | - Nguyen Thi Huyen
- Department of Immunology and Pathophysiology, Hue University of Medicine and Pharmacy, Hue City 53000, Vietnam; (N.T.H.); (G.T.H.P.)
| | - Giang Thi Hang Phan
- Department of Immunology and Pathophysiology, Hue University of Medicine and Pharmacy, Hue City 53000, Vietnam; (N.T.H.); (G.T.H.P.)
| | - Marta Noli
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy; (M.B.); (E.R.S.); (M.N.); (L.A.S.)
- Struttura Complessa Microbiologia e Virologia, Azienda Ospedaliera Universitaria Sassari, 07100 Sassari, Italy
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (C.C.); (C.M.)
| | - Stefano Sotgiu
- Unit of Child Neuropsychiatry, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.)
| | - Emanuela Balestrieri
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (C.C.); (C.M.)
| | - Leonardo Antonio Sechi
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy; (M.B.); (E.R.S.); (M.N.); (L.A.S.)
- Struttura Complessa Microbiologia e Virologia, Azienda Ospedaliera Universitaria Sassari, 07100 Sassari, Italy
| |
Collapse
|
14
|
Castellano G, Bonnet Da Silva J, Pietropaolo S. The role of gene-environment interactions in social dysfunction: Focus on preclinical evidence from mouse studies. Neuropharmacology 2024; 261:110179. [PMID: 39369849 DOI: 10.1016/j.neuropharm.2024.110179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Human and animal research has demonstrated that genetic and environmental factors can strongly modulate behavioral function, including the expression of social behaviors and their dysfunctionalities. Several genes have been linked to pathologies characterized by alterations in social behaviors, e.g., aggressive/antisocial personality disorder (ASPD), or autism spectrum disorder (ASD). Environmental stimulation (e.g., physical exercise, environmental enrichment) or adversity (e.g., chronic stress, social isolation) may respectively improve or impair social interactions. While the independent contribution of genetic and environmental factors to social behaviors has been assessed in a variety of human and animal studies, the impact of their interactive effects on social functions has been less extensively investigated. Genetic mutations and environmental changes can indeed influence each other through complex mutual effects, e.g., inducing synergistic, antagonistic or interactive behavioral outcomes. This complexity is difficult to be disentangled in human populations, thus encouraging studies in animal models, especially in the mouse species which is the most suitable for genetic manipulations. Here we review the available preclinical evidence on the impact of gene-environment interactions on social behaviors and their dysfunction, focusing on studies in laboratory mice. We included findings combining naturally occurring mutations, selectively bred or transgenic mice with multiple environmental manipulations, including positive (environmental enrichment, physical exercise) and aversive (social isolation, maternal separation, and stress) experiences. The impact of these results is critically discussed in terms of their generalizability across mouse models and social tests, as well as their implications for human studies on social dysfunction.
Collapse
Affiliation(s)
- Giulia Castellano
- Univ. Bordeaux, CNRS, EPHE, INCIA, UMR 5287, F-33000, Bordeaux, France
| | | | | |
Collapse
|
15
|
Kumar M, Mehan S, Kumar A, Sharma T, Khan Z, Tiwari A, Das Gupta G, Narula AS. Therapeutic efficacy of Genistein in activation of neuronal AC/cAMP/CREB/PKA and mitochondrial ETC-Complex pathways in experimental model of autism: Evidence from CSF, blood plasma and brain analysis. Brain Res 2024; 1846:149251. [PMID: 39384128 DOI: 10.1016/j.brainres.2024.149251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 10/11/2024]
Abstract
Autism is a complex neurodevelopmental condition characterized by repetitive behaviors, impaired social communication, and various associated conditions such as depression and anxiety. Its multifactorial etiology includes genetic, environmental, dietary, and gastrointestinal contributions. Pathologically, Autism is linked to mitochondrial dysfunction, oxidative stress, neuroinflammation, and neurotransmitter imbalances involving GABA, glutamate, dopamine, and oxytocin. Propionic acid (PRPA) is a short-chain fatty acid produced by gut bacteria, influencing central nervous system functions. Elevated PRPA levels can exacerbate Autism-related symptoms by disrupting metabolic processes and crossing the blood-brain barrier. Our research investigates the neuroprotective potential of Genistein (GNT), an isoflavone compound with known benefits in neuropsychiatric and neurodegenerative disorders, through modulation of the AC/cAMP/CREB/PKA signaling pathway and mitochondrial ETC complex (I-IV) function. In silico analyses revealed GNT's high affinity for these targets. Subsequent in vitro and in vivo experiments using a PRPA-induced rat model of autism demonstrated that GNT (40 and 80 mg/kg., orally) significantly improves locomotion, neuromuscular coordination, and cognitive functions in PRPA-treated rodents. Behavioral assessments showed reduced immobility in the forced swim test, enhanced Morris water maze performance, and restored regular locomotor activity. On a molecular level, GNT restored levels of key signaling molecules (AC, cAMP, CREB, PKA) and mitochondrial complexes (I-V), disrupted by PRPA exposure. Additionally, GNT reduced neuroinflammation and apoptosis, normalized neurotransmitter levels, and improved the complete blood count profile. Histopathological analyses confirmed that GNT ameliorated PRPA-induced brain injuries, restored normal brain morphology, reduced demyelination, and promoted neurogenesis. The study supports GNT's potential in autism treatment by modulating neural pathways, reducing inflammation, and restoring neurotransmitter balance.
Collapse
Affiliation(s)
- Manjeet Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India.
| | - Aakash Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Tarun Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Aarti Tiwari
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Ghanshyam Das Gupta
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India; Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
16
|
Ornoy A, Echefu B, Becker M. Animal Models of Autistic-like Behavior in Rodents: A Scoping Review and Call for a Comprehensive Scoring System. Int J Mol Sci 2024; 25:10469. [PMID: 39408797 PMCID: PMC11477392 DOI: 10.3390/ijms251910469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Appropriate animal models of human diseases are a cornerstone in the advancement of science and medicine. To create animal models of neuropsychiatric and neurobehavioral diseases such as autism spectrum disorder (ASD) necessitates the development of sufficient neurobehavioral measuring tools to translate human behavior to expected measurable behavioral features in animals. If possible, the severity of the symptoms should also be assessed. Indeed, at least in rodents, adequate neurobehavioral and neurological tests have been developed. Since ASD is characterized by a number of specific behavioral trends with significant severity, animal models of autistic-like behavior have to demonstrate the specific characteristic features, namely impaired social interactions, communication deficits, and restricted, repetitive behavioral patterns, with association to several additional impairments such as somatosensory, motor, and memory impairments. Thus, an appropriate model must show behavioral impairment of a minimal number of neurobehavioral characteristics using an adequate number of behavioral tests. The proper animal models enable the study of ASD-like-behavior from the etiologic, pathogenetic, and therapeutic aspects. From the etiologic aspects, models have been developed by the use of immunogenic substances like polyinosinic-polycytidylic acid (PolyIC), lipopolysaccharide (LPS), and propionic acid, or other well-documented immunogens or pathogens, like Mycobacterium tuberculosis. Another approach is the use of chemicals like valproic acid, polychlorinated biphenyls (PCBs), organophosphate pesticides like chlorpyrifos (CPF), and others. These substances were administered either prenatally, generally after the period of major organogenesis, or, especially in rodents, during early postnatal life. In addition, using modern genetic manipulation methods, genetic models have been created of almost all human genetic diseases that are manifested by autistic-like behavior (i.e., fragile X, Rett syndrome, SHANK gene mutation, neuroligin genes, and others). Ideally, we should not only evaluate the different behavioral modes affected by the ASD-like behavior, but also assess the severity of the behavioral deviations by an appropriate scoring system, as applied to humans. We therefore propose a scoring system for improved assessment of ASD-like behavior in animal models.
Collapse
Affiliation(s)
- Asher Ornoy
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.)
- Hadassah Academic College, Jerusalem 9101001, Israel
- Hadassah Medical School, Hebrew University, Jerusalem 9112102, Israel
| | - Boniface Echefu
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.)
| | - Maria Becker
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.)
| |
Collapse
|
17
|
Liu Y, Chen Y, Duffy CR, VanLeuven AJ, Byers JB, Schriever HC, Ball RE, Carpenter JM, Gunderson CE, Filipov NM, Ma P, Kner PA, Lauderdale JD. Decreased GABA levels during development result in increased connectivity in the larval zebrafish tectum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612511. [PMID: 39314470 PMCID: PMC11419034 DOI: 10.1101/2024.09.11.612511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
γ-aminobutyric acid (GABA) is an abundant neurotransmitter that plays multiple roles in the vertebrate central nervous system (CNS). In the early developing CNS, GABAergic signaling acts to depolarize cells. It mediates several aspects of neural development, including cell proliferation, neuronal migration, neurite growth, and synapse formation, as well as the development of critical periods. Later in CNS development, GABAergic signaling acts in an inhibitory manner when it becomes the predominant inhibitory neurotransmitter in the brain. This behavior switch occurs due to changes in chloride/cation transporter expression. Abnormalities of GABAergic signaling appear to underlie several human neurological conditions, including seizure disorders. However, the impact of reduced GABAergic signaling on brain development has been challenging to study in mammals. Here we take advantage of zebrafish and light sheet imaging to assess the impact of reduced GABAergic signaling on the functional circuitry in the larval zebrafish optic tectum. Zebrafish have three gad genes: two gad1 paralogs known as gad1a and gad1b, and gad2. The gad1b and gad2 genes are expressed in the developing optic tectum. Null mutations in gad1b significantly reduce GABA levels in the brain and increase electrophysiological activity in the optic tectum. Fast light sheet imaging of genetically encoded calcium indicator (GCaMP)-expressing gab1b null larval zebrafish revealed patterns of neural activity that were different than either gad1b-normal larvae or gad1b-normal larvae acutely exposed to pentylenetetrazole (PTZ). These results demonstrate that reduced GABAergic signaling during development increases functional connectivity and concomitantly hyper-synchronization of neuronal networks.
Collapse
Affiliation(s)
- Yang Liu
- School of Electrical and Computer Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Yongkai Chen
- Department of Statistics, The University of Georgia, Athens, GA 30602, USA
| | - Carly R Duffy
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Ariel J VanLeuven
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - John Branson Byers
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Hannah C Schriever
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Rebecca E Ball
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Jessica M Carpenter
- Department of Physiology and Pharmacology, The University of Georgia, College of Veterinary Medicine, Athens, GA, 30602, USA
- Neuroscience Division of the Biomedical and Translational Sciences Institute, The University of Georgia, Athens, GA 30602, USA
| | - Chelsea E Gunderson
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Nikolay M Filipov
- Department of Physiology and Pharmacology, The University of Georgia, College of Veterinary Medicine, Athens, GA, 30602, USA
| | - Ping Ma
- Department of Statistics, The University of Georgia, Athens, GA 30602, USA
| | - Peter A Kner
- School of Electrical and Computer Engineering, The University of Georgia, Athens, GA 30602, USA
| | - James D Lauderdale
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
- Neuroscience Division of the Biomedical and Translational Sciences Institute, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
18
|
Thurman AJ, Nunnally AD, Nguyen V, Berry-Kravis E, Sterling A, Edgin J, Hamilton D, Aschkenasy J, Abbeduto L. Short-term and Long-term Stability of the Autism Diagnostic Observation Schedule (ADOS-2) Calibrated Comparison Scores (CCS) and Classification Scores in Youth with Down Syndrome or Fragile X Syndrome with Intellectual Disability. J Autism Dev Disord 2024:10.1007/s10803-024-06535-8. [PMID: 39251531 DOI: 10.1007/s10803-024-06535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
Autism diagnosis in individuals with fragile X syndrome (FXS) or Down syndrome (DS) with co-occurring intellectual disability is complex since clinicians often must consider other co-occurring behavioral features. Understanding how best to assess the features of autism in individuals with these conditions is crucial. In this study, we consider the short-term and long-term psychometric consistency of the Autism Diagnostic Observation Schedule-2 (ADOS-2) calibrated comparison scores (CCSs) and ASD classifications in individuals with FXS or DS. 76 individuals with DS (39 males; Mage = 15.27) and 90 individuals with FXS (71 males; Mage = 14.52 years) completed an assessment battery (ADOS-2, abbreviated IQ assessment and semi-structured language sample) at three timepoints (initial visit, short-term stability visit, long-term stability visit). All CCSs were found to have short-and long-term consistency for both groups, with lowest reliability scores for the repetitive behaviors (RRB) CCSs. Decreased reliability of RRB CCSs was found in the DS group than the FXS group. Variable short- and long-term ASD classifications were observed in both groups, with significantly higher variability in the DS group. Across groups, participants with variable classifications had lower ADOS-2 CCSs and higher language scores than those with stable ASD classifications. In the FXS group, those with variable classifications earned higher cognitive scores than did participants with stable ASD classifications. These findings highlight the high incidence of autism symptomatology in individuals with DS or FXS and co-occurring intellectual disability, while elucidating the short- and long-term variability of symptom expression in the context of structured observational tasks such as the ADOS-2.
Collapse
Affiliation(s)
- Angela John Thurman
- MIND Institute, University of California, Davis, 2825 50th Street, Room 2335, Sacramento, CA, 95817, USA.
- Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, Sacramento, USA.
| | - Amanda Dimachkie Nunnally
- MIND Institute, University of California, Davis, 2825 50th Street, Room 2335, Sacramento, CA, 95817, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, Sacramento, USA
| | - Vivian Nguyen
- MIND Institute, University of California, Davis, 2825 50th Street, Room 2335, Sacramento, CA, 95817, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, Sacramento, USA
| | - Elizabeth Berry-Kravis
- Departments of Pediatrics, Neurological Sciences and Anatomy and Cell Biology, Rush University Medical Center, Chicago, USA
| | - Audra Sterling
- Waisman Center and Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, USA
| | - Jamie Edgin
- Department of Psychology, Virginia Tech, Blacksburg, USA
| | - Debra Hamilton
- Department of Human Genetics, Emory University, Atlanta, USA
| | | | - Leonard Abbeduto
- MIND Institute, University of California, Davis, 2825 50th Street, Room 2335, Sacramento, CA, 95817, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, Sacramento, USA
| |
Collapse
|
19
|
Retuerto M, Al-Shakhshir H, Herrada J, McCormick TS, Ghannoum MA. Analysis of Gut Bacterial and Fungal Microbiota in Children with Autism Spectrum Disorder and Their Non-Autistic Siblings. Nutrients 2024; 16:3004. [PMID: 39275319 PMCID: PMC11396985 DOI: 10.3390/nu16173004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is a multifactorial disorder involving genetic and environmental factors leading to pathophysiologic symptoms and comorbidities including neurodevelopmental disorders, anxiety, immune dysregulation, and gastrointestinal (GI) abnormalities. Abnormal intestinal permeability has been reported among ASD patients and it is well established that disturbances in eating patterns may cause gut microbiome imbalance (i.e., dysbiosis). Therefore, studies focusing on the potential relationship between gut microbiota and ASD are emerging. We compared the intestinal bacteriome and mycobiome of a cohort of ASD subjects with their non-ASD siblings. Differences between ASD and non-ASD subjects include a significant decrease at the phylum level in Cyanobacteria (0.015% vs. 0.074%, p < 0.0003), and a significant decrease at the genus level in Bacteroides (28.3% vs. 36.8%, p < 0.03). Species-level analysis showed a significant decrease in Faecalibacterium prausnitzii, Prevotella copri, Bacteroides fragilis, and Akkermansia municiphila. Mycobiome analysis showed an increase in the fungal Ascomycota phylum (98.3% vs. 94%, p < 0.047) and an increase in Candida albicans (27.1% vs. 13.2%, p < 0.055). Multivariate analysis showed that organisms from the genus Delftia were predictive of an increased odds ratio of ASD, whereas decreases at the phylum level in Cyanobacteria and at the genus level in Azospirillum were associated with an increased odds ratio of ASD. We screened 24 probiotic organisms to identify strains that could alter the growth patterns of organisms identified as elevated within ASD subject samples. In a preliminary in vivo preclinical test, we challenged wild-type Balb/c mice with Delftia acidovorans (increased in ASD subjects) by oral gavage and compared changes in behavioral patterns to sham-treated controls. An in vitro biofilm assay was used to determine the ability of potentially beneficial microorganisms to alter the biofilm-forming patterns of Delftia acidovorans, as well as their ability to break down fiber. Downregulation of cyanobacteria (generally beneficial for inflammation and wound healing) combined with an increase in biofilm-forming species such as D. acidovorans suggests that ASD-related GI symptoms may result from decreases in beneficial organisms with a concomitant increase in potential pathogens, and that beneficial probiotics can be identified that counteract these changes.
Collapse
Affiliation(s)
- Mauricio Retuerto
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hilmi Al-Shakhshir
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Janet Herrada
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Thomas S McCormick
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mahmoud A Ghannoum
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
- Center for Medical Mycology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
20
|
Attallah A, Ardourel M, Gallazzini F, Lesne F, De Oliveira A, Togbé D, Briault S, Perche O. Lack of FMRP in the retina: Evidence of a retinal specific transcriptomic profile. Exp Eye Res 2024; 246:110015. [PMID: 39089568 DOI: 10.1016/j.exer.2024.110015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/11/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Fragile X Syndrome (FXS), the most common inherited form of human intellectual disability, is a monogenic neurodevelopmental disorder caused by a loss-of-function mutation of the FMR1 gene. FMR1 is encoding the Fragile X Messenger Ribonucleo Protein (FMRP) an RNA-binding protein that regulates the translation of synaptic proteins. The absence of FMRP expression has many important consequences on synaptic plasticity and function, leading to the FXS clinical phenotype. Over the last decade, a visual neurosensorial phenotype had been described in the FXS patients as well as in the murine model (Fmr1-/ymice), characterized by retinal deficits associated to retinal perception alterations. However, although the transcriptomic profile in the absence of FMRP has been studied in the cerebral part of the central nervous system (CNS), there are no actual data for the retina which is an extension of the CNS. Herein, we investigate the transcriptomic profile of mRNA from whole retinas of Fmr1-/ymice. Interestingly, we found a specific signature of Fmrp absence on retinal mRNA expression with few common genes compared to other brain studies. Gene Ontology on these retinal specific genes demonstrated an enrichment in retinal development genes as well as in synaptic genes. These alterations could be linked to the reported retinal phenotype of the FXS condition. In conclusion, we describe for the first time, retinal-specific transcriptomic changes in the absence of FMRP.
Collapse
Affiliation(s)
- Amir Attallah
- Orléans University, University Hospital Center of Orleans, LI(2)RSO, 14, Avenue de l'hôpital, 45100, Orléans, France; Orleans University, CNRS, laboratoire INEM, UMR7355, 3b Rue de la Férollerie, F-45071, Orléans, Cedex 2, France; ART ARNm US55, 14 Avenue de l'Hôpital, 45100, Orléans, France
| | - Maryvonne Ardourel
- Orléans University, University Hospital Center of Orleans, LI(2)RSO, 14, Avenue de l'hôpital, 45100, Orléans, France; ART ARNm US55, 14 Avenue de l'Hôpital, 45100, Orléans, France
| | - Felix Gallazzini
- University Hospital Center of Orleans, Genetic Department, 14 Avenue de l'Hôpital, 45100, Orléans, France
| | - Fabien Lesne
- University Hospital Center of Orléans CAR&IB, Pôle Biopatholgie, 14 Avenue de l'Hôpital, 45100, Orléans, France
| | - Anthony De Oliveira
- University Hospital Center of Orléans CAR&IB, Pôle Biopatholgie, 14 Avenue de l'Hôpital, 45100, Orléans, France
| | - Dieudonnée Togbé
- Orleans University, CNRS, laboratoire INEM, UMR7355, 3b Rue de la Férollerie, F-45071, Orléans, Cedex 2, France
| | - Sylvain Briault
- Orléans University, University Hospital Center of Orleans, LI(2)RSO, 14, Avenue de l'hôpital, 45100, Orléans, France; ART ARNm US55, 14 Avenue de l'Hôpital, 45100, Orléans, France; University Hospital Center of Orleans, Genetic Department, 14 Avenue de l'Hôpital, 45100, Orléans, France
| | - Olivier Perche
- Orléans University, University Hospital Center of Orleans, LI(2)RSO, 14, Avenue de l'hôpital, 45100, Orléans, France; ART ARNm US55, 14 Avenue de l'Hôpital, 45100, Orléans, France; University Hospital Center of Orleans, Genetic Department, 14 Avenue de l'Hôpital, 45100, Orléans, France.
| |
Collapse
|
21
|
Sallum JMF, Pellissari MC, Carreiro LR, de Vasconcellos CFC. Screening for Autism Spectrum Disorder in Children and Adolescents With Leber's Congenital Amaurosis. Am J Ophthalmol 2024; 265:257-274. [PMID: 38777102 DOI: 10.1016/j.ajo.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE To investigate autism spectrum disorder (ASD) indicators in children with Leber congenital amaurosis (LCA). STUDY DESIGN Cross-sectional, prospective, and correlational study. METHODS Setting: It was conducted at the Institute of Ocular Genetics, the Department of Ophthalmology at Federal University of São Paulo (UNIFESP), and the Autism Spectrum Disorder Laboratory, in São Paulo, Brazil. PATIENT POPULATION Participants included patients aged 2 to 16 years with LCA confirmed by genetic testing. There were 20 individuals with ciliopathies (LCA cilio) and 26 with other gene mutations (LCA other). As intervention, the instrument used for ASD screening was the Autism Behavior Checklist (ABC). Marginal descriptive analyses, non-parametric tests, and a linear regression model were conducted. The main outcomes were the scores on the tests correlated with clinical variables. RESULTS Of the 46 participants, 6 had ASD scores. There was no statistically significant correlation between the different groups (LCA cilio and LCA other) (p = 0.438). There was no statistically significant correlation between age and ASD (p = 0.308). However, there was a statistically significant correlation between visual acuity and ASD (p = 0.008) and between male gender and ASD (p = 0.025). CONCLUSIONS This study suggests that there is no correlation between LCA cilio, LCA other and ASD. These findings bring new insights to the existing literature, which previously lacked robust data on the relationship between LCA and ASD. These data demonstrate that visual acuity plays a crucial role in the development of children with visual impairment as poorer visual acuity is associated with a higher incidence of ASD. Based on this study, early interventions can be designed, especially for individuals without light perception, with the aim of maximizing their developmental outcomes. Furthermore, such data indicates that any improvement in visual acuity outcomes in treatment clinical trials become relevant for child development. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.
Collapse
Affiliation(s)
- Juliana Maria Ferraz Sallum
- From the Department of Ophthalmology, Federal University of São Paulo-UNIFESP (JMFS, CFCdV, MCP), São Paulo, SP, Brazil.
| | - Marina Cruz Pellissari
- From the Department of Ophthalmology, Federal University of São Paulo-UNIFESP (JMFS, CFCdV, MCP), São Paulo, SP, Brazil
| | - Luiz Renato Carreiro
- Postgraduate Program in Human Development Sciences, Mackenzie Presbyterian University-Mackenzie (LRC), São Paulo, SP, Brazil
| | | |
Collapse
|
22
|
Falcão M, Monteiro P, Jacinto L. Tactile sensory processing deficits in genetic mouse models of autism spectrum disorder. J Neurochem 2024; 168:2105-2123. [PMID: 38837765 DOI: 10.1111/jnc.16135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024]
Abstract
Altered sensory processing is a common feature in autism spectrum disorder (ASD), as recognized in the Diagnostic and Statistical Manual of Mental Disorders (DSM-5). Although altered responses to tactile stimuli are observed in over 60% of individuals with ASD, the neurobiological basis of this phenomenon is poorly understood. ASD has a strong genetic component and genetic mouse models can provide valuable insights into the mechanisms underlying tactile abnormalities in ASD. This review critically addresses recent findings regarding tactile processing deficits found in mouse models of ASD, with a focus on behavioral, anatomical, and functional alterations. Particular attention was given to cellular and circuit-level functional alterations, both in the peripheral and central nervous systems, with the objective of highlighting possible convergence mechanisms across models. By elucidating the impact of mutations in ASD candidate genes on somatosensory circuits and correlating them with behavioral phenotypes, this review significantly advances our understanding of tactile deficits in ASD. Such insights not only broaden our comprehension but also pave the way for future therapeutic interventions.
Collapse
Affiliation(s)
- Margarida Falcão
- Department of Biomedicine-Experimental Biology Unit, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Patricia Monteiro
- Department of Biomedicine-Experimental Biology Unit, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Luis Jacinto
- Department of Biomedicine-Experimental Biology Unit, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| |
Collapse
|
23
|
Carrazana R, Espinoza F, Ávila A. Mechanistic perspective on the actions of vitamin a in autism spectrum disorder etiology. Neuroscience 2024; 554:72-82. [PMID: 39002756 DOI: 10.1016/j.neuroscience.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/07/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Vitamin A (VA) has many functions in the body, some of which are key for the development and functioning of the nervous system, while some others might indirectly influence neural function. Both hypovitaminosis and hypervitaminosis A can lead to clinical manifestations of concern for individuals and for general global health. Scientific evidence on the link between VA and autism spectrum disorder (ASD) is growing, with some clinical studies and accumulating results obtained from basic research using cellular and animal models. Remarkably, it has been shown that VA deficiency can exacerbate autistic symptomatology. In turn, VA supplementation has been shown to be able to improve autistic symptomatology in selected groups of individuals with ASD. However, it is important to recognize that ASD is a highly heterogeneous condition. Therefore, it is important to clarify how and when VA supplementation can be of benefit for affected individuals. Here we delve into the relationship between VA and ASD, discussing clinical observations and mechanistic insights obtained from research on selected autistic syndromes and laboratory models to advance in defining how the VA signaling pathway can be exploited for treatment of ASD.
Collapse
Affiliation(s)
- Ramón Carrazana
- Neurodevelopmental Biology Unit, Biomedical Sciences Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Francisca Espinoza
- Neurodevelopmental Biology Unit, Biomedical Sciences Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Ariel Ávila
- Neurodevelopmental Biology Unit, Biomedical Sciences Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile.
| |
Collapse
|
24
|
Ahmad I, Rashid J, Faheem M, Akram A, Khan NA, Amin RU. Autism spectrum disorder detection using facial images: A performance comparison of pretrained convolutional neural networks. Healthc Technol Lett 2024; 11:227-239. [PMID: 39100502 PMCID: PMC11294932 DOI: 10.1049/htl2.12073] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 08/06/2024] Open
Abstract
Autism spectrum disorder (ASD) is a complex psychological syndrome characterized by persistent difficulties in social interaction, restricted behaviours, speech, and nonverbal communication. The impacts of this disorder and the severity of symptoms vary from person to person. In most cases, symptoms of ASD appear at the age of 2 to 5 and continue throughout adolescence and into adulthood. While this disorder cannot be cured completely, studies have shown that early detection of this syndrome can assist in maintaining the behavioural and psychological development of children. Experts are currently studying various machine learning methods, particularly convolutional neural networks, to expedite the screening process. Convolutional neural networks are considered promising frameworks for the diagnosis of ASD. This study employs different pre-trained convolutional neural networks such as ResNet34, ResNet50, AlexNet, MobileNetV2, VGG16, and VGG19 to diagnose ASD and compared their performance. Transfer learning was applied to every model included in the study to achieve higher results than the initial models. The proposed ResNet50 model achieved the highest accuracy, 92%, compared to other transfer learning models. The proposed method also outperformed the state-of-the-art models in terms of accuracy and computational cost.
Collapse
Affiliation(s)
- Israr Ahmad
- Department of Automation ScienceBeihang UniversityBeijingChina
| | - Javed Rashid
- Department of IT ServicesUniversity of OkaraOkaraPunjabPakistan
- MLC LabOkaraPunjabPakistan
| | - Muhammad Faheem
- Department of Computing SciencesSchool of Technology and Innovations, University of VaasaVaasaFinland
| | - Arslan Akram
- MLC LabOkaraPunjabPakistan
- Department of Computer ScienceUniversity of OkaraOkaraPunjabPakistan
| | - Nafees Ahmad Khan
- MLC LabOkaraPunjabPakistan
- Department of Computer ScienceUniversity of OkaraOkaraPunjabPakistan
| | - Riaz ul Amin
- MLC LabOkaraPunjabPakistan
- Department of Computer ScienceUniversity of OkaraOkaraPunjabPakistan
| |
Collapse
|
25
|
Li YX, Tan ZN, Li XH, Ma B, Adu Nti F, Lv XQ, Tian ZJ, Yan R, Man HY, Ma XM. Increased gene dosage of RFWD2 causes autistic-like behaviors and aberrant synaptic formation and function in mice. Mol Psychiatry 2024; 29:2496-2509. [PMID: 38503925 PMCID: PMC11412905 DOI: 10.1038/s41380-024-02515-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interactions, communication deficits and repetitive behaviors. A study of autistic human subjects has identified RFWD2 as a susceptibility gene for autism, and autistic patients have 3 copies of the RFWD2 gene. The role of RFWD2 as an E3 ligase in neuronal functions, and its contribution to the pathophysiology of ASD, remain unknown. We generated RFWD2 knockin mice to model the human autistic condition of high gene dosage of RFWD2. We found that heterozygous knockin (Rfwd2+/-) male mice exhibited the core symptoms of autism. Rfwd2+/- male mice showed deficits in social interaction and communication, increased repetitive and anxiety-like behavior, and spatial memory deficits, whereas Rfwd2+/- female mice showed subtle deficits in social communication and spatial memory but were normal in anxiety-like, repetitive, and social behaviors. These autistic-like behaviors in males were accompanied by a reduction in dendritic spine density and abnormal synaptic function on layer II/III pyramidal neurons in the prelimbic area of the medial prefrontal cortex (mPFC), as well as decreased expression of synaptic proteins. Impaired social behaviors in Rfwd2+/- male mice were rescued by the expression of ETV5, one of the major substrates of RFWD2, in the mPFC. These findings indicate an important role of RFWD2 in the pathogenesis of autism.
Collapse
Affiliation(s)
- Yong-Xia Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhi-Nei Tan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xu-Hui Li
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Boyu Ma
- Department of Oral and Maxillofacial Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Frank Adu Nti
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiao-Qiang Lv
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhen-Jun Tian
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an, China
| | - Riqiang Yan
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA, USA.
| | - Xin-Ming Ma
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA.
| |
Collapse
|
26
|
Saravanapandian V, Madani M, Nichols I, Vincent S, Dover M, Dikeman D, Philpot BD, Takumi T, Colwell CS, Jeste S, Paul KN, Golshani P. Sleep EEG signatures in mouse models of 15q11.2-13.1 duplication (Dup15q) syndrome. J Neurodev Disord 2024; 16:39. [PMID: 39014349 PMCID: PMC11251350 DOI: 10.1186/s11689-024-09556-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Sleep disturbances are a prevalent and complex comorbidity in neurodevelopmental disorders (NDDs). Dup15q syndrome (duplications of 15q11.2-13.1) is a genetic disorder highly penetrant for NDDs such as autism and intellectual disability and it is frequently accompanied by significant disruptions in sleep patterns. The 15q critical region harbors genes crucial for brain development, notably UBE3A and a cluster of gamma-aminobutyric acid type A receptor (GABAAR) genes. We previously described an electrophysiological biomarker of the syndrome, marked by heightened beta oscillations (12-30 Hz) in individuals with Dup15q syndrome, akin to electroencephalogram (EEG) alterations induced by allosteric modulation of GABAARs. Those with Dup15q syndrome exhibited increased beta oscillations during the awake resting state and during sleep, and they showed profoundly abnormal NREM sleep. This study aims to assess the translational validity of these EEG signatures and to delve into their neurobiological underpinnings by quantifying sleep physiology in chromosome-engineered mice with maternal (matDp/ + mice) or paternal (patDp/ + mice) inheritance of the full 15q11.2-13.1-equivalent duplication, and mice with duplication of just the UBE3A gene (Ube3a overexpression mice; Ube3a OE mice) and comparing the sleep metrics with their respective wildtype (WT) littermate controls. METHODS We collected 48-h EEG/EMG recordings from 35 (23 male, 12 female) 12-24-week-old matDp/ + , patDp/ + , Ube3a OE mice, and their WT littermate controls. We quantified baseline sleep, sleep fragmentation, spectral power dynamics during sleep states, and recovery following sleep deprivation. Within each group, distinctions between Dup15q mutant mice and WT littermate controls were evaluated using analysis of variance (ANOVA) and student's t-test. The impact of genotype and time was discerned through repeated measures ANOVA, and significance was established at p < 0.05. RESULTS Our study revealed that across brain states, matDp/ + mice mirrored the elevated beta oscillation phenotype observed in clinical EEGs from individuals with Dup15q syndrome. Time to sleep onset after light onset was significantly reduced in matDp/ + and Ube3a OE mice. However, NREM sleep between Dup15q mutant and WT littermate mice remained unaltered, suggesting a divergence from the clinical presentation in humans. Additionally, while increased beta oscillations persisted in matDp/ + mice after 6-h of sleep deprivation, recovery NREM sleep remained unaltered in all groups, thus suggesting that these mice exhibit resilience in the fundamental processes governing sleep-wake regulation. CONCLUSIONS Quantification of mechanistic and translatable EEG biomarkers is essential for advancing our understanding of NDDs and their underlying pathophysiology. Our study of sleep physiology in the Dup15q mice underscores that the beta EEG biomarker has strong translational validity, thus opening the door for pre-clinical studies of putative drug targets, using the biomarker as a translational measure of drug-target engagement. The unaltered NREM sleep may be due to inherent differences in neurobiology between mice and humans. These nuanced distinctions highlight the complexity of sleep disruptions in Dup15q syndrome and emphasize the need for a comprehensive understanding that encompasses both shared and distinct features between murine models and clinical populations.
Collapse
Affiliation(s)
- Vidya Saravanapandian
- Department of Neurology and Semel Institute for Neuroscience, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA.
| | - Melika Madani
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - India Nichols
- Department of Biology, Spelman College, 350 Spelman Lane, Atlanta, GA, 30314, USA
| | - Scott Vincent
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Mary Dover
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Dante Dikeman
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Benjamin D Philpot
- Neuroscience Center, Department of Cell Biology and Physiology, and the Carolina Institute for Developmental Disabilities, UNC-Chapel Hill, NC, 27599, USA
| | - Toru Takumi
- Kobe University School of Medicine, Chuo, Kobe, 650-0017, Japan
| | - Christopher S Colwell
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Shafali Jeste
- Children's Hospital Los Angeles, 4650 Sunset Blvd, MS 82, Los Angeles, CA, 90027, USA
| | - Ketema N Paul
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Peyman Golshani
- Department of Neurology and Semel Institute for Neuroscience, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
- West Los Angeles VA Medical Center, 11301 Wilshire Blvd, Los Angeles, CA, 90073, USA
| |
Collapse
|
27
|
Montani C, Balasco L, Pagani M, Alvino FG, Barsotti N, de Guzman AE, Galbusera A, de Felice A, Nickl-Jockschat TK, Migliarini S, Casarosa S, Lau P, Mattioni L, Pasqualetti M, Provenzano G, Bozzi Y, Lombardo MV, Gozzi A. Sex-biasing influence of autism-associated Ube3a gene overdosage at connectomic, behavioral, and transcriptomic levels. SCIENCE ADVANCES 2024; 10:eadg1421. [PMID: 38996019 PMCID: PMC11244557 DOI: 10.1126/sciadv.adg1421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/07/2024] [Indexed: 07/14/2024]
Abstract
Genomic mechanisms enhancing risk in males may contribute to sex bias in autism. The ubiquitin protein ligase E3A gene (Ube3a) affects cellular homeostasis via control of protein turnover and by acting as transcriptional coactivator with steroid hormone receptors. Overdosage of Ube3a via duplication or triplication of chromosomal region 15q11-13 causes 1 to 2% of autistic cases. Here, we test the hypothesis that increased dosage of Ube3a may influence autism-relevant phenotypes in a sex-biased manner. We show that mice with extra copies of Ube3a exhibit sex-biasing effects on brain connectomics and autism-relevant behaviors. These effects are associated with transcriptional dysregulation of autism-associated genes, as well as genes differentially expressed in 15q duplication and in autistic people. Increased Ube3a dosage also affects expression of genes on the X chromosome, genes influenced by sex steroid hormone, and genes sex-differentially regulated by transcription factors. These results suggest that Ube3a overdosage can contribute to sex bias in neurodevelopmental conditions via influence on sex-differential mechanisms.
Collapse
Affiliation(s)
- Caterina Montani
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | - Luigi Balasco
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Marco Pagani
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
- Autism Center, Child Mind Institute, New York, NY, USA
- IMT School for Advanced Studies, Lucca, Italy
| | - Filomena Grazia Alvino
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | - Noemi Barsotti
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
| | - A. Elizabeth de Guzman
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | - Alberto Galbusera
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | - Alessia de Felice
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | - Thomas K. Nickl-Jockschat
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany
- German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Germany
- Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany
| | - Sara Migliarini
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
| | - Simona Casarosa
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Centre for Medical Sciences (CISMed), University of Trento, Trento, Italy
| | - Pierre Lau
- Istituto Italiano di Tecnologia, Center for Human Technologies, Genova, Italy
| | - Lorenzo Mattioni
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Massimo Pasqualetti
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
| | - Giovanni Provenzano
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Yuri Bozzi
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
- CNR Neuroscience Institute, Pisa, Italy
| | - Michael V. Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| |
Collapse
|
28
|
DeSpenza T, Singh A, Allington G, Zhao S, Lee J, Kiziltug E, Prina ML, Desmet N, Dang HQ, Fields J, Nelson-Williams C, Zhang J, Mekbib KY, Dennis E, Mehta NH, Duy PQ, Shimelis H, Walsh LK, Marlier A, Deniz E, Lake EMR, Constable RT, Hoffman EJ, Lifton RP, Gulledge A, Fiering S, Moreno-De-Luca A, Haider S, Alper SL, Jin SC, Kahle KT, Luikart BW. Pathogenic variants in autism gene KATNAL2 cause hydrocephalus and disrupt neuronal connectivity by impairing ciliary microtubule dynamics. Proc Natl Acad Sci U S A 2024; 121:e2314702121. [PMID: 38916997 PMCID: PMC11228466 DOI: 10.1073/pnas.2314702121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 04/30/2024] [Indexed: 06/27/2024] Open
Abstract
Enlargement of the cerebrospinal fluid (CSF)-filled brain ventricles (cerebral ventriculomegaly), the cardinal feature of congenital hydrocephalus (CH), is increasingly recognized among patients with autism spectrum disorders (ASD). KATNAL2, a member of Katanin family microtubule-severing ATPases, is a known ASD risk gene, but its roles in human brain development remain unclear. Here, we show that nonsense truncation of Katnal2 (Katnal2Δ17) in mice results in classic ciliopathy phenotypes, including impaired spermatogenesis and cerebral ventriculomegaly. In both humans and mice, KATNAL2 is highly expressed in ciliated radial glia of the fetal ventricular-subventricular zone as well as in their postnatal ependymal and neuronal progeny. The ventriculomegaly observed in Katnal2Δ17 mice is associated with disrupted primary cilia and ependymal planar cell polarity that results in impaired cilia-generated CSF flow. Further, prefrontal pyramidal neurons in ventriculomegalic Katnal2Δ17 mice exhibit decreased excitatory drive and reduced high-frequency firing. Consistent with these findings in mice, we identified rare, damaging heterozygous germline variants in KATNAL2 in five unrelated patients with neurosurgically treated CH and comorbid ASD or other neurodevelopmental disorders. Mice engineered with the orthologous ASD-associated KATNAL2 F244L missense variant recapitulated the ventriculomegaly found in human patients. Together, these data suggest KATNAL2 pathogenic variants alter intraventricular CSF homeostasis and parenchymal neuronal connectivity by disrupting microtubule dynamics in fetal radial glia and their postnatal ependymal and neuronal descendants. The results identify a molecular mechanism underlying the development of ventriculomegaly in a genetic subset of patients with ASD and may explain persistence of neurodevelopmental phenotypes in some patients with CH despite neurosurgical CSF shunting.
Collapse
Affiliation(s)
- Tyrone DeSpenza
- Interdepartmental Neuroscience Program, Yale School of Medicine, Yale University, New Haven, CT06510
- Medical Scientist Training Program, Yale School of Medicine, Yale University, New Haven, CT06510
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT06510
| | - Amrita Singh
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT06510
| | - Garrett Allington
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT06510
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02115
| | - Shujuan Zhao
- Department of Genetics, Washington University School of Medicine, St. Louis, MO63110
| | - Junghoon Lee
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| | - Emre Kiziltug
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT06510
| | - Mackenzi L. Prina
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| | - Nicole Desmet
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| | - Huy Q. Dang
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| | - Jennifer Fields
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| | - Carol Nelson-Williams
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT06510
| | - Junhui Zhang
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT06510
| | - Kedous Y. Mekbib
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT06510
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| | - Evan Dennis
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02115
| | - Neel H. Mehta
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02115
| | - Phan Q. Duy
- Interdepartmental Neuroscience Program, Yale School of Medicine, Yale University, New Haven, CT06510
| | - Hermela Shimelis
- Autism and Developmental Medicine Institute, Geisinger, Danville, PA17821
| | - Lauren K. Walsh
- Autism and Developmental Medicine Institute, Geisinger, Danville, PA17821
| | - Arnaud Marlier
- Interdepartmental Neuroscience Program, Yale School of Medicine, Yale University, New Haven, CT06510
| | - Engin Deniz
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT06510
| | - Evelyn M. R. Lake
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT06520-8042
| | - R. Todd Constable
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT06520-8042
| | - Ellen J. Hoffman
- Interdepartmental Neuroscience Program, Yale School of Medicine, Yale University, New Haven, CT06510
- Child Study Center, Yale School of Medicine, New Haven, CT06510
| | - Richard P. Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY10065
| | - Allan Gulledge
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| | - Steven Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| | - Andres Moreno-De-Luca
- Autism and Developmental Medicine Institute, Geisinger, Danville, PA17821
- Department of Radiology, Diagnostic Medicine Institute, Geisinger, Danville, PA17821
| | - Shozeb Haider
- Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, LondonWC1N 1AX, United Kingdom
| | - Seth L. Alper
- Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA02215
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA02142
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO63110
| | - Kristopher T. Kahle
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT06510
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02115
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA02142
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA02115
| | - Bryan W. Luikart
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| |
Collapse
|
29
|
Shiraishi T, Katayama Y, Nishiyama M, Shoji H, Miyakawa T, Mizoo T, Matsumoto A, Hijikata A, Shirai T, Mayanagi K, Nakayama KI. The complex etiology of autism spectrum disorder due to missense mutations of CHD8. Mol Psychiatry 2024; 29:2145-2160. [PMID: 38438524 DOI: 10.1038/s41380-024-02491-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024]
Abstract
CHD8 is an ATP-dependent chromatin-remodeling factor encoded by the most frequently mutated gene in individuals with autism spectrum disorder (ASD). Although many studies have examined the consequences of CHD8 haploinsufficiency in cells and mice, few have focused on missense mutations, the most common type of CHD8 alteration in ASD patients. We here characterized CHD8 missense mutations in ASD patients according to six prediction scores and experimentally examined the effects of such mutations on the biochemical activities of CHD8, neural differentiation of embryonic stem cells, and mouse behavior. Only mutations with high prediction scores gave rise to ASD-like phenotypes in mice, suggesting that not all CHD8 missense mutations detected in ASD patients are directly responsible for the development of ASD. Furthermore, we found that mutations with high scores cause ASD by mechanisms either dependent on or independent of loss of chromatin-remodeling function. Our results thus provide insight into the molecular underpinnings of ASD pathogenesis caused by missense mutations of CHD8.
Collapse
Affiliation(s)
- Taichi Shiraishi
- Division of Cell Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Fukuoka, Fukuoka, 812-8582, Japan
| | - Yuta Katayama
- Division of Cell Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Fukuoka, Fukuoka, 812-8582, Japan
| | - Masaaki Nishiyama
- Department of Histology and Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Hirotaka Shoji
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Taisuke Mizoo
- Division of Cell Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Fukuoka, Fukuoka, 812-8582, Japan
| | - Akinobu Matsumoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Atsushi Hijikata
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Tsuyoshi Shirai
- Department of Computer Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-Cho, Nagahama, Shiga, 526-0829, Japan
| | - Kouta Mayanagi
- Department of Drug Discovery Structural Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, Fukuoka, 812-8582, Japan
| | - Keiichi I Nakayama
- Division of Cell Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Fukuoka, Fukuoka, 812-8582, Japan.
- Anticancer Strategies Laboratory, TMDU Advanced Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
30
|
Lilley R, Rapaport H, Poulsen R, Yudell M, Pellicano E. Contributing to an autism biobank: Diverse perspectives from autistic participants, family members and researchers. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2024; 28:1719-1731. [PMID: 37882180 PMCID: PMC11191664 DOI: 10.1177/13623613231203938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
LAY ABSTRACT A lot of autism research has focused on finding genes that might cause autism. To conduct these genetic studies, researchers have created 'biobanks' - collections of biological samples (such as blood, saliva, urine, stool and hair) and other health information (such as cognitive assessments and medical histories). Our study focused on the Australian Autism Biobank, which collected biological and health information from almost 1000 Australian autistic children and their families. We wanted to know what people thought about giving their information to the Biobank and why they chose to do so. We spoke to 71 people who gave to the Biobank, including 18 autistic adolescents and young adults, 46 of their parents and seven of their siblings. We also spoke to six researchers who worked on the Biobank project. We found that people were interested in giving their information to the Biobank so they could understand why some people were autistic. Some people felt knowing why could help them make choices about having children in the future. People also wanted to be involved in the Biobank because they believed it could be a resource that could help others in the future. They also trusted that scientists would keep their information safe and were keen to know how that information might be used in the future. Our findings show that people have lots of different views about autism biobanks. We suggest researchers should listen to these different views as they develop their work.
Collapse
|
31
|
Kim JH, Koh IG, Lee H, Lee GH, Song DY, Kim SW, Kim Y, Han JH, Bong G, Lee J, Byun H, Son JH, Kim YR, Lee Y, Kim JJ, Park JW, Kim IB, Choi JK, Jang JH, Trost B, Lee J, Kim E, Yoo HJ, An JY. Short tandem repeat expansions in cortical layer-specific genes implicate in phenotypic severity and adaptability of autism spectrum disorder. Psychiatry Clin Neurosci 2024; 78:405-415. [PMID: 38751214 PMCID: PMC11488627 DOI: 10.1111/pcn.13676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/14/2024] [Accepted: 04/15/2024] [Indexed: 07/06/2024]
Abstract
AIM Short tandem repeats (STRs) are repetitive DNA sequences and highly mutable in various human disorders. While the involvement of STRs in various genetic disorders has been extensively studied, their role in autism spectrum disorder (ASD) remains largely unexplored. In this study, we aimed to investigate genetic association of STR expansions with ASD using whole genome sequencing (WGS) and identify risk loci associated with ASD phenotypes. METHODS We analyzed WGS data of 634 ASD families and performed genome-wide evaluation for 12,929 STR loci. We found rare STR expansions that exceeded normal repeat lengths in autism cases compared to unaffected controls. By integrating single cell RNA and ATAC sequencing datasets of human postmortem brains, we prioritized STR loci in genes specifically expressed in cortical development stages. A deep learning method was used to predict functionality of ASD-associated STR loci. RESULTS In ASD cases, rare STR expansions predominantly occurred in early cortical layer-specific genes involved in neurodevelopment, highlighting the cellular specificity of STR-associated genes in ASD risk. Leveraging deep learning prediction models, we demonstrated that these STR expansions disrupted the regulatory activity of enhancers and promoters, suggesting a potential mechanism through which they contribute to ASD pathogenesis. We found that individuals with ASD-associated STR expansions exhibited more severe ASD phenotypes and diminished adaptability compared to non-carriers. CONCLUSION Short tandem repeat expansions in cortical layer-specific genes are associated with ASD and could potentially be a risk genetic factor for ASD. Our study is the first to show evidence of STR expansion associated with ASD in an under-investigated population.
Collapse
Affiliation(s)
- Jae Hyun Kim
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, Republic of Korea
| | - In Gyeong Koh
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, Republic of Korea
| | - Hyeji Lee
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, Republic of Korea
| | - Gang-Hee Lee
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, Republic of Korea
| | - Da-Yea Song
- Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soo-Whee Kim
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, Republic of Korea
| | - Yujin Kim
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, Republic of Korea
| | - Jae Hyun Han
- Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Psychiatry, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Guiyoung Bong
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeewon Lee
- Department of Psychiatry, Soonchunhyang University College of Medicine, Asan, Republic of Korea
| | - Heejung Byun
- Department of Neuropsychiatry, Seoul Metropolitan Children's Hospital, Seoul, Republic of Korea
| | - Ji Hyun Son
- Department of Neuropsychiatry, Seoul Metropolitan Children's Hospital, Seoul, Republic of Korea
| | - Ye Rim Kim
- Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yoojeong Lee
- Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Justine Jaewon Kim
- Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jung Woo Park
- Center for Biomedical Computing, Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
| | - Il Bin Kim
- Department of Psychiatry, Hanyang University Guri Hospital, Guri, Republic of Korea
| | - Jung Kyoon Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ja-Hyun Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Brett Trost
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Junehawk Lee
- Center for Biomedical Computing, Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hee Jeong Yoo
- Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Joon-Yong An
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, Republic of Korea
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, Republic of Korea
| |
Collapse
|
32
|
Wang H, Liu Y, Ding Y. Identifying Diagnostic Biomarkers for Autism Spectrum Disorder From Higher-order Interactions Using the PED Algorithm. Neuroinformatics 2024; 22:285-296. [PMID: 38771433 DOI: 10.1007/s12021-024-09662-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2024] [Indexed: 05/22/2024]
Abstract
In the field of neuroimaging, more studies of abnormalities in brain regions of the autism spectrum disorder (ASD) usually focused on two brain regions connected, and less on abnormalities of higher-order interactions of brain regions. To explore the complex relationships of brain regions, we used the partial entropy decomposition (PED) algorithm to capture higher-order interactions by computing the higher-order dependencies of all three brain regions (triads). We proposed a method for examining the effect of individual brain regions on triads based on the PED and surrogate tests. The key triads were discovered by analyzing the effects. Further, the hypergraph modularity maximization algorithm revealed the higher-order brain structures, of which the link between right thalamus and left thalamus in ASD was more loose compared with the typical control (TC). Redundant key triad (left cerebellum crus 1 and left precuneus and right inferior occipital gyrus) exhibited a discernible attenuation in interaction in ASD, while the synergistic key triad (right cerebellum crus 1 and left postcentral gyrus and left lingual gyrus) indicated a notable decline. The results of classification model further confirmed the potential of the key triads as diagnostic biomarkers.
Collapse
Affiliation(s)
- Hao Wang
- School of Science, Jiangnan University, Wuxi, Jiangsu, China
| | - Yanting Liu
- School of Science, Jiangnan University, Wuxi, Jiangsu, China
| | - Yanrui Ding
- School of Science, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
33
|
Xu S, Wang J, Mao K, Jiao D, Li Z, Zhao H, Sun Y, Feng J, Lai Y, Peng R, Fu Y, Gan R, Chen S, Zhao HY, Wei HJ, Cheng Y. Generation and transcriptomic characterization of MIR137 knockout miniature pig model for neurodevelopmental disorders. Cell Biosci 2024; 14:86. [PMID: 38937838 PMCID: PMC11212353 DOI: 10.1186/s13578-024-01268-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Neurodevelopmental disorders (NDD), such as autism spectrum disorders (ASD) and intellectual disorders (ID), are highly debilitating childhood psychiatric conditions. Genetic factors are recognized as playing a major role in NDD, with a multitude of genes and genomic regions implicated. While the functional validation of NDD-associated genes has predominantly been carried out using mouse models, the significant differences in brain structure and gene function between mice and humans have limited the effectiveness of mouse models in exploring the underlying mechanisms of NDD. Therefore, it is important to establish alternative animal models that are more evolutionarily aligned with humans. RESULTS In this study, we employed CRISPR/Cas9 and somatic cell nuclear transplantation technologies to successfully generate a knockout miniature pig model of the MIR137 gene, which encodes the neuropsychiatric disorder-associated microRNA miR-137. The homozygous knockout of MIR137 (MIR137-/-) effectively suppressed the expression of mature miR-137 and led to the birth of stillborn or short-lived piglets. Transcriptomic analysis revealed significant changes in genes associated with neurodevelopment and synaptic signaling in the brains of MIR137-/- miniature pig, mirroring findings from human ASD transcriptomic data. In comparison to miR-137-deficient mouse and human induced pluripotent stem cell (hiPSC)-derived neuron models, the miniature pig model exhibited more consistent changes in critical neuronal genes relevant to humans following the loss of miR-137. Furthermore, a comparative analysis identified differentially expressed genes associated with ASD and ID risk genes in both miniature pig and hiPSC-derived neurons. Notably, human-specific miR-137 targets, such as CAMK2A, known to be linked to cognitive impairments and NDD, exhibited dysregulation in MIR137-/- miniature pigs. These findings suggest that the loss of miR-137 in miniature pigs affects genes crucial for neurodevelopment, potentially contributing to the development of NDD. CONCLUSIONS Our study highlights the impact of miR-137 loss on critical genes involved in neurodevelopment and related disorders in MIR137-/- miniature pigs. It establishes the miniature pig model as a valuable tool for investigating neurodevelopmental disorders, providing valuable insights for potential applications in human research.
Collapse
Affiliation(s)
- Shengyun Xu
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China
| | - Jiaoxiang Wang
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Kexin Mao
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650092, China
| | - Deling Jiao
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Zhu Li
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China
| | - Heng Zhao
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Yifei Sun
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China
| | - Jin Feng
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650092, China
| | - Yuanhao Lai
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China
| | - Ruiqi Peng
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China
| | - Yu Fu
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China
| | - Ruoyi Gan
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650092, China
| | - Shuhan Chen
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Hong-Ye Zhao
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China.
| | - Hong-Jiang Wei
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China.
| | - Ying Cheng
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China.
- Southwest United Graduate School, Kunming, 650092, China.
| |
Collapse
|
34
|
Leow KQ, Tonta MA, Lu J, Coleman HA, Parkington HC. Towards understanding sex differences in autism spectrum disorders. Brain Res 2024; 1833:148877. [PMID: 38513995 DOI: 10.1016/j.brainres.2024.148877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by social deficits, repetitive behaviours and lack of empathy. Its significant genetic heritability and potential comorbidities often lead to diagnostic and therapeutic challenges. This review addresses the biological basis of ASD, focusing on the sex differences in gene expression and hormonal influences. ASD is more commonly diagnosed in males at a ratio of 4:1, indicating a potential oversight in female-specific ASD research and a risk of underdiagnosis in females. We consider how ASD manifests differently across sexes by exploring differential gene expression in female and male brains and consider how variations in steroid hormones influence ASD characteristics. Synaptic function, including excitation/inhibition ratio imbalance, is influenced by gene mutations and this is explored as a key factor in the cognitive and behavioural manifestations of ASD. We also discuss the role of micro RNAs (miRNAs) and highlight a novel mutation in miRNA-873, which affects a suite of key synaptic genes, neurexin, neuroligin, SHANK and post-synaptic density proteins, implicated in the pathology of ASD. Our review suggests that genetic predisposition, sex differences in brain gene expression, and hormonal factors significantly contribute to the presentation, identification and severity of ASD, necessitating sex-specific considerations in diagnosis and treatments. These findings advocate for personalized interventions to improve the outcomes for individuals with ASD.
Collapse
Affiliation(s)
- Karen Q Leow
- Department of Physiology, Biomedical Discovery Institute, Monash University, Victoria, Australia
| | - Mary A Tonta
- Department of Physiology, Biomedical Discovery Institute, Monash University, Victoria, Australia
| | - Jing Lu
- Tianjin Institute of Infectious Disease, Second Hospital of Tianjin Medical University, China
| | - Harold A Coleman
- Department of Physiology, Biomedical Discovery Institute, Monash University, Victoria, Australia
| | - Helena C Parkington
- Department of Physiology, Biomedical Discovery Institute, Monash University, Victoria, Australia.
| |
Collapse
|
35
|
Gardner Z, Holbrook O, Tian Y, Odamah K, Man HY. The role of glia in the dysregulation of neuronal spinogenesis in Ube3a-dependent ASD. Exp Neurol 2024; 376:114756. [PMID: 38508482 PMCID: PMC11058030 DOI: 10.1016/j.expneurol.2024.114756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 02/14/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Overexpression of the Ube3a gene and the resulting increase in Ube3a protein are linked to autism spectrum disorder (ASD). However, the cellular and molecular processes underlying Ube3a-dependent ASD remain unclear. Using both male and female mice, we find that neurons in the somatosensory cortex of the Ube3a 2× Tg ASD mouse model display reduced dendritic spine density and increased immature filopodia density. Importantly, the increased gene dosage of Ube3a in astrocytes alone is sufficient to confer alterations in neurons as immature dendritic protrusions, as observed in primary hippocampal neuron cultures. We show that Ube3a overexpression in astrocytes leads to a loss of astrocyte-derived spinogenic protein, thrombospondin-2 (TSP2), due to a suppression of TSP2 gene transcription. By neonatal intraventricular injection of astrocyte-specific virus, we demonstrate that Ube3a overexpression in astrocytes in vivo results in a reduction in dendritic spine maturation in prelimbic cortical neurons, accompanied with autistic-like behaviors in mice. These findings reveal an astrocytic dominance in initiating ASD pathobiology at the neuronal and behavior levels. SIGNIFICANCE STATEMENT: Increased gene dosage of Ube3a is tied to autism spectrum disorders (ASDs), yet cellular and molecular alterations underlying autistic phenotypes remain unclear. We show that Ube3a overexpression leads to impaired dendritic spine maturation, resulting in reduced spine density and increased filopodia density. We find that dysregulation of spine development is not neuron autonomous, rather, it is mediated by an astrocytic mechanism. Increased gene dosage of Ube3a in astrocytes leads to reduced production of the spinogenic glycoprotein thrombospondin-2 (TSP2), leading to abnormalities in spines. Astrocyte-specific Ube3a overexpression in the brain in vivo confers dysregulated spine maturation concomitant with autistic-like behaviors in mice. These findings indicate the importance of astrocytes in aberrant neurodevelopment and brain function in Ube3a-depdendent ASD.
Collapse
Affiliation(s)
- Zachary Gardner
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, United States of America
| | - Otto Holbrook
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, United States of America
| | - Yuan Tian
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, United States of America
| | - KathrynAnn Odamah
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, United States of America
| | - Heng-Ye Man
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, United States of America; Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, 72 East Concord St., L-603, Boston, MA 02118, United States of America; Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, Boston, MA 02215, United States of America.
| |
Collapse
|
36
|
Tian Y, Qiao H, Zhu LQ, Man HY. Sexually dimorphic phenotypes and the role of androgen receptors in UBE3A-dependent autism spectrum disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592248. [PMID: 38746146 PMCID: PMC11092617 DOI: 10.1101/2024.05.02.592248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Autism spectrum disorders (ASDs) are characterized by social, communication, and behavioral challenges. UBE3A is one of the most common ASD genes. ASDs display a remarkable sex difference with a 4:1 male to female prevalence ratio; however, the underlying mechanism remains largely unknown. Using the UBE3A-overexpressing mouse model for ASD, we studied sex differences at behavioral, genetic, and molecular levels. We found that male mice with extra copies of Ube3A exhibited greater impairments in social interaction, repetitive self-grooming behavior, memory, and pain sensitivity, whereas female mice with UBE3A overexpression displayed greater olfactory defects. Social communication was impaired in both sexes, with males making more calls and females preferring complex syllables. At the molecular level, androgen receptor (AR) levels were reduced in both sexes due to enhanced degradation mediated by UBE3A. However, AR reduction significantly dysregulated AR target genes only in male, not female, UBE3A-overexpressing mice. Importantly, restoring AR levels in the brain effectively normalized the expression of AR target genes, and rescued the deficits in social preference, grooming behavior, and memory in male UBE3A-overexpressing mice, without affecting females. These findings suggest that AR and its signaling cascade play an essential role in mediating the sexually dimorphic changes in UBE3A-dependent ASD.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Hui Qiao
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Heng-Ye Man
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, Boston, MA 02215, USA
| |
Collapse
|
37
|
Nemoto H, Imagawa K, Enokizono T, Masuda Y, Ide M, Deguchi T, Hara M, Morita A, Kido T, Tanaka M, Ohto T, Takada H. A Case of Anorexia Nervosa with Focal Cortical Dysplasia. Case Rep Psychiatry 2024; 2024:7478666. [PMID: 38716398 PMCID: PMC11074877 DOI: 10.1155/2024/7478666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 05/12/2024] Open
Abstract
Anorexia nervosa (AN) is a fatal condition associated with extreme underweight and undernutrition. It is more common in young females, with a female-to-male ratio of 10 : 1. Focal cortical dysplasia (FCD) is characterized by dysplasia of the cerebral cortex and is a common cause of pharmacoresistant epilepsy. However, FCD associated with AN has never been reported. We report the first case of AN in a 12-year-old male diagnosed with FCD-type 2 on head magnetic resonance imaging (MRI). He became concerned about lower abdominal distention and began reducing his food intake. He was admitted to our hospital after weight loss of 10 kg in a 1 year. Head MRI showed a localized high-signal area from the cortex to the white matter of the fusiform gyrus near the left hippocampus, with no associated decreased blood flow or electroencephalography (EEG) abnormalities. These findings were characteristic of FCD type II. In males with AN, the search for underlying disease is particularly important. The pathophysiology of the association between AN and FCD is unclear. However, both conditions are reportedly associated with autism spectrum disorder. Further cases are needed to clarify whether FCD is associated with eating disorders.
Collapse
Affiliation(s)
- Hiroki Nemoto
- Department of Pediatrics, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, Japan
| | - Kazuo Imagawa
- Department of Pediatrics, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, Japan
- Department of Child Health, Institute of Medicine, University of Tsukuba, 2-1-1 Amakubo, Tsukuba, Ibaraki, Japan
| | - Takashi Enokizono
- Department of Pediatrics, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, Japan
| | - Yosuke Masuda
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, 2-1-1 Amakubo, Tsukuba, Ibaraki, Japan
| | - Masayuki Ide
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Inashiki-gun, Ami-machi, Ibaraki, Japan
| | - Takuma Deguchi
- Department of Pediatrics, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, Japan
| | - Monami Hara
- Department of Pediatrics, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, Japan
| | - Atsushi Morita
- Department of Pediatrics, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, Japan
| | - Takahiro Kido
- Department of Pediatrics, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, Japan
| | - Mai Tanaka
- Department of Pediatrics, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, Japan
| | - Tatsuyuki Ohto
- Department of Pediatrics, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, Japan
- Department of Child Health, Institute of Medicine, University of Tsukuba, 2-1-1 Amakubo, Tsukuba, Ibaraki, Japan
| | - Hidetoshi Takada
- Department of Pediatrics, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, Japan
- Department of Child Health, Institute of Medicine, University of Tsukuba, 2-1-1 Amakubo, Tsukuba, Ibaraki, Japan
| |
Collapse
|
38
|
Engal E, Zhang Z, Geminder O, Jaffe-Herman S, Kay G, Ben-Hur A, Salton M. The spectrum of pre-mRNA splicing in autism. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1838. [PMID: 38509732 DOI: 10.1002/wrna.1838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024]
Abstract
Disruptions in spatiotemporal gene expression can result in atypical brain function. Specifically, autism spectrum disorder (ASD) is characterized by abnormalities in pre-mRNA splicing. Abnormal splicing patterns have been identified in the brains of individuals with ASD, and mutations in splicing factors have been found to contribute to neurodevelopmental delays associated with ASD. Here we review studies that shed light on the importance of splicing observed in ASD and that explored the intricate relationship between splicing factors and ASD, revealing how disruptions in pre-mRNA splicing may underlie ASD pathogenesis. We provide an overview of the research regarding all splicing factors associated with ASD and place a special emphasis on five specific splicing factors-HNRNPH2, NOVA2, WBP4, SRRM2, and RBFOX1-known to impact the splicing of ASD-related genes. In the discussion of the molecular mechanisms influenced by these splicing factors, we lay the groundwork for a deeper understanding of ASD's complex etiology. Finally, we discuss the potential benefit of unraveling the connection between splicing and ASD for the development of more precise diagnostic tools and targeted therapeutic interventions. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Evolution and Genomics > Computational Analyses of RNA RNA-Based Catalysis > RNA Catalysis in Splicing and Translation.
Collapse
Affiliation(s)
- Eden Engal
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Zhenwei Zhang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ophir Geminder
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shiri Jaffe-Herman
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gillian Kay
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Asa Ben-Hur
- Department of Computer Science, Colorado State University, Fort Collins, Colorado, USA
| | - Maayan Salton
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
39
|
Tian Y, Yu F, Yun E, Lin JW, Man HY. mRNA nuclear retention reduces AMPAR expression and promotes autistic behavior in UBE3A-overexpressing mice. EMBO Rep 2024; 25:1282-1309. [PMID: 38316900 PMCID: PMC10933332 DOI: 10.1038/s44319-024-00073-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/07/2024] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
UBE3A is a common genetic factor in ASD etiology, and transgenic mice overexpressing UBE3A exhibit typical autistic-like behaviors. Because AMPA receptors (AMPARs) mediate most of the excitatory synaptic transmission in the brain, and synaptic dysregulation is considered one of the primary cellular mechanisms in ASD pathology, we investigate here the involvement of AMPARs in UBE3A-dependent ASD. We show that expression of the AMPAR GluA1 subunit is decreased in UBE3A-overexpressing mice, and that AMPAR-mediated neuronal activity is reduced. GluA1 mRNA is trapped in the nucleus of UBE3A-overexpressing neurons, suppressing GluA1 protein synthesis. Also, SARNP, an mRNA nuclear export protein, is downregulated in UBE3A-overexpressing neurons, causing GluA1 mRNA nuclear retention. Restoring SARNP levels not only rescues GluA1 mRNA localization and protein expression, but also normalizes neuronal activity and autistic behaviors in mice overexpressing UBE3A. These findings indicate that SARNP plays a crucial role in the cellular and behavioral phenotypes of UBE3A-induced ASD by regulating nuclear mRNA trafficking and protein translation of a key AMPAR subunit.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Feiyuan Yu
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Eunice Yun
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Jen-Wei Lin
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Heng-Ye Man
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA.
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA.
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Avenue, Boston, MA, 02215, USA.
| |
Collapse
|
40
|
O'Connor M, Qiao H, Odamah K, Cerdeira PC, Man HY. Heterozygous Nexmif female mice demonstrate mosaic NEXMIF expression, autism-like behaviors, and abnormalities in dendritic arborization and synaptogenesis. Heliyon 2024; 10:e24703. [PMID: 38322873 PMCID: PMC10844029 DOI: 10.1016/j.heliyon.2024.e24703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 11/28/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a strong genetic basis. ASDs are commonly characterized by impairments in language, restrictive and repetitive behaviors, and deficits in social interactions. Although ASD is a highly heterogeneous disease with many different genes implicated in its etiology, many ASD-associated genes converge on common cellular defects, such as aberrant neuronal morphology and synapse dysregulation. Our previous work revealed that, in mice, complete loss of the ASD-associated X-linked gene NEXMIF results in a reduction in dendritic complexity, a decrease in spine and synapse density, altered synaptic transmission, and ASD-like behaviors. Interestingly, human females of NEXMIF haploinsufficiency have recently been reported to demonstrate autistic features; however, the cellular and molecular basis for this haploinsufficiency-caused ASD remains unclear. Here we report that in the brains of Nexmif± female mice, NEXMIF shows a mosaic pattern in its expression in neurons. Heterozygous female mice demonstrate behavioral impairments similar to those of knockout male mice. In the mosaic mixture of neurons from Nexmif± mice, cells that lack NEXMIF have impairments in dendritic arborization and spine development. Remarkably, the NEXMIF-expressing neurons from Nexmif± mice also demonstrate similar defects in dendritic growth and spine formation. These findings establish a novel mouse model of NEXMIF haploinsufficiency and provide new insights into the pathogenesis of NEXMIF-dependent ASD.
Collapse
Affiliation(s)
- Margaret O'Connor
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Hui Qiao
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - KathrynAnn Odamah
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | | | - Heng-Ye Man
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, Boston, MA 02215, USA
| |
Collapse
|
41
|
Zhang J, Zhang Z, Sun H, Ma Y, Yang J, Chen K, Yu X, Qin T, Zhao T, Zhang J, Chu C, Wang J. Personalized functional network mapping for autism spectrum disorder and attention-deficit/hyperactivity disorder. Transl Psychiatry 2024; 14:92. [PMID: 38346949 PMCID: PMC10861462 DOI: 10.1038/s41398-024-02797-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/15/2024] Open
Abstract
Autism spectrum disorder (ASD) and Attention-deficit/hyperactivity disorder (ADHD) are two typical neurodevelopmental disorders that have a long-term impact on physical and mental health. ASD is usually comorbid with ADHD and thus shares highly overlapping clinical symptoms. Delineating the shared and distinct neurophysiological profiles is important to uncover the neurobiological mechanisms to guide better therapy. In this study, we aimed to establish the behaviors, functional connectome, and network properties differences between ASD, ADHD-Combined, and ADHD-Inattentive using resting-state functional magnetic resonance imaging. We used the non-negative matrix fraction method to define personalized large-scale functional networks for each participant. The individual large-scale functional network connectivity (FNC) and graph-theory-based complex network analyses were executed and identified shared and disorder-specific differences in FNCs and network attributes. In addition, edge-wise functional connectivity analysis revealed abnormal edge co-fluctuation amplitude and number of transitions among different groups. Taken together, our study revealed disorder-specific and -shared regional and edge-wise functional connectivity and network differences for ASD and ADHD using an individual-level functional network mapping approach, which provides new evidence for the brain functional abnormalities in ASD and ADHD and facilitates understanding the neurobiological basis for both disorders.
Collapse
Affiliation(s)
- Jiang Zhang
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Zhiwei Zhang
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Hui Sun
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Yingzi Ma
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Jia Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Kexuan Chen
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xiaohui Yu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Tianwei Qin
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Tianyu Zhao
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Jingyue Zhang
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Congying Chu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China.
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China.
| |
Collapse
|
42
|
Gao J, Xu Y, Li Y, Lu F, Wang Z. Comprehensive exploration of multi-modal and multi-branch imaging markers for autism diagnosis and interpretation: insights from an advanced deep learning model. Cereb Cortex 2024; 34:bhad521. [PMID: 38220572 DOI: 10.1093/cercor/bhad521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024] Open
Abstract
Autism spectrum disorder is a complex neurodevelopmental condition with diverse genetic and brain involvement. Despite magnetic resonance imaging advances, autism spectrum disorder diagnosis and understanding its neurogenetic factors remain challenging. We propose a dual-branch graph neural network that effectively extracts and fuses features from bimodalities, achieving 73.9% diagnostic accuracy. To explain the mechanism distinguishing autism spectrum disorder from healthy controls, we establish a perturbation model for brain imaging markers and perform a neuro-transcriptomic joint analysis using partial least squares regression and enrichment to identify potential genetic biomarkers. The perturbation model identifies brain imaging markers related to structural magnetic resonance imaging in the frontal, temporal, parietal, and occipital lobes, while functional magnetic resonance imaging markers primarily reside in the frontal, temporal, occipital lobes, and cerebellum. The neuro-transcriptomic joint analysis highlights genes associated with biological processes, such as "presynapse," "behavior," and "modulation of chemical synaptic transmission" in autism spectrum disorder's brain development. Different magnetic resonance imaging modalities offer complementary information for autism spectrum disorder diagnosis. Our dual-branch graph neural network achieves high accuracy and identifies abnormal brain regions and the neuro-transcriptomic analysis uncovers important genetic biomarkers. Overall, our study presents an effective approach for assisting in autism spectrum disorder diagnosis and identifying genetic biomarkers, showing potential for enhancing the diagnosis and treatment of this condition.
Collapse
Affiliation(s)
- Jingjing Gao
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yuhang Xu
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yanling Li
- School of Electrical Engineering and Electronic Information, Xihua University, Chengdu 610039, China
| | - Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zhengning Wang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
43
|
Gibson JM, Vazquez AH, Yamashiro K, Jakkamsetti V, Ren C, Lei K, Dentel B, Pascual JM, Tsai PT. Cerebellar contribution to autism-relevant behaviors in fragile X syndrome models. Cell Rep 2023; 42:113533. [PMID: 38048226 PMCID: PMC10831814 DOI: 10.1016/j.celrep.2023.113533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 09/01/2023] [Accepted: 11/17/2023] [Indexed: 12/06/2023] Open
Abstract
Cerebellar dysfunction has been linked to autism spectrum disorders (ASDs). Although cerebellar pathology has been observed in individuals with fragile X syndrome (FXS) and in mouse models of the disorder, a cerebellar functional contribution to ASD-relevant behaviors in FXS has yet to be fully characterized. In this study, we demonstrate a critical cerebellar role for Fmr1 (fragile X messenger ribonucleoprotein 1) in ASD-relevant behaviors. First, we identify reduced social behaviors, sensory hypersensitivity, and cerebellar dysfunction, with loss of cerebellar Fmr1. We then demonstrate that cerebellar-specific expression of Fmr1 is sufficient to impact social, sensory, cerebellar dysfunction, and cerebro-cortical hyperexcitability phenotypes observed in global Fmr1 mutants. Moreover, we demonstrate that targeting the ASD-implicated cerebellar region Crus1 ameliorates behaviors in both cerebellar-specific and global Fmr1 mutants. Together, these results demonstrate a critical role for the cerebellar contribution to FXS-related behaviors, with implications for future therapeutic strategies.
Collapse
Affiliation(s)
- Jennifer M Gibson
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anthony Hernandez Vazquez
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kunihiko Yamashiro
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vikram Jakkamsetti
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chongyu Ren
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Katherine Lei
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brianne Dentel
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Juan M Pascual
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Peter T Tsai
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
44
|
Ferrucci L, Cantando I, Cordella F, Di Angelantonio S, Ragozzino D, Bezzi P. Microglia at the Tripartite Synapse during Postnatal Development: Implications for Autism Spectrum Disorders and Schizophrenia. Cells 2023; 12:2827. [PMID: 38132147 PMCID: PMC10742295 DOI: 10.3390/cells12242827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Synapses are the fundamental structures of neural circuits that control brain functions and behavioral and cognitive processes. Synapses undergo formation, maturation, and elimination mainly during postnatal development via a complex interplay with neighboring astrocytes and microglia that, by shaping neural connectivity, may have a crucial role in the strengthening and weakening of synaptic functions, that is, the functional plasticity of synapses. Indeed, an increasing number of studies have unveiled the roles of microglia and astrocytes in synapse formation, maturation, and elimination as well as in regulating synaptic function. Over the past 15 years, the mechanisms underlying the microglia- and astrocytes-dependent regulation of synaptic plasticity have been thoroughly studied, and researchers have reported that the disruption of these glial cells in early postnatal development may underlie the cause of synaptic dysfunction that leads to neurodevelopmental disorders such as autism spectrum disorder (ASD) and schizophrenia.
Collapse
Affiliation(s)
- Laura Ferrucci
- Department of Physiology and Pharmacology, University of Rome Sapienza, 00185 Rome, Italy; (L.F.); (F.C.); (S.D.A.); (D.R.)
| | - Iva Cantando
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland;
| | - Federica Cordella
- Department of Physiology and Pharmacology, University of Rome Sapienza, 00185 Rome, Italy; (L.F.); (F.C.); (S.D.A.); (D.R.)
- Center for Life Nano- & Neuro-Science, IIT, 00161 Rome, Italy
| | - Silvia Di Angelantonio
- Department of Physiology and Pharmacology, University of Rome Sapienza, 00185 Rome, Italy; (L.F.); (F.C.); (S.D.A.); (D.R.)
- Center for Life Nano- & Neuro-Science, IIT, 00161 Rome, Italy
| | - Davide Ragozzino
- Department of Physiology and Pharmacology, University of Rome Sapienza, 00185 Rome, Italy; (L.F.); (F.C.); (S.D.A.); (D.R.)
- IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Paola Bezzi
- Department of Physiology and Pharmacology, University of Rome Sapienza, 00185 Rome, Italy; (L.F.); (F.C.); (S.D.A.); (D.R.)
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland;
| |
Collapse
|
45
|
D'Antoni S, Schiavi S, Buzzelli V, Giuffrida S, Feo A, Ascone F, Busceti CL, Nicoletti F, Trezza V, Catania MV. Group I and group II metabotropic glutamate receptors are upregulated in the synapses of infant rats prenatally exposed to valproic acid. Psychopharmacology (Berl) 2023; 240:2617-2629. [PMID: 37707611 PMCID: PMC10640443 DOI: 10.1007/s00213-023-06457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023]
Abstract
RATIONALE Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interaction and restricted/stereotyped behavior. Prenatal exposure to valproic acid (VPA) is associated with an increased risk of developing ASD in humans and autistic-like behaviors in rodents. Increasing evidence indicates that dysfunctions of glutamate receptors at synapses are associated with ASD. In the VPA rat model, an involvement of glutamate receptors in autism-like phenotypes has been suggested; however, few studies were carried out on metabotropic glutamate (mGlu) receptors. OBJECTIVES We examined the protein expression levels of group I (mGlu1 and mGlu5) and group II (mGlu2/3) mGlu receptors in rats prenatally exposed to VPA and evaluated the effect of mGlu receptor modulation on an early autism-like phenotype in these animals. METHODS We used western blotting analysis on synaptosomes obtained from forebrain of control and VPA rats at different ages (postnatal day P13, 35, 90) and carried out ultrasonic vocalization (USV) emission test in infant control and VPA rats. RESULTS The expression levels of all these receptors were significantly increased in infant VPA rats. No changes were detected in adolescent and adult rats. An acute treatment with the preferential mGlu2/3 antagonist, LY341495, attenuated the impairment in the USV emission in VPA rats. No effect was observed after a treatment with the mGlu5 selective antagonist, MTEP. CONCLUSIONS Our findings demonstrate that the expression of group I and group II mGlu receptors is upregulated at synapses of infant VPA rats and suggest that mGlu2/3 receptor modulation may have a therapeutic potential in ASD.
Collapse
Affiliation(s)
- Simona D'Antoni
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Catania, Italy
| | - Sara Schiavi
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | - Valeria Buzzelli
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | - Samuele Giuffrida
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Catania, Italy
| | - Alessandro Feo
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | - Fabrizio Ascone
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | | | - Ferdinando Nicoletti
- IRCCS Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Viviana Trezza
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
- Neuroendocrinology, Metabolism and Neuropharmacology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Maria Vincenza Catania
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Catania, Italy.
| |
Collapse
|
46
|
Quesnel KM, Martin-Kenny N, Bérubé NG. A mouse model of ATRX deficiency with cognitive deficits and autistic traits. J Neurodev Disord 2023; 15:39. [PMID: 37957569 PMCID: PMC10644498 DOI: 10.1186/s11689-023-09508-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND ATRX is an ATP-dependent chromatin remodeling protein with essential roles in safeguarding genome integrity and modulating gene expression. Deficiencies in this protein cause ATR-X syndrome, a condition characterized by intellectual disability and an array of developmental abnormalities, including features of autism. Previous studies demonstrated that deleting ATRX in mouse forebrain excitatory neurons postnatally resulted in male-specific memory deficits, but no apparent autistic-like behaviours. METHODS We generated mice with an earlier embryonic deletion of ATRX in forebrain excitatory neurons and characterized their behaviour using a series of memory and autistic-related paradigms. RESULTS We found that mutant mice displayed a broader spectrum of impairments, including fear memory, decreased anxiety-like behaviour, hyperactivity, as well as self-injurious and repetitive grooming. Sex-specific alterations were also observed, including male-specific aggression, sensory gating impairments, and decreased social memory. CONCLUSIONS Collectively, the findings indicate that early developmental abnormalities arising from ATRX deficiency in forebrain excitatory neurons contribute to the presentation of fear memory deficits as well as autistic-like behaviours.
Collapse
Affiliation(s)
- Katherine M Quesnel
- Department of Anatomy & Cell Biology, Western University, London, Canada
- Department of Paediatrics, Western University, London, Canada
- Division of Genetics & Development, Children's Health Research Institute, London, ON, Canada
| | - Nicole Martin-Kenny
- Department of Anatomy & Cell Biology, Western University, London, Canada
- Department of Paediatrics, Western University, London, Canada
- Division of Genetics & Development, Children's Health Research Institute, London, ON, Canada
| | - Nathalie G Bérubé
- Department of Anatomy & Cell Biology, Western University, London, Canada.
- Department of Paediatrics, Western University, London, Canada.
- Division of Genetics & Development, Children's Health Research Institute, London, ON, Canada.
- Department of Oncology, Western University, London, Canada.
| |
Collapse
|
47
|
Vilela J, Martiniano H, Marques AR, Santos JX, Asif M, Rasga C, Oliveira G, Vicente AM. Identification of Neurotransmission and Synaptic Biological Processes Disrupted in Autism Spectrum Disorder Using Interaction Networks and Community Detection Analysis. Biomedicines 2023; 11:2971. [PMID: 38001974 PMCID: PMC10668950 DOI: 10.3390/biomedicines11112971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by communication deficits and repetitive behavioral patterns. Hundreds of candidate genes have been implicated in ASD, including neurotransmission and synaptic (NS) genes; however, the genetic architecture of this disease is far from clear. In this study, we seek to clarify the biological processes affected by NS gene variants identified in individuals with ASD and the global networks that link those processes together. For a curated list of 1216 NS candidate genes, identified in multiple databases and the literature, we searched for ultra-rare (UR) loss-of-function (LoF) variants in the whole-exome sequencing dataset from the Autism Sequencing Consortium (N = 3938 cases). Filtering for population frequency was carried out using gnomAD (N = 60,146 controls). NS genes with UR LoF variants were used to construct a network of protein-protein interactions, and the network's biological communities were identified by applying the Leiden algorithm. We further explored the expression enrichment of network genes in specific brain regions. We identified 356 variants in 208 genes, with a preponderance of UR LoF variants in the PDE11A and SYTL3 genes. Expression enrichment analysis highlighted several subcortical structures, particularly the basal ganglia. The interaction network defined seven network communities, clustering synaptic and neurotransmitter pathways with several ubiquitous processes that occur in multiple organs and systems. This approach also uncovered biological pathways that are not usually associated with ASD, such as brain cytochromes P450 and brain mitochondrial metabolism. Overall, the community analysis suggests that ASD involves the disruption of synaptic and neurotransmitter pathways but also ubiquitous, but less frequently implicated, biological processes.
Collapse
Affiliation(s)
- Joana Vilela
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (J.V.); (H.M.); (A.R.M.); (J.X.S.); (M.A.); (C.R.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Hugo Martiniano
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (J.V.); (H.M.); (A.R.M.); (J.X.S.); (M.A.); (C.R.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Ana Rita Marques
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (J.V.); (H.M.); (A.R.M.); (J.X.S.); (M.A.); (C.R.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - João Xavier Santos
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (J.V.); (H.M.); (A.R.M.); (J.X.S.); (M.A.); (C.R.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Muhammad Asif
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (J.V.); (H.M.); (A.R.M.); (J.X.S.); (M.A.); (C.R.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Célia Rasga
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (J.V.); (H.M.); (A.R.M.); (J.X.S.); (M.A.); (C.R.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Guiomar Oliveira
- Unidade de Neurodesenvolvimento e Autismo, Serviço do Centro de Desenvolvimento da Criança, Centro de Investigação e Formação Clínica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra (CHUC), 3000-602 Coimbra, Portugal;
- Coimbra Institute for Biomedical Imaging and Translational Research, University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra, 3000-602 Coimbra, Portugal
| | - Astrid Moura Vicente
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (J.V.); (H.M.); (A.R.M.); (J.X.S.); (M.A.); (C.R.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| |
Collapse
|
48
|
Mohamed DI, Abo Nahas HH, Elshaer AM, El-Waseef DAEDA, El-Kharashi OA, Mohamed SMY, Sabry YG, Almaimani RA, Almasmoum HA, Altamimi AS, Ibrahim IAA, Alshawwa SZ, Jaremko M, Emwas AH, Saied EM. Unveiling the interplay between NSAID-induced dysbiosis and autoimmune liver disease in children: insights into the hidden gateway to autism spectrum disorders. Evidence from ex vivo, in vivo, and clinical studies. Front Cell Neurosci 2023; 17:1268126. [PMID: 38026692 PMCID: PMC10644687 DOI: 10.3389/fncel.2023.1268126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
Autism spectrum disorders (ASD) represent a diverse group of neuropsychiatric conditions, and recent evidence has suggested a connection between ASD and microbial dysbiosis. Immune and gastrointestinal dysfunction are associated with dysbiosis, and there are indications that modulating the microbiota could improve ASD-related behaviors. Additionally, recent findings highlighted the significant impact of microbiota on the development of autoimmune liver diseases, and the occurrence of autoimmune liver disease in children with ASD is noteworthy. In the present study, we conducted both an in vivo study and a clinical study to explore the relationship between indomethacin-induced dysbiosis, autoimmune hepatitis (AIH), and the development of ASD. Our results revealed that indomethacin administration induced intestinal dysbiosis and bacterial translocation, confirmed by microbiological analysis showing positive bacterial translocation in blood cultures. Furthermore, indomethacin administration led to disturbed intestinal permeability, evidenced by the activation of the NLRP3 inflammasomes pathway and elevation of downstream biomarkers (TLR4, IL18, caspase 1). The histological analysis supported these findings, showing widened intestinal tight junctions, decreased mucosal thickness, inflammatory cell infiltrates, and collagen deposition. Additionally, the disturbance of intestinal permeability was associated with immune activation in liver tissue and the development of AIH, as indicated by altered liver function, elevated ASMA and ANA in serum, and histological markers of autoimmune hepatitis. These results indicate that NSAID-induced intestinal dysbiosis and AIH are robust triggers for ASD existence. These findings were further confirmed by conducting a clinical study that involved children with ASD, autoimmune hepatitis (AIH), and a history of NSAID intake. Children exposed to NSAIDs in early life and complicated by dysbiosis and AIH exhibited elevated serum levels of NLRP3, IL18, liver enzymes, ASMA, ANA, JAK1, and IL6. Further, the correlation analysis demonstrated a positive relationship between the measured parameters and the severity of ASD. Our findings suggest a potential link between NSAIDs, dysbiosis-induced AIH, and the development of ASD. The identified markers hold promise as indicators for early diagnosis and prognosis of ASD. This research highlights the importance of maintaining healthy gut microbiota and supports the necessity for further investigation into the role of dysbiosis and AIH in the etiology of ASD.
Collapse
Affiliation(s)
- Doaa I. Mohamed
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Asmaa M. Elshaer
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Omnyah A. El-Kharashi
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Soha M. Y. Mohamed
- Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Yasmine Gamal Sabry
- Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Riyad A. Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hussain A. Almasmoum
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdulmalik S. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Samar Z. Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Abdul-Hamid Emwas
- Advanced Nanofabrication Imaging and Characterization Center, King Abdullah University of Science and Technology, Core Labs, Thuwal, Saudi Arabia
| | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
49
|
Verkhratsky A, Butt A, Li B, Illes P, Zorec R, Semyanov A, Tang Y, Sofroniew MV. Astrocytes in human central nervous system diseases: a frontier for new therapies. Signal Transduct Target Ther 2023; 8:396. [PMID: 37828019 PMCID: PMC10570367 DOI: 10.1038/s41392-023-01628-9] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 10/14/2023] Open
Abstract
Astroglia are a broad class of neural parenchymal cells primarily dedicated to homoeostasis and defence of the central nervous system (CNS). Astroglia contribute to the pathophysiology of all neurological and neuropsychiatric disorders in ways that can be either beneficial or detrimental to disorder outcome. Pathophysiological changes in astroglia can be primary or secondary and can result in gain or loss of functions. Astroglia respond to external, non-cell autonomous signals associated with any form of CNS pathology by undergoing complex and variable changes in their structure, molecular expression, and function. In addition, internally driven, cell autonomous changes of astroglial innate properties can lead to CNS pathologies. Astroglial pathophysiology is complex, with different pathophysiological cell states and cell phenotypes that are context-specific and vary with disorder, disorder-stage, comorbidities, age, and sex. Here, we classify astroglial pathophysiology into (i) reactive astrogliosis, (ii) astroglial atrophy with loss of function, (iii) astroglial degeneration and death, and (iv) astrocytopathies characterised by aberrant forms that drive disease. We review astroglial pathophysiology across the spectrum of human CNS diseases and disorders, including neurotrauma, stroke, neuroinfection, autoimmune attack and epilepsy, as well as neurodevelopmental, neurodegenerative, metabolic and neuropsychiatric disorders. Characterising cellular and molecular mechanisms of astroglial pathophysiology represents a new frontier to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
| | - Arthur Butt
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Peter Illes
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04109, Leipzig, Germany
| | - Robert Zorec
- Celica Biomedical, Lab Cell Engineering, Technology Park, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, 314033, Jiaxing, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education/Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
50
|
Maussion G, Rocha C, Abdian N, Yang D, Turk J, Carrillo Valenzuela D, Pimentel L, You Z, Morquette B, Nicouleau M, Deneault E, Higgins S, Chen CXQ, Reintsch WE, Ho S, Soubannier V, Lépine S, Modrusan Z, Lund J, Stephenson W, Schubert R, Durcan TM. Transcriptional Dysregulation and Impaired Neuronal Activity in FMR1 Knock-Out and Fragile X Patients' iPSC-Derived Models. Int J Mol Sci 2023; 24:14926. [PMID: 37834379 PMCID: PMC10573568 DOI: 10.3390/ijms241914926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Fragile X syndrome (FXS) is caused by a repression of the FMR1 gene that codes the Fragile X mental retardation protein (FMRP), an RNA binding protein involved in processes that are crucial for proper brain development. To better understand the consequences of the absence of FMRP, we analyzed gene expression profiles and activities of cortical neural progenitor cells (NPCs) and neurons obtained from FXS patients' induced pluripotent stem cells (IPSCs) and IPSC-derived cells from FMR1 knock-out engineered using CRISPR-CAS9 technology. Multielectrode array recordings revealed in FMR1 KO and FXS patient cells, decreased mean firing rates; activities blocked by tetrodotoxin application. Increased expression of presynaptic mRNA and transcription factors involved in the forebrain specification and decreased levels of mRNA coding AMPA and NMDA subunits were observed using RNA sequencing on FMR1 KO neurons and validated using quantitative PCR in both models. Intriguingly, 40% of the differentially expressed genes were commonly deregulated between NPCs and differentiating neurons with significant enrichments in FMRP targets and autism-related genes found amongst downregulated genes. Our findings suggest that the absence of FMRP affects transcriptional profiles since the NPC stage, and leads to impaired activity and neuronal differentiation over time, which illustrates the critical role of FMRP protein in neuronal development.
Collapse
Affiliation(s)
- Gilles Maussion
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada; (G.M.); (C.R.)
| | - Cecilia Rocha
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada; (G.M.); (C.R.)
| | - Narges Abdian
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada; (G.M.); (C.R.)
| | - Dimitri Yang
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada; (G.M.); (C.R.)
| | - Julien Turk
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada; (G.M.); (C.R.)
| | - Dulce Carrillo Valenzuela
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada; (G.M.); (C.R.)
| | - Luisa Pimentel
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada; (G.M.); (C.R.)
| | - Zhipeng You
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada; (G.M.); (C.R.)
| | - Barbara Morquette
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada; (G.M.); (C.R.)
| | - Michael Nicouleau
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada; (G.M.); (C.R.)
| | - Eric Deneault
- Regulatory Research Division, Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Samuel Higgins
- Roche Sequencing, Computational Science and Informatics, Roche Molecular Systems, Santa Clara, CA 95050, USA
| | - Carol X.-Q. Chen
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada; (G.M.); (C.R.)
| | - Wolfgang E. Reintsch
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada; (G.M.); (C.R.)
| | - Stanley Ho
- Research and Early Development, Roche Molecular Systems, Pleasanton, CA 94588, USA
| | - Vincent Soubannier
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada; (G.M.); (C.R.)
| | - Sarah Lépine
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada; (G.M.); (C.R.)
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada
| | | | | | | | - Rajib Schubert
- Research and Early Development, Roche Molecular Systems, Pleasanton, CA 94588, USA
| | - Thomas M. Durcan
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada; (G.M.); (C.R.)
| |
Collapse
|