1
|
Aplin AC, Aghazadeh Y, Mohn OG, Hull-Meichle RL. Role of the Pancreatic Islet Microvasculature in Health and Disease. J Histochem Cytochem 2024; 72:711-728. [PMID: 39601198 PMCID: PMC11600425 DOI: 10.1369/00221554241299862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
The pancreatic islet vasculature comprises microvascular endothelial cells surrounded by mural cells (pericytes). Both cell types support the islet by providing (1) a conduit for delivery and exchange of nutrients and hormones; (2) paracrine signals and extracellular matrix (ECM) components that support islet development, architecture, and endocrine function; and (3) a barrier against inflammation and immune cell infiltration. In type 2 diabetes, the islet vasculature becomes inflamed, showing loss of endothelial cells, detachment, and/or trans-differentiation of pericytes, vessel dilation, and excessive ECM deposition. While most work to date has focused either on endothelial cells or pericytes in isolation, it is very likely that the interaction between these cell types and disruption of that interaction in diabetes are critically important. In fact, dissociation of pericytes from endothelial cells is an early, key feature of microvascular disease in multiple tissues/disease states. Moreover, in beta-cell replacement therapy, co-transplantation with microvessels versus endothelial cells alone is substantially more effective in improving survival and function of the transplanted cells. Ongoing studies, including characterization of islet vascular cell signatures, will aid in the identification of new therapeutic targets aimed at improving islet function and benefiting people living with all forms of diabetes.
Collapse
Affiliation(s)
- Alfred C. Aplin
- Seattle Institute for Biomedical and Clinical Research, and Research Service, Department of Veterans Affairs Puget Sound Health Care System, Seattle, Washington
| | - Yasaman Aghazadeh
- Institut de Recherches Cliniques de Montreal (IRCM), Department of Medicine, University of Montreal, and Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Olivia G. Mohn
- Seattle Institute for Biomedical and Clinical Research, and Research Service, Department of Veterans Affairs Puget Sound Health Care System, Seattle, Washington
| | - Rebecca L. Hull-Meichle
- Seattle Institute for Biomedical and Clinical Research, and Research Service, Department of Veterans Affairs Puget Sound Health Care System, Seattle, Washington
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington; and Alberta Diabetes Institute and Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Jeon S, Lee YS, Oh SR, Jeong J, Lee DH, So KH, Hwang NS. Recent advances in endocrine organoids for therapeutic application. Adv Drug Deliv Rev 2023; 199:114959. [PMID: 37301512 DOI: 10.1016/j.addr.2023.114959] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/21/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
The endocrine system, consisting of the hypothalamus, pituitary, endocrine glands, and hormones, plays a critical role in hormone metabolic interactions. The complexity of the endocrine system is a significant obstacle to understanding and treating endocrine disorders. Notably, advances in endocrine organoid generation allow a deeper understanding of the endocrine system by providing better comprehension of molecular mechanisms of pathogenesis. Here, we highlight recent advances in endocrine organoids for a wide range of therapeutic applications, from cell transplantation therapy to drug toxicity screening, combined with development in stem cell differentiation and gene editing technologies. In particular, we provide insights into the transplantation of endocrine organoids to reverse endocrine dysfunctions and progress in developing strategies for better engraftments. We also discuss the gap between preclinical and clinical research. Finally, we provide future perspectives for research on endocrine organoids for the development of more effective treatments for endocrine disorders.
Collapse
Affiliation(s)
- Suwan Jeon
- Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Sun Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seh Ri Oh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinseong Jeong
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Hyun Lee
- Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyoung-Ha So
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea; Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Nathaniel S Hwang
- Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea; Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University, Seoul 08826, Republic of Korea; Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
3
|
Wu S, Wang L, Fang Y, Huang H, You X, Wu J. Advances in Encapsulation and Delivery Strategies for Islet Transplantation. Adv Healthc Mater 2021; 10:e2100965. [PMID: 34480420 DOI: 10.1002/adhm.202100965] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/23/2021] [Indexed: 12/13/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic metabolic disease caused by the destruction of pancreatic β-cells in response to autoimmune reactions. Shapiro et al. conducted novel islet transplantation with a glucocorticoid-free immunosuppressive agent in 2000 and achieved great success; since then, islet transplantation has been increasingly regarded as a promising strategy for the curative treatment of T1DM. However, many unavoidable challenges, such as a lack of donors, poor revascularization, blood-mediated inflammatory reactions, hypoxia, and side effects caused by immunosuppression have severely hindered the widespread application of islet transplantation in clinics. Biomaterial-based encapsulation and delivery strategies are proposed for overcoming these obstacles, and have demonstrated remarkable improvements in islet transplantation outcomes. Herein, the major problems faced by islet transplantation are summarized and updated biomaterial-based strategies for islet transplantation, including islet encapsulation across different scales, delivery of stem cell-derived beta cells, co-delivery of islets with accessory cells and immunomodulatory molecules are highlighted.
Collapse
Affiliation(s)
- Siying Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510006 P. R. China
| | - Liying Wang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510006 P. R. China
| | - Yifen Fang
- The Affiliated TCM Hospital of Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Hai Huang
- Department of Urology Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou 510120 P. R. China
| | - Xinru You
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510006 P. R. China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510006 P. R. China
| |
Collapse
|
4
|
Wang Y, Wang JW, Li Y, Tian XH, Feng XS, Zhang SC, Liu PJ, Xue WJ, Zheng J, Ding XM. Bone marrow-derived mesenchymal stem cells improve rat islet graft revascularization by upregulating ISL1. STEM CELLS (DAYTON, OHIO) 2021; 39:1033-1048. [PMID: 33754392 DOI: 10.1002/stem.3378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/01/2021] [Indexed: 11/12/2022]
Abstract
Revascularization of the islet transplant is a crucial step that defines the success rate of patient recovery. Bone marrow-derived mesenchymal stem cells (BMSCs) have been reported to promote revascularization; however, the underlying cellular mechanism remains unclear. Moreover, our liquid chromatography-tandem mass spectrometry results showed that BMSCs could promote the expression of insulin gene enhancer binding protein-1 (ISL1) in islets. ISL1 is involved in islets proliferation and plays a potential regulatory role in the revascularization of islets. This study identifies the ISL1 protein as a potential modulator in BMSCs-mediated revascularization of islet grafts. We demonstrated that the survival rate and insulin secretion of islets were increased in the presence of BMSCs, indicating that BMSCs promote islet revascularization in a coculture system and rat diabetes model. Interestingly, we also observed that the presence of BMSCs led to an increase in ISL1 and vascular endothelial growth factor A (VEGFA) expression in both islets and the INS-1 rat insulinoma cell line. In silico protein structure modeling indicated that ISL1 is a transcription factor that has four binding sites with VEGFA mRNA. Further results showed that overexpression of ISL1 increased both the abundance of VEGFA transcripts and protein accumulation, while inhibition of ISL1 decreased the abundance of VEGFA. Using a ChIP-qPCR assay, we demonstrated that direct molecular interactions between ISL1 and VEGFA occur in INS-1 cells. Together, these findings reveal that BMSCs promote the expression of ISL1 in islets and lead to an increase in VEGFA in islet grafts. Hence, ISL1 is a potential target to induce early revascularization in islet transplantation.
Collapse
Affiliation(s)
- Ying Wang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Jing-Wen Wang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Yang Li
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Xiao-Hui Tian
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Xin-Shun Feng
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Shu-Cong Zhang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Pei-Jun Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Wu-Jun Xue
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Jin Zheng
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Xiao-Ming Ding
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| |
Collapse
|
5
|
Improvement of Islet Allograft Function Using Cibinetide, an Innate Repair Receptor Ligand. Transplantation 2021; 104:2048-2058. [PMID: 32345869 DOI: 10.1097/tp.0000000000003284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND During intraportal pancreatic islet transplantation (PITx), early inflammatory reactions cause an immediate loss of more than half of the transplanted graft and potentiate subsequent allograft rejection. Previous findings suggest that cibinetide, a selective innate repair receptor agonist, exerts islet protective and antiinflammatory properties and improved transplant efficacy in syngeneic mouse PITx model. In a stepwise approach toward a clinical application, we have here investigated the short- and long-term effects of cibinetide in an allogeneic mouse PITx model. METHODS Streptozotocin-induced diabetic C57BL/6N (H-2) mice were transplanted with 320 (marginal) or 450 (standard) islets from BALB/c (H-2) mice via the portal vein. Recipients were treated perioperative and thereafter daily during 14 d with cibinetide (120 µg/kg), with or without tacrolimus injection (0.4 mg/kg/d) during days 4-14 after transplantation. Graft function was assessed using nonfasting glucose measurements. Relative gene expressions of proinflammatory cytokines and proinsulin of the graft-bearing liver were assessed by quantitative polymerase chain reaction. Cibinetide's effects on dendritic cell maturation were investigated in vitro. RESULTS Cibinetide ameliorated the local inflammatory responses in the liver and improved glycemic control immediately after allogeneic PITx and significantly delayed the onset of allograft loss. Combination treatment with cibinetide and low-dose tacrolimus significantly improved long-term graft survival following allogeneic PITx. In vitro experiments indicated that cibinetide lowered bone-marrow-derived-immature-dendritic cell maturation and subsequently reduced allogeneic T-cell response. CONCLUSIONS Cibinetide reduced the initial transplantation-related severe inflammation and delayed the subsequent alloreactivity. Cibinetide, in combination with low-dose tacrolimus, could significantly improve long-term graft survival in allogeneic PITx.
Collapse
|
6
|
Fuchs S, Ernst AU, Wang LH, Shariati K, Wang X, Liu Q, Ma M. Hydrogels in Emerging Technologies for Type 1 Diabetes. Chem Rev 2020; 121:11458-11526. [DOI: 10.1021/acs.chemrev.0c01062] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Stephanie Fuchs
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Alexander U. Ernst
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Long-Hai Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kaavian Shariati
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Xi Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Qingsheng Liu
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Minglin Ma
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
7
|
Menger MM, Nalbach L, Wrublewsky S, Glanemann M, Gu Y, Laschke MW, Menger MD, Ampofo E. Darbepoetin-α increases the blood volume flow in transplanted pancreatic islets in mice. Acta Diabetol 2020; 57:1009-1018. [PMID: 32221724 PMCID: PMC8318962 DOI: 10.1007/s00592-020-01512-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/04/2020] [Indexed: 11/30/2022]
Abstract
AIMS The minimal-invasive transplantation of pancreatic islets is a promising approach to treat diabetes mellitus type 1. However, islet transplantation is still hampered by the insufficient process of graft revascularization, leading to a poor clinical outcome. Accordingly, the identification of novel compounds, which accelerate and improve the revascularization of transplanted islets, is of great clinical interest. Previous studies have shown that darbepoetin (DPO)-α, a long lasting analogue of erythropoietin, is capable of promoting angiogenesis. Hence, we investigated in this study whether DPO improves the revascularization of transplanted islets. METHODS Islets were isolated from green fluorescent protein-positive FVB/N donor mice and transplanted into dorsal skinfold chambers of FVB/N wild-type animals, which were treated with DPO low dose (2.5 µg/kg), DPO high dose (10 µg/kg) or vehicle (control). The revascularization was assessed by repetitive intravital fluorescence microscopy over an observation period of 14 days. Subsequently, the cellular composition of the grafts was analyzed by immunohistochemistry. RESULTS The present study shows that neither low- nor high-dose DPO treatment accelerates the revascularization of free pancreatic islet grafts. However, high-dose DPO treatment increased the blood volume flow of the transplanted islet. CONCLUSIONS These findings demonstrated that DPO treatment does not affect the revascularization of transplanted islets. However, the glycoprotein increases the blood volume flow of the grafts, which results in an improved microvascular function and may facilitate successful transplantation.
Collapse
Affiliation(s)
- Maximilian M Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Lisa Nalbach
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Selina Wrublewsky
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Matthias Glanemann
- Department for General, Visceral, Vascular and Pediatric Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Yuan Gu
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany.
| |
Collapse
|
8
|
Figueiredo H, Figueroa ALC, Garcia A, Fernandez-Ruiz R, Broca C, Wojtusciszyn A, Malpique R, Gasa R, Gomis R. Targeting pancreatic islet PTP1B improves islet graft revascularization and transplant outcomes. Sci Transl Med 2020; 11:11/497/eaar6294. [PMID: 31217339 DOI: 10.1126/scitranslmed.aar6294] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/16/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
Deficient vascularization is a major driver of early islet graft loss and one of the primary reasons for the failure of islet transplantation as a viable treatment for type 1 diabetes. This study identifies the protein tyrosine phosphatase 1B (PTP1B) as a potential modulator of islet graft revascularization. We demonstrate that grafts of pancreatic islets lacking PTP1B exhibit increased revascularization, which is accompanied by improved graft survival and function, and recovery of normoglycemia and glucose tolerance in diabetic mice transplanted with PTP1B-deficient islets. Mechanistically, we show that the absence of PTP1B leads to activation of hypoxia-inducible factor 1α-independent peroxisome proliferator-activated receptor γ coactivator 1α/estrogen-related receptor α signaling and enhanced expression and production of vascular endothelial growth factor A (VEGF-A) by β cells. These observations were reproduced in human islets. Together, these findings reveal that PTP1B regulates islet VEGF-A production and suggest that this phosphatase could be targeted to improve islet transplantation outcomes.
Collapse
Affiliation(s)
- Hugo Figueiredo
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,University of Barcelona, 08036 Barcelona, Spain.,Escuela de Medicina y Ciencias de la Salud, Dept. Medicina Cardiovascular y Metabolómica, Tecnológico de Monterrey, 66278 San Pedro Garza García, Nuevo León, Mexico
| | - Ana Lucia C Figueroa
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,University of Barcelona, 08036 Barcelona, Spain
| | - Ainhoa Garcia
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Rebeca Fernandez-Ruiz
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Christophe Broca
- CHU Montpellier, Laboratory of Cell Therapy for Diabetes (LTCD), Hospital St-Eloi, 34295 Montpellier, France
| | - Anne Wojtusciszyn
- CHU Montpellier, Laboratory of Cell Therapy for Diabetes (LTCD), Hospital St-Eloi, 34295 Montpellier, France.,Department of Endocrinology, Diabetes and Nutrition, University Hospital of Montpellier, Lapeyronie Hospital, 34295 Montpellier, France.,Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Rita Malpique
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Rosa Gasa
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Ramon Gomis
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain. .,University of Barcelona, 08036 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.,Universitat Oberta de Catalunya (UOC), 08018 Barcelona, Spain.,Department of Endocrinology and Nutrition, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
9
|
Lebreton F, Bellofatto K, Wassmer CH, Perez L, Lavallard V, Parnaud G, Cottet-Dumoulin D, Kerr-Conte J, Pattou F, Bosco D, Othenin-Girard V, Martinez de Tejada B, Berishvili E. Shielding islets with human amniotic epithelial cells enhances islet engraftment and revascularization in a murine diabetes model. Am J Transplant 2020; 20:1551-1561. [PMID: 32031745 DOI: 10.1111/ajt.15812] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/12/2020] [Accepted: 01/28/2020] [Indexed: 01/25/2023]
Abstract
Hypoxia is a major cause of considerable islet loss during the early posttransplant period. Here, we investigate whether shielding islets with human amniotic epithelial cells (hAECs), which possess anti-inflammatory and regenerative properties, improves islet engraftment and survival. Shielded islets were generated on agarose microwells by mixing rat islets (RIs) or human islets (HI) and hAECs (100 hAECs/IEQ). Islet secretory function and viability were assessed after culture in hypoxia (1% O2 ) or normoxia (21% O2 ) in vitro. In vivo function was evaluated after transplant under the kidney capsule of diabetic immunodeficient mice. Graft morphology and vascularization were evaluated by immunohistochemistry. Both shielded RIs and HIs show higher viability and increased glucose-stimulated insulin secretion after exposure to hypoxia in vitro compared with control islets. Transplant of shielded islets results in considerably earlier normoglycemia and vascularization, an enhanced glucose tolerance, and a higher β cell mass. Our results show that hAECs have a clear cytoprotective effect against hypoxic damages in vitro. This strategy improves β cell mass engraftment and islet revascularization, leading to an improved capacity of islets to reverse hyperglycemia, and could be rapidly applicable in the clinical situation seeing that the modification to HIs are minor.
Collapse
Affiliation(s)
- Fanny Lebreton
- Cell Isolation and Transplantation Center, Department of Surgery, Faculty Diabetes Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Kevin Bellofatto
- Cell Isolation and Transplantation Center, Department of Surgery, Faculty Diabetes Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Charles H Wassmer
- Cell Isolation and Transplantation Center, Department of Surgery, Faculty Diabetes Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Lisa Perez
- Cell Isolation and Transplantation Center, Department of Surgery, Faculty Diabetes Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Vanessa Lavallard
- Cell Isolation and Transplantation Center, Department of Surgery, Faculty Diabetes Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Géraldine Parnaud
- Cell Isolation and Transplantation Center, Department of Surgery, Faculty Diabetes Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - David Cottet-Dumoulin
- Cell Isolation and Transplantation Center, Department of Surgery, Faculty Diabetes Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Julie Kerr-Conte
- INSERM U1190, Translational Research for Diabetes, University of Lille, France
| | - François Pattou
- INSERM U1190, Translational Research for Diabetes, University of Lille, France
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Faculty Diabetes Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Véronique Othenin-Girard
- Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland
| | - Begoña Martinez de Tejada
- Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Switzerland
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, Department of Surgery, Faculty Diabetes Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Institute of Medical Research, Ilia State University, Tbilisi, Georgia
| |
Collapse
|
10
|
NLRP3 Inflammasome is Activated in Rat Pancreatic Islets by Transplantation and Hypoxia. Sci Rep 2020; 10:7011. [PMID: 32332867 PMCID: PMC7181690 DOI: 10.1038/s41598-020-64054-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/10/2020] [Indexed: 01/14/2023] Open
Abstract
Hypoxia, IL-1β production and oxidative stress are involved in islet graft dysfunction and destruction. However, the link between these events has not yet been determined in transplanted islets. The goal of this study was to determine whether NLRP3 inflammasome is responsible for IL-1β production and if it is activated by hypoxia-induced oxidative stress in transplanted islets. Rat islets were transplanted under the kidney capsule of immunodeficient mice. At different times post-transplantation, blood samples were collected and islet grafts harvested. Rat islets were also incubated in vitro either under normoxia or hypoxia for 24 h, in the absence or presence of inhibitors of NLRP3 inflammasome (CASP1 inhibitor) or oxidative stress (NAC). NLRP3, CASP1, IL1B, BBC3 pro-apoptotic and BCL2 anti-apoptotic genes in transplanted and in vitro incubated islets were then studied using real time PCR. IL-1β released in the blood and in the supernatant was quantified by ELISA. Cell death was analysed by propidium iodide and Annexin-V staining. NLRP3, CASP1 and BBC3 in transplanted rat islets and IL-1β in blood transiently increased during the first days after transplantation. In islets incubated under hypoxia, NRLP3, IL1B and CASP1 and IL-1β released in supernatant increased compared to islets incubated under normoxia. These effects were prevented by the inhibition of NLRP3 inflammasome by CASP1 or oxidative stress by NAC. However, these inhibitors did not prevent hypoxia-induced rat islet death. These data show that NLRP3 inflammasome in rat islets is transiently activated after their transplantation and induced through oxidative stress in vitro. However, NRLP3 inflammasome inhibition does not protect islet cells against hypoxia.
Collapse
|
11
|
Bowers DT, Song W, Wang LH, Ma M. Engineering the vasculature for islet transplantation. Acta Biomater 2019; 95:131-151. [PMID: 31128322 PMCID: PMC6824722 DOI: 10.1016/j.actbio.2019.05.051] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/13/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022]
Abstract
The microvasculature in the pancreatic islet is highly specialized for glucose sensing and insulin secretion. Although pancreatic islet transplantation is a potentially life-changing treatment for patients with insulin-dependent diabetes, a lack of blood perfusion reduces viability and function of newly transplanted tissues. Functional vasculature around an implant is not only necessary for the supply of oxygen and nutrients but also required for rapid insulin release kinetics and removal of metabolic waste. Inadequate vascularization is particularly a challenge in islet encapsulation. Selectively permeable membranes increase the barrier to diffusion and often elicit a foreign body reaction including a fibrotic capsule that is not well vascularized. Therefore, approaches that aid in the rapid formation of a mature and robust vasculature in close proximity to the transplanted cells are crucial for successful islet transplantation or other cellular therapies. In this paper, we review various strategies to engineer vasculature for islet transplantation. We consider properties of materials (both synthetic and naturally derived), prevascularization, local release of proangiogenic factors, and co-transplantation of vascular cells that have all been harnessed to increase vasculature. We then discuss the various other challenges in engineering mature, long-term functional and clinically viable vasculature as well as some emerging technologies developed to address them. The benefits of physiological glucose control for patients and the healthcare system demand vigorous pursuit of solutions to cell transplant challenges. STATEMENT OF SIGNIFICANCE: Insulin-dependent diabetes affects more than 1.25 million people in the United States alone. Pancreatic islets secrete insulin and other endocrine hormones that control glucose to normal levels. During preparation for transplantation, the specialized islet blood vessel supply is lost. Furthermore, in the case of cell encapsulation, cells are protected within a device, further limiting delivery of nutrients and absorption of hormones. To overcome these issues, this review considers methods to rapidly vascularize sites and implants through material properties, pre-vascularization, delivery of growth factors, or co-transplantation of vessel supporting cells. Other challenges and emerging technologies are also discussed. Proper vascular growth is a significant component of successful islet transplantation, a treatment that can provide life-changing benefits to patients.
Collapse
Affiliation(s)
- Daniel T Bowers
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Wei Song
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Long-Hai Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
12
|
Nalbach L, Schmitt BM, Becker V, Scheller A, Laschke MW, Menger MD, Ampofo E. Nerve/glial antigen 2 is crucially involved in the revascularization of freely transplanted pancreatic islets. Cell Tissue Res 2019; 378:195-205. [DOI: 10.1007/s00441-019-03048-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/10/2019] [Indexed: 01/09/2023]
|
13
|
Jansson L, Carlsson PO. Pancreatic Blood Flow with Special Emphasis on Blood Perfusion of the Islets of Langerhans. Compr Physiol 2019; 9:799-837. [PMID: 30892693 DOI: 10.1002/cphy.c160050] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pancreatic islets are more richly vascularized than the exocrine pancreas, and possess a 5- to 10-fold higher basal and stimulated blood flow, which is separately regulated. This is reflected in the vascular anatomy of the pancreas where islets have separate arterioles. There is also an insulo-acinar portal system, where numerous venules connect each islet to the acinar capillaries. Both islets and acini possess strong metabolic regulation of their blood perfusion. Of particular importance, especially in the islets, is adenosine and ATP/ADP. Basal and stimulated blood flow is modified by local endothelial mediators, the nervous system as well as gastrointestinal hormones. Normally the responses to the nervous system, especially the parasympathetic and sympathetic nerves, are fairly similar in endocrine and exocrine parts. The islets seem to be more sensitive to the effects of endothelial mediators, especially nitric oxide, which is a permissive factor to maintain the high basal islet blood flow. The gastrointestinal hormones with pancreatic effects mainly influence the exocrine pancreatic blood flow, whereas islets are less affected. A notable exception is incretin hormones and adipokines, which preferentially affect islet vasculature. Islet hormones can influence both exocrine and endocrine blood vessels, and these complex effects are discussed. Secondary changes in pancreatic and islet blood flow occur during several conditions. To what extent changes in blood perfusion may affect the pathogenesis of pancreatic diseases is discussed. Both type 2 diabetes mellitus and acute pancreatitis are conditions where we think there is evidence that blood flow may contribute to disease manifestations. © 2019 American Physiological Society. Compr Physiol 9:799-837, 2019.
Collapse
Affiliation(s)
- Leif Jansson
- Uppsala University, Department of Medical Cell Biology, Uppsala, Sweden
| | - Per-Ola Carlsson
- Uppsala University, Department of Medical Cell Biology, Uppsala, Sweden.,Uppsala University, Department of Medical Sciences, Uppsala, Sweden
| |
Collapse
|
14
|
Li X, Meng Q, Zhang L. The Fate of Allogeneic Pancreatic Islets following Intraportal Transplantation: Challenges and Solutions. J Immunol Res 2018; 2018:2424586. [PMID: 30345316 PMCID: PMC6174795 DOI: 10.1155/2018/2424586] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/27/2018] [Indexed: 12/26/2022] Open
Abstract
Pancreatic islet transplantation as a therapeutic option for type 1 diabetes mellitus is gaining widespread attention because this approach can restore physiological insulin secretion, minimize the risk of hypoglycemic unawareness, and reduce the risk of death due to severe hypoglycemia. However, there are many obstacles contributing to the early mass loss of the islets and progressive islet loss in the late stages of clinical islet transplantation, including hypoxia injury, instant blood-mediated inflammatory reactions, inflammatory cytokines, immune rejection, metabolic exhaustion, and immunosuppression-related toxicity that is detrimental to the islet allograft. Here, we discuss the fate of intrahepatic islets infused through the portal vein and propose potential interventions to promote islet allograft survival and improve long-term graft function.
Collapse
Affiliation(s)
- Xinyu Li
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086 Heilongjiang Province, China
| | - Qiang Meng
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086 Heilongjiang Province, China
| | - Lei Zhang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086 Heilongjiang Province, China
| |
Collapse
|
15
|
Lebreton F, Berishvili E, Parnaud G, Rouget C, Bosco D, Berney T, Lavallard V. NLRP3 inflammasome is expressed and regulated in human islets. Cell Death Dis 2018; 9:726. [PMID: 29941940 PMCID: PMC6018156 DOI: 10.1038/s41419-018-0764-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 02/02/2023]
Abstract
NRLP3 inflammasome is a protein complex involved in the maturation of IL1β. In the onset of type 1 diabetes as well as in islet transplantation, IL-1β is one of the cytokines involved in the recruitment of immune cells in islets and eventually in islet destruction. Whether IL-1β is produced by islet cells is still under debate and NLRP3 inflammasome-dependent IL-1β production has not been yet determined in human islets. The aim of this study was to determine the expression and the regulation of the NRLP3 inflammasome in human islets. Human islets were stimulated with LPS and successively with ATP (LPS + ATP) in the presence or absence of the inflammasome inhibitor glyburide. Islets were also incubated in hypoxic or normoxic conditions for 24 h in the presence or absence of glyburide. Then, IL1B and NLRP3 expression was studied by real time PCR, protein expression by western blot, protein localization by immunofluorescence and protein secretion by ELISA. LPS + ATP increased gene expression of NRLP3 and IL1B. Glyburide partially prevented this effect. IL-1β protein was localized in β and non-β cells. Moreover, LPS + ATP increased IL-1β protein expression and production, which were prevented by glyburide. Hypoxia increased gene expression of NRLP3 and IL1B and induced IL-1β and caspase-1 production. Finally, hypoxia-induced cell death which was not prevented by inhibition of NLRP3 inflammasome. NRLP3 inflammasome is expressed and plays a role in IL-1β production by human islets. By contrast, NRLP3 inflammasome activation is not involved in islet cell death induced by hypoxia.
Collapse
Affiliation(s)
- Fanny Lebreton
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University, Hospitals and University of Geneva, Geneva, Switzerland
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University, Hospitals and University of Geneva, Geneva, Switzerland
| | - Géraldine Parnaud
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University, Hospitals and University of Geneva, Geneva, Switzerland
| | - Caroline Rouget
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University, Hospitals and University of Geneva, Geneva, Switzerland
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University, Hospitals and University of Geneva, Geneva, Switzerland
| | - Thierry Berney
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University, Hospitals and University of Geneva, Geneva, Switzerland
| | - Vanessa Lavallard
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University, Hospitals and University of Geneva, Geneva, Switzerland.
| |
Collapse
|
16
|
Fujita I, Utoh R, Yamamoto M, Okano T, Yamato M. The liver surface as a favorable site for islet cell sheet transplantation in type 1 diabetes model mice. Regen Ther 2018; 8:65-72. [PMID: 30271868 PMCID: PMC6147207 DOI: 10.1016/j.reth.2018.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/19/2018] [Accepted: 04/12/2018] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION Islet transplantation is one of the most promising therapeutic approaches for patients with severe type 1 diabetes mellitus (T1DM). Transplantation of engineered islet cell sheets holds great potential for treating T1DM as it enables the creation of stable neo-islet tissues. However, a large mass of islet cell sheets is required for the subcutaneous transplantation to reverse hyperglycemia in diabetic mice. Here, we investigated whether the liver surface could serve as an alternative site for islet cell sheet transplantation. METHODS Dispersed rat islet cells (0.8 × 106 cells) were cultured on laminin-332-coated thermoresponsive culture dishes. After 2 days of cultivation, we harvested the islet cell sheets by lowering the culture temperature using a support membrane with a gelatin gel. We transplanted two recovered islet cell sheets into the subcutaneous space or onto the liver surface of severe combined immunodeficiency (SCID) mice with streptozocin-induced diabetes. RESULTS In the liver surface group, the non-fasting blood glucose level decreased rapidly within several days after transplantation. In marked contrast, the hyperglycemia state was maintained in the subcutaneous space transplantation group. The levels of rat C-peptide and insulin in the liver surface group were significantly higher than those in the subcutaneous space group. An immunohistological analysis confirmed that most of the islet cells engrafted on the liver surface were insulin-positive. The CD31-positive endothelial cells formed vascular networks within the neo-islets and in the surrounding tissues. In contrast, viable islet cells were not found in the subcutaneous space group. CONCLUSIONS Compared with the subcutaneous space, a relatively small mass of islet cell sheets was enough to achieve normoglycemia in diabetic mice when the liver surface was selected as the transplantation site. Our results demonstrate that the optimization of the transplantation site for islet cell sheets leads to significant improvements in the therapeutic efficiency for T1DM.
Collapse
Affiliation(s)
- Izumi Fujita
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Rie Utoh
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Masakazu Yamamoto
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| |
Collapse
|
17
|
Skrzypek K, Barrera YB, Groth T, Stamatialis D. Endothelial and beta cell composite aggregates for improved function of a bioartificial pancreas encapsulation device. Int J Artif Organs 2018; 41:152-159. [PMID: 29546813 PMCID: PMC6161570 DOI: 10.1177/0391398817752295] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Encapsulation of pancreatic islets or beta cells is a promising strategy for treatment of type 1 diabetes by providing an immune isolated environment and allowing for transplantation in a different location than the liver. However, islets used for encapsulation often show lower functionality due to the damaging of islet endothelial cells during the isolation procedure. Factors produced by endothelial cells have great impact on beta cell insulin secretion. Therefore, mutual signaling between endothelial cells and beta cells should be considered for the development of encapsulation systems to achieve high insulin secretion and maintain beta cell viability. Here, we investigate whether co-culture of beta cells with endothelial cells could improve beta cell function within encapsulation devices. MATERIALS AND METHODS Mouse insulinoma MIN6 cells and human umbilical vein endothelial cells were used for creating composite aggregates on agarose microwell platform. The composite aggregates were encapsulated within flat poly(ether sulfone)/polyvinylpyrrolidone device. Their functionality was assessed by glucose-induced insulin secretion test and compared to non-encapsulated free-floating aggregates. RESULTS We created composite aggregates of 80-100 µm in diameter, closely mimicking pancreatic islets. Upon glucose stimulation, their insulin secretion is improved in comparison to aggregates consisting of only MIN6 cells. Moreover, the composite aggregates encapsulated within a device secrete more insulin than aggregates consisting of only MIN6 cells. CONCLUSION Composite aggregates of MIN6 cells with human umbilical vein endothelial cells have improved insulin secretion in comparison to MIN6 aggregates showing that the interaction of beta cell and endothelial cell is crucial for a functional encapsulation system.
Collapse
Affiliation(s)
- Katarzyna Skrzypek
- 1 Bioartificial Organs, Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Yazmin Brito Barrera
- 2 Biomedical Materials Group and Institute of Pharmacy, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Thomas Groth
- 2 Biomedical Materials Group and Institute of Pharmacy, Martin Luther University of Halle-Wittenberg, Halle, Germany.,3 Interdisciplinary Centre of Material Sciences, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Dimitrios Stamatialis
- 1 Bioartificial Organs, Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| |
Collapse
|
18
|
Lee EM, Park I, Lee YJ, You YH, Kim JW, Kim MJ, Ahn YB, Kim P, Ko SH. Effect of resveratrol treatment on graft revascularization after islet transplantation in streptozotocin-induced diabetic mice. Islets 2018; 10:25-39. [PMID: 29333922 PMCID: PMC5800387 DOI: 10.1080/19382014.2017.1414764] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 11/22/2017] [Accepted: 12/03/2017] [Indexed: 01/07/2023] Open
Abstract
We evaluated the effect of resveratrol (RSV) on graft survival after islet transplantation (ITx) in diabetic mice. Isolated islets from Balb/c mice (200 IEQ) were transplanted under the kidney capsule of diabetic Balb/c mice. Vehicle or RSV (200 mg/kg/day, orally) was given for 14 days after ITx. Two more control groups [STZ-treated (No-ITx-Control) and STZ+RSV-treated (No-ITx-RSV) mice without ITx] were added. Glucose tolerance tests (GTT) was performed at 14 days after ITx. In vitro, isolated islets pretreated with vehicle or RSV (1 μM) were incubated in a hypoxic chamber (O2 1%, 1hr). Some of the ITx was performed in mouse insulin 1 gene promoter-green fluorescent protein (MIP-GFP) transgenic mice and analyzed using an in vivo imaging system. After 14 days of ITx, 2-hr glucose levels on GTT in the RSV-treated group were significantly lower than those of other control groups. But the glucose status was not improved in No-ITx mice with RSV. At day 3, the percentage of Ki-67/insulin co-stained cells in islet graft was significantly increased in the RSV-ITx group. Immunostaining with anti-insulin and anti-BS-1 antibodies revealed significantly higher insulin-stained area and vascular density in RSV-treated islet grafts. The mean vessel volume per islet graft measured by in vivo imaging was significantly higher in the RSV-treated group at day 3. In isolated islets cultured in hypoxic conditions, the cell death rate and oxidative stress were significantly attenuated with RSV pretreatment. Hypoxic treatment for isolated islets decreased the expression of SIRT-1 mRNA, and this attenuation was recovered by RSV pretreatment. Our data suggest that RSV treatment improved glycemic control, beta-cell proliferation, reduced oxidative stress, and enhanced islet revascularization and the outcome of ITx in diabetic mice.
Collapse
Affiliation(s)
- Eun-Mi Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Inwon Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ye-Jee Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young-Hye You
- Division of Endocrinology and Metabolism, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji-Won Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Myung-Jun Kim
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yu-Bae Ahn
- Division of Endocrinology and Metabolism, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Pilhan Kim
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Seung-Hyun Ko
- Division of Endocrinology and Metabolism, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
19
|
Min BH, Shin JS, Kim JM, Kang SJ, Kim HJ, Yoon IH, Park SK, Choi JW, Lee MS, Park CG. Delayed revascularization of islets after transplantation by IL-6 blockade in pig to non-human primate islet xenotransplantation model. Xenotransplantation 2017; 25. [PMID: 29210476 DOI: 10.1111/xen.12374] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/12/2017] [Accepted: 11/10/2017] [Indexed: 01/16/2023]
Abstract
BACKGROUND Pancreatic islet transplantation is currently proven as a promising treatment for type 1 diabetes patients with labile glycemic control and severe hypoglycemia unawareness. Upon islet transplantation, revascularization is essential for proper functioning of the transplanted islets. As IL-6 is important for endothelial cell survival and systemic inflammation related to xenograft, the effect of IL-6 receptor antagonist, tocilizumab, on revascularization of the transplanted islets was examined in pig to non-human primate islet xenotransplantation model. Also, the endothelial cell origin in a new vessel of the transplanted pig islets was determined. METHODS Pig islets were isolated from designated pathogen-free (DPF) SNU miniature pigs and transplanted via portal vein into five streptozotocin-induced diabetic monkeys. One group (n = 2, basal group) was treated with anti-thymoglobulin (ATG), anti-CD40 antibody (2C10R4), sirolimus, and tacrolimus, and the other group was additionally given tocilizumab on top of basal immunosuppression (n = 3, Tocilizumab group). To confirm IL-6 blocking effect, C-reactive protein (CRP) levels and serum IL-6 concentration were measured. Scheduled biopsy of the margin of the posterior segment right lobe inferior of the liver was performed at 3 weeks after transplantation to assess the degree of revascularization of the transplanted islets. Immunohistochemical staining using anti-insulin, anti-CD31 antibodies, and lectin IB4 was conducted to find the origin of endothelial cells in the islet graft. RESULTS CRP significantly increased at 1~2 days after transplantation in Basal group, but not in Tocilizumab group, and higher serum IL-6 concentration was measured in latter group, showing the biological potency of tocilizumab. In Basal group, well-developed endothelial cells were observed on the peri- and intraislet area, whereas the number of CD31+ cells in the intraislet space was significantly reduced in Tocilizumab group. Finally, new endothelial cells in the pig islet graft were positive for CD31, but not for lectin IB4, suggesting that they are originated from the recipient monkey. CONCLUSIONS Our results demonstrated that tocilizumab can delay revascularization of the transplanted islet, although this effect had no significant correlation to the overall islet graft survival. In the pig to NHP islet xenotransplantation model, the endothelial cells from recipient monkey form new blood vessels in and around pig islets.
Collapse
Affiliation(s)
- Byoung-Hoon Min
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Korea
| | - Jun-Seop Shin
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Min Kim
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Korea
| | - Seong-Jun Kang
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun-Je Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Il-Hee Yoon
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Korea
| | - Su-Kyoung Park
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Ji-Won Choi
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Min-Suk Lee
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Chung-Gyu Park
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
20
|
Lembert N, Wesche J, Petersen P, Doser M, Zschocke P, Becker HD, Ammon HPT. Encapsulation of Islets in Rough Surface, Hydroxymethylated Polysulfone Capillaries Stimulates VEGF Release and Promotes Vascularization after Transplantation. Cell Transplant 2017; 14:97-108. [DOI: 10.3727/000000005783983232] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The transplantation of encapsulated islets of Langerhans is one approach to treat type 1 diabetes without the need of lifelong immunosuppression. Capillaries have been used for macroencapsulation because they have a favorable surface-to-volume ratio and because they can be refilled. It is unclear at present whether the outer surface of such capillaries should be smooth to prevent, or rough to promote, cell adhesions. In this study we tested a new capillary made of modified polysulfone (MWCO: 50 kDa) with a rough, open-porous outer surface for islet transplantation. Compared with free-floating islets, encapsulation of freshly isolated rat islets affected neither the kinetics nor the efficiency of glucose-induced insulin release in perifusion experiments. Free-floating islets maintained insulin secretion during cell culture but encapsulated islets gradually lost their glucose responsiveness and released VEGF. This indicated hypoxia in the capillary lumen. Transplantation of encapsulated rat islets into diabetic rats significantly reduced blood glucose concentrations from the first week of implantation. This hypoglycaemic effect persisted until explantation 4 weeks later. Transplantation of encapsulated porcine islets into diabetic rats reduced blood glucose concentrations depending on the islet purity. With semipurified islets a transient reduction of blood glucose concentrations was observed (2, 8, 18, 18 days) whereas with highly purified islets a sustained normoglycaemia was achieved (more than 28 days). Explanted capillaries containing rat islets were covered with blood vessels. Vascularization was also observed on capillaries containing porcine islets that were explanted from normoglycaemic rats. In contrast, on capillaries containing porcine islets that were explanted from hyperglycemic rats a fibrous capsule and lymphocyte accumulations were observed. No vascularization on the surface of transplanted capillaries was observed in the absence of islets. In conclusion, encapsulated islets can release VEGF, which appears to be an important signal for the vascularization of the capillary material. The rough, open-porous outer surface of the polysulfone capillary provides a site well suited for vascular tissue formation and may allow a prolonged islet function after transplantation.
Collapse
Affiliation(s)
- N. Lembert
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Auf der Morgenstelle 8, University of Tübingen, 72076 Tübingen, Germany
- Department of General Surgery, Hoppe-Seyler Straße 3, University of Tübingen, 72076 Tübingen, Germany
| | - J. Wesche
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Auf der Morgenstelle 8, University of Tübingen, 72076 Tübingen, Germany
| | - P. Petersen
- Department of General Surgery, Hoppe-Seyler Straße 3, University of Tübingen, 72076 Tübingen, Germany
| | - M. Doser
- Institute of Textile and Process Engineering (ITV), Stuttgart-Denkendorf, 73770 Denkendorf, Germany
| | - P. Zschocke
- Institute of Textile and Process Engineering (ITV), Stuttgart-Denkendorf, 73770 Denkendorf, Germany
| | - H. D. Becker
- Department of General Surgery, Hoppe-Seyler Straße 3, University of Tübingen, 72076 Tübingen, Germany
| | - H. P. T. Ammon
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Auf der Morgenstelle 8, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
21
|
Li Y, Fan P, Ding XM, Tian XH, Feng XS, Yan H, Pan XM, Tian PX, Zheng J, Ding CG, Xue WJ. Polyglycolic Acid Fibrous Scaffold Improving Endothelial Cell Coating and Vascularization of Islet. Chin Med J (Engl) 2017; 130:832-839. [PMID: 28345548 PMCID: PMC5381318 DOI: 10.4103/0366-6999.202730] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Improving islet graft revascularization has become a crucial task for prolonging islet graft survival. Endothelial cells (ECs) are the basis of new microvessels in an isolated islet, and EC coating has been demonstrated to improve the vascularization and survival of an islet. However, the traditional method of EC coating of islets has low efficiency in vitro. This study was conducted to evaluate the effect of a polyglycolic acid (PGA) scaffold on the efficiency of islet coating by ECs and the angiogenesis in the coated islet graft. Methods: A PGA fibrous scaffold was used for EC coating of islet culture and was evaluated for its efficiency of EC coating on islets and islet graft angiogenesis. Results: In in vitro experiments, we found that apoptosis index of ECs-coating islet in PGA group (27% ± 8%) was significantly lower than that in control group (83% ± 20%, P < 0.05) after 7 days culture. Stimulation index was significantly greater in the PGA group than in the control group at day 7 after ECs-coating (2.07 ± 0.31 vs. 1.80 ± 0.23, P < 0.05). vascular endothelial growth factor (VEGF) level in the PGA group was significantly higher than the coating in the control group after 7 days culture (52.10 ± 13.50 ng/ml vs. 16.30 ± 8.10 ng/ml, P < 0.05). Because of a tight, circumvallated, adhesive and three-dimensional growth microenvironment, islet cultured in a PGA scaffold had higher coating efficiency showing stronger staining intensity of enzyme than those in the control group after 14 days of culture following ECs-coating. For in vivo study, PGA scaffold significantly prolonged the average survival time of EC-coated islet graft after transplantation compared with control group (15.30 ± 5.60 days vs. 8.30 ± 2.45 days, P < 0.05). The angiogenesis and area of survived grafts were more in the PGA group compared with the control group by measuring the mean microvessel density (8.60 ± 1.21/mm2 vs. 5.20 ± 0.87/mm2, P < 0.05). In addition, expression of VEGF and tyrosin-protein kinase receptor (Tie-2) gene increased in PGA scaffold group than that in control group by real-time reverse transcription-polymerase chain reaction analysis. Conclusions: These results demonstrate that the efficiency of EC coating of islets was successfully increased by culturing ECs on a PGA scaffold. This method enhances the function, survival, and vascularization of isolated islets in vitro and in vivo.
Collapse
Affiliation(s)
- Yang Li
- Department of Renal Transplantation, Center of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Ping Fan
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Xiao-Ming Ding
- Department of Renal Transplantation, Center of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Xiao-Hui Tian
- Department of Renal Transplantation, Center of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Xin-Shun Feng
- Department of Renal Transplantation, Center of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Hang Yan
- Department of Renal Transplantation, Center of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Xiao-Ming Pan
- Department of Renal Transplantation, Center of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Pu-Xun Tian
- Department of Renal Transplantation, Center of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Jin Zheng
- Department of Renal Transplantation, Center of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Chen-Guang Ding
- Department of Renal Transplantation, Center of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Wu-Jun Xue
- Department of Renal Transplantation, Center of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| |
Collapse
|
22
|
Weaver JD, Headen DM, Aquart J, Johnson CT, Shea LD, Shirwan H, García AJ. Vasculogenic hydrogel enhances islet survival, engraftment, and function in leading extrahepatic sites. SCIENCE ADVANCES 2017; 3:e1700184. [PMID: 28630926 PMCID: PMC5457148 DOI: 10.1126/sciadv.1700184] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/03/2017] [Indexed: 05/23/2023]
Abstract
Islet transplantation is a promising alternative therapy for insulin-dependent patients, with the potential to eliminate life-threatening hypoglycemic episodes and secondary complications of long-term diabetes. However, widespread application of this therapy has been limited by inadequate graft function and longevity, in part due to the loss of up to 60% of the graft in the hostile intrahepatic transplant site. We report a proteolytically degradable synthetic hydrogel, functionalized with vasculogenic factors for localized delivery, engineered to deliver islet grafts to extrahepatic transplant sites via in situ gelation under physiological conditions. Hydrogels induced differences in vascularization and innate immune responses among subcutaneous, small bowel mesentery, and epididymal fat pad transplant sites with improved vascularization and reduced inflammation at the epididymal fat pad site. This biomaterial-based strategy improved the survival, engraftment, and function of a single pancreatic donor islet mass graft compared to the current clinical intraportal delivery technique. This biomaterial strategy has the potential to improve clinical outcomes in islet autotransplantation after pancreatectomy and reduce the burden on donor organ availability by maximizing graft survival in clinical islet transplantation for type 1 diabetes patients.
Collapse
Affiliation(s)
- Jessica D. Weaver
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Devon M. Headen
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jahizreal Aquart
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Christopher T. Johnson
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, GA, 30332, USA
| | - Lonnie D. Shea
- Department of Biomedical Engineering and Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Suite 03-2303, 250 East Superior Street, Chicago, IL 60611, USA
| | - Haval Shirwan
- Institute of Cellular Therapeutics, Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- FasCure Therapeutics LLC, 300 East Market Street, Louisville, KY 40202, USA
| | - Andrés J. García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
23
|
Narayanan S, Loganathan G, Dhanasekaran M, Tucker W, Patel A, Subhashree V, Mokshagundam S, Hughes MG, Williams SK, Balamurugan AN. Intra-islet endothelial cell and β-cell crosstalk: Implication for islet cell transplantation. World J Transplant 2017; 7:117-128. [PMID: 28507914 PMCID: PMC5409911 DOI: 10.5500/wjt.v7.i2.117] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/28/2017] [Accepted: 03/24/2017] [Indexed: 02/05/2023] Open
Abstract
The intra-islet microvasculature is a critical interface between the blood and islet endocrine cells governing a number of cellular and pathophysiological processes associated with the pancreatic tissue. A growing body of evidence indicates a strong functional and physical interdependency of β-cells with endothelial cells (ECs), the building blocks of islet microvasculature. Intra-islet ECs, actively regulate vascular permeability and appear to play a role in fine-tuning blood glucose sensing and regulation. These cells also tend to behave as “guardians”, controlling the expression and movement of a number of important immune mediators, thereby strongly contributing to the physiology of islets. This review will focus on the molecular signalling and crosstalk between the intra-islet ECs and β-cells and how their relationship can be a potential target for intervention strategies in islet pathology and islet transplantation.
Collapse
|
24
|
Adin CA, Vangundy ZC, Papenfuss TL, Xu F, Ghanem M, Lakey J, Hadley GA. Physiologic Doses of Bilirubin Contribute to Tolerance of Islet Transplants by Suppressing the Innate Immune Response. Cell Transplant 2017; 26:11-21. [PMID: 27393133 PMCID: PMC5657680 DOI: 10.3727/096368916x692096] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/07/2016] [Accepted: 09/23/2016] [Indexed: 01/02/2023] Open
Abstract
Bilirubin has been recognized as a powerful cytoprotectant when used at physiologic doses and was recently shown to have immunomodulatory effects in islet allograft transplantation, conveying donor-specific tolerance in a murine model. We hypothesized that bilirubin, an antioxidant, acts to suppress the innate immune response to islet allografts through two mechanisms: 1) by suppressing graft release of damage-associated molecular patterns (DAMPs) and inflammatory cytokines, and 2) by producing a tolerogenic phenotype in antigen-presenting cells. Bilirubin was administered intraperitoneally before pancreatic procurement or was added to culture media after islet isolation in AJ mice. Islets were exposed to transplant-associated nutrient deprivation and hypoxia. Bilirubin significantly decreased islet cell death after isolation and hypoxic stress. Bilirubin supplementation of islet media also decreased the release of DAMPs (HMGB1), inflammatory cytokines (IL-1β and IL-6), and chemokines (MCP-1). Cytoprotection was mediated by the antioxidant effects of bilirubin. Treatment of macrophages with bilirubin induced a regulatory phenotype, with increased expression of PD-L1. Coculture of these macrophages with splenocytes led to expansion of Foxp3+ Tregs. In conclusion, exogenous bilirubin supplementation showed cytoprotective and antioxidant effects in a relevant model of islet isolation and hypoxic stress. Suppression of DAMP release, alterations in cytokine profiles, and tolerogenic effects on macrophages suggest that the use of this natural antioxidant may provide a method of preconditioning to improve outcomes after allograft transplantation.
Collapse
Affiliation(s)
- Christopher A. Adin
- Department of Veterinary Clinical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Zachary C. Vangundy
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Tracey L. Papenfuss
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Feng Xu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Mostafa Ghanem
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Jonathan Lakey
- Department of Surgery, University of California, Irvine, Irvine, CA, USA
| | - Gregg A. Hadley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
25
|
Cui JP, Zhang MJ, Liu BL. Research progress of mesenchymal stem cells combined with islet transplantation in treatment of type I diabetes mellitus. Shijie Huaren Xiaohua Zazhi 2016; 24:2213-2218. [DOI: 10.11569/wcjd.v24.i14.2213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The most significant feature of type I diabetes is β-cell loss, which results in a series of complications. While β-cell loss occurs, β-cells are ultimately damaged by macrophages and T cells in the presence of inflammatory mediators. Because of this characteristic, five kinds of antibodies are commonly used in clinical practice to diagnose and evaluate β-cell loss, including islet cell antibody, insulin antibody, GAD65, IA-2 and IA-2b. In addition to the HLA gene related factors, environmental factors, such as infection, diet and physiological and psychological factors, are suspected to be causes of this disease. At present, there are many treatments for type I diabetes, and the clinical goal is to control blood glucose, prevent further damage of βcells and control patients' own immune response. In 1992, the discovery of insulin, which converts the fatal diabetes into a chronic disease, to some extent, delayed the progression of microvascular complications; however, it is not able to delay the progression of the disease. β-cell transplantation is currently the only minimally invasive means for reasonable control of blood glucose control disease related complications. Although whole pancreas transplantation can achieve a promising effect to some extent, it is accompanied by high incidence and mortality, as well as lifelong mandatory immune suppression. Bone marrow mesenchymal stem cells transplantation, lipopolysaccharideon (LPS) bone marrow mesenchymal stem cell pretreatment and islet cell exendin-4 liquid preservation reduce warm ischemia time damage and provide new avenues for islet cell transplantation.
Collapse
|
26
|
Jansson L, Barbu A, Bodin B, Drott CJ, Espes D, Gao X, Grapensparr L, Källskog Ö, Lau J, Liljebäck H, Palm F, Quach M, Sandberg M, Strömberg V, Ullsten S, Carlsson PO. Pancreatic islet blood flow and its measurement. Ups J Med Sci 2016; 121:81-95. [PMID: 27124642 PMCID: PMC4900068 DOI: 10.3109/03009734.2016.1164769] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pancreatic islets are richly vascularized, and islet blood vessels are uniquely adapted to maintain and support the internal milieu of the islets favoring normal endocrine function. Islet blood flow is normally very high compared with that to the exocrine pancreas and is autonomously regulated through complex interactions between the nervous system, metabolites from insulin secreting β-cells, endothelium-derived mediators, and hormones. The islet blood flow is normally coupled to the needs for insulin release and is usually disturbed during glucose intolerance and overt diabetes. The present review provides a brief background on islet vascular function and especially focuses on available techniques to measure islet blood perfusion. The gold standard for islet blood flow measurements in experimental animals is the microsphere technique, and its advantages and disadvantages will be discussed. In humans there are still no methods to measure islet blood flow selectively, but new developments in radiological techniques hold great hopes for the future.
Collapse
Affiliation(s)
- Leif Jansson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- CONTACT Leif Jansson, Department of Medical Cell Biology, Biomedical Centre, Box 571, Husargatan 3, SE-75123 Uppsala, Sweden
| | - Andreea Barbu
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Birgitta Bodin
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Carl Johan Drott
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Daniel Espes
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Xiang Gao
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Liza Grapensparr
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Örjan Källskog
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Joey Lau
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Hanna Liljebäck
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Fredrik Palm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - My Quach
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Monica Sandberg
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Sara Ullsten
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Per-Ola Carlsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
27
|
Shin JY, Jeong JH, Han J, Bhang SH, Jeong GJ, Haque MR, Al-Hilal TA, Noh M, Byun Y, Kim BS. Transplantation of heterospheroids of islet cells and mesenchymal stem cells for effective angiogenesis and antiapoptosis. Tissue Eng Part A 2015; 21:1024-35. [PMID: 25344077 DOI: 10.1089/ten.tea.2014.0022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although islet transplantation has been suggested as an alternative therapy for type 1 diabetes, there are efficiency concerns that are attributed to poor engraftment of transplanted islets. Hypoxic condition and delayed vasculogenesis induce necrosis and apoptosis of the transplanted islets. To overcome these limitations in islet transplantation, heterospheroids (HSs), which consist of rat islet cells (ICs) and human bone marrow-derived mesenchymal stem cells (hMSCs), were transplanted to the kidney and liver. The HSs cultured under the hypoxic condition system exhibited a significant increase in antiapoptotic gene expression in ICs. hMSCs in the HSs secreted angiogenic and antiapoptotic proteins. With the HS system, ICs and hMSCs were successfully located in the same area of the liver after transplantation of HSs through the portal vein, whereas the transplantation of islets and the dissociated hMSCs did not result in localization of transplanted ICs and hMSCs in the same area. HS transplantation resulted in an increase in angiogenesis at the transplantation area and a decrease in the apoptosis of transplanted ICs after transplantation into the kidney subcapsule compared with transplantation of islet cell clusters (ICCs). Insulin production levels of ICs were higher in the HS transplantation group compared with the ICC transplantation group. The HS system may be a more efficient transplantation method than the conventional methods for the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Jung-Youn Shin
- 1 School of Chemical and Biological Engineering, Seoul National University , Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Barbu A, Jansson L, Sandberg M, Quach M, Palm F. The use of hydrogen gas clearance for blood flow measurements in single endogenous and transplanted pancreatic islets. Microvasc Res 2014; 97:124-9. [PMID: 25446368 DOI: 10.1016/j.mvr.2014.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/07/2014] [Accepted: 10/15/2014] [Indexed: 12/20/2022]
Abstract
The blood perfusion of pancreatic islets is regulated independently from that of the exocrine pancreas, and is of importance for multiple aspects of normal islet function, and probably also during impaired glucose tolerance. Single islet blood flow has been difficult to evaluate due to technical limitations. We therefore adapted a hydrogen gas washout technique using microelectrodes to allow such measurements. Platinum micro-electrodes monitored hydrogen gas clearance from individual endogenous and transplanted islets in the pancreas of male Lewis rats and in human and mouse islets implanted under the renal capsule of male athymic mice. Both in the rat endogenous pancreatic islets as well as in the intra-pancreatically transplanted islets, the vascular conductance and blood flow values displayed a highly heterogeneous distribution, varying by factors 6-10 within the same pancreas. The blood flow of human and mouse islet grafts transplanted in athymic mice was approximately 30% lower than that in the surrounding renal parenchyma. The present technique provides unique opportunities to study the islet vascular dysfunction seen after transplantation, but also allows for investigating the effects of genetic and environmental perturbations on islet blood flow at the single islet level in vivo.
Collapse
Affiliation(s)
- Andreea Barbu
- Department of Medical Cell Biology, Uppsala University, Sweden; Department of Immunology, Genetics and Pathology, Uppsala University, Sweden.
| | - Leif Jansson
- Department of Medical Cell Biology, Uppsala University, Sweden.
| | - Monica Sandberg
- Department of Medical Cell Biology, Uppsala University, Sweden.
| | - My Quach
- Department of Medical Cell Biology, Uppsala University, Sweden.
| | - Fredrik Palm
- Department of Medical Cell Biology, Uppsala University, Sweden; Department of Medical and Health Sciences, University of Linköping, Sweden.
| |
Collapse
|
29
|
Nishimura R, Goto M, Sekiguchi S, Fujimori K, Ushiyama A, Satomi S. Assessment for revascularization of transplanted pancreatic islets at subcutaneous site in mice with a highly sensitive imaging system. Transplant Proc 2014; 43:3239-40. [PMID: 22099766 DOI: 10.1016/j.transproceed.2011.09.095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The subcutaneous space is one of the ideal sites for pancreatic islet transplantation, owing to the minimal invasiveness and easy access. However, the results of pancreatic islet transplantation in subcutaneous sites remain unsatisfactory. One of the main obstacles to successful pancreatic islet transplantation in subcutaneous sites is poor revascularization. Therefore, the aim of this study was to evaluate the revascularization process at subcutaneous sites with a highly sensitive imaging system combining a dorsal skinfold chamber (DSC) technique and multiphoton laser scanning microscopy (MPLSM). METHODS A few pancreatic islets isolated from C57BL/6-Tg (CAG-EGFP) mice were syngeneically transplanted into nonmetallic DSCs mounted on the backs of C57BL/6J mice. Time-dependent changes in the newly formed vessels of pancreatic islets were imaged using MPLSM on days 1, 4, 7, 11, and 14 (n = 6). Texas Red was injected intravenously to visualize blood vessels. To evaluate islet graft revascularization, we measured vascular volume surrounding the islet using the Volocity system (Improvision). RESULTS The percentages of vascular volume at days 1 and 14 were assumed to be 0 and 100%, respectively. The vascular volume on each day was 9.4 ± 6.5% (day 4), 34.9 ± 11.2% (day 7), and 21.1 ± 4.6% (day 11). CONCLUSIONS The present study showed that a highly sensitive imaging system combining the DSC technique and MPLSM was a useful tool to analyze the revascularization process of pancreatic islets in a subcutaneous site.
Collapse
Affiliation(s)
- R Nishimura
- Division of Advanced Surgical Science and Technology, Graduate School of Medicine, Tohoku University, Miyagi, Japan.
| | | | | | | | | | | |
Collapse
|
30
|
Zhu HT, Wang WL, Yu L, Wang B. Pig-islet xenotransplantation: recent progress and current perspectives. Front Surg 2014; 1:7. [PMID: 25593932 PMCID: PMC4287008 DOI: 10.3389/fsurg.2014.00007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/07/2014] [Indexed: 01/23/2023] Open
Abstract
Islet xenotransplantation is one prospective treatment to bridge the gap between available human cells and needs of patients with diabetes. Pig represents an ideal candidate for obtaining such available cells. However, potential clinical application of pig islet still faces obstacles including inadequate yield of high-quality functional islets and xenorejection of the transplants. Adequate amounts of available islets can be obtained by selection of a suitable pathogen-free source herd and the development of isolation and purification method. Several studies demonstrated the feasibility of successful preclinical pig-islet xenotransplantation and provided insights and possible mechanisms of xenogeneic immune recognition and rejection. Particularly promising is the achievement of long-term insulin independence in diabetic models by means of distinct islet products and novel immunotherapeutic strategies. Nonetheless, further efforts are needed to obtain much more safety and efficacy data to translate these findings into clinic.
Collapse
Affiliation(s)
- Hai-Tao Zhu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi’an Jiaotong University, Xi’an, China
| | - Wan-Li Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi’an Jiaotong University, Xi’an, China
| | - Liang Yu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi’an Jiaotong University, Xi’an, China
| | - Bo Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
31
|
Omentum is better site than kidney capsule for growth, differentiation, and vascularization of immature porcine β-cell implants in immunodeficient rats. Transplantation 2014; 96:1026-33. [PMID: 24056625 PMCID: PMC3888464 DOI: 10.1097/tp.0b013e3182a6ee41] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Rapid revascularization of islet cell implants is important for engraftment and subsequent survival and function. Development of an adequate vascular network is expected to allow adaptive growth of the β-cell mass. The present study compares omentum and kidney capsule as sites for growth and differentiation of immature β-cell grafts. METHODS Perinatal porcine islet cell grafts were implanted in omentum or under kidney capsule of nondiabetic nude rats. Implants were compared over 10 weeks for their respective growth, cellular composition, number and size of β cells, their proliferative activity, and implant blood vessel density. RESULTS In both sites, the β-cell volume increased fourfold between weeks 1 and 10 reflecting a rise in β-cell number. In the omental implants, however, the cellular insulin reserves and the percent of proliferating cells were twofold higher than in kidney implants. In parallel, the blood vessel density in omental implants increased twofold, reaching a density comparable with islets in adult pig pancreas. A positive correlation was found between the percent bromodeoxyuridine-positive β cells and the vessel density. CONCLUSIONS Growth of the β-cell volume proceeds similarly in the omentum and under the kidney capsule. However, the omentum leads to higher insulin reserves and an increased pool of proliferating cells, which might be related to a more extended vascular network. Our observations support the omentum as an alternative site for immature porcine islet cells, with beneficial effects on proliferation and implant revascularization.
Collapse
|
32
|
Li W, Zhao R, Liu J, Tian M, Lu Y, He T, Cheng M, Liang K, Li X, Wang X, Sun Y, Chen L. Small islets transplantation superiority to large ones: implications from islet microcirculation and revascularization. J Diabetes Res 2014; 2014:192093. [PMID: 24829922 PMCID: PMC4009214 DOI: 10.1155/2014/192093] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 03/01/2014] [Indexed: 12/30/2022] Open
Abstract
Pancreatic islet transplantation is a promising therapy to regain glycemic control in diabetic patients. The selection of ideal grafts is the basis to guarantee short-term effectivity and longevity of the transplanted islets. Contradictory to the traditional notion, recent findings implied the superiority of small islets for better transplantation outcomes rather than the large and intact ones. However, the mechanisms remain to be elucidated. Recent evidences emphasized the major impact of microcirculation on islet β -cell mass and function. And potentials in islet graft revascularization are crucial for their survival and preserved function in the recipient. In this study, we verified the distinct histological phenotype and functionality of small islets versus large ones both in vitro and in vivo. With efforts to exploring the differences in microcirculation and revascularization of islet grafts, we further evaluated local expressions of angiotensin and vascular endothelial growth factor A (VEGF-A) at different levels. Our findings reveal that, apart from the higher density of insulin-producing β -cells, small islets express less angiotensin and more angiotrophic VEGF-A. We therefore hypothesized a logical explanation of the small islet superiority for transplantation outcome from the aspects of facilitated microcirculation and revascularization intrinsically in small islets.
Collapse
Affiliation(s)
- Wenjuan Li
- Department of Endocrinology, Qilu Hospital of Shandong University, Institute of Endocrinology and Metabolism, No. 107 West Wenhua Road, Jinan, Shandong 250012, China
| | - Ruxing Zhao
- Department of Endocrinology, Qilu Hospital of Shandong University, Institute of Endocrinology and Metabolism, No. 107 West Wenhua Road, Jinan, Shandong 250012, China
| | - Jidong Liu
- Department of Poisoning and Occupational Disease, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Meng Tian
- Department of Endocrinology, Qilu Hospital of Shandong University, Institute of Endocrinology and Metabolism, No. 107 West Wenhua Road, Jinan, Shandong 250012, China
| | - Yiran Lu
- Department of Endocrinology, Qilu Hospital of Shandong University, Institute of Endocrinology and Metabolism, No. 107 West Wenhua Road, Jinan, Shandong 250012, China
| | - Tianyi He
- Department of Endocrinology, Qilu Hospital of Shandong University, Institute of Endocrinology and Metabolism, No. 107 West Wenhua Road, Jinan, Shandong 250012, China
| | - Meng Cheng
- Department of Endocrinology, Qilu Hospital of Shandong University, Institute of Endocrinology and Metabolism, No. 107 West Wenhua Road, Jinan, Shandong 250012, China
| | - Kai Liang
- Department of Endocrinology, Qilu Hospital of Shandong University, Institute of Endocrinology and Metabolism, No. 107 West Wenhua Road, Jinan, Shandong 250012, China
| | - Xia Li
- Institute of Cell Biology, Shandong University School of Medicine, Jinan 250012, China
| | - Xiangdong Wang
- Institute of Cell Biology, Shandong University School of Medicine, Jinan 250012, China
| | - Yu Sun
- Department of Endocrinology, Qilu Hospital of Shandong University, Institute of Endocrinology and Metabolism, No. 107 West Wenhua Road, Jinan, Shandong 250012, China
- *Yu Sun: and
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Institute of Endocrinology and Metabolism, No. 107 West Wenhua Road, Jinan, Shandong 250012, China
- *Li Chen:
| |
Collapse
|
33
|
Synergism of a natural plant product, oleanolic acid with calcineurin inhibitor in prolonging islet allograft survival. Transpl Immunol 2013; 29:64-70. [DOI: 10.1016/j.trim.2013.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 09/03/2013] [Accepted: 09/04/2013] [Indexed: 11/19/2022]
|
34
|
Hypoxia as a target for tissue specific gene therapy. J Control Release 2013; 172:484-94. [DOI: 10.1016/j.jconrel.2013.05.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/13/2013] [Accepted: 05/24/2013] [Indexed: 12/28/2022]
|
35
|
Zorzi D, Phan T, Sequi M, Lin Y, Freeman DH, Cicalese L, Rastellini C. Impact of islet size on pancreatic islet transplantation and potential interventions to improve outcome. Cell Transplant 2013; 24:11-23. [PMID: 24143907 PMCID: PMC4841262 DOI: 10.3727/096368913x673469] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Better results have been recently reported in clinical pancreatic islet transplantation (ITX) due mostly to improved isolation techniques and immunosuppression; however, some limitations still exist. It is known that following transplantation, 30% to 60% of the islets are lost. In our study, we have investigated 1) the role of size as a factor affecting islet engraftment and 2) potential procedural manipulations to increase the number of smaller functional islets that can be transplanted. C57/BL10 mice were used as donors and recipients in a syngeneic islet transplant model. Isolated islets were divided by size (large, >300 μm; medium 150-300 μm; small, <150 μm). Each size was transplanted in chemically induced diabetic mice as full (600 IEQ), suboptimal (400 IEQ), and marginal mass (200 IEQ). Control animals received all size islets. Engraftment was defined as reversal of diabetes by day 7 posttransplantation. When the superiority of smaller islets was observed, strategies of overdigestion and fragmentation were adopted during islet isolation in the attempt to reduce islet size and improve engraftment. Smaller islets were significantly superior in engraftment compared to medium, large, and control (all sizes) groups. This was more evident when marginal mass data were compared. In all masses, success decreased as islet size increased. Once islets were engrafted, functionality was not affected by size. When larger islets were fragmented, a significant decrease in islet functionality was observed. On the contrary, if pancreata were slightly overdigested, although not as successful as small naive islets, an increase in engraftment was observed when compared to the control group. In conclusion, smaller islets are superior in engraftment following islet transplantation. Fragmentation has a deleterious effect on islet engraftment. Islet isolations can be performed by reducing islet size with slight overdigestion, and it can be safely adopted to improve clinical outcome.
Collapse
Affiliation(s)
- Daria Zorzi
- Department of Surgery, Texas Transplant Center, University of Texas Medical Branch, Galveston, Texas, USA
| | - Tammy Phan
- Department of Surgery, Texas Transplant Center, University of Texas Medical Branch, Galveston, Texas, USA
| | - Marco Sequi
- Laboratory for Mother and Child Health, Department of Public Health, “Mario Negri” Pharmacological Research Institute, Milan, Italy
| | - Yong Lin
- Department of Surgery, Texas Transplant Center, University of Texas Medical Branch, Galveston, Texas, USA
| | - Daniel H. Freeman
- Department of Epidemiology and Biostatistics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Luca Cicalese
- Department of Surgery, Texas Transplant Center, University of Texas Medical Branch, Galveston, Texas, USA
| | - Cristiana Rastellini
- Department of Surgery, Texas Transplant Center, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
36
|
Abstract
Early innate inflammatory reaction strongly affects islet engraftment and survival after intrahepatic transplantation. This early immune response is triggered by ischemia-reperfusion injury and instant blood mediated inflammatory reaction (IBMIR) occurring hours and days after islet infusion. Evidence in both mouse model and in human counterpart suggest the involvement of coagulation, complement system, and proinflammatory chemokines/cytokines. Identification and targeting of pathway(s), playing a role as "master regulator(s)" in post-transplant detrimental inflammatory events, is now mandatory to improve islet transplantation success. This review will focus on inflammatory pathway(s) differentially modulated by islet isolation and mainly associated with the early post-transplant events. Moreover, we will take into account anti-inflammatory strategies that have been tested at 2 levels: on the graft, ex vivo, during islet culture (i.e., donor) and/or on the graft site, in vivo, early after islet infusion (i.e., recipient).
Collapse
Affiliation(s)
- Antonio Citro
- Beta Cell Biology Unit, Diabetes Research Institute, San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy,
| | | | | |
Collapse
|
37
|
Wittig C, Laschke MW, Scheuer C, Menger MD. Incorporation of bone marrow cells in pancreatic pseudoislets improves posttransplant vascularization and endocrine function. PLoS One 2013; 8:e69975. [PMID: 23875013 PMCID: PMC3715469 DOI: 10.1371/journal.pone.0069975] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 06/14/2013] [Indexed: 01/01/2023] Open
Abstract
Failure of revascularization is known to be the major reason for the poor outcome of pancreatic islet transplantation. In this study, we analyzed whether pseudoislets composed of islet cells and bone marrow cells can improve vascularization and function of islet transplants. Pancreatic islets isolated from Syrian golden hamsters were dispersed into single cells for the generation of pseudoislets containing 4×103 cells. To create bone marrow cell-enriched pseudoislets 2×103 islet cells were co-cultured with 2×103 bone marrow cells. Pseudoislets and bone marrow cell-enriched pseudoislets were transplanted syngeneically into skinfold chambers to study graft vascularization by intravital fluorescence microscopy. Native islet transplants served as controls. Bone marrow cell-enriched pseudoislets showed a significantly improved vascularization compared to native islets and pseudoislets. Moreover, bone marrow cell-enriched pseudoislets but not pseudoislets normalized blood glucose levels after transplantation of 1000 islet equivalents under the kidney capsule of streptozotocin-induced diabetic animals, although the bone marrow cell-enriched pseudoislets contained only 50% of islet cells compared to pseudoislets and native islets. Fluorescence microscopy of bone marrow cell-enriched pseudoislets composed of bone marrow cells from GFP-expressing mice showed a distinct fraction of cells expressing both GFP and insulin, indicating a differentiation of bone marrow-derived cells to an insulin-producing cell-type. Thus, enrichment of pseudoislets by bone marrow cells enhances vascularization after transplantation and increases the amount of insulin-producing tissue. Accordingly, bone marrow cell-enriched pseudoislets may represent a novel approach to increase the success rate of islet transplantation.
Collapse
Affiliation(s)
- Christine Wittig
- Institute for Clinical & Experimental Surgery, University of Saarland, Homburg/Saar, Germany.
| | | | | | | |
Collapse
|
38
|
Nishimura R, Nishioka S, Fujisawa I, Shiku H, Shimada M, Sekiguchi S, Fujimori K, Ushiyama A, Matsue T, Ohuchi N, Satomi S, Goto M. Tacrolimus inhibits the revascularization of isolated pancreatic islets. PLoS One 2013; 8:e56799. [PMID: 23613708 PMCID: PMC3629082 DOI: 10.1371/journal.pone.0056799] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 01/16/2013] [Indexed: 01/10/2023] Open
Abstract
AIMS Immunosuppressive drugs could be crucial factors for a poor outcome after islet allotransplantation. Unlike rapamycin, the effects of tacrolimus, the current standard immunosuppressant used in islet transplantation, on graft revascularization remain unclear. We examined the effects of tacrolimus on islet revascularization using a highly sensitive imaging system, and analyzed the gene expression in transplanted islets by introducing laser microdissection techniques. METHODS Islets isolated from C57BL/6-Tg (CAG-EGFP) mice were transplanted into the nonmetallic dorsal skinfold chamber on the recipients. Balb/c athymic mice were used as recipients and were divided into two groups: including a control group (n = 9) and tacrolimus-treated group (n = 7). The changes in the newly-formed vessels surrounding the islet grafts were imaged and semi-quantified using multi-photon laser-scanning microscopy and a Volocity system. Gene expression in transplanted islets was analyzed by the BioMark dynamic system. RESULTS The revascularization process was completed within 14 days after pancreatic islet transplantation at subcutaneous sites. The newly-formed vascular volume surrounding the transplanted islets in the tacrolimus-treated group was significantly less than that in the control group (p<0.05). Although the expression of Vegfa (p<0.05) and Ccnd1 (p<0.05) was significantly upregulated in the tacrolimus-treated group compared with that of the control group, no differences were observed between the groups in terms of other types of gene expression. CONCLUSIONS The present study demonstrates that tacrolimus inhibits the revascularization of isolated pancreatic islets without affecting the characteristics of the transplanted grafts. Further refinements of this immunosuppressive regimen, especially regarding the revascularization of islet grafts, could improve the outcome of islet allotransplantation.
Collapse
Affiliation(s)
- Ryuichi Nishimura
- Division of Advanced Surgical Science and Technology, Tohoku University, Sendai, Japan
| | - Sho Nishioka
- Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Ikuma Fujisawa
- Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Hitoshi Shiku
- Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Miki Shimada
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Satoshi Sekiguchi
- Division of Advanced Surgical Science and Technology, Tohoku University, Sendai, Japan
| | - Keisei Fujimori
- Division of Advanced Surgical Science and Technology, Tohoku University, Sendai, Japan
| | - Akira Ushiyama
- Department of Environmental Health, National Institute of Public Health, Wako, Japan
| | - Tomokazu Matsue
- WorldPremier InternationalResearch Center Initiative Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Noriaki Ohuchi
- Division of Advanced Surgical Science and Technology, Tohoku University, Sendai, Japan
| | - Susumu Satomi
- Division of Advanced Surgical Science and Technology, Tohoku University, Sendai, Japan
| | - Masafumi Goto
- Division of Advanced Surgical Science and Technology, Tohoku University, Sendai, Japan
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
- * E-mail:
| |
Collapse
|
39
|
Yang KC, Wu CC, Yang SH, Chiu CC, Sumi S, Lee HS. Investigating the suspension culture on aggregation and function of mouse pancreatic β-cells. J Biomed Mater Res A 2013; 101:2273-82. [PMID: 23348877 DOI: 10.1002/jbm.a.34547] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 10/23/2012] [Accepted: 11/27/2012] [Indexed: 01/21/2023]
Abstract
The integrity and hierarchical structure of islet influence β-cells physiology dramatically. A culture substrate which can maintain or improve β-cells aggregation shall benefit cell therapy for diabetics. In this study, nontreated, type IV collagen, Lipidure, and ultralow attachment dishes were used to culture a murine β-cell line, MIN-6. The formation and biological performances of pseudoislets were investigated. Results showed that β-cells formed loose and irregular aggregates on nontreated dishes. Oppositely, pseudoislets formed on other three substrates. Most pseudoislets on Lipidure and type IV collagen dishes had a diameter between 100-150 μm with high survival rate, while large pseudoislets (>250 μm) with seriously central necrosis were found on ultralow attachment dishes. Western blot analysis revealed that pseudoislets had relatively higher connexin 36 protein productions relative to single cells. The glucose-stimulated insulin secretion test showed pseudoislets on type IV collagen have high stimulation index. Monolayers from TCPS dishes and pseudoislets from type IV collagen or Lipidure dishes were further transplanted into diabetic mice. Animals received both single cells and pseudoislets had decreasing blood glucose level and regained body weight. Histologic examination revealed that all implants successfully engrafted with positive insulin staining. Interestingly, the area under curve for the intraperitoneal glucose tolerance test showed pseudoislets had superior glucose disappearance rate. This study reveals that isolated islets or insulin-producing cells can be cultured on type IV collagen or Lipidure dishes to improve/maintain integrity prior to transplantation.
Collapse
Affiliation(s)
- Kai-Chiang Yang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | | | | | | | | | | |
Collapse
|
40
|
Blood flow in endogenous and transplanted pancreatic islets in anesthetized rats: effects of lactate and pyruvate. Pancreas 2012; 41:1263-71. [PMID: 22617710 DOI: 10.1097/mpa.0b013e31824bd97c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVE The objective of this study was to evaluate the effects of exogenously administered lactate and pyruvate on blood perfusion in endogenous and transplanted islets. METHODS Anesthetized Wistar-Furth rats were given lactate or pyruvate intravenously, and regional blood perfusion was studied 3 or 30 minutes later with a microsphere technique. Separate rats received a 30-minute infusion of pyruvate or lactate into the portal vein before blood flow measurements. We also administered these substances to islet-implanted rats 4 weeks after transplantation and measured graft blood flow with laser Doppler flowmetry. The expression of monocarboxylate transporter 1 and lactate dehydrogenase A was analyzed. RESULTS The expression of monocarboxylate transporter 1 and lactate dehydrogenase A was markedly up-regulated in transplanted as compared with endogenous islets. Administration of pyruvate, but not lactate, increased mesenteric blood flow after 3 minutes. Pyruvate decreased mesenteric blood flow after 30 minutes, whereas lactate decreased only islet blood flow. These responses were absent in transplanted animals. A continuous intraportal infusion of lactate or pyruvate increased selectively islet blood flow but did not affect blood perfusion of transplanted islets. CONCLUSIONS Lactate and pyruvate affect islet blood flow through effects mediated by interactions between the liver and the nervous system. Such a response can help adjust the release of islet hormones during excess substrate concentrations.
Collapse
|
41
|
Zhou YN, Zhu CY, Li JP. Co-transplantation of islets and umbilical cord mesenchymal stem cells improves graft activity and function in rats. Shijie Huaren Xiaohua Zazhi 2012; 20:2601-2607. [DOI: 10.11569/wcjd.v20.i27.2601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine the effect of co-transplantation of islets and umbilical cord mesenchymal stem cells (UCMSCs) on graft activity and function in rats.
METHODS: Streptozotocin-induced diabetic Sprague-Dawley (SD) rats were divided into four groups, with (1) 500 islets, (2) 1 to 5×106 UCMSCs, (3) 500 islets and 1 to 5×106 UCMSCs; and (4) normal saline transplanted under the kidney capsule, respectively. All rats were evaluated for blood glucose, serum insulin, glucose tolerance, and the rate of normoglycaemia (blood glucose ≤ 11.1 mmol/L) up to postoperative day 28.
RESULTS: Blood glucose was lowest and serum insulin was highest in the islet+UCMSCs group relative to the islet only group (both P < 0.05). The rate of normoglycaemia was better in the co-transplantation group than in the islet only group (P < 0.05). However, there were no differences in the parameters detected between the sham operation group and UCMSCs alone group, and no normoglycemic rats were found in the UCMSCs alone group.
CONCLUSION: Co-transplantation of umbilical cord mesenchymal stem cells with islets is associated with enhanced islet graft activity and function.
Collapse
|
42
|
Sabra G, Vermette P. A 3D cell culture system: separation distance between INS-1 cell and endothelial cell monolayers co-cultured in fibrin influences INS-1 cells insulin secretion. Biotechnol Bioeng 2012; 110:619-27. [PMID: 22949028 DOI: 10.1002/bit.24716] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 08/15/2012] [Accepted: 08/24/2012] [Indexed: 01/21/2023]
Abstract
The aim of this study was to develop an in vitro cell culture system allowing studying the effect of separation distance between monolayers of rat insulinoma cells (INS-1) and human umbilical vein endothelial cells (HUVEC) co-cultured in fibrin over INS-1 cell insulin secretion. For this purpose, a three-dimensional (3D) cell culture chamber was designed, built using micro-fabrication techniques and validated. The co-culture was successfully carried out and the effect on INS-1 cell insulin secretion was investigated. After 48 and 72 h, INS-1 cells co-cultured with HUVEC separated by a distance of 100 µm revealed enhanced insulin secretion compared to INS-1 cells cultured alone or co-cultured with HUVEC monolayers separated by a distance of 200 µm. These results illustrate the importance of the separation distance between two cell niches for cell culture design and the possibility to further enhance the endocrine function of beta cells when this factor is considered.
Collapse
Affiliation(s)
- Georges Sabra
- Laboratoire de Bio-ingénierie et de Biophysique de l'Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | | |
Collapse
|
43
|
Stem cells as a tool to improve outcomes of islet transplantation. J Transplant 2012; 2012:736491. [PMID: 22970344 PMCID: PMC3437295 DOI: 10.1155/2012/736491] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 07/02/2012] [Indexed: 12/24/2022] Open
Abstract
The publication of the promising results of the Edmonton protocol in 2000 generated optimism for islet transplantation as a potential cure for Type 1 Diabetes Mellitus. Unfortunately, follow-up data revealed that less than 10% of patients achieved long-term insulin independence. More recent data from other large trials like the Collaborative Islet Transplant Registry show incremental improvement with 44% of islet transplant recipients maintaining insulin independence at three years of follow-up. Multiple underlying issues have been identified that contribute to islet graft failure, and newer research has attempted to address these problems. Stem cells have been utilized not only as a functional replacement for β cells, but also as companion or supportive cells to address a variety of different obstacles that prevent ideal graft viability and function. In this paper, we outline the manners in which stem cells have been applied to address barriers to the achievement of long-term insulin independence following islet transplantation.
Collapse
|
44
|
Kaufman-Francis K, Koffler J, Weinberg N, Dor Y, Levenberg S. Engineered vascular beds provide key signals to pancreatic hormone-producing cells. PLoS One 2012; 7:e40741. [PMID: 22808248 PMCID: PMC3395696 DOI: 10.1371/journal.pone.0040741] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 06/12/2012] [Indexed: 12/13/2022] Open
Abstract
The mechanisms underlying early islet graft failure are not entirely clear, but are thought to involve ischemic injury due to delayed vascularization. We hypothesize that blood vessels play an active role in cell-cell communications supporting islet survival and engraftment. To test this hypothesis and to uncouple endothelial cell (EC)-generated signaling stimuli from their nutritional and gas exchange functions, we developed three dimensional (3D) endothelial vessel networks in engineered pancreatic tissues prepared from islets, fibroblasts and ECs. The tri-culture setup, seeded on highly porous biocompatible polymeric scaffolds closely mimics the natural anatomical context of pancreatic vasculature. Enhanced islet survival correlating with formation of functional tube-like endothelial vessels was demonstrated. Addition of foreskin fibroblasts to islet-endothelial cultures promoted tube-like structure formation, which further supported islet survival as well as insulin secretion. Gene expression profiles of EC growth factors, extracellular matrix (ECM), morphogenes and differentiation markers were significantly different in 2D versus 3D culture systems and were further modified upon addition of fibroblasts. Implantation of prevascularized islets into diabetic mice promoted survival, integration and function of the engrafted engineered tissue, supporting the suggested role of ECs in islet survival. These findings present potential strategies for preparation of transplantable islets with increased survival prospects.
Collapse
Affiliation(s)
- Keren Kaufman-Francis
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
- Biotechnology Interdisciplinary Unit, Technion - Israel Institute of Technology, Haifa, Israel
| | - Jacob Koffler
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
- Biotechnology Interdisciplinary Unit, Technion - Israel Institute of Technology, Haifa, Israel
| | - Noa Weinberg
- Department of Cellular Biochemistry and Human Genetics, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yuval Dor
- Department of Cellular Biochemistry and Human Genetics, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shulamit Levenberg
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
- * E-mail:
| |
Collapse
|
45
|
Sakata N, Goto M, Yoshimatsu G, Egawa S, Unno M. Utility of co-transplanting mesenchymal stem cells in islet transplantation. World J Gastroenterol 2011; 17:5150-5. [PMID: 22215938 PMCID: PMC3243880 DOI: 10.3748/wjg.v17.i47.5150] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 06/20/2011] [Accepted: 06/27/2011] [Indexed: 02/06/2023] Open
Abstract
Islet transplantation is characterized by the transplantation of isolated islets from donor pancreata into a diabetic recipient. Although it is a viable choice in the treatment of insulin dependent diabetes mellitus, most patients (approximately 90%) require insulin five years after transplantation. Recently, the co-transplantation of mesenchymal stem cells (MSCs) and islets in animal studies has revealed the effectiveness of MSCs co-transplantation for improving islet function. The mechanisms underlying the beneficial impact of MSCs include immunomodulation and the promotion of angiogenesis. In this review, we discuss MSCs and how they support improved graft survival and function.
Collapse
|
46
|
Soleimanpour SA, Hirshberg B, Bunnell DJ, Sumner AE, Ader M, Remaley AT, Rother KI, Rickels MR, Harlan DM. Metabolic function of a suboptimal transplanted islet mass in nonhuman primates on rapamycin monotherapy. Cell Transplant 2011; 21:1297-304. [PMID: 22080915 PMCID: PMC3508173 DOI: 10.3727/096368911x603620] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Although islet transplantation may restore insulin independence to individuals with type 1 diabetes mellitus, most have abnormal glucose tolerance. We asked whether the defective glucose tolerance is due to inadequate β-cell mass or to impaired insulin sensitivity. We performed metabolic studies on four cynomolgus primates before inducing diabetes with streptozotocin (STZ), then again 2-3 weeks after restoring insulin independence via intrahepatic islet transplantation utilizing a calcineurin inhibitor-free immunosuppressive regimen (induction with rabbit antithymocyte globulin and maintenance therapy with rapamycin). Engrafted β-cell mass was assessed by acute insulin and C-peptide responses to glucose (AIR(glu) and ACR(glu)) and arginine (AIR(arg) and ACR(arg)). Insulin sensitivity (S(I)) was determined in naive and transplanted primates from an intravenous glucose tolerance test using the minimal model. α-Cell function was determined by the acute glucagon response to arginine (AGR(arg)). Glucose tolerance (K(g)) decreased from 4.1 ± 0.5%/min in naive primates to 1.8 ± 0.3%/min in transplanted primates (p < 0.01). Following transplantation, AIR(glu) was 28.7 ± 13.1 μU/ml compared to 169.9 ± 43.1 μU/ml (p < 0.03) in the naive condition, ACR(glu) was 14.5 ± 6.0 ng/ml compared to 96.5 ± 17.0 ng/ml naive (p < 0.01), AIR(arg) was 29.1 ± 13.1 μU/ml compared to 91.4 ± 28.2 μU/ml naive (p < 0.05), and ACR(arg) was 1.11 ± 0.51 ng/ml compared to 2.79 ± 0.77 ng/ml naive (p < 0.05). S(I) did not differ from naive to posttransplant states. AGR(arg) was reduced in transplanted primates (349 ± 118 pg/ml) when compared to both naive (827 ± 354 pg/ml) and post-STZ diabetic primates (1020 ± 440 pg/ml) (p < 0.01 for both comparisons). These data suggest that impaired glucose tolerance observed in islet transplant recipients is secondary to low functional β-cell mass and not to insulin resistance shortly after transplant. Furthermore, improved glycemic control achieved via islet transplantation over the diabetic state might be attained, in part, via reduced glucagon secretion.
Collapse
|
47
|
Langlois A, Bietiger W, Seyfritz E, Maillard E, Vivot K, Peronet C, Meyer N, Kessler L, Jeandidier N, Pinget M, Sigrist S. Improvement of Rat Islet Viability during Transplantation: Validation of Pharmacological Approach to Induce VEGF Overexpression. Cell Transplant 2011; 20:1333-42. [DOI: 10.3727/096368910x557182] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Delayed and insufficient revascularization during islet transplantation deprives islets of oxygen and nutrients, resulting in graft failure. Vascular endothelial growth factor (VEGF) could play a critical role in islet revascularization. We aimed to develop pharmacological strategies for VEGF overexpression in pancreatic islets using the iron chelator deferoxamine (DFO), thus avoiding obstacles or safety risks associated with gene therapy. Rat pancreatic islets were infected in vivo using an adenovirus (ADE) encoding human VEGF gene (4.108 pfu/pancreas) or were incubated in the presence of DFO (10 μmol/L). In vitro viability, functionality, and the secretion of VEGF were evaluated in islets 1 and 3 days after treatment. Infected islets or islets incubated with DFO were transplanted into the liver of syngenic diabetic rats and the graft efficiency was estimated in vivo by measuring body weight, glycemia, C-peptide secretion, and animal survival over a period of 2 months. DFO induced transient VEGF overexpression over 3 days, whereas infection with ADE resulted in prolonged VEGF overexpression lasting 14 days; however, this was toxic and decreased islet viability and functionality. The in vivo study showed a decrease in rat deaths after the transplantation of islets treated with DFO or ADE compared with the sham and control group. ADE treatment improved body weight and C-peptide levels. Gene therapy and DFO improved metabolic control in diabetic rats after transplantation, but this effect was limited in the presence of DFO. The pharmacological approach is an interesting strategy for improving graft efficiency during transplantation, but this approach needs to be improved with drugs that are more specific.
Collapse
Affiliation(s)
- A. Langlois
- Centre européen d'étude du Diabète, Strasbourg, France
| | - W. Bietiger
- Centre européen d'étude du Diabète, Strasbourg, France
| | - E. Seyfritz
- Centre européen d'étude du Diabète, Strasbourg, France
| | - E. Maillard
- Centre européen d'étude du Diabète, Strasbourg, France
| | - K. Vivot
- Centre européen d'étude du Diabète, Strasbourg, France
| | - C. Peronet
- Centre européen d'étude du Diabète, Strasbourg, France
| | - N. Meyer
- Faculté de Médecine de Strasbourg, Laboratoire de Biostatistique, Strasbourg, France
| | - L. Kessler
- Service d'endocrinologie, de diabète et des maladies métaboliques, Médicale B Hopital civil, Strasbourg cedex, France
- Université de Strasbourg (UdS), Strasbourg cedex, France
| | - N. Jeandidier
- Service d'endocrinologie, de diabète et des maladies métaboliques, Médicale B Hopital civil, Strasbourg cedex, France
- Université de Strasbourg (UdS), Strasbourg cedex, France
| | - M. Pinget
- Centre européen d'étude du Diabète, Strasbourg, France
- Service d'endocrinologie, de diabète et des maladies métaboliques, Médicale B Hopital civil, Strasbourg cedex, France
- Université de Strasbourg (UdS), Strasbourg cedex, France
| | - S. Sigrist
- Centre européen d'étude du Diabète, Strasbourg, France
| |
Collapse
|
48
|
Zhu CY, Li JP. Cotransplantation of mesenchymal stem cells and islet in the treatment of type 1 diabetes mellitus: recent progress. Shijie Huaren Xiaohua Zazhi 2011; 19:2546-2550. [DOI: 10.11569/wcjd.v19.i24.2546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Islet transplantation for type 1 diabetes mellitus (T1DM) is limited by the lack of nutrients and presence of transplantation-associated inflammation. Most patients still need to be given a small dose of exogenous insulin in the following 3-5 years after islet transplantation. Cotransplantation of mesenchymal stem cells (MSCs) and islet holds great promise for the treatment of T1DM, because it can regulate the immune responses and overcome the shortage of trophic molecules. However, cotransplantation-associated tumorigenesis and the potential for metastasis in vivo should be also taken into consideration. In this review, we focus on the immunomodulatory properties, trophic effect and the potential side effects of cotransplantation of MSC and islet in the treatment of T1DM.
Collapse
|
49
|
Stiegler P, Matzi V, Pierer E, Hauser O, Schaffellner S, Renner H, Greilberger J, Aigner R, Maier A, Lackner C, Iberer F, Smolle-Jüttner FM, Tscheliessnigg K, Stadlbauer V. Creation of a prevascularized site for cell transplantation in rats. Xenotransplantation 2011; 17:379-90. [PMID: 20955294 DOI: 10.1111/j.1399-3089.2010.00606.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Transplanted cells, especially islet cells, are likely to become apoptotic due to local hypoxia leading to graft dysfunction. Isolated pancreatic islet cells depend on the diffusion of oxygen from the surrounding tissue; therefore, access to sufficient oxygen supply is beneficial, particularly when microcapsules are used for immunoisolation in xenotransplantation. The aim of this study was to create a prevascularized site for cell transplantation in rats and test its effectiveness with microencapsulated HEK293 cells. METHODS The combination of implantation of a foam dressing, vacuum-assisted wound closure (foam+VAC) and hyperbaric oxygenation (HBO) was used in 40 Sprague-Dawley rats. Blood flow and vascular endothelial growth factor (VEGF) levels were determined. Sodium cellulose sulphate (SCS)-microencapsulated HEK293 cells were xenotransplanted into the foam dressing in rats pre-treated with HBO, and angiogenesis and apoptosis were assessed. RESULTS Vessel ingrowth and VEGF levels increased depending on the duration of HBO treatment. The area containing the foam was perfused significantly better in the experimental groups when compared to controls. Only a small amount of apoptosis occurs in SCS-microencapsulated HEK293 cells after xenotransplantation. CONCLUSION As ischemia-damaged cells are likely to undergo cell death or loose functionality due to hypoxia, therefore leading to graft dysfunction, the combination foam+VAC and HBO might be a promising method to create a prevascularized site to achieve better results in xenogeneic cell transplantation.
Collapse
Affiliation(s)
- Philipp Stiegler
- Department of Surgery, Division of Transplantation Surgery, Medical University Graz, Graz, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Li F, Mahato RI. RNA interference for improving the outcome of islet transplantation. Adv Drug Deliv Rev 2011; 63:47-68. [PMID: 21156190 DOI: 10.1016/j.addr.2010.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 11/19/2010] [Accepted: 11/25/2010] [Indexed: 01/06/2023]
Abstract
Islet transplantation has the potential to cure type 1 diabetes. Despite recent therapeutic success, it is still not common because a large number of transplanted islets get damaged by multiple challenges including instant blood mediated inflammatory reaction, hypoxia/reperfusion injury, inflammatory cytokines, and immune rejection. RNA interference (RNAi) is a novel strategy to selectively degrade target mRNA. The use of RNAi technologies to downregulate the expression of harmful genes has the potential to improve the outcome of islet transplantation. The aim of this review is to gain a thorough understanding of biological obstacles to islet transplantation and discuss how to overcome these barriers using different RNAi technologies. This eventually will help improve islet survival and function post transplantation. Chemically synthesized small interferring RNA (siRNA), vector based short hairpin RNA (shRNA), and their critical design elements (such as sequences, promoters, and backbone) are discussed. The application of combinatorial RNAi in islet transplantation is also discussed. Last but not the least, several delivery strategies for enhanced gene silencing are discussed, including chemical modification of siRNA, complex formation, bioconjugation, and viral vectors.
Collapse
Affiliation(s)
- Feng Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | | |
Collapse
|