1
|
Aarsand AK, To‐Figueras J, Whatley S, Sandberg S, Schmitt C. Practical recommendations for biochemical and genetic diagnosis of the porphyrias. Liver Int 2025; 45:e16012. [PMID: 38940544 PMCID: PMC11815605 DOI: 10.1111/liv.16012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024]
Abstract
The porphyrias are a group of rare inborn errors of metabolism associated with various clinical presentations and long-term complications, making them relevant differential diagnoses to consider for many clinical specialities, especially hepatologists, gastroenterologists and dermatologists. To diagnose a patient with porphyria requires appropriate biochemical investigations, as clinical features alone are not specific enough. Furthermore, it is important to be aware that abnormalities of porphyrin accumulation and excretion occur in many other disorders that are collectively far more common than the porphyrias. In this review, we provide an overview of porphyria-related tests with their strengths and limitations, give recommendations on requesting and diagnostic approaches in non-expert and expert laboratories for different clinical scenarios and discuss the role of genetic testing in the porphyrias. To diagnose porphyria in a currently symptomatic patient requires analysis of biochemical markers to demonstrate typical patterns of haem precursors in urine, faeces and blood. The use of genomic sequencing in diagnostic pathways for porphyrias requires careful consideration, and the demonstration of increased porphyrin-related markers is necessary prior to genomic testing in symptomatic patients. In the acute porphyrias, genomic testing is presently a useful adjunct for genetic counselling of asymptomatic family members and the most common cutaneous porphyria, porphyria cutanea tarda, is usually a sporadic, non-hereditary disease. Getting a correct and timely porphyria diagnosis is essential for delivering appropriate care and ensuring best patient outcome.
Collapse
Affiliation(s)
- Aasne K. Aarsand
- Norwegian Porphyria Centre and Department of Medical Biochemistry and PharmacologyHaukeland University HospitalBergenNorway
- Norwegian Organization for Quality Improvement of Laboratory Examinations (NOKLUS)Haraldsplass Deaconess HospitalBergenNorway
| | - Jordi To‐Figueras
- Biochemistry and Molecular Genetics UnitHospital Clinic‐University of BarcelonaBarcelonaSpain
| | - Sharon Whatley
- Cardiff Porphyria Service, Department of Medical Biochemistry and ImmunologyUniversity Hospital of Wales Healthcare NHS TrustCardiffUK
| | - Sverre Sandberg
- Norwegian Porphyria Centre and Department of Medical Biochemistry and PharmacologyHaukeland University HospitalBergenNorway
- Norwegian Organization for Quality Improvement of Laboratory Examinations (NOKLUS)Haraldsplass Deaconess HospitalBergenNorway
- Department of Global Public Health and Primary Care, Faculty of MedicineUniversity of BergenBergenNorway
| | - Caroline Schmitt
- Department of Medical BiochemistryUniversité Paris Cité and INSERM U1149, Centre de Recherche sur l'InflammationParisFrance
- French Centre of Porphyrias, Assistance Publique‐Hôpitaux de ParisHôpital Louis MourierColombesFrance
| |
Collapse
|
2
|
Lipiński P, Lipniacka A, Klaudel-Dreszler M, Ziółkowska L, Kostrzewa G, Odnoczko E, Wasilewski R, Płoski R, Tylki-Szymańska A. Case Report: Cholestatic liver disease in the course of erythropoietic protoporphyria associated with renal hypodysplasia and atrial septal defect. Front Pediatr 2025; 13:1504181. [PMID: 40007872 PMCID: PMC11851339 DOI: 10.3389/fped.2025.1504181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
Erythropoietic protoporphyria (EPP) is an autosomal recessive disorder of the heme biosynthesis pathway caused by pathogenic variants in FECH gene resulting in a decreased activity of ferrochelatase. Liver involvement is observed in 5%-20% of patients harbouring loss-of-function FECH variants and its manifestations are heterogeneous, ranging from mildly elevated liver transaminases, cholelithiasis to severe acute cholestatic hepatitis/liver failure. This paper presents the case of a Polish infant with EPP associated with two novel missense FECH variants accompanied by other congenital anomalies, namely atrial septal defect and renal hypodysplasia. Progressive cholestatic liver disease (with subsequent congestive heart failure) was observed in the course of EPP. Erytropoietic protoporphyria should be considered in patients with hepatosplenomegaly and cholestasis accompanied by skin damage. The natural history of liver disease in the course of EPP could be determined by other factors, like the co-existence of congenital anomalies.
Collapse
Affiliation(s)
- Patryk Lipiński
- Institute of Clinical Sciences, Maria-Skłodowska-Curie Medical Academy, Warsaw, Poland
| | - Agnieszka Lipniacka
- Department of Haemostasis and Metabolic Diseases, Institute of Haematology and Transfusion Medicine, Warsaw, Poland
| | - Maja Klaudel-Dreszler
- Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Lidia Ziółkowska
- Department of Cardiology, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Grażyna Kostrzewa
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Edyta Odnoczko
- Department of Haemostasis and Metabolic Diseases, Institute of Haematology and Transfusion Medicine, Warsaw, Poland
| | - Robert Wasilewski
- Department of Disorders of Hemostasis and Internal Medicine, Institute of Haematology and Transfusion Medicine, Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Anna Tylki-Szymańska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
3
|
Pischik E, Lissing M, Pallet N, Kauppinen R. Long-term complications in acute porphyria. Liver Int 2024; 44:2197-2207. [PMID: 38819621 DOI: 10.1111/liv.15966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/01/2024]
Abstract
New treatment options and low attack-related mortality have changed the life expectancy of patients with acute porphyria (AP) to that of the general population. Clinicians should therefore be aware of the long-term complications of AP, which typically include chronic neuropathy and encephalopathy, high blood pressure and porphyria-associated kidney disease. Patients have an increased risk of primary liver cancer (PLC), but no increased risk of non-hepatic cancers. Chronic pain occurs in patients with recurrent attacks, combined with chronic fatigue and nausea, leading to poor quality of life. Patients with sporadic attacks may also have chronic symptoms, which should be distinguished from mild recurrent attacks and treated appropriately. Sequels of acute polyneuropathy after an attack should be distinguished from ongoing chronic polyneuropathy, as the management is different. Overestimation of chronic neuropathy or encephalopathy caused by AP should be avoided, and other causes should be treated accordingly. Prevention of recurrent attacks is the best strategy for managing chronic comorbidities and should be actively accomplished. Hormonal interventions in female patients, or in severe cases, prophylactic givosiran or haematin, may be helpful before liver transplantation to prevent recurrent attacks. Regular monitoring can be personalised according to the patient's age, comorbidities and AP activity. Blood pressure, renal function and cardiovascular risk factors should be monitored annually in patients with previous symptoms. Appropriate medication and lifestyle management, including nutrition and hydration, are necessary to prevent complications. As PLC is common, especially in patients with acute intermittent porphyria, bi-annual surveillance after the age of 50 is important.
Collapse
Affiliation(s)
- Elena Pischik
- Department of Neurology, Consultative and Diagnostic Centre with Polyclinics, St. Petersburg, Russia
| | - Mattias Lissing
- Department of Hepatology, Department of Upper Gastrointestinal Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Nicolas Pallet
- Department of Nephrology, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, University of Paris, Paris, France
- Department of Clinical Chemistry, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, University of Paris, Paris, France
| | - Raili Kauppinen
- Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
4
|
Abstract
The porphyrias are a group of rare diseases, each resulting from a defect in a different enzymatic step of the heme biosynthetic pathway. They can be broadly divided into two categories, hepatic and erythropoietic porphyrias, depending on the primary site of accumulation of heme intermediates. These disorders are multisystemic with variable symptoms that can be encountered by physicians in any specialty. Here, we review the porphyrias and describe their clinical presentation, diagnosis, and management. We discuss novel therapies that are approved or in development. Early diagnosis is key for the appropriate management and prevention of long-term complications in these rare disorders.
Collapse
Affiliation(s)
- Amy K Dickey
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA;
- Harvard Medical School, Boston, Massachusetts, USA
| | - Rebecca Karp Leaf
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA;
| | - Manisha Balwani
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA;
| |
Collapse
|
5
|
Wang B, Bonkovsky HL, Lim JK, Balwani M. AGA Clinical Practice Update on Diagnosis and Management of Acute Hepatic Porphyrias: Expert Review. Gastroenterology 2023; 164:484-491. [PMID: 36642627 PMCID: PMC10335308 DOI: 10.1053/j.gastro.2022.11.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/28/2022] [Accepted: 11/20/2022] [Indexed: 01/17/2023]
Abstract
DESCRIPTION The acute hepatic porphyrias (AHP) are rare, inborn errors of heme-metabolism and include acute intermittent porphyria, hereditary coproporphyria, variegate porphyria, and porphyria due to severe deficiency of 5-aminolevulinic acid dehydratase. Acute intermittent porphyria is the most common type of AHP, with an estimated prevalence of patients with symptoms of approximately 1 in 100,000. The major clinical presentation involves attacks of severe pain, usually abdominal and generalized, without peritoneal signs or abnormalities on cross-sectional imaging. Acute attacks occur mainly in women in their childbearing years. AHP should be considered in the evaluation of all patients, and especially women aged 15-50 years with recurrent severe abdominal pain not ascribable to common causes. The screening tests of choice include random urine porphobilinogen and δ-aminolevulinic acid corrected to creatinine. All patients with elevations in urinary porphobilinogen and/or δ-aminolevulinic acid should initially be presumed to have AHP. The cornerstones of management include discontinuation of porphyrinogenic drugs and chemicals, administration of oral or intravenous dextrose and intravenous hemin, and use of analgesics and antiemetics. Diagnosis of AHP type can be confirmed after initial treatment by genetic testing for pathogenic variants in HMBS, CPOX, PPOX, and ALAD genes. AHP is also associated with chronic symptoms and long-term risk of systemic arterial hypertension, chronic renal and liver disease, and hepatocellular carcinoma. Patients who have recurrent acute attacks (4 or more per year) should be considered for prophylactic therapy with intravenous hemin or subcutaneous givosiran. Liver transplantation is curative and reserved for patients with intractable symptoms who have failed other treatment options. METHODS This expert review was commissioned and approved by the American Gastroenterological Association (AGA) Institute Clinical Practice Updates Committee (CPUC) and the AGA Governing Board to provide timely guidance on a topic of high clinical importance to the AGA membership, and underwent internal peer review by the CPUC and external peer review through standard procedures of Gastroenterology. These Best Practice Advice (BPA) statements were drawn from a review of the published literature and from expert opinion. Because systematic reviews were not performed, these BPA statements do not carry formal ratings of the quality of evidence or strength of the presented considerations. Best Practice Advice Statements BEST PRACTICE ADVICE 1: Women aged 15-50 years with unexplained, recurrent severe abdominal pain without a clear etiology after an initial workup should be considered for screening for an AHP. BEST PRACTICE ADVICE 2: Initial diagnosis of AHP should be made by biochemical testing measuring δ-aminolevulinic acid, porphobilinogen, and creatinine on a random urine sample. BEST PRACTICE ADVICE 3: Genetic testing should be used to confirm the diagnosis of AHP in patients with positive biochemical testing. BEST PRACTICE ADVICE 4: Acute attacks of AHP that are severe enough to require hospital admission should be treated with intravenous hemin, given daily, preferably into a high-flow central vein. BEST PRACTICE ADVICE 5: In addition to intravenous hemin, management of acute attacks of AHP should include pain control, antiemetics, management of systemic arterial hypertension, tachycardia, and hyponatremia, and hypomagnesemia, if present. BEST PRACTICE ADVICE 6: Patients should be counseled to avoid identifiable triggers that may precipitate acute attacks, such as alcohol and porphyrinogenic medications. BEST PRACTICE ADVICE 7: Prophylactic heme therapy or givosiran, administered in an outpatient setting, should be considered in patients with recurrent attacks (4 or more per year). BEST PRACTICE ADVICE 8: Liver transplantation for AHP should be limited to patients with intractable symptoms and significantly decreased quality of life who are refractory to pharmacotherapy. BEST PRACTICE ADVICE 9: Patients with AHP should be monitored annually for liver disease. BEST PRACTICE ADVICE 10: Patients with AHP, regardless of the severity of symptoms, should undergo surveillance for hepatocellular carcinoma, beginning at age 50 years, with liver ultrasound every 6 months. BEST PRACTICE ADVICE 11: Patients with AHP on treatment should undergo surveillance for chronic kidney disease annually with serum creatinine and estimated glomerular filtration rate. BEST PRACTICE ADVICE 12: Patients should be counseled on the chronic and long-term complications of AHP, including neuropathy, chronic kidney disease, hypertension, and hepatocellular carcinoma, and need for long-term monitoring.
Collapse
Affiliation(s)
- Bruce Wang
- Department of Medicine and Division of Gastroenterology, University of California San Francisco, San Francisco, California.
| | - Herbert L Bonkovsky
- Section of Gastroenterology and Hepatology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Joseph K Lim
- Section of Digestive Diseases and Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut
| | - Manisha Balwani
- Departments of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
6
|
Sardh E, Harper P. RNAi therapy with givosiran significantly reduces attack rates in acute intermittent porphyria. J Intern Med 2022; 291:593-610. [PMID: 35067977 DOI: 10.1111/joim.13443] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Acute hepatic porphyria (AHP) is a group of inherited metabolic disorders that affect hepatic heme biosynthesis. They are associated with attacks of neurovisceral manifestations that can be life threatening and constitute what is considered an acute porphyria attack. Until recently, the sole specific treatment for acute porphyria attacks consisted of the intravenous administration of hemin. Although attacks are often sporadic, some patients develop recurrent acute attacks, with devastating effects on quality of life. Liver transplantation has historically been the sole curative treatment option. The clinical manifestations of AHP are attributed to the accumulation of the heme precursor 5-aminolevulinic acid (ALA) and porphobilinogen (PBG). Advances in molecular engineering have provided new therapeutic possibilities for modifying the heme synthetic pathway. We reviewed the background and current status of AHP treatment using liver-directed small interfering RNA targeting ALAS1. The therapeutic aim was to normalize the levels of ALAS1, which is highly upregulated during acute porphyria attacks. Givosiran is now an approved drug for use in adults and adolescents aged 12 years and older. The results of clinical trials have shown that givosiran treatment leads to a rapid and sustained reduction of ALAS1 mRNA, decreased heme precursor levels, and a decreased rate of acute attacks compared with placebo. The clinical trials (phases I, II, and III) were all randomized and placebo controlled. Many patients enrolled in the initial clinical trials have continued treatment in open label extension and extended/compassionate-use programs in countries where givosiran is not yet commercially available.
Collapse
Affiliation(s)
- Eliane Sardh
- Department of Molecular Medicine and Surgery, Centre for Inherited Metabolic Diseases, Porphyria Centre Sweden, Department of Endocrinology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Pauline Harper
- Department of Medical Biochemistry and Biophysics, Centre for inherited Metabolic Diseases, Porphyria Centre Sweden., Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Sirch C, Khanna N, Frassetto L, Bianco F, Artero ML. Diagnosis of acute intermittent porphyria in a renal transplant patient: A case report. World J Transplant 2022; 12:8-14. [PMID: 35096552 PMCID: PMC8771597 DOI: 10.5500/wjt.v12.i1.8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/16/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Acute intermittent porphyria (AIP) is an inherited disorder of porphyrin metabolism with a worldwide distribution and a prevalence ranging from 1 to 9 per million population. AIP is caused by an autosomal dominant-inherited mutation of low penetrance resulting in a deficiency of porphobilinogen deaminase (PBGD) activity. Acute attacks are provoked by stressors such as certain medications, alcohol, and infection. We herein present the first case report of AIP detected in a post-renal transplant patient. CASE SUMMARY The patient was a 65-year-old man who underwent transplantation 2 years previously for suspected nephroangiosclerosis and chronic interstitial nephro-pathy. He subsequently developed diabetes mellitus which required insulin therapy. He had been treated in the recent past with local mesalamine for proctitis. He presented with classic but common symptoms of AIP including intense abdominal pain, hypertension, and anxiety. He had multiple visits to the emergency room over a 6-mo period for these same symptoms before the diagnosis of AIP was entertained. His urinary postprandial blood glucose level was 60 mg/24 h (normal, < 2 mg/24 h). He was placed on a high carbohydrate diet, and his symptoms slowly improved. CONCLUSION This case report describes a common presentation of an uncommon disease, in which post-transplant complications and medications may have contributed to precipitating the previously undiagnosed AIP. We hypothesize that the low-carbohydrate diet and insulin with which our patient was treated may have led to the attacks of AIP. Alternatively, our patient's mesalamine treatment for proctitis may have led to an acute AIP crisis. A high index of suspicion is needed to consider the diagnosis of a heme synthesis disorder, which presents with the common symptoms of abdominal pain, high blood pressure, and anxiety.
Collapse
Affiliation(s)
- Cristina Sirch
- Nefrologia e Dialisi, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste 34100, Italy
| | - Niloufar Khanna
- Medicine, California Northstate University, Elk Grove, CA 95757, United States
| | - Lynda Frassetto
- Internal Medicine, Division of Nephrology, University of California San Francisco, San Francisco, CA 94193, United States
| | - Francesco Bianco
- Nefrologia e Dialisi, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste 34100, Italy
| | - Mary Louise Artero
- Nefrologia e Dialisi, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste 34100, Italy
| |
Collapse
|
8
|
Ricci A, Guida CC, Manzini P, Cuoghi C, Ventura P. Kidney Involvement in Acute Hepatic Porphyrias: Pathophysiology and Diagnostic Implications. Diagnostics (Basel) 2021; 11:2324. [PMID: 34943561 PMCID: PMC8700387 DOI: 10.3390/diagnostics11122324] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/27/2022] Open
Abstract
Porphyrias are a group of rare disorders originating from an enzyme dysfunction in the pathway of heme biosynthesis. Depending on the specific enzyme involved, porphyrias manifest under drastically different clinical pictures. The most dramatic presentation of the four congenital acute hepatic porphyrias (AHPs: acute intermittent porphyria-AIP, ALAD deficiency, hereditary coproporphyria-HCP, and porphyria variegata-VP) consists of potentially life-threatening neurovisceral attacks, for which givosiran, a novel and effective siRNA-based therapeutic, has recently been licensed. Nonetheless, the clinical manifestations of acute porphyrias are multifaceted and do not limit themselves to acute attacks. In particular, porphyria-associated kidney disease (PAKD) is a distinct, long-term degenerating condition with specific pathological and clinical features, for which a satisfactory treatment is not available yet. In PAKD, chronic tubule-interstitial damage has been most commonly reported, though other pathologic features (e.g., chronic fibrous intimal hyperplasia) are consistent findings. Given the relevant role of the kidney in porphyrin metabolism, the mechanisms possibly intervening in causing renal damage in AHPs are different: among others, δ-aminolevulinic acid (ALA)-induced oxidative damage on mitochondria, intracellular toxic aggregation of porphyrins in proximal tubular cells, and derangements in the delicate microcirculatory balances of the kidney might be implicated. The presence of a variant of the human peptide transporter 2 (PEPT2), with a greater affinity to its substrates (including ALA), might confer a greater susceptibility to kidney damage in patients with AHPs. Furthermore, a possible effect of givosiran in worsening kidney function has been observed. In sum, the diagnostic workup of AHPs should always include a baseline evaluation of renal function, and periodic monitoring of the progression of kidney disease in patients with AHPs is strongly recommended. This review outlines the role of the kidney in porphyrin metabolism, the available evidence in support of the current etiologic and pathogenetic hypotheses, and the known clinical features of renal involvement in acute hepatic porphyrias.
Collapse
Affiliation(s)
- Andrea Ricci
- Internal Medicine Unit, Department of Medical and Surgical Science for Children and Adults, Regional Reference Centre for Diagnosing and Management of Porphyrias, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria Policlinico of Modena, Largo del Pozzo 71, 41124 Modena, Italy; (A.R.); (C.C.)
| | - Claudio Carmine Guida
- Interregional Reference Center for the Prevention, Surveillance, Diagnosis and Treatment of Porphyria, Nephrology and Dialysis Unit, Scientific Institute for Research and Health Care, Viale Cappuccini, San Giovanni Rotondo, 71013 Foggia, Italy;
| | - Paola Manzini
- Transfusion Medicine and Blood Establishment, Regional Reference Centre for Diagnosis and Management of Porphyrias, University Hospital City of Science and Health of Torino, 10126 Torino, Italy;
| | - Chiara Cuoghi
- Internal Medicine Unit, Department of Medical and Surgical Science for Children and Adults, Regional Reference Centre for Diagnosing and Management of Porphyrias, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria Policlinico of Modena, Largo del Pozzo 71, 41124 Modena, Italy; (A.R.); (C.C.)
| | - Paolo Ventura
- Internal Medicine Unit, Department of Medical and Surgical Science for Children and Adults, Regional Reference Centre for Diagnosing and Management of Porphyrias, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria Policlinico of Modena, Largo del Pozzo 71, 41124 Modena, Italy; (A.R.); (C.C.)
| |
Collapse
|
9
|
Bustad HJ, Kallio JP, Vorland M, Fiorentino V, Sandberg S, Schmitt C, Aarsand AK, Martinez A. Acute Intermittent Porphyria: An Overview of Therapy Developments and Future Perspectives Focusing on Stabilisation of HMBS and Proteostasis Regulators. Int J Mol Sci 2021; 22:E675. [PMID: 33445488 PMCID: PMC7827610 DOI: 10.3390/ijms22020675] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
Acute intermittent porphyria (AIP) is an autosomal dominant inherited disease with low clinical penetrance, caused by mutations in the hydroxymethylbilane synthase (HMBS) gene, which encodes the third enzyme in the haem biosynthesis pathway. In susceptible HMBS mutation carriers, triggering factors such as hormonal changes and commonly used drugs induce an overproduction and accumulation of toxic haem precursors in the liver. Clinically, this presents as acute attacks characterised by severe abdominal pain and a wide array of neurological and psychiatric symptoms, and, in the long-term setting, the development of primary liver cancer, hypertension and kidney failure. Treatment options are few, and therapies preventing the development of symptomatic disease and long-term complications are non-existent. Here, we provide an overview of the disorder and treatments already in use in clinical practice, in addition to other therapies under development or in the pipeline. We also introduce the pathomechanistic effects of HMBS mutations, and present and discuss emerging therapeutic options based on HMBS stabilisation and the regulation of proteostasis. These are novel mechanistic therapeutic approaches with the potential of prophylactic correction of the disease by totally or partially recovering the enzyme functionality. The present scenario appears promising for upcoming patient-tailored interventions in AIP.
Collapse
Affiliation(s)
- Helene J. Bustad
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway; (H.J.B.); (J.P.K.)
| | - Juha P. Kallio
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway; (H.J.B.); (J.P.K.)
| | - Marta Vorland
- Norwegian Porphyria Centre (NAPOS), Department for Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway; (M.V.); (S.S.)
| | - Valeria Fiorentino
- INSERM U1149, Center for Research on Inflammation (CRI), Université de Paris, 75018 Paris, France; (V.F.); (C.S.)
| | - Sverre Sandberg
- Norwegian Porphyria Centre (NAPOS), Department for Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway; (M.V.); (S.S.)
- Norwegian Organization for Quality Improvement of Laboratory Examinations (Noklus), Haraldsplass Deaconess Hospital, 5009 Bergen, Norway
| | - Caroline Schmitt
- INSERM U1149, Center for Research on Inflammation (CRI), Université de Paris, 75018 Paris, France; (V.F.); (C.S.)
- Assistance Publique Hôpitaux de Paris (AP-HP), Centre Français des Porphyries, Hôpital Louis Mourier, 92700 Colombes, France
| | - Aasne K. Aarsand
- Norwegian Porphyria Centre (NAPOS), Department for Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway; (M.V.); (S.S.)
- Norwegian Organization for Quality Improvement of Laboratory Examinations (Noklus), Haraldsplass Deaconess Hospital, 5009 Bergen, Norway
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway; (H.J.B.); (J.P.K.)
| |
Collapse
|