1
|
Hong G, Han DK, Rhu J, Hong SK, Choi Y, Yi NJ, Lee KW, Kim J, Yang J, Suh KS. Safety and Therapeutic Outcomes of Adjuvant Immunotherapy With Autologous Cytokine-induced Killer Cells for Patients With Hepatocellular Carcinoma Beyond Milan Criteria After Liver Transplantation. Transplantation 2025:00007890-990000000-01062. [PMID: 40235029 DOI: 10.1097/tp.0000000000005406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
BACKGROUND Adjuvant immunotherapy with autologous cytokine-induced killer (CIK) cells for hepatocellular carcinoma (HCC) remains understudied in liver transplant patients because of potential risks of acute rejection and diminished efficacy by immunosuppression. METHODS This study examined the safety and effectiveness of CIK therapy in patients with HCC exceeding the Milan criteria, treated at 2 Korean hospitals between 2019 and 2021. We analyzed clinical outcomes of 16 patients who underwent CIK therapy compared with 44 propensity-matched controls who did not receive CIK therapy. CIK cells were administered in 6 escalating doses, either 3 or 6 times over the course of weeks 4, 5, 6, 8, 10, and 12 posttransplantation. RESULTS CIK therapy was well-tolerated without significant treatment-related adverse reactions. Maximal tolerated dose of CIK cells was 10 × 109, which had been repeated 6 times. The CIK group exhibited higher 2-y HCC recurrence-free (87.5% versus 62.9%, P = 0.027) and patient survival (100% versus 81.5%, P = 0.002) rates, with no significant difference in rejection-free survival rates (92.9% versus 95.0%, P = 0.926) compared with the no-CIK group. Subgroup analysis showed that the CIK group in patients with high retreat scores, elevated R3-α-fetoprotein scores, and those beyond the University of California San Francisco criteria had improved HCC recurrence-free survival. Immunological evaluation showed elevated CD8+ T cells and polymorphonuclear myeloid-derived suppressor cells with transient increases in granzyme B and tumor necrosis factor-α levels in the CIK group. CONCLUSIONS These findings advocate CIK therapy as a safe and effective, potential adjuvant treatment for HCC beyond Milan criteria after transplantation, supporting further validation trials.
Collapse
Affiliation(s)
- Geun Hong
- Graduate School of Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Surgery, EWHA Womans University College of Medicine, Seoul, Republic of Korea
| | - Dong Kyu Han
- Graduate School of Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jinsoo Rhu
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Suk Kyun Hong
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - YoungRok Choi
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Nam-Joon Yi
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kwang-Woong Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jongman Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jaeseok Yang
- Department of Internal Medicine, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea
| | - Kyung-Suk Suh
- Graduate School of Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Rambaldi B, Rizzuto G, Rambaldi A, Introna M. Genetically modified and unmodified cellular approaches to enhance graft versus leukemia effect, without increasing graft versus host disease: the use of allogeneic cytokine-induced killer cells. Front Immunol 2024; 15:1459175. [PMID: 39512351 PMCID: PMC11540647 DOI: 10.3389/fimmu.2024.1459175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/30/2024] [Indexed: 11/15/2024] Open
Abstract
Although allogeneic hematopoietic cell transplantation (HCT) represents a curative approach for many patients with hematological diseases, post-transplantation relapse occurs in 20-50% of cases, representing the primary cause of treatment failure and mortality. Alloreactive donor T cells are responsible for the graft versus leukemia (GvL) effect, which represents the key mechanism for the long-term curative effect of HCT. However, the downside is represented by graft versus host disease (GvHD), largely contributing to transplant-related mortality (TRM). Multiple factors play a role in regulating the delicate balance between GvL and GvHD, such as the optimization of the donor HLA and KIR match, the type of graft source, and the adaptive use of post-transplant cellular therapy. In addition to the standard donor lymphocyte infusion (DLI), several attempts were made to favor the GvL effect without increasing the GvHD risk. Selected DLI, NK DLI, activated DLI and more sophisticated genetically engineered cells can be employed. In this scenario, cytokine-induced killer (CIK) cells represent a suitable tool to boost GvL while minimizing GvHD. CIK cells are T lymphocytes activated in culture in the presence of monoclonal antibodies against CD3 (OKT3), interferon-gamma (IFN-g), and interleukin-2 (IL-2), characterized by the expression of markers typical of NK cells and T cells (CD3+, CD56+, with a prevalent CD8+ phenotype). CIK cells can mediate cytotoxicity through both MHC and non-MHC restricted recognition, which is the so-called "dual-functional capability" and display minimum alloreactivity. Allogeneic CIK cells showed a favorable rate of response, especially in the setting of minimal residual disease, with a rate of GvHD not exceeding 25%. Finally, the CIK cell platform can be adapted for chimeric antigen receptor (CAR) cell strategy, showing promising results in both preclinical and clinical settings. In this review, we describe the main immunological basis for the development of the GvL and the possible cellular therapy approaches used to boost it, with a particular focus on the use of CIK cells.
Collapse
Affiliation(s)
- Benedetta Rambaldi
- Dipartimento di Oncologia ed Ematologia, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - Giuliana Rizzuto
- Dipartimento di Oncologia ed Ematologia, Ospedale Papa Giovanni XXIII, Bergamo, Italy
- Molecular and Translational Medicine Doctoral Program (DIMET), University of Milano-Bicocca, Monza, Italy
| | - Alessandro Rambaldi
- Dipartimento di Oncologia ed Ematologia, Ospedale Papa Giovanni XXIII, Bergamo, Italy
- Department of Oncology and Hematology, Università degli Studi di Milano, Milan, Italy
| | - Martino Introna
- Dipartimento di Oncologia ed Ematologia, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
3
|
Wang K, Wang L, Wang Y, Xiao L, Wei J, Hu Y, Wang D, Huang H. Reprogramming natural killer cells for cancer therapy. Mol Ther 2024; 32:2835-2855. [PMID: 38273655 PMCID: PMC11403237 DOI: 10.1016/j.ymthe.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/05/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The last decade has seen rapid development in the field of cellular immunotherapy, particularly in regard to chimeric antigen receptor (CAR)-modified T cells. However, challenges, such as severe treatment-related toxicities and inconsistent quality of autologous products, have hindered the broader use of CAR-T cell therapy, highlighting the need to explore alternative immune cells for cancer targeting. In this regard, natural killer (NK) cells have been extensively studied in cellular immunotherapy and were found to exert cytotoxic effects without being restricted by human leukocyte antigen and have a lower risk of causing graft-versus-host disease; making them favorable for the development of readily available "off-the-shelf" products. Clinical trials utilizing unedited NK cells or reprogrammed NK cells have shown early signs of their effectiveness against tumors. However, limitations, including limited in vivo persistence and expansion potential, remained. To enhance the antitumor function of NK cells, advanced gene-editing technologies and combination approaches have been explored. In this review, we summarize current clinical trials of antitumor NK cell therapy, provide an overview of innovative strategies for reprogramming NK cells, which include improvements in persistence, cytotoxicity, trafficking and the ability to counteract the immunosuppressive tumor microenvironment, and also discuss some potential combination therapies.
Collapse
Affiliation(s)
- Kexin Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China
| | - Linqin Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China
| | - Yiyun Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China
| | - Lu Xiao
- Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jieping Wei
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China.
| | - Dongrui Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
4
|
Ghanbari Sevari F, Mehdizadeh A, Abbasi K, Hejazian SS, Raisii M. Cytokine-induced killer cells: new insights for therapy of hematologic malignancies. Stem Cell Res Ther 2024; 15:254. [PMID: 39135188 PMCID: PMC11321231 DOI: 10.1186/s13287-024-03869-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Cytokine-induced killer (CIK) cells are a novel subgroup of immune effectors, classified as one of the modified T cell-mediated arms for immunotherapy. These cells exert MHC-unrestricted cytotoxicity against both hematological and solid malignancies with low incidence of treatment-related severe complications. This study reviews the application of CIK cells in treating cases with hematologic malignancies. MAIN BODY CIK cells consist of CD3+/CD56+ natural killer (NK) T cells, CD3-/CD56+ NK cells, and CD3+/CD56- cytotoxic T cells. In this regard, the CD3+/CD56+ NK T cells are the primary effectors. Compared with the previously reported antitumor immune cells, CIK cells are characterized by improved in vitro proliferation and amplification, enhanced migration and invasive capacity to tumor region, more significant antitumor activity, and a broader antitumor spectrum. CIK cells can also induce death in tumor cells via numerous pathways and mechanisms. Hence, CIKs-based therapy has been used in various clinical trials and has shown efficacy with a very low graft versus host disease (GVHD) against several cancers, such as hematologic malignancies, even in relapsing cases, or cases not responding to other therapies. Despite the high content of T cells, CIK cells induce low alloreactivity and, thus, pose a restricted threat of GVHD induction even in MHC-mismatched transplantation cases. Phase 1 and 2 clinical trials of CIK cell therapy have also highlighted satisfactory therapeutic advantages against hematologic cancers, indicating the safety of CIK cells even in haploidentical transplantation settings. CONCLUSION CIK cells have shown promising results in the treatment of hematologic malignancies, especially in combination with other antitumor strategies. However, the existing controversies in achieving desired clinical responses underscore the importance of future studies.
Collapse
Affiliation(s)
- Faezeh Ghanbari Sevari
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Abbasi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Sina Hejazian
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mortaza Raisii
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Çubukçu HC, Mesutoğlu PY, Seval GC, Beksaç M. Ex vivo expansion of natural killer cells for hematological cancer immunotherapy: a systematic review and meta-analysis. Clin Exp Med 2023; 23:2503-2533. [PMID: 36333526 DOI: 10.1007/s10238-022-00923-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
The present systematic review aimed to investigate natural killer (NK) cell ex vivo expansion protocols within the scope of clinical trials targeting hematological cancer and to conduct a meta-analysis to assess the effect of NK cell infusion on survival. Research articles of clinical studies in which cell products produced by ex vivo expansion, consisting of a certain amount of NK cells and infused to patients with hematological cancer, were included in the systematic review. We conducted a proportion analysis with random effects for product purity and viability values. Studies having control groups were included in the survival meta-analysis. Among 11.028 identified records, 21 were included in the systematic review. We observed statistically significant heterogeneity for viability (I2 = 97.83%, p < 0.001) and purity values (I2 = 99.95%, p < 0.001), which was attributed to the diversity among isolation and expansion protocols. In addition, the survival meta-analysis findings suggested that NK cell therapy favors disease-free survival (DFS) of patients with myeloid malignancies but limited to only two clinical studies (odds ratio = 3.40 (confidence interval:1.27-9.10), p = 0.01). While included protocols yielded cell products with acceptable viability, the utility of immunomagnetic methods; feeder cells such as K562 expressing membrane-bound IL15 and 4-1BBL or expressing membrane-bound IL21 and 4-1BBL might be preferable to achieve better purity. In conclusion, NK cell therapy has a potential to improve DFS of patients with myeloid malignancies.
Collapse
Affiliation(s)
- Hikmet Can Çubukçu
- Interdisciplinary Stem Cells and Regenerative Medicine, Ankara University Stem Cell Institute, Ankara, Turkey
- Autism, Special Mental Needs and Rare Diseases Department, General Directorate of Health Services, Turkish Ministry of Health, Ankara, Turkey
| | | | | | - Meral Beksaç
- Department of Hematology, Ankara University, Ankara, Turkey.
| |
Collapse
|
6
|
Dual antigen-targeted off-the-shelf NK cells show durable response and prevent antigen escape in lymphoma and leukemia. Blood 2022; 140:2451-2462. [PMID: 35917442 PMCID: PMC9918847 DOI: 10.1182/blood.2021015184] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/16/2022] [Accepted: 07/11/2022] [Indexed: 01/31/2023] Open
Abstract
Substantial numbers of B cell leukemia and lymphoma patients relapse due to antigen loss or heterogeneity after anti-CD19 chimeric antigen receptor (CAR) T cell therapy. To overcome antigen escape and address antigen heterogeneity, we engineered induced pluripotent stem cell-derived NK cells to express both an NK cell-optimized anti-CD19 CAR for direct targeting and a high affinity, non-cleavable CD16 to augment antibody-dependent cellular cytotoxicity. In addition, we introduced a membrane-bound IL-15/IL-15R fusion protein to promote in vivo persistence. These engineered cells, termed iDuo NK cells, displayed robust CAR-mediated cytotoxic activity that could be further enhanced with therapeutic antibodies targeting B cell malignancies. In multiple in vitro and xenogeneic adoptive transfer models, iDuo NK cells exhibited robust anti-lymphoma activity. Furthermore, iDuo NK cells effectively eliminated both CD19+ and CD19- lymphoma cells and displayed a unique propensity for targeting malignant cells over healthy cells that expressed CD19, features not achievable with anti-CAR19 T cells. iDuo NK cells combined with therapeutic antibodies represent a promising approach to prevent relapse due to antigen loss and tumor heterogeneity in patients with B cell malignancies.
Collapse
|
7
|
Borchmann S, Selenz C, Lohmann M, Ludwig H, Gassa A, Brägelmann J, Lohneis P, Meder L, Mattlener J, Breid S, Nill M, Fassunke J, Wisdom AJ, Compes A, Gathof B, Alakus H, Kirsch D, Hekmat K, Büttner R, Reinhardt HC, Hallek M, Ullrich RT. Tripartite antigen-agnostic combination immunotherapy cures established poorly immunogenic tumors. J Immunother Cancer 2022; 10:e004781. [PMID: 36223955 PMCID: PMC9562723 DOI: 10.1136/jitc-2022-004781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Single-agent immunotherapy has shown remarkable efficacy in selected cancer entities and individual patients. However, most patients fail to respond. This is likely due to diverse immunosuppressive mechanisms acting in a concerted way to suppress the host anti-tumor immune response. Combination immunotherapy approaches that are effective in such poorly immunogenic tumors mostly rely on precise knowledge of antigenic determinants on tumor cells. Creating an antigen-agnostic combination immunotherapy that is effective in poorly immunogenic tumors for which an antigenic determinant is not known is a major challenge. METHODS We use multiple cell line and poorly immunogenic syngeneic, autochthonous, and autologous mouse models to evaluate the efficacy of a novel combination immunotherapy named tripartite immunotherapy (TRI-IT). To elucidate TRI-ITs mechanism of action we use immune cell depletions and comprehensive tumor and immune infiltrate characterization by flow cytometry, RNA sequencing and diverse functional assays. RESULTS We show that combined adoptive cellular therapy (ACT) with lymphokine-activated killer cells, cytokine-induced killer cells, Vγ9Vδ2-T-cells (γδ-T-cells) and T-cells enriched for tumor recognition (CTLs) display synergistic antitumor effects, which are further enhanced by cotreatment with anti-PD1 antibodies. Most strikingly, the full TRI-IT protocol, a combination of this ACT with anti-PD1 antibodies, local immunotherapy of agonists against toll-like receptor 3, 7 and 9 and pre-ACT lymphodepletion, eradicates and induces durable anti-tumor immunity in a variety of poorly immunogenic syngeneic, autochthonous, as well as autologous humanized patient-derived models. Mechanistically, we show that TRI-IT coactivates adaptive cellular and humoral, as well as innate antitumor immune responses to mediate its antitumor effect without inducing off-target toxicity. CONCLUSIONS Overall, TRI-IT is a novel, highly effective, antigen-agnostic, non-toxic combination immunotherapy. In this study, comprehensive insights into its preclinical efficacy, even in poorly immunogenic tumors, and mode of action are given, so that translation into clinical trials is the next step.
Collapse
Affiliation(s)
- Sven Borchmann
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Carolin Selenz
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Mia Lohmann
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Hanna Ludwig
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Asmae Gassa
- Department of Cardiothoracic Surgery, University of Cologne, Cologne, Germany
| | - Johannes Brägelmann
- Mildred Scheel School of Oncology, University Hospital Cologne, Medical Faculty, Cologne, Germany
| | - Philipp Lohneis
- Institute of Pathology, University of Cologne, Cologne, Germany
| | - Lydia Meder
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Julia Mattlener
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Sara Breid
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Marieke Nill
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Jana Fassunke
- Institute of Pathology, University of Cologne, Cologne, Germany
| | - Amy J Wisdom
- Department of Radiation Oncology and Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Anik Compes
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Birgit Gathof
- Institute of Transfusion Medicine, University of Cologne, Cologne, Germany
| | - Hakan Alakus
- Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - David Kirsch
- Department of Radiation Oncology and Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Khosro Hekmat
- Department of Cardiothoracic Surgery, University of Cologne, Cologne, Germany
| | | | - H Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen,University Duisburg-Essen, German Cancer Consortium (DKTK partner site Essen), Essen, Germany
| | - Michael Hallek
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Roland T Ullrich
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
8
|
Fayyaz F, Yazdanpanah N, Rezaei N. Cytokine-induced killer cells mediated pathways in the treatment of colorectal cancer. Cell Commun Signal 2022; 20:41. [PMID: 35346234 PMCID: PMC8962105 DOI: 10.1186/s12964-022-00836-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/29/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractCytokine-induced killer (CIK) cell therapy is a type of adoptive immunotherapy that due to its high proliferation rate and anti-tumor characteristics, is being investigated to treat various solid tumors. Since advanced colorectal cancer (CRC) has high mortality and poor survival rates, and the efficacy of chemotherapy and radiotherapy is limited in treatment, the application of CIK cell therapy in CRC has been evaluated in numerous studies. This review aims to summarize the clinical studies that investigated the safety and clinical efficacy of CIK cell therapy in CRC. Therefore, 1,969 enrolled CRC patients in the clinical trials, of which 842 patients received CIK cells in combination with chemotherapy with or without dendritic cell (DC) infusions, were included in the present review. Furthermore, the signaling pathways involved in CIK cell therapy and novel methods for improving migration abilities are discussed.
Collapse
|
9
|
The Future of Natural Killer Cell Immunotherapy for B Cell Non-Hodgkin Lymphoma (B Cell NHL). Curr Treat Options Oncol 2022; 23:381-403. [PMID: 35258793 PMCID: PMC8930876 DOI: 10.1007/s11864-021-00932-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 01/02/2023]
Abstract
Natural killer (NK) cells have played a critical—if largely unrecognized or ignored—role in the treatment of B cell non-Hodgkin lymphoma (NHL) since the introduction of CD20-directed immunotherapy with rituximab as a cornerstone of therapy over 25 years ago. Engagement with NK cells leading to lysis of NHL targets through antibody-dependent cellular cytotoxicity (ADCC) is a critical component of rituximab’s mechanism of action. Despite this important role, the only aspect of B cell NHL therapy that has been adopted as standard therapy that even indirectly augments or restores NK cell function is the introduction of obinutuzumab, a CD20 antibody with enhanced ability to engage with NK cells. However, over the last 5 years, adoptive immunotherapy with effector lymphocytes of B cell NHL has experienced tremendous growth, with five different CAR T cell products now licensed by the FDA, four of which target CD19 and have approved indications for some subtype of B cell NHL—axicabtagene ciloleucel, brexucabtagene autoleucel, lisocabtagene maraleucel, and tisagenlecleucel. These T cell-based immunotherapies essentially mimic the recognition, activation pathway, and cytotoxic machinery of a CD19 antibody engaging NK cells and lymphoma targets. Despite their efficacy, these T cell-based immunotherapies have been difficult to implement because they require 4–6 weeks of manufacture, are costly, and have significant toxicities. This renewed interest in the potential of cellular immunity—and the manufacturing, supply chain, and administration logistics that have been addressed with these new agents—have ignited a new wave of enthusiasm for NK cell-directed therapies in NHL. With high safety profiles and proven anti-lymphoma efficacy, one or more new NK cell-directed modalities are certain to be introduced into the standard toolbox of NHL therapy within the next few years, be it function-enhancing cytokine muteins, multi-domain NK cell engagers, or adoptive therapy with expanded or genetically modified NK cells.
Collapse
|
10
|
Clinical Studies on Cytokine-Induced Killer Cells: Lessons from Lymphoma Trials. Cancers (Basel) 2021; 13:cancers13236007. [PMID: 34885117 PMCID: PMC8656601 DOI: 10.3390/cancers13236007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 01/03/2023] Open
Abstract
Simple Summary Lymphoma is a heterogeneous group of neoplasms including over 70 different subtypes. Its biological characteristic of deriving from lymphoid tissues makes it ideal for immunotherapy. In this paper, we provide insights into lymphoma-specific clinical trials based on cytokine-induced killer (CIK) cell therapy. We also reviewed pre-clinical lymphoma models where CIK cells have been used along with other synergetic tumor-targeting immune modules to improve their therapeutic potential. From a broader perspective, we will highlight that CIK cell therapy has potential, and in this rapidly evolving landscape of cancer therapies its optimization (as a personalized therapeutic approach) will be beneficial in lymphomas. Abstract Cancer is a complex disease where resistance to therapies and relapses often pose a serious clinical challenge. The scenario is even more complicated when the cancer type itself is heterogeneous in nature, e.g., lymphoma, a cancer of the lymphocytes which constitutes more than 70 different subtypes. Indeed, the treatment options continue to expand in lymphomas. Herein, we provide insights into lymphoma-specific clinical trials based on cytokine-induced killer (CIK) cell therapy and other pre-clinical lymphoma models where CIK cells have been used along with other synergetic tumor-targeting immune modules to improve their therapeutic potential. From a broader perspective, we will highlight that CIK cell therapy has potential, and in this rapidly evolving landscape of cancer therapies its optimization (as a personalized therapeutic approach) will be beneficial in lymphomas.
Collapse
|
11
|
Nava S, Lisini D, Frigerio S, Bersano A. Dendritic Cells and Cancer Immunotherapy: The Adjuvant Effect. Int J Mol Sci 2021; 22:ijms222212339. [PMID: 34830221 PMCID: PMC8620771 DOI: 10.3390/ijms222212339] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 01/01/2023] Open
Abstract
Dendritic cells (DCs) are immune specialized cells playing a critical role in promoting immune response against antigens, and may represent important targets for therapeutic interventions in cancer. DCs can be stimulated ex vivo with pro-inflammatory molecules and loaded with tumor-specific antigen(s). Protocols describing the specific details of DCs vaccination manufacturing vary widely, but regardless of the employed protocol, the DCs vaccination safety and its ability to induce antitumor responses is clearly established. Many years of studies have focused on the ability of DCs to provide overall survival benefits at least for a selection of cancer patients. Lessons learned from early trials lead to the hypothesis that, to improve the efficacy of DCs-based immunotherapy, this should be combined with other treatments. Thus, the vaccine’s ultimate role may lie in the combinatorial approaches of DCs-based immunotherapy with chemotherapy and radiotherapy, more than in monotherapy. In this review, we address some key questions regarding the integration of DCs vaccination with multimodality therapy approaches for cancer treatment paradigms.
Collapse
|
12
|
Dalla Pietà A, Cappuzzello E, Palmerini P, Ventura A, Visentin A, Astori G, Chieregato K, Mozzo V, Perbellini O, Tisi MC, Trentin L, Visco C, Ruggeri M, Sommaggio R, Rosato A. Innovative therapeutic strategy for B-cell malignancies that combines obinutuzumab and cytokine-induced killer cells. J Immunother Cancer 2021; 9:jitc-2021-002475. [PMID: 34272306 PMCID: PMC8287629 DOI: 10.1136/jitc-2021-002475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 12/24/2022] Open
Abstract
Background Patients affected by aggressive B-cell malignancies who are resistant to primary or salvage chemoimmunotherapy have an extremely poor prognosis and limited therapeutic options. Promising therapeutic success has been achieved with the infusion of CD19 chimeric antigen receptor-T cells, but several limits still restrain the administration to a limited proportion of patients. This unmet clinical need might be fulfilled by an adoptive immunotherapy approach that combines cytokine-induced killer (CIK) cells and monoclonal antibodies (mAb) to the CD20 antigen. Indeed, CIK cells are an effector population endowed with antitumor activity, which can be further improved and antigen-specifically redirected by clinical-grade mAb triggering antibody-dependent cell-mediated cytotoxicity. Methods CIK cells were generated from peripheral blood of patients affected by different B-cell malignancies using a blinatumomab-based cell culture protocol. Effector cells were combined with the anti-CD20 mAb obinutuzumab and their therapeutic activity was assessed both in vitro and in vivo. Results CIK cells were successfully expanded in clinically relevant numbers, starting from small volumes of peripheral blood with extremely low CD3+ counts and high tumor burden. This relied on the addition of blinatumumab in culture, which leads to the simultaneous expansion of effector cells and the complete elimination of the neoplastic component. Moreover, CIK cells were highly cytotoxic in vitro against both B-cell tumor cell lines and autologous neoplastic targets, and had a significant therapeutic efficacy against a B-cell malignancy patient-derived xenograft on in vivo transfer. Conclusions The combination of an easily expandable CIK cell effector population with a mAb already in clinical use establishes a tumor antigen-specific redirection strategy that can be rapidly translated into clinical practice, providing an effective therapeutic alternative for B-cell malignancies without any need for genetic modifications. Additionally, the approach can be potentially applied to an extremely vast array of different tumors by simply substituting the targeting mAb.
Collapse
Affiliation(s)
- Anna Dalla Pietà
- Department of Surgery, Oncology and Gastroenterology, Immunology and Oncology Section, University of Padua, Padova, Italy
| | - Elisa Cappuzzello
- Department of Surgery, Oncology and Gastroenterology, Immunology and Oncology Section, University of Padua, Padova, Italy
| | - Pierangela Palmerini
- Department of Surgery, Oncology and Gastroenterology, Immunology and Oncology Section, University of Padua, Padova, Italy
| | - Annavera Ventura
- Department of Surgery, Oncology and Gastroenterology, Immunology and Oncology Section, University of Padua, Padova, Italy
| | - Andrea Visentin
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, Padova, Italy
| | - Giuseppe Astori
- Advanced Cellular Therapy Laboratory, Department of Hematology, San Bortolo Hospital of Vicenza, Vicenza, Italy
| | - Katia Chieregato
- Advanced Cellular Therapy Laboratory, Department of Hematology, San Bortolo Hospital of Vicenza, Vicenza, Italy.,Consorzio per la Ricerca Sanitaria (CORIS) of Veneto Region, Padova, Italy
| | | | - Omar Perbellini
- Cell Therapy and Hematology, San Bortolo Hospital, Vicenza, Italy
| | | | - Livio Trentin
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, Padova, Italy
| | - Carlo Visco
- Department of Medicine, Section of Hematology, University of Verona, Verona, Italy
| | - Marco Ruggeri
- Cell Therapy and Hematology, San Bortolo Hospital, Vicenza, Italy
| | | | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, Immunology and Oncology Section, University of Padua, Padova, Italy .,Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| |
Collapse
|
13
|
Li F, Chen Y, Pang M, Yang P, Jing H. Immune checkpoint inhibitors and cellular treatment for lymphoma immunotherapy. Clin Exp Immunol 2021; 205:1-11. [PMID: 33675535 DOI: 10.1111/cei.13592] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/30/2021] [Accepted: 02/21/2021] [Indexed: 11/29/2022] Open
Abstract
Malignant lymphoma (ML) is a common hematological malignancy with many subtypes. Patients with ML usually undergo traditional treatment failure and become relapsed or refractory (R/R) cases. Recently, immunotherapy, such as immune checkpoint inhibitors (ICIs) and cellular treatment, has gradually emerged and used in clinical trials with encouraging achievements for ML treatment, which exerts anti-tumor activity by blocking the immune evasion of tumor cells and enhancing the attack ability of immune cells. Targets of immune checkpoints include programmed cell death-1 (PD-1), programmed cell death-ligand 1 (PD-L1), cytotoxic T lymphocyte-associated protein 4 (CTLA-4), T cell immunoglobulin and ITIM domain (TIGIT), T cell immunoglobulin-3 (TIM-3) and lymphocyte activation gene 3 (LAG-3). Examples of cellular treatment are chimeric antigen receptor (CAR) T cells, cytokine-induced killer (CIK) cells and natural killer (NK) cells. This review aimed to present the current progress and future prospects of immunotherapy in lymphoma, with the focus upon ICIs and cellular treatment.
Collapse
Affiliation(s)
- F Li
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Y Chen
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - M Pang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - P Yang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - H Jing
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| |
Collapse
|
14
|
Wendel P, Reindl LM, Bexte T, Künnemeyer L, Särchen V, Albinger N, Mackensen A, Rettinger E, Bopp T, Ullrich E. Arming Immune Cells for Battle: A Brief Journey through the Advancements of T and NK Cell Immunotherapy. Cancers (Basel) 2021; 13:cancers13061481. [PMID: 33807011 PMCID: PMC8004685 DOI: 10.3390/cancers13061481] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary This review is intended to provide an overview on the history and recent advances of T cell and natural killer (NK) cell-based immunotherapy. While the thymus was discovered as the origin of T cells in the 1960s, and NK cells were first described in 1975, the clinical application of adoptive cell therapies (ACT) only began in the early 1980s with the first lymphokine activated killer (LAK) cell product for the treatment of cancer patients. Over the past decades, further immunotherapies have been developed, including ACT using cytokine-induced killer (CIK) cells, products based on the NK cell line NK-92 as well as specific T and NK cell preparations. Recent advances have successfully improved the effectiveness of T, NK, CIK or NK-92 cells towards tumor-targeting antigens generated by genetic engineering of the immune cells. Herein, we summarize the promising development of ACT over the past decades in the fight against cancer. Abstract The promising development of adoptive immunotherapy over the last four decades has revealed numerous therapeutic approaches in which dedicated immune cells are modified and administered to eliminate malignant cells. Starting in the early 1980s, lymphokine activated killer (LAK) cells were the first ex vivo generated NK cell-enriched products utilized for adoptive immunotherapy. Over the past decades, various immunotherapies have been developed, including cytokine-induced killer (CIK) cells, as a peripheral blood mononuclear cells (PBMCs)-based therapeutic product, the adoptive transfer of specific T and NK cell products, and the NK cell line NK-92. In addition to allogeneic NK cells, NK-92 cell products represent a possible “off-the-shelf” therapeutic concept. Recent approaches have successfully enhanced the specificity and cytotoxicity of T, NK, CIK or NK-92 cells towards tumor-specific or associated target antigens generated by genetic engineering of the immune cells, e.g., to express a chimeric antigen receptor (CAR). Here, we will look into the history and recent developments of T and NK cell-based immunotherapy.
Collapse
Affiliation(s)
- Philipp Wendel
- Children’s Hospital, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (P.W.); (L.M.R.); (T.B.); (L.K.); (N.A.); (E.R.)
- Experimental Immunology, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Lisa Marie Reindl
- Children’s Hospital, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (P.W.); (L.M.R.); (T.B.); (L.K.); (N.A.); (E.R.)
- Experimental Immunology, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Tobias Bexte
- Children’s Hospital, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (P.W.); (L.M.R.); (T.B.); (L.K.); (N.A.); (E.R.)
- Experimental Immunology, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Leander Künnemeyer
- Children’s Hospital, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (P.W.); (L.M.R.); (T.B.); (L.K.); (N.A.); (E.R.)
- Experimental Immunology, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Vinzenz Särchen
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, 60528 Frankfurt am Main, Germany;
| | - Nawid Albinger
- Children’s Hospital, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (P.W.); (L.M.R.); (T.B.); (L.K.); (N.A.); (E.R.)
- Experimental Immunology, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Andreas Mackensen
- Department of Medicine 5, University Hospital Erlangen, University of Erlangen-Nuremberg, 91054 Erlangen, Germany;
| | - Eva Rettinger
- Children’s Hospital, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (P.W.); (L.M.R.); (T.B.); (L.K.); (N.A.); (E.R.)
| | - Tobias Bopp
- Institute for Immunology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
- Research Center for Immunotherapy (FZI), University Medical Center Mainz, 55131 Mainz, Germany
- University Cancer Center Mainz, University Medical Center, 55131 Mainz, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 69120 Heidelberg, Germany
| | - Evelyn Ullrich
- Children’s Hospital, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (P.W.); (L.M.R.); (T.B.); (L.K.); (N.A.); (E.R.)
- Experimental Immunology, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 69120 Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
- Correspondence:
| |
Collapse
|
15
|
Donini C, Rotolo R, Proment A, Aglietta M, Sangiolo D, Leuci V. Cellular Immunotherapy Targeting Cancer Stem Cells: Preclinical Evidence and Clinical Perspective. Cells 2021; 10:cells10030543. [PMID: 33806296 PMCID: PMC8001974 DOI: 10.3390/cells10030543] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/08/2023] Open
Abstract
The term “cancer stem cells” (CSCs) commonly refers to a subset of tumor cells endowed with stemness features, potentially involved in chemo-resistance and disease relapses. CSCs may present peculiar immunogenic features influencing their homeostasis within the tumor microenvironment. The susceptibility of CSCs to recognition and targeting by the immune system is a relevant issue and matter of investigation, especially considering the multiple emerging immunotherapy strategies. Adoptive cellular immunotherapies, especially those strategies encompassing the genetic redirection with chimeric antigen receptors (CAR), hold relevant promise in several tumor settings and might in theory provide opportunities for selective elimination of CSC subsets. Initial dedicated preclinical studies are supporting the potential targeting of CSCs by cellular immunotherapies, indirect evidence from clinical studies may be derived and new studies are ongoing. Here we review the main issues related to the putative immunogenicity of CSCs, focusing on and highlighting the existing evidence and opportunities for cellular immunotherapy approaches with T and non-T antitumor lymphocytes.
Collapse
Affiliation(s)
- Chiara Donini
- Department of Oncology, University of Turin, 10124 Turin, Italy; (C.D.); (A.P.); (M.A.)
- Candiolo Cancer Institute, FPO–IRCCS, Str. Prov. 142, km 3,95, 10060 Candiolo (TO), Italy; (R.R.); (V.L.)
| | - Ramona Rotolo
- Candiolo Cancer Institute, FPO–IRCCS, Str. Prov. 142, km 3,95, 10060 Candiolo (TO), Italy; (R.R.); (V.L.)
| | - Alessia Proment
- Department of Oncology, University of Turin, 10124 Turin, Italy; (C.D.); (A.P.); (M.A.)
| | - Massimo Aglietta
- Department of Oncology, University of Turin, 10124 Turin, Italy; (C.D.); (A.P.); (M.A.)
- Candiolo Cancer Institute, FPO–IRCCS, Str. Prov. 142, km 3,95, 10060 Candiolo (TO), Italy; (R.R.); (V.L.)
| | - Dario Sangiolo
- Department of Oncology, University of Turin, 10124 Turin, Italy; (C.D.); (A.P.); (M.A.)
- Candiolo Cancer Institute, FPO–IRCCS, Str. Prov. 142, km 3,95, 10060 Candiolo (TO), Italy; (R.R.); (V.L.)
- Correspondence: ; Tel.: +39-011-993-3503; Fax: +39-011-993-3522
| | - Valeria Leuci
- Candiolo Cancer Institute, FPO–IRCCS, Str. Prov. 142, km 3,95, 10060 Candiolo (TO), Italy; (R.R.); (V.L.)
| |
Collapse
|
16
|
Tanaka J. Recent advances in cellular therapy for malignant lymphoma. Cytotherapy 2021; 23:662-671. [PMID: 33558145 DOI: 10.1016/j.jcyt.2020.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023]
Abstract
Cellular therapies for malignant lymphoma include autologous or allogeneic hematopoietic stem cell transplantation (HSCT) and adaptive cellular therapy using EBV-specific T cells, cytokine-induced killer (CIK) cells, NKT cells, NK cells, chimeric antigen receptor T (CAR-T) cells and chimeric antigen receptor NK (CAR-NK) cells. In this review we discusses recent advances of these cellular therapies and consider ways to optimize these therapies. Not only a single strategy using one of these cellular therapies, but also multi-disciplinary treatment combines with antibodies, such as an anti-tumor antibody and an immune checkpoint antibody, may be more effective for relapsed and refractory lymphoma.
Collapse
Affiliation(s)
- Junji Tanaka
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
17
|
Palmerini P, Dalla Pietà A, Sommaggio R, Ventura A, Astori G, Chieregato K, Tisi MC, Visco C, Perbellini O, Ruggeri M, Cappuzzello E, Rosato A. A serum-free protocol for the ex vivo expansion of Cytokine-Induced Killer cells using gas-permeable static culture flasks. Cytotherapy 2020; 22:511-518. [PMID: 32631696 DOI: 10.1016/j.jcyt.2020.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/13/2020] [Accepted: 05/06/2020] [Indexed: 12/21/2022]
Abstract
Cytokine-Induced (CIK) cells represent an attractive approach for cell-based immunotherapy, as they show several advantages compared with other strategies. Here we describe an original serum-free protocol for CIK cell expansion that employs G-Rex devices and compare the resulting growth, viability, phenotypic profile and cytotoxic activity with conventional culture in tissue flasks. CIK cells were obtained from buffy coats, seeded in parallel in G-Rex and tissue flasks, and stimulated with clinical-grade IFN-γ, anti-CD3 antibody and IL-2. G-Rex led to large numbers of CIK cells, with a minimal need for technical interventions, thus reducing the time and costs of culture manipulation. CIK cells generated in G-Rex showed a less differentiated phenotype, with a significantly higher expression of naive-associated markers such as CD62L, CD45RA and CCR7, which correlates with a remarkable expansion potential in culture and could lead to longer persistence and a more sustained anti-tumor response in vivo. The described procedure can be easily translated to large-scale production under Good Manufacturing Practice. Overall, this protocol has strong advantages over existing procedures, as it allows easier, time-saving and cost-effective production of CIK effector cells, fostering their clinical application.
Collapse
Affiliation(s)
- Pierangela Palmerini
- Department of Surgery, Oncology and Gastroenterology, Immunology and Oncology Section, University of Padua, Padua, Italy
| | - Anna Dalla Pietà
- Department of Surgery, Oncology and Gastroenterology, Immunology and Oncology Section, University of Padua, Padua, Italy
| | | | - Annavera Ventura
- Department of Surgery, Oncology and Gastroenterology, Immunology and Oncology Section, University of Padua, Padua, Italy
| | - Giuseppe Astori
- Advanced Cellular Therapy Laboratory, Department of Hematology, Vicenza Hospital, Vicenza, Italy
| | - Katia Chieregato
- Advanced Cellular Therapy Laboratory, Department of Hematology, Vicenza Hospital, Vicenza, Italy
| | | | - Carlo Visco
- Department of Medicine, Section of Hematology, University of Verona, Verona, Italy
| | | | - Marco Ruggeri
- Hematology Department, San Bortolo Hospital, Vicenza, Italy
| | - Elisa Cappuzzello
- Department of Surgery, Oncology and Gastroenterology, Immunology and Oncology Section, University of Padua, Padua, Italy
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, Immunology and Oncology Section, University of Padua, Padua, Italy; Veneto Institute of Oncology IOV - IRCCS, Padua, Italy.
| |
Collapse
|
18
|
Zou Y, Liang J, Li D, Fang J, Wang L, Wang J, Zhang J, Guo Q, Yan X, Tang H. Application of the chemokine-chemokine receptor axis increases the tumor-targeted migration ability of cytokine-induced killer cells in patients with colorectal cancer. Oncol Lett 2020; 20:123-134. [PMID: 32565940 PMCID: PMC7286113 DOI: 10.3892/ol.2020.11539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/14/2020] [Indexed: 12/24/2022] Open
Abstract
Cytokine-induced killer (CIK) cells are a group of heterogeneous immune cells which can be isolated from human peripheral blood mononuclear cells and have demonstrated therapeutic benefit both in hematologic malignancies and solid tumors, including colorectal cancer. However, poor tumor-targeted migration has limited the clinical efficacy of CIK cell treatment. The chemokine-chemokine receptor (CK-CKR) axis serves a role in the tumor-directed trafficking capacity of immune cells. Investigating the relationship between CKR profiles on the surface of CIK cells and chemokine expression levels in the tumor microenvironment may improve CIK cell therapy. In the present study, the spectrum of chemokine expression levels in tumor tissues from patients with colorectal cancer (CRC) and CKR expression profiles in CIK cells obtained from the same individuals with CRC were investigated. The results showed that chemokine expression levels in tumor tissues exhibited variability and cell line heterogeneity. However, the expression levels of a number of chemokines were similar in different CRC donors and cell lines. Expression levels of CXCLL10, CXCL11 and CCL3 were significantly higher in most tumor tissues compared with adjacent normal tissues and highly expressed in most CRC cell lines. In accordance with chemokine expression levels, CKR profiles on the surface of CIK cells also showed donor-to-donor variability. However, concordant expression profiles of CKRs were identified in different patients with CRC. CXCR3 and CXCR4 were highly expressed on the surface of CIK cells through the culture process. Importantly, the expression levels of all CKRs, especially CCR4, CXCR4 and CXCR3, were notably decreased during the course of CIK cell expansion. The changing trend of CKR profiles were not correlated with the chemokine expression profiles in CRC tissues (CCL3, CXCL12 and CXCL10/CXCL11 were highly expressed in CRC tissue). Re-stimulating CIK cells using chemokines (CCL21 and CXCL11) at the proper time point increased corresponding CKR expression levels on the surface of CIK cells and enhance tumor-targeted trafficking in vitro. These results demonstrated that modification of the CK-CKR axis using exogenous recombinant chemokines at the proper time point enhanced CIK cell trafficking ability and improved CIK antitumor effects.
Collapse
Affiliation(s)
- Yunlian Zou
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650504, P.R. China
- Institute of Medical Sciences, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| | - Jianhua Liang
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650504, P.R. China
- Institute of Medical Sciences, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| | - Danyang Li
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650504, P.R. China
- Institute of Medical Sciences, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| | - Jingjing Fang
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650504, P.R. China
- Institute of Medical Sciences, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| | - Linping Wang
- Institute of Medical Sciences, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| | - Jinli Wang
- Institute of Medical Sciences, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| | - Jinping Zhang
- Institute of Medical Sciences, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| | - Qiang Guo
- Yunnan Digestive Endoscopy Clinical Medical Center, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| | - Xinmin Yan
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650504, P.R. China
- Institute of Medical Sciences, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| | - Hui Tang
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650504, P.R. China
- Institute of Medical Sciences, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
19
|
Zhang C, Xiong X, Li Y, Huang K, Liu L, Peng X, Weng W. Cytokine-induced killer cells/natural killer cells combined with anti-GD2 monoclonal antibody increase cell death rate in neuroblastoma SK-N-SH cells. Oncol Lett 2019; 18:6525-6535. [PMID: 31807172 PMCID: PMC6876305 DOI: 10.3892/ol.2019.11020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 06/05/2019] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma (NB) is one of the most common extracranial, solid, pediatric malignancies. Despite improvements in conventional therapies, including surgery, chemotherapy and radiation therapy, the prognosis of stage IV NB remains poor, indicating that novel treatment strategies are required. Immunotherapies, such as anti-GD2 monoclonal antibodies, used alone or in combination with cytokines, and peripheral blood mononuclear cells or cord blood mononuclear cells (CBMNCs), have been indicated to cause NB cell death and to prolong patient survival in high-risk NB; however, they remain limited by severe cytotoxicity and side effects. In the present study, it was determined that anti-GD2 monoclonal antibody alone or CBMNC-isolated cytokine-induced killer (CIK)/natural killer (NK) cells alone significantly induced cell death of NB SK-N-SH cells, and the combination of anti-GD2 antibody and CIK/NK cells could significantly increase the cell death rate compared with either treatment alone. In addition, based on a method referred to our previous study, it was identified that a two-cytokine culture system, using interleukin IL-2 and IL-7, effectively stimulated the proliferation of CIK/NK cells. These results serve to suggest a novel treatment strategy for relapsed/refractory NB with high efficiency and few side effects.
Collapse
Affiliation(s)
- Chi Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Xilin Xiong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Yang Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Ke Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Ling Liu
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Xiaomin Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Wenjun Weng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
20
|
Yang S, Yin X, Yue Y, Wang S. Application Of Adoptive Immunotherapy In Ovarian Cancer. Onco Targets Ther 2019; 12:7975-7991. [PMID: 31632055 PMCID: PMC6775498 DOI: 10.2147/ott.s221773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/18/2019] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer (OC) has been the most fatal gynecological disease that threatens women's health. Surgery and platinum-based chemotherapy are the basic ovarian cancer treatments that can improve survival, but the five-year survival rate has not improved because of delayed diagnosis, drug resistance, and recurrence. Novel treatments are needed to improve the prognosis and survival rate of ovarian cancer patients. In recent years, adoptive cell therapy (ACT) has received increasing attention as an emerging therapeutic strategy in the treatment of solid tumors including OC. ACT has shown promising results in many preclinical and clinical trials of OC. The application of ACT depends on different effector cells, such as lymphokine-activated killer (LAK) cells, tumor-infiltrating lymphocytes (TILs), and genetically modified T cells. In this review, we focus on adoptive immunotherapies in ovarian cancer and summarize completed and ongoing preclinical/clinical trials. The future development directions and obstacles for ACT in OC treatment are discussed.
Collapse
Affiliation(s)
- Siyu Yang
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun 130061, China
| | - Xiaojiao Yin
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun 130061, China
| | - Ying Yue
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun 130061, China
| | - Siqing Wang
- Department of Cancer Immunology, The First Hospital of Jilin University, Changchun 130061, China
| |
Collapse
|
21
|
Shirjang S, Alizadeh N, Mansoori B, Mahmoodpoor A, Kafil HS, Hojjat-Farsangi M, Yousefi M. Promising immunotherapy: Highlighting cytokine-induced killer cells. J Cell Biochem 2018; 120:8863-8883. [PMID: 30556298 DOI: 10.1002/jcb.28250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022]
Abstract
For many years, cancer therapy has appeared to be a challenging issue for researchers and physicians. By the introduction of novel methods in immunotherapy, the prospect of cancer therapy even more explained than before. Cytokine-induced killer (CIK) cell-based immunotherapy demonstrated to have potentiality in improving clinical outcomes and relieving major side effects of standard treatment options. In addition, given the distinctive features such as high safety, low toxicity effects on healthy cells, numerous clinical trials conducted on CIK cells. Due to the shortcomings that observed in CIK cell immunotherapy alone, arising a tendency to make modifications (combined modality therapy or combination therapy) including the addition of various types of cytokines, genetic engineering, combination with immune checkpoints, and so on. In this review, we have tried to bring forth the latest immunotherapy methods and their overview. We have discussed the combination therapies with CIK cells and the conducted clinical trials. This helps the future studies to use integrated therapies with CIK cells as a promising treatment of many types of cancers.
Collapse
Affiliation(s)
- Solmaz Shirjang
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Cytokine-induced killer cells/dendritic cells-cytokine induced killer cells immunotherapy combined with chemotherapy for treatment of colorectal cancer in China: a meta-analysis of 29 trials involving 2,610 patients. Oncotarget 2018; 8:45164-45177. [PMID: 28404886 PMCID: PMC5542175 DOI: 10.18632/oncotarget.16665] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/17/2017] [Indexed: 12/15/2022] Open
Abstract
Purpose To systematically evaluate the efficacy and safety of Cytokine-induced killer cells/dendritic cells-cytokine induced killer cells (CIK/DC-CIK) immunotherapy in treating advanced colorectal cancer (CRC) patients. Results 29 trials including 2,610 CRC patients were evolved. Compared with chemotherapy alone, the combination of chemotherapy with CIK/DC-CIK immunotherapy significantly prolonged the overall survival rate (OS) and disease-free survival rate (DFS) (1–5 year OS, P < 0.01; 1-, 2-, 3- and 5-year DFS, P < 0.01). The combined therapy also improved patients’ overall response, disease control rate and life quality (P < 0.05). After immunotherapy, lymphocyte subsets percentages of CD3+, CD3−CD56+, CD3+CD56+ and CD16+CD56+ (P < 0.01) and cytokines levels of IL-2 and IFN-γ (P < 0.05) were increased, while CD4+, CD8+ and CD4+CD25+ and IL-6 and TNF-α did not show significant change (P > 0.05). Materials and Methods Clinical trials reporting response or safety of CIK/DC-CIK immunotherapy treating advanced CRC patients and published before September 2016 were searched in Cochrane Library, EMBASE, PubMed, Wanfang and CNKI database. Research quality and heterogeneity were evaluated before analysis. Pooled analyses were performed using random or fixed-effect models. Conclusions The combination of CIK/DC-CIK immunotherapy and chemotherapy prolong CRC patients’ survival time, enhanced patients’ immune function and alleviates the adverse effects caused by chemotherapy.
Collapse
|
23
|
Shi B, Sun A, Zhang X. Influence of different ex vivo cell culture methods on the proliferation and anti-tumor activity of cytokine-induced killer cells from gastric cancer patients. Onco Targets Ther 2018; 11:2657-2672. [PMID: 29780258 PMCID: PMC5951225 DOI: 10.2147/ott.s162281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose In cytokine-induced killer (CIK) cell therapy, the phenotypes and the numbers of CIK cells have a great influence on the therapeutic effects. This study aimed to investigate the effects of different ex vivo cell culture methods on the proliferation and cytotoxicity of CIK cells that were obtained from gastric cancer patients. Patients and methods CIK precursor (Pre-CIK) cells were collected by either hydroxyethyl starch (HES) sedimentation (HES method, unpurified group) or Ficoll-Hypaque density gradient centrifugation (Ficoll method, purified group). Cell number, collection time, and morphology of Pre-CIK cells in the two groups were determined. The proliferation ability, cytokines, phenotypes, and cytotoxicity of CIK cells in the two groups were evaluated ex vivo and in vivo. Results In this study, the number of Pre-CIK cells in the unpurified group was significantly higher than that in the purified group (P<0.05). Numbers of erythrocytes, platelets, and granulocytes were reduced significantly following the purification step (P<0.05). Compared to CIK cells in the purified group, those in the unpurified group showed more active proliferation, accompanied by higher percentages of CD8+, CD3-CD56+, and CD3+CD56+ cells, which were responsible for cytotoxicity of CIK cells (P<0.05). This research also showed that the levels of interferon-γ, interleukin-2, and tumor necrosis factor-α, which can enhance the proliferation and cytotoxicity of CIK cells, were significantly increased in the unpurified group (P<0.05). Furthermore, CIK cells in the unpurified group also showed stronger anti-tumor effects against gastric cancer cells than those in the purified group, both ex vivo and in vivo (P<0.05). Conclusion The removal of Ficoll-Hypaque purification step reduces the time and cost of the Pre-CIK separation and provides more CIK cells with higher cytotoxicity, which is of great importance in the clinical application of CIK cell therapy.
Collapse
Affiliation(s)
- Bin Shi
- Department of Gastrointestinal Surgery, Liaocheng People's Hospital of Taishan Medical University, Liaocheng, Shandong Province, China
| | - Aixia Sun
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong Province, China
| | - Xiaorui Zhang
- Department of Health, Liaocheng People's Hospital of Taishan Medical University, Liaocheng, Shandong Province, China
| |
Collapse
|
24
|
Huang X, Zhang J, Li X, Huang H, Liu Y, Yu M, Zhang Y, Wang H. Rescue of iCIKs transfer from PD-1/PD-L1 immune inhibition in patients with resectable tongue squamous cell carcinoma (TSCC). Int Immunopharmacol 2018; 59:127-133. [PMID: 29653410 DOI: 10.1016/j.intimp.2018.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/30/2018] [Accepted: 04/05/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The purpose of this study is to evaluate the therapeutic efficacy and the role of PD-1/PD-L1 pathway in tongue squamous cell carcinoma (TSCC) patients treated with radical operation combined with chemotherapy and improving cytokine induced killer cells (iCIKs) transfer. METHODS Thirteen patients who received radical resection and chemotherapy were enrolled in this study. PD-1/PD-L1 expression was evaluated in TSCC patients. ICIKs were cultured from patient-derived peripheral blood mononuclear cells (PBMCs) in vitro. The immunological differences underlying iCIKs transfer were investigated through phenotype, cytokine secretion and PD-1/PD-L1 inhibition analysis. RESULTS The serum PD-L1 levels were elevated in the TSCC patients. PD-L1 was detected on both human TSCC cells and tumour tissue sections. PD-1 expression was much higher on the PBMCs of TSCC patients than on in vitro cultured iCIKs. Interruption of PD-1/PD-L1 interaction enhanced the cytotoxicity of iCIKs in vitro. CD3 + CD8+ T cell proportion and cytokine IL-6 secretion decreased after chemotherapy. The infusion of iCIKs effectively reversed the immunosuppression through the upregulation of the CD3 + CD8+ T cell proportion and Th cell cytokine secretion (IFN-γ, TNF-α, IL-4 and IL-6). Twelve responders are currently alive (95.7+ months), another patient 83 months. CONCLUSION Our findings indicated that the PD-1/PD-L1 interaction contributes to the immunosuppression in TSCC patients. ICIKs transfer is an effective therapy to reverse the immunosuppression caused by surgical procedures and chemotherapy and improve immune system function.
Collapse
Affiliation(s)
- Xiaofeng Huang
- Department of Oral and Maxillofacial Surgery, Clinical Laboratory, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Jing Zhang
- Department of Oral and Maxillofacial Surgery, Clinical Laboratory, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Xiaolong Li
- Department of Oral and Maxillofacial Surgery, Clinical Laboratory, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Hongxing Huang
- Laboratory of Cancer and Stem Cell Biology, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Ying Liu
- Laboratory of Cancer and Stem Cell Biology, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China; Guangzhou Yidai Pharmaceutical Co., Ltd, Guangzhou 510055, PR China
| | - Mei Yu
- Department of Oral and Maxillofacial Surgery, Clinical Laboratory, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Yan Zhang
- Laboratory of Cancer and Stem Cell Biology, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China.
| | - Hua Wang
- Department of Oral and Maxillofacial Surgery, Clinical Laboratory, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China; Guangzhou Yidai Pharmaceutical Co., Ltd, Guangzhou 510055, PR China.
| |
Collapse
|
25
|
Ramos-Espinosa O, Islas-Weinstein L, Peralta-Álvarez MP, López-Torres MO, Hernández-Pando R. The use of immunotherapy for the treatment of tuberculosis. Expert Rev Respir Med 2018; 12:427-440. [PMID: 29575946 DOI: 10.1080/17476348.2018.1457439] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Tuberculosis (TB) is the first cause of mortality by a single infectious agent in the world, causing more than one million deaths worldwide as reported by the World Health Organization (WHO). For the optimal control of TB infection, a protective immune response that limits bacterial spread without causing damage to the host is essential. Although most healthy individuals are capable of generating protective responses, patients who suffer pulmonary TB commonly present a defective immune function. Areas covered: We intend to highlight the potential of novel immunotherapeutic strategies that enhance and promote effective immune responses. The following methodology was undertaken for establishing a literature search: the authors used PubMed to search for 'Pulmonary Tuberculosis' and keywords that denoted the novel immunotherapeutic strategies discussed in length in the text including antibodies, antimicrobial peptides, cell therapy, cytokines and gene therapy. Expert commentary: The current therapeutic regimens for this disease are complex and involve the prolonged use of multiple antibiotics with diverse side effects that lead to therapeutic failure and bacterial resistance. The standard appliance of immunotherapy and its deployment to vulnerable populations will require coordinated work and may serve as a powerful tool to combat the ensuing threat of TB.
Collapse
Affiliation(s)
- Octavio Ramos-Espinosa
- a Section of Experimental Pathology, Department of Pathology , Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , México City , México
| | - León Islas-Weinstein
- a Section of Experimental Pathology, Department of Pathology , Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , México City , México
| | - Marco Polo Peralta-Álvarez
- a Section of Experimental Pathology, Department of Pathology , Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , México City , México.,b Laboratory of Immunochemistry, Department of Immunology , Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional , México City , México
| | - Manuel Othoniel López-Torres
- a Section of Experimental Pathology, Department of Pathology , Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , México City , México
| | - Rogelio Hernández-Pando
- a Section of Experimental Pathology, Department of Pathology , Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , México City , México
| |
Collapse
|
26
|
Leuci V, Casucci GM, Grignani G, Rotolo R, Rossotti U, Vigna E, Gammaitoni L, Mesiano G, Fiorino E, Donini C, Pisacane A, Ambrosio LD, Pignochino Y, Aglietta M, Bondanza A, Sangiolo D. CD44v6 as innovative sarcoma target for CAR-redirected CIK cells. Oncoimmunology 2018; 7:e1423167. [PMID: 29721373 PMCID: PMC5927525 DOI: 10.1080/2162402x.2017.1423167] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022] Open
Abstract
Purpose of our study was to explore a new immunotherapy for high grade soft tissue sarcomas (STS) based on cytokine-induced killer cells (CIK) redirected with a chimeric antigen receptor (CAR) against the tumor-promoting antigen CD44v6. We aimed at generating bipotential killers, combining the CAR specificity with the intrinsic tumor-killing ability of CIK cells (CAR+.CIK). We set a patient-derived experimental platform. CAR+.CIK were generated by transduction of CIK precursors with a lentiviral vector encoding for anti-CD44v6-CAR. CAR+.CIK were characterized and assessed in vitro against multiple histotypes of patient-derived STS. The anti-sarcoma activity of CAR+.CIK was confirmed in a STS xenograft model. CD44v6 was expressed by 40% (11/27) of patient-derived STS. CAR+.CIK were efficiently expanded from patients (n = 12) and killed multiple histotypes of STS (including autologous targets, n = 4). The killing activity was significantly higher compared with unmodified CIK, especially at low effector/target (E/T) ratios: 98% vs 82% (E/T = 10:1) and 68% vs 26% (1:4), (p<0.0001). Specificity of tumor killing was confirmed by blocking with anti-CD44v6 antibody. CAR+.CIK produced higher amounts of IL6 and IFN-γ compared to control CIK. CAR+.CIK were highly active in mice bearing subcutaneous STS xenografts, with significant delay of tumor growth (p<0.0001) without toxicities. We report first evidence of CAR+.CIK's activity against high grade STS and propose CD44v6 as an innovative target in this setting. CIK are a valuable platform for the translation of CAR-based strategies to challenging field of solid tumors. Our findings support the exploration of CAR+.CIK in clinical trials against high grade STS.
Collapse
Affiliation(s)
- V Leuci
- Department of Oncology, University of Torino, Torino, Italy.,Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy
| | - G M Casucci
- Innovative Immunotherapies Unit, IRCCS San Raffaele Hospital Scientific Institute, Milano, Italy
| | - G Grignani
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy
| | - R Rotolo
- Department of Oncology, University of Torino, Torino, Italy
| | - U Rossotti
- Department of Oncology, University of Torino, Torino, Italy
| | - E Vigna
- Department of Oncology, University of Torino, Torino, Italy.,Laboratory of Gene Transfer, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - L Gammaitoni
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy
| | - G Mesiano
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy
| | - E Fiorino
- Department of Oncology, University of Torino, Torino, Italy
| | - C Donini
- Department of Oncology, University of Torino, Torino, Italy
| | - A Pisacane
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, (TO), Italy
| | - L D Ambrosio
- Department of Oncology, University of Torino, Torino, Italy.,Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy
| | - Y Pignochino
- Department of Oncology, University of Torino, Torino, Italy.,Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy
| | - M Aglietta
- Department of Oncology, University of Torino, Torino, Italy.,Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy
| | - A Bondanza
- Innovative Immunotherapies Unit, IRCCS San Raffaele Hospital Scientific Institute, Milano, Italy.,Vita-Salute San Raffaele University, Milano, Italy
| | - D Sangiolo
- Department of Oncology, University of Torino, Torino, Italy.,Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy
| |
Collapse
|
27
|
Introna M, Correnti F. Innovative Clinical Perspectives for CIK Cells in Cancer Patients. Int J Mol Sci 2018; 19:ijms19020358. [PMID: 29370095 PMCID: PMC5855580 DOI: 10.3390/ijms19020358] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 12/18/2022] Open
Abstract
Cytokine-induced killer (CIK) cells are T lymphocytes that have acquired, in vitro, following extensive manipulation by Interferon gamma (IFN-γ), OKT3 and Interleukin 2 (IL-2) addition, the expression of several Natural Killer (NK) cell-surface markers. CIK cells have a dual "nature", due to the presence of functional TCR as well as NK molecules, even if the antitumoral activity can be traced back only to the NK-like structures (DNAM-1, NKG2D, NKp30 and CD56). In addition to antineoplastic activity in vitro and in several in-vivo models, CIK cells show very limited, if any, GvHD toxicity as well as a strong intratumoral homing. For all such reasons, CIK cells have been proposed and tested in many clinical trials in cancer patients both in autologous and allogeneic combinations, up to haploidentical mismatching. Indeed, genetic modification of CIK cells as well as the possibility of combining them with specific monoclonal antibodies will further expand the possibility of their clinical utilization.
Collapse
Affiliation(s)
- Martino Introna
- USS Center of Cell Therapy "G. Lanzani", USC Ematologia, ASST Papa Giovanni XXIII Bergamo, 24124 Bergamo, Italy.
| | - Fabio Correnti
- USS Center of Cell Therapy "G. Lanzani", USC Ematologia, ASST Papa Giovanni XXIII Bergamo, 24124 Bergamo, Italy.
| |
Collapse
|
28
|
Introna M. CIK as therapeutic agents against tumors. J Autoimmun 2017; 85:32-44. [DOI: 10.1016/j.jaut.2017.06.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 06/19/2017] [Accepted: 06/19/2017] [Indexed: 01/26/2023]
|
29
|
Wang Y, Lv B, Li K, Zhang A, Liu H. Adjuvant immunotherapy of dendritic cells and cytokine-induced killer cells is safe and enhances chemotherapy efficacy for multiple myeloma in China: a meta-analysis of clinical trials. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:3245-3256. [PMID: 29180849 PMCID: PMC5695269 DOI: 10.2147/dddt.s146959] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Objective The aim of this study was to systematically evaluate the efficacy and safety of the combination of dendritic cells and cytokine-induced killer cells (DC–CIK) adjuvant immunotherapy and chemotherapy in the treatment of multiple myeloma (MM). Methods Clinical trials were gathered by searching Web of Science, PubMed, Embase, Cochrane Library, Wanfang, and CNKI database. Outcome measurements including therapeutic efficacy, prognosis, immune function, and adverse events were extracted and evaluated. Results A total of 12 trials including 594 MM patients were involved in this study for statistical analysis. Results indicated that compared to chemotherapy alone, the combination of DC–CIK immunotherapy with chemotherapy significantly improved patients’ overall response rate (ORR, odds ratio [OR] =2.77, 95% confidence interval [CI] =1.88–4.10, P<0.00001), disease control rate (DCR, OR =2.90, CI =1.72–4.90, P<0.0001), and life quality (P<0.00001). The combined therapy showed advantages over chemotherapy alone in prognostic indicators including percentage of tumor cells (P=0.04), serum levels of β2-microglobin (P<0.0001), M protein (P<0.00001), and creatinine (P<0.0001), and 24 h urine light chains (P<0.00001). After combined treatment, CD4+ lymphocyte subsets’ percentages, CD4+/CD8+ ratio, and cytokines levels of AgNOR, IFN-γ, IL-2, and IL-12 were significantly increased (P<0.05), whereas CD8+ and CD4+CD25+ percentages and IL-4, IL-6, IL-10, and TGF-β levels were obviously decreased (P<0.01), indicating a recovered immune condition. Conclusion Adjuvant DC–CIK immunotherapy enhances the efficacy of chemotherapy for MM and improves prognosis probably by reconstructing immune function.
Collapse
Affiliation(s)
- Yan Wang
- Department of Clinical Laboratory
| | | | - Ke Li
- Department of Central Laboratory, Liaocheng People's Hospital, Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong Province, China
| | - Anqi Zhang
- Department of Central Laboratory, Liaocheng People's Hospital, Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong Province, China
| | - Hong Liu
- Department of Central Laboratory, Liaocheng People's Hospital, Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong Province, China
| |
Collapse
|
30
|
Pluangnooch P, Timalsena S, Wongkajornsilp A, Soontrapa K. Cytokine-induced killer cells: A novel treatment for allergic airway inflammation. PLoS One 2017; 12:e0186971. [PMID: 29073213 PMCID: PMC5658108 DOI: 10.1371/journal.pone.0186971] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/11/2017] [Indexed: 12/25/2022] Open
Abstract
The effectiveness of cytokine-induced killer (CIK) cells for treatment of cancers has long been appreciated. Here, we report for the first time that CIK cells can be applied to treat allergic airway inflammation. Adopting from an established protocol with some modifications, we generated CIK cells ex vivo from mouse T cells, and examined their effectiveness in treatment of allergic airway inflammation using the ovalbumin-induced model of allergic airway inflammation. Based upon evaluation of bronchoalveolar lavage cellularity, T helper type2 cytokine levels and lung histology, all of which are important parameters for determining the severity of allergic airway inflammation, diseased mice treated with CIK cells showed significant reductions in all the parameters without any obvious adverse effects. Interestingly, the observed effects were comparable to those treated with dexamethasone. Thus, our study provides a novel application of CIK cells in treatment of allergic airway inflammation.
Collapse
Affiliation(s)
- Panwadee Pluangnooch
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sunita Timalsena
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Adisak Wongkajornsilp
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kitipong Soontrapa
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
31
|
Lam PY, Nissen MD, Mattarollo SR. Invariant Natural Killer T Cells in Immune Regulation of Blood Cancers: Harnessing Their Potential in Immunotherapies. Front Immunol 2017; 8:1355. [PMID: 29109728 PMCID: PMC5660073 DOI: 10.3389/fimmu.2017.01355] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/03/2017] [Indexed: 01/03/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are a unique innate T lymphocyte population that possess cytolytic properties and profound immunoregulatory activities. iNKT cells play an important role in the immune surveillance of blood cancers. They predominantly recognize glycolipid antigens presented on CD1d, but their activation and cytolytic activities are not confined to CD1d expressing cells. iNKT cell stimulation and subsequent production of immunomodulatory cytokines serve to enhance the overall antitumor immune response. Crucially, the activation of iNKT cells in cancer often precedes the activation and priming of other immune effector cells, such as NK cells and T cells, thereby influencing the generation and outcome of the antitumor immune response. Blood cancers can evade or dampen iNKT cell responses by downregulating expression of recognition receptors or by actively suppressing or diverting iNKT cell functions. This review will discuss literature on iNKT cell activity and associated dysregulation in blood cancers as well as highlight some of the strategies designed to harness and enhance iNKT cell functions against blood cancers.
Collapse
Affiliation(s)
- Pui Yeng Lam
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Michael D. Nissen
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Stephen R. Mattarollo
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
32
|
Enhanced antitumor effects and improved immune status of dendritic cell and cytokine-induced killer cell infusion in advanced cancer patients. Mol Clin Oncol 2017; 7:903-910. [PMID: 29181186 DOI: 10.3892/mco.2017.1415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/20/2017] [Indexed: 12/25/2022] Open
Abstract
Little progress has been made in the treatment of advanced cancer. Dendritic cells (DCs) plus cytokine-induced killer (CIK) cells have exhibited antitumor effects. Thus, the aim of the present study was to evaluate the clinical efficacy of DC-CIK cell treatment in patients with advanced cancer. A paired study including 57 patients treated with DC-CIK cells (DC-CIK group) and 33 patients treated with best supportive care alone (BSC group) was performed. The patients in the DC-CIK group were matched to those in the control group in terms of sex, age, tumor type and clinical stage. T-cell subsets were detected and overall survival (OS) was compared between the two groups. The results demonstrated that CD4+/CD25+ and CD8+/CD28- subsets significantly decreased following DC-CIK immunotherapy (P<0.05). The CD3+, CD3+/CD8+, CD8+/CD28+ and CD3+/CD56+ T-cell subsets were significantly increased in the DC-CIK group compared with the BSC group, while the CD8+/CD28- subset was significantly decreased. Univariate analysis demonstrated that a lower CD8+/CD28- and a higher CD8+/CD28+ ratio were associated with prolonged OS in advanced cancer patients. In addition, DC-CIK treatment administration, age (>60 vs. <60 years), clinical stage and the frequency of CIK treatment significantly affected the OS of patients in the DC-CIK group. A CD8+/CD28- ratio of <21.12 was found to decrease the hazard ratio (HR) of OS to 0.50 [95% confidence interval (CI): 0.29-0.87] and a CD8+/CD28+ ratio >9.04 was found to decrease the HR of OS to 0.45 (95% CI: 0.21-0.98). No serious side effects were observed in the DC-CIK group. Taken together, these data indicate that DC-CIK infusions were able to change the ratios of the T-cell subsets, which increased the T helper cell and cytotoxic T lymphocyte subsets, while it decreased regulatory T lymphocyte subsets. Thus, this method of immunotherapy was found to improve the imbalance in the immune system and prolong the OS in patients with advanced cancer.
Collapse
|
33
|
Gao X, Mi Y, Guo N, Xu H, Xu L, Gou X, Jin W. Cytokine-Induced Killer Cells As Pharmacological Tools for Cancer Immunotherapy. Front Immunol 2017; 8:774. [PMID: 28729866 PMCID: PMC5498561 DOI: 10.3389/fimmu.2017.00774] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/19/2017] [Indexed: 12/31/2022] Open
Abstract
Cytokine-induced killer (CIK) cells are a heterogeneous population of effector CD3+CD56+ natural killer T cells, which can be easily expanded in vitro from peripheral blood mononuclear cells. CIK cells work as pharmacological tools for cancer immunotherapy as they exhibit MHC-unrestricted, safe, and effective antitumor activity. Much effort has been made to improve CIK cells cytotoxicity and treatments of CIK cells combined with other antitumor therapies are applied. This review summarizes some strategies, including the combination of CIK with additional cytokines, dendritic cells, check point inhibitors, antibodies, chemotherapeutic agents, nanomedicines, and engineering CIK cells with a chimeric antigen receptor. Furthermore, we briefly sum up the clinical trials on CIK cells and compare the effect of clinical CIK therapy with other immunotherapies. Finally, further research is needed to clarify the pharmacological mechanism of CIK and provide evidence to formulate uniform culturing criteria for CIK expansion.
Collapse
Affiliation(s)
- Xingchun Gao
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China.,State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Department of Instrument Science and Engineering, Institute of Nano Biomedicine and Engineering, Key Lab for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yajing Mi
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China.,State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Na Guo
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Hao Xu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Lixian Xu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Weilin Jin
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China.,Department of Instrument Science and Engineering, Institute of Nano Biomedicine and Engineering, Key Lab for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China.,National Centers for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
34
|
Cai XR, Li X, Lin JX, Wang TT, Dong M, Chen ZH, Jia CC, Hong YF, Lin Q, Wu XY. Autologous transplantation of cytokine-induced killer cells as an adjuvant therapy for hepatocellular carcinoma in Asia: an update meta-analysis and systematic review. Oncotarget 2017; 8:31318-31328. [PMID: 28412743 PMCID: PMC5458210 DOI: 10.18632/oncotarget.15454] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/12/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND High recurrence rate after curative treatment is the major problem for hepatocellular carcinoma (HCC). Cytokine-induced killer cells (CIKs) therapy was extensively studied among HCC patients. However, the value of CIKs therapy was controversial. A meta-analysis was performed to investigate the efficacy of adjuvant CIKs after invasive treatments among HCC patients. METHODS We searched online for literatures studying sequential CIKs therapy for HCC patients. Recurrence-free survival (RFS), progress-free survival (PFS) and overall survival (OS) were set as the main endpoints. Both overall and subgroup analysis were accomplished. RESULTS A total of 12 clinical trials with 1,387 patients were included. The pooled analysis showed a significant improvement of RFS, PFS and OS in CIK group (HR 0.56, 95% CI 0.47-0.67, p<0.00001 for RFS; HR 0.53, 95% CI 0.40-0.69, p<0.00001 for PFS; HR 0.59, 95% CI 0.46-0.77, p<0.0001 for OS). The proportion of CD4+ T cells increased significantly, while CD8+ T cells decreased significantly after CIKs therapy (WMD 4.07, 95% CI 2.58-5.56, p<0.00001; WMD -2.84, 95% CI -4.67 to -1.01, p=0.002, respectively). No significant differences of adverse events between CIK and non-CIK group existed. CONCLUSIONS Conventionally invasive therapies combined with CIKs therapy could improve the prognosis of HCC patients, especially for RFS and PFS, with mild side effects. Optimizing patient selection shall be the direction in future studies.
Collapse
Affiliation(s)
- Xiu-Rong Cai
- Department of Medical Oncology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, People's Republic of China
- Guangdong provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, People's Republic of China
| | - Xing Li
- Department of Medical Oncology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, People's Republic of China
- Guangdong provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, People's Republic of China
| | - Jin-Xiang Lin
- Department of Medical Oncology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, People's Republic of China
| | - Tian-Tian Wang
- Department of Medical Oncology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, People's Republic of China
- Guangdong provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, People's Republic of China
| | - Min Dong
- Department of Medical Oncology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, People's Republic of China
- Guangdong provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, People's Republic of China
| | - Zhan-Hong Chen
- Department of Medical Oncology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, People's Republic of China
- Guangdong provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, People's Republic of China
| | - Chang-Chang Jia
- Guangdong provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, People's Republic of China
- Cell-gene Therapy Translational Medicine Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, People's Republic of China
| | - Ying-Fen Hong
- Department of Medical Oncology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, People's Republic of China
- Guangdong provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, People's Republic of China
| | - Qu Lin
- Department of Medical Oncology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, People's Republic of China
- Guangdong provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, People's Republic of China
| | - Xiang-Yuan Wu
- Department of Medical Oncology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, People's Republic of China
- Guangdong provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, People's Republic of China
| |
Collapse
|
35
|
Abstract
Classical Hodgkin lymphoma (cHL) is the most common hematological malignancy in young adults and can be cured in most cases. However, relapsed and refractory Hodgkin lymphoma, certain patient groups, such as elderly patients, and toxicity of first-line treatment still pose significant challenges. Consequently, new treatment options are needed. Recently, many new treatment concepts have been evaluated in clinical trials. Targeted drug-antibody conjugates and immune checkpoint inhibitors have decisively changed treatment approaches. This review aims to give a comprehensive overview of novel agents in Hodgkin lymphoma that have been recently or are currently being evaluated in clinical trials. In addition to dedicated sections on brentuximab vedotin (BV) and immune checkpoint inhibitors, other emerging substances and concepts are discussed. In doing so, this review compares trial results regarding safety and efficacy. A special focus lies on the effect novel agents will have on the different treatment settings faced by clinicians involved in the treatment of Hodgkin lymphoma.
Collapse
Affiliation(s)
- Sven Borchmann
- a German Hodgkin Study Group (GHSG), Department I of Internal Medicine , University Hospital Cologne , Cologne , Germany
| | - Bastian von Tresckow
- a German Hodgkin Study Group (GHSG), Department I of Internal Medicine , University Hospital Cologne , Cologne , Germany
| |
Collapse
|
36
|
Sheng J, Fang W, Liu X, Xing S, Zhan J, Ma Y, Huang Y, Zhou N, Zhao H, Zhang L. Impact of gefitinib in early stage treatment on circulating cytokines and lymphocytes for patients with advanced non-small cell lung cancer. Onco Targets Ther 2017; 10:1101-1110. [PMID: 28260924 PMCID: PMC5328306 DOI: 10.2147/ott.s112158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Objectives The impact of epidermal growth factor receptor (EGFR) tyrosine-kinase inhibitors (TKIs) on the human immune system remains undefined. This study illustrates the immunomodulatory effect of gefitinib in patients with advanced non-small cell lung cancer (NSCLC) and its relevant prognostic significance. Patients and methods Peripheral blood samples were collected from 54 patients at baseline and after 4 weeks of gefitinib treatment. Circulating lymphocyte populations and cytokine levels were measured. Pilot investigation of the impact of gefitinib on programmed cell death ligand-1 (PD-L1) expression was conducted by immunohistochemistry (IHC). Results and conclusion A significant increase of peripheral natural killer cells and interferon-gamma (INF-γ) after 4 weeks of gefitinib treatment (P=0.005 and 0.02, respectively). In addition, circulating interleukin (IL)-6 was significantly decreased, especially in patients sensitive to gefitinib (P<0.001). Higher levels of IL-6 at baseline independently correlated with poorer progression-free survival. Experiments with NSCLC specimens illustrated that PD-L1 expression were downregulated after 4 weeks of gefitinib treatment. In summary, it was found that gefitinib treatment can alter circulating cytokines and lymphocytes. Dynamic changes of circulating lymphocytes, cytokines, and even PD-L1 IHC expression around gefitinib treatment support the specific immunomodulatory effect of this agent for advanced NSCLC.
Collapse
Affiliation(s)
- Jin Sheng
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Department of Medical Oncology
| | - Wenfeng Fang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Department of Medical Oncology
| | - Xia Liu
- Department of Medical Oncology
| | - Shan Xing
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Department of Clinical Laboratory, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Jianhua Zhan
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine
| | - Yuxiang Ma
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine
| | - Yan Huang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Department of Medical Oncology
| | - Ningning Zhou
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Department of Medical Oncology
| | - Hongyun Zhao
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Department of Medical Oncology
| | - Li Zhang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Department of Medical Oncology
| |
Collapse
|
37
|
2003-2013, a valuable study: Autologous tumor lysate-pulsed dendritic cell immunotherapy with cytokine-induced killer cells improves survival in stage IV breast cancer. Immunol Lett 2017; 183:37-43. [PMID: 28143792 DOI: 10.1016/j.imlet.2017.01.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 12/21/2022]
Abstract
Dendritic cells (DCs) and cytokine-induced killer (CIK) cells have both shown activity as immunotherapy in some malignancies. Our aim was to prospective assess the effect of this immunotherapy in patients with stage IV breast cancer. Between Aug 2003 and Dec 2013, we collected 368 patients who met inclusion criteria and divided into immunotherapy group (treatment group: 188 patients) and chemotherapy group (control group: 180 patients). DCs were prepared from the mononuclear cells isolated from patients in the treatment group using IL-2/GM-CSF and were loaded with tumour antigens; CIK cells were prepared by incubating peripheral blood lymphocytes with IL-2, IFN-γ, and CD3 antibodies. After the patients had received low-dose chemotherapy, those in the treatment group also received the DC-CIK therapy, which was repeated four times in a fortnight to form one cycle. At least three cycles of DC-CIK therapy were given. Immune function was measured in treatment group patients' sera. Disease-free survival (DFS) and Overall survival (OS) after the diagnosis of stage IV breast cancer was assessed after a 10-year follow-up. The result demonstrated that immune function is obviously enhanced after DC-CIK therapy. By Cox regression analysis, DC-CIK therapy reduced the risk of disease progression (p<0.01) with an increased OS (p<0.01). After low-dose chemotherapy, active immunization with DC-CIK immunotherapy is a potentially effective approach for the control of tumour growth in stage IV breast cancer patients.
Collapse
|
38
|
Xu JC, Chen XN, Ye ZJ, Wu MY, Shi CL, Tang PJ, Chen H, Zhu XY, Song HF, Ping X. New attempt in tuberculosis treatment: autologous cytokine-induced killer after chemotherapy treatment failure in a case of multi-drug resistant tuberculosis (MTB). SARCOIDOSIS VASCULITIS AND DIFFUSE LUNG DISEASES 2017; 34:97-99. [PMID: 32476829 DOI: 10.36141/svdld.v34i1.5084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/14/2016] [Indexed: 11/02/2022]
Abstract
A 32-year-old woman was diagnosed as pulmonary tuberculosis 15 years ago and recurred several times due to long-term nonstandard treatment. Drug sensitivity test indicated that multidrug-resistant tuberculosis had emerged and we determined relevant therapeutic schedule according to this result. However, it didn't show any amelioration of the disease after 3-month chemotherapy. We formulated 3-course CIK immunotherapy based on patient's condition. After 3 courses of immunotherapy, we found obvious amelioration of the patient's condition. And there was no recurrence during the follow-up in the past 3 years. Therefore, we considered that the CIK immunotherapy is an effective method for tuberculosis treatment and recurrence prevention. (Sarcoidosis Vasc Diffuse Lung Dis 2017; 34: 97-99).
Collapse
Affiliation(s)
- Jun-Chi Xu
- Inspection Center. The Fifth People's Hospital of Suzhou, Suzhou, China.,Key Laboratory of TB Prevention and Cure of Suzhou, Suzhou, China
| | - Xin-Nian Chen
- Key Laboratory of TB Prevention and Cure of Suzhou, Suzhou, China.,Department of Respiratory Medicine, The Fifth People's Hospital of Suzhou, Suzhou, China
| | - Zhi-Jian Ye
- Key Laboratory of TB Prevention and Cure of Suzhou, Suzhou, China.,Department of Respiratory Medicine, The Fifth People's Hospital of Suzhou, Suzhou, China
| | - Mei-Ying Wu
- Key Laboratory of TB Prevention and Cure of Suzhou, Suzhou, China.,Department of Respiratory Medicine, The Fifth People's Hospital of Suzhou, Suzhou, China
| | - Cui-Lin Shi
- Department of Respiratory Medicine, The Fifth People's Hospital of Suzhou, Suzhou, China
| | - Pei-Jun Tang
- Key Laboratory of TB Prevention and Cure of Suzhou, Suzhou, China.,Department of Respiratory Medicine, The Fifth People's Hospital of Suzhou, Suzhou, China
| | - Hui Chen
- Inspection Center. The Fifth People's Hospital of Suzhou, Suzhou, China.,Key Laboratory of TB Prevention and Cure of Suzhou, Suzhou, China
| | - Xiao-Yan Zhu
- Inspection Center. The Fifth People's Hospital of Suzhou, Suzhou, China.,Key Laboratory of TB Prevention and Cure of Suzhou, Suzhou, China
| | - Hua-Feng Song
- Inspection Center. The Fifth People's Hospital of Suzhou, Suzhou, China.,Key Laboratory of TB Prevention and Cure of Suzhou, Suzhou, China
| | - Xu Ping
- Inspection Center. The Fifth People's Hospital of Suzhou, Suzhou, China.,Key Laboratory of TB Prevention and Cure of Suzhou, Suzhou, China
| |
Collapse
|
39
|
Edinur HA, Manaf SM, Che Mat NF. Genetic barriers in transplantation medicine. World J Transplant 2016; 6:532-541. [PMID: 27683631 PMCID: PMC5036122 DOI: 10.5500/wjt.v6.i3.532] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/26/2016] [Accepted: 07/13/2016] [Indexed: 02/05/2023] Open
Abstract
The successful of transplantation is determined by the shared human leukocyte antigens (HLAs) and ABO blood group antigens between donor and recipient. In recent years, killer cell receptor [i.e., killer cell immunoglobulin-like receptor (KIR)] and major histocompatibility complex (MHC) class I chain-related gene molecule (i.e., MICA) were also reported as important determinants of transplant compatibility. At present, several different genotyping techniques (e.g., sequence specific primer and sequence based typing) can be used to characterize blood group, HLA, MICA and KIR and loci. These molecular techniques have several advantages because they do not depend on the availability of anti-sera, cellular expression and have greater specificity and accuracy compared with the antibody-antigen based typing. Nonetheless, these molecular techniques have limited capability to capture increasing number of markers which have been demonstrated to determine donor and recipient compatibility. It is now possible to genotype multiple markers and to the extent of a complete sequencing of the human genome using next generation sequencer (NGS). This high throughput genotyping platform has been tested for HLA, and it is expected that NGS will be used to simultaneously genotype a large number of clinically relevant transplantation genes in near future. This is not far from reality due to the bioinformatics support given by the immunogenetics community and the rigorous improvement in NGS methodology. In addition, new developments in immune tolerance based therapy, donor recruitment strategies and bioengineering are expected to provide significant advances in the field of transplantation medicine.
Collapse
|
40
|
Chan WC, Linn YC. A comparison between cytokine- and bead-stimulated polyclonal T cells: the superiority of each and their possible complementary role. Cytotechnology 2016; 68:735-48. [PMID: 25481728 PMCID: PMC4960124 DOI: 10.1007/s10616-014-9825-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 11/17/2014] [Indexed: 01/13/2023] Open
Abstract
Cytokine-induced killer (CIK) cells and T cells expanded by co-stimulation with beads presenting anti-CD3 and -CD28 antibodies are both polyclonal T cells under intensive laboratory and clinical studies, but there has not been any direct comparison between both. We compared the expansion, memory T cell subsets and cytotoxicity for T cells expanded in parallel by the two methods. Bead-stimulated T cells showed superior expansion as compared to CIK cells on D14 of culture. Bead-stimulated T cells consisted of a significantly higher CD4(+) subset and significantly lower CD8(+) subset as compared to CIK cells, as well as a higher proportion of less terminally differentiated T cells and a higher proportion of homing molecules. On the other hand, CIK cells exhibited significantly superior cytotoxicity against two myelomonocytic leukemia cell lines (THP-1 and U937) and two RCC cell lines (786.0 and CaKi-2). The cytotoxicity on D14 against THP-1 was 58.1 % for CIK cells and 8.3 % for bead-stimulated T cells at E:T of 10:1 (p < 0.01). Cytotoxicity correlated positively with the proportion of the CD8 subset in the culture and was independent of NKG2D recognition of susceptible targets. Polyclonal T cells expanded by different methods exhibit different characteristics which may define the specific role of each in different clinical scenario. We postulate that the more potent CIK cells may offer short term benefit while bead-stimulated T cells may offer a more sustained immune response.
Collapse
Affiliation(s)
- Weng-Chee Chan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yeh-Ching Linn
- Department of Haematology, Singapore General Hospital, Academia, Level 3, 20, College Road, Singapore, 169856, Singapore.
| |
Collapse
|
41
|
Effectiveness and safety of chemotherapy combined with cytokine-induced killer cell /dendritic cell-cytokine-induced killer cell therapy for treatment of gastric cancer in China: A systematic review and meta-analysis. Cytotherapy 2016; 18:1162-77. [PMID: 27421742 DOI: 10.1016/j.jcyt.2016.05.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/16/2016] [Accepted: 05/19/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND Currently, cytokine-induced killer cells (CIK)/dendritic cell (DC)-CIK-mediated immunotherapy is widely used to treat gastric cancer. However, limited information regarding clinical trials on CIK/DC-CIK therapy is available. Therefore, systemic evaluation of the efficacy and safety of the combination therapy is necessary. METHODS A meta-analysis involving 1735 patients with gastric cancer was conducted. Before analysis, the study quality and heterogeneity were evaluated. The effects of chemotherapy combined with CIK/DC-CIK on gastric cancer were compared with the effects observed when chemotherapy alone was used. Pooled analysis was performed using RevMan version 5.2 from random or fixed-effect models. RESULTS Seventeen trials were included. First, the analysis showed that the combination therapy significantly increased the overall survival rate and disease-free survival rate compared with those in patients treated using chemotherapy alone. The overall response rate (P = 0.002), disease control rate (P = 0.0007), and quality of life improved rate (P = 0.0008) were significantly improved in patients who received combined treatment than in patients who received chemotherapy alone. Second, the percentage of lymphocyte subsets (CD3(+), CD4(+) and CD3(-)CD56(+), CD3(+)CD56(+); P <0.01) and the levels of interleukin-12 and interferon-γ, which reflect immune function, were significantly increased (P <0.05) after the CIK/DC-CIK therapy. Further, carbohydrate antigen tumor markers were significantly reduced compared with the pre-therapy levels. Immunotherapy with CIK/DC-CIK obviously alleviated the adverse events caused by chemotherapy. CONCLUSION The combination of CIK/DC-CIK therapy and chemotherapy was superior in prolonging the survival time, enhancing immune function and alleviating the adverse events caused by chemotherapy.
Collapse
|
42
|
Xu YC, Xu Q, Li JJ, Gu XF, Lin XL, Sun L, Lu HM, Tang L, Ma Y, Lu Z, Wang HX. Chemotherapy with or without autologous cytokine-induced killer cell transfusion as the first-line treatment for stage IV gastrointestinal cancer: a phase II clinical trial. J Cancer Res Clin Oncol 2016; 142:1315-23. [PMID: 26941189 DOI: 10.1007/s00432-016-2127-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/30/2016] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To investigate the efficacy of autologous cytokine-induced killer (CIK) cell therapy combined with chemotherapy versus chemotherapy alone for the treatment of stage IV gastrointestinal (GI) cancer in the first-line setting. METHODS Thirty-three patients diagnosed with stage IV GI cancer were divided into chemotherapy plus CIK group (chemo-CIK, n = 16) and chemotherapy-alone group (chemo-alone, n = 17). Autologous peripheral blood mononuclear cells were separated by flow cytometry, cultured in vitro to induce CIK cells, and transfused into patients on days 14 and 16 of the first and second chemotherapy cycles. RESULTS The median progression-free survival (PFS) was 5.6 months for patients in the chemo-CIK group and 3.83 months for those in the chemo-alone group. The difference was borderline significant (P = 0.06), indicating a potential advantage for combined CIK cell transfusion with chemotherapy in improving PFS. A favored objective response rate was also observed in the chemo-CIK group than in the chemo-alone group. This study also revealed that CIK cell transfusion restored the cellular immunity in these GI cancer patients. The percentage of natural killer T cells, NK cells, CD3(+) T cells, and T-cell subgroups CD4(+) proportion in the peripheral blood of cancer patients significantly increased after the CIK cell transfusion, while the change in T-cell subgroups CD8(+) and CD4(+)/CD8(+) did not differ significantly. CONCLUSIONS The study showed that the addition of CIK cell transfusion to traditional chemotherapy in the first-line setting was associated with a prolonged PFS and enhanced T-lymphocyte subset activity, supporting a potential treatment choice for advanced GI cancer patients.
Collapse
Affiliation(s)
- Ying-Chun Xu
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200081, China
- Department of Oncology, Shanghai Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Qi Xu
- Department of Oncology, Shanghai Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jun-Jian Li
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200081, China
| | - Xiao-Feng Gu
- Department of Oncology, Shanghai Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiao-Lin Lin
- Department of Oncology, Shanghai Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Li Sun
- Department of Oncology, Shanghai Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hong-Min Lu
- Department of Oncology, Shanghai Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lei Tang
- Department of Oncology, Shanghai Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yue Ma
- Department of Oncology, Shanghai Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhimin Lu
- Department of Neuro-Oncology - Research Unit Number: 1002, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Hong-Xia Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200081, China.
| |
Collapse
|
43
|
Zhang B, Zhao W, Li H, Chen Y, Tian H, Li L, Zhang L, Gao C, Zheng J. Immunoreceptor TIGIT inhibits the cytotoxicity of human cytokine-induced killer cells by interacting with CD155. Cancer Immunol Immunother 2016; 65:305-14. [PMID: 26842126 PMCID: PMC11029225 DOI: 10.1007/s00262-016-1799-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/19/2016] [Indexed: 12/22/2022]
Abstract
T cell Ig and ITIM domain (TIGIT) is a newly identified inhibitory receptor expressed on T and natural killer (NK) cells. Cytokine-induced killer (CIK) cells express CD3 and CD56 molecules, and share functional properties with both NK and T cells. However, it remains unknown whether TIGIT is expressed in CIK cells. Here, we show that TIGIT is expressed by CIK cells and interacts with CD155. By blocking TIGIT using an anti-TIGIT functional antibody, we demonstrate that CIK cells display increased proliferation; higher cytotoxic targeting of tumor cells expressing CD155; and higher expression of interferon-γ (IFN-γ), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). Furthermore, increases in IFN-γ and cytotoxicity by blockade of TIGIT were reduced by blocking DNAX accessory molecule-1 (DNAM-1) signaling, implying that TIGIT exerts immunosuppressive effects by competing with DNAM-1 for the same ligand, CD155. Our results provide evidence that blockade of TIGIT may be a novel strategy to improve the cytotoxic activity of CIK cells.
Collapse
Affiliation(s)
- Baofu Zhang
- Cancer Center, The Affiliated Hospital of Xuzhou Medical College, 89 West Huai-hai Road, Xuzhou, 221006, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, China
| | - Weina Zhao
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, China
| | - Huizhong Li
- Cancer Center, The Affiliated Hospital of Xuzhou Medical College, 89 West Huai-hai Road, Xuzhou, 221006, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, China
| | - Yuanyuan Chen
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, China
| | - Hui Tian
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, China
| | - Liantao Li
- Cancer Center, The Affiliated Hospital of Xuzhou Medical College, 89 West Huai-hai Road, Xuzhou, 221006, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, China
| | - Longzhen Zhang
- Cancer Center, The Affiliated Hospital of Xuzhou Medical College, 89 West Huai-hai Road, Xuzhou, 221006, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, China
| | - Chao Gao
- Cancer Center, The Affiliated Hospital of Xuzhou Medical College, 89 West Huai-hai Road, Xuzhou, 221006, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, China.
| | - Junnian Zheng
- Cancer Center, The Affiliated Hospital of Xuzhou Medical College, 89 West Huai-hai Road, Xuzhou, 221006, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, China.
| |
Collapse
|
44
|
Ma L, Wang Y, Bo J, Han W, Wang Y, Zhang L, Wu X, Yu S, Liu R. Autologous cytokine-induced killer (CIK) cell immunotherapy combined with cyclophosphamide in five patients with POEMS syndrome. Clin Exp Immunol 2015; 184:83-9. [PMID: 26660736 DOI: 10.1111/cei.12755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 11/17/2015] [Accepted: 12/07/2015] [Indexed: 12/16/2022] Open
Abstract
The primary objective of this study was to evaluate the safety and clinical efficacy of autologous cytokine-induced killer (CIK) cells combined with cyclophosphamide in the treatment of polyneuropathy, organomegaly, endocrinopathy, monoclonal gammopathy and skin changes (POEMS) syndrome patients. We evaluated five POEMS syndrome patients treated with autologous CIK cell immunotherapy combined with cyclophosphamide from 1 May 2012 to 30 November 2014. The Overall Neuropathy Limitation Scale (ONLS), computed tomography of the chest and abdomen, ultrasound of the abdomen, serum vascular endothelial growth factor (VEGF) level and lymphocyte count findings in the five patients were recorded. The median age of the patients was 40 years (range: 25-62), and all the patients were male. CIK cells were generated routinely from peripheral blood mononuclear cells (PBMCs) of all five patients, and the numbers of CIK cells increased by approximately 105-fold after 14 days of culture. All five patients (100%) responded to their neuropathy treatment, the ONLS scores were reduced by at least 1 and a paired-sample t-test revealed a significant difference (t = 5·715, P = 0·003 < 0·01). The extravascular volume overload responses indicated partial remission (PR = 60%) or stable disease (SD = 40%), and no cases of progressive disease (PD) or complete remission (CR) were observed. During clinical treatment, the serum VEGF of patient 5 decreased after one cycle of transfusion within 1 month. The lymphocyte counts of all the patients increased significantly after CIK transfusion, and a paired-sample t-test revealed a significant difference (t = 5·101, P = 0·004 < 0·01). Autologous CIK cell infusion combined with cyclophosphamide was found to be highly safe and elicited no adverse reactions. CIK cells can improve both the symptoms and quality of life, decrease serum VEGF levels and increase lymphocyte counts in patients with POEMS syndrome.
Collapse
Affiliation(s)
- L Ma
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Y Wang
- Department of Immunology, Institute of Basic Medicine, School of Life Sciences, Beijing, China
| | - J Bo
- Department of Haematology, Chinese PLA General Hospital, Beijing, China
| | - W Han
- Department of Immunology, Institute of Basic Medicine, School of Life Sciences, Beijing, China
| | - Y Wang
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - L Zhang
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - X Wu
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - S Yu
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - R Liu
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
45
|
Mata MF, Lopes JP, Ishikawa M, Alaiti MA, Cabral JM, da Silva CL, Costa MA. Scaling up the ex vivo expansion of human circulating CD34+progenitor cells with upregulation of angiogenic and anti-inflammatory potential. Cytotherapy 2015; 17:1777-84. [DOI: 10.1016/j.jcyt.2015.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/16/2015] [Accepted: 09/11/2015] [Indexed: 01/27/2023]
|
46
|
Antitumor Responses of Invariant Natural Killer T Cells. J Immunol Res 2015; 2015:652875. [PMID: 26543874 PMCID: PMC4620262 DOI: 10.1155/2015/652875] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/26/2015] [Indexed: 01/18/2023] Open
Abstract
Natural killer T (NKT) cells are innate-like lymphocytes that were first described in the late 1980s. Since their initial description, numerous studies have collectively shed light on their development and effector function. These studies have highlighted the unique requirements for the activation of these lymphocytes and the functional responses that distinguish these cells from other effector lymphocyte populations such as conventional T cells and NK cells. This body of literature suggests that NKT cells play diverse nonredundant roles in a number of disease processes, including the initiation and propagation of airway hyperreactivity, protection against a variety of pathogens, development of autoimmunity, and mediation of allograft responses. In this review, however, we focus on the role of a specific lineage of NKT cells in antitumor immunity. Specifically, we describe the development of invariant NKT (iNKT) cells and the factors that are critical for their acquisition of effector function. Next, we delineate the mechanisms by which iNKT cells influence and modulate the activity of other immune cells to directly or indirectly affect tumor growth. Finally, we review the successes and failures of clinical trials employing iNKT cell-based immunotherapies and explore the future prospects for the use of such strategies.
Collapse
|
47
|
Efficacy and safety of dendritic cells co-cultured with cytokine-induced killer cells immunotherapy for non-small-cell lung cancer. Int Immunopharmacol 2015; 28:22-8. [DOI: 10.1016/j.intimp.2015.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 05/05/2015] [Accepted: 05/13/2015] [Indexed: 11/19/2022]
|
48
|
Schmeel LC, Schmeel FC, Coch C, Schmidt-Wolf IGH. Cytokine-induced killer (CIK) cells in cancer immunotherapy: report of the international registry on CIK cells (IRCC). J Cancer Res Clin Oncol 2015; 141:839-49. [PMID: 25381063 DOI: 10.1007/s00432-014-1864-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/21/2014] [Indexed: 01/05/2023]
Abstract
PURPOSE Cytokine-induced killer (CIK) cells represent an exceptional T cell population uniting a T cell and natural killer cell like phenotype in their terminally differentiated CD3(+)CD56(+) subset, which features non-MHC-restricted tumor-killing activity. CIK cells are expandable from peripheral blood mononuclear cells and mature following the addition of certain cytokines. CIK cells have provided encouraging results in initial clinical studies and revealed synergistic antitumor effects when combined with standard therapeutic procedures. METHODS Therefore, we established the international registry on CIK cells in order to collect and evaluate data about clinical trials using CIK cells for the treatment of cancer patients. Moreover, our registry is expected to set new standards on the reporting of results from clinical trials using CIK cells. Clinical responses, overall survival (OS), adverse reactions and immunologic effects were analyzed in 45 studies present in our database. These studies investigated 22 different tumor entities altogether enrolling 2,729 patients. RESULTS A mean response rate of 39 % and significantly increased OS, accompanied by an improved quality of life, were reported. Interestingly, side effects of CIK cell treatment were minor. Mild fevers, chills, headache and fatigue were, however, seen regularly after CIK cell infusion. Moreover, CIK cells revealed numerous immunologic effects such as changes in T cell subsets, tumor markers, cytokine secretion and HBV viral load. CONCLUSION Due to their easy availability and potent antitumor activity, CIK cells emerged as a promising immunotherapy approach in oncology and may gain major importance on the prognosis of cancer.
Collapse
Affiliation(s)
- Leonard Christopher Schmeel
- Department of Internal Medicine III, Center for Integrated Oncology (CIO), University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Sigmund-Freud-Straße 25, 53105, Bonn, Germany
| | | | | | | |
Collapse
|
49
|
Elia AR, Circosta P, Sangiolo D, Bonini C, Gammaitoni L, Mastaglio S, Genovese P, Geuna M, Avolio F, Inghirami G, Tarella C, Cignetti A. Cytokine-induced killer cells engineered with exogenous T-cell receptors directed against melanoma antigens: enhanced efficacy of effector cells endowed with a double mechanism of tumor recognition. Hum Gene Ther 2015; 26:220-31. [PMID: 25758764 DOI: 10.1089/hum.2014.112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cytokine-induced killer (CIK) cells consist of a heterogeneous population of polyclonal T lymphocytes displaying NK phenotype and HLA-unrestricted cytotoxic activity against a broad range of tumors. We sought to determine whether transduction of CIK cells with T cell receptor (TCR) genes specific for tumor-associated antigens could generate effector cells endowed with a double mechanism of tumor recognition. HLA-A2-restricted TCR-transduced (TD) CIK directed against the melanoma antigens Mart1 and NY-ESO1 were generated by lentiviral transduction and successfully expanded over a 3-4-week period. TD-CIK cells were both CD3(+)/CD56(-) and CD3(+)/CD56(+) (31±8% and 59±9%, respectively), indicating that both major histocompatibility complex (MHC)-restricted T cells and MHC-unrestricted CIK could be targeted by lentiviral transduction. At the end of the culture, the majority of both unmodified and TD-CIK displayed an effector memory phenotype, without considerable expression of replicative senescence and exhaustion markers. Functionally, TD-CIK specifically recognized tumor cells expressing the relevant antigen as well as maintained their MHC-unrestricted tumor activity. The cytotoxic activity of TD-CIK against HLA-A2(+) melanoma cell lines was significantly higher than the untransduced counterparts at a low effector:target ratio (cytotoxic activity of TD-CIK was from 1.9- to 4.3-fold higher than untransduced counterparts). TD-CIK were highly proficient in releasing high amount of IFN-γ upon antigen-specific stimulation and were able to recognize primary melanoma targets. In conclusion, we showed that (1) the reproducibility and simplicity of CIK transduction and expansion might solve the problem of obtaining adequate numbers of potent antitumor effector cells for adoptive immunotherapy; (2) the presence of both terminal effectors as well as of less differentiated progenitors might confer them long survival in vivo; and (3) the addition of an MHC-restricted antigen recognition allows not only targeting tumor surface antigens but also a wider range of cytoplasmic or nuclear antigens, involved in tumor proliferation and survival. TD-CIK cells with a double mechanism of tumor recognition are an attractive and alternative tool for the development of efficient cell therapeutic strategies.
Collapse
Affiliation(s)
- Angela R Elia
- 1 Molecular Biotechnology Center, University of Torino , 10126 Turin, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Guo Y, Han W. Cytokine-induced killer (CIK) cells: from basic research to clinical translation. CHINESE JOURNAL OF CANCER 2015; 34:99-107. [PMID: 25962508 PMCID: PMC4593361 DOI: 10.1186/s40880-015-0002-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/14/2014] [Indexed: 12/11/2022]
Abstract
The accumulation of basic researches and clinical studies related to cytokine-induced killer (CIK) cells has confirmed their safety and feasibility in treating malignant diseases. This review summarizes the available published literature related to the biological characteristics and clinical applications of CIK cells in recent years. A number of clinical trials with CIK cells have been implemented during the progressive phases of cancer, presenting potential widespread applications of CIK cells for the future. Furthermore, this review briefly compares clinical applications of CIK cells with those of other adoptive immunotherapeutic cells. However, at present, there are no uniform criteria or large-scale preparations of CIK cells. The overall clinical response is difficult to evaluate because of the use of autologous CIK cells. Based on these observations, several suggestions regarding uniform criteria and universal sources for CIK cell preparations and the use of CIK cells either combined with chemotherapy or alone as a primary strategy are briefly proposed in this review. Large-scale, controlled, grouped, and multi-center clinical trials on CIK cell-based immunotherapy should be conducted under strict supervision. These interventions might help to improve future clinical applications and increase the clinical curative effects of CIK cells for a broad range of malignancies in the future.
Collapse
Affiliation(s)
- Yelei Guo
- Department of Immunology, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, 100853, P. R. China.
| | - Weidong Han
- Department of Immunology, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, 100853, P. R. China.
| |
Collapse
|