1
|
Orellana AMM, Mazucanti CH, Andreotti DZ, de Sá Lima L, Kawamoto EM, Scavone C. Effects of decrease in Klotho protein expression on insulin signaling and levels of proteins related to brain energy metabolism. Eur J Pharmacol 2025; 997:177587. [PMID: 40187598 DOI: 10.1016/j.ejphar.2025.177587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Mutations in Klotho have been associated with premature ageing and cognitive dysfunction. Although highly expressed in specific regions of the brain, the actions of Klotho in the central nervous system (CNS) remain largely unknown. Here, we show that animals with a mutated hypomorphic Klotho gene have altered glycaemic regulation, suggesting higher insulin sensitivity. In the CNS, pathways related to insulin intracellular signalling were found to be up-regulated in the hippocampus, with higher activation of protein kinase B and mammalian target of rapamycin and inactivation of the transcription factors forkhead box O (FOXO)-1 and FOXO-3a. In addition, the present study showed that in the hippocampi of wild-type aged mice, where Klotho is naturally downregulated, the levels of some proteins related to energy metabolism and metabolic coupling between neurones and astrocytes, such as monocarboxylate transporter 2 and 4, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isoform 3 and lactate dehydrogenase enzymes isoforms A and B were altered. These findings suggest that Klotho plays an essential role in regulating proteins and genes related to metabolic coupling in the brain.
Collapse
Affiliation(s)
- Ana Maria Marques Orellana
- Laboratory of Molecular Neuropharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Laboratory of Molecular and Functional Neurobiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Caio Henrique Mazucanti
- Laboratory of Molecular Neuropharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Diana Zukas Andreotti
- Laboratory of Molecular and Functional Neurobiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Larissa de Sá Lima
- Laboratory of Molecular Neuropharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Laboratory of Molecular and Functional Neurobiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Elisa Mitiko Kawamoto
- Laboratory of Molecular and Functional Neurobiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
2
|
Madhavan P, Sanjeev K. Assessing the role of Osteopontin in prognosis of oral squamous cell carcinoma- A systematic review. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2025; 126:102184. [PMID: 39653147 DOI: 10.1016/j.jormas.2024.102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Oral cancer is always a global burden. It is the sixteenth most common cancer. It leads to metastasis since it is often diagnosed at late stages. To monitor the progress of this condition, various biomarkers are being utilized. Osteopontin is one such biomarker and its level in bodily fluids can be used as a reliable biomarker. AIMS AND OBJECTIVES The current study aims to review and evaluate the prognostic role of osteopontin in oral squamous cell carcinoma. MATERIALS AND METHODS A literature search was conducted across various databases such as Scopus, PubMed and Google Scholar. It yielded 18 articles totally using MeSH terms. The inclusion criteria were original research articles written only in English language involving both tissue and plasma osteopontin on oral cancer patients. Of these, only two articles which met the inclusion criteria were added into this systematic review. The search had no time restriction. RESULTS The studies showed that osteopontin play a vital role in the prognosis of the OSCC patients. One study from Taiwan and other from India proved the osteopontin expression in plasma and tissue can help to predict the prognosis of patients with oral cancer. Also, the level of plasma osteopontin was correlated with aggressiveness of OSCC. Tissue osteopontin expression was significantly lower in stage I OSCC patients when compared with stage II and III. Since there were only two studies, there is limited evidence of results. CONCLUSION From these findings, osteopontin can also be used as a reliable biomarker to predict the prognosis of oral cancer. Since there were only two studies to substantiate the finding, there is limited evidence and more studies are warranted to confirm the results.
Collapse
Affiliation(s)
- Parasakthi Madhavan
- Dept. of Oral Pathology, SRM Dental College, Ramapuram campus, Chennai 600089, India.
| | - Kavitha Sanjeev
- Dept. of Conservative Dentistry and Endodontics, SRM Dental College, Ramapuram campus, Chennai 600089, India
| |
Collapse
|
3
|
Jin MY, Yu H, Deng Q, Wang Z, Wang JY, Li HL, Liang H. Virtual screening and molecular dynamics simulation study of ATP-competitive inhibitors targeting mTOR protein. PLoS One 2025; 20:e0319608. [PMID: 40324009 PMCID: PMC12052163 DOI: 10.1371/journal.pone.0319608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/04/2025] [Indexed: 05/07/2025] Open
Abstract
In order to explore efficient ATP-competitive mTOR inhibitors and aid the development of targeted anticancer drugs, this study focuses on virtual screening and molecular dynamics simulations. The compounds were sourced from the ChemDiv commercial compound library, and through virtual screening, 50 ligands with favorable binding modes and excellent docking scores were selected from 902,998 compounds. Molecular dynamics simulations, including RMSD (Root Mean Square Deviation) and RMSF (Root Mean Square Fluctuation), were used to further evaluate these 50 ligands. Structural stability, key residue interactions, hydrogen bonding, binding free energy, and other factors were quantitatively and qualitatively analyzed. Top1, top2, and top6, which exhibited outstanding performance, were identified. Simulations revealed that they bind stably in the active region of the mTOR protein, forming hydrogen bonds, π-π interactions, and hydrophobic interactions with key amino acid residues such as VAL-2240 and TRP-2239. This study provides a solid theoretical foundation for the development of mTOR inhibitors. Subsequent efforts will focus on optimizing these compounds, targeting structural adjustments to enhance their biological activity and specificity towards mTOR, thereby achieving more precise targeting and treatment of tumors.
Collapse
Affiliation(s)
- Mei-Yu Jin
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Urology, People’s Hospital of Longhua, Shenzhen, China
| | - Hao Yu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qiong Deng
- Department of Urology, People’s Hospital of Longhua, Shenzhen, China
| | - Zhu Wang
- Department of Urology, People’s Hospital of Longhua, Shenzhen, China
| | - Jie-Yan Wang
- Department of Urology, People’s Hospital of Longhua, Shenzhen, China
| | - Hao-Long Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Urology, People’s Hospital of Longhua, Shenzhen, China
| | - Hui Liang
- Department of Urology, People’s Hospital of Longhua, Shenzhen, China
| |
Collapse
|
4
|
Kobayashi PE, Lainetti PF, Leis-Filho AF, Delella FK, Vicente IST, Fonseca-Alves CE, Laufer-Amorim R. Canine prostate cancer cell transcriptome reveals important dysregulation in PI3K/AKT/mTOR pathway. J Comp Pathol 2025; 219:52-58. [PMID: 40328211 DOI: 10.1016/j.jcpa.2025.03.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 03/05/2025] [Accepted: 03/25/2025] [Indexed: 05/08/2025]
Abstract
Dogs are the only large mammals, besides humans, that develop spontaneous prostate cancer, which has a poor prognosis and limited treatment efficacy. Considering the central role of mammalian target of rapamycin (mTOR) in carcinogenesis, the use of rapamycin, an mTOR inhibitor, has attracted considerable attention. In this study, we performed gene expression microarray analyses of normal canine prostate and prostate carcinoma cells. Among the 6,270 differentially expressed genes revealed in the transcriptome, 3,242 were upregulated and 3,028 were downregulated, and were related to phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR pathway activation, as confirmed by enrichment analysis. Among the genes involved in this pathway, we found increased expression levels of FKBP1A, FKBP1B, AKT1S1, PDK2, PIP5K1 and PIP5KL1 in canine prostate cancer cells compared with normal prostate cells. We also treated two canine prostate cancer cell lines (PC1 and PC2) with rapamycin in vitro (6, 10 and 12 μM) for 24 h and observed a dose-dependent decrease in cell viability. Our results indicate that rapamycin significantly increased AKT transcript levels in both cell lines, indicating resistance to treatment. However, mTOR and 4E-BP1 expression were downregulated after rapamycin treatment. We suggest that mTOR inhibition is a potential treatment of choice for canine prostate cancer, which may guide and contribute to future prostate carcinoma clinical trials. However, the acquisition of resistance to treatment remains a challenge, and precision medicine may help overcome this problem.
Collapse
Affiliation(s)
- Priscila E Kobayashi
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, São Paulo, Brazil.
| | - Patrícia F Lainetti
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, São Paulo, Brazil.
| | - Antonio F Leis-Filho
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, São Paulo, Brazil.
| | - Flávia K Delella
- Department of Morphology, Institute of Biosciences, São Paulo State University, Botucatu, São Paulo, Brazil.
| | - Igor S T Vicente
- Institute of Veterinary Oncology, Pompéia, São Paulo, Brazil; VetPrecision Laboratory, Botucatu, São Paulo, Brazil.
| | - Carlos E Fonseca-Alves
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, São Paulo, Brazil; Institute of Veterinary Oncology, Pompéia, São Paulo, Brazil; VetPrecision Laboratory, Botucatu, São Paulo, Brazil.
| | - Renée Laufer-Amorim
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, São Paulo, Brazil.
| |
Collapse
|
5
|
Moghbeli M. MicroRNAs as the critical regulators of bone metastasis during prostate tumor progression. Int J Biol Macromol 2025; 309:142912. [PMID: 40203904 DOI: 10.1016/j.ijbiomac.2025.142912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/02/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Prostate cancer (PCa) is the most prevalent cancer among men globally. Although, there are various therapeutic methods for the localized or advanced cancers, there is still a high rate of mortality among PCa patients that is mainly associated with bone metastasis in advanced tumors. There are few options available for treating bone metastasis in PCa, which only provide symptom relief without curing the disease. Therefore, it is crucial to evaluate the molecular mechanisms associated with bone metastasis of PCa cells to suggest the novel diagnostic and therapeutic approaches that could lower the morbidity and mortality rates in PCa patients. MicroRNAs (miRNAs) are involved in regulation of various pathophysiological processes such as tumor growth and osteoblasts/osteoclasts formation. Since, miRNA deregulation has been also frequently observed in PCa patients with bone metastasis, we discussed the role of miRNAs in bone metastasis during PCa progression. It has been reported that miRNAs mainly reduced the ability of PCa tumor cells for the bone metastasis through the regulation of WNT, NF-kB, PI3K/AKT, and TGF-β signaling pathways. They also affected the EMT process, transcription factors, and structural proteins to regulate the bone metastasis during PCa progression. This review paves the way to suggest the miRNAs as the reliable markers not only for the non-invasive early diagnosis, but also for the targeted therapy of PCa tumors with bone metastasis.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Zhou Y, Gao Y, Peng Y, Cai C, Han Y, Chen Y, Deng G, Ouyang Y, Shen H, Zeng S, Du Y, Xiao Z. QKI-induced circ_0001766 inhibits colorectal cancer progression and rapamycin resistance by miR-1203/PPP1R3C/mTOR/Myc axis. Cell Death Discov 2025; 11:192. [PMID: 40263288 PMCID: PMC12015279 DOI: 10.1038/s41420-025-02478-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/25/2025] [Accepted: 04/04/2025] [Indexed: 04/24/2025] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and remains a significant challenge due to high rates of drug resistance and limited therapeutic options. Circular RNAs (circRNAs) are increasingly recognized for their roles in CRC initiation, progression, and drug resistance. However, no circRNA-based therapies have yet entered clinical development, underscoring the need for comprehensive detection and mechanistic studies of circRNAs in CRC. Here, we identified and characterized a circular RNA, circ_0001766 (hsa_circ_0001766), through microarray analysis of CRC tissues. Our results showed that circ_0001766 is downregulated in CRC tissues and closely associated with patient survival and metastasis. Functional experiments demonstrated that circ_0001766 inhibits CRC cell proliferation, migration and invasion both in-vitro and in-vivo. Mechanistically, hypoxia downregulates Quaking (QKI), an RNA-binding protein essential for the biogenesis of circ_0001766 by binding to introns 1 and 3 of PDIA4 pre-mRNA. Reduced QKI expression under hypoxic conditions leads to decreased circ_0001766 levels in CRC. Circ_0001766 acts as a competitive endogenous RNA, sponging miR-1203 to prevent the degradation of PPP1R3C mRNA. Loss of circ_0001766 results in decreased PPP1R3C expression, leading to the activation of mTOR signaling and increased phosphorylation of Myc, which promotes CRC progression and rapamycin resistance. Our study reveals that overexpression of circ_0001766 or PPP1R3C in CRC cells inhibits the mTOR and Myc pathway, thereby resensitizing cells to rapamycin. The combination of circ_0001766 or PPP1R3C with rapamycin markedly inhibits CRC cell proliferation and induces apoptosis by reducing rapamycin-induced Myc phosphorylation. In summary, our study elucidates a critical circ_0001766/miR-1203/PPP1R3C axis that modulates CRC progression and rapamycin resistance. Our findings highlight circ_0001766 as a promising therapeutic target in CRC, providing a new avenue for enhancing the efficacy of existing treatments and overcoming drug resistance.
Collapse
Grants
- This study was supported by grants from the National Natural Science Foundation of China (No. 82373275, 81974384, 82173342 & 82203015), the China Postdoctoral Science Foundation (No.2023JJ40942), three projects from the Nature Science Foundation of Hunan Province (No.2021JJ3109, 2021JJ31048, 2023JJ40942), Nature Science Foundation of Changsha (No.73201), CSCO Cancer Research Foundation (No.Y-HR2019-0182 & Y-2019Genecast-043), the Key Research and Development Program of Hainan Province (No.ZDYF2020228 & ZDYF2020125), Natural Science Foundation (Youth Funding) of Hunan Province of China (2022JJ40458), Hunan Provincial Natural Science Foundation of China (2024JJ6662), The Youth Science Foundation of Xiangya Hospital (2023Q01) and Scientific Research Program of Hunan Provincial Health Commission (202203105261). The graphical abstract was created using BioRender (BioRender.com).This study was supported by grants from the National Natural Science Foundation of China (No. 82373275, 81974384, 82173342 & 82203015), the China Postdoctoral Science Foundation (No.2023JJ40942), three projects from the Nature Science Foundation of Hunan Province (No.2021JJ3109, 2021JJ31048, 2023JJ40942), Nature Science Foundation of Changsha (No.73201), CSCO Cancer Research Foundation (No.Y-HR2019-0182 & Y-2019Genecast-043), the Key Research and Development Program of Hainan Province (No.ZDYF2020228 & ZDYF2020125), Natural Science Foundation (Youth Funding) of Hunan Province of China (2022JJ40458), Hunan Provincial Natural Science Foundation of China (2024JJ6662), The Youth Science Foundation of Xiangya Hospital (2023Q01) and Scientific Research Program of Hunan Provincial Health Commission (202203105261). The graphical abstract was created using BioRender (BioRender.com).
Collapse
Affiliation(s)
- Yulai Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX, USA
| | - Yan Gao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Yinghui Peng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yihong Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Gongping Deng
- Department of Emergency, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Yanhong Ouyang
- Department of Emergency, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yangfeng Du
- Department of Oncology, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, Hunan, China.
| | - Zemin Xiao
- Department of Oncology, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, Hunan, China.
| |
Collapse
|
7
|
Song J, Qiao J, Chen M, Li J, Wang J, Yu D, Zheng H, Shi L. Chaetoglobosin A induces apoptosis in T-24 human bladder cancer cells through oxidative stress and MAPK/PI3K-AKT-mTOR pathway. PeerJ 2025; 13:e19085. [PMID: 40183046 PMCID: PMC11967413 DOI: 10.7717/peerj.19085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 02/11/2025] [Indexed: 04/05/2025] Open
Abstract
Chaetoglobosin A (ChA) is an antitumor compound produced by Chaetomium globosum. However, the mechanism of its antitumor effect has been rarely reported. In this study, we evaluated the anti-proliferative effect of ChA on T-24 human bladder cancer cells and explored its mechanism of action. ChA was found to have a good inhibitory effect on T-24 cells by MTT assay with an IC50 value of 48.14 ± 10.25 μΜ. Moreover, it was found to have a migration inhibitory ability and a sustained proliferation inhibitory effect on tumor cells by cell aggregation assay and cell migration assay. The cells morphological changes were determined by Hoechst33342 assay. While Annexin V-FITC/PI double-staining assay also demonstrated that the number of apoptotic cells increased with the increase of drug concentration. Flow cytometry results showed that ChA treatment increased reactive oxygen species (ROS) and decreased mitochondrial membrane potential (MMP) in T-24 cells and inhibited cell mitosis, resulting in an increase in the number of sub-G1 phase cells. Further western blot experiments demonstrated that MAPK and PI3K-AKT-mTOR pathways were activated after drug treatment in addition to endogenous and exogenous apoptotic pathways. The addition of the ROS inhibitor N-acetylcysteine (NAC) upregulated the expression level of Bcl-2 protein, decreased p38 phosphorylation, increased ERK phosphorylation and restored the levels of PI3K and p-mTOR after ChA treatment. These suggest that ChA induces apoptosis by regulating oxidative stress, MAPK, and PI3K-AKT-mTOR signaling pathways in T-24 cells.
Collapse
Affiliation(s)
- Jia Song
- School of Life and Health, Dalian University, Dalian, China
| | - Jinyu Qiao
- School of Life and Health, Dalian University, Dalian, China
| | - Mingxue Chen
- School of Life and Health, Dalian University, Dalian, China
| | - Jiahui Li
- School of Life and Health, Dalian University, Dalian, China
| | - Jixia Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Dayong Yu
- School of Basic Medical Sciences, Chengde Medical University, Chengde, China
| | - Huachuan Zheng
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Liying Shi
- School of Life and Health, Dalian University, Dalian, China
| |
Collapse
|
8
|
Guo J, Huang T, Zhou H. Gut microbiome, dietary habits, and prostate cancer: a two-step Mendelian randomization revealing the causal associations. Discov Oncol 2025; 16:375. [PMID: 40121389 PMCID: PMC11929656 DOI: 10.1007/s12672-025-02172-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/18/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Recent studies suggest that diet fizzy drinks may contribute to prostate cancer (PCa) development. However, the causal effects between diet fizzy drinks and PCa and whether gut microbiota (GM) act as a mediator remain unclear. METHODS We conducted two-sample Mendelian Randomization (MR) analyses utilizing large-scale genome-wide association studies (GWAS) data from the UK Biobank, the MiBioGen consortium, and PCa-related datasets. The inverse-variance weighted (IVW) method was used to evaluate the causal effects of GM and dietary preferences on PCa risk. A mediation analysis was performed to investigate whether GM mediates the relationship between dietary factors and PCa risk. RESULTS Diet fizzy drink consumption was causally associated with reduced PCa risk (OR = 0.83, 95% CI: 0.70-0.99, P = 0.041) and decreased abundance of PCa-risk-related GM taxa (Negativicutes and Selenomonadales). Mediation analysis did not reveal a statistically significant mediation effect, with a mediation proportion of 16% (95% CI: - 0.06-0.37, P = 0.13). CONCLUSION Consumption of diet fizzy drinks may reduce the risk of PCa, potentially through modulation of the GM; however, further studies are required to confirm these findings and clarify underlying mechanisms.
Collapse
Affiliation(s)
- Junhua Guo
- Department of Oncology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Stadium Road, Xihu District, Hangzhou, 310007, Zhejiang Province, China
| | - Ting Huang
- Department of Oncology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Stadium Road, Xihu District, Hangzhou, 310007, Zhejiang Province, China
| | - Heran Zhou
- Department of Oncology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Stadium Road, Xihu District, Hangzhou, 310007, Zhejiang Province, China.
| |
Collapse
|
9
|
Afshari AR, Sanati M, Aminyavari S, Keshavarzi Z, Ahmadi SS, Oroojalian F, Karav S, Sahebkar A. A novel approach to glioblastoma multiforme treatment using modulation of key pathways by naturally occurring small molecules. Inflammopharmacology 2025; 33:1237-1254. [PMID: 39955698 DOI: 10.1007/s10787-025-01666-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/18/2025] [Indexed: 02/17/2025]
Abstract
Glioblastoma multiforme (GBM), the fatal primary brain malignancy in adults, represents significant health challenges, and its eradication has been the ultimate goal of numerous medical investigations. GBM therapy encompasses various interventions, e.g., chemotherapy by synthetic cytotoxic agents like temozolomide (TMZ), radiotherapy, and, more recently, immunotherapy. A notable focus has been on incorporating naturally occurring substances in treating malignancies. Polyphenols and terpenoids, widely present in fruits and vegetables, constitute primary categories of agents employed for this purpose. They pose direct and indirect impacts on tumor growth and chemoresistance, mainly through impacting the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling, crucial in cellular processes, metabolism, and programmed death. This paper thoroughly discusses the biologic effects and practical application of polyphenols and terpenoids on GBM through the PI3K/Akt/mTOR signaling in vitro and in vivo.
Collapse
Affiliation(s)
- Amir R Afshari
- Department of Basic Sciences, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
| | - Mehdi Sanati
- Department of Orthopedics, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
| | - Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zakieh Keshavarzi
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, 17100, Turkey
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Yang X, Cao X, Zhu Q. p62/SQSTM1 in cancer: phenomena, mechanisms, and regulation in DNA damage repair. Cancer Metastasis Rev 2025; 44:33. [PMID: 39954143 PMCID: PMC11829845 DOI: 10.1007/s10555-025-10250-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
The multidomain protein cargo adaptor p62, also known as sequestosome 1, serves as a shuttling factor and adaptor for the degradation of substrates via the proteasome and autophagy pathways. Regarding its structure, p62 is composed of several functional domains, including the N-terminal Phox1 and Bem1p domains, a ZZ-type zinc finger domain, a LIM protein-binding domain that contains the tumor necrosis factor receptor-associated factor 6 (TRAF6) binding region, two nuclear localization signals (NLS 1/2), a nuclear export signal (NES), the LC3-interacting region (LIR), a Kelch-like ECH-associated protein 1 (KEAP1)-interacting region, and a ubiquitin-associated (UBA) domain. Recent studies have highlighted the critical role of p62 in the development and progression of various malignancies. Overexpression and/or impaired degradation of p62 are linked to the initiation and progression of numerous cancers. While p62 is primarily localized in the cytosol and often considered a cytoplasmic protein, most of the existing literature focuses on its cytoplasmic functions, leaving its nuclear roles less explored. However, an increasing body of research has uncovered p62's involvement in the cellular response to DNA damage. In this review, we summarize the current understanding of p62's molecular functions in malignancies, with particular emphasis on its role in DNA damage repair, highlighting the latest advances in this field.
Collapse
Affiliation(s)
- Xiaojuan Yang
- Liver Digital Transformation Research Laboratory, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xunjie Cao
- Division of Abdominal Tumor Multimodality Treatment, Department of General Surgery, West China Hospital, Sichuan University, Cancer Center, Chengdu, 610041, China
| | - Qing Zhu
- Division of Abdominal Tumor Multimodality Treatment, Department of General Surgery, West China Hospital, Sichuan University, Cancer Center, Chengdu, 610041, China.
| |
Collapse
|
11
|
Wu Y, Wang H, Xu H. Autophagy-lysosome pathway in insulin & glucagon homeostasis. Front Endocrinol (Lausanne) 2025; 16:1541794. [PMID: 39996055 PMCID: PMC11847700 DOI: 10.3389/fendo.2025.1541794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Lysosome, a highly dynamic organelle, is an important nutrient sensing center. They utilize different ion channels and transporters to complete the mission in degradation, trafficking, nutrient sensing and integration of various metabolic pathways to maintain cellular homeostasis. Glucose homeostasis relies on tightly regulated insulin secretion by pancreatic β cells, and their dysfunction is a hallmark of type 2 diabetes. Glucagon also plays an important role in hyperglycemia in diabetic patients. Currently, lysosome has been recognized as a nutrient hub to regulate the homeostasis of insulin and other hormones. In this review, we will discuss recent advances in understanding lysosome-mediated autophagy and lysosomal proteins involved in maintaining insulin and glucagon homeostasis, as well as their contributions to the etiology of diabetes.
Collapse
Affiliation(s)
- Yi Wu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Hui Wang
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Huoyan Xu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
12
|
Kao WH, Chiu KY, Tsai SCS, Teng CLJ, Oner M, Lai CH, Hsieh JT, Lin CC, Wang HY, Chen MC, Lin H. PI3K/Akt inhibition promotes AR activity and prostate cancer cell proliferation through p35-CDK5 modulation. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167568. [PMID: 39536992 DOI: 10.1016/j.bbadis.2024.167568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Aberrant PI3K/Akt activation is linked to prostate cancer (PCa) malignancy, while androgen receptor (AR) is critical in early-stage PCa development. Investigating the interaction between these pathways is crucial for PCa malignancy. Our previous study demonstrated that p35-CDK5 mediates post-translational modifications of AR, STAT3, and p21CIP1, eventually promoting PCa cell growth. This study revealed the role of p35-CDK5 in between PI3K/Akt and AR by utilizing LNCaP and 22Rv1 cells. Through the TCGA database analysis, we observed a positive correlation between PTEN and p35 expression, implying a potential negative correlation between PI3K/Akt activation and p35-CDK5. Inhibiting PI3K/Akt with LY294002, Capivasertib (AZD5363), or using an inactive Akt mutant significantly increased p35 expression and subsequently enhanced AR stability and activation in PCa cells. On the other hand, CDK5-knockdown reversed these effects. The involvement of the β-catenin/Egr1-axis was observed in regulating PI3K/Akt inhibition and p35-CDK5 activation, implying a possible mechanistic connection. Importantly, CDK5 knockdown further reduced PI3K/Akt-inhibition-induced AR and cell viability maintenance, suggesting a compensatory role for CDK5-AR in maintaining cell viability under Akt inhibition. In conclusion, PI3K/Akt inhibition could trigger p35-CDK5-dependent AR activation and cell viability, highlighting p35-CDK5 as a critical link connecting PI3K/Akt inhibition to AR activation and pivotal in PCa cell resistance to PI3K/Akt blockade.
Collapse
Affiliation(s)
- Wei-Hsiang Kao
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan; Translational Cell Therapy Center, China Medical University Hospital, Taichung 40447, Taiwan.
| | - Kun-Yuan Chiu
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Stella Chin-Shaw Tsai
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan; Superintendent Office, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan; College of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chieh-Lin Jerry Teng
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan; Division of Hematology/Medical Oncology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan.
| | - Muhammet Oner
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, TX75390, USA.
| | - Chi-Chien Lin
- Institute of Biomedical Science, National Chung Hsing University, Taichung 40227, Taiwan
| | - Hsin-Yi Wang
- Department of Nuclear Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan.
| | - Mei-Chih Chen
- Translational Cell Therapy Center, China Medical University Hospital, Taichung 40447, Taiwan.
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
13
|
Hemalatha A, Li Z, Gonzalez DG, Matte-Martone C, Tai K, Lathrop E, Gil D, Ganesan S, Gonzalez LE, Skala M, Perry RJ, Greco V. Metabolic rewiring in skin epidermis drives tolerance to oncogenic mutations. Nat Cell Biol 2025; 27:218-231. [PMID: 39762578 PMCID: PMC11821535 DOI: 10.1038/s41556-024-01574-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 11/01/2024] [Indexed: 02/06/2025]
Abstract
Skin epithelial stem cells correct aberrancies induced by oncogenic mutations. Oncogenes invoke different strategies of epithelial tolerance; while wild-type cells outcompete β-catenin-gain-of-function (βcatGOF) cells, HrasG12V cells outcompete wild-type cells. Here we ask how metabolic states change as wild-type stem cells interface with mutant cells and drive different cell-competition outcomes. By tracking the endogenous redox ratio (NAD(P)H/FAD) with single-cell resolution in the same mouse over time, we discover that βcatGOF and HrasG12V mutations, when interfaced with wild-type epidermal stem cells, lead to a rapid drop in redox ratios, indicating more oxidized cellular redox. However, the resultant redox differential persists through time in βcatGOF, whereas it is flattened rapidly in the HrasG12Vmodel. Using 13C liquid chromatography-tandem mass spectrometry, we find that the βcatGOF and HrasG12V mutant epidermis increase the fractional contribution of glucose through the oxidative tricarboxylic acid cycle. Treatment with metformin, a modifier of cytosolic redox, inhibits downstream mutant phenotypes and reverses cell-competition outcomes of both mutant models.
Collapse
Affiliation(s)
| | - Zongyu Li
- Departments of Cellular & Molecular Physiology and Internal Medicine (Endocrinology), Yale School of Medicine, New Haven, CT, USA
| | - David G Gonzalez
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Karen Tai
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Daniel Gil
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | - Smirthy Ganesan
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Melissa Skala
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | - Rachel J Perry
- Departments of Cellular & Molecular Physiology and Internal Medicine (Endocrinology), Yale School of Medicine, New Haven, CT, USA.
| | - Valentina Greco
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Departments of Cell Biology and Dermatology, Yale Stem Cell Center, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.
- Howard Hughes Medical Institute (HHMI), Chevy Chase, MD, USA.
| |
Collapse
|
14
|
Li J, Madsen AB, Knudsen JR, Henriquez-Olguin C, Persson KW, Li Z, Raun SH, Li T, Kiens B, Wojtaszewski JFP, Richter EA, Nogara L, Blaauw B, Ogasawara R, Jensen TE. mTOR Ser1261 is an AMPK-dependent phosphosite in mouse and human skeletal muscle not required for mTORC2 activity. FASEB J 2025; 39:e70277. [PMID: 39835637 DOI: 10.1096/fj.202402064r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/28/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025]
Abstract
The kinases AMPK, and mTOR as part of either mTORC1 or mTORC2, are major orchestrators of cellular growth and metabolism. Phosphorylation of mTOR Ser1261 is reportedly stimulated by both insulin and AMPK activation and a regulator of both mTORC1 and mTORC2 activity. Intrigued by the possibilities that Ser1261 might be a convergence point between insulin and AMPK signaling in skeletal muscle, we investigated the regulation and function of this site using a combination of human exercise, transgenic mouse, and cell culture models. Ser1261 phosphorylation on mTOR did not respond to insulin in any of our tested models, but instead responded acutely to contractile activity in human and mouse muscle in an AMPK activity-dependent manner. Contraction-stimulated mTOR Ser1261 phosphorylation in mice was decreased by Raptor muscle knockout (mKO) and increased by Raptor muscle overexpression, yet was not affected by Rictor mKO, suggesting most of Ser1261 phosphorylation occurs within mTORC1 in skeletal muscle. In accordance, HEK293 cells mTOR Ser1261Ala mutation strongly impaired phosphorylation of mTORC1 substrates but not mTORC2 substrates. However, neither mTORC1 nor mTORC2-dependent phosphorylations were affected in muscle-specific kinase-dead AMPK mice with no detectable mTOR Ser1261 phosphorylation in skeletal muscle. Thus, mTOR Ser1261 is an exercise but not insulin-responsive AMPK-dependent phosphosite in human and murine skeletal muscle, playing an unclear role in mTORC1 regulation but clearly not required for mTORC2 activity.
Collapse
Affiliation(s)
- Jingwen Li
- August Krogh Section for Human and Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- School of Medicine and Nursing, Huzhou University, Huzhou, China
| | - Agnete B Madsen
- August Krogh Section for Human and Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jonas R Knudsen
- August Krogh Section for Human and Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Carlos Henriquez-Olguin
- August Krogh Section for Human and Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- Exercise Science Laboratory, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Kaspar W Persson
- August Krogh Section for Human and Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Zhencheng Li
- August Krogh Section for Human and Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- College of Physical Education, Chongqing University, Chongqing, China
| | - Steffen H Raun
- August Krogh Section for Human and Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Tianjiao Li
- August Krogh Section for Human and Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- August Krogh Section for Human and Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- August Krogh Section for Human and Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Erik A Richter
- August Krogh Section for Human and Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Leonardo Nogara
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Bert Blaauw
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Riki Ogasawara
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Thomas E Jensen
- August Krogh Section for Human and Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Caprara G, Pallavi R, Sanyal S, Pelicci PG. Dietary Restrictions and Cancer Prevention: State of the Art. Nutrients 2025; 17:503. [PMID: 39940361 PMCID: PMC11820753 DOI: 10.3390/nu17030503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/22/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Worldwide, almost 10 million cancer deaths occurred in 2022, a number that is expected to rise to 16.3 million by 2040. Primary prevention has long been acknowledged as a crucial approach to reducing cancer incidence. In fact, between 30 and 50 percent of all tumors are known to be preventable by eating a healthy diet, staying active, avoiding alcohol, smoking, and being overweight. Accordingly, many international organizations have created tumor prevention guidelines, which underlie the importance of following a diet that emphasizes eating plant-based foods while minimizing the consumption of red/processed meat, sugars, processed foods, and alcohol. However, further research is needed to define the relationship between the effect of specific diets or nutritional components on cancer prevention. Interestingly, reductions in food intake and dietetic restrictions can extend the lifespan of yeast, nematodes, flies, and rodents. Despite controversial results in humans, those approaches have the potential to ameliorate health via direct and indirect effects on specific signaling pathways involved in cancer onset. Here, we describe the latest knowledge on the cancer-preventive potential of dietary restrictions and the biochemical processes involved. Molecular, preclinical, and clinical studies evaluating the effects of different fasting strategies will also be reviewed.
Collapse
Affiliation(s)
- Greta Caprara
- Department of Experimental Oncology, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20139 Milan, Italy
| | - Rani Pallavi
- Department of Experimental Oncology, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20139 Milan, Italy
- Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad 500034, India
- The Operation Eyesight Universal Institute for Eye Cancer, L. V. Prasad Eye Institute, Hyderabad 500034, India; (R.P.); (S.S.)
| | - Shalini Sanyal
- Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad 500034, India
- The Operation Eyesight Universal Institute for Eye Cancer, L. V. Prasad Eye Institute, Hyderabad 500034, India; (R.P.); (S.S.)
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20139 Milan, Italy
| |
Collapse
|
16
|
Khayer N, Shabani S, Jalessi M, Joghataei MT, Mahjoubi F. A dynamic co-expression approach reveals Gins2 as a potential upstream modulator of HNSCC metastasis. Sci Rep 2025; 15:3322. [PMID: 39865116 PMCID: PMC11770085 DOI: 10.1038/s41598-024-82668-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/09/2024] [Indexed: 01/28/2025] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is an aggressive cancer that is notably associated with a high risk of lymph node metastasis, a major cause of cancer mortality. Current therapeutic options remain limited to surgery supplemented by radio- or chemotherapy; however, these interventions often result in high-grade toxicities. Distant metastasis significantly contributed to the poor prognosis and decreased survival rates. However, the underlying molecular mechanisms remain poorly understood. Disease-related "omics" data provide a comprehensive overview of gene relationships, helping to decode the complex molecular mechanisms involved. Interactions between biological molecules are complex and highly dynamic across various cellular conditions, making traditional co-expression methods inadequate for understanding these intricate relationships. In the present study, a novel three-way interaction approach was employed to uncover dynamic co-expression relationships underlying the metastatic nature of HNSCC. Subsequently, the biologically relevant triples from statistically significant ones were defined through gene set enrichment analysis and reconstruction of the gene regulatory network. Finally, the validity of biologically relevant triplets was assessed at the protein level. The results highlighted the "PI3K/AKT/mTOR (PAM) signaling pathway" as a disrupted pathway involved in the metastatic nature of HNSCC. Notably, Gins2, identified as a switch gene, along with the gene pair {Akt2, Anxa2}, formed a statistically significant and biologically relevant triplet. It suggests that Gins2 could serve as a potential upstream modulator in the PAM signaling pathway, playing a crucial role in the distant metastasis of HNSCC. In addition, survival analysis of significant switch genes indicated that two genes, C19orf33 and Usp13, may be especially important for prognostic purposes in HNSCC.
Collapse
Affiliation(s)
- Nasibeh Khayer
- Skull Base Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Shabani
- Department of Clinical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Maryam Jalessi
- Skull Base Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center , Iran University of Medical Sciences, Tehran, Iran.
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Frouzandeh Mahjoubi
- Department of Clinical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| |
Collapse
|
17
|
Marin-Castañeda LA, Pacheco Aispuro G, Gonzalez-Garibay G, Martínez Zamora CA, Romo-Parra H, Rubio-Osornio M, Rubio C. Interplay of epilepsy and long-term potentiation: implications for memory. Front Neurosci 2025; 18:1451740. [PMID: 39867454 PMCID: PMC11760605 DOI: 10.3389/fnins.2024.1451740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/20/2024] [Indexed: 01/28/2025] Open
Abstract
The interplay between long-term potentiation (LTP) and epilepsy represents a crucial facet in understanding synaptic plasticity and memory within neuroscience. LTP, a phenomenon characterized by a sustained increase in synaptic strength, is pivotal in learning and memory processes, particularly in the hippocampus. This review delves into the intricate relationship between LTP and epilepsy, exploring how alterations in synaptic plasticity mechanisms akin to those seen in LTP contribute to the hyperexcitable state of epilepsy. This state is conceptualized as a dysregulation between LTP and LTD (Long-term depression), leading to pathologically enhanced synaptic efficacy. Additionally, the role of neuroinflammation in both LTP and epilepsy is examined, highlighting how inflammatory mediators can influence synaptic plasticity. The dual role of neuroinflammatory pathways, enhancing or inhibiting LTP, is a focal area of ongoing research. The significance of various signaling pathways, including the MAPK, mTOR, and WNT/β-catenin pathways, in the modulation of synaptic plasticity and their relevance in both LTP and epilepsy. These pathways are instrumental in memory formation, consolidation, and epileptogenesis, illustrating a complex interaction between cellular mechanisms in the nervous system. Lastly, the role of calcium signaling in the relationship between LTP and epilepsy is scrutinized. Aberrant calcium signaling in epilepsy leads to an enhanced, yet pathologically altered, LTP. This dysregulation disrupts normal neural pathways, potentially leading to cognitive dysfunction, particularly in memory encoding and retrieval. The review emphasizes the need for targeted interventions in epilepsy that address cognitive functions alongside seizure control.
Collapse
Affiliation(s)
- Luis A. Marin-Castañeda
- Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, Mexico
| | | | - Guillermo Gonzalez-Garibay
- Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, Mexico
- Anahuac University, Mexico City, Mexico
| | - Carlos Alejandro Martínez Zamora
- Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, Mexico
- School of Medicine, Saint Luke, Mexico City, Mexico
| | - Hector Romo-Parra
- Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, Mexico
- Universidad Iberoamericana, Mexico City, Mexico
| | - Moisés Rubio-Osornio
- Department of Neurochemistry, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, Mexico
| | - Carmen Rubio
- Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, Mexico
| |
Collapse
|
18
|
Xu J, Wang G, Hou Y, Sun K, Zheng Z, Guo Z, Hou L, Zhang X, Ruan Z, Ye Y, Guo F. RICTOR-mediated activation of AKT/mTOR signaling and autophagy inhibition promote osteoarthritis. Int Immunopharmacol 2025; 144:113681. [PMID: 39591826 DOI: 10.1016/j.intimp.2024.113681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/10/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
The most common joint disease in the elderly is osteoarthritis (OA), which is characterized by synovitis, cartilage degeneration, and osteophytes, for which there are currently no effective therapies. Chondrocytes, responsible for extracellular matrix (ECM) synthesis and degradation, undergo changes in OA, leading to ECM disruption and disease progression. There is no clear role for the Mechanistic target of rapamycin complex 2 (mTORC2) in OA, but it is known to regulate cellular functions, such as proliferation, metabolism, motility, and apoptosis. The purpose of this study was to determine the molecular mechanism by which Rapamycin-insensitive companion of mTOR (RICTOR), a component of mTORC2, contributes to OA progression. The results demonstrate that IL-1β induces high expression of RICTOR in chondrocytes, promoting downregulation of collagen II expression and impairing autophagy. Silencing RICTOR reverses IL-1β-induced downregulating of collagen II expression and mitochondrial dysfunction. RICTOR inhibits chondrocyte autophagy by inhibiting autophagosome formation and preventing autophagosome-lysosome fusion. Additionally, RICTOR promotes oxidative stress in chondrocytes, leading to disruption of normal mitochondrial structure and disturbance of the articular cartilage microenvironment. This study reveals the potential of RICTOR to treat OA. Specifically, blocking mTORC2 might be an effective treatment strategy.
Collapse
Affiliation(s)
- Jingting Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Genchun Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Orthopedic Medical Center, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350000, China
| | - Yanjun Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zehang Zheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhou Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Liangcai Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiong Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhaoxuan Ruan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yaping Ye
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
19
|
Zeng X, Chen Y, Wang J, He M, Qiu J, Huang Y. Targeting autophagy to enhance chemotherapy and immunotherapy in oral cancer. Front Immunol 2025; 15:1535649. [PMID: 39840028 PMCID: PMC11747659 DOI: 10.3389/fimmu.2024.1535649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Oral cancer is a highly malignant disease characterized by recurrence, metastasis, and poor prognosis. Autophagy, a catabolic process induced under stress conditions, has been shown to play a dual role in oral cancer development and therapy. Recent studies have identified that autophagy activation in oral epithelial cells suppresses cancer cell survival by inhibiting key pathways such as the mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK), while activating the adenosine monophosphate-activated protein kinase (AMPK) pathway. Inducing autophagy promotes degradation of eukaryotic initiation factor 4E, thus reducing metastasis and enhancing the efficacy of chemotherapy, radiotherapy, and immunotherapy. Furthermore, autophagy induction can modulate the tumor immune microenvironment and enhance antitumor immunity. This review comprehensively summarizes the relationship between autophagy and oral cancer, focusing on its mechanisms and therapeutic potential when combined with conventional treatments. While promising, the precise mechanisms and clinical applications of autophagy inducers in oral cancer therapy remain to be elucidated, offering new directions for future research to improve treatment outcomes and reduce recurrence.
Collapse
Affiliation(s)
- Xiaoli Zeng
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Jiangxi "Flagship" Oncology Department of Synergy for Chinese and Western Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Oncology, Jiangxi Clinical Medical Research Center for Cancer, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yue Chen
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Oncology, Jiangxi Clinical Medical Research Center for Cancer, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jing Wang
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Oncology, Jiangxi Clinical Medical Research Center for Cancer, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Miao He
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Oncology, Jiangxi Clinical Medical Research Center for Cancer, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junyao Qiu
- Department of Gastroenterology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi, China
| | - Yun Huang
- Department of Otolaryngology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi, China
| |
Collapse
|
20
|
Jeon S, Jeon Y, Lim JY, Kim Y, Cha B, Kim W. Emerging regulatory mechanisms and functions of biomolecular condensates: implications for therapeutic targets. Signal Transduct Target Ther 2025; 10:4. [PMID: 39757214 DOI: 10.1038/s41392-024-02070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 01/07/2025] Open
Abstract
Cells orchestrate their processes through complex interactions, precisely organizing biomolecules in space and time. Recent discoveries have highlighted the crucial role of biomolecular condensates-membrane-less assemblies formed through the condensation of proteins, nucleic acids, and other molecules-in driving efficient and dynamic cellular processes. These condensates are integral to various physiological functions, such as gene expression and intracellular signal transduction, enabling rapid and finely tuned cellular responses. Their ability to regulate cellular signaling pathways is particularly significant, as it requires a careful balance between flexibility and precision. Disruption of this balance can lead to pathological conditions, including neurodegenerative diseases, cancer, and viral infections. Consequently, biomolecular condensates have emerged as promising therapeutic targets, with the potential to offer novel approaches to disease treatment. In this review, we present the recent insights into the regulatory mechanisms by which biomolecular condensates influence intracellular signaling pathways, their roles in health and disease, and potential strategies for modulating condensate dynamics as a therapeutic approach. Understanding these emerging principles may provide valuable directions for developing effective treatments targeting the aberrant behavior of biomolecular condensates in various diseases.
Collapse
Affiliation(s)
- Soyoung Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Yeram Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Ji-Youn Lim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Yujeong Kim
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Boksik Cha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea.
| | - Wantae Kim
- Department of Life Science, University of Seoul, Seoul, South Korea.
| |
Collapse
|
21
|
Zhang Z, Sun D, Yang Y, Abbas SY, Li H, Chen L. A patent review of UNC-51-like kinase 1/2 inhibitors (2019-present). Expert Opin Ther Pat 2025; 35:7-16. [PMID: 39470442 DOI: 10.1080/13543776.2024.2423010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/10/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
INTRODUCTION UNC-51-like kinase 1/2 (ULK1/2) are serine/threonine kinases that play a crucial role in autophagy activation and maintaining cellular homeostasis. Given their broad physiological relevance, ULK1/2 are candidate targets for treating various diseases. In recent years, ULK1/2 inhibitors have made significant progress, and the highly potent ULK1/2 inhibitors have entered clinical trials. AREA COVERED This review aims to provide an updated analysis of patents describing ULK1/2 inhibitors and their potential therapeutic applications that were disclosed between 2019 and 2024. EXPERT OPINION Due to their crucial role in various diseases, the invention of small-molecule drugs targeting ULK1/2 is particularly important, especially in cancer treatment. Despite the great success of ULK1/2 inhibitors development, ULK1/2 inhibitors are ATP competitive inhibitors of aminopyrimidines currently, and most ULK1/2 inhibitors are still in the preclinical research stage, with only DCC-3116 entered clinical research. Therefore, developing highly selective ULK1/2 inhibitors with low side effects and high bioavailability remains a challenging and promising research direction.
Collapse
Affiliation(s)
- Zhiqi Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Yueying Yang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Samir Y Abbas
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, Egypt
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
22
|
Yanai Y, Mikami S, Yasumizu Y, Takeda T, Matsumoto K, Kitano S, Oya M, Kosaka T. Loss of phosphatase and tensin homolog expression castration-sensitive prostate cancer predicts outcomes in men after prostatectomy. Int J Urol 2025; 32:39-44. [PMID: 39352063 PMCID: PMC11730643 DOI: 10.1111/iju.15592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/18/2024] [Indexed: 01/15/2025]
Abstract
OBJECTIVES This study aimed to investigate the potential for using the phosphatase and tensin homolog (PTEN) gene as a prognostic marker in post-prostatectomy patients with castration-sensitive prostate cancer (PCa). METHODS A total of 180 patients with castration-sensitive PCa who underwent radical prostatectomy at our institution were included in this study. PTEN expression was evaluated using immunohistochemistry, and patients were classified into two groups based on the staining intensity: PTEN-Normal and PTEN-Loss. The association between PTEN expression and biochemical recurrence was analyzed using the Cox proportional hazards model. RESULTS Patients in the PTEN-Loss group had a higher risk of biochemical recurrence (hazard ratio, 4.642; 95% confidence interval, 2.137-10.083; p < 0.001) and a lower recurrence-free rate compared to the PTEN-Normal group (35% vs. 75%). In addition to clinicopathological factors, such as the serum prostate-specific antigen level, Gleason score, and T stage, evaluation of PTEN expression improved the prediction of biochemical recurrence after prostatectomy (area under the curve, 0.577 vs. 0.688). CONCLUSIONS Low PTEN expression is a significant predictor of biochemical recurrence in patients with castration-sensitive PCa who have already undergone prostatectomy.
Collapse
Affiliation(s)
- Yoshinori Yanai
- Department of UrologyKeio University School of MedicineTokyoJapan
| | - Shuji Mikami
- Department of Diagnostic PathologyKeio University School of MedicineTokyoJapan
| | - Yota Yasumizu
- Department of UrologyKeio University School of MedicineTokyoJapan
| | - Toshikazu Takeda
- Department of UrologyKeio University School of MedicineTokyoJapan
| | | | - Shigehisa Kitano
- Department of Advanced Medical Development, Division of Clinical ChemotherapyThe Cancer Institute Hospital of Japanese Foundation for Cancer Research, The Cancer Chemotherapy Center of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Mototsugu Oya
- Department of UrologyKeio University School of MedicineTokyoJapan
| | - Takeo Kosaka
- Department of UrologyKeio University School of MedicineTokyoJapan
| |
Collapse
|
23
|
Abdallah MM, de Oliveira BD, DuMontier C, Orkaby AR, Nussbaum L, Gaziano M, Djousse L, Gagnon D, Cho K, Preis SR, Driver JA. Risk of Incident Cancer in Veterans with Diabetes Who Use Metformin Versus Sulfonylureas. J Cancer Prev 2024; 29:140-147. [PMID: 39790228 PMCID: PMC11706726 DOI: 10.15430/jcp.24.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 01/12/2025] Open
Abstract
Prior research suggests metformin has anti-cancer effects, yet data are limited. We examined the association between diabetes treatment (metformin versus sulfonylurea) and risk of incident diabetes-related and non- diabetes-related cancers in US veterans. This retrospective cohort study included US veterans, without cancer, aged ≥ 55 years, who were new users of metformin or sulfonylureas for diabetes between 2001 to 2012. Cox proportional hazards models, with propensity score-matched inverse probability of treatment weighting (IPTW) were constructed. A total of 88,713 veterans (mean age 68.6 ± 7.8 years; 97.7% male; 84.1% White, 12.6% Black, 3.3% other race) were followed for 4.2 ± 3.0 years. Among metformin users (n = 60,476), there were 858 incident diabetes-related cancers (crude incidence rate [IR; per 1,000 person-years] = 3.4) and 3,533 non-diabetes-related cancers (IR = 14.1). Among sulfonylurea users (n = 28,237), there were 675 incident diabetes-related cancers (IR = 5.5) and 2,316 non-diabetes-related cancers (IR = 18.9). After IPTW adjustment, metformin use was associated with a lower risk of incident diabetes-related cancer (hazard ratio [HR] = 0.66, 95% CI 0.58-0.75) compared to sulfonylurea use. There was no association between treatment group (metformin versus sulfonylurea) and non-diabetes-related cancer (HR = 0.96, 95% CI 0.89-1.02). Of diabetes-related cancers, metformin users had lower incidence of liver (HR = 0.39, 95% CI 0.28-0.53), colorectal (HR = 0.75, 95% CI 0.62-0.92), and esophageal cancers (HR = 0.54, 95% CI 0.36-0.81). Among US veterans, metformin users had lower incidence of diabetes-related cancer, particularly liver, colorectal, and esophageal cancers, as compared to sulfonylurea users. Use of metformin was not associated with non-diabetes-related cancer. Further studies are needed to understand how metformin use impacts cancer incidence in different patient populations.
Collapse
Affiliation(s)
- Maya M. Abdallah
- Section of Hematology/Oncology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | | | - Clark DuMontier
- New England Geriatrics Research, Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA
- Division of Aging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Ariela R. Orkaby
- New England Geriatrics Research, Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA
- Division of Aging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Lisa Nussbaum
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Michael Gaziano
- Division of Aging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Luc Djousse
- Division of Aging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - David Gagnon
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Kelly Cho
- Division of Aging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Sarah R. Preis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jane A. Driver
- New England Geriatrics Research, Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA
- Division of Aging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
24
|
You H, Zhang H, Jin X, Yan Z. Dysregulation of ubiquitination modification in renal cell carcinoma. Front Genet 2024; 15:1453191. [PMID: 39748950 PMCID: PMC11693700 DOI: 10.3389/fgene.2024.1453191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/26/2024] [Indexed: 01/04/2025] Open
Abstract
Renal cell carcinoma (RCC) is a malignant tumor of the renal tubular epithelial cells with a relatively high incidence rate worldwide. A large number of studies have indicated that dysregulation of the ubiquitination, including ubiquitination and dysregulation, is associated with the occurrence and development of RCC. This review focuses on several abnormal signaling pathways caused by E3 ligases and deubiquitinases. Additionally, we discuss research progress in RCC treatment by targeting key enzymes related to ubiquitination modifications.
Collapse
Affiliation(s)
| | | | - Xiaofeng Jin
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang, China
| | - Zejun Yan
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
25
|
Mehta D, Rajput K, Jain D, Bajaj A, Dasgupta U. Unveiling the Role of Mechanistic Target of Rapamycin Kinase (MTOR) Signaling in Cancer Progression and the Emergence of MTOR Inhibitors as Therapeutic Strategies. ACS Pharmacol Transl Sci 2024; 7:3758-3779. [PMID: 39698262 PMCID: PMC11650738 DOI: 10.1021/acsptsci.4c00530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024]
Abstract
The mechanistic target of rapamycin kinase (MTOR) is pivotal for cell growth, metabolism, and survival. It functions through two distinct complexes, mechanistic TORC1 and mechanistic TORC2 (mTORC1 and mTORC2). These complexes function in the development and progression of cancer by regulating different cellular processes, such as protein synthesis, lipid metabolism, and glucose homeostasis. The mTORC1 complex senses nutrients and initiates proliferative signals, and mTORC2 is crucial for cell survival and cytoskeletal rearrangements. mTORC1 and mTORC2 have therefore emerged as potential targets for cancer treatment. Several mTOR inhibitors, including rapamycin and its analogs (rapalogs), primarily target mTORC1 and are effective for specific cancer types. However, these inhibitors often lead to resistance and limited long-term advantages due to the activation of survival pathways through feedback mechanisms. Researchers have created next-generation inhibitors targeting mTORC1 and mTORC2 and dual PI3K/mTOR inhibitors to address these difficulties. These inhibitors demonstrate enhanced anti-tumor effects by simultaneously disrupting multiple signaling pathways and show promise for improved and long-lasting therapies. However, development of resistance and adverse side effects remain a significant obstacle. Recent additions known as RapaLinks have emerged as a boon to counter drug-resistant cancer cells, as they are more potent and provide a more comprehensive blockade of mTOR signaling pathways. This Review combines current research findings and clinical insights to enhance our understanding of the crucial role of mTOR signaling in cancer biology and highlights the evolution of mTOR inhibitors as promising therapeutic approaches.
Collapse
Affiliation(s)
- Devashish Mehta
- Amity
Institute of Integrative Sciences and Health, Amity University Haryana, Panchgaon, Manesar, Gurgaon-122413, Haryana, India
| | - Kajal Rajput
- Amity
Institute of Integrative Sciences and Health, Amity University Haryana, Panchgaon, Manesar, Gurgaon-122413, Haryana, India
| | - Dolly Jain
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad-121001, Haryana, India
| | - Avinash Bajaj
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad-121001, Haryana, India
| | - Ujjaini Dasgupta
- Amity
Institute of Integrative Sciences and Health, Amity University Haryana, Panchgaon, Manesar, Gurgaon-122413, Haryana, India
| |
Collapse
|
26
|
Tucker SK, Eberhart JK. The convergence of mTOR signaling and ethanol teratogenesis. Reprod Toxicol 2024; 130:108720. [PMID: 39306261 DOI: 10.1016/j.reprotox.2024.108720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Ethanol is one of the most common teratogens and causes of human developmental disabilities. Fetal alcohol spectrum disorders (FASD), which describes the wide range of deficits due to prenatal ethanol exposure, are estimated to affect between 1.1 % and 5.0 % of births in the United States. Ethanol dysregulates numerous cellular mechanisms such as programmed cell death (apoptosis), protein synthesis, autophagy, and various aspects of cell signaling, all of which contribute to FASD. The mechanistic target of rapamycin (mTOR) regulates these cellular mechanisms via sensing of nutrients like amino acids and glucose, DNA damage, and growth factor signaling. Despite an extensive literature on ethanol teratogenesis and mTOR signaling, there has been less attention paid to their interaction. Here, we discuss the impact of ethanol teratogenesis on mTORC1's ability to coordinate growth factor and amino acid sensing with protein synthesis, autophagy, and apoptosis. Notably, the effect of ethanol exposure on mTOR signaling depends on the timing and dose of ethanol as well as the system studied. Overall, the overlap between the functions of mTORC1 and the phenotypes observed in FASD suggest a mechanistic interaction. However, more work is required to fully understand the impact of ethanol teratogenesis on mTOR signaling.
Collapse
Affiliation(s)
- Scott K Tucker
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, TX, USA
| | - Johann K Eberhart
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, TX, USA.
| |
Collapse
|
27
|
Abéza C, Busse P, Paiva ACF, Chagot ME, Schneider J, Robert MC, Vandermoere F, Schaeffer C, Charpentier B, Sousa PMF, Bandeiras TM, Manival X, Cianferani S, Bertrand E, Verheggen C. The HSP90/R2TP Quaternary Chaperone Scaffolds Assembly of the TSC Complex. J Mol Biol 2024; 436:168840. [PMID: 39490680 DOI: 10.1016/j.jmb.2024.168840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
The R2TP chaperone is composed of the RUVBL1/RUVBL2 AAA+ ATPases and two adapter proteins, RPAP3 and PIH1D1. Together with HSP90, it functions in the assembly of macromolecular complexes that are often involved in cell proliferation. Here, proteomic experiments using the isolated PIH domain reveals additional R2TP partners, including the Tuberous Sclerosis Complex (TSC) and many transcriptional complexes. The TSC is a key regulator of mTORC1 and is composed of TSC1, TSC2 and TBC1D7. We show a direct interaction of TSC1 with the PIH phospho-binding domain of PIH1D1, which is, surprisingly, phosphorylation independent. Via the use of mutants and KO cell lines, we observe that TSC2 makes independent interactions with HSP90 and the TPR domains of RPAP3. Moreover, inactivation of PIH1D1 or the RUVBL1/2 ATPase activity inhibits the association of TSC1 with TSC2. Taken together, these data suggest a model in which the R2TP recruits TSC1 via PIH1D1 and TSC2 via RPAP3 and HSP90, and use the chaperone-like activities of RUVBL1/2 to stimulate their assembly.
Collapse
Affiliation(s)
- Claire Abéza
- IGMM, CNRS, Univ Montpellier, Montpellier, France; Equipe labellisée Ligue Nationale Contre le Cancer, Montpellier, France; IGH, CNRS, Univ Montpellier, Montpellier, France
| | - Philipp Busse
- iBET, Instituto de Biologia Experimental e Tecnologica, Apartado 12, Oeiras, 2781-901, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana C F Paiva
- iBET, Instituto de Biologia Experimental e Tecnologica, Apartado 12, Oeiras, 2781-901, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | | | - Justine Schneider
- LSMBO, IPHC, Université de Strasbourg, CNRS UMR7178, Strasbourg, France
| | - Marie-Cécile Robert
- IGMM, CNRS, Univ Montpellier, Montpellier, France; Equipe labellisée Ligue Nationale Contre le Cancer, Montpellier, France; IGH, CNRS, Univ Montpellier, Montpellier, France
| | | | | | | | - Pedro M F Sousa
- iBET, Instituto de Biologia Experimental e Tecnologica, Apartado 12, Oeiras, 2781-901, Portugal
| | - Tiago M Bandeiras
- iBET, Instituto de Biologia Experimental e Tecnologica, Apartado 12, Oeiras, 2781-901, Portugal
| | - Xavier Manival
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | - Sarah Cianferani
- LSMBO, IPHC, Université de Strasbourg, CNRS UMR7178, Strasbourg, France
| | - Edouard Bertrand
- IGMM, CNRS, Univ Montpellier, Montpellier, France; Equipe labellisée Ligue Nationale Contre le Cancer, Montpellier, France; IGH, CNRS, Univ Montpellier, Montpellier, France.
| | - Céline Verheggen
- IGMM, CNRS, Univ Montpellier, Montpellier, France; Equipe labellisée Ligue Nationale Contre le Cancer, Montpellier, France; IGH, CNRS, Univ Montpellier, Montpellier, France.
| |
Collapse
|
28
|
Chen XQ, Yang Q, Chen WM, Chen ZW, Guo GH, Zhang X, Sun XM, Shen T, Xiao FH, Li YF. Dual Role of Lysosome in Cancer Development and Progression. FRONT BIOSCI-LANDMRK 2024; 29:393. [PMID: 39614447 DOI: 10.31083/j.fbl2911393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/22/2024] [Accepted: 09/29/2024] [Indexed: 12/01/2024]
Abstract
Lysosomes are essential intracellular catabolic organelles that contain digestive enzymes involved in the degradation and recycle of damaged proteins, organelles, etc. Thus, they play an important role in various biological processes, including autophagy regulation, ion homeostasis, cell death, cell senescence. A myriad of studies has shown that the dysfunction of lysosome is implicated in human aging and various age-related diseases, including cancer. However, what is noteworthy is that the modulation of lysosome-based signaling and degradation has both the cancer-suppressive and cancer-promotive functions in diverse cancers depending on stage, biology, or tumor microenvironment. This dual role limits their application as targets in cancer therapy. In this review, we provide an overview of lysosome and autophagy-lysosomal pathway and outline their critical roles in many cellular processes, including cell death. We highlight the different functions of autophagy-lysosomal pathway in cancer development and progression, underscoring its potential as a target for effective cancer therapies.
Collapse
Affiliation(s)
- Xiao-Qiong Chen
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Quan Yang
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Wei-Min Chen
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Zi-Wei Chen
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Guang-Hui Guo
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Xuan Zhang
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Xiao-Ming Sun
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Tao Shen
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Fu-Hui Xiao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650000 Kunming, Yunnan, China
| | - Yun-Feng Li
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| |
Collapse
|
29
|
Sun Y, Sun Y, He X, Li S, Xu X, Feng Y, Yang J, Xie R, Sun G. Transcriptome-wide methylated RNA immunoprecipitation sequencing profiling reveals m6A modification involved in response to heat stress in Apostichopus japonicus. BMC Genomics 2024; 25:1071. [PMID: 39528936 PMCID: PMC11556200 DOI: 10.1186/s12864-024-10972-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Global warming-induced environmental stresses have diverse effects on gene expression and regulation in the life processes of various aquatic organisms. N6 adenylate methylation (m6A) modifications are known to influence mRNA transcription, localization, translation, stability, splicing, and nuclear export, which are pivotal in mediating stress responses. Apostichopus japonicus is a significant species in aquaculture and a representative of benthic organisms in ecosystems, thus there is a growing need for research on its heat stress mechanism. RESULTS In this study, m6A-modified whole transcriptome profiles of the respiratory tree tissues of A. japonicus in the control (T18) and high-temperature stress (T32) groups were obtained using MeRIP-seq technology. The results showed that 7,211 common m6A peaks, and 9,459 genes containing common m6A were identified in three replicates T18 and T32 groups. The m6A peaks were found to be highly enriched in the 3' untranslated region, and the common sequence of the m6A peak was also enriched, which was shown as RRACH (R = G or A; H = A, C, or U). A total of 1,200 peaks were identified as significantly differentially enriched in the T32 group compared with the T18 group. Among them, 245 peaks were upregulated and 955 were downregulated, which indicated that high temperature stress significantly altered the methylation pattern of m6A, and there were more demethylation sites in the T32 group. Conjoint analysis of the m6A methylation modification and the transcript expression level (the MeRIP-seq and RNA-seq data) showed co-differentiated 395 genes were identified, which were subsequently divided into four groups with a predominant pattern that more genes with decreased m6A modification and up-regulated expression, including HSP70IV, EIF2AK1, etc. GO enrichment and KEGG analyses of differential m6A peak related genes and co-differentiated genes showed the genes were significantly associated with transcription process and pathways such as protein processing in the endoplasmic reticulum, Wnt signaling pathway, and mTOR signaling pathway, etc. CONCLUSION: The comparisons of m6A modification patterns and conjoint analyses of m6A modification and gene expression profiles suggest that m6A modification was involved in the regulation of heat stress-responsive genes and important functional pathways in A. japonicus in response to high-temperature stress. The study will contribute to elucidate the regulatory mechanism of m6A modification in the response of A. japonicus to environmental stress, as well as the conservation and utilization of sea cucumber resources in the context of environmental changes.
Collapse
Affiliation(s)
- Yanan Sun
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Youmei Sun
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Xiaohua He
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Siyi Li
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Xiaohui Xu
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Yanwei Feng
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Jianmin Yang
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Rubiao Xie
- Shandong Huachun Fishery Co., Ltd, Dongying, 257093, China
| | - Guohua Sun
- School of Fisheries, Ludong University, Yantai, 264025, China.
| |
Collapse
|
30
|
Chu L, Liu A, Chang J, Zhang J, Hou X, Zhu X, Xing Q, Bao Z. TORC1 Regulates Thermotolerance via Modulating Metabolic Rate and Antioxidant Capacity in Scallop Argopecten irradians irradians. Antioxidants (Basel) 2024; 13:1359. [PMID: 39594501 PMCID: PMC11591371 DOI: 10.3390/antiox13111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Target of rapamycin complex 1 (TORC1) is a key regulator of metabolism in eukaryotes across multiple pathways. Although TORC1 has been extensively studied in vertebrates and some invertebrates, research on this complex in scallops is limited. In this study, we identified the genes encoding TORC1 complex subunits in the scallop Argopecten irradians irradians through genome-wide in silico scanning. Five genes, including TOR, RAPTOR, LST8, DEPTOR, and PRAS40, that encode the subunits of TORC1 complex were identified in the bay scallop. We then conducted structural characterization and phylogenetic analysis of the A. i. irradians TORC1 (AiTORC1) subunits to determine their structural features and evolutionary relationships. Next, we analyzed the spatiotemporal expressions of AiTORC1-coding genes during various embryo/larvae developmental stages and across different tissues in healthy adult scallops. The results revealed stage- and tissue-specific expression patterns, suggesting diverse roles in development and growth. Furthermore, the regulation of AiTORC1-coding genes was examined in temperature-sensitive tissues (the mantle, gill, hemocyte, and heart) of bay scallops exposed to high-temperature (32 °C) stress over different durations (0 h, 6 h, 12 h, 24 h, 3 d, 6 d, and 10 d). The expression of AiTORC1-coding genes was predominantly suppressed in the hemocyte but was generally activated in the mantle, gill, and heart, indicating a tissue-specific response to heat stress. Finally, functional validation was performed using the TOR inhibitor rapamycin to suppress AiTORC1, leading to an enhanced catabolism, a decreased antioxidant capacity, and a significant reduction in thermotolerance in bay scallops. Collectively, this study elucidates the presence, structural features, evolutional relationships, expression profiles, and roles in antioxidant capacity and metabolism regulation of AiTORC1 in the bay scallop, providing a preliminary understanding of its versatile functions in response to high-temperature challenges in marine mollusks.
Collapse
Affiliation(s)
- Longfei Chu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
| | - Ancheng Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
| | - Jiaxi Chang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
| | - Junhao Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
| | - Xiujiang Hou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
| | - Xinghai Zhu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
31
|
Pommerolle L, Arif M, Behee M, Appolonia CN, Basu A, Wolf KM, Zawatsky CN, Johnson N, Rivellini O, Park JK, Cinar R. Chronic Alcohol Intake Compromises Lung Immunity by Altering Immunometabolism in Humans and Mouse Models. Am J Respir Cell Mol Biol 2024; 71:559-576. [PMID: 39024537 PMCID: PMC11568473 DOI: 10.1165/rcmb.2024-0086oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
Chronic alcohol consumption disrupts lung immunity and host defense mechanisms, rendering individuals with alcohol use disorder more susceptible to developing inflammatory lung conditions with poor prognoses. Here, we focused on investigating the molecular and cellular effects of alcohol ingestion on lung immunity in male and female subjects using population-based human lung transcriptomics analysis and an experimental mouse model of chronic alcohol drinking using the National Institute on Alcohol Abuse and Alcoholism alcohol feeding model. Flow cytometry and transcriptomics analyses in lungs revealed a sexually dimorphic effect of chronic alcohol drinking on lung immunity in both human and mouse. Male lungs were more sensitive to chronic alcohol drinking-induced dysregulation of lung immunity compared with female lungs. Furthermore, comparative transcriptomics analysis using lungs and liver samples from matched human and mouse subjects demonstrated that lungs were more sensitive than liver to the effects of alcohol in downregulating immune-related genes and pathways. Furthermore, the transcriptomics analysis provided evidence that immunometabolic change is a central driver in lung alteration by downregulating the immune pathways and upregulating metabolic pathways. Chronic alcohol consumption resulted in reduced mTOR signaling and decreased immune cell populations. The mTOR signaling axis may serve as an upstream regulator of alcohol-induced dysregulation in lung immunity.
Collapse
Affiliation(s)
| | - Muhammad Arif
- Section on Fibrotic Disorders
- Laboratory of Cardiovascular Physiology and Tissue Injury, and
| | | | | | | | | | | | | | - Olivia Rivellini
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Joshua K. Park
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | | |
Collapse
|
32
|
Flores K, Almeida C, Arriaza K, Pena E, El Alam S. mTOR in the Development of Hypoxic Pulmonary Hypertension Associated with Cardiometabolic Risk Factors. Int J Mol Sci 2024; 25:11023. [PMID: 39456805 PMCID: PMC11508063 DOI: 10.3390/ijms252011023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
The pathophysiology of pulmonary hypertension is complex and multifactorial. It is a disease characterized by increased pulmonary vascular resistance at the level due to sustained vasoconstriction and remodeling of the pulmonary arteries, which triggers an increase in the mean pulmonary artery pressure and subsequent right ventricular hypertrophy, which in some cases can cause right heart failure. Hypoxic pulmonary hypertension (HPH) is currently classified into Group 3 of the five different groups of pulmonary hypertensions, which are determined according to the cause of the disease. HPH mainly develops as a product of lung diseases, among the most prevalent causes of obstructive sleep apnea (OSA), chronic obstructive pulmonary disease (COPD), or hypobaric hypoxia due to exposure to high altitudes. Additionally, cardiometabolic risk factors converge on molecular mechanisms involving overactivation of the mammalian target of rapamycin (mTOR), which correspond to a central axis in the development of HPH. The aim of this review is to summarize the role of mTOR in the development of HPH associated with metabolic risk factors and its therapeutic alternatives, which will be discussed in this review.
Collapse
Affiliation(s)
| | | | - Karem Arriaza
- High Altitude Medicine Research Center (CEIMA), Arturo Prat University, Iquique 1110939, Chile; (K.F.); (C.A.); (E.P.); (S.E.A.)
| | | | | |
Collapse
|
33
|
Kolaczkowski OM, Goodson BA, Vazquez VM, Jia J, Bhat AQ, Kim TH, Pu J. Synergistic Role of Amino Acids in Enhancing mTOR Activation Through Lysosome Positioning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.12.618047. [PMID: 39416115 PMCID: PMC11482915 DOI: 10.1101/2024.10.12.618047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Lysosome positioning, or lysosome cellular distribution, is critical for lysosomal functions in response to both extracellular and intracellular cues. Amino acids, as essential nutrients, have been shown to promote lysosome movement toward the cell periphery. Peripheral lysosomes are involved in processes such as lysosomal exocytosis, cell migration, and metabolic signaling-functions that are particularly important for cancer cell motility and growth. However, the specific types of amino acids that regulate lysosome positioning, their underlying mechanisms, and their connection to amino acid-regulated metabolic signaling remain poorly understood. In this study, we developed a high-content imaging system for unbiased, quantitative analysis of lysosome positioning. We examined the 15 amino acids present in cell culture media and found that 10 promoted lysosome redistribution toward the cell periphery to varying extents, with aromatic amino acids showing the strongest effect. This redistribution was mediated by promoting outward transport through SLC38A9-BORC-kinesin 1/3 axis and simultaneously reducing inward transport via inhibiting the recruitment of Rab7 and JIP4 onto lysosomes. When examining the effects of amino acids on mTOR activation-a central regulator of cell metabolism-we found that the amino acids most strongly promoting lysosome dispersal, such as phenylalanine, did not activate mTOR on their own. However, combining phenylalanine with arginine, which activates mTOR without affecting lysosome positioning, synergistically enhanced mTOR activity. This synergy was lost when lysosomes failed to localize to the cell periphery, as observed in kinesin 1/3 knockout (KO) cells. Furthermore, breast cancer cells exhibited heightened sensitivity to phenylalanine-induced lysosome dispersal compared to noncancerous breast cells. Inhibition of LAT1, the amino acid transporter responsible for phenylalanine uptake, reduced peripheral lysosomes and impaired cancer cell migration and proliferation, highlighting the importance of lysosome positioning in these coordinated cellular activities. In summary, amino acid-regulated lysosome positioning and mTOR signaling depend on distinct sets of amino acids. Combining lysosome-dispersing amino acids with mTOR-activating amino acids synergistically enhances mTOR activation, which may be particularly relevant in cancer cells.
Collapse
Affiliation(s)
- Oralia M. Kolaczkowski
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
| | - Baley A. Goodson
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
| | - Valeria Montenegro Vazquez
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
| | - Jingyue Jia
- Autophagy, Inflammation, and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
| | - Aadil Qadir Bhat
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
| | - Tae-Hyung Kim
- Autophagy, Inflammation, and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
| | - Jing Pu
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
| |
Collapse
|
34
|
Zhou Y, Lou J, Tian Y, Ding J, Wang X, Tang B. How lactate affects immune strategies in lymphoma. Front Mol Biosci 2024; 11:1480884. [PMID: 39464313 PMCID: PMC11502318 DOI: 10.3389/fmolb.2024.1480884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
Tumor cells undergo metabolic reprogramming through shared pathways, resulting in a hypoxic, acidic, and highly permeable internal tumor microenvironment (TME). Lactate, once only regarded as a waste product of glycolysis, has an inseparable dual role with tumor immunity. It can not only provide a carbon source for immune cells to enhance immunity but also help the immune escape through a variety of ways. Lymphoma also depends on the proliferation signal of TME. This review focuses on the dynamic process of lactate metabolism and immune function changes in lymphoma and aims to comprehensively summarize and explore which genes, transcription factors, and pathways affect the biological changes and functions of immune cells. To deeply understand the complex and multifaceted role of lactate metabolism and immunity in lymphoma, the combination of lactate targeted therapy and classical immunotherapy will be a promising development direction in the future.
Collapse
Affiliation(s)
- Yuehan Zhou
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinzhan Lou
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuqin Tian
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinlei Ding
- Department of Thoracic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaobo Wang
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bo Tang
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
35
|
Alsagaby SA. Biological roles of THRAP3, STMN1 and GNA13 in human blood cancer cells. 3 Biotech 2024; 14:248. [PMID: 39345963 PMCID: PMC11424602 DOI: 10.1007/s13205-024-04093-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
Blood cancers, such as diffuse large B-cell lymphoma (DLBCL), Burkitt's lymphoma (BL) and acute myeloid leukemia (AML), are aggressive neoplasms that are characterized by undesired clinical courses with dismal survival rates. The objective of the current work is to study the expression THRAP3, STMN1 and GNA13 in DLBCL, BL and AML, and to investigate if these proteins are implicated in the prognosis and progression of the blood cancers. Isolation of normal blood cells was performed using lymphoprep coupled with gradient centrifugation and magnetic beads. Flow-cytometric analysis showed high quality of the isolated cells. Western blotting identified THRAP3, STMN1 and GNA13 to be overexpressed in the blood cancer cells but hardly detected in normal blood cells from healthy donors. Consistently, investigations performed using genotype-tissue expression (GTEx) and gene expression profiling interactive analysis (GEPIA) showed that the three proteins had higher mRNA expression in various cancers compared with matched normal tissues (p ≤ 0.01). Furthermore, the up-regulated transcript expression of these proteins was a feature of short overall survival (OS; p ≤ 0.02) in patients with the blood cancers. Interestingly, functional profiling using gProfiler and protein-protein interaction network analysis using STRING with cytoscape reported THRAP3 to be associated with cancer-dependent proliferation and survival pathways (corrected p ≤ 0.05) and to interact with proteins (p = 1 × 10-16) implicated in tumourigenesis and chemotherapy resistance. Taken together, these findings indicated a possible implication of THRAP3, STMN1 and GNA13 in the progression and prognosis of the blood cancers. Additional work using clinical samples of the blood cancers is required to further investigate and validate the results reported here. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04093-5.
Collapse
Affiliation(s)
- Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, 11932 Saudi Arabia
| |
Collapse
|
36
|
Brown RB. Statins in the Cause and Prevention of Cancer: Confounding by Indication and Mediation by Rhabdomyolysis and Phosphate Toxicity. J Cardiovasc Dev Dis 2024; 11:296. [PMID: 39330354 PMCID: PMC11432391 DOI: 10.3390/jcdd11090296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Statins are drugs used in cardiovascular pharmacotherapy to decrease hypercholesterolemia and lower the risk of atherosclerosis. Statins also increase the risk of rhabdomyolysis, which is often minimized in comparison with large relative risk reductions of cardiovascular disease reported in clinical trials. By contrast, absolute risk reductions of cardiovascular disease are often clinically insignificant and unreported in statin clinical trials. Additionally, cytotoxic effects of statins inhibit cancer cell proliferation and reduce cancer risk, but other studies found that statins are carcinogenic. Due to an inverse association between incidence of cancer and atherosclerosis, the indication to prescribe statins likely biases the association of statins with cancer prevention. Dietary patterns associated with atherosclerosis and cancer contain inverse amounts of cholesterol and phosphate, an essential mineral that stimulates tumorigenesis. Accordingly, lower cancer risk is associated with high dietary cholesterol intake and increased risk of atherosclerosis. Furthermore, serum is exposed to excessive inorganic phosphate that could increase cancer risk as rhabdomyolysis induced by statins releases phosphate from skeletal muscle breakdown. Increased risk of comorbid conditions associated with statins may share the mediating factor of phosphate toxicity. More research is warranted on statins in the cause and prevention of cancer.
Collapse
Affiliation(s)
- Ronald B Brown
- School of Public Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
37
|
Dong MZ, Ouyang YC, Gao SC, Gu LJ, Guo JN, Sun SM, Wang ZB, Sun QY. Protein phosphatase 4 maintains the survival of primordial follicles by regulating autophagy in oocytes. Cell Death Dis 2024; 15:658. [PMID: 39245708 PMCID: PMC11381532 DOI: 10.1038/s41419-024-07051-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
In mammalian ovary, the primordial follicle pool serves as the source of developing follicles and fertilizable ova. To maintain the normal length of female reproductive life, the primordial follicles must have adequate number and be kept in a quiescent state before menopause. However, the molecular mechanisms underlying primordial follicle survival are poorly understood. Here, we provide genetic evidence showing that lacking protein phosphatase 4 (PPP4) in oocytes, a member of PP2A-like subfamily, results in infertility in female mice. A large quantity of primordial follicles has been depleted around the primordial follicle pool formation phase and the ovarian reserve is exhausted at about 7 months old. Further investigation demonstrates that depletion of PPP4 causes the abnormal activation of mTOR, which suppresses autophagy in primordial follicle oocytes. The abnormal primordial follicle oocytes are eventually erased by pregranulosa cells in the manner of lysosome invading. These results show that autophagy prevents primordial follicles over loss and PPP4-mTOR pathway governs autophagy during the primordial follicle formation and dormant period.
Collapse
Affiliation(s)
- Ming-Zhe Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shi-Cai Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lin-Jian Gu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Ni Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Si-Min Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| |
Collapse
|
38
|
Lee SE, Lee HB, Yoon JW, Park HJ, Kim SH, Han DH, Lim ES, Kim EY, Park SP. Rapamycin treatment during prolonged in vitro maturation enhances the developmental competence of immature porcine oocytes. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:905-919. [PMID: 39398303 PMCID: PMC11466741 DOI: 10.5187/jast.2023.e101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2024]
Abstract
Porcine oocytes undergo in vitro maturation (IVM) for 42-44 h. During this period, most oocytes proceed to metaphase and then to pro-metaphase if the nucleus has sufficiently matured. Forty-four hours is sufficient for oocyte nuclear maturation but not for full maturation of the oocyte cytoplasm. This study investigated the influences of extension of the IVM duration with rapamycin treatment on molecular maturation factors. The phospho-p44/42 mitogen-activated protein kinase (MAPK) level was enhanced in comparison with the total p44/42 MAPK level after 52 h of IVM. Oocytes were treated with and without 10 μM rapamycin (10 R and 0 R, respectively) and examined after 52 h of IVM, whereas control oocytes were examined after 44 h of IVM. Phospho-p44/42 MAPK activity was upregulated the 10 R and 0 R oocytes than in control oocytes. The expression levels of maternal genes were highest in 10 R oocytes and were higher in 0 R oocytes than in control oocytes. Reactive oxygen species (ROS) activity was dramatically increased in 0 R oocytes but was similar in 10 R and control oocytes. The 10 R group exhibited an increased embryo development rate, a higher total cell number per blastocyst, and decreased DNA fragmentation. The mRNA level of development-related (POU5F1 and NANOG) mRNA, oocyte-apoptotic (BCL2L1) genes were highest in 10 R blastocysts. These results suggest that prolonged IVM duration with rapamycin treatment represses ROS production and increases expression of molecular maturation factors. Therefore, this is a good strategy to enhance the developmental capacity in porcine oocytes.
Collapse
Affiliation(s)
- Seung-Eun Lee
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
- Faculty of Biotechnology, College of
Applied Life Sciences, Jeju National University, Jeju 63243,
Korea
- Subtropical Livestock Research Institute,
National Institute of Animal Science, RDA, Jeju 63242,
Korea
| | - Han-Bi Lee
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
- Faculty of Biotechnology, College of
Applied Life Sciences, Jeju National University, Jeju 63243,
Korea
| | - Jae-Wook Yoon
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
| | - Hyo-Jin Park
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
| | - So-Hee Kim
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
| | - Dong-Hun Han
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
- Faculty of Biotechnology, College of
Applied Life Sciences, Jeju National University, Jeju 63243,
Korea
| | - Eun-Seo Lim
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
- Faculty of Biotechnology, College of
Applied Life Sciences, Jeju National University, Jeju 63243,
Korea
| | - Eun-Young Kim
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
- Faculty of Biotechnology, College of
Applied Life Sciences, Jeju National University, Jeju 63243,
Korea
- Mirae Cell Bio, Seoul 04795,
Korea
| | - Se-Pill Park
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
- Mirae Cell Bio, Seoul 04795,
Korea
- Department of Bio Medical Informatic,
College of Applied Life Sciences, Jeju National University,
Jeju 63242, Korea
| |
Collapse
|
39
|
Navabi SP, Badreh F, Khombi Shooshtari M, Hajipour S, Moradi Vastegani S, Khoshnam SE. Microglia-induced neuroinflammation in hippocampal neurogenesis following traumatic brain injury. Heliyon 2024; 10:e35869. [PMID: 39220913 PMCID: PMC11365414 DOI: 10.1016/j.heliyon.2024.e35869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Traumatic brain injury (TBI) is one of the most causes of death and disability among people, leading to a wide range of neurological deficits. The important process of neurogenesis in the hippocampus, which includes the production, maturation and integration of new neurons, is affected by TBI due to microglia activation and the inflammatory response. During brain development, microglia are involved in forming or removing synapses, regulating the number of neurons, and repairing damage. However, in response to injury, activated microglia release a variety of pro-inflammatory cytokines, chemokines and other neurotoxic mediators that exacerbate post-TBI injury. These microglia-related changes can negatively affect hippocampal neurogenesis and disrupt learning and memory processes. To date, the intracellular signaling pathways that trigger microglia activation following TBI, as well as the effects of microglia on hippocampal neurogenesis, are poorly understood. In this review article, we discuss the effects of microglia-induced neuroinflammation on hippocampal neurogenesis following TBI, as well as the intracellular signaling pathways of microglia activation.
Collapse
Affiliation(s)
- Seyedeh Parisa Navabi
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Maryam Khombi Shooshtari
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Somayeh Hajipour
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sadegh Moradi Vastegani
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
40
|
Fu XQ, Zhan WR, Tian WY, Zeng PM, Luo ZG. Comparative transcriptomic profiling reveals a role for Olig1 in promoting axon regeneration. Cell Rep 2024; 43:114514. [PMID: 39002126 DOI: 10.1016/j.celrep.2024.114514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/21/2024] [Accepted: 06/30/2024] [Indexed: 07/15/2024] Open
Abstract
The regenerative potential of injured axons displays considerable heterogeneity. However, the molecular mechanisms underlying the heterogeneity have not been fully elucidated. Here, we establish a method that can separate spinal motor neurons (spMNs) with low and high regenerative capacities and identify a set of transcripts revealing differential expression between two groups of neurons. Interestingly, oligodendrocyte transcription factor 1 (Olig1), which regulates the differentiation of various neuronal progenitors, exhibits recurrent expression in spMNs with enhanced regenerative capabilities. Furthermore, overexpression of Olig1 (Olig1 OE) facilitates axonal regeneration in various models, and down-regulation or deletion of Olig1 exhibits an opposite effect. By analyzing the overlapped differentially expressed genes after expressing individual Olig factor and functional validation, we find that the role of Olig1 is at least partially through the neurite extension factor 1 (Nrsn1). We therefore identify Olig1 as an intrinsic factor that promotes regenerative capacity of injured axons.
Collapse
Affiliation(s)
- Xiu-Qing Fu
- School of Life Science and Technology and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.
| | - Wen-Rong Zhan
- School of Life Science and Technology and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Wei-Ya Tian
- School of Life Science and Technology and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Peng-Ming Zeng
- School of Life Science and Technology and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Zhen-Ge Luo
- School of Life Science and Technology and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
41
|
Spanjaard P, Petit JM, Schmitt A, Vergès B, Bouillet B. Screening and management of metabolic complications of mTOR inhibitors in real-life settings. ANNALES D'ENDOCRINOLOGIE 2024; 85:263-268. [PMID: 38043912 DOI: 10.1016/j.ando.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
INTRODUCTION Inhibitors of mTOR (mTORi) are frequently used as anticancer treatment. They were responsible for metabolic side-effects in phase 3 studies, which provided only an incomplete picture of these metabolic complications. The aim of our study was therefore to evaluate, in a real-life setting, outcomes for patients with dyslipidemia or diabetes under mTORi, and the incidence and management of metabolic abnormalities occurring under mTORi in the absence of known metabolic history. METHODS This single-center retrospective study included all 177 patients receiving everolimus in the Cancer Center of Dijon, France, between May 2015 and November 2018. RESULTS Diabetes was diagnosed in 15 patients (9%), with an estimated mean time to onset of 160±173 days. Antidiabetic treatment was introduced in 41% of these patients. After mTORi discontinuation, diabetes persisted in 60% of patients in whom it had been diagnosed. Dyslipidemia was diagnosed in 22 patients (14%): 55% with hypercholesterolemia and 45% with hypertriglyceridemia. 18% were placed on lipid-lowering therapy. While all patients were screened for hyperglycemia and monitored for known diabetes, only 42% of patients without dyslipidemia were screened for lipids, and only 8% of patients with known dyslipidemia were monitored for lipids. CONCLUSION Our study is one of the few to look at metabolic complications secondary to mTORi in a real-life situation. The incidence of diabetes was high, but the use of antidiabetic treatment was variable. Normalization of glucose homeostasis after mTORi discontinuation is possible, particularly in patients who have not been placed on antidiabetic therapy. Screening for dyslipidemia was clearly inadequate in our study, making the data on this point more difficult to interpret. It appears that adherence to guidelines needs to be improved to optimize the management of patients treated with mTORi.
Collapse
Affiliation(s)
- Pamela Spanjaard
- Department of Endocrinology, Diabetes and Metabolic Disorders, Dijon University Hospital, Dijon, France
| | - Jean Michel Petit
- Department of Endocrinology, Diabetes and Metabolic Disorders, Dijon University Hospital, Dijon, France; Inserm Unit, LNC-UMR 1231, University of Burgundy, Dijon, France
| | - Antonin Schmitt
- Inserm Unit, LNC-UMR 1231, University of Burgundy, Dijon, France; Department of Pharmacy, Centre Georges-François Leclerc, Dijon, France
| | - Bruno Vergès
- Department of Endocrinology, Diabetes and Metabolic Disorders, Dijon University Hospital, Dijon, France; Inserm Unit, LNC-UMR 1231, University of Burgundy, Dijon, France
| | - Benjamin Bouillet
- Department of Endocrinology, Diabetes and Metabolic Disorders, Dijon University Hospital, Dijon, France; Inserm Unit, LNC-UMR 1231, University of Burgundy, Dijon, France.
| |
Collapse
|
42
|
Lee J, Mani A, Shin MJ, Krauss RM. Leveraging altered lipid metabolism in treating B cell malignancies. Prog Lipid Res 2024; 95:101288. [PMID: 38964473 PMCID: PMC11347096 DOI: 10.1016/j.plipres.2024.101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/12/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
B cell malignancies, comprising over 80 heterogeneous blood cancers, pose significant prognostic challenges due to intricate oncogenic signaling. Emerging evidence emphasizes the pivotal role of disrupted lipid metabolism in the development of these malignancies. Variations in lipid species, such as phospholipids, cholesterol, sphingolipids, and fatty acids, are widespread across B cell malignancies, contributing to uncontrolled cell proliferation and survival. Phospholipids play a crucial role in initial signaling cascades leading to B cell activation and malignant transformation through constitutive B cell receptor (BCR) signaling. Dysregulated cholesterol and sphingolipid homeostasis support lipid raft integrity, crucial for propagating oncogenic signals. Sphingolipids impact malignant B cell stemness, proliferation, and survival, while glycosphingolipids in lipid rafts modulate BCR activation. Additionally, cancer cells enhance fatty acid-related processes to meet heightened metabolic demands. In obese individuals, the obesity-derived lipids and adipokines surrounding adipocytes rewire lipid metabolism in malignant B cells, evading cytotoxic therapies. Genetic drivers such as MYC translocations also intrinsically alter lipid metabolism in malignant B cells. In summary, intrinsic and extrinsic factors converge to reprogram lipid metabolism, fostering aggressive phenotypes in B cell malignancies. Therefore, targeting altered lipid metabolism has translational potential for improving risk stratification and clinical management of diverse B cell malignancy subtypes.
Collapse
Affiliation(s)
- Jaewoong Lee
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea; Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea; Center of Molecular and Cellular Oncology, Yale University, New Haven, CT 06511, USA.
| | - Arya Mani
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University, New Haven, CT 06511, USA; Department of Genetics, Yale University, New Haven, CT 06511, USA
| | - Min-Jeong Shin
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea; Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
| | - Ronald M Krauss
- Department of Pediatrics and Medicine, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
43
|
Wang Y. The interplay of exercise and polyphenols in cancer treatment: A focus on oxidative stress and antioxidant mechanisms. Phytother Res 2024; 38:3459-3488. [PMID: 38690720 DOI: 10.1002/ptr.8215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 05/02/2024]
Abstract
Exercise has been demonstrated to induce an elevated production of free radicals, leading to the onset of oxidative stress. Numerous studies highlight the positive impacts of aerobic exercise, primarily attributed to the increase in overall antioxidant capacity. The evidence suggests that engaging in aerobic exercise contributes to a reduction in the likelihood of advanced cancer and mortality. Oxidative stress occurs when there is an imbalance between the generation of free radicals and the collective antioxidant defense system, encompassing both enzymatic and nonenzymatic antioxidants. Typically, oxidative stress triggers the formation of reactive oxygen or nitrogen species, instigating or advancing various issues in cancers and other diseases. The pro-oxidant-antioxidant balance serves as a direct measure of this imbalance in oxidative stress. Polyphenols contain a variety of bioactive compounds, including flavonoids, flavanols, and phenolic acids, conferring antioxidant properties. Previous research highlights the potential of polyphenols as antioxidants, with documented effects on reducing cancer risk by influencing processes such as proliferation, angiogenesis, and metastasis. This is primarily attributed to their recognized antioxidant capabilities. Considering the extensive array of signaling pathways associated with exercise and polyphenols, this overview will specifically focus on oxidative stress, the antioxidant efficacy of polyphenols and exercise, and their intricate interplay in cancer treatment.
Collapse
Affiliation(s)
- Yubing Wang
- College of Physical Education, Qilu Normal University, Jinan, Shandong, China
| |
Collapse
|
44
|
Pareek A, Kumar D, Pareek A, Gupta MM, Jeandet P, Ratan Y, Jain V, Kamal MA, Saboor M, Ashraf GM, Chuturgoon A. Retinoblastoma: An update on genetic origin, classification, conventional to next-generation treatment strategies. Heliyon 2024; 10:e32844. [PMID: 38975183 PMCID: PMC11226919 DOI: 10.1016/j.heliyon.2024.e32844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
The most prevalent paediatric vision-threatening medical condition, retinoblastoma (RB), has been a global concern for a long time. Several conventional therapies, such as systemic chemotherapy and focal therapy, have been used for curative purposes; however, the search for tumour eradication with the least impact on surrounding tissues is still ongoing. This review focuses on the genetic origin, classification, conventional treatment modalities, and their combination with nano-scale delivery systems for active tumour targeting. In addition, the review also delves into ongoing clinical trials and patents, as well as emerging therapies such as gene therapy and immunotherapy for the treatment of RB. Understanding the role of genetics in the development of RB has refined its treatment strategy according to the genetic type. New approaches such as nanostructured drug delivery systems, galenic preparations, nutlin-3a, histone deacetylase inhibitors, N-MYC inhibitors, pentoxifylline, immunotherapy, gene therapy, etc. discussed in this review, have the potential to circumvent the limitations of conventional therapies and improve treatment outcomes for RB. In summary, this review highlights the importance and need for novel approaches as alternative therapies that would ultimately displace the shortcomings associated with conventional therapies and reduce the enucleation rate, thereby preserving global vision in the affected paediatric population.
Collapse
Affiliation(s)
- Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Deepanjali Kumar
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Madan Mohan Gupta
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine 3303, Trinidad and Tobago
| | - Philippe Jeandet
- Research Unit Induced Resistance and Plant Bioprotection - USC INRAe 1488, University of Reims, PO Box 1039, 51687, Reims, France
| | - Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur, 313001, India
| | - Mohammad Amjad Kamal
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, West China School of Nursing, Frontiers Science Centre for Disease-related Molecular Network, West China Hospital, Sichuan University, China
- King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
- Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW, 2770, Australia
| | - Muhammad Saboor
- Department of Medical Laboratory Science, College of Health Sciences, and Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Science, College of Health Sciences, and Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Anil Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| |
Collapse
|
45
|
Wu HT, Wu BX, Fang ZX, Wu Z, Hou YY, Deng Y, Cui YK, Liu J. Lomitapide repurposing for treatment of malignancies: A promising direction. Heliyon 2024; 10:e32998. [PMID: 38988566 PMCID: PMC11234027 DOI: 10.1016/j.heliyon.2024.e32998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
The development of novel drugs from basic science to clinical practice requires several years, much effort, and cost. Drug repurposing can promote the utilization of clinical drugs in cancer therapy. Recent studies have shown the potential effects of lomitapide on treating malignancies, which is currently used for the treatment of familial hypercholesterolemia. We systematically review possible functions and mechanisms of lomitapide as an anti-tumor compound, regarding the aspects of apoptosis, autophagy, and metabolism of tumor cells, to support repurposing lomitapide for the clinical treatment of tumors.
Collapse
Affiliation(s)
- Hua-Tao Wu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Bing-Xuan Wu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Ze-Xuan Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou, 515041, China
| | - Zheng Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou, 515041, China
| | - Yan-Yu Hou
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou, 515041, China
| | - Yu Deng
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yu-Kun Cui
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Jing Liu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou, 515041, China
| |
Collapse
|
46
|
Leipold G, Tóth R, Hársfalvi P, Lőczi L, Török M, Keszthelyi A, Ács N, Lintner B, Várbíró S, Keszthelyi M. Comprehensive Evaluation of a Levonorgestrel Intrauterine Device (LNG-IUD), Metformin, and Liraglutide for Fertility Preservation in Endometrial Cancer: Protocol for a Randomized Clinical Trial. Life (Basel) 2024; 14:835. [PMID: 39063589 PMCID: PMC11278026 DOI: 10.3390/life14070835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Endometrial cancer is a leading gynecological malignancy, with obesity being a significant risk factor due to increased estrogen production in body fat. Current treatments often involve hysterectomy, which precludes fertility, thus highlighting the need for fertility-preserving options. This study aims to evaluate the combined efficacy of a levonorgestrel intrauterine device (LNG-IUD), metformin, and liraglutide for treating women with endometrial hyperplasia or early stage endometrial cancer while preserving fertility. The study will enroll 264 women aged 18-45 with a BMI > 30 who desire uterine preservation. Participants will be randomized into three groups: LNG-IUD alone, LNG-IUD plus metformin, and LNG-IUD plus metformin and liraglutide. Primary outcomes will include complete pathological remission, while secondary outcomes will assess histological changes, glucose, insulin levels, and weight changes over a 12-month period. This study protocol hypothesizes that LNG-IUD combined with metformin and liraglutide may potentially lead to higher regression rates of endometrial hyperplasia (EH) and early stage endometrial cancer (EC) compared to LNG-IUD alone. Furthermore, the protocol anticipates that these combination therapies will demonstrate good tolerability with minimal adverse effects, suggesting the potential benefit of integrating metabolic interventions with LNG-IUD to enhance treatment efficacy while preserving fertility in women with EH and EC.
Collapse
Affiliation(s)
- Gergő Leipold
- Department of Obstetrics and Gynecology, Semmelweis University, 1082 Budapest, Hungary; (G.L.); (R.T.); (L.L.); (M.T.); (N.Á.); (B.L.); (S.V.)
| | - Richárd Tóth
- Department of Obstetrics and Gynecology, Semmelweis University, 1082 Budapest, Hungary; (G.L.); (R.T.); (L.L.); (M.T.); (N.Á.); (B.L.); (S.V.)
| | | | - Lotti Lőczi
- Department of Obstetrics and Gynecology, Semmelweis University, 1082 Budapest, Hungary; (G.L.); (R.T.); (L.L.); (M.T.); (N.Á.); (B.L.); (S.V.)
- Workgroup of Research Management, Doctoral School, Semmelweis University, 1085 Budapest, Hungary
| | - Marianna Török
- Department of Obstetrics and Gynecology, Semmelweis University, 1082 Budapest, Hungary; (G.L.); (R.T.); (L.L.); (M.T.); (N.Á.); (B.L.); (S.V.)
- Workgroup of Research Management, Doctoral School, Semmelweis University, 1085 Budapest, Hungary
| | - Attila Keszthelyi
- Department of Urology, Semmelweis University, 1082 Budapest, Hungary;
| | - Nándor Ács
- Department of Obstetrics and Gynecology, Semmelweis University, 1082 Budapest, Hungary; (G.L.); (R.T.); (L.L.); (M.T.); (N.Á.); (B.L.); (S.V.)
| | - Balázs Lintner
- Department of Obstetrics and Gynecology, Semmelweis University, 1082 Budapest, Hungary; (G.L.); (R.T.); (L.L.); (M.T.); (N.Á.); (B.L.); (S.V.)
| | - Szabolcs Várbíró
- Department of Obstetrics and Gynecology, Semmelweis University, 1082 Budapest, Hungary; (G.L.); (R.T.); (L.L.); (M.T.); (N.Á.); (B.L.); (S.V.)
- Workgroup of Research Management, Doctoral School, Semmelweis University, 1085 Budapest, Hungary
- Department of Obstetrics and Gynecology, University of Szeged, 6725 Szeged, Hungary
| | - Márton Keszthelyi
- Department of Obstetrics and Gynecology, Semmelweis University, 1082 Budapest, Hungary; (G.L.); (R.T.); (L.L.); (M.T.); (N.Á.); (B.L.); (S.V.)
| |
Collapse
|
47
|
Wang Y, Zuo D, Huang Z, Qiu Y, Wu Z, Liu S, Zeng Y, Qiu Z, He W, Li B, Yuan Y, Niu Y, Qiu J. KLF4 Suppresses the Progression of Hepatocellular Carcinoma by Reducing Tumor ATP Synthesis through Targeting the Mir-206/RICTOR Axis. Int J Mol Sci 2024; 25:7165. [PMID: 39000273 PMCID: PMC11240942 DOI: 10.3390/ijms25137165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
To address the increased energy demand, tumor cells undergo metabolic reprogramming, including oxidative phosphorylation (OXPHOS) and aerobic glycolysis. This study investigates the role of Kruppel-like factor 4 (KLF4), a transcription factor, as a tumor suppressor in hepatocellular carcinoma (HCC) by regulating ATP synthesis. Immunohistochemistry was performed to assess KLF4 expression in HCC tissues. Functional assays, such as CCK-8, EdU, and colony formation, as well as in vivo assays, including subcutaneous tumor formation and liver orthotopic xenograft mouse models, were conducted to determine the impact of KLF4 on HCC proliferation. Luciferase reporter assay and chromatin immunoprecipitation assay were utilized to evaluate the interaction between KLF4, miR-206, and RICTOR. The findings reveal low KLF4 expression in HCC, which is associated with poor prognosis. Both in vitro and in vivo functional assays demonstrate that KLF4 inhibits HCC cell proliferation. Mechanistically, it was demonstrated that KLF4 reduces ATP synthesis in HCC by suppressing the expression of RICTOR, a core component of mTORC2. This suppression promotes glutaminolysis to replenish the TCA cycle and increase ATP levels, facilitated by the promotion of miR-206 transcription. In conclusion, this study enhances the understanding of KLF4's role in HCC ATP synthesis and suggests that targeting the KLF4/miR-206/RICTOR axis could be a promising therapeutic approach for anti-HCC therapeutics.
Collapse
Affiliation(s)
- Yongjin Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China; (Y.W.); (D.Z.); (Z.H.); (Y.Q.); (Z.W.); (S.L.); (Y.Z.); (Z.Q.); (W.H.); (B.L.); (Y.Y.)
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China
| | - Dinglan Zuo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China; (Y.W.); (D.Z.); (Z.H.); (Y.Q.); (Z.W.); (S.L.); (Y.Z.); (Z.Q.); (W.H.); (B.L.); (Y.Y.)
| | - Zhenkun Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China; (Y.W.); (D.Z.); (Z.H.); (Y.Q.); (Z.W.); (S.L.); (Y.Z.); (Z.Q.); (W.H.); (B.L.); (Y.Y.)
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China
| | - Yuxiong Qiu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China; (Y.W.); (D.Z.); (Z.H.); (Y.Q.); (Z.W.); (S.L.); (Y.Z.); (Z.Q.); (W.H.); (B.L.); (Y.Y.)
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China
| | - Zongfeng Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China; (Y.W.); (D.Z.); (Z.H.); (Y.Q.); (Z.W.); (S.L.); (Y.Z.); (Z.Q.); (W.H.); (B.L.); (Y.Y.)
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China
| | - Shaoru Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China; (Y.W.); (D.Z.); (Z.H.); (Y.Q.); (Z.W.); (S.L.); (Y.Z.); (Z.Q.); (W.H.); (B.L.); (Y.Y.)
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China
| | - Yi Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China; (Y.W.); (D.Z.); (Z.H.); (Y.Q.); (Z.W.); (S.L.); (Y.Z.); (Z.Q.); (W.H.); (B.L.); (Y.Y.)
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China
| | - Zhiyu Qiu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China; (Y.W.); (D.Z.); (Z.H.); (Y.Q.); (Z.W.); (S.L.); (Y.Z.); (Z.Q.); (W.H.); (B.L.); (Y.Y.)
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China
| | - Wei He
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China; (Y.W.); (D.Z.); (Z.H.); (Y.Q.); (Z.W.); (S.L.); (Y.Z.); (Z.Q.); (W.H.); (B.L.); (Y.Y.)
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China
| | - Binkui Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China; (Y.W.); (D.Z.); (Z.H.); (Y.Q.); (Z.W.); (S.L.); (Y.Z.); (Z.Q.); (W.H.); (B.L.); (Y.Y.)
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China
| | - Yunfei Yuan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China; (Y.W.); (D.Z.); (Z.H.); (Y.Q.); (Z.W.); (S.L.); (Y.Z.); (Z.Q.); (W.H.); (B.L.); (Y.Y.)
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China
| | - Yi Niu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China; (Y.W.); (D.Z.); (Z.H.); (Y.Q.); (Z.W.); (S.L.); (Y.Z.); (Z.Q.); (W.H.); (B.L.); (Y.Y.)
| | - Jiliang Qiu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China; (Y.W.); (D.Z.); (Z.H.); (Y.Q.); (Z.W.); (S.L.); (Y.Z.); (Z.Q.); (W.H.); (B.L.); (Y.Y.)
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China
| |
Collapse
|
48
|
Ma J, Xue K, Jiang Y, Wang X, He D, Guo P. Down-regulation of SLC14A1 in prostate cancer activates CDK1/CCNB1 and mTOR pathways and promotes tumor progression. Sci Rep 2024; 14:14914. [PMID: 38942821 PMCID: PMC11213927 DOI: 10.1038/s41598-024-66020-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024] Open
Abstract
Prostate cancer (PCa) is the most common cancer among men in the United States and the leading cause of cancer-related death. The Solute Carrier Family 14 Member 1 (SLC14A1) is a member of urea transporters which are important for the regulation of urine concentration. However, the physiological significance of SLC14A1 in PCa still remains unclear. In the present study, via bioinformatics analysis and experiments, we found that expression of SLC14A1 is significantly decreased in PCa progression, which could be attributed to hypermethylation on SLC14A1 promoter region. Moreover, its low expression and hypermethylation on SLC14A1 promoter are closely related to the poor prognosis of PCa patients. On the other hand, overexpression of SLC14A1 inhibited cell proliferation and metastasis while its overexpression also suppressed CDK1/CCNB1 pathway and mTOR/MMP-9 signaling pathway. Additionally, SLC14A1 expression is enriched in prostate basal-type cells. In summary, our study indicates that its low expression level and promoter hypermethylation of SLC14A1 may represent novel indicators for PCa progression and prognosis, and SLC14A1 could inhibit the progression of PCa.
Collapse
Affiliation(s)
- Jianbin Ma
- Department of Urology, Qujiang Hospital, Northwest Corner of Huang Qutou Road Number Two and Changming Road, Xi'an, 710061, Shaanxi, China
| | - Kaihua Xue
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yan-Ta West Road, Xi'an, 710061, Shaanxi, China
| | - Yifan Jiang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yan-Ta West Road, Xi'an, 710061, Shaanxi, China
| | - Xinyang Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yan-Ta West Road, Xi'an, 710061, Shaanxi, China
| | - Dalin He
- Department of Urology, Qujiang Hospital, Northwest Corner of Huang Qutou Road Number Two and Changming Road, Xi'an, 710061, Shaanxi, China.
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yan-Ta West Road, Xi'an, 710061, Shaanxi, China.
| | - Peng Guo
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yan-Ta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
49
|
Ferro A, Campora M, Caldara A, De Lisi D, Lorenzi M, Monteverdi S, Mihai R, Bisio A, Dipasquale M, Caffo O, Ciribilli Y. Novel Treatment Strategies for Hormone Receptor (HR)-Positive, HER2-Negative Metastatic Breast Cancer. J Clin Med 2024; 13:3611. [PMID: 38930141 PMCID: PMC11204965 DOI: 10.3390/jcm13123611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Estrogen receptor (ER)-positive breast cancer (BC) is the most common BC subtype. Endocrine therapy (ET) targeting ER signaling still remains the mainstay treatment option for hormone receptor (HR)-positive BC either in the early or in advanced setting, including different strategies, such as the suppression of estrogen production or directly blocking the ER pathway through SERMs-selective estrogen receptor modulators-or SERDs-selective estrogen receptor degraders. Nevertheless, the development of de novo or acquired endocrine resistance still remains challenging for oncologists. The use of novel ET combined with targeted drugs, such as cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors, has significantly improved long-term outcome rates, thus changing the therapeutic algorithm for metastatic BC (MBC) and recently the therapeutic strategy in the adjuvant setting for early high-risk BC. Eluding the resistance to CDK4/6 inhibitors combined with ET is currently an unmet medical need, and there is disagreement concerning the best course of action for patients who continue to progress after this combination approach. Genetic changes in the tumor along its growth uncovered by genomic profiling of recurrent and/or metastatic lesions through tumor and/or liquid biopsies may predict the response or resistance to specific agents, suggesting the best therapeutic strategy for each patient by targeting the altered ER-dependent pathway (novel oral SERDs and a new generation of anti-estrogen agents) or alternative ER-independent signaling pathways such as PI3K/AKT/mTOR or tyrosine kinase receptors (HER2 mutations or HER2 low status) or by inhibiting pathways weakened through germline BRCA1/2 mutations. These agents are being investigated as single molecules and in combination with other target therapies, offering promising weapons to overcome or avoid treatment failure and propose increasingly more personalized treatment approaches. This review presents novel insights into ET and other targeted therapies for managing metastatic HR+/HER2- BC by exploring potential strategies based on clinical evidence and genomic profiling following the failure of the CDK4/6i and ET combination.
Collapse
Affiliation(s)
- Antonella Ferro
- Medical Oncology and Breast Unit, Santa Chiara Hospital, APSS Trento, 38122 Trento, Italy; (A.C.); (D.D.L.); (M.L.); (S.M.); (M.D.)
| | - Michela Campora
- Department of Pathology, Santa Chiara Hospital, APSS Trento, 38122 Trento, Italy;
| | - Alessia Caldara
- Medical Oncology and Breast Unit, Santa Chiara Hospital, APSS Trento, 38122 Trento, Italy; (A.C.); (D.D.L.); (M.L.); (S.M.); (M.D.)
| | - Delia De Lisi
- Medical Oncology and Breast Unit, Santa Chiara Hospital, APSS Trento, 38122 Trento, Italy; (A.C.); (D.D.L.); (M.L.); (S.M.); (M.D.)
| | - Martina Lorenzi
- Medical Oncology and Breast Unit, Santa Chiara Hospital, APSS Trento, 38122 Trento, Italy; (A.C.); (D.D.L.); (M.L.); (S.M.); (M.D.)
| | - Sara Monteverdi
- Medical Oncology and Breast Unit, Santa Chiara Hospital, APSS Trento, 38122 Trento, Italy; (A.C.); (D.D.L.); (M.L.); (S.M.); (M.D.)
| | - Raluca Mihai
- Department of Pathology, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK;
| | - Alessandra Bisio
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy; (A.B.); (Y.C.)
| | - Mariachiara Dipasquale
- Medical Oncology and Breast Unit, Santa Chiara Hospital, APSS Trento, 38122 Trento, Italy; (A.C.); (D.D.L.); (M.L.); (S.M.); (M.D.)
| | - Orazio Caffo
- Medical Oncology, Santa Chiara Hospital, APSS Trento, 38122 Trento, Italy;
| | - Yari Ciribilli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy; (A.B.); (Y.C.)
| |
Collapse
|
50
|
Li L, Zhao L, Yang J, Zhou L. Multifaceted effects of LRP6 in cancer: exploring tumor development, immune modulation and targeted therapies. Med Oncol 2024; 41:180. [PMID: 38898247 DOI: 10.1007/s12032-024-02399-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/26/2024] [Indexed: 06/21/2024]
Abstract
Low-density lipoprotein receptor (LDLR)-related protein 6 (LRP6), a member of the LDLR superfamily of cell surface receptors, is most widely known as a crucial co-receptor in the activation of canonical Wnt/β-catenin signaling. This signaling pathway is implicated in multiple biological processes, such as lipoprotein metabolism, protease regulation, cell differentiation, and migration. LRP6 is frequently overexpressed in a variety of tumors, including liver cancer, colorectal cancer, and prostate cancer, and is generally considered an oncogene that promotes tumor proliferation, migration, and invasion. However, there are exceptions; some studies have reported that LRP6 inhibits lung metastasis of breast cancer through its ectodomain (LRP6N), and patients with low LRP6 expression tend to have a poor prognosis. Thus, the role of LRP6 in tumors remains controversial. Although limited studies have shown that LRP6 is associated with the expression and roles of a variety of immune cells in tumors, the interaction of LRP6 with the tumor microenvironment (TME) is not fully understood. Furthermore, it is crucial to acknowledge that LRP6 can engage with alternative pathways, including the mTORC1, CXCL12/CXCR4, and KRAS signaling pathways mentioned earlier, resulting in the regulation of biological functions independent of canonical Wnt/β-catenin signaling. Due to the potential of LRP6 as a molecular target for cancer therapy, various treatment modalities have been developed to directly or indirectly inhibit LRP6 function, demonstrating promising anti-cancer effects across multiple cancer types. This review will concentrate on exploring the expression, function, and potential therapeutic applications of LRP6 in different cancer types, along with its influence on the TME.
Collapse
Affiliation(s)
- Liangliang Li
- Department of Hematology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Li Zhao
- Laboratory of Clinical Molecular Cytogenetics and Immunology, The First Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
- Gansu Key Laboratory of Genetic Study of Hematopathy, Lanzhou, Gansu, People's Republic of China
| | - Jincai Yang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Lanxia Zhou
- Laboratory of Clinical Molecular Cytogenetics and Immunology, The First Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China.
- Gansu Key Laboratory of Genetic Study of Hematopathy, Lanzhou, Gansu, People's Republic of China.
| |
Collapse
|