1
|
Karageorgos FF, Neiros S, Karakasi KE, Vasileiadou S, Katsanos G, Antoniadis N, Tsoulfas G. Artificial kidney: Challenges and opportunities. World J Transplant 2024; 14:89025. [PMID: 38576754 PMCID: PMC10989479 DOI: 10.5500/wjt.v14.i1.89025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/17/2024] [Accepted: 02/04/2024] [Indexed: 03/15/2024] Open
Abstract
This review aims to present the developments occurring in the field of artificial organs and particularly focuses on the presentation of developments in artificial kidneys. The challenges for biomedical engineering involved in overcoming the potential difficulties are showcased, as well as the importance of interdisciplinary collaboration in this marriage of medicine and technology. In this review, modern artificial kidneys and the research efforts trying to provide and promise artificial kidneys are presented. But what are the problems faced by each technology and to what extent is the effort enough to date?
Collapse
Affiliation(s)
- Filippos F Karageorgos
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Stavros Neiros
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Konstantina-Eleni Karakasi
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Stella Vasileiadou
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Georgios Katsanos
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Nikolaos Antoniadis
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Georgios Tsoulfas
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| |
Collapse
|
2
|
Eftekhari A, Maleki Dizaj S, Ahmadian E, Przekora A, Hosseiniyan Khatibi SM, Ardalan M, Zununi Vahed S, Valiyeva M, Mehraliyeva S, Khalilov R, Hasanzadeh M. Application of Advanced Nanomaterials for Kidney Failure Treatment and Regeneration. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2939. [PMID: 34072461 PMCID: PMC8198057 DOI: 10.3390/ma14112939] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/15/2021] [Accepted: 05/27/2021] [Indexed: 11/18/2022]
Abstract
The implementation of nanomedicine not only provides enhanced drug solubility and reduced off-target adverse effects, but also offers novel theranostic approaches in clinical practice. The increasing number of studies on the application of nanomaterials in kidney therapies has provided hope in a more efficient strategy for the treatment of renal diseases. The combination of biotechnology, material science and nanotechnology has rapidly gained momentum in the realm of therapeutic medicine. The establishment of the bedrock of this emerging field has been initiated and an exponential progress is observed which might significantly improve the quality of human life. In this context, several approaches based on nanomaterials have been applied in the treatment and regeneration of renal tissue. The presented review article in detail describes novel strategies for renal failure treatment with the use of various nanomaterials (including carbon nanotubes, nanofibrous membranes), mesenchymal stem cells-derived nanovesicles, and nanomaterial-based adsorbents and membranes that are used in wearable blood purification systems and synthetic kidneys.
Collapse
Affiliation(s)
- Aziz Eftekhari
- Pharmacology and Toxicology Department, Maragheh University of Medical Sciences, Maragheh 7815155158, Iran;
- Russian Institute for Advanced Study, Moscow State Pedagogical University, 1/1, Malaya Pirogovskaya St., 119991 Moscow, Russia;
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 5166614756, Iran;
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz 5166614756, Iran; (S.M.H.K.); (S.Z.V.)
| | - Agata Przekora
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
| | | | - Mohammadreza Ardalan
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz 5166614756, Iran; (S.M.H.K.); (S.Z.V.)
| | - Sepideh Zununi Vahed
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz 5166614756, Iran; (S.M.H.K.); (S.Z.V.)
| | - Mahbuba Valiyeva
- Department of Pharmaceutical Technology and Management, Azerbaijan Medical University, AZ 1022 Baku, Azerbaijan; (M.V.); (S.M.)
| | - Sevil Mehraliyeva
- Department of Pharmaceutical Technology and Management, Azerbaijan Medical University, AZ 1022 Baku, Azerbaijan; (M.V.); (S.M.)
| | - Rovshan Khalilov
- Russian Institute for Advanced Study, Moscow State Pedagogical University, 1/1, Malaya Pirogovskaya St., 119991 Moscow, Russia;
- Department of Biophysics and Biochemistry, Baku State University, AZ 1148 Baku, Azerbaijan
- Institute of Radiation Problems, Azerbaijan National Academy of Sciences, AZ 1001 Baku, Azerbaijan
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz 5166614756, Iran
| |
Collapse
|
3
|
Dang BV, Taylor RA, Charlton AJ, Le-Clech P, Barber TJ. Toward Portable Artificial Kidneys: The Role of Advanced Microfluidics and Membrane Technologies in Implantable Systems. IEEE Rev Biomed Eng 2020; 13:261-279. [DOI: 10.1109/rbme.2019.2933339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Iqbal Z, Kim S, Moyer J, Moses W, Abada E, Wright N, Kim EJ, Park J, Fissell WH, Vartanian S, Roy S. In vitro and in vivo hemocompatibility assessment of ultrathin sulfobetaine polymer coatings for silicon-based implants. J Biomater Appl 2019; 34:297-312. [PMID: 30862226 DOI: 10.1177/0885328219831044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zohora Iqbal
- 1 Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, USA
| | - Steven Kim
- 1 Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, USA
| | - Jarrett Moyer
- 1 Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, USA
| | - Willieford Moses
- 1 Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, USA
| | - Emily Abada
- 1 Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, USA
| | - Nathan Wright
- 1 Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, USA
| | - Eun Jung Kim
- 1 Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, USA
| | - Jaehyun Park
- 1 Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, USA
| | | | - Shant Vartanian
- 3 Division of Vascular & Endovascular Surgery, University of California, San Francisco, USA
| | - Shuvo Roy
- 1 Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, USA
| |
Collapse
|
5
|
Pallotta A, Clarot I, Sobocinski J, Fattal E, Boudier A. Nanotechnologies for Medical Devices: Potentialities and Risks. ACS APPLIED BIO MATERIALS 2018; 2:1-13. [DOI: 10.1021/acsabm.8b00612] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Igor Clarot
- CITHEFOR, Université de Lorraine, F-54000 Nancy, France
| | | | - Elias Fattal
- Institut Galien Paris-Sud, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | | |
Collapse
|
6
|
Legallais C, Kim D, Mihaila SM, Mihajlovic M, Figliuzzi M, Bonandrini B, Salerno S, Yousef Yengej FA, Rookmaaker MB, Sanchez Romero N, Sainz-Arnal P, Pereira U, Pasqua M, Gerritsen KGF, Verhaar MC, Remuzzi A, Baptista PM, De Bartolo L, Masereeuw R, Stamatialis D. Bioengineering Organs for Blood Detoxification. Adv Healthc Mater 2018; 7:e1800430. [PMID: 30230709 DOI: 10.1002/adhm.201800430] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/23/2018] [Indexed: 12/11/2022]
Abstract
For patients with severe kidney or liver failure the best solution is currently organ transplantation. However, not all patients are eligible for transplantation and due to limited organ availability, most patients are currently treated with therapies using artificial kidney and artificial liver devices. These therapies, despite their relative success in preserving the patients' life, have important limitations since they can only replace part of the natural kidney or liver functions. As blood detoxification (and other functions) in these highly perfused organs is achieved by specialized cells, it seems relevant to review the approaches leading to bioengineered organs fulfilling most of the native organ functions. There, the culture of cells of specific phenotypes on adapted scaffolds that can be perfused takes place. In this review paper, first the functions of kidney and liver organs are briefly described. Then artificial kidney/liver devices, bioartificial kidney devices, and bioartificial liver devices are focused on, as well as biohybrid constructs obtained by decellularization and recellularization of animal organs. For all organs, a thorough overview of the literature is given and the perspectives for their application in the clinic are discussed.
Collapse
Affiliation(s)
- Cécile Legallais
- UMR CNRS 7338 Biomechanics & Bioengineering; Université de technologie de Compiègne; Sorbonne Universités; 60203 Compiègne France
| | - Dooli Kim
- (Bio)artificial organs; Department of Biomaterials Science and Technology; Faculty of Science and Technology; TechMed Institute; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Sylvia M. Mihaila
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Milos Mihajlovic
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Marina Figliuzzi
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri; via Stezzano 87 24126 Bergamo Italy
| | - Barbara Bonandrini
- Department of Chemistry; Materials and Chemical Engineering “Giulio Natta”; Politecnico di Milano; Piazza Leonardo da Vinci 32 20133 Milan Italy
| | - Simona Salerno
- Institute on Membrane Technology; National Research Council of Italy; ITM-CNR; Via Pietro BUCCI, Cubo 17C - 87036 Rende Italy
| | - Fjodor A. Yousef Yengej
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Maarten B. Rookmaaker
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | | | - Pilar Sainz-Arnal
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon); 50009 Zaragoza Spain
- Instituto Aragonés de Ciencias de la Salud (IACS); 50009 Zaragoza Spain
| | - Ulysse Pereira
- UMR CNRS 7338 Biomechanics & Bioengineering; Université de technologie de Compiègne; Sorbonne Universités; 60203 Compiègne France
| | - Mattia Pasqua
- UMR CNRS 7338 Biomechanics & Bioengineering; Université de technologie de Compiègne; Sorbonne Universités; 60203 Compiègne France
| | - Karin G. F. Gerritsen
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Marianne C. Verhaar
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Andrea Remuzzi
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri; via Stezzano 87 24126 Bergamo Italy
- Department of Management; Information and Production Engineering; University of Bergamo; viale Marconi 5 24044 Dalmine Italy
| | - Pedro M. Baptista
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon); 50009 Zaragoza Spain
- Department of Management; Information and Production Engineering; University of Bergamo; viale Marconi 5 24044 Dalmine Italy
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas (CIBERehd); 28029 Barcelona Spain
- Fundación ARAID; 50009 Zaragoza Spain
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz; 28040 Madrid Spain. Department of Biomedical and Aerospace Engineering; Universidad Carlos III de Madrid; 28911 Madrid Spain
| | - Loredana De Bartolo
- Institute on Membrane Technology; National Research Council of Italy; ITM-CNR; Via Pietro BUCCI, Cubo 17C - 87036 Rende Italy
| | - Rosalinde Masereeuw
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Dimitrios Stamatialis
- (Bio)artificial organs; Department of Biomaterials Science and Technology; Faculty of Science and Technology; TechMed Institute; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| |
Collapse
|
7
|
Zahn JD. Microdevice Development and Artificial Organs. Artif Organs 2018; 43:17-20. [PMID: 30260017 DOI: 10.1111/aor.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jeffrey D Zahn
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
8
|
Rapid Protocol of Porcine Kidney Decellularization. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2018. [DOI: 10.4028/www.scientific.net/jbbbe.38.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chronic kidney disease is a problem that has grown in recent decades worldwide. The National Kidney Foundation (NKF) estimates that the number of patients will double in the next 10 years. Dialysis and kidney transplantation are the treatments used for chronic kidney disease. There is hope in slowing down chronic kidney disease or even stopping its progression. Bioengineering and cell therapy are the main fields in kidney regeneration research using three-dimensional matrices in which cells are cultured, an ideal solution for scarcity organs for kidney transplantation. The difficulty in re-creating a functional kidney due to the complexity of its three-dimensional structure and its composition of different cell types and that can be incorporated in vivo with low immunogenicity is a very difficult task. Therefore, the aim of the present study was to meet the enormous demand for new treatments, developing strategies of tissue engineering on the basis of the decellularization of the porcine kidney performed through a new cell removal protocol. We determined the effective removal of cells by histologic and immunohistochemical analyses, showing the preservation of type IV collagen and fibronectin. Therefore, this method is a quick way to obtain decellularized porcine kidneys for future recellularization studies.
Collapse
|
9
|
Yeo WS, Zhang YC. Bioengineering in renal transplantation: technological advances and novel options. Pediatr Nephrol 2018; 33:1105-1111. [PMID: 28589209 DOI: 10.1007/s00467-017-3706-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 05/07/2017] [Accepted: 05/11/2017] [Indexed: 01/03/2023]
Abstract
End-stage kidney disease (ESKD) is one of the most prevalent diseases in the world with significant morbidity and mortality. Current modes of renal replacement therapy include dialysis and renal transplantation. Although dialysis is an acceptable mode of renal replacement therapy, it does have its shortcomings, which include poorer life expectancy compared with renal transplantation, risk of infections and vascular thrombosis, lack of vascular access and absence of biosynthetic functions of the kidney. Renal transplantation, in contrast, is the preferred option of renal replacement therapy, with improved morbidity and mortality rates and quality of life, compared with dialysis. Renal transplantation, however, may not be available to all patients with ESKD. Some of the key factors limiting the availability and efficiency of renal transplantation include shortage of donor organs and the constant risk of rejection with complications associated with over-immunosuppression respectively. This review focuses chiefly on the potential roles of bioengineering in overcoming limitations in renal transplantation via the development of cell-based bioartificial dialysis devices as bridging options before renal transplantation, and the development of new sources of organs utilizing cell and organ engineering.
Collapse
Affiliation(s)
- Wee-Song Yeo
- Division of Pediatric Nephrology, Dialysis and Renal Transplantation, Shaw-National Kidney Foundation, National University Hospital Children's Kidney Centre, Khoo Teck Puat-National University, Children's Medical Institute, National University Health System, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore.
| | - Yao-Chun Zhang
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
10
|
van Gelder MK, Mihaila SM, Jansen J, Wester M, Verhaar MC, Joles JA, Stamatialis D, Masereeuw R, Gerritsen KGF. From portable dialysis to a bioengineered kidney. Expert Rev Med Devices 2018; 15:323-336. [PMID: 29633900 DOI: 10.1080/17434440.2018.1462697] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Since the advent of peritoneal dialysis (PD) in the 1970s, the principles of dialysis have changed little. In the coming decades, several major breakthroughs are expected. AREAS COVERED Novel wearable and portable dialysis devices for both hemodialysis (HD) and PD are expected first. The HD devices could facilitate more frequent and longer dialysis outside of the hospital, while improving patient's mobility and autonomy. The PD devices could enhance blood purification and increase technique survival of PD. Further away from clinical application is the bioartificial kidney, containing renal cells. Initially, the bioartificial kidney could be applied for extracorporeal treatment, to partly replace renal tubular endocrine, metabolic, immunoregulatory and secretory functions. Subsequently, intracorporeal treatment may become possible. EXPERT COMMENTARY Key factors for successful implementation of miniature dialysis devices are patient attitudes and cost-effectiveness. A well-functioning and safe extracorporeal blood circuit is required for HD. For PD, a double lumen PD catheter would optimize performance. Future research should focus on further miniaturization of the urea removal strategy. For the bio-artificial kidney (BAK), cost effectiveness should be determined and a general set of functional requirements should be defined for future studies. For intracorporeal application, water reabsorption will become a major challenge.
Collapse
Affiliation(s)
- Maaike K van Gelder
- a Department of Nephrology and Hypertension, University Medical Center Utrecht and Regenerative Medicine Utrecht , Utrecht University , Utrecht , The Netherlands
| | - Silvia M Mihaila
- a Department of Nephrology and Hypertension, University Medical Center Utrecht and Regenerative Medicine Utrecht , Utrecht University , Utrecht , The Netherlands.,b Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Utrecht , The Netherlands
| | - Jitske Jansen
- b Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Utrecht , The Netherlands
| | - Maarten Wester
- a Department of Nephrology and Hypertension, University Medical Center Utrecht and Regenerative Medicine Utrecht , Utrecht University , Utrecht , The Netherlands
| | - Marianne C Verhaar
- a Department of Nephrology and Hypertension, University Medical Center Utrecht and Regenerative Medicine Utrecht , Utrecht University , Utrecht , The Netherlands
| | - Jaap A Joles
- a Department of Nephrology and Hypertension, University Medical Center Utrecht and Regenerative Medicine Utrecht , Utrecht University , Utrecht , The Netherlands
| | - Dimitrios Stamatialis
- c (Bio)artificial organs, Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Engineering and Technical Medicine , University of Twente , Enschede , The Netherlands
| | - Roos Masereeuw
- b Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Utrecht , The Netherlands
| | - Karin G F Gerritsen
- a Department of Nephrology and Hypertension, University Medical Center Utrecht and Regenerative Medicine Utrecht , Utrecht University , Utrecht , The Netherlands
| |
Collapse
|
11
|
Cheah WK, Ishikawa K, Othman R, Yeoh FY. Nanoporous biomaterials for uremic toxin adsorption in artificial kidney systems: A review. J Biomed Mater Res B Appl Biomater 2016; 105:1232-1240. [PMID: 26913694 DOI: 10.1002/jbm.b.33475] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 05/03/2015] [Accepted: 06/05/2015] [Indexed: 12/22/2022]
Abstract
Hemodialysis, one of the earliest artificial kidney systems, removes uremic toxins via diffusion through a semipermeable porous membrane into the dialysate fluid. Miniaturization of the present hemodialysis system into a portable and wearable device to maintain continuous removal of uremic toxins would require that the amount of dialysate used within a closed-system is greatly reduced. Diffused uremic toxins within a closed-system dialysate need to be removed to maintain the optimum concentration gradient for continuous uremic toxin removal by the dialyzer. In this dialysate regenerative system, adsorption of uremic toxins by nanoporous biomaterials is essential. Throughout the years of artificial kidney development, activated carbon has been identified as a potential adsorbent for uremic toxins. Adsorption of uremic toxins necessitates nanoporous biomaterials, especially activated carbon. Nanoporous biomaterials are also utilized in hemoperfusion for uremic toxin removal. Further miniaturization of artificial kidney system and improvements on uremic toxin adsorption capacity would require high performance nanoporous biomaterials which possess not only higher surface area, controlled pore size, but also designed architecture or structure and surface functional groups. This article reviews on various nanoporous biomaterials used in current artificial kidney systems and several emerging nanoporous biomaterials. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1232-1240, 2017.
Collapse
Affiliation(s)
- Wee-Keat Cheah
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia
| | - Kunio Ishikawa
- Department of Biomaterials, Kyushu University, Fukuoka, Nishi Ward, Japan
| | - Radzali Othman
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia.,Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100n, Durian Tunggal, Malacca, Malaysia
| | - Fei-Yee Yeoh
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia
| |
Collapse
|
12
|
Alberdi A, Aztiria A, Basarab A. Towards an automatic early stress recognition system for office environments based on multimodal measurements: A review. J Biomed Inform 2015; 59:49-75. [PMID: 26621099 DOI: 10.1016/j.jbi.2015.11.007] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 11/16/2015] [Accepted: 11/19/2015] [Indexed: 01/07/2023]
Abstract
Stress is a major problem of our society, as it is the cause of many health problems and huge economic losses in companies. Continuous high mental workloads and non-stop technological development, which leads to constant change and need for adaptation, makes the problem increasingly serious for office workers. To prevent stress from becoming chronic and provoking irreversible damages, it is necessary to detect it in its early stages. Unfortunately, an automatic, continuous and unobtrusive early stress detection method does not exist yet. The multimodal nature of stress and the research conducted in this area suggest that the developed method will depend on several modalities. Thus, this work reviews and brings together the recent works carried out in the automatic stress detection looking over the measurements executed along the three main modalities, namely, psychological, physiological and behavioural modalities, along with contextual measurements, in order to give hints about the most appropriate techniques to be used and thereby, to facilitate the development of such a holistic system.
Collapse
Affiliation(s)
- Ane Alberdi
- Mondragon University, Electronics and Computing Department, Goiru Kalea, 2, Arrasate 20500, Spain.
| | - Asier Aztiria
- Mondragon University, Electronics and Computing Department, Goiru Kalea, 2, Arrasate 20500, Spain.
| | - Adrian Basarab
- Université de Toulouse, IRIT, CNRS UMR 5505, Université Paul Sabatier, Toulouse, France.
| |
Collapse
|
13
|
Kim S, Fissell WH, Humes DH, Roy S. Current strategies and challenges in engineering a bioartificial kidney. Front Biosci (Elite Ed) 2015; 7:215-28. [PMID: 25553375 DOI: 10.2741/e729] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Renal replacement therapy was an early pioneer in both extra-corporeal organ replacement and whole organ transplantation. Today, the success of this pioneering work is directly demonstrated in the millions of patients worldwide successfully treated with dialysis and kidney transplantation. However, there remain significant shortcomings to current treatment modalities that limit clinical outcomes and quality of life. To address these problems, researchers have turned to using cell-based therapies for the development of a bioartificial kidney. These approaches aim to recapitulate the numerous functions of the healthy kidney including solute clearance, fluid homeostasis and metabolic and endocrine functions. This review will examine the state-of-the-art in kidney bioengineering by evaluating the various techniques currently being utilized to create a bioartificial kidney. These promising new technologies, however, still need to address key issues that may limit the widespread adoption of cell therapy including cell sourcing, organ scaffolding, and immune response. Additionally, while these new methods have shown success in animal models, it remains to be seen whether these techniques can be successfully adapted for clinical treatment in humans.
Collapse
Affiliation(s)
- Steven Kim
- Division of Nephrology, Department of Medicine, University of California, San Francisco
| | - William H Fissell
- Division of Nephrology, Department of Medicine, University of California, San Francisco
| | - David H Humes
- Division of Nephrology, Department of Medicine, University of California, San Francisco
| | - Shuvo Roy
- Division of Nephrology, Department of Medicine, University of California, San Francisco
| |
Collapse
|
14
|
Biotechnological challenges of bioartificial kidney engineering. Biotechnol Adv 2014; 32:1317-1327. [PMID: 25135479 DOI: 10.1016/j.biotechadv.2014.08.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/05/2014] [Accepted: 08/09/2014] [Indexed: 12/14/2022]
Abstract
With the world-wide increase of patients with renal failure, the development of functional renal replacement therapies have gained significant interest and novel technologies are rapidly evolving. Currently used renal replacement therapies insufficiently remove accumulating waste products, resulting in the uremic syndrome. A more preferred treatment option is kidney transplantation, but the shortage of donor organs and the increasing number of patients waiting for a transplant warrant the development of novel technologies. The bioartificial kidney (BAK) is such promising biotechnological approach to replace essential renal functions together with the active secretion of waste products. The development of the BAK requires a multidisciplinary approach and evolves at the intersection of regenerative medicine and renal replacement therapy. Here we provide a concise review embracing a compact historical overview of bioartificial kidney development and highlighting the current state-of-the-art, including implementation of living-membranes and the relevance of extracellular matrices. We focus further on the choice of relevant renal epithelial cell lines versus the use of stem cells and co-cultures that need to be implemented in a suitable device. Moreover, the future of the BAK in regenerative nephrology is discussed.
Collapse
|
15
|
Humes HD, Buffington D, Westover AJ, Roy S, Fissell WH. The bioartificial kidney: current status and future promise. Pediatr Nephrol 2014; 29:343-51. [PMID: 23619508 DOI: 10.1007/s00467-013-2467-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 03/07/2013] [Accepted: 03/08/2013] [Indexed: 01/10/2023]
Abstract
The rapid understanding of the cellular and molecular bases of organ function and disease processes will be translated in the next decade into new therapeutic approaches to a wide range of clinical disorders, including acute and chronic renal failure. Central to these new therapies are the developing technologies of cell therapy and tissue engineering, which are based on the ability to expand stem or progenitor cells in tissue culture to perform differentiated tasks and to introduce these cells into the patient either via extracorporeal circuits or as implantable constructs. Cell therapy devices are currently being developed to replace the filtrative, metabolic, and endocrinologic functions of the kidney lost in both acute and chronic renal failure. This review summarizes the current state of development of a wearable or implantable bioartificial kidney. These devices have the promise to be combined to produce a wearable or implantable bioartificial kidney for full renal replacement therapy that may significantly diminish morbidity and mortality in patients with acute or chronic kidney disease.
Collapse
Affiliation(s)
- H David Humes
- Innovative BioTherapies, Inc., 650 Avis Dr., Suite 300, Ann Arbor, MI, 48108, USA,
| | | | | | | | | |
Collapse
|
16
|
Kim JC, Garzotto F, Nalesso F, Cruz D, Kim JH, Kang E, Kim HC, Ronco C. A wearable artificial kidney: technical requirements and potential solutions. Expert Rev Med Devices 2014; 8:567-79. [DOI: 10.1586/erd.11.33] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Kim S, Roy S. Microelectromechanical systems and nephrology: the next frontier in renal replacement technology. Adv Chronic Kidney Dis 2013; 20:516-35. [PMID: 24206604 PMCID: PMC3866020 DOI: 10.1053/j.ackd.2013.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/22/2013] [Indexed: 11/11/2022]
Abstract
Microelectromechanical systems (MEMS) are playing a prominent role in the development of many new and innovative biomedical devices, but they remain a relatively underused technology in nephrology. The future landscape of clinical medicine and research will only see further expansion of MEMS-based technologies in device designs and applications. This enthusiasm stems from the ability to create small-scale device features with high precision in a cost-effective manner. MEMS also offers the possibility to integrate multiple components into a single device. The adoption of MEMS has the potential to revolutionize how nephrologists manage kidney disease by improving the delivery of renal replacement therapies and enhancing the monitoring of physiologic parameters. To introduce nephrologists to MEMS, this review will first define relevant terms and describe the basic processes used to fabricate devices. Next, a survey of MEMS devices being developed for various biomedical applications will be illustrated with current examples. Finally, MEMS technology specific to nephrology will be highlighted and future applications will be examined. The adoption of MEMS offers novel avenues to improve the care of kidney disease patients and assist nephrologists in clinical practice. This review will serve as an introduction for nephrologists to the exciting world of MEMS.
Collapse
Affiliation(s)
- Steven Kim
- Department of Bioengineering & Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, San Francisco, CA 94158
- Division of Nephrology, Department of Medicine, School of Medicine, University of California, San Francisco, San Francisco, CA 94158
| | - Shuvo Roy
- Department of Bioengineering & Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, San Francisco, CA 94158
| |
Collapse
|
18
|
Takahashi H, Sawada K, Kakuta T, Suga T, Hanai K, Kanai G, Fujimura S, Sanechika N, Terachi T, Fukagawa M, Saito A. Evaluation of bioartificial renal tubule device prepared with human renal proximal tubular epithelial cells cultured in serum-free medium. J Artif Organs 2013; 16:368-75. [DOI: 10.1007/s10047-013-0710-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 04/17/2013] [Indexed: 10/26/2022]
|
19
|
Novel techniques and innovation in blood purification: a clinical update from Kidney Disease: Improving Global Outcomes. Kidney Int 2013; 83:359-71. [DOI: 10.1038/ki.2012.450] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Affiliation(s)
- Jeong Chul Kim
- Department of Nephrology, Dialysis and Transplantation, International Renal Research Institute, St. Bortolo Hospital, Vicenza, Italy
| | | |
Collapse
|
21
|
Chan M, Estève D, Fourniols JY, Escriba C, Campo E. Smart wearable systems: current status and future challenges. Artif Intell Med 2012; 56:137-56. [PMID: 23122689 DOI: 10.1016/j.artmed.2012.09.003] [Citation(s) in RCA: 268] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/12/2012] [Accepted: 09/19/2012] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Extensive efforts have been made in both academia and industry in the research and development of smart wearable systems (SWS) for health monitoring (HM). Primarily influenced by skyrocketing healthcare costs and supported by recent technological advances in micro- and nanotechnologies, miniaturisation of sensors, and smart fabrics, the continuous advances in SWS will progressively change the landscape of healthcare by allowing individual management and continuous monitoring of a patient's health status. Consisting of various components and devices, ranging from sensors and actuators to multimedia devices, these systems support complex healthcare applications and enable low-cost wearable, non-invasive alternatives for continuous 24-h monitoring of health, activity, mobility, and mental status, both indoors and outdoors. Our objective has been to examine the current research in wearable to serve as references for researchers and provide perspectives for future research. METHODS Herein, we review the current research and development of and the challenges facing SWS for HM, focusing on multi-parameter physiological sensor systems and activity and mobility measurement system designs that reliably measure mobility or vital signs and integrate real-time decision support processing for disease prevention, symptom detection, and diagnosis. For this literature review, we have chosen specific selection criteria to include papers in which wearable systems or devices are covered. RESULTS We describe the state of the art in SWS and provide a survey of recent implementations of wearable health-care systems. We describe current issues, challenges, and prospects of SWS. CONCLUSION We conclude by identifying the future challenges facing SWS for HM.
Collapse
Affiliation(s)
- Marie Chan
- Laboratory for Analysis and Architecture of Systems, National Center for Scientific Research, 7 Avenue du Colonel Roche, F-31400 Toulouse, France.
| | | | | | | | | |
Collapse
|
22
|
Saito A, Sawada K, Fujimura S, Suzuki H, Hirukawa T, Tatsumi R, Kanai G, Takahashi H, Miyakogawa T, Sanechika N, Fukagawa M, Kakuta T. Evaluation of bioartificial renal tubule device prepared with lifespan-extended human renal proximal tubular epithelial cells. Nephrol Dial Transplant 2012; 27:3091-9. [DOI: 10.1093/ndt/gfr755] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
23
|
Kang J, Scholz T, Weaver JD, Ku DN, Rosen DW. Pump Design for a Portable Renal Replacement System. J Med Device 2011. [DOI: 10.1115/1.4004650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This work proposes a small, light, valveless pump design for a portable renal replacement system. By analyzing the working principle of the pump and exploring the design space using an analytical pump model, we developed a novel design for a cam-driven finger pump. Several cams sequentially compress fingers, which compress flexible tubes; thus eliminating valves. Changing the speed of the motor or size of the tube controls the flow rate. In vitro experiments conducted with whole blood using the pump measured Creatinine levels over time, and the results verify the design for the portable renal replacement system. The proposed pump design is smaller than 153 cm3 and consumes less than 1 W while providing a flow rate of more than 100 ml/min for both blood and dialysate flows. The smallest pump of a portable renal replacement system in the literature uses check valves, which considerably increase the overall manufacturing cost and possibility of blood clotting. Compared to that pump, the proposed pump design achieved reduction in size by 52% and savings in energy consumption by 89% with the removal of valves. This simple and reliable design substantially reduces the size requirements of a portable renal replacement system.
Collapse
Affiliation(s)
- Jane Kang
- Georgia Institute of Technology, Atlanta, GA
| | | | - Jason D. Weaver
- Georgia Institute of Technology and Emory University, Atlanta, GA
| | - David N. Ku
- Georgia Institute of Technology and Emory University, Atlanta, GA
| | | |
Collapse
|
24
|
Suwanpayak N, Jalil MA, Aziz MS, Ismail FD, Ali J, Yupapin PP. Blood cleaner on-chip design for artificial human kidney manipulation. Int J Nanomedicine 2011; 6:957-64. [PMID: 21720507 PMCID: PMC3124399 DOI: 10.2147/ijn.s19077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Indexed: 11/23/2022] Open
Abstract
A novel design of a blood cleaner on-chip using an optical waveguide known as a PANDA ring resonator is proposed. By controlling some suitable parameters, the optical vortices (gradient optical fields/wells) can be generated and used to form the trapping tools in the same way as optical tweezers. In operation, the trapping force is formed by the combination between the gradient field and scattering photons by using the intense optical vortices generated within the PANDA ring resonator. This can be used for blood waste trapping and moves dynamically within the blood cleaner on-chip system (artificial kidney), and is performed within the wavelength routers. Finally, the blood quality test is exploited by the external probe before sending to the destination. The advantage of the proposed kidney on-chip system is that the unwanted substances can be trapped and filtered from the artificial kidney, which can be available for blood cleaning applications.
Collapse
Affiliation(s)
- N Suwanpayak
- Nanoscale Science and Engineering Research Alliance (N’SERA), Advanced Research Center for Photonics, Faculty of Science, King Mongkut’s Institute of Technology, Ladkrabang, Bangkok, Thailand
| | - MA Jalil
- Ibnu Sina Institute of Fundamental Science Studies (IIS)
| | - MS Aziz
- Institute of Advanced Photonics Science, Nanotechnology Research Alliance, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - FD Ismail
- Institute of Advanced Photonics Science, Nanotechnology Research Alliance, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - J Ali
- Institute of Advanced Photonics Science, Nanotechnology Research Alliance, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - PP Yupapin
- Nanoscale Science and Engineering Research Alliance (N’SERA), Advanced Research Center for Photonics, Faculty of Science, King Mongkut’s Institute of Technology, Ladkrabang, Bangkok, Thailand
| |
Collapse
|
25
|
Teo JCM, Ng RRG, Ng CP, Lin AWH. Surface characteristics of acrylic modified polysulfone membranes improves renal proximal tubule cell adhesion and spreading. Acta Biomater 2011; 7:2060-9. [PMID: 21236368 DOI: 10.1016/j.actbio.2011.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 12/28/2010] [Accepted: 01/07/2011] [Indexed: 11/16/2022]
Abstract
Current polyvinylpyrrolidone-modified polysulfone (PVP-PSU) membranes in haemodialysers do not facilitate the attachment and proliferation of renal proximal tubule cells (RPTCs). For bioartificial kidney (BAK) development expensive extracellular matrices are employed to ensure the PVP-PSU membranes can serve as a substrate for RPTCs. In this study we modified PSU using an acrylic monomer (am-PSU) and polymerization using ultraviolet irradiation. We demonstrated that on adjusting the PSU or acrylic content of the membranes the wettability and surface chemistry were altered, and this affected the amount of fibronectin (Fn) that was adsorbed onto the membranes. Using an integrin blocking assay we ascertained that Fn is an important extracellular matrix component that mediates RPTC attachment. The amount of Fn adsorbed also led to different bioresponses of RPTCs, which were evaluated using attachment and proliferation assays and qualitative quantification of vinculin, focal adhesion kinase, zonula occludens and Na(+)/K(+) ATPase. Our optimized membrane, am-PSU1 (21.4% C-O groups, 19.1% PVP-PSU; contact angle 71.5-80.80, PVP-PSU: 52.4-67.50), supports a confluent monolayer of RPTCs and prevents creatinine and inulin diffusion from the apical to the basal side, meeting the requirements for application in BAKs. However, further in vivo evaluation to assess the full functionality of RPTCs on am-PSU1 is required.
Collapse
|
26
|
Muthusubramaniam L, Lowe R, Fissell WH, Li L, Marchant RE, Desai TA, Roy S. Hemocompatibility of silicon-based substrates for biomedical implant applications. Ann Biomed Eng 2011; 39:1296-305. [PMID: 21287275 PMCID: PMC3069312 DOI: 10.1007/s10439-011-0256-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 01/18/2011] [Indexed: 11/24/2022]
Abstract
Silicon membranes with highly uniform nanopore sizes fabricated using microelectromechanical systems (MEMS) technology allow for the development of miniaturized implants such as those needed for renal replacement therapies. However, the blood compatibility of silicon has thus far been an unresolved issue in the use of these substrates in implantable biomedical devices. We report the results of hemocompatibility studies using bare silicon, polysilicon, and modified silicon substrates. The surface modifications tested have been shown to reduce protein and/or platelet adhesion, thus potentially improving biocompatibility of silicon. Hemocompatibility was evaluated under four categories—coagulation (thrombin–antithrombin complex, TAT generation), complement activation (complement protein, C3a production), platelet activation (P-selectin, CD62P expression), and platelet adhesion. Our tests revealed that all silicon substrates display low coagulation and complement activation, comparable to that of Teflon and stainless steel, two materials commonly used in medical implants, and significantly lower than that of diethylaminoethyl (DEAE) cellulose, a polymer used in dialysis membranes. Unmodified silicon and polysilicon showed significant platelet attachment; however, the surface modifications on silicon reduced platelet adhesion and activation to levels comparable to that on Teflon. These results suggest that surface-modified silicon substrates are viable for the development of miniaturized renal replacement systems.
Collapse
Affiliation(s)
- Lalitha Muthusubramaniam
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, Box 2520, QB3 Second Floor BH203, San Francisco, CA 94158-2330 USA
- Joint Graduate Group in Bioengineering, University of California, San Francisco–University of California, Berkeley, San Francisco, CA USA
| | - Rachel Lowe
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, Box 2520, QB3 Second Floor BH203, San Francisco, CA 94158-2330 USA
| | - William H. Fissell
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH USA
- Department of Nephrology and Hypertension, Cleveland Clinic, Cleveland, OH USA
| | - Lingyan Li
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH USA
| | - Roger E. Marchant
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH USA
| | - Tejal A. Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, Box 2520, QB3 Second Floor BH203, San Francisco, CA 94158-2330 USA
- Joint Graduate Group in Bioengineering, University of California, San Francisco–University of California, Berkeley, San Francisco, CA USA
| | - Shuvo Roy
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, Box 2520, QB3 Second Floor BH203, San Francisco, CA 94158-2330 USA
- Joint Graduate Group in Bioengineering, University of California, San Francisco–University of California, Berkeley, San Francisco, CA USA
| |
Collapse
|
27
|
Leonard EF, Cortell S, Jones J. The path to wearable ultrafiltration and dialysis devices. Blood Purif 2011; 31:92-5. [PMID: 21228574 DOI: 10.1159/000321846] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Wearable blood processing devices offer an attractive solution to problems inherent in clinic-based, intermittent end-stage renal disease therapies. What is involved in transitioning even a part of the current clinic-based population to ambulatory therapy has not been clearly enumerated. This paper addresses what a first-generation wearable device might accomplish, how issues of safety will need to be addressed, and what will make the device attractive to, and manageable by, the patient. Medical, technological, and economic issues are identified.
Collapse
Affiliation(s)
- Edward F Leonard
- Artificial Organs Research Laboratory, Department of Chemical Engineering, Columbia University, 500 West 120 Street, New York, NY 10027, USA.
| | | | | |
Collapse
|
28
|
Fleming GM. Renal replacement therapy review: past, present and future. Organogenesis 2011; 7:2-12. [PMID: 21289478 PMCID: PMC3082028 DOI: 10.4161/org.7.1.13997] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Accepted: 10/21/2010] [Indexed: 11/19/2022] Open
Abstract
Support of renal function in modern times encompasses a wide array of methods and clinical scenarios, from the ambulatory patient to the critically ill. The ability to safely and routinely deliver ongoing organ support in the outpatient setting has until recently separated renal replacement therapy from other organ support. Renal replacement therapy (RRT) can be applied intermittently or continuously using extracorporeal (hemodialysis) or paracorporeal (peritoneal dialysis) methods. The purpose of this article is to familiarize the reader with the history, physiology, mode, dose, equipment and future of renal replacement therapy and not to detail the technical methods employed for blood purification.
Collapse
Affiliation(s)
- Geoffrey M Fleming
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
29
|
Tasnim F, Deng R, Hu M, Liour S, Li Y, Ni M, Ying JY, Zink D. Achievements and challenges in bioartificial kidney development. FIBROGENESIS & TISSUE REPAIR 2010; 3:14. [PMID: 20698955 PMCID: PMC2925816 DOI: 10.1186/1755-1536-3-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 08/10/2010] [Indexed: 12/23/2022]
Abstract
Bioartificial kidneys (BAKs) combine a conventional hemofilter in series with a bioreactor unit containing renal epithelial cells. The epithelial cells derived from the renal tubule should provide transport, metabolic, endocrinologic and immunomodulatory functions. Currently, primary human renal proximal tubule cells are most relevant for clinical applications. However, the use of human primary cells is associated with many obstacles, and the development of alternatives and an unlimited cell source is one of the most urgent challenges. BAKs have been applied in Phase I/II and Phase II clinical trials for the treatment of critically ill patients with acute renal failure. Significant effects on cytokine concentrations and long-term survival were observed. A subsequent Phase IIb clinical trial was discontinued after an interim analysis, and these results showed that further intense research on BAK-based therapies for acute renal failure was required. Development of BAK-based therapies for the treatment of patients suffering from end-stage renal disease is even more challenging, and related problems and research approaches are discussed herein, along with the development of mobile, portable, wearable and implantable devices.
Collapse
Affiliation(s)
- Farah Tasnim
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Datta S, Conlisk AT, Kanani DM, Zydney AL, Fissell WH, Roy S. Characterizing the surface charge of synthetic nanomembranes by the streaming potential method. J Colloid Interface Sci 2010; 348:85-95. [PMID: 20462592 PMCID: PMC2900191 DOI: 10.1016/j.jcis.2010.04.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 04/08/2010] [Accepted: 04/09/2010] [Indexed: 11/26/2022]
Abstract
The inference of the surface charge of polyethylene glycol (PEG)-coated and uncoated silicon membranes with nanoscale pore sizes from streaming potential measurements in the presence of finite electric double layer (EDL) effects is studied theoretically and experimentally. The developed theoretical model for inferring the pore wall surface charge density from streaming potential measurements is applicable to arbitrary pore cross-sectional shapes and accounts for the effect of finite salt concentration on the ionic mobilities and the thickness of the deposited layer of PEG. Theoretical interpretation of the streaming potential data collected from silicon membranes having nanoscale pore sizes, with/without pore wall surface modification with PEG, indicates that finite electric double layer (EDL) effects in the pore-confined electrolyte significantly affect the interpretation of the membrane charge and that surface modification with PEG leads to a reduction in the pore wall surface charge density. The theoretical model is also used to study the relative significance of the following uniquely nanoscale factors affecting the interpretation of streaming potential in moderate to strongly charged pores: altered net charge convection by applied pressure differentials, surface-charge effects on ionic conduction, and electroosmotic convection of charges.
Collapse
Affiliation(s)
- Subhra Datta
- Department of Mechanical Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, OH 43210, USA
| | - A. T. Conlisk
- Department of Mechanical Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, OH 43210, USA
| | - Dharmesh M. Kanani
- 158 Fenske Laboratory, Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802
| | - Andrew L. Zydney
- 158 Fenske Laboratory, Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802
| | - William H. Fissell
- Departments of Nephrology and Hypertension and Biomedical Engineering, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Shuvo Roy
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW The term 'renal replacement therapy' has been employed for describing dialytic interventions for acute and chronic patients. The implications of this terminology do not correctly reflect the extent that we are able to address native renal function. Provision of correct terminology to describe dialytic therapies may provide insight and investigation into the 'nonreplaceable' aspects of renal function in the acute and chronic settings. RECENT FINDINGS The terms 'chronic kidney disease' and 'acute kidney injury' have replaced the terms chronic renal failure and acute renal failure, respectively. Changing terminology has improved definitions and clinical care in these patient groups. Improvements in dialytic therapies have not been paralleled by changes in our understanding of the native renal function components that are not replaced during dialysis. SUMMARY A paradigm shift in our understanding of replacement of renal function is necessary. The terminology of 'renal replacement therapy' should be supplanted by more appropriate terminology, 'renal supportive therapy'. The benefits of employing terminology that adequately reflects the extent to which we can offer supportive dialytic treatment to our acute and chronic patients may be realized as a significant stimulus for scientific investigation and clinical care improvements.
Collapse
|
32
|
Cell culture on MEMS platforms: a review. Int J Mol Sci 2009; 10:5411-5441. [PMID: 20054478 PMCID: PMC2802002 DOI: 10.3390/ijms10125411] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 12/13/2009] [Accepted: 12/16/2009] [Indexed: 01/09/2023] Open
Abstract
Microfabricated systems provide an excellent platform for the culture of cells, and are an extremely useful tool for the investigation of cellular responses to various stimuli. Advantages offered over traditional methods include cost-effectiveness, controllability, low volume, high resolution, and sensitivity. Both biocompatible and bio-incompatible materials have been developed for use in these applications. Biocompatible materials such as PMMA or PLGA can be used directly for cell culture. However, for bio-incompatible materials such as silicon or PDMS, additional steps need to be taken to render these materials more suitable for cell adhesion and maintenance. This review describes multiple surface modification strategies to improve the biocompatibility of MEMS materials. Basic concepts of cell-biomaterial interactions, such as protein adsorption and cell adhesion are covered. Finally, the applications of these MEMS materials in Tissue Engineering are presented.
Collapse
|
33
|
Rastogi A, Nissenson AR. Technological Advances in Renal Replacement Therapy. Clin J Am Soc Nephrol 2009; 4:S132-S136. [DOI: 10.2215/cjn.02860409] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
34
|
Construction of bioartificial renal tubule assist device in vitro and its function of transporting sodium and glucose. ACTA ACUST UNITED AC 2009; 29:517-21. [PMID: 19662374 DOI: 10.1007/s11596-009-0425-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Indexed: 10/19/2022]
Abstract
To explore a new way of constructing bioartificial renal tubule assist device (RAD) in vitro and its function of transporting sodium (Na(+)) and glucose and to evaluate the application of atomic force microscope in the RAD construction, rat renal tubular epithelial cell line NRK-52E was cultured in vitro, seeded onto the outer surfaces of hollow fibers in a bioreactor, and then cultured for two weeks to construct RAD. Bioreactor hollow fibers without NRK-52E cells were used as control. The morphologies of attached cells were observed with scanning electron microscope, and the junctions of cells and polysulfone membrane were observed with atomic force microscope. Transportation of Na(+) and glucose was measured. Oubaine and phlorizin were used to inhibit the transporting property. The results showed that NRK-52E cells and polysulfone membrane were closely linked, as observed under atomic force microscope. After exposure to oubaine and phlorizin, transporting rates of Na(+) and glucose were decreased significantly in the RAD group as compared with that in the control group (P<0.01). Furthermore, when the inhibitors were removed, transportation of Na(+) and glucose was restored. It is concluded that a new RAD was constructed successfully in vitro, and it is able to selectively transport Na(+) and glucose.
Collapse
|
35
|
Fu G, Soboyejo W. Cell/surface interactions of human osteo-sarcoma (HOS) cells and micro-patterned polydimelthylsiloxane (PDMS) surfaces. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2009. [DOI: 10.1016/j.msec.2009.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Fissell WH, Dubnisheva A, Eldridge AN, Fleischman AJ, Zydney AL, Roy S. High-Performance Silicon Nanopore Hemofiltration Membranes. J Memb Sci 2009; 326:58-63. [PMID: 20054402 DOI: 10.1016/j.memsci.2008.09.039] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Silicon micromachining provides the precise control of nanoscale features that can be fundamentally enabling for miniaturized, implantable medical devices. Concerns have been raised regarding blood biocompatibility of silicon-based materials and their application to hemodialysis and hemofiltration. A high-performance ultrathin hemofiltration membrane with monodisperse slit-shaped pores was fabricated using a sacrificial oxide technique and then surface-modified with poly(ethylene glycol) (PEG). Fluid and macromolecular transport matched model predictions well. Protein adsorption, fouling, and thrombosis were significantly inhibited by the PEG. The membrane retained hydraulic permeability and molecular selectivity during a 90 hour hemofiltration experiment with anticoagulated bovine whole blood. This is the first report of successful prolonged hemofiltration with a silicon nanopore membrane. The results demonstrate feasibility of renal replacement devices based on these membranes and materials.
Collapse
Affiliation(s)
- William H Fissell
- Departments of Nephrology and Hypertension, Cleveland Clinic, Cleveland, Ohio
| | | | | | | | | | | |
Collapse
|