1
|
Alwan M, Feher A, Rifai MA, Sayed A, Yaman AE, Shaikh A, Al-Mallah MH. Advanced cardiac imaging modalities in U.S. heart transplant centers: availability and distribution. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2025:10.1007/s10554-025-03389-8. [PMID: 40183824 DOI: 10.1007/s10554-025-03389-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/23/2025] [Indexed: 04/05/2025]
Abstract
PURPOSE This study evaluates the availability of advanced imaging modalities, including cardiac computed tomography (CCT), cardiac magnetic resonance (CMR), cardiac positron emission tomography (PET), and intravascular ultrasound (IVUS)/optical coherence tomography (OCT), at Medicare-approved heart transplant centers across the United States. METHODS We retrieved the list of Medicare-approved heart transplant centers and data on physicians billing for cardiac imaging procedures from the CMS website. Addresses of billing physicians were matched with those of heart transplant centers to determine the availability of imaging modalities at each center. Additionally, we calculated the number of available imaging modalities and the median volume of studies per center. Further, we mapped heart transplant centers along with their available modalities. RESULTS Of 129 Medicare-approved heart transplant centers, 90.7% offered CCT, 85.3% provided CMR, 74.4% had IVUS/OCT, and 55% offered cardiac PET. Only 39.5% of centers had all four modalities available. Geographic disparities were observed, with clustering of centers and modalities in the Northeast and West Coast and fewer centers in the Midwest. CONCLUSION This study highlights disparities in the availability of advanced imaging modalities in heart transplant centers across the United States. While CCT and CMR are widely available, the availability of cardiac PET and IVUS/OCT remains limited.
Collapse
Affiliation(s)
- Maria Alwan
- Houston Methodist Academic Institute, Weill Cornell Medicine, Houston Methodist DeBakey Heart and Vascular Center, 6550 Fannin Street, Smith Tower - Suite 1801, Houston, TX, 77030, USA
| | - Attila Feher
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Mahmoud Al Rifai
- Houston Methodist Academic Institute, Weill Cornell Medicine, Houston Methodist DeBakey Heart and Vascular Center, 6550 Fannin Street, Smith Tower - Suite 1801, Houston, TX, 77030, USA
| | - Ahmed Sayed
- Houston Methodist Academic Institute, Weill Cornell Medicine, Houston Methodist DeBakey Heart and Vascular Center, 6550 Fannin Street, Smith Tower - Suite 1801, Houston, TX, 77030, USA
| | - Ahmad El Yaman
- Houston Methodist Academic Institute, Weill Cornell Medicine, Houston Methodist DeBakey Heart and Vascular Center, 6550 Fannin Street, Smith Tower - Suite 1801, Houston, TX, 77030, USA
| | - Asim Shaikh
- Houston Methodist Academic Institute, Weill Cornell Medicine, Houston Methodist DeBakey Heart and Vascular Center, 6550 Fannin Street, Smith Tower - Suite 1801, Houston, TX, 77030, USA
| | - Mouaz H Al-Mallah
- Houston Methodist Academic Institute, Weill Cornell Medicine, Houston Methodist DeBakey Heart and Vascular Center, 6550 Fannin Street, Smith Tower - Suite 1801, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Quinn S, Catania R, Appadurai V, Wilcox JE, Weinberg RL, Lee DC, Carr JC, Markl M, Allen BD, Avery R. Cardiac MRI in Heart Transplantation: Approaches and Clinical Insights. Radiographics 2025; 45:e240142. [PMID: 39883577 DOI: 10.1148/rg.240142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Orthotopic heart transplant (OHT) is a well-established therapy for end-stage heart failure that leads to improved long-term survival rates, with careful allograft surveillance essential for optimizing clinical outcomes after OHT. Unfortunately, complications can arise after OHT that can compromise the success of the OHT. Cardiac MRI is continually evolving, with a range of advanced techniques that can be applied to evaluate allograft structure and function. Understanding the unique features of cardiac MRI in OHT recipients, identifying findings suggestive of acute or chronic complications, and recognizing the limitations of this imaging modality are essential for accurate interpretation of cardiac MRI findings and subsequent clinical reporting. The authors address the anticipated postsurgical anatomy and functionality of the OHT. Emphasis is placed on the advanced functional and tissue characterization features that can be seen in the stable OHT recipient, including global longitudinal strain, late gadolinium enhancement, native T1 and T2 mapping, and extracellular volume fraction. Subsequently, the evidence for detection of acute cardiac allograft rejection with cardiac MRI comprehensive tissue characterization techniques and the role of quantitative myocardial perfusion for cardiac allograft vasculopathy screening are discussed, with reference to their comparative standard of reference screening tests, including endomyocardial biopsy, invasive coronary angiography, and myocardial rest and stress perfusion PET/CT. Cardiac MRI has been included in contemporary OHT management guidelines and therefore can be considered a complementary tool for allograft evaluation. The authors demonstrate the complementary role cardiac MRI can play in cardiac allograft surveillance, with clinical examples. ©RSNA, 2025 Supplemental material is available for this article. See the invited commentary by Agarwal in this issue.
Collapse
Affiliation(s)
- Sandra Quinn
- From the Department of Radiology (S.Q., R.C., J.C.C., M.M., B.D.A., R.A.) and the Division of Cardiology, Department of Medicine (V.A., J.E.W., R.L.W., D.C.L.), Northwestern University Feinberg School of Medicine, 737 N Michigan Ave, Ste 1600, Chicago, IL 60611; Prince Charles Hospital, Chermside, Queensland, Australia (V.A.); and the Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, Ill (M.M.)
| | - Roberta Catania
- From the Department of Radiology (S.Q., R.C., J.C.C., M.M., B.D.A., R.A.) and the Division of Cardiology, Department of Medicine (V.A., J.E.W., R.L.W., D.C.L.), Northwestern University Feinberg School of Medicine, 737 N Michigan Ave, Ste 1600, Chicago, IL 60611; Prince Charles Hospital, Chermside, Queensland, Australia (V.A.); and the Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, Ill (M.M.)
| | - Vinesh Appadurai
- From the Department of Radiology (S.Q., R.C., J.C.C., M.M., B.D.A., R.A.) and the Division of Cardiology, Department of Medicine (V.A., J.E.W., R.L.W., D.C.L.), Northwestern University Feinberg School of Medicine, 737 N Michigan Ave, Ste 1600, Chicago, IL 60611; Prince Charles Hospital, Chermside, Queensland, Australia (V.A.); and the Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, Ill (M.M.)
| | - Jane E Wilcox
- From the Department of Radiology (S.Q., R.C., J.C.C., M.M., B.D.A., R.A.) and the Division of Cardiology, Department of Medicine (V.A., J.E.W., R.L.W., D.C.L.), Northwestern University Feinberg School of Medicine, 737 N Michigan Ave, Ste 1600, Chicago, IL 60611; Prince Charles Hospital, Chermside, Queensland, Australia (V.A.); and the Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, Ill (M.M.)
| | - Richard L Weinberg
- From the Department of Radiology (S.Q., R.C., J.C.C., M.M., B.D.A., R.A.) and the Division of Cardiology, Department of Medicine (V.A., J.E.W., R.L.W., D.C.L.), Northwestern University Feinberg School of Medicine, 737 N Michigan Ave, Ste 1600, Chicago, IL 60611; Prince Charles Hospital, Chermside, Queensland, Australia (V.A.); and the Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, Ill (M.M.)
| | - Daniel C Lee
- From the Department of Radiology (S.Q., R.C., J.C.C., M.M., B.D.A., R.A.) and the Division of Cardiology, Department of Medicine (V.A., J.E.W., R.L.W., D.C.L.), Northwestern University Feinberg School of Medicine, 737 N Michigan Ave, Ste 1600, Chicago, IL 60611; Prince Charles Hospital, Chermside, Queensland, Australia (V.A.); and the Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, Ill (M.M.)
| | - James C Carr
- From the Department of Radiology (S.Q., R.C., J.C.C., M.M., B.D.A., R.A.) and the Division of Cardiology, Department of Medicine (V.A., J.E.W., R.L.W., D.C.L.), Northwestern University Feinberg School of Medicine, 737 N Michigan Ave, Ste 1600, Chicago, IL 60611; Prince Charles Hospital, Chermside, Queensland, Australia (V.A.); and the Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, Ill (M.M.)
| | - Michael Markl
- From the Department of Radiology (S.Q., R.C., J.C.C., M.M., B.D.A., R.A.) and the Division of Cardiology, Department of Medicine (V.A., J.E.W., R.L.W., D.C.L.), Northwestern University Feinberg School of Medicine, 737 N Michigan Ave, Ste 1600, Chicago, IL 60611; Prince Charles Hospital, Chermside, Queensland, Australia (V.A.); and the Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, Ill (M.M.)
| | - Bradley D Allen
- From the Department of Radiology (S.Q., R.C., J.C.C., M.M., B.D.A., R.A.) and the Division of Cardiology, Department of Medicine (V.A., J.E.W., R.L.W., D.C.L.), Northwestern University Feinberg School of Medicine, 737 N Michigan Ave, Ste 1600, Chicago, IL 60611; Prince Charles Hospital, Chermside, Queensland, Australia (V.A.); and the Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, Ill (M.M.)
| | - Ryan Avery
- From the Department of Radiology (S.Q., R.C., J.C.C., M.M., B.D.A., R.A.) and the Division of Cardiology, Department of Medicine (V.A., J.E.W., R.L.W., D.C.L.), Northwestern University Feinberg School of Medicine, 737 N Michigan Ave, Ste 1600, Chicago, IL 60611; Prince Charles Hospital, Chermside, Queensland, Australia (V.A.); and the Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, Ill (M.M.)
| |
Collapse
|
3
|
Anand S, Alnsasra H, LeMond LM, Shrivastava S, Asleh R, Rosenbaum A, Kobrossi S, Mohananey A, Murphy K, Smith BH, Kushwaha S, Steidley DE, Clavell A, Young P, Pereira NL. Cardiac magnetic resonance imaging in heart transplant recipients with biopsy-negative graft dysfunction. ESC Heart Fail 2024; 11:1594-1601. [PMID: 38379022 PMCID: PMC11098666 DOI: 10.1002/ehf2.14681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/09/2023] [Accepted: 12/27/2023] [Indexed: 02/22/2024] Open
Abstract
AIMS Graft dysfunction (GD) after heart transplantation (HTx) can develop without evidence of cell- or antibody-mediated rejection. Cardiac magnetic resonance imaging (CMR) has an evolving role in detecting rejection; however, its role in biopsy-negative GD has not been described. This study examines CMR findings, evaluates outcomes based on CMR results, and seeks to identify the possibility of rejection missed through endomyocardial biopsy by using CMR in HTx recipients with biopsy-negative GD. METHODS AND RESULTS HTx recipients with GD [defined as a decrease in left ventricular ejection fraction (LVEF) by >5% and LVEF < 50%] in the absence of rejection by biopsy or allograft vasculopathy and who underwent CMR were included in the study. The primary outcome was a composite of all-cause mortality, re-transplantation, or persistent LVEF < 50%. Overall, 34 HTx recipients developed biopsy-negative GD and underwent CMR. Left ventricular late gadolinium enhancement (LGE) on CMR was observed in 16 patients with two distinct patterns: diffuse epicardial (n = 13) and patchy (n = 3) patterns. Patients with LGE developed GD later after HTx [4 (1.4-6.8) vs. 0.8 (0.3-1.2) years, P < 0.001], were more often symptomatic (88% vs. 56%, P = 0.06), and had greater haemodynamic derangement (pulmonary capillary wedge pressure: 19 ± 7 vs. 13 ± 3 mmHg, P = 0.002) as compared with those without LGE. No significant difference was observed in the primary composite outcome between patients with LGE and those without LGE (50% vs. 38% of patients with events, P = 0.515). During a median follow-up of 3.8 years, mean LVEF improved similarly in the LGE-negative (37-55%) and LGE-positive groups (32-55%) (P = 0.16). CONCLUSIONS Biopsy-negative GD occurs with and without LGE when assessed by CMR, indicative of possible rejection/inflammation occurring only in a subset of patients. Irrespective of LGE, LVEF improvement occurs in most GD patients, suggesting that other neurohormonal or immunomodulatory mechanisms may also contribute to GD development.
Collapse
Affiliation(s)
- Senthil Anand
- Department of Cardiovascular MedicineMayo Clinic ArizonaScottsdaleAZUSA
| | - Hilmi Alnsasra
- Department of Cardiovascular MedicineMayo ClinicRochesterMNUSA
| | - Lisa M. LeMond
- Department of Cardiovascular MedicineMayo Clinic ArizonaScottsdaleAZUSA
| | | | - Rabea Asleh
- Department of Cardiovascular MedicineMayo ClinicRochesterMNUSA
| | | | - Semaan Kobrossi
- Department of Cardiovascular MedicineMayo Clinic ArizonaScottsdaleAZUSA
| | | | - Katie Murphy
- Department of Cardiovascular MedicineMayo Clinic ArizonaScottsdaleAZUSA
| | - Byron H. Smith
- Department of Quantitative Health SciencesMayo ClinicRochesterMNUSA
| | - Sudhir Kushwaha
- Department of Cardiovascular MedicineMayo ClinicRochesterMNUSA
| | - David E. Steidley
- Department of Cardiovascular MedicineMayo Clinic ArizonaScottsdaleAZUSA
| | - Alfredo Clavell
- Department of Cardiovascular MedicineMayo ClinicRochesterMNUSA
| | | | - Naveen L. Pereira
- Department of Cardiovascular MedicineMayo ClinicRochesterMNUSA
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMNUSA
| |
Collapse
|
4
|
Lawson AA, Watanabe K, Griffin L, Laternser C, Markl M, Rigsby CK, Sojka M, Robinson JD, Husain N. Late-gadolinium enhancement is common in older pediatric heart transplant recipients and is associated with lower ejection fraction. J Cardiovasc Magn Reson 2023; 25:61. [PMID: 37932797 PMCID: PMC10626738 DOI: 10.1186/s12968-023-00971-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/19/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Chronic graft failure and cumulative rejection history in pediatric heart transplant recipients (PHTR) are associated with myocardial fibrosis on endomyocardial biopsy (EMB). Cardiovascular magnetic resonance imaging (CMR) is a validated, non-invasive method to detect myocardial fibrosis via the presence of late gadolinium enhancement (LGE). In adult heart transplant recipients, LGE is associated with increased risk of future adverse clinical events including hospitalization and death. We describe the prevalence, pattern, and extent of LGE on CMR in a cohort of PHTR and its associations with recipient and graft characteristics. METHODS This was a retrospective study of consecutive PHTR who underwent CMR over a 6-year period at a single center. Two independent reviewers assessed the presence and distribution of left ventricular (LV) LGE using the American Heart Association (AHA) 17-segment model. LGE quantification was performed on studies with visible fibrosis (LGE+). Patient demographics, clinical history, and CMR-derived volumetry and ejection fractions were obtained. RESULTS Eighty-one CMR studies were performed on 59 unique PHTR. Mean age at CMR was 14.8 ± 6.2 years; mean time since transplant was 7.3 ± 5.0 years. The CMR indication was routine surveillance (without a clinical concern based on laboratory parameters, echocardiography, or cardiac catheterization) in 63% (51/81) of studies. LGE was present in 36% (29/81) of PHTR. In these LGE + studies, patterns included inferoseptal in 76% of LGE + studies (22/29), lateral wall in 41% (12/29), and diffuse, involving > 4 AHA segments, in 21% (6/29). The mean LV LGE burden as a percentage of myocardial mass was 18.0 ± 9.0%. When reviewing only the initial CMR per PHTR (n = 59), LGE + patients were older (16.7 ± 2.9 vs. 12.8 ± 4.6 years, p = 0.001), with greater time since transplant (8.3 ± 5.4 vs. 5.7 ± 3.9 years, p = 0.041). These patients demonstrated higher LV end-systolic volume index (LVESVI) (34.7 ± 11.7 vs. 28.7 ± 6.1 ml/m2, p = 0.011) and decreased LV ejection fraction (LVEF) (56.2 ± 8.1 vs. 60.6 ± 5.3%, p = 0.015). There were no significant differences in history of moderate/severe rejection (p = 0.196) or cardiac allograft vasculopathy (CAV) (p = 0.709). CONCLUSIONS LV LGE was present in approximately one third of PHTR, more commonly in older patients with longer time since transplantation. Grafts with LGE have lower LVEF. CMR-derived LGE may aid in surveillance of chronic graft failure in PHTR.
Collapse
Affiliation(s)
- Andrew A Lawson
- Division of Cardiology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Kae Watanabe
- Division of Cardiology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Lindsay Griffin
- Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christina Laternser
- Center for Cardiovascular Innovation, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Michael Markl
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Cynthia K Rigsby
- Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Melanie Sojka
- Division of Cardiology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Joshua D Robinson
- Division of Cardiology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nazia Husain
- Division of Cardiology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
5
|
Wu MY, Ali Khawaja RD, Vargas D. Heart Transplantation: Indications, Surgical Techniques, and Complications. Radiol Clin North Am 2023; 61:847-859. [PMID: 37495292 DOI: 10.1016/j.rcl.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Heart transplantation has been increasingly performed for patients with end-stage heart failure most commonly related to ischemic and non-ischemic cardiomyopathies. The major complications are procedure-related complications, infection, acute rejection, cardiac allograft vasculopathy, and malignancy. Radiologists have an important role in the evaluation of transplant candidates and early detection of postoperative complications.
Collapse
Affiliation(s)
- Markus Y Wu
- Department of Radiology, University of Colorado, 12401 East 17th Avenue, Aurora, CO 80045, USA.
| | - Ranish Deedar Ali Khawaja
- Department of Radiology, University of Colorado, 12401 East 17th Avenue, Aurora, CO 80045, USA. https://twitter.com/RanishKhawaja
| | - Daniel Vargas
- Department of Radiology, University of Colorado, 12401 East 17th Avenue, Aurora, CO 80045, USA. https://twitter.com/DanielVargasMD
| |
Collapse
|
6
|
Napolitano C, Grutter G, Francalanci P, Amodeo A, Secinaro A. Case report: Coronary allograft vasculopathy: an accurate reflection of the histopathological findings on cardiovascular magnetic resonance imaging. Front Cardiovasc Med 2023; 10:1123212. [PMID: 37265562 PMCID: PMC10229782 DOI: 10.3389/fcvm.2023.1123212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/24/2023] [Indexed: 06/03/2023] Open
Abstract
Heart transplant recipients undergo extensive invasive and non-invasive postoperative screening to exclude complications, such as allograft rejection and vasculopathy. Cardiac magnetic resonance imaging is a non-invasive, non-irradiating, diagnostic tool for monitoring graft health and identifying possible tissue rejection or myocardial fibrosis. We describe the case of a 29-year-old female heart transplant recipient admitted to our care center with a worsening clinical condition. The patient underwent clinical evaluation, blood tests, including troponin I and N-terminal pro brain type natriuretic peptide, transthoracic echocardiography, invasive coronary angiography, and cardiovascular magnetic resonance imaging. Cardiovascular magnetic resonance imaging showed widespread sub-epicardial hyperintensity of the myocardial segments along the course of the coronary arteries. T2 mapping sequences showed an elevated value and the myocardial native T1 values and extracellular volume percentage were significantly increased. Late gadolinium enhancement demonstrated a diffuse sub-epicardial hypersignal along the lateral, free, and left ventricular walls. All the sequences evidenced widespread hyper-enhancement of epicardial fat along the course of the thickened main coronary artery walls. One month later, the recipient underwent re-transplantation due to progressive worsening of the clinical condition and refractoriness to intravenous medication. The anatomopathological findings of the explanted heart provided impressive visualization of structural and histopathological changes. These results could guide the tailoring of preventive therapeutic strategies and non-invasive monitoring of cardiac grafts.
Collapse
Affiliation(s)
- Carmela Napolitano
- Advanced Cardiovascular Imaging Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Giorgia Grutter
- Heart Failure, Transplantation and Cardio-Respiratory Mechanical Assistance Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Paola Francalanci
- Pathological Anatomy Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Antonio Amodeo
- Heart Failure, Transplantation and Cardio-Respiratory Mechanical Assistance Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Aurelio Secinaro
- Advanced Cardiovascular Imaging Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
7
|
Coniglio AC, Kim HW, Alenezi F, Schroder JN, Bryner BS, Agarwal R, Patel CB, DeVore AD. The association with organ procurement techniques and early cardiac transplant outcomes using cardiac MRI. Clin Transplant 2023; 37:e14959. [PMID: 36965001 DOI: 10.1111/ctr.14959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/27/2023]
Abstract
BACKGROUND Heart transplantation (HT) has historically been limited by organ availability. Use of donation after circulatory death (DCD) donors addresses this limitation by utilizing previously unused hearts through use of the Organ Care System (OCS). OBJECTIVES This study aimed to determine the impact of procurement and transportation method on allograft structure and function using early post-transplant cardiac magnetic resonance imaging (MRI). METHODS Patients who underwent HT at our institution from February 1, 2020, through April 30, 2021 who underwent cardiac MRI imaging <60 days from transplant were included. Recipient and donor characteristics, clinical outcomes, and MRI findings were compared between those who underwent DCD transplantation using the OCS device (DCD-OCS), brain dead donation (DBD) using the OCS device (DBD-OCS), and DBD transported via cold storage (DBD-cold storage) using one-way analysis of variance. RESULTS A total of 85 patients underwent HT with a cardiac MRI during the study period. Thirty-one (36%) patients received a DCD organ, 16 (19%) received a DBD-OCS organ and 38 (45%) received a DBD-cold storage organ. Rates of primary graft dysfunction (PGD) were significantly higher in DCD transplants (19.5% DCD vs. .0% DBD-OCS and 5.3% DBD-cold storage; p < .050 across three groups), but with no differences in mortality or rejection. There were no differences in cardiac MRI findings between the three transplant types, including presence of gadolinium hyperenhancement after transplant (all p > .050). CONCLUSIONS We observed no differences in early cardiac MRI findings between patients that received DCD and DBD-OCS heart transplants compared with those receiving DBD-cold storage transplants.
Collapse
Affiliation(s)
- Amanda C Coniglio
- Duke University School of Medicine, Department of Medicine, Durham, North Carolina, USA
| | - Han W Kim
- Duke University School of Medicine, Department of Medicine, Durham, North Carolina, USA
| | - Fawaz Alenezi
- Duke University School of Medicine, Department of Medicine, Durham, North Carolina, USA
| | - Jacob N Schroder
- Duke University School of Medicine, Department of Medicine, Durham, North Carolina, USA
| | - Benjamin S Bryner
- Duke University School of Medicine, Department of Medicine, Durham, North Carolina, USA
| | - Richa Agarwal
- Duke University School of Medicine, Department of Medicine, Durham, North Carolina, USA
| | - Chetan B Patel
- Duke University School of Medicine, Department of Medicine, Durham, North Carolina, USA
| | - Adam D DeVore
- Duke Clinical Research Institute (DCRI), Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
8
|
Feher A, Sinusas AJ. Evaluation of cardiac allograft vasculopathy by positron emission tomography. J Nucl Cardiol 2021; 28:2616-2628. [PMID: 33389637 DOI: 10.1007/s12350-020-02438-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/04/2020] [Indexed: 12/22/2022]
Abstract
Cardiac allograft vasculopathy (CAV) remains one of the most important late occurring complications in heart transplant (HT) recipients significantly effecting graft survival. Recently, there has been tremendous focus on the development of effective and safe non-invasive diagnostic strategies for the diagnosis of CAV employing a wide range of imaging technologies. During the past decade multiple studies have been published using positron emission tomography (PET) myocardial perfusion imaging, establishing the value of PET myocardial blood flow quantification for the evaluation of CAV. These independent investigations demonstrate that PET can be successfully used to establish the diagnosis of CAV, can be utilized for prognostication and may be used for serial monitoring of HT recipients. In addition, molecular imaging techniques have started to emerge as new tools to enhance our knowledge to better understand the pathophysiology of CAV.
Collapse
Affiliation(s)
- Attila Feher
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, P.O. Box 208017, Dana 3, New Haven, CT, 06520, USA.
| | - Albert J Sinusas
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, P.O. Box 208017, Dana 3, New Haven, CT, 06520, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
9
|
Jiménez Jaso J, Ezponda A, Muñiz Sáenz-Diez J, Caballeros M, Rábago G, Bastarrika G. Cardiac magnetic resonance imaging myocardial perfusion reserve index in heart transplant patients. RADIOLOGIA 2020. [DOI: 10.1016/j.rxeng.2020.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Advances and New Insights in Post-Transplant Care: From Sequencing to Imaging. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2020. [DOI: 10.1007/s11936-020-00828-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Jiménez-Jaso JM, Ezponda A, Sáenz-Diez JM, Caballeros M, Rábago G, Bastarrika G. Cardiac magnetic resonance imaging myocardial perfusion reserve index in heart transplant patients. RADIOLOGIA 2020; 62:493-501. [PMID: 32493651 DOI: 10.1016/j.rx.2020.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/01/2020] [Accepted: 04/14/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To compare the myocardial perfusion reserve index (MPRI) measured during stress cardiac magnetic resonance imaging (MRI) with regadenoson in patients with heart transplants versus in patients without heart transplants. MATERIAL AND METHODS We retrospectively compared 20 consecutive asymptomatic heart transplant patients without suspicion of microvascular disease who underwent stress cardiac MRI with regadenoson and coronary computed tomography angiography (CTA) to rule out cardiac allograft vasculopathy versus 16 patients without transplants who underwent clinically indicated stress cardiac MRI who were negative for ischemia and had no signs of structural heart disease. We estimated MPRI semiquantitatively after calculating the up-slope of the first-pass enhancement curve and dividing the value obtained during stress by the value obtained at rest. We compared MPRI in the two groups. Patients with positive findings for ischemia on stress cardiac MRI or significant coronary stenosis on coronary CTA were referred for conventional coronary angiography. RESULTS More than half the patients remained asymptomatic during the stress test. Stress cardiac MRI was positive for ischemia in two heart transplant patients; these findings were confirmed at coronary CTA and at conventional coronary angiography. Patients with transplants had lower end-diastolic volume index (59.3±15.2 ml/m2 vs. 71.4±15.9 ml/m2 in those without transplants, p=0.03), lower MPRI (1.35±0.19 vs. 1.6±0.28 in those without transplants, p=0.003), and a less pronounced hemodynamic response to regadenoson (mean increase in heart rate 13.1±5.4 bpm vs. 28.5±8.9 bpm in those without transplants, p <0.001). CONCLUSION Stress cardiac MRI with regadenoson is safe. In the absence of epicardial coronary artery disease, patients with heart transplants have lower MPRI than patients without transplants, suggesting microvascular disease. The hemodynamic response to regadenoson is less pronounced in patients with heart transplants than in patients without heart transplants.
Collapse
Affiliation(s)
- J M Jiménez-Jaso
- Servicio de Radiología, Clínica Universidad de Navarra, Pamplona, Navarra, España
| | - A Ezponda
- Servicio de Radiología, Clínica Universidad de Navarra, Pamplona, Navarra, España
| | - J Muñiz Sáenz-Diez
- Departamento de Cardiología, Clínica Universidad de Navarra, Pamplona, Navarra, España
| | - M Caballeros
- Servicio de Radiología, Clínica Universidad de Navarra, Madrid, España
| | - G Rábago
- Departamento de Cirugía Cardíaca, Clínica Universidad de Navarra, Pamplona, España
| | - G Bastarrika
- Servicio de Radiología, Clínica Universidad de Navarra, Pamplona, Navarra, España.
| |
Collapse
|
12
|
Ibrahim MM, Fang JC. Magnetic Resonance Imaging of Cardiac Allografts: What's Next? Circ Cardiovasc Imaging 2019; 12:e009784. [PMID: 31610690 DOI: 10.1161/circimaging.119.009784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Majd Mark Ibrahim
- Division of Cardiovascular Medicine, University of Utah Health Sciences Center, Salt Lake City
| | - James C Fang
- Division of Cardiovascular Medicine, University of Utah Health Sciences Center, Salt Lake City
| |
Collapse
|
13
|
Hughes A, Okasha O, Farzaneh-Far A, Kazmirczak F, Nijjar PS, Velangi P, Akçakaya M, Martin CM, Shenoy C. Myocardial Fibrosis and Prognosis in Heart Transplant Recipients. Circ Cardiovasc Imaging 2019; 12:e009060. [PMID: 31610691 DOI: 10.1161/circimaging.119.009060] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Myocardial fibrosis is a well-described histopathologic feature in heart transplant recipients. Whether myocardial fibrosis in heart transplant recipients is independently associated with clinical outcomes is unclear. We sought to determine whether myocardial fibrosis on late gadolinium enhancement cardiovascular magnetic resonance imaging in heart transplant recipients was independently associated with all-cause death or major adverse cardiac outcomes in the long-term. METHODS Using a cohort of consecutive heart transplant recipients that had cardiovascular magnetic resonance imaging, we determined the prevalence and the patterns of myocardial fibrosis and analyzed associations between myocardial fibrosis and a composite end point of all-cause death or major adverse cardiac events: retransplantation, nonfatal myocardial infarction, coronary revascularization, and heart failure hospitalization. RESULTS One hundred and fifty-two heart transplant recipients (age, 54±15 years; 29% women; 5.0±5.4 years after heart transplantation) were included. Myocardial fibrosis was present in 18% (37% infarct pattern, 41% noninfarct pattern, and 22% both). Its prevalence was positively associated with cardiac allograft vasculopathy grade. With a median follow-up of 2.6 years, myocardial fibrosis was independently associated with all-cause death or major adverse cardiac events (hazard ratio, 2.88; 95% CI, 1.59-5.23; P<0.001) after adjustment for cardiac allograft vasculopathy, history of rejection, time since transplantation, left ventricular ejection fraction, and indexed right ventricular end-diastolic volume. Every 1% increase in myocardial fibrosis was independently associated with a 6% higher hazard for all-cause death or major adverse cardiac events (hazard ratio, 1.06; 95% CI, 1.03-1.09; P<0.001). The addition of myocardial fibrosis variables to models with cardiac allograft vasculopathy, history of rejection, time since transplantation, left ventricular ejection fraction, and indexed right ventricular end-diastolic volume resulted in significant improvements in model fit, suggesting incremental prognostic value. CONCLUSIONS In heart transplant recipients, myocardial fibrosis is seen on late gadolinium enhancement cardiovascular magnetic resonance imaging in 18%. Both the presence and the extent of myocardial fibrosis are independently associated with the long-term risk of all-cause death or major adverse cardiac events.
Collapse
Affiliation(s)
- Andrew Hughes
- Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN (A.H., O.O., F.K., P.S.N., P.V., C.M.M., C.S.)
| | - Osama Okasha
- Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN (A.H., O.O., F.K., P.S.N., P.V., C.M.M., C.S.)
| | - Afshin Farzaneh-Far
- Section of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL (A.F.-F.)
| | - Felipe Kazmirczak
- Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN (A.H., O.O., F.K., P.S.N., P.V., C.M.M., C.S.)
| | - Prabhjot S Nijjar
- Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN (A.H., O.O., F.K., P.S.N., P.V., C.M.M., C.S.)
| | - Pratik Velangi
- Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN (A.H., O.O., F.K., P.S.N., P.V., C.M.M., C.S.)
| | - Mehmet Akçakaya
- Department of Electrical and Computer Engineering and Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN (M.A.)
| | - Cindy M Martin
- Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN (A.H., O.O., F.K., P.S.N., P.V., C.M.M., C.S.)
| | - Chetan Shenoy
- Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN (A.H., O.O., F.K., P.S.N., P.V., C.M.M., C.S.)
| |
Collapse
|
14
|
Sade LE, Hazirolan T, Kozan H, Ozdemir H, Hayran M, Eroglu S, Pirat B, Sezgin A, Muderrisoglu H. T1 Mapping by Cardiac Magnetic Resonance and Multidimensional Speckle-Tracking Strain by Echocardiography for the Detection of Acute Cellular Rejection in Cardiac Allograft Recipients. JACC Cardiovasc Imaging 2019; 12:1601-1614. [DOI: 10.1016/j.jcmg.2018.02.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 11/26/2022]
|
15
|
Banerji D, Mendoza D, Ghoshhajra BB, Hedgire SS. The Role of Contrast-Enhanced Cardiac Magnetic Resonance in the Assessment of Patients with Malignant Ventricular Arrhythmias. Magn Reson Imaging Clin N Am 2019; 27:475-490. [PMID: 31279451 DOI: 10.1016/j.mric.2019.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cardiac magnetic resonance (CMR) imaging has gained significant traction as an imaging modality of choice in the evaluation of individuals with, or at risk for, heart failure. Ventricular arrhythmias, often malignant, may be sequelae of heart failure and arise from fibrosis. Late gadolinium enhancement evaluation by CMR has become a preferred modality to assess individuals at risk for malignant ventricular arrhythmias. A spectrum of various pathologies that predispose individuals to malignant ventricular arrhythmias, as well as the usefulness of CMR in their identification and prognostication, are reviewed.
Collapse
Affiliation(s)
- Dahlia Banerji
- Cardiac MR PET CT Program, Department of Radiology (Cardiovascular Imaging), Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, 165 Cambridge Street, Suite 400, Boston, MA 02114, USA
| | - Dexter Mendoza
- Thoracic Imaging and Intervention, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Founders 202, Boston, MA 02114, USA
| | - Brian B Ghoshhajra
- Cardiac MR PET CT Program, Department of Radiology (Cardiovascular Imaging), Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, 165 Cambridge Street, Suite 400, Boston, MA 02114, USA
| | - Sandeep S Hedgire
- Cardiac MR PET CT Program, Department of Radiology (Cardiovascular Imaging), Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, 165 Cambridge Street, Suite 400, Boston, MA 02114, USA.
| |
Collapse
|
16
|
Korosoglou G, Giusca S, Hofmann NP, Patel AR, Lapinskas T, Pieske B, Steen H, Katus HA, Kelle S. Strain-encoded magnetic resonance: a method for the assessment of myocardial deformation. ESC Heart Fail 2019; 6:584-602. [PMID: 31021534 PMCID: PMC6676282 DOI: 10.1002/ehf2.12442] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/28/2019] [Indexed: 12/26/2022] Open
Abstract
This study aims to assess the usefulness of strain‐encoded magnetic resonance (SENC) for the quantification of myocardial deformation (‘strain’) in healthy volunteers and for the diagnostic workup of patients with different cardiovascular pathologies. SENC was initially described in the year 2001. Since then, the SENC sequence has undergone several technical developments, aiming at the detection of strain during single‐heartbeat acquisitions (fast‐SENC). Experimental and clinical studies that used SENC and fast‐SENC or compared SENC with conventional cine or tagged magnetic resonance in phantoms, animals, healthy volunteers, or patients were systematically searched for in PubMed. Using ‘strain‐encoded magnetic resonance and SENC’ as keywords, three phantom and three animal studies were identified, along with 27 further clinical studies, involving 185 healthy subjects and 904 patients. SENC (i) enabled reproducible assessment of myocardial deformation in vitro, in animals and in healthy volunteers, (ii) showed high reproducibility and substantially lower time spent compared with conventional tagging, (iii) exhibited incremental value to standard cine imaging for the detection of inducible ischaemia and for the risk stratification of patients with ischaemic heart disease, and (iv) enabled the diagnostic classification of patients with transplant vasculopathy, cardiomyopathies, pulmonary hypertension, and diabetic heart disease. SENC has the potential to detect a wide range of myocardial diseases early, accurately, and without the need of contrast agent injection, possibly enabling the initiation of specific cardiac therapies during earlier disease stages. Its one‐heartbeat acquisition mode during free breathing results in shorter cardiovascular magnetic resonance protocols, making its implementation in the clinical realm promising.
Collapse
Affiliation(s)
- Grigorios Korosoglou
- Departments of Cardiology, Vascular Medicine and Pneumology, GRN Hospital Weinheim, Weinheim, Germany
| | - Sorin Giusca
- Departments of Cardiology, Vascular Medicine and Pneumology, GRN Hospital Weinheim, Weinheim, Germany
| | - Nina P Hofmann
- Departments of Cardiology, Vascular Medicine and Pneumology, GRN Hospital Weinheim, Weinheim, Germany
| | - Amit R Patel
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Tomas Lapinskas
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Burkert Pieske
- Department of Internal Medicine, Cardiology German Heart Center Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Department of Internal Medicine/Cardiology, Charité Campus Virchow Clinic, Berlin, Germany
| | - Henning Steen
- Department of Cardiology, Marien Hospital Hamburg, Hamburg, Germany
| | - Hugo A Katus
- Departments of Cardiology, Angiology and Pneumology, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Sebastian Kelle
- Department of Internal Medicine, Cardiology German Heart Center Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Department of Internal Medicine/Cardiology, Charité Campus Virchow Clinic, Berlin, Germany
| |
Collapse
|
17
|
Olymbios M, Kwiecinski J, Berman DS, Kobashigawa JA. Imaging in Heart Transplant Patients. JACC Cardiovasc Imaging 2018; 11:1514-1530. [DOI: 10.1016/j.jcmg.2018.06.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/30/2018] [Accepted: 06/07/2018] [Indexed: 01/06/2023]
|
18
|
Lee MS, Tadwalkar RV, Fearon WF, Kirtane AJ, Patel AJ, Patel CB, Ali Z, Rao SV. Cardiac allograft vasculopathy: A review. Catheter Cardiovasc Interv 2018; 92:E527-E536. [DOI: 10.1002/ccd.27893] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 08/29/2018] [Indexed: 01/19/2023]
Affiliation(s)
- Michael S. Lee
- Division of Cardiology, UCLA Medical Center Los Angeles California
| | | | - William F. Fearon
- Division of CardiologyStanford University School of Medicine Stanford California
| | - Ajay J. Kirtane
- Division of CardiologyColumbia University Medical Center New York New York
| | - Amisha J. Patel
- Division of CardiologyColumbia University Medical Center New York New York
| | - Chetan B. Patel
- Division of CardiologyDuke University Medical Center Durham North Carolina
| | - Ziad Ali
- Division of CardiologyColumbia University Medical Center New York New York
| | - Sunil V. Rao
- Division of CardiologyDuke University Medical Center Durham North Carolina
| |
Collapse
|
19
|
Yuan Y, Cai J, Cui Y, Wang J, Alwalid O, Shen X, Cao Y, Zou Y, Liang B. CMR-derived extracellular volume fraction (ECV) in asymptomatic heart transplant recipients: correlations with clinical features and myocardial edema. Int J Cardiovasc Imaging 2018; 34:1959-1967. [DOI: 10.1007/s10554-018-1421-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/25/2018] [Indexed: 11/29/2022]
|
20
|
Kindel SJ, Hsu HH, Hussain T, Johnson JN, McMahon CJ, Kutty S. Multimodality Noninvasive Imaging in the Monitoring of Pediatric Heart Transplantation. J Am Soc Echocardiogr 2017; 30:859-870. [DOI: 10.1016/j.echo.2017.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Indexed: 01/09/2023]
|
21
|
Abstract
PURPOSE OF REVIEW Recent years have seen advances in the early detection of cardiac graft rejection. RECENT FINDINGS We review the possibilities offered by tissue Doppler imaging and speckle tracking echocardiography, cardiac magnetic resonance, cardiac computed tomography, single positron emission tomography, gene expression profiling, and quantitation of donor-derived cell-free DNA, and microRNAs. SUMMARY Noninvasive monitoring of acute and chronic rejection after cardiac transplantation is an unmet need and remains a challenge. Imaging techniques and peripheral blood biomarkers are the most commonly used approaches, and in recent years there has been great progress. Gene expression profiling seems to be useful for ruling out the presence of a moderate to severe acute cellular rejection in stable, low-risk patients. Newer monitoring tools, like donor-derived cell-free DNA or microRNA, seem to be promising for individualizing immunosuppressive therapies and better understanding the mechanisms of rejection.
Collapse
|
22
|
Latus H, Voges I. Quantitative Tissue Characterization in Pediatric Cardiology. CURRENT CARDIOVASCULAR IMAGING REPORTS 2017. [DOI: 10.1007/s12410-017-9405-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Pedrotti P, Vittori C, Facchetti R, Pedretti S, Dellegrottaglie S, Milazzo A, Frigerio M, Cipriani M, Giannattasio C, Roghi A, Rimoldi O. Prognostic impact of late gadolinium enhancement in the risk stratification of heart transplant patients. Eur Heart J Cardiovasc Imaging 2016; 18:130-137. [DOI: 10.1093/ehjci/jew186] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/11/2016] [Indexed: 11/15/2022] Open
|
24
|
McDiarmid AK, Plein S, Ross HJ. Emerging imaging techniques after cardiac transplantation. J Heart Lung Transplant 2016; 35:1399-1411. [PMID: 27523792 DOI: 10.1016/j.healun.2016.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/13/2016] [Accepted: 06/22/2016] [Indexed: 10/21/2022] Open
Abstract
Improvements in survival after cardiac transplantation have in part been driven by improved graft surveillance. Graft surveillance relies mainly on 3 techniques: coronary angiography, endomyocardial biopsy and echocardiography. Developments in invasive and non-invasive imaging technology have revolutionized assessment of the heart in both health and disease, offering new insights into tissue composition and myocardial metabolism. Herein we aim to review the strengths and weaknesses of these techniques, and summarize the evidence in the following 5 fields of cardiac imaging after transplantation: cardiovascular magnetic resonance; computed tomography; positron emission tomography; single-photon emission computed tomography; and optical coherence tomography and molecular imaging techniques.
Collapse
Affiliation(s)
- Adam K McDiarmid
- Peter Munk Cardiac Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Multidisciplinary Cardiovascular Research Centre and Division of Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK.
| | - Sven Plein
- Multidisciplinary Cardiovascular Research Centre and Division of Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Heather J Ross
- Peter Munk Cardiac Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Payne GA, Hage FG, Acharya D. Transplant allograft vasculopathy: Role of multimodality imaging in surveillance and diagnosis. J Nucl Cardiol 2016; 23:713-27. [PMID: 26711101 DOI: 10.1007/s12350-015-0373-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 11/27/2015] [Indexed: 01/22/2023]
Abstract
Cardiac allograft vasculopathy (CAV) is a challenging long-term complication of cardiac transplantation and remains a leading long-term cause of graft failure, re-transplantation, and death. CAV is an inflammatory vasculopathy distinct from traditional atherosclerotic coronary artery disease. Historically, the surveillance and diagnosis of CAV has been dependent on serial invasive coronary angiography with intravascular imaging. Although commonly practiced, angiography is not without significant limitations. Technological advances have provided sophisticated imaging techniques for CAV assessment. It is now possible to assess the vascular lumen, vessel wall characteristics, absolute blood flow, perfusion reserve, myocardial contractile function, and myocardial metabolism and injury in a noninvasive, expeditious manner with little risk. The current article will review key imaging modalities for the surveillance, diagnosis, and prognosis of CAV and discuss coronary physiology of transplanted hearts with emphasis on the clinical implications for provocative and vasodilator stress testing.
Collapse
Affiliation(s)
- Gregory A Payne
- Division of Cardiovascular Disease, University of Alabama at Birmingham School of Medicine, Tinsley Harrison Tower, Room 321, Birmingham, AL, 35294-006, USA
| | - Fadi G Hage
- Division of Cardiovascular Disease, University of Alabama at Birmingham School of Medicine, Tinsley Harrison Tower, Room 321, Birmingham, AL, 35294-006, USA
- Section of Cardiology, Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA
| | - Deepak Acharya
- Division of Cardiovascular Disease, University of Alabama at Birmingham School of Medicine, Tinsley Harrison Tower, Room 321, Birmingham, AL, 35294-006, USA.
| |
Collapse
|
26
|
Erbel C, Mukhammadaminova N, Gleissner CA, Osman NF, Hofmann NP, Steuer C, Akhavanpoor M, Wangler S, Celik S, Doesch AO, Voss A, Buss SJ, Schnabel PA, Katus HA, Korosoglou G. Myocardial Perfusion Reserve and Strain-Encoded CMR for Evaluation of Cardiac Allograft Microvasculopathy. JACC Cardiovasc Imaging 2016; 9:255-66. [DOI: 10.1016/j.jcmg.2015.10.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 10/02/2015] [Accepted: 10/07/2015] [Indexed: 10/22/2022]
|
27
|
Şimşek E, Nalbantgil S, Ceylan N, Zoghi M, Kemal HS, Engin Ç, Yağdı T, Özbaran M. Diagnostic performance of late gadolinium enhancement in the assessment of acute cellular rejection after heart transplantation. Anatol J Cardiol 2015; 16:113-8. [PMID: 26467370 PMCID: PMC5336724 DOI: 10.5152/anatoljcardiol.2015.5961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Allograft rejection is still an important cause of morbidity and mortality after heart transplantation (HTx). Many techniques in cardiac magnetic resonance imaging (CMR) were investigated to diagnose acute cellular rejection (ACR). However, there is not enough information about late gadolinium enhancement (LGE) in the myocardium and ACR. METHODS We prospectively analyzed our consecutive 41 heart transplant recipients who were admitted for routine endomyocardial biopsies. CMR was performed maximum 6 h before the scheduled endomyocardial biopsy. Correlation between LGE in the myocardium and ACR was investigated. RESULTS Twenty-seven patients showed no rejection, and nine of them had LGE in the myocardium. Fourteen patients had LGE in the left ventricle (LV), and two patients had LGE also in the right ventricle (RV). There was no correlation between LGE and ACR (p=0.879). There was no difference in the left ventricular ejection fraction (LVEF), right ventricular fractional area change (RVFAC), and cardiac ischemic time between the groups (p=0.825, p=0.370, and p=0.419, respectively). LGE in the myocardium could be due to previous rejection episodes; therefore, all patients were retrospectively searched for previous rejection grades and number of episodes. Thirty-eight of the 41 patients had a history of one ACR episode, but none of them had a statistically significant correlation with LGE (for grade 1R, p=0.964 and grade 3R, p=1) There was also no correlation between number of rejection episodes history and LGE. CONCLUSION LGE is not suitable to detect ACR in heart transplant patients. LGE and the history of ACR have no correlation.
Collapse
Affiliation(s)
- Evrim Şimşek
- Department of Cardiology, Faculty of Medicine, Ege University; İzmir-Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
McMinn JF, Lang NN, McPhadden A, Payne JR, Petrie MC, Gardner RS. Biomarkers of acute rejection following cardiac transplantation. Biomark Med 2015; 8:815-32. [PMID: 25224938 DOI: 10.2217/bmm.14.56] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cardiac transplantation can be a life-saving treatment for selected patients with heart failure. However, despite advances in immunosuppressive therapy, acute allograft rejection remains a significant cause of morbidity and mortality. The current 'gold standard' for rejection surveillance is endomyocardial biopsy, which aims to identify episodes of rejection prior to development of clinical manifestations. This is an invasive technique with a risk of false-positive and false-negative results. Consequently, a wide variety of noninvasive alternatives have been investigated for their potential role as biomarkers of rejection. This article reviews the evidence behind proposed alternatives such as imaging techniques, electrophysiological parameters and peripheral blood markers, and highlights the potential future role for biomarkers in cardiac transplantation as an adjunct to biopsy.
Collapse
Affiliation(s)
- Jenna F McMinn
- Scottish National Advanced Heart Failure Service, Golden Jubilee National Hospital, Clydebank, UK
| | | | | | | | | | | |
Collapse
|
29
|
Badano LP, Miglioranza MH, Edvardsen T, Colafranceschi AS, Muraru D, Bacal F, Nieman K, Zoppellaro G, Marcondes Braga FG, Binder T, Habib G, Lancellotti P, Sicari R, Cosyns B, Donal E, Lombardi M, Sarvari S. European Association of Cardiovascular Imaging/Cardiovascular Imaging Department of the Brazilian Society of Cardiology recommendations for the use of cardiac imaging to assess and follow patients after heart transplantation. ACTA ACUST UNITED AC 2015; 16:919-48. [DOI: 10.1093/ehjci/jev139] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 05/02/2015] [Indexed: 01/10/2023]
Affiliation(s)
- Luigi P. Badano
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, School of Medicine, Via Giustiniani 2, 35128 Padova, Italy
| | | | - Thor Edvardsen
- Department of Cardiology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | | | - Denisa Muraru
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, School of Medicine, Via Giustiniani 2, 35128 Padova, Italy
| | - Fernando Bacal
- Heart Transplant Department, Heart Institute, University of São Paulo, São Paulo, Brazil
| | - Koen Nieman
- Intensive Cardiac Care Unit and Cardiac CT Research, Erasmus MC, Rotterdam, The Netherlands
| | - Giacomo Zoppellaro
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, School of Medicine, Via Giustiniani 2, 35128 Padova, Italy
| | | | - Thomas Binder
- Department of Cardiology, University of Vienna, Wien, Austria
| | - Gilbert Habib
- Service de Cardiologie, Hôpital La Timone, Marseille, France
| | - Patrizio Lancellotti
- Department of Cardiology, Heart Valve Clinic, University of Liège, GIGA Cardiovascular Sciences, CHU Sart Tilman, Liège, Belgium
| | | | | | | | | | | | | |
Collapse
|
30
|
Mirelis JG, García-Pavía P, Cavero MA, González-López E, Echavarria-Pinto M, Pastrana M, Segovia J, Oteo JF, Alonso-Pulpón L, Escaned J. Resonancia magnética para la detección no invasiva de la enfermedad microcirculatoria asociada a la vasculopatía de alotrasplante: validación de la determinación intracoronaria. Rev Esp Cardiol 2015. [DOI: 10.1016/j.recesp.2014.07.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Mirelis JG, García-Pavía P, Cavero MA, González-López E, Echavarria-Pinto M, Pastrana M, Segovia J, Oteo JF, Alonso-Pulpón L, Escaned J. Magnetic Resonance for Noninvasive Detection of Microcirculatory Disease Associated With Allograft Vasculopathy: Intracoronary Measurement Validation. ACTA ACUST UNITED AC 2015; 68:571-8. [DOI: 10.1016/j.rec.2014.07.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/18/2014] [Indexed: 01/13/2023]
|
32
|
Reid AB, Waldron N, Schmitt M, Miller CA. The Value of Cardiovascular Magnetic Resonance in Heart Transplant Patients. Curr Cardiol Rep 2015; 17:612. [PMID: 26055963 DOI: 10.1007/s11886-015-0612-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heart transplant patients present a unique set of anatomical and pathophysiological considerations. Patients often present non-specifically, requiring a low index for further investigation. Accurate assessment with standard imaging modalities can be difficult, and cardiovascular magnetic resonance (CMR) is becoming an increasingly useful modality in the assessment of heart transplant patients. This review describes the anatomy of the transplanted heart and typical CMR appearances and discusses the role of CMR in heart transplant disease.
Collapse
Affiliation(s)
- Anna B Reid
- North West Heart Centre, University Hospital of South Manchester, Wythenshawe, Manchester, UK,
| | | | | | | |
Collapse
|
33
|
Butler CR, Savu A, Bakal JA, Toma M, Thompson R, Chow K, Wang H, Kim DH, Mengel M, Haykowsky M, Pearson GJ, Kaul P, Paterson I. Correlation of cardiovascular magnetic resonance imaging findings and endomyocardial biopsy results in patients undergoing screening for heart transplant rejection. J Heart Lung Transplant 2015; 34:643-50. [PMID: 25934478 DOI: 10.1016/j.healun.2014.12.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 11/24/2014] [Accepted: 12/17/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Endomyocardial biopsy (EMB) is the current gold standard to screen for heart transplant rejection but has important risks and limitations. Cardiovascular magnetic resonance imaging (CMRI) is increasingly used to characterize cardiac function and myocardial tissue. We evaluated the diagnostic accuracy of CMRI compared with EMB and clinically diagnosed heart transplant rejection. METHODS Comprehensive CMRI scans were performed on adult heart transplant recipients within 24 hours of EMB (routine or clinically indicated), before initiation of any anti-rejection therapy, and blinded to EMB results. Multivariable analysis was used to create CMRI diagnostic criteria for comparison with a positive EMB (Grade ≥ 2R or antibody-mediated rejection) and clinical rejection (change in medical therapy to treat rejection). RESULTS Sixty participants (75% male; mean age, 51 ± 14 years) were recruited, providing 73 comparisons between CMRI and EMB for the diagnosis of rejection. Multivariable logistic regression identified myocardial edema (T2 relaxation time) and right ventricular end-diastolic volume index as independent predictors of a positive EMB. Combining threshold right ventricular end-diastolic volume index and edema values predicted a positive EMB with very good accuracy: sensitivity, 93%; specificity, 78%; positive predictive value, 52%; and negative predictive valve, 98%. CMRI was more sensitive than EMB at predicting clinical rejection (sensitivity of 67% vs 58%). CONCLUSIONS CMRI has high sensitivity and high negative predictive value in predicting biopsy-positive heart transplant rejection and may be useful as a screening test before routine EMB. CMRI also has better sensitivity for clinically diagnosed heart transplant rejection and could be helpful in cases of negative rejection on the biopsy specimen.
Collapse
Affiliation(s)
- Craig R Butler
- Division of Cardiology, Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada
| | - AnaMaria Savu
- Division of Cardiology, Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada
| | | | - Mustafa Toma
- Division of Cardiology, Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada
| | | | | | - Harris Wang
- Division of Cardiology, Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada
| | - Daniel H Kim
- Division of Cardiology, Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada
| | | | - Mark Haykowsky
- Department of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Glen J Pearson
- Division of Cardiology, Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada
| | - Padma Kaul
- Division of Cardiology, Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada
| | - Ian Paterson
- Division of Cardiology, Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada.
| |
Collapse
|
34
|
Dedieu N, Greil G, Wong J, Fenton M, Burch M, Hussain T. Diagnosis and management of coronary allograft vasculopathy in children and adolescents. World J Transplant 2014; 4:276-293. [PMID: 25540736 PMCID: PMC4274597 DOI: 10.5500/wjt.v4.i4.276] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/12/2014] [Accepted: 09/17/2014] [Indexed: 02/05/2023] Open
Abstract
Coronary allograft vasculopathy remains one of the leading causes of death beyond the first year post transplant. As a result of denervation following transplantation, patients lack ischaemic symptoms and presentation is often late when the graft is already compromised. Current diagnostic tools are rather invasive, or in case of angiography, significantly lack sensitivity. Therefore a non-invasive tool that could allow early diagnosis would be invaluable.This paper review the disease form its different diagnosis techniques,including new and less invasive diagnostic tools to its pharmacological management and possible treatments.
Collapse
|
35
|
|
36
|
Hofmann NP, Steuer C, Voss A, Erbel C, Celik S, Doesch A, Ehlermann P, Giannitsis E, Buss SJ, Katus HA, Korosoglou G. Comprehensive bio-imaging using myocardial perfusion reserve index during cardiac magnetic resonance imaging and high-sensitive troponin T for the prediction of outcomes in heart transplant recipients. Am J Transplant 2014; 14:2607-16. [PMID: 25293510 DOI: 10.1111/ajt.12924] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/11/2014] [Accepted: 06/29/2014] [Indexed: 01/25/2023]
Abstract
We sought to determine the ability of quantitative myocardial perfusion reserve index (MPRI) by cardiac magnetic resonance (CMR) and high-sensitive troponin T (hsTnT) for the prediction of cardiac allograft vasculopathy (CAV) and cardiac outcomes in heart transplant (HT) recipients. In 108 consecutive HT recipients (organ age 4.1±4.7 years, 25 [23%] with diabetes mellitus) who underwent cardiac catheterization, CAV grade by International Society for Heart & Lung Transplantation (ISHLT) criteria, MPRI, late gadolinium enhancement (LGE) and hsTnT values were obtained. Outcome data including cardiac death and urgent revascularization ("hard cardiac events") and revascularization procedures were prospectively collected. During a follow-up duration of 4.2±1.4 years, seven patients experienced hard cardiac events and 11 patients underwent elective revascularization procedures. By multivariable analysis, hsTnT and MPRI both independently predicted cardiac events, surpassing the value of LGE and CAV by ISHLT criteria. Furthermore, hsTnT and MPRI provided complementary value. Thus, patients with high hsTnT and low MPRI showed the highest rates of cardiac events (annual event rate=14.5%), while those with low hsTnT and high MPRI exhibited excellent outcomes (annual event rate=0%). In conclusion, comprehensive "bio-imaging" using hsTnT, as a marker of myocardial microinjury, and CMR, as a marker of microvascular integrity and myocardial damage by LGE, may aid personalized risk-stratification in HT recipients.
Collapse
Affiliation(s)
- N P Hofmann
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Prevalence of different forms of infarct-atypical late gadolinium enhancement in patients early and late after heart transplantation. Clin Res Cardiol 2014; 103:57-63. [PMID: 24122145 DOI: 10.1007/s00392-013-0623-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/23/2013] [Indexed: 01/14/2023]
Abstract
BACKGROUND Late gadolinium enhancement cardiac magnetic resonance (LGE-CMR) enables high-resolution myocardial tissue characterization, showing the results of different injuries, especially in the early period after heart transplantation (HTX). OBJECTIVES We sought to apply LGE-CMR to investigate the prevalence and patterns of infarct-atypical myocardial involvement and associated mechanisms in patients early and late after HTX. METHODS LGE-CMR was performed on a 1.5-T MRI scanner (Philips, Best, the Netherlands) in 89 patients: group 1 (48 patients) less than 2.5 years after operation (1.2 ± 0.5 years) and group 2 (41 patients) later this period (8.2 ± 4.2 years). Following LGE-CMR, the presence, distribution, patterns of infarct-atypical LGE and possible associated mechanisms were assessed. RESULTS 71 % of group 1 patients (34/48) showed infarctatypical LGE whereas 57 % of group 2 patients (22/41) were affected (p = 0.25). Fewer segments/patients were involved later after HTX (1.6 ± 2.0 vs. 2.9 ± 3.1 segments/ patient; p = 0.03), but only diffuse LGE-CMR pattern decreased significantly (11.5 % of affected segments in group 1 vs. 6.5 % in group 2; p\0.001). Group 2 had lower ischemic time (181 ± 53 vs. 208 ± 61 min; p = 0.03), the donors were younger (33 ± 13 vs. 41 ± 13 years; p = 0.01) and fewer donors were Toxoplasma gondii seropositive (4 vs. 22pts; p\0.001). CONCLUSION Infarct-atypical LGE was found in a significant number of patients early post-HTX, however, fewer patients and myocardial segments per patient were affected later after HTX. Many potential factors seem to be involved, but the exact mechanisms are still unclear. Future studies are necessary to test prognostic implications associated with LGE-CMR patterns.
Collapse
|
38
|
Butler CR, Kim DH, Chow K, Toma M, Thompson R, Mengel M, Haykowsky M, Pearson GJ, Paterson I. Cardiovascular MRI predicts 5-year adverse clinical outcome in heart transplant recipients. Am J Transplant 2014; 14:2055-61. [PMID: 25100504 DOI: 10.1111/ajt.12811] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/21/2014] [Accepted: 04/27/2014] [Indexed: 01/25/2023]
Abstract
Imaging recommendations for the follow-up of heart transplant recipients (HTRs) lack evidence justifying their prognostic value. Cardiovascular magnetic resonance imaging (CMRI) can characterize heart structure and function and has prognostic value in many myocardial diseases. We hypothesized that CMRI evaluation of cardiac allografts would predict adverse events. We performed CMRI on 60 HTRs evaluating biventricular size, function and myocardial scar. We performed survival analysis to identify independent predictors of cardiovascular (CV) death or hospitalization. Participants had a mean age of 51 ± 14 years, mean graft age of 3.5 years (±4) and 75% are male. Median follow-up time was 4.9 years with 22 CV hospitalizations and 7 CV deaths. A multivariable survival analysis of imaging and clinical variables identified myocardial scar (hazard ratio [HR] of 10.7, p = 0.005), right ventricular end- diastolic volume index (RVEDVI; 1.1/mL/m(2) , p = 0.001), graft age (HR = 1.2/year, p = 0.004) and previous allograft rejection (HR = 4.4, p = 0.006) as predictive of time to CV death or hospitalization. CMRI-derived myocardial scar and RVEDVI are independently associated with CV outcomes in HTRs.
Collapse
Affiliation(s)
- C R Butler
- Division of Cardiology, Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bech-Hanssen O, Al-Habeeb W, Ahmed W, Di Salvo G, Pergola V, Al-Admawi M, Al-Amri M, Al-Shahid M, Al-Buraiki J, Fadel BM. Echocardiography Detects Elevated Left Ventricular Filling Pressures in Heart Transplant Recipients. Echocardiography 2014; 32:411-9. [DOI: 10.1111/echo.12683] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Odd Bech-Hanssen
- Heart Center; King Faisal Specialist Hospital & Research Center; Riyadh Kingdom of Saudi Arabia
| | - Waleed Al-Habeeb
- Heart Center; King Faisal Specialist Hospital & Research Center; Riyadh Kingdom of Saudi Arabia
- King Saud University; Riyadh Kingdom of Saudi Arabia
| | - Waqas Ahmed
- Heart Center; King Faisal Specialist Hospital & Research Center; Riyadh Kingdom of Saudi Arabia
| | - Giovanni Di Salvo
- Heart Center; King Faisal Specialist Hospital & Research Center; Riyadh Kingdom of Saudi Arabia
| | - Valeria Pergola
- Heart Center; King Faisal Specialist Hospital & Research Center; Riyadh Kingdom of Saudi Arabia
| | - Mohammed Al-Admawi
- Heart Center; King Faisal Specialist Hospital & Research Center; Riyadh Kingdom of Saudi Arabia
| | - Mohammed Al-Amri
- Heart Center; King Faisal Specialist Hospital & Research Center; Riyadh Kingdom of Saudi Arabia
| | - Maie Al-Shahid
- Heart Center; King Faisal Specialist Hospital & Research Center; Riyadh Kingdom of Saudi Arabia
| | - Jehad Al-Buraiki
- Heart Center; King Faisal Specialist Hospital & Research Center; Riyadh Kingdom of Saudi Arabia
| | - Bahaa M. Fadel
- Heart Center; King Faisal Specialist Hospital & Research Center; Riyadh Kingdom of Saudi Arabia
| |
Collapse
|
40
|
Braggion-Santos MF, Lossnitzer D, Buss S, Lehrke S, Doesch A, Giannitsis E, Korosoglou G, Katus HA, Steen H. Late gadolinium enhancement assessed by cardiac magnetic resonance imaging in heart transplant recipients with different stages of cardiac allograft vasculopathy. Eur Heart J Cardiovasc Imaging 2014; 15:1125-32. [DOI: 10.1093/ehjci/jeu090] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
41
|
Krieghoff C, Barten MJ, Hildebrand L, Grothoff M, Lehmkuhl L, Lücke C, Andres C, Nitzsche S, Riese F, Strüber M, Mohr FW, Gutberlet M. Assessment of sub-clinical acute cellular rejection after heart transplantation: comparison of cardiac magnetic resonance imaging and endomyocardial biopsy. Eur Radiol 2014; 24:2360-71. [PMID: 24895035 PMCID: PMC4155184 DOI: 10.1007/s00330-014-3246-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 03/31/2014] [Accepted: 05/15/2014] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Comparing the diagnostic value of multi-sequential cardiac magnetic resonance imaging (CMR) with endomyocardial biopsy (EMB) for sub-clinical cardiac allograft rejection. METHODS One hundred and forty-six examinations in 73 patients (mean age 53 ± 12 years, 58 men) were performed using a 1.5 Tesla system and compared to EMB. Examinations included a STIR (short tau inversion recovery) sequence for calculation of edema ratio (ER), a T1-weighted spin-echo sequence for assessment of global relative enhancement (gRE), and inversion-recovery sequences to visualize late gadolinium enhancement (LGE). Histological grade ≥1B was considered relevant rejection. RESULTS One hundred and twenty-seven (127/146 = 87 %) EMBs demonstrated no or mild signs of rejection (grades ≤1A) and 19/146 (13 %) a relevant rejection (grade ≥1B). Sensitivity, specificity, positive predictive, and negative predictive values were as follows: ER: 63 %, 78 %, 30 %, and 93 %; gRE: 63 %, 70 %, 24 %, and 93 %; LGE: 68 %, 36 %, 13 %, and 87 %; with the combination of ER and gRE with at least one out of two positive: 84 %, 57 %, 23 %, and 96 %. ROC analysis revealed an area under the curve of 0.724 for ER and 0.659 for gRE. CONCLUSION CMR parameters for myocarditis are useful to detect sub-clinical acute cellular rejection after heart transplantation. Comparable results to myocarditis can be achieved with a combination of parameters. KEY POINTS • Magnetic resonance imaging is useful for the assessment of cardiac allograft rejection. • CMR has a high negative predictive value for exclusion of allograft rejection. • Diagnostic performance is not yet good enough to replace endomyocardial biopsy.
Collapse
Affiliation(s)
- Christian Krieghoff
- Department of Diagnostic and Interventional Radiology, University Leipzig - Heart Centre, Leipzig, Germany,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Benatti RD, Taylor DO. Evolving concepts and treatment strategies for cardiac allograft vasculopathy. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2013; 16:278. [PMID: 24346852 DOI: 10.1007/s11936-013-0278-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OPINION STATEMENT The central event in the development of allograft vasculopathy is the inflammatory response to immune-mediated and nonimmune-mediated endothelial damage. This response is characterized by the release of inflammatory cytokines, upregulation of cell-surface adhesion molecules, and subsequent binding of leukocytes. Growth factors stimulate smooth muscle cell proliferation and circulating progenitor cells are recruited to sites of arterial injury leading to neointima formation. Because of its diffuse nature, intravascular ultrasound is more sensitive than angiography for early diagnosis. Proliferation signal inhibitors (PSIs) have the capacity to slow vasculopathy progression by inhibiting smooth muscle cell proliferation, but its side effects profile makes its use as a first line agent difficult. Retransplantation is still the only definitive therapy but is available only in selected cases. The current hope is that immunomodulation at the time of transplant could induce long-term tolerance and graft accommodation, leading to less vasculopathy.
Collapse
Affiliation(s)
- Rodolfo Denadai Benatti
- Kaufman Center for Heart Failure, Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, 9500 Euclid Ave, J3-4 desk, Cleveland, OH, 44195, USA
| | | |
Collapse
|
43
|
Miller CA, Sarma J, Naish JH, Yonan N, Williams SG, Shaw SM, Clark D, Pearce K, Stout M, Potluri R, Borg A, Coutts G, Chowdhary S, McCann GP, Parker GJM, Ray SG, Schmitt M. Multiparametric cardiovascular magnetic resonance assessment of cardiac allograft vasculopathy. J Am Coll Cardiol 2013; 63:799-808. [PMID: 24355800 DOI: 10.1016/j.jacc.2013.07.119] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/21/2013] [Accepted: 07/15/2013] [Indexed: 11/17/2022]
Abstract
OBJECTIVES This study sought to evaluate the diagnostic performance of multiparametric cardiovascular magnetic resonance (CMR) for detecting cardiac allograft vasculopathy (CAV) using contemporary invasive epicardial artery and microvascular assessment techniques as reference standards, and to compare the performance of CMR with that of angiography. BACKGROUND CAV continues to limit the long-term survival of heart transplant recipients. Coronary angiography has a Class I recommendation for CAV surveillance and annual or biannual surveillance angiography is performed routinely in most centers. METHODS All transplant recipients referred for surveillance angiography at a single UK center over a 2-year period were prospectively screened for study eligibility. Patients prospectively underwent coronary angiography followed by coronary intravascular ultrasound, fractional flow reserve, and index of microcirculatory resistance. Within 1 month, patients underwent multiparametric CMR, including assessment of regional and global ventricular function, absolute myocardial blood flow quantification, and myocardial tissue characterization. In addition, 10 healthy volunteers underwent CMR. RESULTS Forty-eight patients were recruited, median 7.1 years (interquartile range: 4.6 to 10.3 years) since transplantation. The CMR myocardial perfusion reserve was the only independent predictor of both epicardial (β = -0.57, p < 0.001) and microvascular disease (β = -0.60, p < 0.001) on stepwise multivariable regression. The CMR myocardial perfusion reserve significantly outperformed angiography for detecting moderate CAV (area under the curve, 0.89 [95% confidence interval (CI): 0.79 to 1.00] vs. 0.59 [95% CI: 0.42 to 0.77], p = 0.01) and severe CAV (area under the curve, 0.88 [95% CI: 0.78 to 0.98] vs. 0.67 [95% CI: 0.52 to 0.82], p = 0.05). CONCLUSIONS CAV, including epicardial and microvascular components, can be detected more accurately using noninvasive CMR-based absolute myocardial blood flow assessment than with invasive coronary angiography, the current clinical surveillance technique.
Collapse
Affiliation(s)
- Christopher A Miller
- North West Heart Centre and Transplant Centre, University Hospital of South Manchester, Wythenshawe Hospital, Manchester, United Kingdom; Centre for Imaging Sciences and Biomedical Imaging Institute, University of Manchester, Manchester, United Kingdom; Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom.
| | - Jaydeep Sarma
- North West Heart Centre and Transplant Centre, University Hospital of South Manchester, Wythenshawe Hospital, Manchester, United Kingdom; Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Josephine H Naish
- Centre for Imaging Sciences and Biomedical Imaging Institute, University of Manchester, Manchester, United Kingdom
| | - Nizar Yonan
- North West Heart Centre and Transplant Centre, University Hospital of South Manchester, Wythenshawe Hospital, Manchester, United Kingdom; Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Simon G Williams
- North West Heart Centre and Transplant Centre, University Hospital of South Manchester, Wythenshawe Hospital, Manchester, United Kingdom; Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Steven M Shaw
- North West Heart Centre and Transplant Centre, University Hospital of South Manchester, Wythenshawe Hospital, Manchester, United Kingdom; Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - David Clark
- Alliance Medical Cardiac MRI Unit, Wythenshawe Hospital, Manchester, United Kingdom
| | - Keith Pearce
- North West Heart Centre and Transplant Centre, University Hospital of South Manchester, Wythenshawe Hospital, Manchester, United Kingdom
| | - Martin Stout
- North West Heart Centre and Transplant Centre, University Hospital of South Manchester, Wythenshawe Hospital, Manchester, United Kingdom
| | - Rahul Potluri
- North West Heart Centre and Transplant Centre, University Hospital of South Manchester, Wythenshawe Hospital, Manchester, United Kingdom; Centre for Imaging Sciences and Biomedical Imaging Institute, University of Manchester, Manchester, United Kingdom
| | - Alex Borg
- North West Heart Centre and Transplant Centre, University Hospital of South Manchester, Wythenshawe Hospital, Manchester, United Kingdom
| | - Glyn Coutts
- Christie Medical Physics and Engineering, Christie Hospital, Manchester, United Kingdom
| | - Saqib Chowdhary
- North West Heart Centre and Transplant Centre, University Hospital of South Manchester, Wythenshawe Hospital, Manchester, United Kingdom; Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Gerry P McCann
- NIHR Leicester Cardiovascular Biomedical Research Unit and Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Geoffrey J M Parker
- Centre for Imaging Sciences and Biomedical Imaging Institute, University of Manchester, Manchester, United Kingdom
| | - Simon G Ray
- North West Heart Centre and Transplant Centre, University Hospital of South Manchester, Wythenshawe Hospital, Manchester, United Kingdom; Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Matthias Schmitt
- North West Heart Centre and Transplant Centre, University Hospital of South Manchester, Wythenshawe Hospital, Manchester, United Kingdom; Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
44
|
Late Gadolinium Enhancement in Cardiac Transplant Patients Is Associated With Adverse Ventricular Functional Parameters and Clinical Outcomes. Can J Cardiol 2013; 29:1076-83. [DOI: 10.1016/j.cjca.2012.10.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/23/2012] [Accepted: 10/23/2012] [Indexed: 01/17/2023] Open
|
45
|
Hofmann NP, Voss A, Dickhaus H, Erbacher M, Doesch A, Ehlermann P, Gitsioudis G, Buss SJ, Giannitsis E, Katus HA, Korosoglou G. Long-term outcome after heart transplantation predicted by quantitative myocardial blush grade in coronary angiography. Am J Transplant 2013; 13:1491-502. [PMID: 23617734 DOI: 10.1111/ajt.12223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 02/04/2013] [Accepted: 02/13/2013] [Indexed: 01/25/2023]
Abstract
The purpose of our study was to investigate whether the quantification of myocardial blush grade (MBG) during surveillance coronary angiography can predict long-term outcome after heart transplantation (HT). In 105 HT recipients who underwent cardiac catheterization, cardiac allograft vasculopathy (CAV) was assessed visually using the ISHLT grading scale (prospective cohort study). MBG was quantified by dividing the plateau of contrast agent gray-level intensity (G(max)) by the time-to-peak intensity (T(max)). In a subgroup (n = 72), myocardial perfusion index by cardiac magnetic resonance imaging (CMR) was assessed. During a mean follow-up duration of 2.7 (standard deviation [SD] 1.0) years, 26 patients experienced cardiac events, including 7 with cardiac death and 19 who underwent coronary revascularization. G(max)/T(max) was related to CAV by ISHLT criteria and to subsequent cardiac events. By univariate analysis, patient age, organ age, CAV, MBG and myocardial perfusion index by CMR were all predictive for cardiac events. Multivariable analysis demonstrated that G(max)/T(max) provided the most robust prediction of cardiac death (hazard ratio [HR] = 0.2, 95% confidence interval [CI] = 0.06-0.64, p < 0.01) and cardiac events (HR = 0.52, 95% CI = 0.32-0.84, p < 0.01), beyond clinical parameters and the presence of CAV. G(max)/T(max) is a valuable surrogate parameter of microvascular integrity, which is associated with cardiac death and revascularization procedures after HT.
Collapse
Affiliation(s)
- N P Hofmann
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
ST-Elevation Myocardial Infarction Following Heart Transplantation as an Unusual Presentation of Coronary Allograft Vasculopathy: A Case Report. Transplant Proc 2013; 45:787-91. [DOI: 10.1016/j.transproceed.2012.08.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/28/2012] [Indexed: 11/24/2022]
|
47
|
Hussain T, Fenton M, Peel SA, Wiethoff AJ, Taylor A, Muthurangu V, Razavi R, Botnar RM, Burch M, Greil GF. Detection and grading of coronary allograft vasculopathy in children with contrast-enhanced magnetic resonance imaging of the coronary vessel wall. Circ Cardiovasc Imaging 2012; 6:91-8. [PMID: 23223637 DOI: 10.1161/circimaging.112.975797] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Coronary allograft vasculopathy is the leading cause of late death after heart transplantation in children. It is poorly detected by conventional angiography. Intravascular ultrasound is invasive and costly. This study shows that magnetic resonance imaging (MRI) late gadolinium enhancement (LGE) of the coronary vessel wall can detect and grade coronary allograft vasculopathy. METHODS AND RESULTS Twenty-four children (10 male; age range, 9-17 years) underwent coronary angiography, intravascular ultrasound, and MRI. Maximal intimal thickness and mean intimal index were recorded. MRI included coronary magnetic resonance angiogram and LGE vessel wall imaging with 1.5 T (n=12) and 3.0 T (n=12). Ten healthy control subjects also underwent LGE MRI. Mean time posttransplantation was 5.5 years (range, 0.25-14 years). Seven patients had Stanford grade IV coronary allograft vasculopathy on intravascular ultrasound, 3 of whom had angiographic disease. Maximal intimal thickness and mean intimal index were 0.73±0.50 mm and 20.9±10.6%, respectively. On MRI, mean diameter of enhancement of vessel wall was 6.57±4.91 mm, and mean enhancement index (indexed to vessel lumen size) was 1.10±1.72. The control group showed little or no LGE. Correlation of LGE with maximal intimal thickness using the Pearson coefficient was 0.80 (P<0.001) and with mean intimal index was 0.92 (P<0.001). An MRI diameter >7.5 mm gave 86% sensitivity and 93% specificity. CONCLUSIONS LGE scores correlate well with traditional intravascular ultrasound measures. These promising early results encourage larger-scale clinical studies to investigate whether LGE MRI will allow closer follow-up and better prevention of coronary allograft vasculopathy in children.
Collapse
|
48
|
Parsai C, O’Hanlon R, Prasad SK, Mohiaddin RH. Diagnostic and prognostic value of cardiovascular magnetic resonance in non-ischaemic cardiomyopathies. J Cardiovasc Magn Reson 2012; 14:54. [PMID: 22857649 PMCID: PMC3436728 DOI: 10.1186/1532-429x-14-54] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 07/10/2012] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular Magnetic Resonance (CMR) is recognised as a valuable clinical tool which in a single scan setting can assess ventricular volumes and function, myocardial fibrosis, iron loading, flow quantification, tissue characterisation and myocardial perfusion imaging. The advent of CMR using extrinsic and intrinsic contrast-enhanced protocols for tissue characterisation have dramatically changed the non-invasive work-up of patients with suspected or known cardiomyopathy. Although the technique initially focused on the in vivo identification of myocardial necrosis through the late gadolinium enhancement (LGE) technique, recent work highlighted the ability of CMR to provide more detailed in vivo tissue characterisation to help establish a differential diagnosis of the underlying aetiology, to exclude an ischaemic substrate and to provide important prognostic markers. The potential application of CMR in the clinical approach of a patient with suspected non-ischaemic cardiomyopathy is discussed in this review.
Collapse
Affiliation(s)
- Chirine Parsai
- Cardiovascular Magnetic Resonance Unit, Royal Brompton and Harefield NHS Trust, London, UK
- Cardiology and CMR Unit, Polyclinique Les Fleurs, Toulon, France
| | - Rory O’Hanlon
- Cardiovascular Magnetic Resonance Unit, Royal Brompton and Harefield NHS Trust, London, UK
- Centre for Cardiovascular Magnetic Resonance, Blackrock Clinic, Dublin, Ireland
| | - Sanjay K Prasad
- Cardiovascular Magnetic Resonance Unit, Royal Brompton and Harefield NHS Trust, London, UK
- National Heart and Lung Institute, Imperial College, London, UK
| | - Raad H Mohiaddin
- Cardiovascular Magnetic Resonance Unit, Royal Brompton and Harefield NHS Trust, London, UK
- National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
49
|
La risonanza magnetica cardiovascolare nella valutazione dello scompenso cardiaco: dalla morfologia alla caratterizzazione tissutale. J Cardiovasc Echogr 2012. [DOI: 10.1016/j.jcecho.2012.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
50
|
D'Andrea A, Fontana M, Cocchia R, Scarafile R, Calabrò R, Moon JC. Cardiovascular magnetic resonance in the evaluation of heart failure: a luxury or a need? J Cardiovasc Med (Hagerstown) 2012; 13:24-31. [PMID: 22130042 DOI: 10.2459/jcm.0b013e32834e4ad4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Heart failure is a common syndrome with multiple causes. Cardiovascular magnetic resonance (CMR), using the available range of technique, is establishing itself as the gold standard noninvasive test for determining the underlying causes, and adding prognostic value, guiding therapy. Progress is continuing and rapid with promising new techniques such as diffuse fibrosis assessment. This article discusses the diverse roles of CMR in heart failure.
Collapse
Affiliation(s)
- Antonello D'Andrea
- Monaldi Hospital, Second University of Naples, AORN Ospedali dei Colli, Via Michelangelo Schipa 44, Naples, Italy.
| | | | | | | | | | | |
Collapse
|