1
|
Hsu FM, Pickering H, Rubbi L, Thompson M, Reed EF, Pellegrini M, Schaenman JM. DNA methylation predicts infection risk in kidney transplant recipients. Life Sci Alliance 2025; 8:e202403124. [PMID: 40324822 PMCID: PMC12053434 DOI: 10.26508/lsa.202403124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025] Open
Abstract
Kidney transplantation (KTx) is the method of choice for treating kidney failure. Identifying biomarkers predictive of transplant (Tx) outcomes is critical to optimize KTx; however, the immunosuppressive therapies required after KTx must also be considered. We applied targeted bisulfite sequencing (TBS-seq) to PBMCs isolated from 90 patients, with samples collected pre- and post-Tx (day 90), to measure DNA methylation changes. Our findings indicate that the PBMC DNA methylome is significantly affected by induction immunosuppression with anti-thymocyte globulin (ATG). We discovered that the risk of infection can be predicted using DNA methylation profiles, but not gene expression profiles. Specifically, 515 CpG loci associated with 275 genes were significantly impacted by ATG induction, even after accounting for age, sex, and cell-type composition. Notably, ATG-associated hyper-methylation down-regulates genes critical for immune response. In conclusion, this clinical omics study reveals that the immunosuppressant ATG profoundly impacts the DNA methylome of KTx recipients and identifies biomarkers that could be used in pre-Tx screening of patients vulnerable to infection, thereby informing immunosuppression strategies post-Tx.
Collapse
Affiliation(s)
- Fei-Man Hsu
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences - The Collaboratory, University of California Los Angeles, Los Angeles, CA, USA
| | - Harry Pickering
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Liudmilla Rubbi
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael Thompson
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences - The Collaboratory, University of California Los Angeles, Los Angeles, CA, USA
| | - Joanna M Schaenman
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
2
|
Cui X, Liu W, Jiang H, Zhao Q, Hu Y, Tang X, Liu X, Dai H, Rui H, Liu B. IL-12 family cytokines and autoimmune diseases: A potential therapeutic target? J Transl Autoimmun 2025; 10:100263. [PMID: 39759268 PMCID: PMC11697604 DOI: 10.1016/j.jtauto.2024.100263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 01/07/2025] Open
Abstract
In recent years, the discovery of IL-12 family cytokines, which includes IL-12, IL-23, IL-27, IL-35, and IL-39, whose biological functions directly or indirectly affect various autoimmune diseases. In autoimmune diseases, IL-12 family cytokines are aberrantly expressed to varying degrees. These cytokines utilize shared subunits to influence T-cell activation and differentiation, thereby regulating the balance of T-cell subsets, which profoundly impacts the onset and progression of autoimmune diseases. In such conditions, IL-12 family members are aberrantly expressed to varying degrees. By exploring their immunomodulatory functions, researchers have identified varying therapeutic potentials for each member. This review examines the physiological functions of the major IL-12 family members and their interactions, discusses their roles in several autoimmune diseases, and summarizes the progress of clinical studies involving monoclonal antibodies targeting IL-12 and IL-23 subunits currently available for treatment.
Collapse
Affiliation(s)
- Xiaoyu Cui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Wu Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Hanxue Jiang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Qihan Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Yuehong Hu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Xinyue Tang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Xianli Liu
- Shunyi Branch, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100310, China
| | - Haoran Dai
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Shunyi Branch, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100310, China
| | - Hongliang Rui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
3
|
Yin Q, Zhu T, Song D, Fang S, Zhou H, Guan H. Soluble Immune Checkpoints Associated With Disease Activity and Treatment Response in GD and TED. J Clin Endocrinol Metab 2025; 110:1537-1549. [PMID: 39475457 DOI: 10.1210/clinem/dgae763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Indexed: 05/20/2025]
Abstract
CONTEXT Soluble immune checkpoints play an important role in peripheral tolerance that has seldom been investigated in Graves' disease (GD) and thyroid eye disease (TED). OBJECTIVE The objective of this work is to examine the alteration of soluble immune checkpoints in GD and TED. METHODS We performed a quantitative multiplex analysis of 17 immune checkpoint proteins in serum from 50 GD patients without TED, 28 GD patients with TED, and 40 healthy controls. The association with demographic, serologic, clinical features and 27 cytokines was analyzed. A follow-up was conducted in GD patients without TED. Functional outcomes of sLAG-3 and sGITR were assessed in cell cultures using rh-LAG3, rh-GITR, an antagonistic LAG-3 antibody, and an antagonistic GITR antibody. RESULTS GD Patients with TED had distinct sICP and cytokine profiles compared with GD patients without TED. Active patients with TED exhibited elevation in the levels of sBTLA, sLAG-3, sGITR, sCD80, sCD86, and sPD-L1. Further, GD patients without TED with high sBTLA, sCD27, and sCD40 levels at baseline showed a better improvement in thyrotropin receptor antibody titers after antithyroid drug treatment. Adding recombinant human GITR and LAG-3 to peripheral blood mononuclear cell cultures resulted in increased inflammatory cytokine secretion and decreased anti-inflammatory cytokine secretion. CONCLUSION The present study uncovers disturbed soluble immune checkpoints and cytokines in GD patients with and without TED and may pave the way for novel immunological screening, allowing for identification of patients with TED at higher risk of developing active disease and patients with GD a better treatment response after antithyroid drug treatment.
Collapse
Affiliation(s)
- Qinglei Yin
- Guangdong Geriatric Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Tianyi Zhu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Dalong Song
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Sijie Fang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Huifang Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Haixia Guan
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| |
Collapse
|
4
|
Chen X, Shen B, Lin W, Xiong Z, Yang B, Luo H, Zong Z, Chen J, Bahabayi A, Liu C. Altered CD27-related T cell subsets reflect immune imbalance in systemic lupus erythematosus. Immunol Res 2025; 73:83. [PMID: 40381105 DOI: 10.1007/s12026-025-09637-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 05/06/2025] [Indexed: 05/19/2025]
Abstract
OBJECTIVE This study aims to analyze CD27 expression in various subsets of CD4+ T cells in peripheral blood, explore the functional characteristics of the CD27+ subsets in regulatory T cells (Tregs) and CD4+ T cells, and assess their immunological alterations in newly diagnosed systemic lupus erythematosus (SLE) patients. METHODS Peripheral blood was collected from 34 newly diagnosed, untreated SLE patients and 22 healthy controls. Flow cytometry was used to analyze CD27 expression on T cell subsets, comparing the functional markers between CD27+ and CD27- subsets. CD27 expression on Tregs and total CD4+ T cells in SLE patients and healthy controls were compared. ROC curves were constructed, and areas under the curve (AUCs) was calculated to evaluate the diagnostic value of CD27-related T cell subsets for SLE. RESULTS The proportion of Tregs in the peripheral blood of SLE patients was increased, and CD27 expression was higher in Tregs than in CD4+ T cells in healthy individuals. CD27+ CD4+ T cells exhibited higher CD45RA and lower CD226 expression. CD27+ Tregs showed higher Helios and TIGIT expression and lower CD226 expression. CD27+ cell proportions in both CD4+ T cells and Tregs were significantly reduced in SLE patients. The AUC for CD27-related T cell subsets in diagnosing newly diagnosed SLE ranged from 0.6238 to 0.86. CONCLUSION CD27+ CD4+ T cells show reduced activation features, while CD27+ Tregs exhibit enhanced regulatory potential. Their decreased proportions in SLE patients suggest early immune dysregulation.
Collapse
Affiliation(s)
- Xiaoning Chen
- Department of Clinical Laboratory, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China
| | - Bing Shen
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Weijie Lin
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ziqi Xiong
- Department of Clinical Laboratory, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China
| | - Bohao Yang
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hanxi Luo
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhiwei Zong
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Jie Chen
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ayibaota Bahabayi
- Department of Clinical Laboratory, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China
| | - Chen Liu
- Department of Clinical Laboratory, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China.
| |
Collapse
|
5
|
Lai Y, Wang S, Ren T, Shi J, Qian Y, Wang S, Zhou M, Watanabe R, Li M, Ruan X, Wang X, Zhuang L, Ke Z, Yang N, Huang Y, Zhang H. TIGIT deficiency promotes autoreactive CD4 + T-cell responses through a metabolic‒epigenetic mechanism in autoimmune myositis. Nat Commun 2025; 16:4502. [PMID: 40374622 PMCID: PMC12081758 DOI: 10.1038/s41467-025-59786-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 04/30/2025] [Indexed: 05/17/2025] Open
Abstract
Polymyositis (PM) is a systemic autoimmune disease characterized by muscular inflammatory infiltrates and degeneration. T-cell immunoreceptor with Ig and ITIM domains (TIGIT) contributes to immune tolerance by inhibiting T cell-mediated autoimmunity. Here, we show that a reduced expression of TIGIT in CD4+ T cells from patients with PM promotes these cells' differentiation into Th1 and Th17 cells, which could be rescued by TIGIT overexpression. Knockout of TIGIT enhances muscle inflammation in a mouse model of experimental autoimmune myositis. Mechanistically, we find that TIGIT deficiency enhances CD28-mediated PI3K/AKT/mTOR co-stimulatory pathway, which promotes glucose oxidation, citrate production, and increased cytosolic acetyl-CoA levels, ultimately inducing epigenetic reprogramming via histone acetylation. Importantly, pharmacological inhibition of histone acetylation suppresses the differentiation of Th1 and Th17 cells, alleviating muscle inflammation. Thus, our findings reveal a mechanism by which TIGIT directly affects the differentiation of Th1 and Th17 T cells through metabolic‒epigenetic reprogramming, with important implications for treating systemic autoimmune diseases.
Collapse
Affiliation(s)
- Yimei Lai
- Department of Rheumatology and Clinical immunology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuang Wang
- Department of Rheumatology and Clinical immunology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tingting Ren
- Department of Rheumatology and Clinical immunology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jia Shi
- Department of Rheumatology and Clinical immunology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yichao Qian
- Department of Rheumatology and Clinical immunology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Institute of Precision Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuyi Wang
- Department of Rheumatology and Clinical immunology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Institute of Precision Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mianjing Zhou
- Department of Rheumatology and Clinical immunology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ryu Watanabe
- Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Mengyuan Li
- Department of Rheumatology and Clinical immunology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xinyuan Ruan
- Department of Rheumatology and Clinical immunology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xin Wang
- Department of Pediatrics, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lili Zhuang
- Department of Rheumatology and Clinical immunology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zunfu Ke
- Institute of Precision Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Pathology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Molecular Diagnosis and Gene Test Centre, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Niansheng Yang
- Department of Rheumatology and Clinical immunology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuefang Huang
- Department of Pediatrics, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hui Zhang
- Department of Rheumatology and Clinical immunology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- Institute of Precision Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
6
|
Pan J, Wu R, He L, Bai Y, Ding J, Wang Y, Fan S, Zhang Z, Zhang P, Qi C. Alterations in CD8 +CD45RA +CCR7 - T cells as a potential biomarker for primary Sjögren's syndrome. Immunobiology 2025; 230:152914. [PMID: 40388849 DOI: 10.1016/j.imbio.2025.152914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/21/2025]
Abstract
In this study, we found that the CD8+CD45RA+CCR7- T cell subpopulation was increased in the peripheral blood of patients with primary Sjögren's syndrome (pSS) compared with healthy donors. Moreover, both CD8+TIM-3+ T cells and CD8+CD45RA+CCR7- T cells were positively correlated with serum anti-SSA antibody concentrations in patients. In animal experiments, prolonged administration of β-glucan (whole glucan particle [WGP]) effectively reduced the onset and progression of pSS. Compared with the control group, the WGP-treated group showed a significant reduction in the proportions of CD4+PD-1+ T cells, CD4+TIM-3+ T cells, CD8+PD-1+ T cells, CD8+TIM-3+ T cells, and CD8+CD45RA+CCR7- T cells in the spleens and peripheral blood of non-obese diabetic mice. Notably, β-glucan exhibited therapeutic efficacy comparable to that of hydroxychloroquine sulfate, a conventional treatment for pSS. These findings suggest that the CD8+CD45RA+CCR7- T cell subpopulation may represent a promising new therapeutic target for the disease.
Collapse
Affiliation(s)
- Jie Pan
- Basic Research Center, Changzhou Medical Center, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, China
| | - Rongqiang Wu
- Department of Clinical Laboratory, Changzhou Medical Center, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, China
| | - Liuyang He
- Basic Research Center, Changzhou Medical Center, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, China
| | - Yu Bai
- Basic Research Center, Changzhou Medical Center, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, China
| | - Jun Ding
- Basic Research Center, Changzhou Medical Center, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, China
| | - Yan Wang
- Department of Clinical Laboratory, Changzhou Medical Center, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, China
| | - Shu Fan
- Department of Clinical Laboratory, Changzhou Medical Center, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, China
| | - Zhengyu Zhang
- Department of Rheumatology, Changzhou Medical Center, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, China
| | - Ping Zhang
- Department of Clinical Laboratory, Changzhou Medical Center, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, China
| | - Chunjian Qi
- Basic Research Center, Changzhou Medical Center, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, China.
| |
Collapse
|
7
|
Liu C, Liao C, Sun B, Guo Z, Chen S, Liu S, Yuan X, Huang Z, Liu J, Deng M, Wang K, Wu R, Zhao J, Dong X. Tumour-infiltrating immune cells as a novel prognostic model for bladder cancer. Discov Oncol 2025; 16:725. [PMID: 40350535 PMCID: PMC12066389 DOI: 10.1007/s12672-025-02292-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 04/02/2025] [Indexed: 05/14/2025] Open
Abstract
Bladder cancer (BLCA) is the tenth most commonly diagnosed cancer and poses a significant challenge due to its complexity and associated high morbidity and mortality rates in the absence of optimal treatment. The tumor microenvironment (TME) is recognized as a critical factor in tumor initiation, progression and therapeutic response, and offers numerous potential targets for intervention. A comprehensive understanding of immune infiltration patterns in BLCA is essential for the development of effective prevention and treatment strategies. In this study, bioinformatics analysis was used to identify differentially expressed genes (DEGs) and tumor-infiltrating immune cells (TIICs) between BLCA tissues and adjacent normal tissues. Weighted gene co-expression network analysis (WGCNA) and protein-protein interaction (PPI) analysis were used to identify the top 10 hub genes with the most significant co-expression effects, and their potential relationship with patient prognosis was then predicted. The random survival forest (RSF) model was used to further identify six variables among the hub genes and establish a novel scoring system, defined as the tumor-infiltrating immune score (TIIS) to predict the prognosis of BLCA patients. In addition, the correlation analysis between TIIS and drug sensitivity was investigated using the Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Therapeutics Response Portal (CTRP) databases. Patients with high TIIS were found to have a poor prognosis but may be more sensitive to Cisplatin and certain novel agents. This study provided a systematic analysis of immune cell infiltration in BLCA and established TIIS to predict patient prognosis and the efficacy of specific drugs in the treatment of BLCA.
Collapse
Affiliation(s)
- Can Liu
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Chaoyu Liao
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Bishao Sun
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Zhen Guo
- Urology Department, Chongqing Shapingba Hospital, School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Sihao Chen
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400010, China
- Chongqing Key Laboratory of Tumor Immune Regulation and Immune Intervention, Chongqing, 400010, China
| | - Shixue Liu
- Urology Department, Chongqing Shapingba Hospital, School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Xiaoyu Yuan
- Urology Department, Chongqing Shapingba Hospital, School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Zeyu Huang
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Jingui Liu
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Min Deng
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Kui Wang
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Ruixin Wu
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400010, China.
- Chongqing Key Laboratory of Tumor Immune Regulation and Immune Intervention, Chongqing, 400010, China.
| | - Jiang Zhao
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China.
| | - Xingyou Dong
- Urology Department, Chongqing Shapingba Hospital, School of Medicine, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
8
|
Xu X, Zhang S, Luo Z, Zheng Y, Kong T, Huang C, Qiu Z. Frontiers and Controversies in De Novo Gastrointestinal Tumors After Organ Transplantation: Current Progress and Future Directions. Ann Surg Oncol 2025; 32:3392-3405. [PMID: 40035907 DOI: 10.1245/s10434-025-16975-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/21/2025] [Indexed: 03/06/2025]
Abstract
The increasing success of organ transplantation has significantly improved survival for patients with end-stage diseases, yet it introduces a complex dilemma: the elevated risk for the development of de novo gastrointestinal (GI) tumors. The sustained immunosuppression required to maintain graft function paradoxically undermines the body's natural defenses against cancer, leading to a higher incidence, aggressive progression, and atypical presentations of GI tumors among transplant recipients compared with the general population. This presents a pressing challenge: balancing the dual imperatives of preventing graft rejection and effectively managing malignancies. Current treatment paradigms, including surgical approaches, chemotherapy, radiation therapy, and the emerging role of immunotherapy, are fraught with complexities due to the altered immune landscape in these patients. This review underscores the critical need to understand the multifaceted relationship between post-transplantation immunosuppression and tumorigenesis, providing a comprehensive exploration of epidemiologic shifts, pathophysiologic insights, and the intricacies of the tumor microenvironment in this unique patient population. Understanding and managing GI tumors in transplant recipients is not only a clinical challenge, but also a necessary frontier in transplant oncology, promising to refine therapeutic strategies and improve the longevity and quality of life for this growing patient cohort.
Collapse
Affiliation(s)
- Ximo Xu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaopeng Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zai Luo
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zheng
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Kong
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Huang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhengjun Qiu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Hu M, Zhou Y, Yao Z, Tang Y, Zhang Y, Liao J, Cai X, Liu L. T cell dysregulation in rheumatoid arthritis: Recent advances and natural product interventions. Int Immunopharmacol 2025; 153:114499. [PMID: 40120382 DOI: 10.1016/j.intimp.2025.114499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/28/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Autoimmune diseases result from chronic and dysregulated activation of the immune system, culminating in pathological self-tissue damage. These disorders are primarily driven by adaptive immune responses, particularly those mediated by T and B lymphocytes, which mistakenly target self-antigens expressed in host tissues. In rheumatoid arthritis (RA), the pathogenesis is closely associated with the emergence of tissue-invasive effector T cells and the functional impairment of regulatory T cells (Tregs), both of which play pivotal roles in disease progression. Therapeutic interventions targeting these dysregulated T cell populations have emerged as a promising strategy for RA management. Although synthetic immunosuppressants remain the mainstay of RA treatment, their long-term application is often hampered by adverse effects, diminished therapeutic efficacy, and poor patient adherence. These limitations highlight the critical need for the development of novel therapeutic approaches. Natural compounds derived from medicinal plants have been widely utilized in the clinical management of RA, with growing evidence supporting their immunomodulatory potential, particularly in restoring T cell-mediated immune tolerance. This review aims to provide a comprehensive overview of recent advances in understanding T cell dysregulation in RA and to elucidate the mechanisms through which natural compounds regulate immune responses. By integrating current findings, this work seeks to offer a theoretical foundation for the optimized use of natural compounds in the treatment of RA, while exploring their potential in advancing precision medicine and personalized therapeutic strategies.
Collapse
Affiliation(s)
- Mingyue Hu
- Department of Rheumatology of First Hospital and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Yujun Zhou
- The General Surgery Department of Xiangya Hospital Affiliated to Central South University, Changsha, Hunan 410028, China
| | - Zhongliu Yao
- Department of Rheumatology of First Hospital and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Yuanyuan Tang
- Department of Rheumatology of First Hospital and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Ye Zhang
- Department of Rheumatology of First Hospital and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jing Liao
- Department of Rheumatology of First Hospital and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Xiong Cai
- Department of Rheumatology of First Hospital and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Liang Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
10
|
Zhao R, Su Z, Gu J, Zhao H, Bian L, Jiang Y, Cai Y, Yang T, Gu Y, Xu X. Enhancing anti-CD3 mAb-mediated diabetes remission in autoimmune diabetes through regulation of dynamin-related protein 1(Drp1)-mediated mitochondrial dynamics in exhausted CD8 +T-cell subpopulations. BMC Med 2025; 23:189. [PMID: 40165248 PMCID: PMC11959779 DOI: 10.1186/s12916-025-04001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 03/12/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Antigen-specific immunotherapy shows potential for inducing long-term immune tolerance in type 1 diabetes (T1D), yet its clinical application is hampered by uncertainty regarding dominant epitopes. Conversely, non-antigen-specific treatments such as anti-CD3 monoclonal antibodies (mAbs) present a more straightforward approach but struggle to maintain tolerance after treatment. Addressing these issues is critical for advancing T1D therapies. METHODS The phenotypic and metabolic properties of two subsets of exhausted CD8+ T cells were analyzed in both humans and NOD mice. T-cell receptor (TCR) diversity and Bulk RNA sequencing provided insights into the transcriptomic profiles and TCR reactivity of these cells. Mechanistic studies were conducted using the HEK-293 T cell line and primary cells. Single-cell RNA sequencing (scRNA-seq) was applied to evaluate the characteristics of different CD8+ T cell subsets following two types of immunotherapies. In NY8.3 mice, the effect of mitochondrial fission inhibitors on immunotherapy results was evaluated. Final validation was carried out with peripheral blood mononuclear cells (PBMCs) from T1D patients. RESULTS Our study reveals the diversity of two distinct exhausted CD8+ T cell subsets in T1D through flow cytometry, highlighting unique clinical features, phenotypes, and functions. Notable differences in TCR reactivity and metabolic pathways between these subsets were identified through TCR sequencing and transcriptomic analyses in NOD mice. Both antigen-specific and non-antigen-specific stimuli produced unique exhausted CD8+ T cell subsets. Our research identified leucine-rich repeat kinase 2 (Lrrk2) as a key regulator of mitochondrial fission, influencing the interconversion of exhausted CD8+ T cell subsets by phosphorylating dynamin-related protein 1 (DRP1) at serine 637 (Ser637) and serine 616 (Ser616). scRNA-seq confirmed that antigen-specific immunotherapy effectively suppresses T cell signaling, induces exhaustion, and promotes the development of terminally exhausted T (TEX) cells. Mitochondrial division inhibitor 1 (Mdivi-1) enhanced the therapeutic effect of anti-CD3 mAb treatment by promoting the development of more TEX cells. CONCLUSIONS Our results point to a new immunotherapeutic approach that targets exhausted CD8+ T cells' energy metabolism, offering valuable insights for advancing clinical strategies in T1D therapy.
Collapse
Affiliation(s)
- Ruiling Zhao
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Zhangyao Su
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Junjie Gu
- Department of Radiation Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hang Zhao
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Lingling Bian
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
- Department of Endocrinology, The First People's Hospital of Yancheng, Jiangsu Province, China
| | - Yin Jiang
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Yun Cai
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Tao Yang
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Yong Gu
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China.
| | - Xinyu Xu
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China.
| |
Collapse
|
11
|
Deng J, Zhu J, Jiang X, Yao C, Chen H, Ding Y, Niu P, Chen Q, Ding H, Shen N. PD-1 activation mitigates lupus nephritis by suppressing hyperactive and heterogeneous PD-1 +CD8 + T cells. Theranostics 2025; 15:5029-5044. [PMID: 40303350 PMCID: PMC12036892 DOI: 10.7150/thno.107418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/23/2025] [Indexed: 05/02/2025] Open
Abstract
Rationale: Programmed cell death protein 1 (PD-1)-expressing CD8+ T cells are typically associated with exhaustion in cancer and infections, but their role in autoimmune diseases, particularly lupus nephritis (LN), remains less understood. Understanding the characteristics and functions of PD-1+CD8+ T cells in LN could help identify novel therapeutic strategies. Methods: We analyzed the abundance and phenotypes of PD-1+CD8+ T cells in LN patients and NZB/W F1 mice. Single-cell RNA sequencing (scRNA-seq) was used to delineate subsets and TCR clonal diversity in PD-1+CD8+ T cells in NZB/W F1 mice. The therapeutic efficacy of a PD-L1 Fc fusion protein on kidney pathology and proteinuria in NZB/W F1 mice was evaluated. In addition, the inhibitory mechanism of PD-1 in CD8+ T cells were further explored using RNA-seq, q-PCR, flow cytometry, and Western blot. Results: PD-1+CD8+ T cells were enriched in LN patients and NZB/W F1 mice, exhibiting elevated activation markers and cytotoxic molecules compared to PD-1- cells. scRNA-seq identified seven distinct subsets with diverse effector functions and robust TCR clonal expansion in the kidney of NZB/W F1 mice with severe disease. PD-L1 Fc treatment reduced kidney damage and proteinuria in NZB/W F1 mice, which correlated with decreased frequencies of PD-1+CD8+ and IFN-γ+CD8+ T cells. Mechanistically, PD-L1 Fc inhibited Stat1 phosphorylation, T-bet expression, and IFN-γ production in CD8+ T cells. Conclusion: These findings show that PD-1+CD8+ T cells in LN are hyperactive, clonally expanded, and contribute to disease progression. Targeting the PD-1/PD-L1 pathway with PD-L1 Fc effectively reduced kidney pathology in a murine model of LN, underscoring the potential of modulating PD-1 signaling as a treatment strategy for LN.
Collapse
Affiliation(s)
- Jun Deng
- Shanghai Institute of Rheumatology, Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junling Zhu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyue Jiang
- Shanghai Institute of Rheumatology, Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Yao
- Shanghai Institute of Rheumatology, Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haifeng Chen
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanjie Ding
- Department of Rheumatology and Immunology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, China
| | - Peng Niu
- Shanghai Institute of Rheumatology, Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Chen
- Department of Ophthalmology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huihua Ding
- Shanghai Institute of Rheumatology, Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Shen
- Shanghai Institute of Rheumatology, Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
12
|
Liu Y, Liu Q, Zhang B, Chen S, Shen Y, Li Z, Zhang J, Yang Y, Li M, Wang Y. Generation of tolerogenic antigen-presenting cells in vivo via the delivery of mRNA encoding PDL1 within lipid nanoparticles. Nat Biomed Eng 2025:10.1038/s41551-025-01373-0. [PMID: 40155762 DOI: 10.1038/s41551-025-01373-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/27/2025] [Indexed: 04/01/2025]
Abstract
Tolerogenic antigen-presenting cells (APCs) are promising as therapeutics for suppressing T cell activation in autoimmune diseases. However, the isolation and ex vivo manipulation of autologous APCs is costly, and the process is customized for each patient. Here we show that tolerogenic APCs can be generated in vivo by delivering, via lipid nanoparticles, messenger RNA coding for the inhibitory protein programmed death ligand 1. We optimized a lipid-nanoparticle formulation to minimize its immunogenicity by reducing the molar ratio of nitrogen atoms on the ionizable lipid and the phosphate groups on the encapsulated mRNA. In mouse models of rheumatoid arthritis and ulcerative colitis, subcutaneous delivery of nanoparticles encapsulating mRNA encoding programmed death ligand 1 reduced the fraction of activated T cells, promoted the induction of regulatory T cells and effectively prevented disease progression. The method may allow for the engineering of APCs that target specific autoantigens or that integrate additional inhibitory molecules.
Collapse
Affiliation(s)
- Yang Liu
- Department of Radiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qian Liu
- Department of Radiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Baowen Zhang
- National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shanshan Chen
- Department of Radiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yanqiong Shen
- National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
- RNAlfa Biotech, Hefei, China
| | - Zhibin Li
- National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiachen Zhang
- National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yi Yang
- RNAlfa Biotech, Hefei, China
| | - Min Li
- Department of Radiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China.
| | - Yucai Wang
- Department of Radiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China.
- RNAlfa Biotech, Hefei, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China.
| |
Collapse
|
13
|
Zheng Y, Li H, Wang Y, Huang L, Chen L, Lin S, Lin S. Identification and immunoassay of biomarkers associated with T cell exhaustion in systemic lupus erythematosus. Front Immunol 2025; 16:1476575. [PMID: 40207215 PMCID: PMC11979134 DOI: 10.3389/fimmu.2025.1476575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
Background Systemic lupus erythematosus (SLE) is an autoimmune disease with unclear etiology. T cell exhaustion (TEX) suppresses the immune response and can be a potential therapeutic strategy for autoimmune diseases. Therefore, this study primarily investigated the mechanism by which TEX influences SLE, offering a novel target for its treatment. Methods GSE72326 and GSE81622 were utilized in this study. TEX related genes (TEX-RGs) were obtained from the published literature. Differentially expressed genes (DEGs) were obtained through differential expression analysis. Subsequently, candidate genes were selected by overlapping DEGs and TEX-RGs. These candidate genes underwent protein-protein interactions (PPIs) analysis for further screening. Machine learning was applied to identify candidate key genes from the PPI-identified genes. The candidate key genes exhibiting an area under the receiver operating characteristic (ROC) curve (AUC) greater than 0.7, along with consistent expression trends and significant differences in GSE72326 and GSE81622 were defined as biomarkers. Additionally, enrichment analysis, immune infiltration analysis, chemical compounds prediction and molecular docking were carried out. Importantly, the biomarkers were validated for expression by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Results The biomarkers MX1, LY6E, IFI44 and OASL were screened by overlapping 327 DEGs and 1,408 TEX-RGs. Gene set enrichment analysis (GSEA) showed that there was a significant positive correlation between the expression of these biomarkers and immune-related pathways, such as the NOD-like receptor signaling pathway, Toll-like receptor signaling pathway and RIG-I-like receptor signaling pathway significant positive correlation. The immune infiltration of 8 types of immune cells differed significantly in SLE. Naive B cells, resting memory CD4 T cells and resting NK cells were significantly down-regulated in the SLE group. 4 biomarkers showed the highest correlation with resting memory CD4 T cells. Bisphenol A targeted OASL and LY6E, whereas acetaminophen targeted IFI44 and MX1.The binding activity between the biomarkers and the chemical compounds targeting them was very strong. Finally, RT-qPCR expression of MX1, LY6E, IFI44 and OASL was consistent with the results of the dataset. Conclusion MX1, LY6E, IFI44 and OASL were identified as biomarkers related to TEX in SLE. These biomarkers could be detected in the blood for early diagnosis of the disease or to monitor the efficacy of the disease treatment, thus providing a new target for the management of SLE.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shuhuan Lin
- Department of Rheumatology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
14
|
Xu Q, Li L, Zhu R. T Cell Exhaustion in Allergic Diseases and Allergen Immunotherapy: A Novel Biomarker? Curr Allergy Asthma Rep 2025; 25:18. [PMID: 40091122 DOI: 10.1007/s11882-025-01199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
PURPOSE OF REVIEW This review explores the emerging role of T cell exhaustion in allergic diseases and allergen immunotherapy (AIT). It aims to synthesize current knowledge on the mechanisms of T cell exhaustion, evaluate its potential involvement in allergic inflammation, and assess its implications as a novel biomarker for predicting and monitoring AIT efficacy. RECENT FINDINGS Recent studies highlight that T cell exhaustion, characterized by co-expression of inhibitory receptors (e.g., PD-1, CTLA-4, TIM-3), diminished cytokine production, and altered transcriptional profiles, may suppress type 2 inflammation in allergic diseases. In allergic asthma, exhausted CD4 + T cells exhibit upregulated inhibitory receptors, correlating with reduced IgE levels and airway hyperreactivity. During AIT, prolonged high-dose allergen exposure drives allergen-specific Th2 and T follicular helper (Tfh) cell exhaustion, potentially contributing to immune tolerance. Notably, clinical improvements in AIT correlate with depletion of allergen-specific Th2 cells and persistent expression of exhaustion markers (e.g., PD-1, CTLA-4) during maintenance phases. Blockade of inhibitory receptors (e.g., PD-1) enhances T cell activation, underscoring their dual regulatory role in allergy. T cell exhaustion represents a double-edged sword in allergy: it may dampen pathological inflammation in allergic diseases while serving as a mechanism for AIT-induced tolerance. The co-expression of inhibitory receptors on allergen-specific T cells emerges as a promising biomarker for AIT efficacy. Future research should clarify the transcriptional and metabolic drivers of exhaustion in allergy, validate its role across diverse allergic conditions, and optimize strategies to harness T cell exhaustion for durable immune tolerance. These insights could revolutionize therapeutic approaches and biomarker development in allergy management.
Collapse
Affiliation(s)
- Qingxiu Xu
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Le Li
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rongfei Zhu
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
15
|
Sag E, Balik Z, Demir S, Akca Kaya U, Sener S, Kasap Cuceoglu M, Atalay E, Bocutcu S, Vural T, Tasdemir NK, Aydin B, Bilginer Y, Deleuran B, Ozen S. Polyarticular juvenile idiopathic arthritis has a distinct co-inhibitor receptor profile. Rheumatology (Oxford) 2025; 64:1424-1430. [PMID: 38781517 DOI: 10.1093/rheumatology/keae306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/25/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
OBJECTIVES JIA is the most common rheumatic disease of childhood; the pathogenesis is associated with T-cell activation. T-cell activation can be counterbalanced by signals generated by inhibitory receptors (IRs) such as CTLA-4, PD-1, LAG-3 and TIM-3. Here, we identify the role of IRs in the pathogenesis of different JIA subtypes. METHODS In total, we included 67 oligoarticular JIA, 12 IgM-RF negative polyarticular JIA, 17 enthesitis-related arthritis, 11 systemic JIA patients and 10 healthy controls. We collected plasma (and SF) samples from the patients either at the onset or during a flare of their disease. We measured the soluble levels of co-IRs (IL-2Rα, 4-1BB, CD86, TGF-β1, CTLA-4, PD-L1, PD-1, TIM-3, LAG- 3, Galectin-9) by cytometric bead array kits and their cellular expression (PD-1, CTLA-4, TIM-3, LAG-3) by flow cytometry. We compared the plasma levels and cellular expressions of different co-IRs within different JIA subgroups. RESULTS The polyarticular JIA group was different from the three other examined JIA subgroups, having higher levels of plasma sCTLA-4 (P < 0.001), sPD-1 (P < 0.05) and s4-1BB (P < 0.05) when compared with the other JIA subgroups and healthy controls. We analysed the cellular surface expression of different co-IRs on the peripheral blood mononuclear cells of different JIA subtypes. Similar to plasma levels, both the percentage (P < 0.05) and the mean fluorescence intensity (P < 0.01) of CTLA4 expression were higher in the polyarticular JIA subgroup. CONCLUSION This is the first report studying the expression profile of different co-IRs in different subtypes of JIA. Polyarticular JIA patients had a different co-IR profile, having more CTLA-4, PD-1 and 4-1BB in their plasma than the other subtypes of JIA.
Collapse
Affiliation(s)
- Erdal Sag
- Pediatric Rheumatology Unit, Translational Medicine Laboratories, Hacettepe University, Ankara, Turkey
- Department of Pediatric Rheumatology, Hacettepe University, Ankara, Turkey
| | - Zeynep Balik
- Department of Pediatric Rheumatology, Hacettepe University, Ankara, Turkey
| | - Selcan Demir
- Department of Pediatric Rheumatology, Osmangazi University, Eskisehir, Turkey
| | - Ummusen Akca Kaya
- Department of Pediatric Rheumatology, Hacettepe University, Ankara, Turkey
| | - Seher Sener
- Department of Pediatric Rheumatology, Hacettepe University, Ankara, Turkey
| | | | - Erdal Atalay
- Department of Pediatric Rheumatology, Hacettepe University, Ankara, Turkey
| | - Sena Bocutcu
- Department of Pediatric Rheumatology, Hacettepe University, Ankara, Turkey
| | - Tayfun Vural
- Pediatric Rheumatology Unit, Translational Medicine Laboratories, Hacettepe University, Ankara, Turkey
| | - Nur Kubra Tasdemir
- Pediatric Rheumatology Unit, Translational Medicine Laboratories, Hacettepe University, Ankara, Turkey
| | - Busra Aydin
- Pediatric Rheumatology Unit, Translational Medicine Laboratories, Hacettepe University, Ankara, Turkey
| | - Yelda Bilginer
- Department of Pediatric Rheumatology, Hacettepe University, Ankara, Turkey
| | - Bent Deleuran
- Institute of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | - Seza Ozen
- Pediatric Rheumatology Unit, Translational Medicine Laboratories, Hacettepe University, Ankara, Turkey
- Department of Pediatric Rheumatology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
16
|
Lin WY, Kartawinata M, Jebson BR, Restuadi R, Peckham H, Radziszewska A, Deakin CT, Ciurtin C, Wedderburn LR, Wallace C. Penalised regression improves imputation of cell-type specific expression using RNA-seq data from mixed cell populations compared to domain-specific methods. PLoS Comput Biol 2025; 21:e1012859. [PMID: 40053530 PMCID: PMC11957391 DOI: 10.1371/journal.pcbi.1012859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 03/31/2025] [Accepted: 02/07/2025] [Indexed: 03/09/2025] Open
Abstract
Gene expression studies often use bulk RNA sequencing of mixed cell populations because single cell or sorted cell sequencing may be prohibitively expensive. However, mixed cell studies may miss expression patterns that are restricted to specific cell populations. Computational deconvolution can be used to estimate cell fractions from bulk expression data and infer average cell-type expression in a set of samples (e.g., cases or controls), but imputing sample-level cell-type expression is required for more detailed analyses, such as relating expression to quantitative traits, and is less commonly addressed. Here, we assessed the accuracy of imputing sample-level cell-type expression using a real dataset where mixed peripheral blood mononuclear cells (PBMC) and sorted (CD4, CD8, CD14, CD19) RNA sequencing data were generated from the same subjects (N=158), and pseudobulk datasets synthesised from eQTLgen single cell RNA-seq data. We compared three domain-specific methods, CIBERSORTx, bMIND and debCAM/swCAM, and two cross-domain machine learning methods, multiple response LASSO and ridge, that had not been used for this task before. We also assessed the methods according to their ability to recover differential gene expression (DGE) results. LASSO/ridge showed higher sensitivity but lower specificity for recovering DGE signals seen in observed data compared to deconvolution methods, although LASSO/ridge had higher area under curves than deconvolution methods. Machine learning methods have the potential to outperform domain-specific methods when suitable training data are available.
Collapse
Affiliation(s)
- Wei-Yu Lin
- MRC Biostatistics Unit, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Melissa Kartawinata
- Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, United Kingdom
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospital (UCLH) and Great Ormond Street Hospital (GOSH), London, United Kingdom
| | - Bethany R. Jebson
- Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, United Kingdom
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospital (UCLH) and Great Ormond Street Hospital (GOSH), London, United Kingdom
| | - Restuadi Restuadi
- Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, United Kingdom
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospital (UCLH) and Great Ormond Street Hospital (GOSH), London, United Kingdom
| | - Hannah Peckham
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospital (UCLH) and Great Ormond Street Hospital (GOSH), London, United Kingdom
- Division of Medicine, Department of Ageing, Rheumatology & Regenerative Medicine, UCL, London, United Kingdom
| | - Anna Radziszewska
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospital (UCLH) and Great Ormond Street Hospital (GOSH), London, United Kingdom
- Division of Medicine, Department of Ageing, Rheumatology & Regenerative Medicine, UCL, London, United Kingdom
| | - Claire T. Deakin
- Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, United Kingdom
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospital (UCLH) and Great Ormond Street Hospital (GOSH), London, United Kingdom
- National Institute for Health Research (NIHR) GOSH Biomedical Research Centre, London, United Kingdom
| | - Coziana Ciurtin
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospital (UCLH) and Great Ormond Street Hospital (GOSH), London, United Kingdom
- Division of Medicine, Department of Ageing, Rheumatology & Regenerative Medicine, UCL, London, United Kingdom
| | | | - Lucy R. Wedderburn
- Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, United Kingdom
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospital (UCLH) and Great Ormond Street Hospital (GOSH), London, United Kingdom
- National Institute for Health Research (NIHR) GOSH Biomedical Research Centre, London, United Kingdom
| | - Chris Wallace
- MRC Biostatistics Unit, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
17
|
Bhatt B, Kumar K, Shi H, Ganesan D, Anazodo F, Rathakrishnan A, Zhu H, Wanna A, Jiang C, Jayavelu T, Lokeshwar VB, Pacholczyk R, Munn DH, Sheridan BS, Moskophidis D, Li H, Singh N. UFL1 promotes survival and function of virtual memory CD8 T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:vkae042. [PMID: 40073095 PMCID: PMC11952874 DOI: 10.1093/jimmun/vkae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/30/2024] [Indexed: 03/14/2025]
Abstract
In naïve mice, a fraction of CD8 T cells displaying high affinity for self-MHC peptide complexes develop into virtual memory T (TVM) cells. Due to self-reactivity, TVM cells are exposed to persistent antigenic stimulation, a condition known to induce T cell exhaustion. However, TVM cells do not exhibit characteristics similar to exhausted CD8 T (TEX) cells. Here, we tested the role of the UFL1, E3 ligase of the ufmylation pathway in TVM cells. We show that UFL1 prevents the acquisition of epigenetic, transcriptional, and phenotypic changes in TVM cells that are similar to TEX cells and thus promote their survival and function. UFL1-deficient TVM cells failed to protect mice against Listeria infection. Epigenetic analysis showed higher BATF activity in UFL1-deficient TVM cells. Deletion of BATF and not PD1 decreased inhibitory molecules expression and restored the survival and function of UFL1-deficient TVM cells. Our findings demonstrate a key role of UFL1 in inhibiting the exhaustion of TVM cells and promoting their survival and function.
Collapse
Affiliation(s)
- Brinda Bhatt
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Kunal Kumar
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Huidong Shi
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Immunology Center of Georgia, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Dhasarathan Ganesan
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Francis Anazodo
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Aravind Rathakrishnan
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Huabin Zhu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Andrew Wanna
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Chen Jiang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Tamilselvan Jayavelu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Vinata Bal Lokeshwar
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Rafal Pacholczyk
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - David H Munn
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Immunology Center of Georgia, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Brian S Sheridan
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, United States
| | - Demetrius Moskophidis
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Nagendra Singh
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Immunology Center of Georgia, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| |
Collapse
|
18
|
Wang Y, Zhou Y, Huang C, Wang Y, Lou L, Zhao L, Xu S, Zheng M, Li S. Development of a prediction model for in-hospital mortality in immunocompromised chronic kidney diseases patients with severe infection. BMC Nephrol 2025; 26:78. [PMID: 39948484 PMCID: PMC11827175 DOI: 10.1186/s12882-025-04002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Immunosuppressive agents, although indispensable in the treatment of chronic kidney diseases (CKD), could compromise the patient's immune function. The risk factor for in-hospital mortality in immunocompromised CKD patients with severe infections remain elusive. METHODS We conducted a retrospective analysis of the clinical data of CKD patients who received immunosuppressive agents and presented severe infections. The cohort comprised 272 patients, among whom 73 experienced mortalities during their hospitalization. Logistic regression was employed on the training set to identify key feature variables and construct a predictive model for in-hospital mortality among immunocompromised CKD patients following severe infections. To facilitate clinical application, we constructed a nomogram to visually represent the predictive model. RESULTS Our findings indicate that ventilator use, vasoactive drug administration, elevated lactate dehydrogenase (LDH), total bilirubin (TBIL) levels, and persistent lymphopenia(PL) are effective predictors of in-hospital mortality in immunocompromised patients with severe infections. These variables were subsequently incorporated to construct a robust prognostic model. Our model demonstrated excellent discriminative ability (AUC = 0.959, 95% CI, 0.924-0.994), significantly outperforming the Sequential Organ Failure Assessment (SOFA) score (AUC = 0.878, 95% CI, 0.825-0.930) and quick Pitt Bacteremia Score (qPBS) (AUC = 0.897, 95% CI, 0.846-0.947). Calibration curve analysis and the Hosmer-Lemeshow (HL) test corroborate the concordance of our model with empirical observations. Furthermore, decision curve analysis (DCA) underscores the superior clinical utility of our predictive model when compared to the SOFA score and qPBS score. Most importantly, our results showed that PL is the most important predictor of in-hospital mortality in immunocompromised patients following severe infection. CONCLUSION Our findings highlight PL as the most significant predictor of in-hospital mortality in immunocompromised CKD patients. A clinical prediction model incorporating PL as a key variable exhibited robust performance in terms of diagnostic accuracy and clinical utility.
Collapse
Affiliation(s)
- Yang Wang
- Kidney Intensive Care Unit, National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210032, Jiangsu, China
| | - Yuchao Zhou
- Kidney Intensive Care Unit, National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210032, Jiangsu, China
| | - Chunni Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yonghong Wang
- Kidney Intensive Care Unit, National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210032, Jiangsu, China
| | - Lixuan Lou
- Kidney Intensive Care Unit, National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210032, Jiangsu, China
| | - Liang Zhao
- Kidney Intensive Care Unit, National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210032, Jiangsu, China
| | - Shutian Xu
- Kidney Intensive Care Unit, National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210032, Jiangsu, China
| | - Mingzhu Zheng
- Department of Pathogenic Biology and Immunology School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Shijun Li
- Kidney Intensive Care Unit, National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210032, Jiangsu, China.
| |
Collapse
|
19
|
Piao M, Zhang N, Li J, Li C, Xun Z, Zhang L, Wang S, Sun B, Li S, Yang X, Yang X, Wang H, Zhao H. Peripheral blood PD-1 + T lymphocytes as biomarkers in liquid biopsies for solid tumors: Clinical significance and prognostic applications. Int Immunopharmacol 2025; 147:114052. [PMID: 39799737 DOI: 10.1016/j.intimp.2025.114052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
A shift toward a T cell exhaustion phenotype is associated with the upregulation of expression of programmed cell death protein 1 (PD-1) on T lymphocytes in patients with malignant solid tumors. The interaction between PD-1 and programmed death-ligand 1 (PD-L1) inhibits PD-1+ T lymphocyte function, impacting their anti-tumor immune activity. Immune checkpoint inhibitors targeting PD-1/PD-L1 have revolutionized the treatment of various solid malignancies, improving therapeutic efficacy and survival outcomes. Peripheral blood analysis of liquid biopsies is being increasingly used to identify populations most likely to benefit from various treatment modalities. PD-1+ T lymphocytes represent the primary cell population responsive to immunotherapeutic interventions for patients with solid malignancies, as evidenced by the altered PD-1 expression levels and proportion of cells comprising the overall population of immunocytes. PD-1+ T cells in peripheral blood exert an associative and reciprocal predictive effect on homologous intratumoral cells. Distinct subpopulations of PD-1+ T cells exhibit differential ability to proliferate in the periphery and can be characterized by tumor antigen-specific and exhaustion phenotypes. These characteristics have prognostic implications, aiding in the prediction of the efficacy of antitumor therapy and predicting survival outcomes. We highlight distinct subpopulations of PD-1+ T cells, their exhaustion and antigen-specific phenotypes, and their dynamic changes over treatment, providing insights into their utility for tailoring personalized therapies. For the first time, this review discusses the role of peripheral PD-1+ T lymphocytes as prognostic biomarkers in liquid biopsies, focusing on their clinical significance, predictive value during therapy, and future research directions.
Collapse
Affiliation(s)
- Mingjian Piao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Nan Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Jiongyuan Li
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Chengjie Li
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Ziyu Xun
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Longhao Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Shanshan Wang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Boyu Sun
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Shuofeng Li
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Xu Yang
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Xiaobo Yang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China.
| | - Hanping Wang
- Division of Pulmonary and Critical Care Medicine, State Key Laboratory of Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China.
| | - Haitao Zhao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China.
| |
Collapse
|
20
|
Cheng R, Tang X, Zhao Q, Wang Y, Chen W, Wang G, Wang C, Mwangi J, Lu Q, Tadese DA, Zhao X, Ou C, Lai R. Transferrin Disassociates TCR from CD3 Signaling Apparatus to Promote Metastasis. RESEARCH (WASHINGTON, D.C.) 2025; 8:0578. [PMID: 39810853 PMCID: PMC11731779 DOI: 10.34133/research.0578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025]
Abstract
Immune recognition and activation by the peptide-laden major histocompatibility complex-T cell receptor (TCR)-CD3 complex is essential for anti-tumor immunity. Tumors may escape immune surveillance by dissembling the complex. Here, we report that transferrin, which is overexpressed in patients with liver metastasis, disassociates TCR from the CD3 signaling apparatus by targeting the constant domain (CD) of T cell receptor α (TCRα), consequently suppresses T cell activation, and inhibits anti-metastatic and anti-tumor immunity. In mouse models of melanoma and lymphoma, transferrin overexpression exacerbates liver metastasis, while its knockdown, antibody, designed peptides, and CD mutation interfering with transferrin-TCRα interaction inhibit metastasis. This work reveals a novel strategy of tumor evasion of immune surveillance by blocking the coupling between TCRs and the CD3 signaling apparatus to suppress TCR activation. Given the conservation of CD and transferrin up-regulation in metastatic tumors, the strategy might be a common metastatic mechanism. Targeting transferrin-TCRα holds promise for anti-metastatic treatment.
Collapse
Affiliation(s)
- Ruomei Cheng
- Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Xiaopeng Tang
- Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Qiyu Zhao
- Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yuming Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650108, China
| | - Wenlin Chen
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunan, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, China
| | - Gan Wang
- Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Chenxi Wang
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunan, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, China
| | - James Mwangi
- Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Qiumin Lu
- Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Dawit Adisu Tadese
- Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Xudong Zhao
- Division of Abdominal Tumor Multimodality Treatment and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Caiwen Ou
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ren Lai
- Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
21
|
Li H, Wei D, Cao H, Han Y, Li L, Liu Y, Qi J, Wu X, Zhang Z. Bioinformatics-Based Exploration of the Ability of Ginkgetin to Alleviate the Senescence of Cardiomyocytes After Myocardial Infarction and Its Cardioprotective Effects. J Inflamm Res 2025; 18:301-323. [PMID: 39802510 PMCID: PMC11724673 DOI: 10.2147/jir.s491535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/21/2024] [Indexed: 01/16/2025] Open
Abstract
Purpose Myocardial infarction (MI) is a prevalent cardiovascular disorder affecting individuals worldwide. There is a need to identify more effective therapeutic agents to minimize cardiomyocyte damage and enhance cardioprotection. Ginkgo biloba extract is extensively used to treat neurological disorders and peripheral vascular diseases. The aim of this study was to determine the protective effects and mechanisms of ginkgetin on postinfarction cardiomyocytes through bioinformatics and experimental validation. Methods Bioinformatics analysis was performed to predict the underlying biological mechanisms of ginkgetin in the treatment of MI. Next, we performed further validation through experiments. For in vivo studies, we used coronary ligation to construct an MI rat model. In vitro, oxygen and glucose deprivation (OGD) was performed to simulate ischemia in H9c2 cardiomyocytes. Results Bioinformatics analysis revealed that the key targets of ginkgetin for MI treatment were MMP2, MMP9, and VEGFA. Immune infiltration analysis revealed that ginkgetin might be involved in immune regulation by acting on the TCR signaling pathway. The results of the GO enrichment analysis revealed that ginkgetin might protect the heart by acting on the cell membrane to alleviate the senescent apoptosis of cardiomyocytes after MI. In vivo studies revealed that ginkgetin ameliorated myocardial pathological damage and cardiac decompensation after MI. It also alleviated the inflammatory infiltration and senescent apoptosis of cardiomyocytes after MI. Additionally, ginkgetin can downregulate the activation signals of the TCR signaling pathway by dephosphorylating CD3 and CD28. In vitro studies revealed that ginkgetin attenuated elevated OGD-induced cytotoxicity, increased cell viability, and alleviated OGD-induced senescent apoptosis, thus protecting cardiomyocytes. Conclusion Ginkgetin inhibits postinfarction myocardial fibrosis and cardiomyocyte hypertrophy, scavenges oxygen free radicals, decreases postinfarction limbic cell inflammatory infiltration, suppresses activation of the inflammatory-immune pathway, and delays postinfarction peripheral cells from undergoing senescent apoptosis, thus protecting the heart.
Collapse
Affiliation(s)
- Han Li
- The First School of Clinical Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Dongsheng Wei
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Huimin Cao
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Yelei Han
- The First School of Clinical Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Luzhen Li
- The First School of Clinical Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Yuting Liu
- The First School of Clinical Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Jiajie Qi
- The First School of Clinical Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Xinyue Wu
- The First School of Clinical Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Zhe Zhang
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, People’s Republic of China
| |
Collapse
|
22
|
Faliti CE, Van TTP, Anam FA, Cheedarla N, Williams ME, Mishra AK, Usman SY, Woodruff MC, Kraker G, Runnstrom MC, Kyu S, Sanz D, Ahmed H, Ghimire M, Morrison-Porter A, Quehl H, Haddad NS, Chen W, Cheedarla S, Neish AS, Roback JD, Antia R, Hom J, Tipton CM, Lindner JM, Ghosn E, Khurana S, Scharer CD, Khosroshahi A, Lee FEH, Sanz I. Disease-associated B cells and immune endotypes shape adaptive immune responses to SARS-CoV-2 mRNA vaccination in human SLE. Nat Immunol 2025; 26:131-145. [PMID: 39533072 PMCID: PMC11695260 DOI: 10.1038/s41590-024-02010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 mRNA vaccination has reduced effectiveness in certain immunocompromised individuals. However, the cellular mechanisms underlying these defects, as well as the contribution of disease-induced cellular abnormalities, remain largely unexplored. In this study, we conducted a comprehensive serological and cellular analysis of patients with autoimmune systemic lupus erythematosus (SLE) who received the Wuhan-Hu-1 monovalent mRNA coronavirus disease 2019 vaccine. Our findings revealed that patients with SLE exhibited reduced avidity of anti-receptor-binding domain antibodies, leading to decreased neutralization potency and breadth. We also observed a sustained anti-spike response in IgD-CD27- 'double-negative (DN)' DN2/DN3 B cell populations persisting during memory responses and with greater representation in the SLE cohort. Additionally, patients with SLE displayed compromised anti-spike T cell immunity. Notably, low vaccine efficacy strongly correlated with higher values of a newly developed extrafollicular B and T cell score, supporting the importance of distinct B cell endotypes. Finally, we found that anti-BAFF blockade through belimumab treatment was associated with poor vaccine immunogenicity due to inhibition of naive B cell priming and an unexpected impact on circulating T follicular helper cells.
Collapse
Affiliation(s)
- Caterina E Faliti
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Trinh T P Van
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Fabliha A Anam
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Narayanaiah Cheedarla
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - M Elliott Williams
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ashish Kumar Mishra
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD, USA
| | - Sabeena Y Usman
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Matthew C Woodruff
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | | | - Martin C Runnstrom
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Shuya Kyu
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Daniel Sanz
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Hasan Ahmed
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Midushi Ghimire
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Andrea Morrison-Porter
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Hannah Quehl
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Natalie S Haddad
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
- MicroB-plex, Inc., Atlanta, GA, USA
| | - Weirong Chen
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Suneethamma Cheedarla
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Andrew S Neish
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - John D Roback
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Jennifer Hom
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Christopher M Tipton
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | | | - Eliver Ghosn
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Arezou Khosroshahi
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - F Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Ignacio Sanz
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA.
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA.
| |
Collapse
|
23
|
Jin Y, Xing J, Dai C, Jin L, Zhang W, Tao Q, Hou M, Li Z, Yang W, Feng Q, Wang H, Yu Q. NK cell exhaustion in Wilson's disease revealed by single-cell RNA sequencing predicts the prognosis of cholecystitis. eLife 2024; 13:RP98867. [PMID: 39854622 PMCID: PMC11684787 DOI: 10.7554/elife.98867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025] Open
Abstract
Metabolic abnormalities associated with liver disease have a significant impact on the risk and prognosis of cholecystitis. However, the underlying mechanism remains to be elucidated. Here, we investigated this issue using Wilson's disease (WD) as a model, which is a genetic disorder characterized by impaired mitochondrial function and copper metabolism. Our retrospective clinical study found that WD patients have a significantly higher incidence of cholecystitis and a poorer prognosis. The hepatic immune cell landscape using single-cell RNA sequencing showed that the tissue immune microenvironment is altered in WD, mainly a major change in the constitution and function of the innate immune system. Exhaustion of natural killer (NK) cells is the fundamental factor, supported by the upregulated expression of inhibitory receptors and the downregulated expression of cytotoxic molecules, which was verified in clinical samples. Further bioinformatic analysis confirmed a positive correlation between NK cell exhaustion and poor prognosis in cholecystitis and other inflammatory diseases. The study demonstrated dysfunction of liver immune cells triggered by specific metabolic abnormalities in WD, with a focus on the correlation between NK cell exhaustion and poor healing of cholecystitis, providing new insights into the improvement of inflammatory diseases by assessing immune cell function.
Collapse
Affiliation(s)
- Yong Jin
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Jiayu Xing
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Chenyu Dai
- Department of Cadre Cardiology, The First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
| | - Lei Jin
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
- Institute of Chinese Medicine Surgery, Anhui Academy of Chinese MedicineHefeiChina
| | - Wanying Zhang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Qianqian Tao
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
- Institute of Chinese Medicine Surgery, Anhui Academy of Chinese MedicineHefeiChina
| | - Mei Hou
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Ziyi Li
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
- Institute of Chinese Medicine Surgery, Anhui Academy of Chinese MedicineHefeiChina
| | - Wen Yang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical UniversityShanghaiChina
- National Center for Liver Cancer, Second Military Medical UniversityShanghaiChina
| | - Qiyu Feng
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Hongyang Wang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical UniversityShanghaiChina
- National Center for Liver Cancer, Second Military Medical UniversityShanghaiChina
| | - Qingsheng Yu
- Department of Cadre Cardiology, The First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
| |
Collapse
|
24
|
Zhang Y, Yi H, Su S, Ma Z, Wu H. Identification of RNA uridylation subtypes, and the prognostic and therapeutic value of RNA uridylation in systemic lupus erythematosus. Int Immunopharmacol 2024; 143:113277. [PMID: 39362013 DOI: 10.1016/j.intimp.2024.113277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 09/10/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
The uridylation of 3'-RNA-a major process in epitranscriptomics- is catalyzed by terminal uridylyl transferases (TUTases), which are involved in multiple diseases and the immune response. Nonetheless, the role of TUTases in systemic lupus erythematosus (SLE) remains unknown. Here we identified increased level of MTPAP and ZCCHC6 and decreased level of PAPD5 and ZCCHC11 in SLE patients from Gene Expression Omnibus (GEO) GSE50772, GSE65391, and GSE121239. The random forest model was applied to screen 4 TUTase candidates (MTPAP, ZCCHC6, PAPD5, and ZCCHC11) to predict the susceptibility of SLE. A nomogram was constructed based on the 4 selected TUTase regulators. Decision curve analysis indicated that patients could benefit from the nomogram. Moreover, based on the 4 differentially expressed genes, individuals with SLE were divided into three patterns (Cluster A-C) using the consensus clustering method. Cluster B was enriched in adaptive immune cells, with the lowest TCE signature expression, manifesting a higher Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) than that in Cluster A and C. whereas, Cluster C was enriched in innate immune cells, with the highest T-cell exhaustion (TCE) signature expression, manifesting lower SLEDAI than that in Cluster B. Clinically, lupus nephritis (LN) patients manifested increased expression of MTPAP and ZCCHC6 and decreased expression of PAPD5 and ZCCHC11 in PBMCs using Quantitative Polymerase Chain Reaction (q-PCR). Immunohistochemistry (IHC) illustrated higher level of ZCCHC6 in the kidneys of LN patients than that in NC. In summary, TUTases could predict the occurrence of SLE and stratify patients based on their immune characteristics, eventually predicting the disease activity and guiding immune therapy.
Collapse
Affiliation(s)
- Yanli Zhang
- Central Laboratory, The First Hospital of Jilin University, Changchun, China; Echocardiography Department, The First Hospital of Jilin University, Changchun, China
| | - Huanfa Yi
- Central Laboratory, The First Hospital of Jilin University, Changchun, China; Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin 130021, China
| | - Sensen Su
- Central Laboratory, The First Hospital of Jilin University, Changchun, China; Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhanchuan Ma
- Central Laboratory, The First Hospital of Jilin University, Changchun, China; Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin 130021, China
| | - Hao Wu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
25
|
Zhang X, Zhang C, Lu S, Dong J, Tang N, Wang Y, Han W, Pan X, Zhang X, Liu D, Shyh-Chang N, Wang Y, Feng G, Wang H. Miltefosine reinvigorates exhausted T cells by targeting their bioenergetic state. Cell Rep Med 2024; 5:101869. [PMID: 39657666 PMCID: PMC11722131 DOI: 10.1016/j.xcrm.2024.101869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 09/05/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024]
Abstract
T cell exhaustion presents a major challenge for the efficacy of both immune checkpoint inhibitors (ICBs) and chimeric antigen receptor T (CAR-T) cell immunotherapies. To address this issue, we generate hypofunctional CAR-T cells that imitate the exhaustion state. By screening a Food and Drug Administration (FDA)-approved small molecule library using this model, we identify miltefosine as a potent molecule that restores the impaired function of CAR-T cells in a PD-1/PD-L1-independent manner. Impressively, in the terminally exhausted state where PD-1 antibody treatment is ineffective, miltefosine still enhances CAR-T cell activity. Single-cell sequencing analysis reveals that miltefosine treatment significantly increases the population of effector cells. Mechanistically, miltefosine improves impaired glycolysis and oxidative phosphorylation in hypofunctional CAR-T cells. In both allogeneic and syngeneic tumor models, miltefosine effectively enhances the solid tumor clearance ability of CAR-T cells and T cells, demonstrating its potential as an effective immunotherapeutic drug.
Collapse
Affiliation(s)
- Xingying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chenze Zhang
- National Key Laboratory of Efficacy and Mechanism on Chinese Medicine for Metabolic Diseases, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shan Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingxi Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Na Tang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yao Wang
- Chinese People's Liberation Army General Hospital, Beijing 100176, China
| | - Weidong Han
- Chinese People's Liberation Army General Hospital, Beijing 100176, China
| | - Xi Pan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Zhang
- National Key Laboratory of Efficacy and Mechanism on Chinese Medicine for Metabolic Diseases, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Duan Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ng Shyh-Chang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Guihai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Haoyi Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
26
|
Xu X, Chen H, Ren Z, Xu X, Wu W, Yang H, Wang J, Zhang Y, Zhou Q, Li H, Zhang S, Wang H, Xu C. Phase separation of chimeric antigen receptor promotes immunological synapse maturation and persistent cytotoxicity. Immunity 2024; 57:2755-2771.e8. [PMID: 39609126 DOI: 10.1016/j.immuni.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 09/25/2024] [Accepted: 11/06/2024] [Indexed: 11/30/2024]
Abstract
Major challenges of chimeric antigen receptor (CAR)-T cell therapy include poor antigen sensitivity and cell persistence. Here, we report a solution to these issues by exploiting CAR phase separation. We found that incorporation of an engineered T cell receptor CD3ε motif, EB6I, into the conventional 28Z or BBZ CAR induced self-phase separation through cation-π interactions. EB6I CAR formed a mature immunological synapse with the CD2 corolla to transduce efficient antigen and costimulatory signaling, although its tonic signaling remained low. Functionally, EB6I CAR-T cells exhibited improved signaling and cytotoxicity against low-antigen tumor cells and persistent tumor-killing function. In multiple primary and relapsed murine tumor models, EB6I CAR-T cells exerted better antitumor functions than conventional CAR-T cells against blood and solid cancers. This study thus unveils a CAR engineering strategy to improve CAR-T cell immunity by leveraging molecular condensation and signaling integration.
Collapse
Affiliation(s)
- Xinyi Xu
- Key Laboratory of Multi-cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Haotian Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhengxu Ren
- Key Laboratory of Multi-cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaomin Xu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Wei Wu
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Haochen Yang
- Key Laboratory of Multi-cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - JinJiao Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yumeng Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qiuping Zhou
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Hua Li
- Key Laboratory of Multi-cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shaoqing Zhang
- Key Laboratory of Multi-cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Haopeng Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Chenqi Xu
- Key Laboratory of Multi-cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
27
|
Fabri A, Walker LSK. How do autoimmune CD4 + T cells handle exhaustion? Trends Immunol 2024; 45:922-924. [PMID: 39603888 DOI: 10.1016/j.it.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
Chronic antigen exposure is frequently associated with T cell exhaustion. In a recent study, Aljobaily et al. show that pancreatic islet-infiltrating CD4+ T cells in mouse autoimmune diabetes may circumvent exhaustion by preserving TCF1 expression. Continuous recruitment of epigenetically pre-programmed CD62L+ CD4+ T cells seems to sustain the local autoimmune response.
Collapse
Affiliation(s)
- Astrid Fabri
- Institute of Immunity and Transplantation, Pears Building, University College London Division of Infection and Immunity, Royal Free Campus, London NW3 2PP, UK
| | - Lucy S K Walker
- Institute of Immunity and Transplantation, Pears Building, University College London Division of Infection and Immunity, Royal Free Campus, London NW3 2PP, UK.
| |
Collapse
|
28
|
Lawton ML, Inge MM, Blum BC, Smith-Mahoney EL, Bolzan D, Lin W, McConney C, Porter J, Moore J, Youssef A, Tharani Y, Varelas X, Denis GV, Wong WW, Padhorny D, Kozakov D, Siggers T, Wuchty S, Snyder-Cappione J, Emili A. Multiomic profiling of chronically activated CD4+ T cells identifies drivers of exhaustion and metabolic reprogramming. PLoS Biol 2024; 22:e3002943. [PMID: 39689157 DOI: 10.1371/journal.pbio.3002943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/06/2025] [Accepted: 11/15/2024] [Indexed: 12/19/2024] Open
Abstract
Repeated antigen exposure leads to T-cell exhaustion, a transcriptionally and epigenetically distinct cellular state marked by loss of effector functions (e.g., cytotoxicity, cytokine production/release), up-regulation of inhibitory receptors (e.g., PD-1), and reduced proliferative capacity. Molecular pathways underlying T-cell exhaustion have been defined for CD8+ cytotoxic T cells, but which factors drive exhaustion in CD4+ T cells, that are also required for an effective immune response against a tumor or infection, remains unclear. Here, we utilize quantitative proteomic, phosphoproteomic, and metabolomic analyses to characterize the molecular basis of the dysfunctional cell state induced by chronic stimulation of CD4+ memory T cells. We identified a dynamic response encompassing both known and novel up-regulated cell surface receptors, as well as dozens of unexpected transcriptional regulators. Integrated causal network analysis of our combined data predicts the histone acetyltransferase p300 as a driver of aspects of this phenotype following chronic stimulation, which we confirmed via targeted small molecule inhibition. While our integrative analysis also revealed large-scale metabolic reprogramming, our independent investigation confirmed a global remodeling away from glycolysis to a dysfunctional fatty acid oxidation-based metabolism coincident with oxidative stress. Overall, these data provide both insights into the mechanistic basis of CD4+ T-cell exhaustion and serve as a valuable resource for future interventional studies aimed at modulating T-cell dysfunction.
Collapse
Affiliation(s)
- Matthew L Lawton
- Center for Network Systems Biology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Melissa M Inge
- Depart of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Benjamin C Blum
- Center for Network Systems Biology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Erika L Smith-Mahoney
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Dante Bolzan
- Department of Computer Science, University of Miami, Miami, Florida, United States of America
| | - Weiwei Lin
- Center for Network Systems Biology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Christina McConney
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Jacob Porter
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Jarrod Moore
- Center for Network Systems Biology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Ahmed Youssef
- Center for Network Systems Biology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Yashasvi Tharani
- Center for Network Systems Biology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Depart of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Gerald V Denis
- Hematology and Medical Oncology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Wilson W Wong
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Dzmitry Padhorny
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, United States of America
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, United States of America
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Trevor Siggers
- Depart of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Stefan Wuchty
- Department of Computer Science, University of Miami, Miami, Florida, United States of America
- Miami Institute of Data Science and Computing, Miami, Florida, United States of America
| | - Jennifer Snyder-Cappione
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Andrew Emili
- Center for Network Systems Biology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Depart of Biology, Boston University, Boston, Massachusetts, United States of America
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| |
Collapse
|
29
|
Zu H, Chen X. Epigenetics behind CD8 + T cell activation and exhaustion. Genes Immun 2024; 25:525-540. [PMID: 39543311 DOI: 10.1038/s41435-024-00307-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024]
Abstract
CD8+ T cells play a critical role in specific immunity. In recent years, cell therapy has been emerging rapidly. The specific cytotoxic capabilities of these cells enable them to precisely identify and kill cells presenting specific antigens. This has demonstrated promise in the treatment of autoimmune diseases and cancers, with wide-ranging applications and value. However, in some diseases, such as tumors and chronic infections, T cells may adopt an exhausted phenotype, resulting in a loss of cytotoxicity and limiting their further application. Epigenetics plays a significant role in the differentiation and regulation of gene expression in cells. There is extensive evidence indicating that epigenetic remodeling plays an important role in T cell exhaustion. Therefore, further understanding its role in CD8+ T cell function can provide insights into the programmatic regulation of CD8+ T cells from a genetic perspective and overcome these diseases. We attempted to describe the relationship between the activation, function, and exhaustion mechanisms of CD8+ T cells, as well as epigenetics. This understanding makes it possible for us to address the aforementioned issues.
Collapse
Affiliation(s)
- Hao Zu
- Yanjing Medical College, Capital Medical University, 101300, Beijing, China
| | - Xiaoqin Chen
- Yanjing Medical College, Capital Medical University, 101300, Beijing, China.
| |
Collapse
|
30
|
Wang FQ, Dang X, Yang W. Transcriptomic studies unravel the molecular and cellular complexity of systemic lupus erythematosus: A review. Clin Immunol 2024; 268:110367. [PMID: 39293718 DOI: 10.1016/j.clim.2024.110367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/03/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
Transcriptomic analysis plays a vital role in investigating Systemic Lupus Erythematosus (SLE), a complex autoimmune disease characterized by diverse clinical manifestations. This approach has yielded valuable insights into gene expression patterns and molecular regulatory mechanisms involved in SLE pathogenesis. Notably, interferon-stimulated gene (ISG) signatures are significantly upregulated in immune cells, skin, and kidney. Although a correlation with serological parameters and clinical symptoms has been proposed, the association with global disease activities remains controversial. Key findings in the field include an upregulated plasmablast signature, which positively correlates with disease activity; a neutrophil signature associated with lupus nephritis; and a decreased lymphocyte signature, reflecting lymphopenia. Tissue-level studies highlight the critical role of infiltrating immune cells in organ damage. Future research should leverage advanced technologies and integrate multi-omics data to deepen our understanding of SLE's molecular underpinnings, facilitating the development of targeted therapies.
Collapse
Affiliation(s)
- Frank Qingyun Wang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiao Dang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
31
|
Su X, Yu H, Lei Q, Chen X, Tong Y, Zhang Z, Yang W, Guo Y, Lin L. Systemic lupus erythematosus: pathogenesis and targeted therapy. MOLECULAR BIOMEDICINE 2024; 5:54. [PMID: 39472388 PMCID: PMC11522254 DOI: 10.1186/s43556-024-00217-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a multifaceted autoimmune disorder characterized by dysregulated immune responses and autoantibody production, which affects multiple organs and varies in clinical presentation and disease severity. The development of SLE is intricate, encompassing dysregulation within the immune system, a collapse of immunological tolerance, genetic susceptibilities to the disease, and a variety of environmental factors that can act as triggers. This review provides a comprehensive discussion of the pathogenesis and treatment strategies of SLE and focuses on the progress and status of traditional and emerging treatment strategies for SLE. Traditional treatment strategies for SLE have mainly employed non-specific approaches, including cytotoxic and immunosuppressive drugs, antimalarials, glucocorticoids, and NSAIDs. These strategies are effective in mitigating the effects of the disease, but they are not a complete cure and are often accompanied by adverse reactions. Emerging targeted therapeutic drugs, on the other hand, aim to control and treat SLE by targeting B and T cells, inhibiting their activation and function, as well as the abnormal activation of the immune system. A deeper understanding of the pathogenesis of SLE and the exploration of new targeted treatment strategies are essential to advance the treatment of this complex autoimmune disease.
Collapse
Affiliation(s)
- Xu Su
- Medical Research Center, College of Medicine, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Hui Yu
- Department of Urology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610014, China
| | - Qingqiang Lei
- Center of Bone Metabolism and Repair, Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400000, China
| | - Xuerui Chen
- Medical Research Center, College of Medicine, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Yanli Tong
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades, Paris, F-75015, France
| | - Zhongyang Zhang
- Department of Health Technology, The Danish National Research Foundation and Villum Foundation's Center IDUN, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Wenyong Yang
- Medical Research Center, College of Medicine, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
- Department of Neurosurgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610014, China.
| | - Yuanbiao Guo
- Medical Research Center, College of Medicine, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| | - Liangbin Lin
- Medical Research Center, College of Medicine, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
- Obesity and Metabolism Medicine-Engineering Integration Laboratory, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
32
|
Xu Y, Wang X, Hu Z, Huang R, Yang G, Wang R, Yang S, Guo L, Song Q, Wei J, Zhang X. Advances in hematopoietic stem cell transplantation for autoimmune diseases. Heliyon 2024; 10:e39302. [PMID: 39492896 PMCID: PMC11530805 DOI: 10.1016/j.heliyon.2024.e39302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/14/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
Autoimmune diseases (ADs) are a collection of immunological disorders in which the immune system responds to self-antigens by producing autoantibodies or self-sensitized cells. Current treatments are unable to cure ADs, and achieving long-term drug-free remission remains a challenging task. Hematopoietic stem cell transplantation (HSCT) stands out from other therapies by specifically targeting ADs that target various cell subpopulations, demonstrating notable therapeutic benefits and resulting in sustained drug-free remission. Since different ADs have distinct mechanisms of action, the comprehensive understanding of how HSCT works in treating ADs is crucial. This review provides a detailed overview of the latest research and clinical applications of HSCT in treating ADs, offering new insights for clinicians aiming to optimize its use for ADs management.
Collapse
Affiliation(s)
- Yuxi Xu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Sichuan, 637000, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Ziyi Hu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Sichuan, 637000, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Ruihao Huang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Guancui Yang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Rui Wang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Shijie Yang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Liyan Guo
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Qingxiao Song
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Jin Wei
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Sichuan, 637000, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| |
Collapse
|
33
|
Zhong T, Li X, Lei K, Tang R, Deng Q, Love PE, Zhou Z, Zhao B, Li X. TGF-β-mediated crosstalk between TIGIT + Tregs and CD226 +CD8 + T cells in the progression and remission of type 1 diabetes. Nat Commun 2024; 15:8894. [PMID: 39406740 PMCID: PMC11480485 DOI: 10.1038/s41467-024-53264-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune condition characterized by hyperglycemia resulting from the destruction of insulin-producing β-cells that is traditionally deemed irreversible, but partial remission (PR) with temporary reversal of hyperglycemia is sometimes observed. Here we use single-cell RNA sequencing to delineate the immune cell landscape across patients in different T1D stages. Together with cohort validation and functional assays, we observe dynamic changes in TIGIT+CCR7- Tregs and CD226+CCR7-CD8+ cytotoxic T cells during the peri-remission phase. Machine learning algorithms further identify TIGIT+CCR7- Tregs and CD226+CD8+ T cells as biomarkers for β-cell function decline in a predictive model, while cell communication analysis and in vitro assays suggest that TIGIT+CCR7- Tregs may inhibit CD226+CCR7-CD8+ T cells via TGF-β signaling. Lastly, in both cyclophosphamide-induced and streptozotocin (STZ)-induced mouse diabetes models, CD226 inhibition postpones insulitis onset and reduces hyperglycemia severity. Our results thus identify two interrelated immune cell subsets that may serve as biomarkers for monitoring disease progression and targets for therapeutic intervention of T1D.
Collapse
MESH Headings
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Animals
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Antigens, Differentiation, T-Lymphocyte/immunology
- Mice
- Humans
- Transforming Growth Factor beta/metabolism
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/genetics
- Male
- Disease Progression
- Female
- Diabetes Mellitus, Experimental/immunology
- Adult
- Mice, Inbred NOD
- Receptors, CCR7/metabolism
- Receptors, CCR7/genetics
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/immunology
- Adolescent
- Young Adult
- Cell Communication/immunology
Collapse
Affiliation(s)
- Ting Zhong
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xinyu Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Kang Lei
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Rong Tang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qiaolin Deng
- Department of Physiology and Pharmacology, Karolinska Institute, 17177, Solna, Sweden
| | - Paul E Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Bin Zhao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- CSU-Sinocare Research Center for Nutrition and Metabolic Health, Xiangya School of Public Health, Central South University, Changsha, Hunan, China.
- Furong Laboratory, Changsha, Hunan, China.
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
34
|
Saggau C, Bacher P, Esser D, Rasa M, Meise S, Mohr N, Kohlstedt N, Hutloff A, Schacht SS, Dargvainiene J, Martini GR, Stürner KH, Schröder I, Markewitz R, Hartl J, Hastermann M, Duchow A, Schindler P, Becker M, Bautista C, Gottfreund J, Walter J, Polansky JK, Yang M, Naghavian R, Wendorff M, Schuster EM, Dahl A, Petzold A, Reinhardt S, Franke A, Wieczorek M, Henschel L, Berger D, Heine G, Holtsche M, Häußler V, Peters C, Schmidt E, Fillatreau S, Busch DH, Wandinger KP, Schober K, Martin R, Paul F, Leypoldt F, Scheffold A. Autoantigen-specific CD4 + T cells acquire an exhausted phenotype and persist in human antigen-specific autoimmune diseases. Immunity 2024; 57:2416-2432.e8. [PMID: 39226901 DOI: 10.1016/j.immuni.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/14/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024]
Abstract
Pro-inflammatory autoantigen-specific CD4+ T helper (auto-Th) cells are central orchestrators of autoimmune diseases (AIDs). We aimed to characterize these cells in human AIDs with defined autoantigens by combining human leukocyte antigen (HLA)-tetramer-based and activation-based multidimensional ex vivo analyses. In aquaporin4-antibody-positive neuromyelitis optica spectrum disorder (AQP4-NMOSD) patients, auto-Th cells expressed CD154, but proliferative capacity and pro-inflammatory cytokines were strongly reduced. Instead, exhaustion-associated co-inhibitory receptors were expressed together with FOXP3, the canonical regulatory T cell (Treg) transcription factor. Auto-Th cells responded in vitro to checkpoint inhibition and provided potent B cell help. Cells with the same exhaustion-like (ThEx) phenotype were identified in soluble liver antigen (SLA)-antibody-autoimmune hepatitis and BP180-antibody-positive bullous pemphigoid, AIDs of the liver and skin, respectively. While originally described in cancer and chronic infection, our data point to T cell exhaustion as a common mechanism of adaptation to chronic (self-)stimulation across AID types and link exhausted CD4+ T cells to humoral autoimmune responses, with implications for therapeutic targeting.
Collapse
Affiliation(s)
- Carina Saggau
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - Petra Bacher
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany; Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Daniela Esser
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Mahdi Rasa
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany; Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Silja Meise
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - Nicola Mohr
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - Nora Kohlstedt
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - Andreas Hutloff
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany; Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sarah-Sophie Schacht
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - Justina Dargvainiene
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Gabriela Rios Martini
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany; Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Klarissa H Stürner
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Lübeck, Germany; Department of Neurology, University Hospital Schleswig-Holstein Kiel, Kiel, Germany
| | - Ina Schröder
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Robert Markewitz
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Johannes Hartl
- Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Maria Hastermann
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Ankelien Duchow
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Patrick Schindler
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Mareike Becker
- Institute of Experimental Dermatology, Lübeck, Germany; Department of Pediatric Dermatology, Catholic Children's Hospital Wilhelmstift, Hamburg, Germany
| | - Carolin Bautista
- Department of Dermatology, Allergy and Venerology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Judith Gottfreund
- Department of Genetics and Epigenetics, Saarland University, Saarbrücken, Germany
| | - Jörn Walter
- Department of Genetics and Epigenetics, Saarland University, Saarbrücken, Germany
| | - Julia K Polansky
- Berlin Institute of Health (BIH) at Charité Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Augustenburger Platz 1, 13353 Berlin, Germany; German Rheumatism Research Centre, a Leibniz Institute (DRFZ), Charité Platz 1, 10117 Berlin, Germany
| | - Mingxing Yang
- Berlin Institute of Health (BIH) at Charité Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Reza Naghavian
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, Zurich, Switzerland; Cellerys AG, Wagistrasse 21, 8952 Schlieren, Switzerland
| | - Mareike Wendorff
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany; Leibniz Institute for Science and Mathematics Education, Kiel, Germany
| | - Ev-Marie Schuster
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstr. 3/5, 91054 Erlangen, Germany
| | - Andreas Dahl
- DRESDEN-concept Genome Center, Technology Platform at the Center for Molecular and Cellular Bioengineering (CMCB), Technical University of Dresden, Dresden, Germany
| | - Andreas Petzold
- DRESDEN-concept Genome Center, Technology Platform at the Center for Molecular and Cellular Bioengineering (CMCB), Technical University of Dresden, Dresden, Germany
| | - Susanne Reinhardt
- DRESDEN-concept Genome Center, Technology Platform at the Center for Molecular and Cellular Bioengineering (CMCB), Technical University of Dresden, Dresden, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Marek Wieczorek
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
| | - Lea Henschel
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
| | - Daniel Berger
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
| | - Guido Heine
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Maike Holtsche
- Institute of Experimental Dermatology, University of Lübeck, Department of Dermatology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Vivien Häußler
- Clinic and Polyclinic for Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christian Peters
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - Enno Schmidt
- Institute of Experimental Dermatology, University of Lübeck, Department of Dermatology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Simon Fillatreau
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, 75015 Paris, France; Université Paris Cité, Faculté de Médecine, Paris, France; AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Munich, Germany
| | - Klaus-Peter Wandinger
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Kilian Schober
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstr. 3/5, 91054 Erlangen, Germany; Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054 Erlangen, Germany
| | - Roland Martin
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, Zurich, Switzerland; Cellerys AG, Wagistrasse 21, 8952 Schlieren, Switzerland; Institute of Experimental Immunology, University of Zurich, Wintherturerstrasse 191, 8057 Zurich, Switzerland; Department of Clinical Neuroscience, Karolinska Institute, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Frank Leypoldt
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Lübeck, Germany; Department of Neurology, University Hospital Schleswig-Holstein Kiel, Kiel, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany.
| |
Collapse
|
35
|
Jo Y, Sim HI, Yun B, Park Y, Jin HS. Revisiting T-cell adhesion molecules as potential targets for cancer immunotherapy: CD226 and CD2. Exp Mol Med 2024; 56:2113-2126. [PMID: 39349829 PMCID: PMC11541569 DOI: 10.1038/s12276-024-01317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 10/03/2024] Open
Abstract
Cancer immunotherapy aims to initiate or amplify immune responses that eliminate cancer cells and create immune memory to prevent relapse. Immune checkpoint inhibitors (ICIs), which target coinhibitory receptors on immune effector cells, such as CTLA-4 and PD-(L)1, have made significant strides in cancer treatment. However, they still face challenges in achieving widespread and durable responses. The effectiveness of anticancer immunity, which is determined by the interplay of coinhibitory and costimulatory signals in tumor-infiltrating immune cells, highlights the potential of costimulatory receptors as key targets for immunotherapy. This review explores our current understanding of the functions of CD2 and CD226, placing a special emphasis on their potential as novel agonist targets for cancer immunotherapy. CD2 and CD226, which are present mainly on T and NK cells, serve important functions in cell adhesion and recognition. These molecules are now recognized for their costimulatory benefits, particularly in the context of overcoming T-cell exhaustion and boosting antitumor responses. The importance of CD226, especially in anti-TIGIT therapy, along with the CD2‒CD58 axis in overcoming resistance to ICI or chimeric antigen receptor (CAR) T-cell therapies provides valuable insights into advancing beyond the current barriers of cancer immunotherapy, underscoring their promise as targets for novel agonist therapy.
Collapse
Affiliation(s)
- Yunju Jo
- Chemical and Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Hye-In Sim
- Chemical and Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Bohwan Yun
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yoon Park
- Chemical and Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea.
| | - Hyung-Seung Jin
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
36
|
Schroderus AM, Pitkänen V, Ekman I, Stevens D, Rytkönen-Nissinen M, Rintamäki R, Pihlajamäki J, Knip M, Veijola R, Toppari J, Ilonen J, Lempainen J, Kinnunen T. Temporal Alterations in CD8+ T Cells During the Progression From Stage 1 to Stage 3 Type 1 Diabetes. Diabetes 2024; 73:1705-1715. [PMID: 38967999 DOI: 10.2337/db24-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/06/2024] [Indexed: 07/07/2024]
Abstract
CD8+ T cells are perceived to play a major role in the pathogenesis of type 1 diabetes (T1D). In this study, we characterized the function and phenotype of circulating CD8+ memory T cells in samples from individuals at different stages of T1D progression using flow cytometry and single-cell multiomics. We observed two distinct CD8+ T-cell signatures during progression of T1D within the highly differentiated CD27-CD8+ memory T-cell subset. A proinflammatory signature, with an increased frequency of IFN-γ+TNF-α+ CD27-CD8+ memory T cells, was observed in children with newly diagnosed T1D (stage 3) and correlated with the level of dysglycemia at diagnosis. In contrast, a coinhibitory signature, with an increased frequency of KLRG1+TIGIT+ CD27-CD8+ memory T cells, was observed in islet autoantibody-positive children who later progressed to T1D (stage 1). No alterations within CD27-CD8+ memory T cells were observed in adults with established T1D or in children during the initial seroconversion to islet autoantibody positivity. Single-cell multiomics analyses suggested that CD27-CD8+ T cells expressing the IFNG+TNF+ proinflammatory signature may be distinct from those expressing the KLRG1+TIGIT+ coinhibitory signature at the single-cell level. Collectively, our findings suggest that distinct blood CD8+ T-cell signatures could be employed as potential biomarkers of T1D progression. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Anna-Mari Schroderus
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Viola Pitkänen
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Ilse Ekman
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Daniella Stevens
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Marja Rytkönen-Nissinen
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Reeta Rintamäki
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Jussi Pihlajamäki
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Mikael Knip
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Riitta Veijola
- Research Unit of Clinical Medicine, Department of Pediatrics, Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jorma Toppari
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre for Integrative Physiology and Pharmacology, InFLAMES Research Flagship, Institute of Biomedicine, University of Turku, Turku, Finland
- Centre for Population Health Research, InFLAMES Research Flagship, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Johanna Lempainen
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Tuure Kinnunen
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- ISLAB Laboratory Centre, Kuopio, Finland
| |
Collapse
|
37
|
Capera J, Dustin ML. Microbial mimics supersize the pathogenic self-response. J Clin Invest 2024; 134:e184046. [PMID: 39286975 PMCID: PMC11405029 DOI: 10.1172/jci184046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Microbial mimicry, the process in which a microbial antigen elicits an immune response and breaks tolerance to a structurally related self-antigen, has long been proposed as a mechanism in autoimmunity. In this issue of the JCI, Dolton et al. extend this paradigm by demonstrating that a naturally processed peptide from Klebsiella oxytoca acts as a superagonist for autoreactive T cells in type 1 diabetes (T1D). Reframing microbial mimics as superagonists that are thousands of times better at binding disease-associated autoreactive T cell receptors than self-peptides serves to narrow the search space for relevant sequences in the vast microbial proteome. Moreover, the identified superagonists have implications for the intervention and personalized monitoring of T1D that may carry over to other autoimmune diseases with microbial mimicry.
Collapse
|
38
|
Nicholls K, Kirk PDW, Wallace C. Bayesian clustering with uncertain data. PLoS Comput Biol 2024; 20:e1012301. [PMID: 39226325 PMCID: PMC11398681 DOI: 10.1371/journal.pcbi.1012301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 09/13/2024] [Accepted: 07/08/2024] [Indexed: 09/05/2024] Open
Abstract
Clustering is widely used in bioinformatics and many other fields, with applications from exploratory analysis to prediction. Many types of data have associated uncertainty or measurement error, but this is rarely used to inform the clustering. We present Dirichlet Process Mixtures with Uncertainty (DPMUnc), an extension of a Bayesian nonparametric clustering algorithm which makes use of the uncertainty associated with data points. We show that DPMUnc out-performs existing methods on simulated data. We cluster immune-mediated diseases (IMD) using GWAS summary statistics, which have uncertainty linked with the sample size of the study. DPMUnc separates autoimmune from autoinflammatory diseases and isolates other subgroups such as adult-onset arthritis. We additionally consider how DPMUnc can be used to cluster gene expression datasets that have been summarised using gene signatures. We first introduce a novel procedure for generating a summary of a gene signature on a dataset different to the one where it was discovered, which incorporates a measure of the variability in expression across signature genes within each individual. We summarise three public gene expression datasets containing patients with a range of IMD, using three relevant gene signatures. We find association between disease and the clusters returned by DPMUnc, with clustering structure replicated across the datasets. The significance of this work is two-fold. Firstly, we demonstrate that when data has associated uncertainty, this uncertainty should be used to inform clustering and we present a method which does this, DPMUnc. Secondly, we present a procedure for using gene signatures in datasets other than where they were originally defined. We show the value of this procedure by summarising gene expression data from patients with immune-mediated diseases using relevant gene signatures, and clustering these patients using DPMUnc.
Collapse
Affiliation(s)
- Kath Nicholls
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
- MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
| | - Paul D W Kirk
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
- MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Centre, Ovarian Cancer Programme, University of Cambridge, Cambridge, United Kingdom
| | - Chris Wallace
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
- MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
39
|
Papadimitriou TI, Lemmers JMJ, van Caam APM, Vos JL, Vitters EL, Stinissen L, van Leuven SI, Koenders MI, van der Kraan PM, Koenen HJPM, Smeets RL, Nijveldt R, Vonk MC, Thurlings RM. Systemic sclerosis-associated pulmonary arterial hypertension is characterized by a distinct peripheral T helper cell profile. Rheumatology (Oxford) 2024; 63:2525-2534. [PMID: 38552313 PMCID: PMC11371376 DOI: 10.1093/rheumatology/keae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/17/2024] [Indexed: 09/05/2024] Open
Abstract
OBJECTIVES Systemic sclerosis (SSc) is characterized by multiple clinical manifestations. Vasculopathy is a main disease hallmark and ranges in severity from an exacerbated Raynaud phenomenon to pulmonary arterial hypertension (PAH). The potential involvement of the immune system in SSc-associated vascular abnormalities is not clear. Here, we set out to study SSc-related immune parameters and determine whether and which peripheral T cell subsets associate with vascular severity in SSc patients. METHODS Peripheral blood and clinical data were collected from 30 SSc patients, 5 patients with idiopathic PAH and 15 age and sex-matched healthy donors (HD). In this cross-sectional cohort, SSc patients with PAH (n = 15) were matched for their age, sex and medication with SSc patients with no signs of PAH (n = 15). Lymphocyte subsets were quantified by multi-colour flow cytometry. RESULTS SSc patients exhibited elevated percentages of T peripheral helper cells (Tph), CD4+GZMB+ T cells and decreased levels of Th1 cells compared with HD. Increased presence of both CD4+ and CD8+ exhausted-like (CD28-) T cells, characterized by raised cytokine and cytotoxic signature, was also observed in SSc compared with HD blood. Furthermore, IL-4 expressing CD4+CD8+ T cells were significantly increased in SSc peripheral blood. Interestingly, the presence of PAH in SSc was accompanied by a distinct T helper profile, characterized by raised percentages of Th17 and Tph cells. CONCLUSION SSc patients with severe vasculopathy (presence of PAH) exhibited a distinct T cell profile, suggesting a potential role of auto-immune inflammation in SSc vascular complications.
Collapse
Affiliation(s)
- Theodoros Ioannis Papadimitriou
- Department of Rheumatology, Radboudumc, Nijmegen, The Netherlands
- Department of Laboratory Medicine – Medical Immunology, Radboudumc, Nijmegen, The Netherlands
| | | | | | | | - Elly L Vitters
- Department of Rheumatology, Radboudumc, Nijmegen, The Netherlands
| | - Lizan Stinissen
- Department of Rheumatology, Radboudumc, Nijmegen, The Netherlands
| | | | | | | | - Hans J P M Koenen
- Department of Laboratory Medicine – Medical Immunology, Radboudumc, Nijmegen, The Netherlands
| | - Ruben L Smeets
- Department of Laboratory Medicine – Medical Immunology, Radboudumc, Nijmegen, The Netherlands
- Radboudumc Laboratory for Diagnostics, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Robin Nijveldt
- Department of Cardiology, Radboudumc, Nijmegen, The Netherlands
| | - Madelon C Vonk
- Department of Rheumatology, Radboudumc, Nijmegen, The Netherlands
| | | |
Collapse
|
40
|
Layug PJ, Vats H, Kannan K, Arsenio J. Sex differences in CD8 + T cell responses during adaptive immunity. WIREs Mech Dis 2024; 16:e1645. [PMID: 38581141 DOI: 10.1002/wsbm.1645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/08/2024] [Accepted: 03/14/2024] [Indexed: 04/08/2024]
Abstract
Biological sex is an important variable that influences the immune system's susceptibility to infectious and non-infectious diseases and their outcomes. Sex dimorphic features in innate and adaptive immune cells and their activities may help to explain sex differences in immune responses. T lymphocytes in the adaptive immune system are essential to providing protection against infectious and chronic inflammatory diseases. In this review, T cell responses are discussed with focus on the current knowledge of biological sex differences in CD8+ T cell mediated adaptive immune responses in infectious and chronic inflammatory diseases. Future directions aimed at investigating the molecular and cellular mechanisms underlying sex differences in diverse T cell responses will continue to underscore the significance of understanding sex differences in protective immunity at the cellular level, to induce appropriate T cell-based immune responses in infection, autoimmunity, and cancer. This article is categorized under: Immune System Diseases > Molecular and Cellular Physiology Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Paul Jerard Layug
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, Manitoba, Canada
| | - Harman Vats
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, Manitoba, Canada
- Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kamali Kannan
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, Manitoba, Canada
- Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Janilyn Arsenio
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, Manitoba, Canada
- Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
41
|
Jiang Z, Cai H, Lin Y, Lin R, Chen L, Huang H. T-cell exhaustion-related genes in Graves' disease: a comprehensive genome mapping analysis. Front Endocrinol (Lausanne) 2024; 15:1364782. [PMID: 39239096 PMCID: PMC11374593 DOI: 10.3389/fendo.2024.1364782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/25/2024] [Indexed: 09/07/2024] Open
Abstract
Background T-cell exhaustion (Tex) can be beneficial in autoimmune diseases, but its role in Graves' disease (GD), an autoimmune disorder of the thyroid, remains unknown. This study investigated Tex-related gene expression in GD patients to discern the potential contributions of these genes to GD pathogenesis and immune regulation. Methods Through gene landscape analysis, a protein-protein interaction network of 40 Tex-related genes was constructed. mRNA expression levels were compared between GD patients and healthy control (HCs). Unsupervised clustering categorized GD cases into subtypes, revealing distinctions in gene expression, immune cell infiltration, and immune responses. Weighted gene co-expression network analysis and differential gene expression profiling identified potential therapeutic targets. RT-qPCR validation of candidate gene expression was performed using blood samples from 112 GD patients. Correlations between Tex-related gene expression and clinical indicators were analyzed. Results Extensive Tex-related gene interactions were observed, with six genes displaying aberrant expression in GD patients. This was associated with atypical immune cell infiltration and regulation. Cluster analysis delineated two GD subtypes, revealing notable variations in gene expression and immune responses. Screening efforts identified diverse drug candidates for GD treatment. The Tex-related gene CBL was identified for further validation and showed reduced mRNA expression in GD patients, especially in cases of relapse. CBL mRNA expression was significantly lower in patients with moderate-to-severe thyroid enlargement than in those without such enlargement. Additionally, CBL mRNA expression was negatively correlated with the disease-specific indicator thyrotropin receptor antibodies. Conclusion Tex-related genes modulate GD pathogenesis, and their grouping aids subtype differentiation and exploration of therapeutic targets. CBL represents a potential marker for GD recurrence.
Collapse
Affiliation(s)
- Zhengrong Jiang
- Department of Endocrinology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Huiyao Cai
- Department of Endocrinology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Yizhao Lin
- Department of Internal Medicine, Gutian County Hospital of Ningde City, Ningde, Fujian, China
| | - Ruhai Lin
- Department of Endocrinology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Lijun Chen
- Department of Endocrinology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Huibin Huang
- Department of Endocrinology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
42
|
Tang Y, Chu C, Bu S, Sun Q, Liu A, Xie J, Qiao S, Huang L, Wang H. Integrated multi-omics profiling landscape of organising pneumonia. Clin Transl Med 2024; 14:e1782. [PMID: 39083563 PMCID: PMC11290555 DOI: 10.1002/ctm2.1782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Organising pneumonia (OP) is one of the most common and lethal diseases in the category of interstitial pneumonia, along with lung cancer. Reprogramming of lipid metabolism is a newly recognized hallmark of many diseases including cancer, cardiovascular disorders, as well as liver fibrosis and sclerosis. Increased levels of ceramides composed of sphingosine and fatty acid, are implicated in the development of both acute and chronic lung diseases. However, their pathophysiological significance in OP is unclear. The aim of this study was to investigate the role of lipid metabolism reprogramming in OP, focusing on inflammation and fibrosis. METHODS Comprehensive multi-omics profiling approaches, including single-cell RNA sequencing, Visium CytAssist spatial transcriptomics, proteomics, metabolomics and mass spectrometry, were employed to analyze the tissues. OP mice model was utilized and molecular mechanisms were investigated in macrophages. RESULTS The results revealed a significant association between OP and lipid metabolism reprogramming, characterized by an abnormal expression of several genes related to lipid metabolism, including CD36, SCD1, and CES1 mainly in macrophages. CD36 deficiency in alveolar macrophages, led to an increased expression of C16/24 ceramides that accumulated in mitochondria, resulting in mitophagy or mitochondrial dysfunction. The number of alveolar macrophages in OP was significantly reduced, which was probably due to the ferroptosis signaling pathway involving GSH/SLC3A2/GPX4 through CD36 downregulation in OP. Furthermore, macrophage secretion of DPP7 and FABP4 influenced epithelial cell fibrosis. CONCLUSIONS CD36 inhibited the ferroptosis pathway involving SLC3A2/GPX4 in alveolar macrophages of OP tissue by regulating lipid metabolism, thus representing a new anti-ferroptosis and anti-fibrosis effect of CD36 mediated, at least in part, by ceramides. HIGHLIGHTS Our findings reveal a significant association between organising pneumonia and lipid metabolism reprogramming and will make a substantial contribution to the understanding of the mechanism of organising pneumonia in patients.
Collapse
Affiliation(s)
- Ying Tang
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
| | - Cuilin Chu
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
| | - Siyuan Bu
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
- Shaanxi University of Chinese MedicineXianyangChina
| | - Qin Sun
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
| | - Airan Liu
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
| | - Jianfeng Xie
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
| | - Sen Qiao
- Assisted Reproduction CenterNorthwest Women's and Children's HospitalXi'anChina
| | - Lingyan Huang
- Department of PathologicalGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| | - Hongmei Wang
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
- Shaanxi University of Chinese MedicineXianyangChina
| |
Collapse
|
43
|
Zhang R, Trotter PB, McCaffrey J, Fitzroy R, Trivioli G, Stewart BJ, Ferdinand JR, Loudon KW, Riding A, West J, Ferro A, Clatworthy MR. Assessment of biological organ age using molecular pathology in pre-transplant kidney biopsies. Kidney Int 2024; 106:302-316. [PMID: 38692408 DOI: 10.1016/j.kint.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 01/21/2024] [Accepted: 03/18/2024] [Indexed: 05/03/2024]
Abstract
Organ shortage is a major challenge in kidney transplantation but the use of older donors, often with co-morbidities, is hampered by inconsistent outcomes. Methods of accurately stratifying marginal donor organs by clinical and histological assessment are lacking. To better understand organ variability, we profiled the transcriptomes of 271 kidneys from deceased donors at retrieval. Following correction for biopsy composition, we assessed molecular pathways that associated with delayed, and sub-optimal one-year graft function. Analysis of cortical biopsies identified an adaptive immune gene-rich module that significantly associated with increasing age and worse outcomes. Cellular deconvolution using human kidney reference single cell transcriptomes confirmed an increase in kidney-specific B and T cell signatures, as well as kidney macrophage, myofibroblast and fibroblast gene sets in this module. Surprisingly, innate immune pathway and neutrophil gene signature enrichment was associated with better outcomes. Thus, our work uncovers cellular molecular features of pathological organ ageing, identifiable at kidney retrieval, with translational potential.
Collapse
Affiliation(s)
- Roy Zhang
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Patrick B Trotter
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - James McCaffrey
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK; Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Rory Fitzroy
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Giorgio Trivioli
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Benjamin J Stewart
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK; Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - John R Ferdinand
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Kevin W Loudon
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Alexandra Riding
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Jonathan West
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Ashley Ferro
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Menna R Clatworthy
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK; Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK.
| |
Collapse
|
44
|
Zhang S, Li X, Chen H, Gao X, Cai Z, Zeng H. Assay for interferon gamma release as a novel marker in pediatric patients with systemic lupus erythematosus. Pediatr Rheumatol Online J 2024; 22:70. [PMID: 39090639 PMCID: PMC11292859 DOI: 10.1186/s12969-024-01008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND The interferon-gamma (IFN-γ) release assay (IGRA) is an important laboratory diagnosis for latent Mycobacterium tuberculosis (TB) infection. The TB-IGRA measures the release of IFN-γ from peripheral blood cells, who are exposed to TB antigen (Ag), mitogen (MT), or negative/nil control (NL) in vitro. While, an exceptional higher TB Ag-NL level will reflect an elevation of peripheral lymphocytes released IFN-γ in a same condition. Therefore, we found that the elevated levels of TB Ag-NL could become a new biomarker for the diagnosis and treatment of pediatric systemic lupus erythematosus (SLE) patients. METHODS We have analyzed the clinical data of 776 children who are underwent TB-IGRA testing in the Department of Allergy and Rheumatology of Guangzhou Women and Children's Medical Center from 2018 to 2020. To investigate the association between TB Ag-NL and SLE, we have analyzed the clinical data of 47 SLE patients and TB Ag-NL testing results, and then evaluated the association between TB Ag-NL and SLE disease activity. RESULTS The TB Ag-NL levels were significantly higher in patients with active SLE than those in inactive SLE (p = 0.0002). The TB Ag-NL levels were positively correlated with the SLE disease activity index (SLEDAI) and laboratory diagnosis parameters. The mean value of TB Ag-NL in SLE patients (0.04191 ± 0.07955, IU/mL) were significantly higher than those in patients with juvenile dermatomyositis (JDM) (0.0158 ± 0.0337, IU/mL, p = 0.036), juvenile idiopathic arthritis (JIA) (0.0162 ± 0.0388, IU/mL, p = 0.001), and healthy controls (HC) (0.0001 ± 0.0027, IU/mL, p = 0.0003). Therefore, the elevated TB Ag-NL levels could serve as a potential diagnostic biomarker of SLE, especially for the active SLE. CONCLUSION The detection of IFN-γ release levels by the TB-IGRA may be useful to assess SLE disease activity in pediatric patients with active SLE.
Collapse
Affiliation(s)
- Song Zhang
- Department of Allergy, Immunology and Rheumatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University,Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Xue Li
- Department of Rheumatology and Immunology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510623, China
| | - Huishan Chen
- Department of Allergy, Immunology and Rheumatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University,Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Xianfei Gao
- Department of Allergy, Immunology and Rheumatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University,Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Zhe Cai
- Department of Allergy, Immunology and Rheumatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University,Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China.
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Huasong Zeng
- Department of Allergy, Immunology and Rheumatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University,Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China.
| |
Collapse
|
45
|
Rejler M, Füchtbauer JD, Davíðsdóttir LG, Fejrskov A, Söderholm JD, Christensen R, Andersen V, Repsilber D, Kjeldsen J, Høivik M, Halfvarson J. Nordic inflammatory bowel disease treatment strategy trial: protocol for the NORDTREAT randomised controlled biomarker-strategy trial. BMJ Open 2024; 14:e083163. [PMID: 39089718 PMCID: PMC11293405 DOI: 10.1136/bmjopen-2023-083163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/11/2024] [Indexed: 08/04/2024] Open
Abstract
INTRODUCTION The absence of reliable prognostic markers poses a challenge to the management of inflammatory bowel disease (IBD). Patients with aggressive disease may not receive sufficient treatment with conventional 'step-up' therapy, whereas a top-down approach may expose patients with indolent disease to unnecessary treatment-related toxicity. The objective of the Nordic IBD treatment strategy trial (NORDTREAT) is to assess the feasibility of personalised therapy by stratifying patients according to a prognostic serum protein signature at diagnosis. METHODS AND ANALYSIS NORDTREAT is a multicentre, biomarker-strategy design, open-label controlled trial. After screening consent, eligible patients are randomised (1:1) into one of two groups: a group with access to the protein signature and a group without access. In the access to protein signature group, patients displaying a protein signature suggestive of an increased risk of an aggressive disease course will be treated in line with a top-down treatment algorithm (anti-tumour necrosis factor agent with/without an immunomodulator). In contrast, those with a protein signature indicative of indolent disease will be excluded from the trial. Patients not in the access group receive treatment based on clinical management. This traditional management involves a stepwise escalation of treatment as determined by the investigator after failure of first-line treatment. After 52 weeks, outcomes are assessed in the subgroup of patients with a protein profile indicating a potentially severe disease trajectory. The primary endpoint is a composite of the proportion of patients with corticosteroid-free clinical and endoscopic remission at week 52. Surgical intervention due to IBD during follow-up will be defined as treatment failure. ETHICS AND DISSEMINATION Ethical approval has been obtained, and recruitment is underway at sites in four participating Nordic countries (Denmark, Iceland, Norway and Sweden). Following trial completion and data analysis, the trial results will be submitted for publication in peer-reviewed journals and presented at international conferences. TRIAL REGISTRATION NUMBER NCT05180175; Pre-results. EudraCT number: 2019-002942-19.
Collapse
Affiliation(s)
- Martin Rejler
- School of Health and Medical Sciences, Örebro University, Örebro, Sweden
- Futurum Academy of Health and Care, Jönköping, Sweden
- Jönköping Academy for Improvement in Health and Welfare, Jönköping University, Jönköping, Sweden
| | - Johannes David Füchtbauer
- Internal Medicine & Emergency Department, Odense University Hospital, Svendborg, Denmark
- Research Unit of Medical Gastroenterology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Medical Gastroenterology, Odense University Hospital, Odense, Denmark
| | - Lóa G Davíðsdóttir
- Department of Gastroenterology, Landspitali National University Hospital of Iceland, Reykjavik, Iceland
| | - Anja Fejrskov
- Department of Medical Gastroenterology, Odense University Hospital, Odense, Denmark
- Molecular Diagnostics and Clinical Research Unit, Institute of Regional Health Research, University Hospital of Southern Denmark, Hospital Sønderjylland, Aabenraa, Denmark
- Section for Biostatistics and Evidence-Based Research, the Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Johan D Söderholm
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Robin Christensen
- Section for Biostatistics and Evidence-Based Research, the Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Research Unit of Rheumatology, Department of Clinical Research, University of Southern Denmark, Odense University Hospital, Odense, Denmark
| | - Vibeke Andersen
- Molecular Diagnostics and Clinical Research Unit, Institute of Regional Health Research, University Hospital of Southern Denmark, Hospital Sønderjylland, Aabenraa, Denmark
- Institute of Regional Research, University of Southern Denmark, Odense, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- OPEN - Open Patient Data Explorative Network, University of Southern Denmark, Odense, Denmark
| | - Dirk Repsilber
- School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| | - Jens Kjeldsen
- Research Unit of Medical Gastroenterology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Medical Gastroenterology, Odense University Hospital, Odense, Denmark
| | - Marte Høivik
- Department of Gastroenterology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jonas Halfvarson
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
46
|
Wang Y, Ma L, Chen Y, Yun W, Yu J, Meng X. Prognostic effect of TCF1+ CD8+ T cell and TOX+ CD8+ T cell infiltration in lung adenocarcinoma. Cancer Sci 2024; 115:2184-2195. [PMID: 38590234 PMCID: PMC11247562 DOI: 10.1111/cas.16177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
Recent studies have highlighted the pivotal roles of T cell transcription factors TCF-1 and TOX in modulating the immune response in cancer, with TCF-1 maintaining CD8+ T cell stemness and TOX promoting T cell exhaustion. The prognostic significance of these factors in lung adenocarcinoma (LUAD) remains a critical area of investigation. The retrospective study included 191 patients with LUAD who underwent surgery, of whom 83% were in stages II and III. These patients were divided into exploratory (n = 135) and validation (n = 56) groups based on the time of diagnosis. Multiplex fluorescence immunohistochemistry was used to examine the infiltration levels of CD8+ T cells, TCF1+ CD8+ T cells, and TOX+ CD8+ T cells. The percentage of CD8+ T cells in tumor was markedly lower than that in stroma (p < 0.05). In tumor-draining lymph nodes (TDLNs) invaded by tumor, the proportion of stem-like TCF1+ CD8+ T cells was significantly decreased (p < 0.01). Importantly, higher infiltration levels of CD8+ T cells and TCF1+ CD8+ T cells were associated with improved disease-free survival (DFS) (p = 0.009 and p = 0.006, respectively) and overall survival (OS) (p = 0.018 and p = 0.010, respectively). This study underscores the potential of TCF1+ CD8+ T cells as prognostic biomarkers in LUAD, providing insights into the tumor immune microenvironment and guiding future therapeutic strategies.
Collapse
Affiliation(s)
- Yao Wang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
- Research Unit of Radiation OncologyChinese Academy of Medical SciencesJinanChina
| | - Lin Ma
- Research Unit of Radiation OncologyChinese Academy of Medical SciencesJinanChina
- Department of OncologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yu Chen
- Research Unit of Radiation OncologyChinese Academy of Medical SciencesJinanChina
- Cheeloo College of MedicineShandong UniversityJinanChina
| | - Wenhua Yun
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
- Research Unit of Radiation OncologyChinese Academy of Medical SciencesJinanChina
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
- Research Unit of Radiation OncologyChinese Academy of Medical SciencesJinanChina
| | - Xiangjiao Meng
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
- Research Unit of Radiation OncologyChinese Academy of Medical SciencesJinanChina
| |
Collapse
|
47
|
Żyłka K, Kubicki T, Gil L, Dytfeld D. T-cell exhaustion in multiple myeloma. Expert Rev Hematol 2024; 17:295-312. [PMID: 38919090 DOI: 10.1080/17474086.2024.2370552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
INTRODUCTION Chimeric Antigen Receptor (CAR) T-cells and Bispecific Antibodies (BsAb) are the leading platforms for redirecting the immune system against cells expressing the specific antigen, revolutionizing the treatment of hematological malignancies, including multiple myeloma (MM). In MM, drug-resistant relapses are the main therapy-limiting factor and the leading cause of why the disease is still considered incurable. T-cell-engaging therapies hold promise in improving the treatment of MM. However, the effectiveness of these treatments may be hindered by T-cell fitness. T-cell exhaustion is a condition of a gradual decline in effector function, reduced cytokine secretion, and increased expression of inhibitory receptors due to chronic antigen stimulation. AREAS COVERED This review examines findings about T-cell exhaustion in MM in the context of T-cell redirecting BsAbs and CAR-T treatment. EXPERT OPINION The fitness of T-cells has become an important factor in the development of T-cell redirecting therapies. The way T-cell exhaustion relates to these therapies could affect the further development of CAR and BsAbs technologies, as well as the strategies used for clinical use. Therefore, this review aims to explore the current understanding of T-cell exhaustion in MM and its relationship to these therapies.
Collapse
Affiliation(s)
- Krzysztof Żyłka
- The Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznań, Poland
| | - Tadeusz Kubicki
- The Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznań, Poland
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| | - Lidia Gil
- The Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznań, Poland
| | - Dominik Dytfeld
- The Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
48
|
Ramírez-Valle F, Maranville JC, Roy S, Plenge RM. Sequential immunotherapy: towards cures for autoimmunity. Nat Rev Drug Discov 2024; 23:501-524. [PMID: 38839912 DOI: 10.1038/s41573-024-00959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 06/07/2024]
Abstract
Despite major progress in the treatment of autoimmune diseases in the past two decades, most therapies do not cure disease and can be associated with increased risk of infection through broad suppression of the immune system. However, advances in understanding the causes of autoimmune disease and clinical data from novel therapeutic modalities such as chimeric antigen receptor T cell therapies provide evidence that it may be possible to re-establish immune homeostasis and, potentially, prolong remission or even cure autoimmune diseases. Here, we propose a 'sequential immunotherapy' framework for immune system modulation to help achieve this ambitious goal. This framework encompasses three steps: controlling inflammation; resetting the immune system through elimination of pathogenic immune memory cells; and promoting and maintaining immune homeostasis via immune regulatory agents and tissue repair. We discuss existing drugs and those in development for each of the three steps. We also highlight the importance of causal human biology in identifying and prioritizing novel immunotherapeutic strategies as well as informing their application in specific patient subsets, enabling precision medicine approaches that have the potential to transform clinical care.
Collapse
|
49
|
Long SA, Linsley PS. Integrating Omics into Functional Biomarkers of Type 1 Diabetes. Cold Spring Harb Perspect Med 2024; 14:a041602. [PMID: 38772709 PMCID: PMC11216170 DOI: 10.1101/cshperspect.a041602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Biomarkers are critical to the staging and diagnosis of type 1 diabetes (T1D). Functional biomarkers offer insights into T1D immunopathogenesis and are often revealed using "omics" approaches that integrate multiple measures to identify involved pathways and functions. Application of the omics biomarker discovery may enable personalized medicine approaches to circumvent the more recently appreciated heterogeneity of T1D progression and treatment. Use of omics to define functional biomarkers is still in its early years, yet findings to date emphasize the role of cytokine signaling and adaptive immunity in biomarkers of progression and response to therapy. Here, we share examples of the use of omics to define functional biomarkers focusing on two signatures, T-cell exhaustion and T-cell help, which have been associated with outcomes in both the natural history and treatment contexts.
Collapse
Affiliation(s)
- S Alice Long
- Center for Translational Immunology, Benaroya Research Institute, Seattle, Washington 98101, USA
| | - Peter S Linsley
- Center for Systems Immunology, Benaroya Research Institute, Seattle, Washington 98101, USA
| |
Collapse
|
50
|
Witkop EM, Diggins K, Wiedeman A, Serti E, Nepom G, Gersuk VH, Fuchs B, Long SA, Linsley PS. Interconnected lineage trajectories link conventional and natural killer (NK)-like exhausted CD8 + T cells beneficial in type 1 diabetes. Commun Biol 2024; 7:773. [PMID: 38937521 PMCID: PMC11211332 DOI: 10.1038/s42003-024-06456-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
Distinct Natural Killer (NK)-like CD57+ and PD-1+ CD8+ exhausted-like T cell populations (Tex) have both been linked to beneficial immunotherapy response in autoimmune type 1 diabetes (T1D) patients. The origins and relationships between these cell types are poorly understood. Here we show that while PD-1+ and CD57+ Tex populations are epigenetically similar, CD57+ Tex cells display unique increased chromatin accessibility of inhibitory Killer Cell Immunoglobulin-like Receptor (iKIR) and other NK cell genes. PD-1+ and CD57+ Tex also show reciprocal expression of Inhibitory Receptors (IRs) and iKIRs accompanied by chromatin accessibility of Tcf1 and Tbet transcription factor target sites, respectively. CD57+ Tex show unappreciated gene expression heterogeneity and share clonal relationships with PD-1+ Tex, with these cells differentiating along four interconnected lineage trajectories: Tex-PD-1+, Tex-CD57+, Tex-Branching, and Tex-Fluid. Our findings demonstrate new relationships between Tex-like populations in human autoimmune disease and suggest that modulating common precursor populations may enhance response to autoimmune disease treatment.
Collapse
Affiliation(s)
- Erin M Witkop
- Benaroya Research Institute, Systems Immunology, Seattle, WA, USA
| | - Kirsten Diggins
- Benaroya Research Institute, Systems Immunology, Seattle, WA, USA
| | - Alice Wiedeman
- Benaroya Research Institute, Translational Immunology, Seattle, WA, USA
| | | | - Gerald Nepom
- Benaroya Research Institute, Translational Immunology, Seattle, WA, USA
- Immune Tolerance Network (ITN), Bethesda, MD, USA
| | - Vivian H Gersuk
- Benaroya Research Institute, Genomics Core, Seattle, WA, USA
| | - Bryce Fuchs
- Benaroya Research Institute, Translational Immunology, Seattle, WA, USA
| | - S Alice Long
- Benaroya Research Institute, Translational Immunology, Seattle, WA, USA
| | - Peter S Linsley
- Benaroya Research Institute, Systems Immunology, Seattle, WA, USA.
| |
Collapse
|