1
|
Androdias G, Lünemann JD, Maillart E, Amato MP, Audoin B, Bruijstens AL, Bsteh G, Butzkueven H, Ciccarelli O, Cobo-Calvo A, Derfuss T, Di Pauli F, Edan G, Enzinger C, Geraldes R, Granziera C, Hacohen Y, Hartung HP, Hynes S, Inglese M, Kappos L, Kuusisto H, Langer-Gould A, Magyari M, Marignier R, Montalban X, Mycko MP, Nourbakhsh B, Oh J, Oreja-Guevara C, Piehl F, Prosperini L, Sastre-Garriga J, Sellebjerg F, Selmaj K, Siva A, Tallantyre E, van Pesch V, Vukusic S, Weinstock-Guttman B, Zipp F, Tintoré M, Iacobaeus E, Stankoff B. De-escalating and discontinuing disease-modifying therapies in multiple sclerosis. Brain 2025; 148:1459-1478. [PMID: 39707906 PMCID: PMC12073975 DOI: 10.1093/brain/awae409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/28/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024] Open
Abstract
The development of disease-modifying therapies (DMTs) for the treatment of multiple sclerosis (MS) has been highly successful in recent decades. It is now widely accepted that early initiation of DMTs after disease onset is associated with a better long-term prognosis. However, the question of when and how to de-escalate or discontinue DMTs remains open and critical. This topic was discussed during an international focused workshop organized by the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS) in 2023. The aim was to review the current evidence on the rationale for, and the potential pitfalls of, treatment de-escalation in MS. Several clinical scenarios emerged, mainly driven by a change in the benefit-risk ratio of DMTs over the course of the disease and with ageing. The workshop also addressed the issue of de-escalation by the type of DMT used and in specific situations, including pregnancy and paediatric onset MS. Finally, we provide practical guidelines for selecting appropriate patients, defining de-escalation and monitoring modalities and outlining unmet needs in this field.
Collapse
Affiliation(s)
- Géraldine Androdias
- Service de neurologie, sclérose en plaques, pathologies de la myéline et neuro-inflammation, Centre de Ressources, Recherche et Compétence sur la Sclérose en Plaques, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, 69677 Lyon-Bron, France
- Clinique de la Sauvegarde, Ramsay Santé, Lyon 69009, France
| | - Jan D Lünemann
- Department of Neurology with Institute of Translational Neurology, University and University Hospital Münster, Münster 48149, Germany
| | - Elisabeth Maillart
- Department of Neurology, Multiple Sclerosis Center, Pitié-Salpêtrière Hospital, AP-HP, Paris 75013, France
| | - Maria Pia Amato
- Departmente NEUROFARBA, University of Florence, Florence 50139, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence 50143, Italy
| | - Bertrand Audoin
- Department of Neurology, University Hospital of Marseille, Marseille 13005, France
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM), CNRS, Aix Marseille University, Marseille Cedex 5 13385, France
| | - Arlette L Bruijstens
- Department of Neurology, Erasmus Medical Center, Rotterdam 3015 GD, The Netherlands
| | - Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Vienna 1090, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna 1090, Austria
| | - Helmut Butzkueven
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne 3004, Australia
- Department of Neurology, Alfred Health, Melbourne 3004, Australia
| | - Olga Ciccarelli
- Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- National Institute for Health and Care Research (NIHR), University College London Hospitals (UCLH) Biomedical Research Centre, London WC1B 5EH, UK
| | - Alvaro Cobo-Calvo
- Department of Neurology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Tobias Derfuss
- Departments of Neurology and Biomedicine, University Hospital Basel, Basel 4031, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Basel, Basel 4031, Switzerland
| | - Franziska Di Pauli
- Department of Neurology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Gilles Edan
- Department of Neurology, University Hospital of Rennes, Rennes 35033, France
- CIC-P 1414 INSERM, University Hospital of Rennes, Rennes 35033, France
| | | | - Ruth Geraldes
- NMO service, Department of Neurology, Oxford University Hospitals, Oxford OX3 9DU, UK
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford OX3 9DU, UK
| | - Cristina Granziera
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Basel, Basel 4031, Switzerland
- Neurology Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel 4031, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel 4031, Switzerland
| | - Yael Hacohen
- Queen Square MS Centre, Department of Neuroinflammation, Faculty of Brain Sciences, UCL Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
- Department of Neurology, Great Ormond Street Hospital for Children, London WC1N 3JH, UK
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Brain and Mind Center, Medical Faculty, University of Sydney, Sydney, NSW 2050, Australia
- Department of Neurology, Palacky University Olomouc, Olomouc 77900, Czech Republic
| | - Sinéad Hynes
- School of Health Sciences, College of Medicine, Nursing and Health Sciences, University of Galway, Galway H91 TK33, UK
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa 16132, Italy
- MS Center, IRCCS Ospedale Policlinico San Martino, Genoa 16132, Italy
| | - Ludwig Kappos
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Basel, Basel 4031, Switzerland
- Departments of Head Spine and Neuromedicine, Biomedicine, Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel 4031, Switzerland
| | - Hanna Kuusisto
- Tampere University Hospital, Department of Neurology, Tampere 33520, Finland
- University of Eastern Finland, Faculty of Social and Welfare Management, Kuopio 70211, Finland
| | - Annette Langer-Gould
- Neurology Department, Los Angeles Medical Center, Southern California Permanente Medical Group, Kaiser Permanente, Los Angeles, CA 90027, USA
| | - Melinda Magyari
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital—Rigshospitalet, Glostrup 2600, Denmark
- Danish Multiple Sclerosis Registry, Copenhagen University Hospital—Rigshospitalet, Glostrup 2600, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Romain Marignier
- Service de neurologie, sclérose en plaques, pathologies de la myéline et neuro-inflammation, Centre de Ressources, Recherche et Compétence sur la Sclérose en Plaques, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, 69677 Lyon-Bron, France
- Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Lyon-Bron 69677, France
| | - Xavier Montalban
- Department of Neurology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
- Faculty of Medicine, UVIC-UCC Universitat Central de Catalunya, Vic 08500, Spain
| | - Marcin P Mycko
- Department of Neurology, University of Warmia and Mazury, Olsztyn 10719, Poland
| | - Bardia Nourbakhsh
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21287, MD, USA
| | - Jiwon Oh
- Division of Neurology, Department of Medicine, St. Michael’s Hospital, University of Toronto, Toronto M5B1W8, Canada
| | - Celia Oreja-Guevara
- Department of Neurology, Hospital Clinico San Carlos, IdISSC, Madrid 28040, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, S171 76 Stockholm, Sweden
| | | | - Jaume Sastre-Garriga
- Department of Neurology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital—Rigshospitalet, Glostrup 2600, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Krzysztof Selmaj
- Department of Neurology, University of Warmia and Mazury, Olsztyn 10719, Poland
- Center of Neurology, Lodz 90-324, Poland
| | - Aksel Siva
- Clinical Neuroimmunology Unit & MS Clinic, Department Of Neurology, Istanbul University Cerrahpasa School Of Medicine, Istanbul 34098, Turkey
| | - Emma Tallantyre
- Department of Neurology, University Hospital of Wales, Cardiff CF14 4XW, UK
- Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Cardiff CF14 4XN, UK
| | - Vincent van Pesch
- Department of Neurology, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels 1200, Belgium
| | - Sandra Vukusic
- Service de neurologie, sclérose en plaques, pathologies de la myéline et neuro-inflammation, Centre de Ressources, Recherche et Compétence sur la Sclérose en Plaques, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, 69677 Lyon-Bron, France
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon-Villeurbanne 69100, France
- Observatoire Français de la Sclérose en Plaques, Centre de Recherche en Neurosciences de Lyon, INSERM 1028 et CNRS UMR 5292, Lyon-Bron 69677, France
- Eugène Devic EDMUS Foundation against multiple sclerosis, Bron 69500, France
| | - Bianca Weinstock-Guttman
- Jacobs School of Medicine and Biomedical Sciences, SUNY University at Buffalo, UB Neurology, Buffalo 14203, NY, USA
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN), and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University, Mainz 55131, Germany
| | - Mar Tintoré
- Department of Neurology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
- Faculty of Medicine, UVIC-UCC Universitat Central de Catalunya, Vic 08500, Spain
| | - Ellen Iacobaeus
- Department of Neurology, Karolinska University Hospital, S171 76 Stockholm, Sweden
| | - Bruno Stankoff
- Department of Neurology, Multiple Sclerosis Center, Pitié-Salpêtrière Hospital, AP-HP, Paris 75013, France
- Sorbonne Université, Paris Brain Institute, ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière AP-HP, Paris 75013, France
| |
Collapse
|
2
|
Nowaczewska-Kuchta A, Ksiazek-Winiarek D, Glabinski A. Interaction Between Neutrophils and Elements of the Blood-Brain Barrier in the Context of Multiple Sclerosis and Ischemic Stroke. Int J Mol Sci 2025; 26:4437. [PMID: 40362673 PMCID: PMC12072651 DOI: 10.3390/ijms26094437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 05/03/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025] Open
Abstract
The blood-brain barrier (BBB) is a semi-permeable membrane in physiological conditions, but in pathologies like multiple sclerosis (MS) and ischemic stroke (IS), its permeability increases. In this review, we focus on neutrophils and their interaction with cellular components of the BBB: endothelial cells (EC), pericytes (PC), and astrocytes (AC). Nowadays, neutrophils receive more attention, mostly due to advanced research techniques that show the complexity of their population. Additionally, neutrophils have the ability to secrete extracellular vesicles (EVs), reactive oxygen species (ROS) and cytokines, which both destroy and restore the BBB. Astrocytes, PCs, and ECs also have dual roles in the pathogenesis of MS and IS. The interaction between neutrophils and cellular components of the BBB provides us with a wider insight into the pathogenesis of common diseases in the central nervous system. Further, we comprehensively review knowledge about the influence of neutrophils on the BBB in the context of MS and IS. Moreover, we describe new therapeutic strategies for patients with MS and IS like cell-based therapies and therapies that use the neutrophil function.
Collapse
Affiliation(s)
| | | | - Andrzej Glabinski
- Department of Neurology and Stroke, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland; (A.N.-K.); (D.K.-W.)
| |
Collapse
|
3
|
Bose G, Thebault SDX, Fadda G, Brooks JA, Freedman MS. Role of soluble biomarkers in treating multiple sclerosis and neuroinflammatory conditions. Neurotherapeutics 2025:e00588. [PMID: 40254498 DOI: 10.1016/j.neurot.2025.e00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/22/2025] Open
Abstract
Multiple sclerosis (MS) is a complex, chronic immune-mediated disease characterized by acute and progressive inflammatory damage of the central nervous system. MS manifests clinically with unpredictable neurological symptoms from focal inflammatory attacks as well as gradual neurodegeneration which contribute significantly to long-term disability progression. As treatment options advance, developing more personalized strategies capture heterogeneous mechanisms of injury which may be targeted or predict outcomes has been a focus of ongoing investigation. The role of soluble biomarkers has emerged as a pivotal tool to assist in these goals. Early promising candidates include neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP); these intermediate filaments that are expressed in neurons and astrocytes, respectively, are reliably measurable from blood samples and can reveal clinical and subclinical changes, as well as predict progression. Changes in these biomarkers can indicate a response to therapy, thus potentially be used as endpoints in clinical trials. Furthermore, recent research has identified a potential role of these and other soluble biomarkers in other neuroimmunological conditions including neuromyelitis spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein associated disease (MOGAD), autoimmune encephalitis, neurosarcoidosis, neuropsychiatric involvement in connective tissue disorders and vasculitides, and a host of neurodegenerative conditions. By integrating biomarker analysis into routine clinical assessments, healthcare providers may move toward a more nuanced and individualized care model, better equipped to meet the challenges posed by these multifaceted diseases. Understanding the dynamics of these biomarkers has many applications that can improve personalized medicine in MS.
Collapse
Affiliation(s)
- Gauruv Bose
- Department of Medicine, The University of Ottawa and Ottawa Hospital Research Institute, Canada.
| | - Simon D X Thebault
- Department of Medicine, The University of Ottawa and Ottawa Hospital Research Institute, Canada; Department of Neurology and Neurosurgery, Montreal Neurological Institute and McGill University Health Centre, Canada
| | - Giulia Fadda
- Department of Medicine, The University of Ottawa and Ottawa Hospital Research Institute, Canada
| | - John A Brooks
- Department of Medicine, The University of Ottawa and Ottawa Hospital Research Institute, Canada
| | - Mark S Freedman
- Department of Medicine, The University of Ottawa and Ottawa Hospital Research Institute, Canada
| |
Collapse
|
4
|
Muraro PA, Zito A, Signori A, Sormani MP, Rigoni E, Pollidoro F, Bergamaschi R, Mariottini A, Malik O, Nandoskar A, Singh-Curry V, Mehra V, Kazmi M, Gabriel I, Silber E, Nicholas R, Scalfari A. Effectiveness of Autologous Hematopoietic Stem Cell Transplantation versus Alemtuzumab and Ocrelizumab in Relapsing Multiple Sclerosis: A Single Center Cohort Study. Ann Neurol 2025. [PMID: 40251896 DOI: 10.1002/ana.27247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 03/26/2025] [Accepted: 03/29/2025] [Indexed: 04/21/2025]
Abstract
OBJECTIVE To compare clinical and radiological outcomes among relapsing multiple sclerosis patients treated with autologous hematopoietic stem cell transplantation (AHSCT), alemtuzumab (ATZ), and ocrelizumab (OCR). METHODS From a London (UK) hospital-based observational cohort, modeled data were obtained from 621 relapsing-remitting multiple sclerosis patients, who were treated with AHSCT (n = 103), ATZ (n = 204), and OCR (n = 314), and were followed up for 43, 43, and 32 median months, respectively. The annualized relapse rate, new magnetic resonance imaging (MRI) lesions, and disability progression on Expanded Disability Status Scale were assessed. RESULTS AHSCT showed superior efficacy compared with ATZ and OCR. After 5-year follow up, the mean annualized relapse rate (0.026 vs 0.087; p < 0.001), the risk of relapses (HR 0.29, 95% CI 0.13-0.63; p = 0.002), and of MRI activity (HR 0.33, 95% CI 0.15-0.72; p = 0.006) were significantly lower in AHSCT versus ATZ group. Compared with OCR, after 3-year follow-up AHSCT showed a significantly lower annualized relapse rate (0.028 vs 0.073; p = 0.02) and a trend to reduced risk of relapse (HR 0.45, 95% CI 0.18-1.14; p = 0.09), but similar low rates (6%) of new MRI activity (HR 0.86, 95% CI 0.28-2.67; p = 0.80). In addition, there was a similar risk of Expanded Disability Status Scale progression in AHSCT, and both ATZ (HR 1.19, 95% CI 0.71-2.00; p = 0.50) and OCR (HR 1.08, 95% CI 0.57-2.04; p = 0.82) groups. INTERPRETATION AHSCT was followed by greater prevention of relapses compared with ATZ and OCR, and suppressed more profoundly MRI activity than ATZ, but similarly to OCR, albeit with shorter follow up. The risk of accumulating disability was similar among the treated groups. Studies with larger sample sizes and longer follow up may enable confirmation of these findings or detection of any additional differential effects. ANN NEUROL 2025.
Collapse
Affiliation(s)
- Paolo Antonio Muraro
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - Antonio Zito
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
- Multiple Sclerosis Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Alessio Signori
- Department of Health Sciences, University of Genoa, Genoa, Italy
- Scientific Institute for research, hospitalisation, and Healthcare, University hospital San Martino, Genoa, Italy
| | - Maria Pia Sormani
- Department of Health Sciences, University of Genoa, Genoa, Italy
- Scientific Institute for research, hospitalisation, and Healthcare, University hospital San Martino, Genoa, Italy
| | - Eleonora Rigoni
- Multiple Sclerosis Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Federica Pollidoro
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | | | - Alice Mariottini
- Department of Neurosciences, University of Florence, Careggi Hospital, Florence, Italy
| | | | | | | | - Varun Mehra
- Department of Hematological Medicine, King's College Hospital NHS Trust, London, UK
| | - Majid Kazmi
- Department of Hematological Medicine, King's College Hospital NHS Trust, London, UK
| | - Ian Gabriel
- Center of Hematology, Faculty of Medicine, Imperial College Healthcare Trust, London, UK
| | - Eli Silber
- Department of Neurology, Kings College Hospital NHS Foundation Trust, London, UK
| | - Richard Nicholas
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - Antonio Scalfari
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
5
|
Suntornlohanakul R, Yeh EA. Optimizing Drug Selection in Children with Multiple Sclerosis: What Do We Know and What Remains Unanswered? Paediatr Drugs 2025; 27:161-179. [PMID: 39724509 DOI: 10.1007/s40272-024-00675-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 12/28/2024]
Abstract
Pediatric-onset multiple sclerosis (POMS) refers to multiple sclerosis with onset before 18 years of age. It is characterized by a more inflammatory course, more frequent clinical relapses, and a greater number of magnetic resonance imaging (MRI) lesions compared with adult-onset MS (AOMS), leading to significant impacts on both disability progression and cognitive outcomes in affected individuals. Managing POMS presents distinct challenges due to the unique needs of pediatric patients and the limited number of disease-modifying therapies (DMTs) approved for pediatric use. Notably, only one therapy (fingolimod) is approved by the United States (US) Food and Drug Administration (FDA) and three (fingolimod, teriflunomide, and dimethyl fumarate) by the European Medicines Agency (EMA) for use in youth with MS. However, observational evidence identifies use of almost all agents off-label in this population. This review provides a comprehensive overview of literature supporting the use of DMTs for POMS, including evidence from observational studies. In this paper, we highlight the shift in clinical practice, which has led to increased use of high-efficacy therapies (HETs) at or near disease onset. We review emerging evidence indicating better cognitive and motor outcomes in this population with early initiation of therapy. Finally, in this paper, we provide a suggested treatment algorithm for managing POMS. We underscore the need for personalized approaches in POMS management. We identify special considerations unique to pediatric care, including attention to family dynamics, and strategies to improve medication adherence and a smooth transition to adult care. Further research on DMTs in POMS is essential to optimize outcomes and improve long-term prognosis.
Collapse
Affiliation(s)
- Rabporn Suntornlohanakul
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- Division of Pediatric Neurology, Department of Pediatrics, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - E Ann Yeh
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
- Division of Neurosciences and Mental Health, The Hospital for Sick Children Research Institute, Toronto, ON, Canada.
- Department of Pediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Muraro PA, Mariottini A, Greco R, Burman J, Iacobaeus E, Inglese M, Snowden JA, Alexander T, Amato MP, Bø L, Boffa G, Ciccarelli O, Cohen JA, Derfuss T, Farge D, Freedman MS, Gaughan M, Heesen C, Kazmi M, Kirzigov K, Ljungman P, Mancardi G, Martin R, Mehra V, Moiola L, Saccardi R, Tintoré M, Stankoff B, Sharrack B. Autologous haematopoietic stem cell transplantation for treatment of multiple sclerosis and neuromyelitis optica spectrum disorder - recommendations from ECTRIMS and the EBMT. Nat Rev Neurol 2025; 21:140-158. [PMID: 39814869 DOI: 10.1038/s41582-024-01050-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2024] [Indexed: 01/18/2025]
Abstract
Autologous haematopoietic stem cell transplantation (AHSCT) is a treatment option for relapsing forms of multiple sclerosis (MS) that are refractory to disease-modifying therapy (DMT). AHSCT after failure of high-efficacy DMT in aggressive forms of relapsing-remitting MS is a generally accepted indication, yet the optimal placement of this approach in the treatment sequence is not universally agreed upon. Uncertainties also remain with respect to other indications, such as in rapidly evolving, severe, treatment-naive MS, progressive MS, and neuromyelitis optica spectrum disorder (NMOSD). Furthermore, treatment and monitoring protocols, rehabilitation and other supportive care before and after AHSCT need to be optimized. To address these issues, we convened a European Committee for Treatment and Research in Multiple Sclerosis Focused Workshop in partnership with the European Society for Blood and Marrow Transplantation Autoimmune Diseases Working Party, in which evidence and key questions were presented and discussed by experts in these diseases and in AHSCT. Based on the workshop output and subsequent written interactions, this Consensus Statement provides practical guidance and recommendations on the use of AHSCT in MS and NMOSD. Recommendations are based on the available evidence, or on consensus when evidence was insufficient. We summarize the key evidence, report the final recommendations, and identify areas for further research.
Collapse
Affiliation(s)
- Paolo A Muraro
- Department of Brain Sciences, Faculty of Medicine, Imperial College, London, UK.
| | - Alice Mariottini
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Careggi University Hospital, Florence, Italy
| | - Raffaella Greco
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Joachim Burman
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Ellen Iacobaeus
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - John A Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Tobias Alexander
- Department of Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Rheumatology Research Centre, Berlin - A Leibniz Institute, Berlin, Germany
| | - Maria Pia Amato
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Lars Bø
- Department of Neurology, Haukeland University Hospital, and Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Giacomo Boffa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Olga Ciccarelli
- Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Institute for Health and Care Research, University College London Hospitals Biomedical Research Centre, London, UK
| | - Jeffrey A Cohen
- Mellen Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Tobias Derfuss
- Departments of Neurology and Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University of Basel, Basel, Switzerland
| | - Dominique Farge
- Internal Medicine Unit (UF04) CRMR MATHEC, Maladies auto-immunes et thérapie cellulaire; Saint-Louis Hospital, AP-HP, Paris-Cite University, Paris, France
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Mark S Freedman
- University of Ottawa, Department of Medicine Ottawa, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Maria Gaughan
- Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Christoph Heesen
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Majid Kazmi
- Guy's and St Thomas' NHS Trust, King's College Hospital NHS Trust, London, UK
- London Bridge Hospital, London, UK
- Department of Haematological Medicine, King's College Hospital, London, UK
| | - Kirill Kirzigov
- Nikolay Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Per Ljungman
- Department. of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Karolinska Comprehensive Cancer Center, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Gianluigi Mancardi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Roland Martin
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Therapeutic Immune Design Unit, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
- Cellerys AG Schlieren, Schlieren, Switzerland
| | - Varun Mehra
- Guy's and St Thomas' NHS Trust, King's College Hospital NHS Trust, London, UK
- Department of Haematological Medicine, King's College Hospital, London, UK
| | - Lucia Moiola
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Mar Tintoré
- Multiple Sclerosis Centre of Catalonia, Department of Neurology, Barcelona, Spain
- Vall d'Hebron University Hospital, Vall d Hebron Research Institute, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Universitat de Vic (UVIC-UCC), Vic, Spain
| | - Bruno Stankoff
- Sorbonne Université, ICM, Paris Brain Institute, CNRS, Inserm, Paris, France
- Neurology Department, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Basil Sharrack
- Department of Neuroscience, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Sheffield NIHR Translational Neuroscience BRC, University of Sheffield, Sheffield, UK
| |
Collapse
|
7
|
Braun B, Fischbach F, Pfeffer LK, Richter J, Janson D, Kröger NM, Mariottini A, Heesen C, Häußler V. Exploring the therapeutic potential of autologous hematopoietic stem cell transplantation in progressive multiple sclerosis-a systematic review. Eur J Neurol 2024; 31:e16427. [PMID: 39104136 PMCID: PMC11555148 DOI: 10.1111/ene.16427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/27/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND AND PURPOSE The aim was to determine the value of autologous haematopoietic stem cell transplantation (aHSCT) as a therapeutic intervention for progressive multiple sclerosis (PMS) based on a systematic review of the current literature. METHODS All studies from the databases PubMed and Google Scholar published in English before February 2024 which provided individual data for PMS patients were systematically reviewed. PICO was defined as population (P), primary progressive MS and secondary progressive MS patients; intervention (I), treatment with aHSCT; comparison (C), none, disease-modifying therapy treated/relapsing-remitting MS cohorts if available; outcome (O), transplant-related mortality, progression-free survival (PFS) and no evidence of disease activity. RESULTS A total of 15 studies met the criteria including 665 patients with PMS (74 primary progressive MS, 591 secondary progressive MS) and 801 patients with relapsing-remitting MS as controls. PFS data were available for 647 patients. PMS patients showed more severe disability at baseline than relapsing-remitting MS patients. The average transplant-related mortality for PMS in 10 studies was 1.9%, with 10 deaths in 528 patients. PFS ranged from 0% to 78% in PMS groups 5 years after treatment initiation, demonstrating a high variability. No evidence of disease activity scores at 5 years ranged from 0% to 75%. CONCLUSION Based on the available data, aHSCT does not halt progression in people with PMS. However, there appears to be evidence of improved outcome in selected patients. Due to the heterogeneity of the available data, more comprehensive clinical trials assessing the efficacy of aHSCT across different patient groups are urgently needed to reduce variability and improve patient stratification.
Collapse
Affiliation(s)
- Bente Braun
- Institute of Neuroimmunology and Multiple SclerosisUniversity Medical Centre Hamburg‐EppendorfHamburgGermany
| | - Felix Fischbach
- Institute of Neuroimmunology and Multiple SclerosisUniversity Medical Centre Hamburg‐EppendorfHamburgGermany
| | - Lena Kristina Pfeffer
- Institute of Neuroimmunology and Multiple SclerosisUniversity Medical Centre Hamburg‐EppendorfHamburgGermany
| | - Johanna Richter
- Department of Stem Cell TransplantationUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Dietlinde Janson
- Department of Stem Cell TransplantationUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Nicolaus M. Kröger
- Department of Stem Cell TransplantationUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Alice Mariottini
- Department of Neurosciences, Psychology, Drug Research and Child HealthUniversity of FlorenceFlorenceItaly
- Department Neurology IICareggi University HospitalFlorenceItaly
| | - Christoph Heesen
- Institute of Neuroimmunology and Multiple SclerosisUniversity Medical Centre Hamburg‐EppendorfHamburgGermany
- Department of NeurologyUniversity Medical Centre Hamburg‐EppendorfHamburgGermany
| | - Vivien Häußler
- Institute of Neuroimmunology and Multiple SclerosisUniversity Medical Centre Hamburg‐EppendorfHamburgGermany
- Department of NeurologyUniversity Medical Centre Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
8
|
Xu Y, Wang X, Hu Z, Huang R, Yang G, Wang R, Yang S, Guo L, Song Q, Wei J, Zhang X. Advances in hematopoietic stem cell transplantation for autoimmune diseases. Heliyon 2024; 10:e39302. [PMID: 39492896 PMCID: PMC11530805 DOI: 10.1016/j.heliyon.2024.e39302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/14/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
Autoimmune diseases (ADs) are a collection of immunological disorders in which the immune system responds to self-antigens by producing autoantibodies or self-sensitized cells. Current treatments are unable to cure ADs, and achieving long-term drug-free remission remains a challenging task. Hematopoietic stem cell transplantation (HSCT) stands out from other therapies by specifically targeting ADs that target various cell subpopulations, demonstrating notable therapeutic benefits and resulting in sustained drug-free remission. Since different ADs have distinct mechanisms of action, the comprehensive understanding of how HSCT works in treating ADs is crucial. This review provides a detailed overview of the latest research and clinical applications of HSCT in treating ADs, offering new insights for clinicians aiming to optimize its use for ADs management.
Collapse
Affiliation(s)
- Yuxi Xu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Sichuan, 637000, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Ziyi Hu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Sichuan, 637000, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Ruihao Huang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Guancui Yang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Rui Wang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Shijie Yang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Liyan Guo
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Qingxiao Song
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Jin Wei
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Sichuan, 637000, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| |
Collapse
|
9
|
Perera T, Tchajkov I, Storek J. Antibody-Negative Stiff Person Syndrome Non-Responder After Hematopoietic Cell Transplant. Can J Neurol Sci 2024; 51:712-713. [PMID: 37799060 DOI: 10.1017/cjn.2023.296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Affiliation(s)
- Tefani Perera
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Ilja Tchajkov
- Department of Radiology, Niagara Health St. Catharines Site, St. Catharines, ON, Canada
| | - Jan Storek
- Department of Hematology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
10
|
Kim KM, D'Elia AM, Rodell CB. Hydrogel-based approaches to target hypersensitivity mechanisms underlying autoimmune disease. Adv Drug Deliv Rev 2024; 212:115395. [PMID: 39004347 DOI: 10.1016/j.addr.2024.115395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/23/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
A robust adaptive immune response is essential for combatting pathogens. In the wrong context such as due to genetic and environmental factors, however, the same mechanisms crucial for self-preservation can lead to a loss of self-tolerance. Resulting autoimmunity manifests in the development of a host of organ-specific or systemic autoimmune diseases, hallmarked by aberrant immune responses and tissue damage. The prevalence of autoimmune diseases is on the rise, medical management of which focuses primarily on pharmacological immunosuppression that places patients at a risk of side effects, including opportunistic infections and tumorigenesis. Biomaterial-based drug delivery systems confer many opportunities to address challenges associated with conventional disease management. Hydrogels, in particular, can protect encapsulated cargo (drug or cell therapeutics) from the host environment, afford their presentation in a controlled manner, and can be tailored to respond to disease conditions or support treatment via multiplexed functionality. Moreover, localized delivery to affected sites by these approaches has the potential to concentrate drug action at the site, reduce off-target exposure, and enhance patient compliance by reducing the need for frequent administration. Despite their many benefits for the management of autoimmune disease, such biomaterial-based approaches focus largely on the downstream effects of hypersensitivity mechanisms and have a limited capacity to eradicate the disease. In contrast, direct targeting of mechanisms of hypersensitivity reactions uniquely enables prophylaxis or the arrest of disease progression by mitigating the basis of autoimmunity. One promising approach is to induce self-antigen-specific tolerance, which specifically subdues damaging autoreactivity while otherwise retaining the normal immune responses. In this review, we will discuss hydrogel-based systems for the treatment of autoimmune disease, with a focus on those that target hypersensitivity mechanisms head-on. As the field continues to advance, it will expand the range of therapeutic choices for people coping with autoimmune diseases, providing fresh prospects for better clinical outcomes and improved quality of life.
Collapse
Affiliation(s)
- Kenneth M Kim
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.
| | - Arielle M D'Elia
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Christopher B Rodell
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA; School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Mariottini A, Stack EH, Nair G, Nozzoli C, Wu T, Marchi L, Boncompagni R, Repice AM, Fainardi E, Pasquale FD, Carlesi E, Saccardi R, Jacobson S, Massacesi L. Spinal cord size as promising biomarker of disability outcomes after hematopoietic stem cell transplantation in multiple sclerosis. Mult Scler Relat Disord 2024; 88:105745. [PMID: 38996712 DOI: 10.1016/j.msard.2024.105745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND Biomarkers predictive of disability outcomes in individual multiple sclerosis (MS) patients undergoing autologous haematopoietic stem cell transplantation (AHSCT) are currently lacking. As correlations between spinal cord atrophy and clinical disability in MS were previously described, in this study spinal cord size was investigated in MS patients treated with AHSCT, exploring whether baseline spinal cord volume may predict disability progression after AHSCT. METHODS relapsing-remitting (RR-) and secondary-progressive (SP-) MS patients treated with AHSCT (BEAM/ATG regimen) at a single academic centre in Florence, who performed at least two standardized brain magnetic resonance imaging (MRIs) scans (acquired between one-year pre-AHSCT to 5 years after AHSCT) were included. Cervical spinal cord atrophy was estimated as upper cervical spinal cord cross-sectional area (SCCSA). Brain volume loss (BVL) was analysed at the same timepoints. RESULTS Eleven (8 RR-; 3 SP-) MS patients were included. Over a median follow-up of 66 (range 37 - 100) months, no relapses nor brain MRI activity were observed; disability progressed in 2 cases (both SP-MS). Baseline SCCSA was associated with EDSS change between pre- and one-year post-AHSCT. Compared to patients who stabilized, patients who progressed after AHSCT tended to have lower SCCSA at C4 level at baseline and year 1 after AHSCT. Longitudinal changes in SCCSA or BVL did not correlate with EDSS change. CONCLUSIONS Baseline pre-AHSCT SCCSA, but not its longitudinal changes nor BVL, predicted EDSS change within the two years following AHSCT. SCCSA may represent a biomarker of treatment response and a promising screening tool for assessing patient eligibility for high-impact treatments such as AHSCT.
Collapse
Affiliation(s)
- Alice Mariottini
- Department of Neurofarba, University of Florence, Florence, Italy; Department of Neurology 2 and Tuscan Region Multiple Sclerosis Referral Centre, Careggi University Hospital, Florence, Italy
| | - Emily H Stack
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, 20892 USA
| | - Govind Nair
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, 20892 USA
| | - Chiara Nozzoli
- Cell Therapy and Transfusion Medicine Unit, Careggi University Hospital, Florence, Italy
| | - Tianxia Wu
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, 20892 USA
| | - Leonardo Marchi
- Department of Neurofarba, University of Florence, Florence, Italy
| | - Riccardo Boncompagni
- Cell Therapy and Transfusion Medicine Unit, Careggi University Hospital, Florence, Italy
| | - Anna Maria Repice
- Department of Neurology 2 and Tuscan Region Multiple Sclerosis Referral Centre, Careggi University Hospital, Florence, Italy
| | - Enrico Fainardi
- Neuroradiology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy; Neuroradiology Unit, Department of Radiology, Careggi University Hospital, Florence, Italy
| | - Francesca Di Pasquale
- Diagnostic Imaging Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Edoardo Carlesi
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, Florence, Italy
| | - Riccardo Saccardi
- Cell Therapy and Transfusion Medicine Unit, Careggi University Hospital, Florence, Italy
| | - Steven Jacobson
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, 20892 USA
| | - Luca Massacesi
- Department of Neurofarba, University of Florence, Florence, Italy; Department of Neurology 2 and Tuscan Region Multiple Sclerosis Referral Centre, Careggi University Hospital, Florence, Italy.
| |
Collapse
|
12
|
Kalincik T, Sharmin S, Roos I, Massey J, Sutton I, Withers B, Freedman MS, Atkins H, Krasulova E, Kubala Havrdova E, Trneny M, Kozak T, Burman J, Macdonell R, Torkildsen Ø, Bø L, Lehmann AK, Sharrack B, Snowden J. Effectiveness of autologous haematopoietic stem cell transplantation versus natalizumab in progressive multiple sclerosis. J Neurol Neurosurg Psychiatry 2024; 95:775-783. [PMID: 38538060 DOI: 10.1136/jnnp-2023-332790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/12/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Natalizumab was not shown to modify disability in progressive multiple sclerosis (MS). This matched observational study compared the effectiveness of autologous haematopoietic stem cell transplantation (AHSCT) with natalizumab in progressive MS. METHODS Patients with primary/secondary progressive MS from seven AHSCT MS centres and the MSBase registry, treated with AHSCT or natalizumab, were matched on a propensity score derived from sex, age, Expanded Disability Status Scale (EDSS), number of relapses 12/24 months before baseline, time from MS onset, the most effective prior therapy and country. The pairwise-censored groups were compared on hazards of 6-month confirmed EDSS worsening and improvement, relapses and annualised relapse rates (ARRs), using Andersen-Gill proportional hazards models and conditional negative binomial model. RESULTS 39 patients treated with AHSCT (37 with secondary progressive MS, mean age 37 years, EDSS 5.7, 28% with recent disability progression, ARR 0.54 during the preceding year) were matched with 65 patients treated with natalizumab. The study found no evidence for difference in hazards of confirmed EDSS worsening (HR 1.49, 95% CI 0.70 to 3.14) and improvement (HR 1.50, 95% CI 0.22 to 10.29) between AHSCT and natalizumab over up to 4 years. The relapse activity was also similar while treated with AHSCT and natalizumab (ARR: mean±SD 0.08±0.28 vs 0.08±0.25; HR 1.05, 95% CI 0.39 to 2.82). In the AHSCT group, 3 patients experienced febrile neutropenia during mobilisation, 9 patients experienced serum sickness, 6 patients required intensive care unit admission and 36 patients experienced complications after discharge. No treatment-related deaths were reported. CONCLUSION This study does not support the use of AHSCT to control disability in progressive MS with advanced disability and low relapse activity.
Collapse
Affiliation(s)
- Tomas Kalincik
- CORe, Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
- Neuroimmunology Centre, Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Sifat Sharmin
- CORe, Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
- Neuroimmunology Centre, Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Izanne Roos
- CORe, Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
- Neuroimmunology Centre, Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Jennifer Massey
- Department of Neurology, St Vincent's Hospital Sydney, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Ian Sutton
- Department of Neurology, St Vincent's Hospital Sydney, Darlinghurst, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
- University of Syndey, Sydney, New South Wales, Australia
| | - Barbara Withers
- St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
- Department of Haematology, St Vincent's Hospital Sydney, Darlinghurst, New South Wales, Australia
| | - Mark S Freedman
- Department of Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Harold Atkins
- Department of Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Eva Krasulova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University, Prague, Czech Republic
- General University Hospital in Prague, Prague, Czech Republic
| | - Eva Kubala Havrdova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University, Prague, Czech Republic
- General University Hospital in Prague, Prague, Czech Republic
| | - Marek Trneny
- General University Hospital in Prague, Prague, Czech Republic
- Department of Haematology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomas Kozak
- Department of Haematology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Joachim Burman
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala, Sweden
| | - Richard Macdonell
- Department of Neurology, Austin Health, Melbourne, Victoria, Australia
- University of Melbourne, Melbourne, Victoria, Australia
| | - Øivind Torkildsen
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Lars Bø
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | | | - Basil Sharrack
- Department of Neuroscience and Sheffield NIHR Translational Neuroscience Biomedical Research Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - John Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Department of Oncology and Metabolism, Medical School, The University of Sheffield, Sheffield, UK
| |
Collapse
|
13
|
Mariottini A, Nozzoli C, Carli I, Landi F, Gigli V, Repice AM, Ipponi A, Cecchi M, Boncompagni R, Saccardi R, Massacesi L. Cost and effectiveness of autologous haematopoietic stem cell transplantation and high-efficacy disease-modifying therapies in relapsing-remitting multiple sclerosis. Neurol Sci 2024; 45:3379-3387. [PMID: 38277051 PMCID: PMC11176212 DOI: 10.1007/s10072-024-07308-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/04/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND Autologous haematopoietic stem cell transplantation (AHSCT) is a highly effective one-off treatment for relapsing-remitting multiple sclerosis (RR-MS), potentially representing an optimal front-loading strategy for costs. OBJECTIVE Exploring cost/effectiveness of AHSCT and high-efficacy disease-modifying treatments (HE-DMTs) in RR-MS, estimating costs at our centre in Italy, where National Health Service (NHS) provides universal health coverage. METHODS Costs (including drugs, inpatient/outpatient management) for treatment with AHSCT and HE-DMTs were calculated as NHS expenditures over 2- and 5-year periods. Cost-effectiveness for each treatment was estimated as "cost needed to treat" (CNT), i.e. expense to prevent relapses, progression, or disease activity (NEDA) in one patient over n-years, retrieving outcomes from published studies. RESULTS Costs of AHSCT and HE-DMTs were similar over 2 years, whereas AHSCT was cheaper than most HE-DMTs over 5 years (€46 600 vs €93 800, respectively). When estimating cost-effectiveness of treatments, over 2 years, mean CNT of HE-DMTs for NEDA was twofold that of AHSCT, whereas it was similar for relapses and disability. Differences in CNT were remarkable over 5 years, especially for NEDA, being mean CNT of HE-DMTs €382 800 vs €74 900 for AHSCT. CONCLUSIONS AHSCT may be highly cost-effective in selected aggressive RR-MS. Besides priceless benefits for treated individuals, cost-savings generated by AHSCT may contribute to improving healthcare assistance at a population level.
Collapse
Affiliation(s)
- Alice Mariottini
- Department of Neurosciences, Drug and Child Health, University of Florence, Florence, Italy.
- Department of Neurology 2 and Tuscan Region Multiple Sclerosis Referral Centre, Careggi University Hospital, Florence, Italy.
| | - Chiara Nozzoli
- Cell Therapy and Transfusion Medicine Unit, Careggi University Hospital, Florence, Italy
| | - Ilaria Carli
- Hospital Management, UOC Controllo Direzionale, Careggi University Hospital, Florence, Italy
| | - Filippo Landi
- Hospital Management, UOC Controllo Direzionale, Careggi University Hospital, Florence, Italy
| | - Valentina Gigli
- Hospital Management, UOC Controllo Direzionale, Careggi University Hospital, Florence, Italy
| | - Anna Maria Repice
- Department of Neurology 2 and Tuscan Region Multiple Sclerosis Referral Centre, Careggi University Hospital, Florence, Italy
| | | | - Michele Cecchi
- Hospital Pharmacy, Careggi University Hospital, Florence, Italy
| | - Riccardo Boncompagni
- Cell Therapy and Transfusion Medicine Unit, Careggi University Hospital, Florence, Italy
| | - Riccardo Saccardi
- Cell Therapy and Transfusion Medicine Unit, Careggi University Hospital, Florence, Italy
| | - Luca Massacesi
- Department of Neurosciences, Drug and Child Health, University of Florence, Florence, Italy
- Department of Neurology 2 and Tuscan Region Multiple Sclerosis Referral Centre, Careggi University Hospital, Florence, Italy
| |
Collapse
|
14
|
Ramírez-Valle F, Maranville JC, Roy S, Plenge RM. Sequential immunotherapy: towards cures for autoimmunity. Nat Rev Drug Discov 2024; 23:501-524. [PMID: 38839912 DOI: 10.1038/s41573-024-00959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 06/07/2024]
Abstract
Despite major progress in the treatment of autoimmune diseases in the past two decades, most therapies do not cure disease and can be associated with increased risk of infection through broad suppression of the immune system. However, advances in understanding the causes of autoimmune disease and clinical data from novel therapeutic modalities such as chimeric antigen receptor T cell therapies provide evidence that it may be possible to re-establish immune homeostasis and, potentially, prolong remission or even cure autoimmune diseases. Here, we propose a 'sequential immunotherapy' framework for immune system modulation to help achieve this ambitious goal. This framework encompasses three steps: controlling inflammation; resetting the immune system through elimination of pathogenic immune memory cells; and promoting and maintaining immune homeostasis via immune regulatory agents and tissue repair. We discuss existing drugs and those in development for each of the three steps. We also highlight the importance of causal human biology in identifying and prioritizing novel immunotherapeutic strategies as well as informing their application in specific patient subsets, enabling precision medicine approaches that have the potential to transform clinical care.
Collapse
|
15
|
Kvistad CE, Lehmann AK, Kvistad SAS, Holmøy T, Lorentzen ÅR, Trovik LH, Kristoffersen EK, Bø L, Torkildsen Ø. Autologous hematopoietic stem cell transplantation for multiple sclerosis: Long-term follow-up data from Norway. Mult Scler 2024; 30:751-754. [PMID: 38345003 PMCID: PMC11071593 DOI: 10.1177/13524585241231665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/22/2023] [Accepted: 01/23/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Autologous hematopoietic stem cell transplantation (HSCT) is a potent treatment option for patients with aggressive relapsing-remitting multiple sclerosis (RRMS). OBJECTIVE To evaluate long-term outcomes of HSCT in MS. METHODS National retrospective single-center observational study of patients with aggressive RRMS that underwent HSCT in Norway from January 2015 to January 2018. Criteria for receiving HSCT included at least two clinical relapses the last year while on disease modifying treatment (DMT). RESULTS In total, 29 patients, with a mean follow-up time of 70 months (standard deviation:14.3), were evaluated. Twenty patients (69%) had sustained no evidence of disease activity (NEDA-3) status, 24 (83%) were relapse-free, 23 (79%) free of magnetic resonance imaging (MRI) activity, and 26 (90%) free of progression. Number of patients working full-time increased from 1 (3%), before HSCT, to 10 (33%) after 2 years and 15 (52%) after 5 years. CONCLUSION HSCT offers long-term disease-free survival with successively increasing work participation in patients with aggressive MS resistant to DMTs.
Collapse
Affiliation(s)
| | - Anne Kristine Lehmann
- Haematology Section, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | | | - Trygve Holmøy
- Department of Neurology, Akershus University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Linn Hereide Trovik
- Haematology Section, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Einar Klæboe Kristoffersen
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Lars Bø
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Øivind Torkildsen
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
16
|
Mader MMD, Napole A, Wu D, Atkins M, Scavetti A, Shibuya Y, Foltz A, Hahn O, Yoo Y, Danziger R, Tan C, Wyss-Coray T, Steinman L, Wernig M. Myeloid cell replacement is neuroprotective in chronic experimental autoimmune encephalomyelitis. Nat Neurosci 2024; 27:901-912. [PMID: 38514857 DOI: 10.1038/s41593-024-01609-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by demyelination of the central nervous system (CNS). Autologous hematopoietic cell transplantation (HCT) shows promising benefits for relapsing-remitting MS in open-label clinical studies, but the cellular mechanisms underlying its therapeutic effects remain unclear. Using single-nucleus RNA sequencing, we identify a reactive myeloid cell state in chronic experimental autoimmune encephalitis (EAE) associated with neuroprotection and immune suppression. HCT in EAE mice results in an increase of the neuroprotective myeloid state, improvement of neurological deficits, reduced number of demyelinated lesions, decreased number of effector T cells and amelioration of reactive astrogliosis. Enhancing myeloid cell incorporation after a modified HCT further improved these neuroprotective effects. These data suggest that myeloid cell manipulation or replacement may be an effective therapeutic strategy for chronic inflammatory conditions of the CNS.
Collapse
Affiliation(s)
- Marius Marc-Daniel Mader
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Alan Napole
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Danwei Wu
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Neurology and Neurosciences, Division of Neuroimmunology and Multiple Sclerosis Center, Stanford University of Medicine, Stanford, CA, USA
| | - Micaiah Atkins
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexa Scavetti
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yohei Shibuya
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Aulden Foltz
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Oliver Hahn
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Yongjin Yoo
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ron Danziger
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Tan
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Lawrence Steinman
- Department of Neurology and Neurosciences, Division of Neuroimmunology and Multiple Sclerosis Center, Stanford University of Medicine, Stanford, CA, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
17
|
Maqbool S, Baloch MF, Khan MAK, Khalid A, Naimat K. Autologous hematopoietic stem cell transplantation conditioning regimens and chimeric antigen receptor T cell therapy in various diseases. World J Transplant 2024; 14:87532. [PMID: 38576761 PMCID: PMC10989471 DOI: 10.5500/wjt.v14.i1.87532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/21/2023] [Accepted: 01/08/2024] [Indexed: 03/15/2024] Open
Abstract
Conditioning regimens employed in autologous stem cell transplantation have been proven useful in various hematological disorders and underlying malig nancies; however, despite being efficacious in various instances, negative consequences have also been recorded. Multiple conditioning regimens were extracted from various literature searches from databases like PubMed, Google scholar, EMBASE, and Cochrane. Conditioning regimens for each disease were compared by using various end points such as overall survival (OS), progression free survival (PFS), and leukemia free survival (LFS). Variables were presented on graphs and analyzed to conclude a more efficacious conditioning regimen. In multiple myeloma, the most effective regimen was high dose melphalan (MEL) given at a dose of 200/mg/m2. The comparative results of acute myeloid leukemia were presented and the regimens that proved to be at an admirable position were busulfan (BU) + MEL regarding OS and BU + VP16 regarding LFS. In case of acute lymphoblastic leukemia (ALL), BU, fludarabine, and etoposide (BuFluVP) conferred good disease control not only with a paramount improvement in survival rate but also low risk of recurrence. However, for ALL, chimeric antigen receptor (CAR) T cell therapy was preferred in the context of better OS and LFS. With respect to Hodgkin's lymphoma, mitoxantrone (MITO)/MEL overtook carmustine, VP16, cytarabine, and MEL in view of PFS and vice versa regarding OS. Non-Hodgkin's lymphoma patients were administered MITO (60 mg/m2) and MEL (180 mg/m2) which showed promising results. Lastly, amyloidosis was considered, and the regimen that proved to be competent was MEL 200 (200 mg/m2). This review article demonstrates a comparison between various conditioning regimens employed in different diseases.
Collapse
Affiliation(s)
- Shahzaib Maqbool
- Department of Medicine, Holy Family Hospital, Rawalpindi 46000, Pakistan
| | - Maryam Farhan Baloch
- Department of Community Medicine, Allama Iqbal Medical College, Lahore 45000, Pakistan
| | | | - Azeem Khalid
- Department of Medicine, Allama lqbal Medical College, Lahore 45000, Pakistan
| | - Kiran Naimat
- Department of MedicineLiaquat University of Medical and Health Sciences, Karachi 43000, Pakistan
| |
Collapse
|
18
|
Katsarogiannis E, Axelson H, Berntsson S, Rothkegel H, Burman J. Evoked potentials after autologous hematopoietic stem cell transplantation for multiple sclerosis. Mult Scler Relat Disord 2024; 83:105447. [PMID: 38242050 DOI: 10.1016/j.msard.2024.105447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/14/2023] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
OBJECTIVE To investigate the effect of autologous hematopoietic stem cell transplantation (AHSCT) on functional aspects of the nervous system assessed by visual (VEP), somatosensory (SEP), and motor (MEP) evoked potentials in patients with relapsing-remitting multiple sclerosis. BACKGROUND Several studies have demonstrated the efficacy of AHSCT on inflammatory activity and disability progression in patients with multiple sclerosis. However, the impact of AHSCT on evoked potentials has not been evaluated before. METHODS Twelve AHSCT-treated patients from Uppsala University Hospital were consecutively recruited. Evoked potentials (EP) were collected at baseline and two follow-up visits, 3 and 12 months post-AHSCT. We calculated a composite EP score for each participant and compared it between different time points. RESULTS The median total EP score decreased from 5 at baseline, to 2.5 at 12 months post-ASHCT (p = 0.008). A significant improvement in tibial SEP (tSEP) latencies was observed (42.7 vs 41.5 ms, p < 0.001), with a similar trend for MEP latencies 12 months post-ASHCT. No significant changes in median SEP or VEP latencies were observed. CONCLUSIONS Treatment with AHSCT was associated with improved transmission in some central nervous system pathways in multiple sclerosis patients.
Collapse
Affiliation(s)
| | - Hans Axelson
- Department of Medical Sciences, Neurophysiology, Uppsala University, Uppsala, Sweden
| | - Shala Berntsson
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala, Sweden
| | - Holger Rothkegel
- Department of Medical Sciences, Neurophysiology, Uppsala University, Uppsala, Sweden; Department of Clinical Neurophysiology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Joachim Burman
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Onkar A, Khan F, Goenka A, Rajendran RL, Dmello C, Hong CM, Mubin N, Gangadaran P, Ahn BC. Smart Nanoscale Extracellular Vesicles in the Brain: Unveiling their Biology, Diagnostic Potential, and Therapeutic Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6709-6742. [PMID: 38315446 DOI: 10.1021/acsami.3c16839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Information exchange is essential for the brain, where it communicates the physiological and pathological signals to the periphery and vice versa. Extracellular vesicles (EVs) are a heterogeneous group of membrane-bound cellular informants actively transferring informative calls to and from the brain via lipids, proteins, and nucleic acid cargos. In recent years, EVs have also been widely used to understand brain function, given their "cell-like" properties. On the one hand, the presence of neuron and astrocyte-derived EVs in biological fluids have been exploited as biomarkers to understand the mechanisms and progression of multiple neurological disorders; on the other, EVs have been used in designing targeted therapies due to their potential to cross the blood-brain-barrier (BBB). Despite the expanding literature on EVs in the context of central nervous system (CNS) physiology and related disorders, a comprehensive compilation of the existing knowledge still needs to be made available. In the current review, we provide a detailed insight into the multifaceted role of brain-derived extracellular vesicles (BDEVs) in the intricate regulation of brain physiology. Our focus extends to the significance of these EVs in a spectrum of disorders, including brain tumors, neurodegenerative conditions, neuropsychiatric diseases, autoimmune disorders, and others. Throughout the review, parallels are drawn for using EVs as biomarkers for various disorders, evaluating their utility in early detection and monitoring. Additionally, we discuss the promising prospects of utilizing EVs in targeted therapy while acknowledging the existing limitations and challenges associated with their applications in clinical scenarios. A foundational comprehension of the current state-of-the-art in EV research is essential for informing the design of future studies.
Collapse
Affiliation(s)
- Akanksha Onkar
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California 94143, United States
| | - Fatima Khan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Anshika Goenka
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, United States
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Crismita Dmello
- Department of Neurological Surgery and Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Nida Mubin
- Department of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
20
|
Brittain G, Petrie J, Duffy KEM, Glover R, Hullock K, Papaioannou D, Roldan E, Beecher C, Bursnall M, Ciccarelli O, Coles AJ, Cooper C, Giovannoni G, Gabriel I, Kazmi M, Kyriakou C, Nicholas R, Paling D, Peniket A, Scolding N, Silber E, de Silva T, Venneri A, Walters SJ, Young C, Muraro PA, Sharrack B, Snowden JA. Efficacy and safety of autologous haematopoietic stem cell transplantation versus alemtuzumab, ocrelizumab, ofatumumab or cladribine in relapsing remitting multiple sclerosis (StarMS): protocol for a randomised controlled trial. BMJ Open 2024; 14:e083582. [PMID: 38316583 PMCID: PMC10860024 DOI: 10.1136/bmjopen-2023-083582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
INTRODUCTION Autologous haematopoietic stem cell transplantation (aHSCT) is increasingly used as treatment for patients with active multiple sclerosis (MS), typically after failure of disease-modifying therapies (DMTs). A recent phase III trial, 'Multiple Sclerosis International Stem Cell Transplant, MIST', showed that aHSCT resulted in prolonged time to disability progression compared with DMTs in patients with relapsing remitting MS (RRMS). However, the MIST trial did not include many of the current high-efficacy DMTs (alemtuzumab, ocrelizumab, ofatumumab or cladribine) in use in the UK within the control arm, which are now offered to patients with rapidly evolving severe MS (RES-MS) who are treatment naïve. There remain, therefore, unanswered questions about the relative efficacy and safety of aHSCT over these high-efficacy DMTs in these patient groups. The StarMS trial (Autologous Stem Cell Transplantation versus Alemtuzumab, Ocrelizumab, Ofatumumab or Cladribine in Relapsing Remitting Multiple Sclerosis) will assess the efficacy, safety and long-term impact of aHSCT compared with high-efficacy DMTs in patients with highly active RRMS despite the use of standard DMTs or in patients with treatment naïve RES-MS. METHODS AND ANALYSIS StarMS is a multicentre parallel-group rater-blinded randomised controlled trial with two arms. A total of 198 participants will be recruited from 19 regional neurology secondary care centres in the UK. Participants will be randomly allocated to the aHSCT arm or DMT arm in a 1:1 ratio. Participants will remain in the study for 2 years with follow-up visits at 3, 6, 9, 12, 18 and 24 months postrandomisation. The primary outcome is the proportion of patients who achieve 'no evidence of disease activity' during the 2-year postrandomisation follow-up period in an intention to treat analysis. Secondary outcomes include efficacy, safety, cost-effectiveness and immune reconstitution of aHSCT and the four high-efficacy DMTs. ETHICS AND DISSEMINATION The study was approved by the Yorkshire and Humber-Leeds West Research Ethics Committee (20/YH/0061). Participants will provide written informed consent prior to any study specific procedures. The study results will be submitted to a peer-reviewed journal and abstracts will be submitted to relevant national and international conferences. TRIAL REGISTRATION NUMBER ISRCTN88667898.
Collapse
Affiliation(s)
- Gavin Brittain
- Neuroscience Institute, The University of Sheffield, Sheffield, UK
- Department of Clinical Neurology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Jennifer Petrie
- Clinical Trials Research Unit, Sheffield Centre for Health and Related Research, School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| | - Kate E M Duffy
- Clinical Trials Research Unit, Sheffield Centre for Health and Related Research, School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| | - Rachel Glover
- Clinical Trials Research Unit, Sheffield Centre for Health and Related Research, School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| | - Katie Hullock
- Clinical Trials Research Unit, Sheffield Centre for Health and Related Research, School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| | - Diana Papaioannou
- Clinical Trials Research Unit, Sheffield Centre for Health and Related Research, School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| | - Elisa Roldan
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| | | | - Matthew Bursnall
- Clinical Trials Research Unit, Sheffield Centre for Health and Related Research, School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| | - Olga Ciccarelli
- Queen Square Institute of Neurology, University College London, London, UK
| | - Alasdair J Coles
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Cindy Cooper
- Clinical Trials Research Unit, Sheffield Centre for Health and Related Research, School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| | | | - Ian Gabriel
- Imperial College Healthcare NHS Trust, London, UK
| | | | | | | | - David Paling
- Department of Clinical Neurology, Royal Hallamshire Hospital, Sheffield, UK
| | - Andy Peniket
- Department of Haematology, Churchill Hospital, Oxford, UK
| | - Neil Scolding
- Neurology, University of Bristol Institute of Clinical Neurosciences, Bristol, UK
- Department of Neurology, Gloucestershire Royal Hospital, Gloucester, UK
| | - Eli Silber
- Department of Neurology, King's College Hospital NHS Foundation Trust, London, UK
| | - Thushan de Silva
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Annalena Venneri
- Brunel University London, London, UK
- University of Parma, Parma, Italy
| | - Stephen J Walters
- Division of Population Health, The University of Sheffield, Sheffield, UK
| | - Carolyn Young
- The Walton Centre NHS Foundation Trust, Liverpool, UK
- University of Liverpool Institute of Systems Molecular and Integrative Biology, Liverpool, UK
| | - Paolo A Muraro
- Department of Brain Sciences, Imperial College London, London, UK
| | - Basil Sharrack
- Neuroscience Institute, The University of Sheffield, Sheffield, UK
- Department of Clinical Neurology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - John A Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| |
Collapse
|
21
|
Braun B, Fischbach F, Richter J, Pfeffer LK, Fay H, Reinhardt S, Friese MA, Stellmann JP, Kröger NM, Heesen C, Häußler V. Benefits of aHSCT over alemtuzumab in patients with multiple sclerosis besides disability and relapses: Sustained improvement in cognition and quality of life. Mult Scler Relat Disord 2024; 82:105414. [PMID: 38176284 DOI: 10.1016/j.msard.2023.105414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Autologous hematopoietic stem cell transplantation (aHSCT) exhibits promising results for multiple sclerosis (MS) in the short term. We investigated the long-term outcome differences in disease progression and cognitive impairment after aHSCT and alemtuzumab treatment. METHODS 20 patients receiving aHSCT and 21 patients treated with alemtuzumab between 2007 and 2020 were included in this monocentric observational cohort study. The primary objective was to compare the outcome of both groups with regards to achieving No Evidence of Disease Activity (NEDA-3), defined by the absence of relapses, EDSS progression, and MRI activity. Secondary endpoints in the study included the assessment of neurocognitive functioning, quality of life (QoL), Multiple Sclerosis Functional Composite (MSFC), and EDSS improvement. RESULTS Baseline characteristics between both groups were comparable, except for a longer disease duration in the alemtuzumab group of 11.3 years compared to 5.4 years in aHSCT-treated patients (p = 0.002) and a longer mean follow-up time in the aHSCT cohort of 9.0 (range 2.8-15.7) years compared to 5.9 years (range 0.9-9.2) in alemtuzumab patients. NEDA-3 was more frequently observed in the aHSCT group with 75.0 % and 55.0 % at five and 10 years, respectively, than in the alemtuzumab group with only 40.0 % at five years (p = 0.012). Relapse free survival was higher in the aHSCT group (p < 0.001). None of the aHSCT-treated patients showed new T2-lesions six months after therapy initiation until the end of the observational period in contrast to 35.0 % of the alemtuzumab-treated patients showing new T2-lesions (95 %CI 14.2-98.9, p = 0.002). aHSCT-treated patients showed significantly improved cognitive performance in five out of 12 cognitive tests whereas alemtuzumab treated patients deteriorated in four out of 12 tests. Quality of life remained on a constant level for up to 10 years in patients receiving aHSCT with improved scores for the subscale fatigue (p = 0.013). CONCLUSION aHSCT seems to be superior to alemtuzumab in maintaining long-term NEDA-3 status, improving cognition and stabilizing quality of life for up to 10 years.
Collapse
Affiliation(s)
- Bente Braun
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Centre Hamburg-Eppendorf, Falkenried 94, Hamburg 20251, Germany; Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, Hamburg 20246, Germany
| | - Felix Fischbach
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Centre Hamburg-Eppendorf, Falkenried 94, Hamburg 20251, Germany; Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, Hamburg 20246, Germany
| | - Johanna Richter
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Centre Hamburg-Eppendorf, Falkenried 94, Hamburg 20251, Germany; Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, Hamburg 20246, Germany
| | - Lena Kristina Pfeffer
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Centre Hamburg-Eppendorf, Falkenried 94, Hamburg 20251, Germany; Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, Hamburg 20246, Germany
| | - Heike Fay
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Centre Hamburg-Eppendorf, Falkenried 94, Hamburg 20251, Germany; Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, Hamburg 20246, Germany
| | - Stefanie Reinhardt
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Centre Hamburg-Eppendorf, Falkenried 94, Hamburg 20251, Germany; Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, Hamburg 20246, Germany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Centre Hamburg-Eppendorf, Falkenried 94, Hamburg 20251, Germany; Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, Hamburg 20246, Germany
| | - Jan-P Stellmann
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Centre Hamburg-Eppendorf, Falkenried 94, Hamburg 20251, Germany; Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, Hamburg 20246, Germany; APHM, Hopital de la Timone, CEMEREM, Marseille, France; Aix Marseille Univ, CNRS, CRMBM, UMR 7339, Marseille, France
| | - Nicolaus M Kröger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20246, Germany
| | - Christoph Heesen
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Centre Hamburg-Eppendorf, Falkenried 94, Hamburg 20251, Germany; Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, Hamburg 20246, Germany
| | - Vivien Häußler
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Centre Hamburg-Eppendorf, Falkenried 94, Hamburg 20251, Germany; Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, Hamburg 20246, Germany.
| |
Collapse
|
22
|
Ross LA, Stropp LM, Cohen JA. Autologous Hematopoietic Stem Cell Transplantation to Treat Multiple Sclerosis. Neurol Clin 2024; 42:165-184. [PMID: 37980114 DOI: 10.1016/j.ncl.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
In aggregate, the available data suggest autologous hematopoietic stem cell transplantation (AHSCT) has potent, durable efficacy to treat relapsing multiple sclerosis (MS). Safety issues and financial costs are significant but largely associated with the procedure itself. AHSCT is a reasonable option for patients with highly active relapsing MS and an inadequate response to the available disease therapies. The key question is where to place AHSCT in the overall relapsing MS algorithm relative to other high-efficacy therapies. Ongoing randomized trials will better characterize the benefit and risk of AHSCT compared with currently available high-efficacy disease therapies.
Collapse
Affiliation(s)
- Lindsay A Ross
- Mellen Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Lisa M Stropp
- Mellen Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Jeffrey A Cohen
- Mellen Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
23
|
Gakis G, Angelopoulos I, Panagoulias I, Mouzaki A. Current knowledge on multiple sclerosis pathophysiology, disability progression assessment and treatment options, and the role of autologous hematopoietic stem cell transplantation. Autoimmun Rev 2024; 23:103480. [PMID: 38008300 DOI: 10.1016/j.autrev.2023.103480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) that affects nearly 2.8 million people each year. MS distinguishes three main types: relapsing-remitting MS (RRMS), secondary progressive MS (SPMS) and primary progressive MS (PPMS). RRMS is the most common type, with the majority of patients eventually progressing to SPMS, in which neurological development is constant, whereas PPMS is characterized by a progressive course from disease onset. New or additional insights into the role of effector and regulatory cells of the immune and CNS systems, Epstein-Barr virus (EBV) infection, and the microbiome in the pathophysiology of MS have emerged, which may lead to the development of more targeted therapies that can halt or reverse neurodegeneration. Depending on the type and severity of the disease, various disease-modifying therapies (DMTs) are currently used for RRMS/SPMS and PPMS. As a last resort, and especially in highly active RRMS that does not respond to DMTs, autologous hematopoietic stem cell transplantation (AHSCT) is performed and has shown good results in reducing neuroinflammation. Nevertheless, the question of its potential role in preventing disability progression remains open. The aim of this review is to provide a comprehensive update on MS pathophysiology, assessment of MS disability progression and current treatments, and to examine the potential role of AHSCT in preventing disability progression.
Collapse
Affiliation(s)
- Georgios Gakis
- Laboratory of Immunohematology, Medical School, University of Patras, Patras, Greece
| | - Ioannis Angelopoulos
- Laboratory of Immunohematology, Medical School, University of Patras, Patras, Greece
| | - Ioannis Panagoulias
- Laboratory of Immunohematology, Medical School, University of Patras, Patras, Greece
| | - Athanasia Mouzaki
- Laboratory of Immunohematology, Medical School, University of Patras, Patras, Greece.
| |
Collapse
|
24
|
Jakimovski D, Bittner S, Zivadinov R, Morrow SA, Benedict RH, Zipp F, Weinstock-Guttman B. Multiple sclerosis. Lancet 2024; 403:183-202. [PMID: 37949093 DOI: 10.1016/s0140-6736(23)01473-3] [Citation(s) in RCA: 164] [Impact Index Per Article: 164.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 06/08/2023] [Accepted: 07/12/2023] [Indexed: 11/12/2023]
Abstract
Multiple sclerosis remains one of the most common causes of neurological disability in the young adult population (aged 18-40 years). Novel pathophysiological findings underline the importance of the interaction between genetics and environment. Improvements in diagnostic criteria, harmonised guidelines for MRI, and globalised treatment recommendations have led to more accurate diagnosis and an earlier start of effective immunomodulatory treatment than previously. Understanding and capturing the long prodromal multiple sclerosis period would further improve diagnostic abilities and thus treatment initiation, eventually improving long-term disease outcomes. The large portfolio of currently available medications paved the way for personalised therapeutic strategies that will balance safety and effectiveness. Incorporation of cognitive interventions, lifestyle recommendations, and management of non-neurological comorbidities could further improve quality of life and outcomes. Future challenges include the development of medications that successfully target the neurodegenerative aspect of the disease and creation of sensitive imaging and fluid biomarkers that can effectively predict and monitor disease changes.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA; Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA; Center for Biomedical Imaging at the Clinical Translational Science Institute, State University of New York at Buffalo, Buffalo, NY, USA
| | - Sarah A Morrow
- Department of Clinical Neurological Sciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Ralph Hb Benedict
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
25
|
Sai Santhosha Mrudula A, Avula NL, Ahmed SK, Salian RB, Alla D, Jagannath P, Polasu SS, Rudra P, Issaka Y, Khetan MS, Gupta T. Immunological outcomes of autologous hematopoietic stem cell transplantation for multiple sclerosis: a systematic review. Ann Med Surg (Lond) 2024; 86:421-432. [PMID: 38222726 PMCID: PMC10783339 DOI: 10.1097/ms9.0000000000001490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/30/2023] [Indexed: 01/16/2024] Open
Abstract
Background Autologous hematopoietic stem cell transplantation (AHSCT) is an extensive procedure that allows for the depletion of the immune system and its restoration from hemopoietic stem cells. The approach has been modified for the treatment of severe immune-mediated illnesses, including multiple sclerosis (MS), after being initially devised for the treatment of hematological malignancies. Objective This systematic review aims to determine and consolidate the information on the short-term and long-term immunological effects of AHSCT on the cellular level in MS patients. Methods The PubMed, Scopus, and Web of Science servers were used to conduct a systematic search in compliance with the PRISMA guidelines. The results were tabulated and analyzed. Results A total of 17 studies (10 clinical trials, 6 cohort studies, and 1 case-control study) were included in the final analysis, and 383 MS patients were analyzed. A significant decline in the cell count of CD4 T cells was reported when compared to the CD8 T cells, B cells, and NK cells. B cell count returned to baseline in 71.4% of the studies at the end of 6 months. The NK cell count was found to be above the baseline in 62.5% of studies. Conclusion AHSCT has been proven to be one of the most effective treatment modalities for MS in recent studies. However, debilitating complications due to immunological outcomes of the procedure have led to increased morbidity. Further research into this domain will help boost the success rate and efficacy of AHSCT.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Trisha Gupta
- Government Doon Medical College, Dehradun, Uttarakhand
| |
Collapse
|
26
|
Bellanca CM, Augello E, Mariottini A, Bonaventura G, La Cognata V, Di Benedetto G, Cantone AF, Attaguile G, Di Mauro R, Cantarella G, Massacesi L, Bernardini R. Disease Modifying Strategies in Multiple Sclerosis: New Rays of Hope to Combat Disability? Curr Neuropharmacol 2024; 22:1286-1326. [PMID: 38275058 PMCID: PMC11092922 DOI: 10.2174/1570159x22666240124114126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/21/2023] [Accepted: 09/22/2023] [Indexed: 01/27/2024] Open
Abstract
Multiple sclerosis (MS) is the most prevalent chronic autoimmune inflammatory- demyelinating disorder of the central nervous system (CNS). It usually begins in young adulthood, mainly between the second and fourth decades of life. Usually, the clinical course is characterized by the involvement of multiple CNS functional systems and by different, often overlapping phenotypes. In the last decades, remarkable results have been achieved in the treatment of MS, particularly in the relapsing- remitting (RRMS) form, thus improving the long-term outcome for many patients. As deeper knowledge of MS pathogenesis and respective molecular targets keeps growing, nowadays, several lines of disease-modifying treatments (DMT) are available, an impressive change compared to the relative poverty of options available in the past. Current MS management by DMTs is aimed at reducing relapse frequency, ameliorating symptoms, and preventing clinical disability and progression. Notwithstanding the relevant increase in pharmacological options for the management of RRMS, research is now increasingly pointing to identify new molecules with high efficacy, particularly in progressive forms. Hence, future efforts should be concentrated on achieving a more extensive, if not exhaustive, understanding of the pathogenetic mechanisms underlying this phase of the disease in order to characterize novel molecules for therapeutic intervention. The purpose of this review is to provide a compact overview of the numerous currently approved treatments and future innovative approaches, including neuroprotective treatments as anti-LINGO-1 monoclonal antibody and cell therapies, for effective and safe management of MS, potentially leading to a cure for this disease.
Collapse
Affiliation(s)
- Carlo Maria Bellanca
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital, University of Catania, 95123 Catania, Italy
| | - Egle Augello
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital, University of Catania, 95123 Catania, Italy
| | - Alice Mariottini
- Department of Neurosciences Drugs and Child Health, University of Florence, Florence, Italy
| | - Gabriele Bonaventura
- Institute for Biomedical Research and Innovation (IRIB), Italian National Research Council, 95126 Catania, Italy
| | - Valentina La Cognata
- Institute for Biomedical Research and Innovation (IRIB), Italian National Research Council, 95126 Catania, Italy
| | - Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital, University of Catania, 95123 Catania, Italy
| | - Anna Flavia Cantone
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Giuseppe Attaguile
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Rosaria Di Mauro
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Luca Massacesi
- Department of Neurosciences Drugs and Child Health, University of Florence, Florence, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital, University of Catania, 95123 Catania, Italy
| |
Collapse
|
27
|
Ghosh S, Bhatti GK, Sharma PK, Kandimalla R, Mastana SS, Bhatti JS. Potential of Nano-Engineered Stem Cells in the Treatment of Multiple Sclerosis: A Comprehensive Review. Cell Mol Neurobiol 2023; 44:6. [PMID: 38104307 PMCID: PMC11397842 DOI: 10.1007/s10571-023-01434-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023]
Abstract
Multiple sclerosis (MS) is a chronic and degrading autoimmune disorder mainly targeting the central nervous system, leading to progressive neurodegeneration, demyelination, and axonal damage. Current treatment options for MS are limited in efficacy, generally linked to adverse side effects, and do not offer a cure. Stem cell therapies have emerged as a promising therapeutic strategy for MS, potentially promoting remyelination, exerting immunomodulatory effects and protecting against neurodegeneration. Therefore, this review article focussed on the potential of nano-engineering in stem cells as a therapeutic approach for MS, focusing on the synergistic effects of combining stem cell biology with nanotechnology to stimulate the proliferation of oligodendrocytes (OLs) from neural stem cells and OL precursor cells, by manipulating neural signalling pathways-PDGF, BMP, Wnt, Notch and their essential genes such as Sox, bHLH, Nkx. Here we discuss the pathophysiology of MS, the use of various types of stem cells in MS treatment and their mechanisms of action. In the context of nanotechnology, we present an overview of its applications in the medical and research field and discuss different methods and materials used to nano-engineer stem cells, including surface modification, biomaterials and scaffolds, and nanoparticle-based delivery systems. We further elaborate on nano-engineered stem cell techniques, such as nano script, nano-exosome hybrid, nano-topography and their potentials in MS. The article also highlights enhanced homing, engraftment, and survival of nano-engineered stem cells, targeted and controlled release of therapeutic agents, and immunomodulatory and tissue repair effects with their challenges and limitations. This visual illustration depicts the process of utilizing nano-engineering in stem cells and exosomes for the purpose of delivering more accurate and improved treatments for Multiple Sclerosis (MS). This approach targets specifically the creation of oligodendrocytes, the breakdown of which is the primary pathological factor in MS.
Collapse
Affiliation(s)
- Sushruta Ghosh
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences Central, University of Punjab, Bathinda, India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Pushpender Kumar Sharma
- Amity Institute of Biotechnology, Amity University, Rajasthan, India
- Amity Centre for Nanobiotechnology and Nanomedicine, Amity University, Rajasthan, India
| | - Ramesh Kandimalla
- Department of Biochemistry, Kakatiya Medical College, Warangal, Telangana, India
- Department of Applied Biology, CSIR-Indian Institute of Technology, Hyderabad, India
| | - Sarabjit Singh Mastana
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences Central, University of Punjab, Bathinda, India.
| |
Collapse
|
28
|
Schlatter MI, Yandamuri SS, O'Connor KC, Nowak RJ, Pham MC, Obaid AH, Redman C, Provost M, McSweeney PA, Pearlman ML, Tees MT, Bowen JD, Nash RA, Georges GE. Remission of severe myasthenia gravis after autologous stem cell transplantation. Ann Clin Transl Neurol 2023; 10:2105-2113. [PMID: 37726935 PMCID: PMC10646993 DOI: 10.1002/acn3.51898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023] Open
Abstract
OBJECTIVE Myasthenia gravis (MG) is an autoantibody-mediated neuromuscular junction disorder involving the acetylcholine receptors on the motor endplate. The safety and response to high-dose chemotherapy (HDIT) and autologous hematopoietic cell transplantation (HCT) were assessed in a patient with severe refractory MG. METHODS As part of a pilot study of HDIT/HCT for patients with treatment-resistant autoimmune neurological disorders, a patient with severe refractory MG underwent treatment. After mobilization of hematopoietic stem cells with rituximab, prednisone, and G-CSF, the patient had HDIT consisting of carmustine, etoposide, cytarabine, melphalan, and rabbit antithymocyte globulin, followed by autologous HCT. The effect of treatment on the autoantibody to the acetylcholine receptor (AChR) was assessed. RESULTS The patient had been diagnosed with AChR antibody-positive MG 14 years before HDIT/HCT and had failed thymectomy, therapeutic plasma exchange, and multiple immunomodulatory agents. The Myasthenia Gravis Foundation of America (MGFA) clinical classification was IVb before HDIT/HCT. She tolerated HDIT/HCT well and started to improve clinically within days of treatment. At both 1 and 2 years after HDIT/HCT, patients remained symptom-free. After HDIT/HCT, AChR-binding autoantibodies persisted, and the relative frequency of immune cell subtypes shifted. INTERPRETATION HDIT/HCT induced a complete response of disease activity in a patient with severe refractory MG. This response may suggest that a cell-mediated etiology may be a significant contributing factor in refractory MG cases. A phase 2 clinical trial is warranted to establish if HDIT/HCT can be an effective therapy for severe refractory MG and to gain a further understanding of disease pathogenesis.
Collapse
Affiliation(s)
| | - Soumya S. Yandamuri
- Department of NeurologyYale University School of MedicineNew HavenConnecticut06520USA
- Department of ImmunobiologyYale University School of MedicineNew HavenConnecticut06520USA
| | - Kevin C. O'Connor
- Department of NeurologyYale University School of MedicineNew HavenConnecticut06520USA
- Department of ImmunobiologyYale University School of MedicineNew HavenConnecticut06520USA
| | - Richard J. Nowak
- Department of NeurologyYale University School of MedicineNew HavenConnecticut06520USA
| | - Minh C. Pham
- Department of ImmunobiologyYale University School of MedicineNew HavenConnecticut06520USA
| | - Abeer H. Obaid
- Department of NeurologyYale University School of MedicineNew HavenConnecticut06520USA
- Institute of Biomedical StudiesBaylor UniversityWacoTexas76706USA
| | - Callee Redman
- Colorado Blood Cancer InstituteDenverColorado80218USA
| | - Marie Provost
- Colorado Blood Cancer InstituteDenverColorado80218USA
| | | | | | | | | | | | - George E. Georges
- Clinical Research DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| |
Collapse
|
29
|
Hamwi M, Thebault S, Melkus G, Auriat AM, Pham A, Carrington A, Thornhill R, Walker LAS, Chakraborty S, Torres C, Zhang L, Atkins HL, Freedman MS, Aviv RI. MRI graph parameters are longitudinal markers of neuronal integrity in multiple sclerosis. Mult Scler Relat Disord 2023; 80:105066. [PMID: 39491411 DOI: 10.1016/j.msard.2023.105066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 11/05/2024]
Abstract
PURPOSE We sought to determine if structural network parameters add to traditional markers of MS treatment response following immunoablation and autologous haemopoietic stem cell transplantation (IAHSCT). The post-IAHSCT paradigm afforded us the opportunity to study MS patients after relapsing biology had been effectively suppressed, enabling us to study the cortical substrate of progressive MS in a less confounded manner. METHODS In this analysis of data from a phase 2 prospective study, associations between magnetic resonance graph parameters, N-acetylaspartate to creatine ratio (NAA/Cr), and serum neurofilament light chain (sNfL), amongst other markers, were assessed at 3 months pre-and 12 months post-IAHSCT. Correlations between graph parameter score changes and markers of brain health were calculated. Predictive factors of NAA/Cr or sNfL levels were calculated, adjusting for reference models. Model improvements were evaluated using the G2 likelihood-ratio test. RESULTS 24 patients (aged 18-38) were evaluated. Post-IAHSCT, high NAA/Cr and low sNfL (both measures of neuronal injury) were respectively associated with more favourable degree, density, clustering and path lengths, and degree, γ, and path length. Post-IAHSCT, absolute change in degree, path length and γ were associated with NAA/Cr and sNfL. Multivariate analysis demonstrated that the relative change in network parameters after IAHSCT accounted for 14% and 35% more variance in NAA/Cr and sNfL levels respectively than the reference model alone. CONCLUSIONS Cross-sectionally and longitudinally, network parameters demonstrate added utility as markers of disease severity in MS. These measures have the potential to capture cortical changes relevant to progressive non-relapsing biology in MS.
Collapse
Affiliation(s)
- Milad Hamwi
- Ottawa Hospital Research Institute; University of Ottawa, Department of Radiology, Radiation Oncology and Medical Physics
| | | | - Gerd Melkus
- Ottawa Hospital Research Institute; University of Ottawa, Department of Radiology, Radiation Oncology and Medical Physics; University of Ottawa, Brain and Mind Research Institute
| | - Angela M Auriat
- Ottawa Hospital Research Institute; University of Ottawa, Department of Radiology, Radiation Oncology and Medical Physics; University of Ottawa, Brain and Mind Research Institute; University of Ottawa, Faculty of Medicine.
| | - Alex Pham
- Ottawa Hospital Research Institute; University of Ottawa, Department of Radiology, Radiation Oncology and Medical Physics
| | - André Carrington
- Ottawa Hospital Research Institute; University of Ottawa, Department of Radiology, Radiation Oncology and Medical Physics; University of Waterloo, Department of Systems Design Engineering
| | - Rebecca Thornhill
- Ottawa Hospital Research Institute; University of Ottawa, Department of Radiology, Radiation Oncology and Medical Physics
| | - Lisa A S Walker
- Ottawa Hospital Research Institute; Ottawa Hospital, Department of Psychology; University of Ottawa, Brain and Mind Research Institute; University of Ottawa, Faculty of Medicine
| | - Santanu Chakraborty
- Ottawa Hospital, Department of Medical Imaging; University of Ottawa, Department of Radiology, Radiation Oncology and Medical Physics; University of Ottawa, Brain and Mind Research Institute
| | - Carlos Torres
- Ottawa Hospital Research Institute; Ottawa Hospital, Department of Medical Imaging; University of Ottawa, Department of Radiology, Radiation Oncology and Medical Physics; University of Ottawa, Brain and Mind Research Institute
| | - Liying Zhang
- Department of Medical Imaging Sunnybrook Health Sciences Centre
| | - Harold L Atkins
- Ottawa Hospital Research Institute; Ottawa Hospital Blood and Marrow Transplant Program; University of Ottawa, Faculty of Medicine
| | - Mark S Freedman
- Ottawa Hospital, Department of Neurology; University of Ottawa, Brain and Mind Research Institute
| | - Richard I Aviv
- Ottawa Hospital, Department of Medical Imaging; University of Ottawa, Department of Radiology, Radiation Oncology and Medical Physics; University of Ottawa, Brain and Mind Research Institute.
| |
Collapse
|
30
|
Ellen O, Ye S, Nheu D, Dass M, Pagnin M, Ozturk E, Theotokis P, Grigoriadis N, Petratos S. The Heterogeneous Multiple Sclerosis Lesion: How Can We Assess and Modify a Degenerating Lesion? Int J Mol Sci 2023; 24:11112. [PMID: 37446290 DOI: 10.3390/ijms241311112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/21/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple sclerosis (MS) is a heterogeneous disease of the central nervous system that is governed by neural tissue loss and dystrophy during its progressive phase, with complex reactive pathological cellular changes. The immune-mediated mechanisms that promulgate the demyelinating lesions during relapses of acute episodes are not characteristic of chronic lesions during progressive MS. This has limited our capacity to target the disease effectively as it evolves within the central nervous system white and gray matter, thereby leaving neurologists without effective options to manage individuals as they transition to a secondary progressive phase. The current review highlights the molecular and cellular sequelae that have been identified as cooperating with and/or contributing to neurodegeneration that characterizes individuals with progressive forms of MS. We emphasize the need for appropriate monitoring via known and novel molecular and imaging biomarkers that can accurately detect and predict progression for the purposes of newly designed clinical trials that can demonstrate the efficacy of neuroprotection and potentially neurorepair. To achieve neurorepair, we focus on the modifications required in the reactive cellular and extracellular milieu in order to enable endogenous cell growth as well as transplanted cells that can integrate and/or renew the degenerative MS plaque.
Collapse
Affiliation(s)
- Olivia Ellen
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Sining Ye
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Danica Nheu
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Mary Dass
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Maurice Pagnin
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Ezgi Ozturk
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, Department of Neurology, AHEPA University Hospital, Stilponos Kiriakides Str. 1, 54636 Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, Department of Neurology, AHEPA University Hospital, Stilponos Kiriakides Str. 1, 54636 Thessaloniki, Greece
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| |
Collapse
|
31
|
Sadozai H, Rojas-Luengas V, Farrokhi K, Moshkelgosha S, Guo Q, He W, Li A, Zhang J, Chua C, Ferri D, Mian M, Adeyi O, Seidman M, Gorczynski RM, Juvet S, Atkins H, Levy GA, Chruscinski A. Congenic hematopoietic stem cell transplantation promotes survival of heart allografts in murine models of acute and chronic rejection. Clin Exp Immunol 2023; 213:138-154. [PMID: 37004176 PMCID: PMC10324556 DOI: 10.1093/cei/uxad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/19/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
The ability to induce tolerance would be a major advance in the field of solid organ transplantation. Here, we investigated whether autologous (congenic) hematopoietic stem cell transplantation (HSCT) could promote tolerance to heart allografts in mice. In an acute rejection model, fully MHC-mismatched BALB/c hearts were heterotopically transplanted into C57BL/6 (CD45.2) mice. One week later, recipient mice were lethally irradiated and reconstituted with congenic B6 CD45.1 Lin-Sca1+ckit+ cells. Recipient mice received a 14-day course of rapamycin both to prevent rejection and to expand regulatory T cells (Tregs). Heart allografts in both untreated and rapamycin-treated recipients that did not undergo HSCT were rejected within 33 days (median survival time = 8 days for untreated recipients, median survival time = 32 days for rapamycin-treated recipients), whereas allografts in HSCT-treated recipients had a median survival time of 55 days (P < 0.001 vs. both untreated and rapamycin-treated recipients). Enhanced allograft survival following HSCT was associated with increased intragraft Foxp3+ Tregs, reduced intragraft B cells, and reduced serum donor-specific antibodies. In a chronic rejection model, Bm12 hearts were transplanted into C57BL/6 (CD45.2) mice, and congenic HSCT was performed two weeks following heart transplantation. HSCT led to enhanced survival of allografts (median survival time = 70 days vs. median survival time = 28 days in untreated recipients, P < 0.01). Increased allograft survival post-HSCT was associated with prevention of autoantibody development and absence of vasculopathy. These data support the concept that autologous HSCT can promote immune tolerance in the setting of allotransplantation. Further studies to optimize HSCT protocols should be performed before this procedure is adopted clinically.
Collapse
Affiliation(s)
- Hassan Sadozai
- Center for Sport, Exercise and Life Sciences, Coventry University, Coventry, UK
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Vanessa Rojas-Luengas
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Kaveh Farrokhi
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Sajad Moshkelgosha
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Qinli Guo
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Wei He
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Angela Li
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jianhua Zhang
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Conan Chua
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Dario Ferri
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Muhtashim Mian
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Oyedele Adeyi
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Michael Seidman
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | - Reginald M Gorczynski
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen Juvet
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Harold Atkins
- Division of Hematology, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Gary A Levy
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Andrzej Chruscinski
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
32
|
Kalincik T, Sharmin S, Roos I, Freedman MS, Atkins H, Burman J, Massey J, Sutton I, Withers B, Macdonell R, Grigg A, Torkildsen Ø, Bo L, Lehmann AK, Havrdova EK, Krasulova E, Trněný M, Kozak T, van der Walt A, Butzkueven H, McCombe P, Skibina O, Lechner-Scott J, Willekens B, Cartechini E, Ozakbas S, Alroughani R, Kuhle J, Patti F, Duquette P, Lugaresi A, Khoury SJ, Slee M, Turkoglu R, Hodgkinson S, John N, Maimone D, Sa MJ, van Pesch V, Gerlach O, Laureys G, Van Hijfte L, Karabudak R, Spitaleri D, Csepany T, Gouider R, Castillo-Triviño T, Taylor B, Sharrack B, Snowden JA, and the MSBase Study Group Authors. Comparative Effectiveness of Autologous Hematopoietic Stem Cell Transplant vs Fingolimod, Natalizumab, and Ocrelizumab in Highly Active Relapsing-Remitting Multiple Sclerosis. JAMA Neurol 2023; 80:702-713. [PMID: 37437240 PMCID: PMC10186210 DOI: 10.1001/jamaneurol.2023.1184] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/12/2023] [Indexed: 07/14/2023]
Abstract
Importance Autologous hematopoietic stem cell transplant (AHSCT) is available for treatment of highly active multiple sclerosis (MS). Objective To compare the effectiveness of AHSCT vs fingolimod, natalizumab, and ocrelizumab in relapsing-remitting MS by emulating pairwise trials. Design, Setting, and Participants This comparative treatment effectiveness study included 6 specialist MS centers with AHSCT programs and international MSBase registry between 2006 and 2021. The study included patients with relapsing-remitting MS treated with AHSCT, fingolimod, natalizumab, or ocrelizumab with 2 or more years study follow-up including 2 or more disability assessments. Patients were matched on a propensity score derived from clinical and demographic characteristics. Exposure AHSCT vs fingolimod, natalizumab, or ocrelizumab. Main outcomes Pairwise-censored groups were compared on annualized relapse rates (ARR) and freedom from relapses and 6-month confirmed Expanded Disability Status Scale (EDSS) score worsening and improvement. Results Of 4915 individuals, 167 were treated with AHSCT; 2558, fingolimod; 1490, natalizumab; and 700, ocrelizumab. The prematch AHSCT cohort was younger and with greater disability than the fingolimod, natalizumab, and ocrelizumab cohorts; the matched groups were closely aligned. The proportion of women ranged from 65% to 70%, and the mean (SD) age ranged from 35.3 (9.4) to 37.1 (10.6) years. The mean (SD) disease duration ranged from 7.9 (5.6) to 8.7 (5.4) years, EDSS score ranged from 3.5 (1.6) to 3.9 (1.9), and frequency of relapses ranged from 0.77 (0.94) to 0.86 (0.89) in the preceding year. Compared with the fingolimod group (769 [30.0%]), AHSCT (144 [86.2%]) was associated with fewer relapses (ARR: mean [SD], 0.09 [0.30] vs 0.20 [0.44]), similar risk of disability worsening (hazard ratio [HR], 1.70; 95% CI, 0.91-3.17), and higher chance of disability improvement (HR, 2.70; 95% CI, 1.71-4.26) over 5 years. Compared with natalizumab (730 [49.0%]), AHSCT (146 [87.4%]) was associated with marginally lower ARR (mean [SD], 0.08 [0.31] vs 0.10 [0.34]), similar risk of disability worsening (HR, 1.06; 95% CI, 0.54-2.09), and higher chance of disability improvement (HR, 2.68; 95% CI, 1.72-4.18) over 5 years. AHSCT (110 [65.9%]) and ocrelizumab (343 [49.0%]) were associated with similar ARR (mean [SD], 0.09 [0.34] vs 0.06 [0.32]), disability worsening (HR, 1.77; 95% CI, 0.61-5.08), and disability improvement (HR, 1.37; 95% CI, 0.66-2.82) over 3 years. AHSCT-related mortality occurred in 1 of 159 patients (0.6%). Conclusion In this study, the association of AHSCT with preventing relapses and facilitating recovery from disability was considerably superior to fingolimod and marginally superior to natalizumab. This study did not find evidence for difference in the effectiveness of AHSCT and ocrelizumab over a shorter available follow-up time.
Collapse
Affiliation(s)
- Tomas Kalincik
- Neuroimmunology Centre, Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- CORe, Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Sifat Sharmin
- Neuroimmunology Centre, Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- CORe, Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Izanne Roos
- Neuroimmunology Centre, Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- CORe, Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Mark S. Freedman
- University of Ottawa, Department of Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Harold Atkins
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Joachim Burman
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala, Sweden
| | - Jennifer Massey
- Department of Neurology, St Vincent's Hospital Sydney, Sydney, New South Wales, Australia
- St Vincent’s Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Ian Sutton
- Department of Neurology, St Vincent's Hospital Sydney, Sydney, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
| | - Barbara Withers
- St Vincent’s Clinical School, University of New South Wales, Sydney, New South Wales, Australia
- Department of Haematology, St Vincent's Hospital Sydney, Sydney, New South Wales, Australia
| | - Richard Macdonell
- Department of Neurology, Austin Health, Melbourne, Victoria, Australia
- University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew Grigg
- University of Melbourne, Melbourne, Victoria, Australia
- Department of Haematology, Austin Health, Melbourne, Victoria, Australia
| | - Øivind Torkildsen
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Lars Bo
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | | | - Eva Kubala Havrdova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University in Prague and General University Hospital, Prague, Czech Republic
| | - Eva Krasulova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University in Prague and General University Hospital, Prague, Czech Republic
| | - Marek Trněný
- Department of Haematology, First Faculty of Medicine, Charles University in Prague and General University Hospital, Prague, Czech Republic
| | - Tomas Kozak
- Department of Haematology, 3rd Faculty of Medicine, Charles University in Prague, and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Anneke van der Walt
- Department of Neurology, The Alfred Hospital, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Helmut Butzkueven
- Department of Neurology, The Alfred Hospital, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Pamela McCombe
- University of Queensland, Brisbane, Queensland, Australia
- Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Olga Skibina
- Department of Neurology, The Alfred Hospital, Melbourne, Victoria, Australia
- Department of Neurology, Box Hill Hospital, Melbourne, Victoria, Australia
- Monash University, Melbourne, Victoria, Australia
| | - Jeannette Lechner-Scott
- School of Medicine and Public Health, University Newcastle, Newcastle, New South Wales, Australia
- Department of Neurology, John Hunter Hospital, Hunter New England Health, Newcastle, New South Wales, Australia
| | - Barbara Willekens
- Department of Neurology, Antwerp University Hospital, Edegem, Belgium
- Translational Neurosciences Research Group, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | | | | | - Raed Alroughani
- Division of Neurology, Department of Medicine, Amiri Hospital, Sharq, Kuwait
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, Departments of Medicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - Francesco Patti
- Department of Medical and Surgical Sciences and Advanced Technologies, GF Ingrassia, Catania, Italy
- Multiple Sclerosis Center, University of Catania, Catania, Italy
| | - Pierre Duquette
- CHUM MS Center and Universite de Montreal, Montreal, Quebec, Canada
| | - Alessandra Lugaresi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Samia J. Khoury
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mark Slee
- Flinders University, Adelaide, South Australia, Australia
| | - Recai Turkoglu
- Haydarpasa Numune Training and Research Hospital, Istanbul, Turkey
| | | | - Nevin John
- Monash Medical Centre, Melbourne, Victoria, Australia
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia
| | | | - Maria Jose Sa
- Department of Neurology, Centro Hospitalar Universitario de Sao Joao, Porto, Portugal
| | - Vincent van Pesch
- Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
| | - Oliver Gerlach
- Academic MS Center Zuyderland, Department of Neurology, Zuyderland Medical Center, Sittard-Geleen, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Guy Laureys
- Department of Neurology, University Hospital Ghent, Ghent, Belgium
| | | | - Rana Karabudak
- Department of Neurology, Hacettepe University Hospitals, Ankara, Turkey
| | - Daniele Spitaleri
- Azienda Ospedaliera di Rilievo Nazionale San Giuseppe Moscati Avellino, Avellino, Italy
| | - Tunde Csepany
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Riadh Gouider
- Department of Neurology, Razi University Hospital, Manouba, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | | | - Bruce Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- Royal Hobart Hospital, Hobart, Tasmania, Australia
| | - Basil Sharrack
- Department of Neurology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - John A. Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | | |
Collapse
|
33
|
Jespersen F, Petersen SL, Andersen P, Sellebjerg F, Magyari M, Sørensen PS, Blinkenberg M. Autologous hematopoietic stem cell transplantation of patients with aggressive relapsing-remitting multiple sclerosis: Danish nation-wide experience. Mult Scler Relat Disord 2023; 76:104829. [PMID: 37364374 DOI: 10.1016/j.msard.2023.104829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/28/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Autologous hematopoietic stem cell treatment (AHSCT) is considered an effective treatment option for patients with aggressive relapsing-remitting multiple sclerosis (RRMS). Still there are few randomized and controlled studies of AHSCT to shed light on the safety and efficacy of the treatment, and therefore experiences from single centers are important. AIM To describe the Danish experience with AHSCT regarding patient characteristics, safety, and efficacy. METHOD Nationwide retrospective single center study of patients with multiple sclerosis (MS) treated with AHSCT. RESULTS A total of 32 patients were treated with AHSCT from May 2011 to May 2021. Seven were treated with carmustine, etoposide, cytarabine arabinoside, and melphalan (BEAM) as well as antithymocyte globulin (ATG). Twenty-five patients were treated with cyclophosphamide (CY) and ATG. In the whole cohort, relapse-free survival (RFS) was 77% (95% CI: 64-94%), worsening-free survival (WFS) was 79% (95% CI: 66-96%), MRI event-free survival (MFS) was 93% (95% CI: 85-100%), and no evidence of disease (NEDA-3) was 69% (95% CI: 54-89%) at the end of year two post-AHSCT. We had no treatment related mortality and only few severe adverse events (AEs). CONCLUSION AHSCT of patients with aggressive RRMS was an effective and relatively safe treatment with few serious AEs and no mortality in Danish patients.
Collapse
Affiliation(s)
- Freja Jespersen
- Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
| | - Søren Lykke Petersen
- Department of Hematology Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Pernille Andersen
- Blood bank, Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Melinda Magyari
- Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Per Soelberg Sørensen
- Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Morten Blinkenberg
- Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
34
|
Penglase R, Girgis L, Englert H, Brennan X, Jabbour A, Kotlyar E, Ma D, Moore J. Cardiotoxicity in autologous haematopoietic stem cell transplantation for systemic sclerosis. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2023; 8:87-100. [PMID: 37287946 PMCID: PMC10242691 DOI: 10.1177/23971983221145639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/15/2022] [Indexed: 09/20/2023]
Abstract
Autologous haematopoietic stem cell transplantation is now well-established as an effective treatment for severe systemic sclerosis with clear demonstration of favourable end-organ and survival outcomes. Treatment-related cardiotoxicity remains the predominant safety concern and contraindicates autologous haematopoietic stem cell transplantation in patients with severe cardiopulmonary disease. In this review, we describe the cardiovascular outcomes of autologous haematopoietic stem cell transplantation recipients, discuss the potential mechanisms of cardiotoxicity and propose future mitigating strategies.
Collapse
Affiliation(s)
- Ross Penglase
- Department of Rheumatology, St. Vincent’s Hospital Sydney, Darlinghurst, NSW, Australia
- University of New South Wales, Sydney, NSW, Australia
- St. Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
| | - Laila Girgis
- Department of Rheumatology, St. Vincent’s Hospital Sydney, Darlinghurst, NSW, Australia
- University of New South Wales, Sydney, NSW, Australia
- St. Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
| | - Helen Englert
- Department of Haematology and BM Transplantation, St. Vincent’s Hospital Sydney, Darlinghurst, NSW, Australia
| | - Xavier Brennan
- Department of Cardiology and Heart and Lung Transplantation, St. Vincent’s Hospital Sydney, Darlinghurst, NSW, Australia
| | - Andrew Jabbour
- University of New South Wales, Sydney, NSW, Australia
- Department of Cardiology and Heart and Lung Transplantation, St. Vincent’s Hospital Sydney, Darlinghurst, NSW, Australia
| | - Eugene Kotlyar
- University of New South Wales, Sydney, NSW, Australia
- Department of Cardiology and Heart and Lung Transplantation, St. Vincent’s Hospital Sydney, Darlinghurst, NSW, Australia
| | - David Ma
- University of New South Wales, Sydney, NSW, Australia
- St. Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
- Department of Haematology and BM Transplantation, St. Vincent’s Hospital Sydney, Darlinghurst, NSW, Australia
| | - John Moore
- University of New South Wales, Sydney, NSW, Australia
- St. Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
- Department of Haematology and BM Transplantation, St. Vincent’s Hospital Sydney, Darlinghurst, NSW, Australia
| |
Collapse
|
35
|
Cohen JA, Cross AH. Is Autologous Hematopoietic Stem Cell Transplant Better Than High-Efficacy Disease-Modifying Therapies for Relapsing Multiple Sclerosis? JAMA Neurol 2023:2805041. [PMID: 37184849 DOI: 10.1001/jamaneurol.2023.0467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Affiliation(s)
- Jeffrey A Cohen
- Mellen Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio
| | - Anne H Cross
- Department of Neurology, Washington University, St Louis, Missouri
| |
Collapse
|
36
|
Brittain G, Coles AJ, Giovannoni G, Muraro PA, Palace J, Petrie J, Roldan E, Scolding NJ, Snowden JA, Sharrack B. Autologous haematopoietic stem cell transplantation for immune-mediated neurological diseases: what, how, who and why? Pract Neurol 2023; 23:139-145. [PMID: 36162855 DOI: 10.1136/pn-2022-003531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 11/04/2022]
Abstract
In carefully selected patients, autologous haematopoietic stem cell transplantation (HSCT) is a safe, highly effective and cost-saving treatment modality for treatment-resistant, and potentially treatment-naïve, immune-mediated neurological disorders. Although the evidence base has been growing in the last decade, limited understanding has led to confusion, mistrust and increasing use of health tourism. In this article, we discuss what autologous HSCT is, which immune-mediated conditions can be treated with it, how to select patients, what are the expected outcomes and potential adverse effects, and how cost-effective this treatment is.
Collapse
Affiliation(s)
- Gavin Brittain
- Department of Clinical Neurology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, UK
| | - Alasdair J Coles
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - G Giovannoni
- Neuroscience and Trauma, Blizard Institute of Cell and Molecular Science, London, UK
| | | | | | - Jennifer Petrie
- Clinical Trials Research Unit, The University of Sheffield, Sheffield, UK
| | - Elisa Roldan
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - N J Scolding
- Institute of Clinical Neurosciences, University of Bristol, Bristol, UK
- Department of Neurology, Gloucestershire Royal Hospital, Gloucester, UK
| | - John A Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
| | - Basil Sharrack
- Department of Clinical Neurology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, UK
| |
Collapse
|
37
|
Kasarełło K, Seta M, Sulejczak D, Snarski E, Cudnoch-Jędrzejewska A. Effect of Hematopoietic Stem Cell Transplantation and Post-Transplantation Cyclophosphamide on the Microglia Phenotype in Rats with Experimental Allergic Encephalomyelitis. Arch Immunol Ther Exp (Warsz) 2023; 71:10. [PMID: 36964399 PMCID: PMC10039091 DOI: 10.1007/s00005-023-00675-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/16/2023] [Indexed: 03/26/2023]
Abstract
Microglia are the resident immune cells of the central nervous system, playing a role in the inflammatory process development and resolution, presenting two main phenotypes, pro-inflammatory M1, and anti-inflammatory M2. Therapies affecting the microglia phenotype may be beneficial in treating inflammatory neurodegenerative diseases. In our experiments, we used the animal multiple sclerosis model, experimental allergic encephalomyelitis (EAE). Rats were treated during the pre- or symptomatic phase of the disease with cyclophosphamide, followed by hematopoietic stem cell transplantation, and with/without post-transplantation cyclophosphamide. Our study aimed to analyze the microglia phenotype in animals subjected to this treatment. The number of M1 cells in the spinal cord, and inducible nitric oxide synthase (iNOS) levels in the brain were similar in all experimental groups. The differences were observed in M2 cells number and arginase 1 (Arg1) levels, which were decreased in EAE animals, and increased after treatment in the symptomatic phase of EAE, and in the pre-symptomatic phase, but only with post-transplantation cyclophosphamide. Analysis of gene expression in the brain showed decreased iNOS expression in EAE animals treated in the symptomatic phase of EAE and no differences in Arg1 expression. Results indicate that treatment applied to experimental animals influences the microglia phenotype, promoting differentiation towards M2 cells.
Collapse
Affiliation(s)
- Kaja Kasarełło
- Chair and Department of Experimental and Clinical Physiology, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.
| | - Martyna Seta
- Chair and Department of Experimental and Clinical Physiology, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Emilian Snarski
- Chair and Department of Experimental and Clinical Physiology, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Chair and Department of Experimental and Clinical Physiology, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
38
|
Boffa G, Signori A, Massacesi L, Mariottini A, Sbragia E, Cottone S, Amato MP, Gasperini C, Moiola L, Meletti S, Repice AM, Brescia Morra V, Salemi G, Patti F, Filippi M, De Luca G, Lus G, Zaffaroni M, Sola P, Conte A, Nistri R, Aguglia U, Granella F, Galgani S, Caniatti LM, Lugaresi A, Romano S, Iaffaldano P, Cocco E, Saccardi R, Angelucci E, Trojano M, Mancardi GL, Sormani MP, Inglese M. Hematopoietic Stem Cell Transplantation in People With Active Secondary Progressive Multiple Sclerosis. Neurology 2023; 100:e1109-e1122. [PMID: 36543569 PMCID: PMC10074454 DOI: 10.1212/wnl.0000000000206750] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Uncontrolled evidence suggests that autologous hematopoietic stem cell transplantation (AHSCT) can be effective in people with active secondary progressive multiple sclerosis (SPMS). In this study, we compared the effect of AHSCT with that of other anti-inflammatory disease-modifying therapies (DMTs) on long-term disability worsening in active SPMS. METHODS We collected data from the Italian Bone Marrow Transplantation Study Group and the Italian Multiple Sclerosis Register. Patients were considered eligible if treatment had been started after the diagnosis of SPMS. Disability worsening was assessed by the cumulative proportion of patients with a 6-month confirmed disability progression (CDP) according to the Expanded Disability Status Scale (EDSS) score. Key secondary endpoints were the EDSS time trend after treatment start and the prevalence of disability improvement over time. Time to first CDP was assessed by means of proportional hazard Cox regression models. A linear mixed model with a time × treatment group interaction was used to assess the longitudinal EDSS time trends. Prevalence of improvement was estimated using a modified Kaplan-Meier estimator and compared between groups by bootstrapping the area under the curve. RESULTS Seventy-nine AHSCT-treated patients and 1975 patients treated with other DMTs (beta interferons, azathioprine, glatiramer-acetate, mitoxantrone, fingolimod, natalizumab, methotrexate, teriflunomide, cyclophosphamide, dimethyl fumarate, and alemtuzumab) were matched to reduce treatment selection bias using propensity score and overlap weighting approaches. Time to first CDP was significantly longer in transplanted patients (hazard ratio [HR] = 0.50; 95% CI = 0.31-0.81; p = 0.005), with 61.7% of transplanted patients free from CPD at 5 years. Accordingly, EDSS time trend over 10 years was higher in patients treated with other DMTs than in AHSCT-treated patients (+0.157 EDSS points per year compared with -0.013 EDSS points per year; interaction p < 0.001). Patients who underwent AHSCT were more likely to experience a sustained disability improvement: 34.7% of patients maintained an improvement (a lower EDSS than baseline) 3 years after transplant vs 4.6% of patients treated by other DMTs (p < 0.001). DISCUSSION The use of AHSCT in people with active SPMS is associated with a slowing of disability progression and a higher likelihood of disability improvement compared with standard immunotherapy. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that autologous hematopoietic stem cell transplants prolonged the time to CDP compared with other DMTs.
Collapse
Affiliation(s)
- Giacomo Boffa
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Alessio Signori
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Luca Massacesi
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Alice Mariottini
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Elvira Sbragia
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Salvatore Cottone
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Maria Pia Amato
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Claudio Gasperini
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Lucia Moiola
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Stefano Meletti
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Anna Maria Repice
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Vincenzo Brescia Morra
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Giuseppe Salemi
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Francesco Patti
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Massimo Filippi
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Giovanna De Luca
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Giacomo Lus
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Mauro Zaffaroni
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Patrizia Sola
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Antonella Conte
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Riccardo Nistri
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Umberto Aguglia
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Franco Granella
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Simonetta Galgani
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Luisa Maria Caniatti
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Alessandra Lugaresi
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Silvia Romano
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Pietro Iaffaldano
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Eleonora Cocco
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Riccardo Saccardi
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Emanuele Angelucci
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Maria Trojano
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Giovanni Luigi Mancardi
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Maria Pia Sormani
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy
| | - Matilde Inglese
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., E.S., G.L.M., M.I.), University of Genoa; Biostatistics Unit (A.S., M.P.S.), Department of Health Sciences, University of Genoa; Department of Neurosciences Drugs and Child Health (L. Massacesi, A.M.), University of Florence; and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), Careggi University Hospital, Florence; Department of Neurology (S.C.), A.R.N.A.S. CIVICO, Palermo; Department NEUROFARBA (M.P.A.), Section Neurological Sciences University of Florence; IRCCS Fondazione Don Carlo Gnocchi, (M.P.A) Florence; Department of Neurology (C.G.), Ospedale San Camillo-Forlanini, Rome; Neurology Unit (L. Moiola, M.F.), Neurorehabilitation Unit (F.M.), Neurophysiology Service (F.M.), Neuroimaging Research Unit, Division of Neuroscience (F.M.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University (F.M.), Milan; Department Biomedical Metabolic and Neural Sciences (S.M.), University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Neurology Unit (S.M., P.S.), Azienda Ospedaliera Universitaria, Modena; Neurosciences and Reproductive and Odontostomatological Sciences (V.B.M.), University "Federico II," Naples; Department of Biomedicine, Neurosciences and Advanced Diagnostics (G.S.), University of Palermo; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), AOU Policlinico-San Marco, University of Catania; MS Centre, Neurology Unit (G.D.L.), SS. Annunziata University Hospital, Chieti; Department of Advanced Medical and Surgical Sciences (G.L.), 2nd Division of Neurology, University of Campania "Luigi Vanvitelli," Naples; Centro Sclerosi Multipla (M.Z.), ASST della Valle Olona, Ospedale di Gallarate, Italy; IRCCS Neuromed (A.C.), Pozzilli (IS); Department of Human Neuroscience (A.C., R.N.) and Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NESMOS) (S.R.) Sapienza University, Rome; S.Andrea Multiple Sclerosis Center (R.N.), Sapienza University, Rome; S.Andrea Hospital (S.R.), Rome; Department of Medical and Surgical Sciences (U.A.), Magna Greacia University of Catanzaro; Unit of Neurosciences, Department of Medicine and Surgery (F.G.), University of Parma; Department of Neurosciences (S.G.), San Camillo-Forlanini Hospital, Rome; Department of Neuroscience and Rehabilitation (L.M.C.), Azienda Ospedaliero-Universitaria di Ferrara; IRCCS Istituto delle Scienze Neurologiche di Bologna (A.L.); Dipartimento di Scienze Biomediche e Neuromotorie (A.L.), Università di Bologna; Department of Basic Medical Sciences, Neurosciences and Sense Organs (P.I., M.T.), University of Bari Aldo Moro; Department of Medical Science and Public Health (E.C), University of Cagliari, Cagliari; Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari; Department of Cellular Therapies and Transfusion Medicine (R.S.), Careggi University Hospital, Florence; Ematologia e Terapie Cellulari (E.A.), Ospedale Policlinico IRCCS San Martino (M.P.S.), Genoa; Istituti Clinici Scientifici Maugeri (G.L.M.), Pavia; Ospedale Policlinico IRCCS San Martino (M.I.), Genoa, Italy.
| |
Collapse
|
39
|
Mader MMD, Napole A, Wu D, Shibuya Y, Scavetti A, Foltz A, Atkins M, Hahn O, Yoo Y, Danziger R, Tan C, Wyss-Coray T, Steinman L, Wernig M. Augmentation of a neuroprotective myeloid state by hematopoietic cell transplantation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.10.532123. [PMID: 36945385 PMCID: PMC10028976 DOI: 10.1101/2023.03.10.532123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune disease associated with inflammatory demyelination in the central nervous system (CNS). Autologous hematopoietic cell transplantation (HCT) is under investigation as a promising therapy for treatment-refractory MS. Here we identify a reactive myeloid state in chronic experimental autoimmune encephalitis (EAE) mice and MS patients that is surprisingly associated with neuroprotection and immune suppression. HCT in EAE mice leads to an enhancement of this myeloid state, as well as clinical improvement, reduction of demyelinated lesions, suppression of cytotoxic T cells, and amelioration of reactive astrogliosis reflected in reduced expression of EAE-associated gene signatures in oligodendrocytes and astrocytes. Further enhancement of myeloid cell incorporation into the CNS following a modified HCT protocol results in an even more consistent therapeutic effect corroborated by additional amplification of HCT-induced transcriptional changes, underlining myeloid-derived beneficial effects in the chronic phase of EAE. Replacement or manipulation of CNS myeloid cells thus represents an intriguing therapeutic direction for inflammatory demyelinating disease.
Collapse
Affiliation(s)
- Marius Marc-Daniel Mader
- Institute for Stem Cell Biology and Regenerative Medicine and
Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305,
USA
- Department of Pathology, Stanford University School of Medicine,
Stanford, CA 94305, USA
| | - Alan Napole
- Institute for Stem Cell Biology and Regenerative Medicine and
Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305,
USA
- Department of Pathology, Stanford University School of Medicine,
Stanford, CA 94305, USA
| | - Danwei Wu
- Institute for Stem Cell Biology and Regenerative Medicine and
Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305,
USA
- Department of Pathology, Stanford University School of Medicine,
Stanford, CA 94305, USA
- Department of Neurology and Neurosciences, Division of
Neuroimmunology and Multiple Sclerosis Center, Stanford University of Medicine, Stanford, CA
94305, USA
| | - Yohei Shibuya
- Institute for Stem Cell Biology and Regenerative Medicine and
Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305,
USA
- Department of Pathology, Stanford University School of Medicine,
Stanford, CA 94305, USA
| | - Alexa Scavetti
- Institute for Stem Cell Biology and Regenerative Medicine and
Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305,
USA
- Department of Pathology, Stanford University School of Medicine,
Stanford, CA 94305, USA
| | - Aulden Foltz
- Department of Neurology and Neurological Sciences, Stanford
University School of Medicine, Stanford, CA 94305, USA
- Veterans Administration Palo Alto Healthcare System, Palo Alto,
CA 94304, USA
| | - Micaiah Atkins
- Department of Neurology and Neurological Sciences, Stanford
University School of Medicine, Stanford, CA 94305, USA
- Veterans Administration Palo Alto Healthcare System, Palo Alto,
CA 94304, USA
| | - Oliver Hahn
- Department of Neurology and Neurological Sciences, Stanford
University School of Medicine, Stanford, CA 94305, USA
- Veterans Administration Palo Alto Healthcare System, Palo Alto,
CA 94304, USA
| | - Yongjin Yoo
- Institute for Stem Cell Biology and Regenerative Medicine and
Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305,
USA
- Department of Pathology, Stanford University School of Medicine,
Stanford, CA 94305, USA
| | - Ron Danziger
- Institute for Stem Cell Biology and Regenerative Medicine and
Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305,
USA
- Department of Pathology, Stanford University School of Medicine,
Stanford, CA 94305, USA
| | - Christina Tan
- Institute for Stem Cell Biology and Regenerative Medicine and
Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305,
USA
- Department of Pathology, Stanford University School of Medicine,
Stanford, CA 94305, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford
University School of Medicine, Stanford, CA 94305, USA
- Veterans Administration Palo Alto Healthcare System, Palo Alto,
CA 94304, USA
| | - Lawrence Steinman
- Department of Neurology and Neurosciences, Division of
Neuroimmunology and Multiple Sclerosis Center, Stanford University of Medicine, Stanford, CA
94305, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine and
Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305,
USA
- Department of Pathology, Stanford University School of Medicine,
Stanford, CA 94305, USA
| |
Collapse
|
40
|
Maria ATJ, Campidelli A, Castilla-Llorente C, Lansiaux P, Marjanovic Z, Pugnet G, Torregrosa-Diaz JM, Terriou L, Algayres JP, Urbain F, Yakoub-Agha I, Farge D. [Vaccination before and after autologous hematopoietic cell transplantation for autoimmune diseases: Guidelines from the Francophone Society of Bone Marrow Transplantation and Cellular Therapy (MATHEC-SFGM-TC)]. Bull Cancer 2023; 110:S97-S107. [PMID: 36658011 DOI: 10.1016/j.bulcan.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 01/18/2023]
Abstract
The Francophone Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC) organized the 12th workshop on hematopoietic stem cell transplantation clinical practices harmonization procedures on September 2021 in Lille, France. In the absence of specific national or international recommendation, the French working group for autologous stem Cell transplantation in Auto-immune Diseases (MATHEC) proposed guidances for vaccinations of patients undergoing autologous hematopoietic stem cell transplantation for autoimmune disease, including in the context of SARS-Cov-2 pandemic.
Collapse
Affiliation(s)
- Alexandre Thibault Jacques Maria
- Médecine Interne & Immuno-Oncologie (MedI2O), Institute for Regenerative Medicine & Biotherapy (IRMB), Hôpital Saint Eloi, CHU de Montpellier, 80 avenue Augustin Fliche, Montpellier, France; IRMB, Inserm U1183, Hôpital Saint-Eloi, CHU de Montpellier, 34295, Montpellier, France
| | - Arnaud Campidelli
- CHRU Nancy, Service Hématologie Adulte, 54500 Vandoeuvre-lès-Nancy, France
| | - Cristina Castilla-Llorente
- Gustave Roussy Cancer Campus, Département d́Hématologie, 114 rue Edouard Vaillant, 94800 Villejuif, France
| | - Pauline Lansiaux
- Centre de Référence des Maladies auto-immunes systémiques Rares d'Ile-de-France MATHEC (FAI2R), AP-HP, Hôpital St-Louis, Unité de Médecine Interne: Maladies Auto-immunes et Pathologie Vasculaire (UF 04), 75010 Paris, France; Université de Paris Cité, Institut de recherche Saint Louis, Recherche clinique appliquée à l'hématologie, EA3518, 75010 Paris, France
| | - Zora Marjanovic
- Hôpital Saint Antoine (APHP), Service d'Hématologie et Thérapie cellulaire, 184 rue du Faubourg Saint-Antoine, 75012 Paris, France
| | - Grégory Pugnet
- CHU Rangueil, Service de Médecine Interne et Immunologie Clinique, 1 avenue du Pr Jean Poulhès, 31059 Toulouse Cedex 9, France
| | | | - Louis Terriou
- Hôpital Claude Huriez, CHRU Lille, Service de médecine interne et immunologie clinique, rue Michel Polonovski, 59000 Lille, France
| | - Jean-Pierre Algayres
- Centre de Référence des Maladies auto-immunes systémiques Rares d'Ile-de-France MATHEC (FAI2R), AP-HP, Hôpital St-Louis, Unité de Médecine Interne: Maladies Auto-immunes et Pathologie Vasculaire (UF 04), 75010 Paris, France
| | - Fanny Urbain
- Hôpital Bicêtre, Groupe Hospitalier Universitaire Paris Sud, Assistance Publique-Hôpitaux de Paris, Service de Médecine Interne et Immunologie Clinique, 94275 Le Kremlin-Bicêtre cedex, France; Université Paris Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France
| | | | - Dominique Farge
- Centre de Référence des Maladies auto-immunes systémiques Rares d'Ile-de-France MATHEC (FAI2R), AP-HP, Hôpital St-Louis, Unité de Médecine Interne: Maladies Auto-immunes et Pathologie Vasculaire (UF 04), 75010 Paris, France; Université de Paris Cité, Institut de recherche Saint Louis, Recherche clinique appliquée à l'hématologie, EA3518, 75010 Paris, France; McGill University, Department of Medicine, H3A 1A1, Montreal, Canada.
| |
Collapse
|
41
|
Damavandi AR, Mirmosayyeb O, Ebrahimi N, Zalpoor H, khalilian P, Yahiazadeh S, Eskandari N, Rahdar A, Kumar PS, Pandey S. Advances in nanotechnology versus stem cell therapy for the theranostics of multiple sclerosis disease. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02698-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Freeman L, Longbrake EE, Coyle PK, Hendin B, Vollmer T. High-Efficacy Therapies for Treatment-Naïve Individuals with Relapsing-Remitting Multiple Sclerosis. CNS Drugs 2022; 36:1285-1299. [PMID: 36350491 PMCID: PMC9645316 DOI: 10.1007/s40263-022-00965-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/05/2022] [Indexed: 11/11/2022]
Abstract
There are > 18 distinct disease-modifying therapy (DMT) options covering 10 mechanisms of action currently approved by the US Food and Drug Administration for the treatment of relapsing-remitting multiple sclerosis (RRMS). Given the multitude of available treatment options, and recent international consensus guidelines offering differing recommendations, there is broad heterogeneity in how the DMTs are used in clinical practice. Choosing a DMT for newly diagnosed patients with MS is currently a topic of significant debate in MS care. Historically, an escalation approach to DMT was used for newly diagnosed patients with RRMS. However, the evidence for clinical benefits of early treatment with high-efficacy therapies (HETs) in this population is emerging. In this review, we provide an overview of the DMT options and MS treatment strategies, and discuss the clinical benefits of HETs (including ofatumumab, ocrelizumab, natalizumab, alemtuzumab, and cladribine) in the early stages of MS, along with safety concerns associated with these DMTs. By minimizing the accumulation of neurological damage early in the disease course, early treatment with HETs may enhance long-term clinical outcomes over the lifetime of the patient.
Collapse
Affiliation(s)
- Léorah Freeman
- Department of Neurology, Dell Medical School, The University of Texas at Austin, 1601 Trinity St, Austin, TX, 78701, USA.
| | | | - Patricia K Coyle
- Department of Neurology, Stony Brook University Medical Center, Stony Brook, NY, USA
| | - Barry Hendin
- Banner, University Medicine Neurosciences Clinic, Phoenix, AZ, USA
| | - Timothy Vollmer
- Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
43
|
Giedraitiene N, Gasciauskaite G, Kaubrys G. Impact of autologous HSCT on the quality of life and fatigue in patients with relapsing multiple sclerosis. Sci Rep 2022; 12:15404. [PMID: 36100664 PMCID: PMC9470541 DOI: 10.1038/s41598-022-19748-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/02/2022] [Indexed: 12/04/2022] Open
Abstract
In this study, we aimed to assess the quality of life, fatigue, anxiety, and depression after Autologous haematopoietic stem cell transplantation (AHSCT) and to investigate its impact of on separate domains of health status and fatigue in patients with multiple sclerosis (MS). Overall, 18 patients with highly active relapsing MS (mean age 36.3 years, 83.3% female) underwent the AHSCT in Vilnius Multiple Sclerosis center, and we prospectively collected Short Form 36, Health Survey Questionnaire, Fatigue Descriptive Scale, and Hospital Anxiety and Depression Scale beforeand Month3, 12, and 24 after AHSCT. The median score of Expanded Disability Status Scale at Month3 after transplant improved in 14 patients (77.8%). A significant improvement in physical functioning, vitality, and pain was found at Month3 after AHSCT (p < 0.05), which was sustained until Month12 and 24. The improvement in fatigue score was found at Month12 after AHSCT, which was sustained until Month24. Decrease in EDSS score had a positive impact on the better HRQoL outcomes, especially physical and social outcomes. Thus, AHSCT improved quality of life and reduced symptoms of fatigue in patients with highly active relapsing MS. The improvement was determined earlier in the domains of QoL than in the fatigue.
Collapse
|
44
|
Brod SA. The genealogy, methodology, similarities and differences of immune reconstitution therapies for multiple sclerosis and neuromyelitis optica. Autoimmun Rev 2022; 21:103170. [PMID: 35963569 DOI: 10.1016/j.autrev.2022.103170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/07/2022] [Indexed: 11/09/2022]
Abstract
Immune reconstitution therapies (IRTs) are a type of short course procedure or pharmaceutical agent within the MS pharmacopeia. They emanate from oncology and induce transient incomplete lympho-ablation with or without myelo-ablation, resulting in potential prolonged immunomodulation. Thus, they provide significant prophylaxis from disease activity without retreatment. Modern IRT for autoimmunity encompasses a heterogeneous group of pulsed lympho- and non-myelo-ablative treatments designed to re-boot the adaptive immune system in a quasi-permanent manner - a re-induction of ontogeny. IRT is the extensive debulking of an auto-aggressive immune system to attempt to reach the Holy Grail of immune tolerance. This incomplete yet significant lympho-ablation induces lymphoproliferation, reduces pathogenic clonal cells, causes thymopoiesis and results in the induction of immune tolerance. Lympho-ablation with immune reconstitution can result in minimal residual autoimmunity. There is a resetting of the immune thermostat - i.e., the immunostat. IRTs have the potential to provide prolonged periods of disease inactivity without retreatment in part through the immunological results of their pulsatile lymphocyte depletion. It is vital to increase our understanding of how IRTs alter a patient's immune response to the antigenic target of the disease so that we can devise newer, more durable and safer forms of such agents. What common features do extant IRTs (i.e., stem cell transplant, alemtuzumab and oral cladribine) have to produce the durable therapeutic response without long term treatment in neuroimmunological diseases such as MS (multiple sclerosis) and NMOSD (neuromyelitis optica spectrum disorders)? Can we learn from these critical features to predict what other maneuvers or agents might effect similar clinical results with equal or greater efficacy and safety?
Collapse
Affiliation(s)
- Staley A Brod
- Division of MS/Neuro-immunology, Department of Neurology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA.
| |
Collapse
|
45
|
Autologous Hematopoietic Stem-Cell Transplantation in Multiple Sclerosis: A Systematic Review and Meta-Analysis. Neurol Ther 2022; 11:1553-1569. [PMID: 35902484 PMCID: PMC9333355 DOI: 10.1007/s40120-022-00389-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/14/2022] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION In 1995, the use of autologous hematopoietic stem-cell transplantation (AHSCT), which was previously used to treat hematological tumors, was introduced for severe autoimmune diseases such as multiple sclerosis (MS). AHSCT has proven its safety over the past few years due to technical advances and careful patient selection in transplant centers. While most studies have reported that AHSCT led to decreased Expanded Disability Status Scale (EDSS) scores, some patients reported increased EDSS scores following the procedure. Given the contradictory results, we aimed to conduct a comprehensive systematic review and meta-analysis to investigate the efficacy and safety of AHSCT. METHODS PubMed, Web of Science, and Scopus were searched in March 2022 using a predefined search strategy. We included cohort studies, clinical trials, case-control studies, and case series that investigated the efficacy or safety of AHSCT in patients with MS. PICO in the present study was defined as follows: problem or study population (P): patients with MS; intervention (I): AHSCT; comparison (C): none; outcome (O): efficacy and safety. RESULTS After a two-step review process, 50 studies with a total of 4831 patients with MS were included in our study. Our analysis showed a significant decrease in EDSS score after treatment (standardized mean difference [SMD]: -0.48, 95% CI -0.75, -0.22). Moreover, the annualized relapse rate was also significantly reduced after AHSCT compared to the pretreatment period (SMD: -1.58, 95% CI -2.34, -0.78). The pooled estimate of progression-free survival after treatment was 73% (95% CI 69%, 77). Furthermore, 81% of patients with MS who received AHSCT remained relapse-free (95% CI 76%, 86%). Investigating event-free survival, which reflects the absence of any disease-related event, showed a pooled estimate of 63% (95% CI 54%, 73%). Also, the MRI activity-free survival was 89% (95% CI 84%) among included studies with low heterogeneity. New MRI lesions seem to appear in nearly 8% of patients who underwent AHSCT (95% CI 4%, 12%). Our meta-analysis showed that 68% of patients with MS experience no evidence of disease activity (NEDA) after AHSCT (95% CI 59%, 77). The overall survival after transplantation was 94% (95% CI 91%, 96%). In addition, 4% of patients died from transplant-related causes (95% CI 2%, 6%). CONCLUSION Current data encourages a broader application of AHSCT for treating patients with MS while still considering proper patient selection and transplant methods. In addition, with increasing knowledge and expertise in the field of stem-cell therapy, AHSCT has become a safer treatment approach for MS.
Collapse
|
46
|
Cauchi M, Willis M, Andrews A, Backx M, Brownlee W, Ford HL, Gran B, Jolles S, Price S, Rashid W, Schmierer K, Tallantyre EC. Multiple sclerosis and the risk of infection: Association of British Neurologists consensus guideline. Pract Neurol 2022; 22:practneurol-2022-003370. [PMID: 35863879 DOI: 10.1136/practneurol-2022-003370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2022] [Indexed: 11/03/2022]
Abstract
Infection in people with multiple sclerosis (MS) is of major concern, particularly for those receiving disease-modifying therapies. This article explores the risk of infection in people with MS and provides guidance-developed by Delphi consensus by specialists involved in their management-on how to screen for, prevent and manage infection in this population.
Collapse
Affiliation(s)
- Marija Cauchi
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, University Hospital of Wales, Cardiff, UK
| | - Mark Willis
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, University Hospital of Wales, Cardiff, UK
| | - Angela Andrews
- Pharmacy Neurosciences Directorate, University Hospital of Wales, Cardiff, UK
| | - Matthijs Backx
- Infectious Diseases, University Hospital of Wales and Department of Microbiology, Public Health Wales, Cardiff, UK
| | - Wallace Brownlee
- Queen Square MS Centre, University College London Institute of Neurology, Queen Square Multiple Sclerosis Centre, London, UK
| | - Helen L Ford
- Centre for Neurosciences, Leeds Teaching Hospitals NHS Trust, Leeds, UK, Leeds, UK
| | - Bruno Gran
- Department of Neurology, Nottingham University Hospitals NHS Trust, Nottingham, UK
- Mental Health and Clinical Neuroscience Academic Unit, University of Nottingham School of Medicine, Nottingham, UK
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, UK
| | - Sian Price
- Department of Neuroscience, University of Sheffield, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Waqar Rashid
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Klaus Schmierer
- The Blizard Institute (Neuroscience, Surgery & Trauma), Queen Mary University of London Faculty of Medicine and Dentistry, London, UK
- Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Emma C Tallantyre
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, University Hospital of Wales, Cardiff, UK
| |
Collapse
|
47
|
Sharrack B, Petrie J, Coles A, Snowden JA. Is stem cell transplantation safe and effective in multiple sclerosis? BMJ 2022; 377:e061514. [PMID: 35680142 DOI: 10.1136/bmj-2020-061514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Basil Sharrack
- Department of Neurology and Sheffield NIHR Neuroscience BRC, Sheffield Teaching Hospitals NHS Foundation Trust and University of Sheffield, Sheffield, UK
- Clinical Trials Research Unit, University of Sheffield, Sheffield, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Jennifer Petrie
- Department of Neurology and Sheffield NIHR Neuroscience BRC, Sheffield Teaching Hospitals NHS Foundation Trust and University of Sheffield, Sheffield, UK
- Clinical Trials Research Unit, University of Sheffield, Sheffield, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Alasdair Coles
- Department of Neurology and Sheffield NIHR Neuroscience BRC, Sheffield Teaching Hospitals NHS Foundation Trust and University of Sheffield, Sheffield, UK
- Clinical Trials Research Unit, University of Sheffield, Sheffield, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - John A Snowden
- Department of Neurology and Sheffield NIHR Neuroscience BRC, Sheffield Teaching Hospitals NHS Foundation Trust and University of Sheffield, Sheffield, UK
- Clinical Trials Research Unit, University of Sheffield, Sheffield, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| |
Collapse
|
48
|
A phase I/IIa clinical trial of autologous hematopoietic stem cell transplantation in amyotrophic lateral sclerosis. J Neurol 2022; 269:5337-5346. [PMID: 35596795 DOI: 10.1007/s00415-022-11185-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To verify the safety and potential effect on ALS progression of a low-intensity immunosuppressive regimen followed by autologous hematopoietic stem cell transplantation (aHSCT) in amyotrophic lateral sclerosis (ALS) patients. METHODS ALS eligible patients underwent a set of clinical and laboratory evaluations at T-4 (screening), T-1 (pre-treatment visit), and for the 12 consecutive months after treatment (T3, T6, T9, T12). We evaluated the tolerability of the procedure, its efficacy on clinical course and quality of life (QoL). RESULTS Eight of the 11 ALS patients enrolled received the established immunoablative protocol. The procedure was well tolerated and side effects were those expected. One patient died 4 months after the conditioning regimen and another patient underwent tracheotomy just before T3 for a sudden respiratory failure, but he is still alive 4 years after the procedure without being ventilated any more. A third patient died 10 months after conditioning. In the other cases, there was no statistical difference in all functional measures and QoL pre- and post-treatment; however, a transitory slopes' reduction of ALSFRS-R and seated SVC% after the conditioning procedures was reported. Moreover, although not statistically significant, trends of reduction of CD4 + and increment of CD8 + were found. CONCLUSIONS aHSCT was overall well tolerated, but it was not followed by any significant modification in disease progression. Considering the negative results of this small trial, further studies aimed to evaluate the possible efficacy of the aHSCT using a higher-intensity regimen should be carefully and with caution evaluated.
Collapse
|
49
|
Puyade M, Brunet F, Carolina R, Fergusson N, Makedonov I, Freedman MS, Atkins H. Autologous Hematopoietic Stem Cell Transplantation for Multiple Sclerosis, the Ottawa Protocol. Curr Protoc 2022; 2:e437. [PMID: 35594180 DOI: 10.1002/cpz1.437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Autologous hematopoietic stem cell transplantation (aHSCT) is increasingly used to treat patients with highly active multiple sclerosis (MS) refractory to disease-modifying therapy. Briefly, cyclophosphamide and filgrastim are used to mobilize autologous hematopoietic stem cells (HSC) into the circulation. HSC are harvested by leukapheresis, purified using a CD34 immunomagnetic selection process, and cryopreserved. Busulphan, cyclophosphamide, and rabbit anti-thymocyte globulin are used to destroy the patient's autoreactive immune system, followed by infusion of the previously collected HSC, which reconstitute a naïve and self-tolerant immune system. Many MS patients experience durable remissions with no evidence of new disease activity following aHSCT. Treatment-related toxicity is rare, but potentially life-threatening complications necessitate appropriate patient selection by MS neurologists and HSCT physicians. AHSCT must be performed with a highly trained multidisciplinary team expert to minimize morbidity and mortality. We present the current aHSCT procedure for an MS indication at The Ottawa Hospital, developed from our program's 20-year experience. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Candidate selection Basic Protocol 2: Autologous hematopoietic stem cell mobilization, collection, purification, and cryopreservation Basic Protocol 3: Autologous hematopoietic stem cell transplantation Basic Protocol 4: Supportive care following recovery from aHSCT (Beyond 100 days) Basic Protocol 5: Ongoing evaluation of multiple sclerosis.
Collapse
Affiliation(s)
- Mathieu Puyade
- Department of Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada.,Centre d'Investigation Clinique (CIC)-1402, CHU de Poitiers, Poitiers, France
| | - Francis Brunet
- Division of Neurology, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Rush Carolina
- Division of Neurology, The Ottawa Hospital, Ottawa, Ontario, Canada.,Department of Medicine, University of Ottawa, Ontario
| | | | | | - Mark S Freedman
- Division of Neurology, The Ottawa Hospital, Ottawa, Ontario, Canada.,Department of Medicine, University of Ottawa, Ontario.,Ottawa Hospital Research Institute, Ottawa, Ontario
| | - Harold Atkins
- Department of Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada.,Department of Medicine, University of Ottawa, Ontario.,Ottawa Hospital Research Institute, Ottawa, Ontario
| |
Collapse
|
50
|
The current standing of autologous haematopoietic stem cell transplantation for the treatment of multiple sclerosis. J Neurol 2022; 269:3937-3958. [PMID: 35399125 PMCID: PMC8995166 DOI: 10.1007/s00415-022-11063-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/01/2022]
Abstract
AbstractAutologous haematopoietic stem cell transplantation (aHSCT) is gaining traction as a valuable treatment option for patients affected by severe multiple sclerosis (MS), particularly the relapsing–remitting form. We describe the current literature in terms of clinical trials, observational and retrospective studies, as well as immune reconstitution following transplantation, with a focus on the conditioning regimens used for transplantation. The evidence base predominantly consists of non-randomised, uncontrolled clinical trials or data from retrospective or observational cohorts, i.e. very few randomised or controlled trials. Most often, intermediate-intensity conditioning regimens are used, with promising results from both myeloablative and lymphoablative strategies, as well as from regimens that are low and high intensity. Efficacy of transplantation, which is likely secondary to immune reconstitution and restored immune tolerance, is, therefore, not clearly dependent on the intensity of the conditioning regimen. However, the conditioning regimen may well influence the immune response to transplantation. Heterogeneity of conditioning regimens among studies hinders synthesis of the articles assessing post-aHSCT immune system changes. Factors associated with better outcomes were lower Kurtzke Expanded Disability Status Scale, relapsing–remitting MS, younger age, and shorter disease duration at baseline, which supports the guidance for patient selection proposed by the European Society for Blood and Marrow Transplantation. Interestingly, promising outcomes were described for patients with secondary progressive MS by some studies, which may be worth taking into account when considering treatment options for patients with active, progressive disease. Of note, a significant proportion of patients develop autoimmune disease following transplantation, with alemtuzumab-containing regimens associated with the highest incidence.
Collapse
|