1
|
Zhang W, Cui Y, Lu M, Xu M, Li Y, Song H, Luo Y, Song J, Yang Y, Wang X, Liao L, Wang Y, Reid L, He Z. Hormonally and chemically defined expansion conditions for organoids of biliary tree Stem Cells. Bioact Mater 2024; 41:672-695. [PMID: 39309110 PMCID: PMC11415613 DOI: 10.1016/j.bioactmat.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/25/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024] Open
Abstract
Wholly defined ex vivo expansion conditions for biliary tree stem cell (BTSC) organoids were established, consisting of a defined proliferative medium (DPM) used in combination with soft hyaluronan hydrogels. The DPM consisted of commercially available Kubota's Medium (KM), to which a set of small molecules, particular paracrine signals, and heparan sulfate (HS) were added. The small molecules used were DNA methyltransferase inhibitor (RG108), TGF- β Type I receptor inhibitor (A83-01), adenylate cyclase activator (Forskolin), and L-type Ca2+ channel agonist (Bay K8644). A key paracrine signal proved to be R-spondin 1 (RSPO1), a secreted protein that activates Wnts. Soluble hyaluronans, 0.05 % sodium hyaluronate, were used with DPM to expand monolayer cultures. Expansion of organoids was achieved by using DPM in combination with embedding organoids in Matrigel that was replaced with a defined thiol-hyaluronan triggered with PEGDA to form a hydrogel with a rheology [G*] of less than 100 Pa. The combination is called the BTSC-Expansion-Glycogel-System (BEX-gel system) for expanding BTSCs as a monolayer or as organoids. The BTSC organoids were expanded more than 3000-fold ex vivo in the BEX-gel system within 70 days while maintaining phenotypic traits indicative of stem/progenitors. Stem-cell-patch grafting of expanded BTSC organoids was performed on the livers of Fah-/- mice with tyrosinemia and resulted in the rescue of the mice and restoration of their normal liver functions. The BEX-gel system for BTSC organoid expansion provides a strategy to generate sufficient numbers of organoids for the therapeutic treatments of liver diseases.
Collapse
Affiliation(s)
- Wencheng Zhang
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Yangyang Cui
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Postgraduate Training Base of Shanghai East Hospital, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Mengqi Lu
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Postgraduate Training Base of Shanghai East Hospital, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Mingyang Xu
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Yuting Li
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Haimeng Song
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Yi Luo
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Jinjia Song
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Yong Yang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Xicheng Wang
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Lijun Liao
- Department of Anesthesiology and Pain Management, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, China
| | - Yunfang Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Lola Reid
- Departments of Cell Biology and Physiology, Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, 27599, United States
| | - Zhiying He
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| |
Collapse
|
2
|
Rodriguez-Fernandez J, Garcia-Legler E, Villanueva-Badenas E, Donato MT, Gomez-Ribelles JL, Salmeron-Sanchez M, Gallego-Ferrer G, Tolosa L. Primary human hepatocytes-laden scaffolds for the treatment of acute liver failure. BIOMATERIALS ADVANCES 2023; 153:213576. [PMID: 37566937 DOI: 10.1016/j.bioadv.2023.213576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/29/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023]
Abstract
Cell-based liver therapies based on retrieving and steadying failed metabolic function(s) for acute and chronic diseases could be a valuable substitute for liver transplants, even though they are limited by the low engraftment capability and reduced functional quality of primary human hepatocytes (PHH). In this paper we propose the use of gelatin-hyaluronic acid (Gel-HA) scaffolds seeded with PHH for the treatment of liver failure. We first optimized the composition using Gel-HA hydrogels, looking for the mechanical properties closer to the human liver and determining HepG2 cells functionality. Gel-HA scaffolds with interconnected porosity (pore size 102 μm) were prepared and used for PHH culture and evaluation of key hepatic functions. PHH cultured in Gel-HA scaffolds exhibited increased albumin and urea secretion and metabolic capacity (CYP and UGT activity levels) compared to standard monolayer cultures. The transplant of the scaffold containing PHH led to an improvement in liver function (transaminase levels, necrosis) and ameliorated damage in a mouse model of acetaminophen (APAP)-induced liver failure. The study provided a mechanistic understanding of APAP-induced liver injury and the impact of transplantation by analyzing cytokine production and oxidative stress induction to find suitable biomarkers of cell therapy effectiveness.
Collapse
Affiliation(s)
- Julio Rodriguez-Fernandez
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain
| | - Emma Garcia-Legler
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain
| | - Estela Villanueva-Badenas
- Experimental Hepatology Unit, Health Research Institute La Fe (IISLAFE), Valencia 46026, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia 46010, Spain
| | - M Teresa Donato
- Experimental Hepatology Unit, Health Research Institute La Fe (IISLAFE), Valencia 46026, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia 46010, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - José Luis Gomez-Ribelles
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain; Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain
| | - Manuel Salmeron-Sanchez
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain; Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain; Centre for the Cellular Microenvironment, Division of Biomedical Engineering, School of Engineering, University of Glasgow, G12 8LT Glasgow, United Kingdom
| | - Gloria Gallego-Ferrer
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain; Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain.
| | - Laia Tolosa
- Experimental Hepatology Unit, Health Research Institute La Fe (IISLAFE), Valencia 46026, Spain; Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain.
| |
Collapse
|
3
|
Yun C, Kim SH, Jung YS. Current Research Trends in the Application of In Vitro Three-Dimensional Models of Liver Cells. Pharmaceutics 2022; 15:pharmaceutics15010054. [PMID: 36678683 PMCID: PMC9866911 DOI: 10.3390/pharmaceutics15010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The liver produces and stores various nutrients that are necessary for the body and serves as a chemical plant, metabolizing carbohydrates, fats, hormones, vitamins, and minerals. It is also a vital organ for detoxifying drugs and exogenous harmful substances. Culturing liver cells in vitro under three-dimensional (3D) conditions is considered a primary mechanism for liver tissue engineering. The 3D cell culture system is designed to allow cells to interact in an artificially created environment and has the advantage of mimicking the physiological characteristics of cells in vivo. This system facilitates contact between the cells and the extracellular matrix. Several technically different approaches have been proposed, including bioreactors, chips, and plate-based systems in fluid or static media composed of chemically diverse materials. Compared to conventional two-dimensional monolayer culture in vitro models, the ability to predict the function of the tissues, including the drug metabolism and chemical toxicity, has been enhanced by developing three-dimensional liver culture models. This review discussed the methodology of 3D cell cultures and summarized the advantages of an in vitro liver platform using 3D culture technology.
Collapse
|
4
|
Du Y, Zhang W, Qiu H, Xiao C, Shi J, Reid LM, He Z. Mouse Models of Liver Parenchyma Injuries and Regeneration. Front Cell Dev Biol 2022; 10:903740. [PMID: 35721478 PMCID: PMC9198899 DOI: 10.3389/fcell.2022.903740] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
Mice have genetic and physiological similarities with humans and a well-characterized genetic background that is easy to manipulate. Murine models have become the most favored, robust mammalian systems for experimental analyses of biological processes and disease conditions due to their low cost, rapid reproduction, a wealth of mouse strains with defined genetic conditions (both native ones as well as ones established experimentally), and high reproducibility with respect to that which can be done in experimental studies. In this review, we focus on murine models for liver, an organ with renown regenerative capacity and the organ most central to systemic, complex metabolic and physiological functions for mammalian hosts. Establishment of murine models has been achieved for all aspects of studies of normal liver, liver diseases, liver injuries, and regenerative repair mechanisms. We summarize key information on current mouse systems that partially model facets of clinical scenarios, particularly those associated with drug-induced acute or chronic liver injuries, dietary related, non-alcoholic liver disease (NAFLD), hepatitis virus infectious chronic liver diseases, and autoimmune hepatitis (AIH). In addition, we also include mouse models that are suitable for studying liver cancers (e.g., hepatocellular carcinomas), the aging process (senescence, apoptosis), and various types of liver injuries and regenerative processes associated with them.
Collapse
Affiliation(s)
- Yuan Du
- Department of General Surgery, Ji’an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji’an, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wencheng Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
| | - Hua Qiu
- Department of General Surgery, Ji’an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji’an, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Canjun Xiao
- Department of General Surgery, Ji’an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji’an, China
| | - Jun Shi
- Department of General Surgery, Ji’an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji’an, China
- The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Zhiying He, ; Lola M. Reid, , ; Jun Shi,
| | - Lola M. Reid
- Departments of Cell Biology and Physiology, Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, United States
- *Correspondence: Zhiying He, ; Lola M. Reid, , ; Jun Shi,
| | - Zhiying He
- Department of General Surgery, Ji’an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji’an, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- *Correspondence: Zhiying He, ; Lola M. Reid, , ; Jun Shi,
| |
Collapse
|
5
|
Di Matteo S, Di Meo C, Carpino G, Zoratto N, Cardinale V, Nevi L, Overi D, Costantini D, Pinto C, Montanari E, Marzioni M, Maroni L, Benedetti A, Viola M, Coviello T, Matricardi P, Gaudio E, Alvaro D. Therapeutic effects of dexamethasone-loaded hyaluronan nanogels in the experimental cholestasis. Drug Deliv Transl Res 2022; 12:1959-1973. [PMID: 35226290 PMCID: PMC9242918 DOI: 10.1007/s13346-022-01132-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2022] [Indexed: 11/27/2022]
Abstract
A major function of the intrahepatic biliary epithelium is bicarbonate excretion in bile. Recent reports indicate that budesonide, a corticosteroid with high receptor affinity and hepatic first pass clearance, increases the efficacy of ursodeoxycholic acid, a choleretic agent, in primary biliary cholangitis patients. We have previously reported that bile ducts isolated from rats treated with dexamethasone or budesonide showed an enhanced activity of the Na+/H+ exchanger isoform 1 (NHE1) and Cl-/HCO3- exchanger protein 2 (AE2) . Increasing the delivery of steroids to the liver may result in three beneficial effects: increase in the choleresis, treatment of the autoimmune or inflammatory liver injury and reduction of steroids' systemic harmful effects. In this study, the steroid dexamethasone was loaded into nanohydrogels (or nanogels, NHs), in order to investigate corticosteroid-induced increased activities of transport processes driving bicarbonate excretion in the biliary epithelium (NHE-1 isoform) and to evaluate the effects of dexamethasone-loaded NHs (NHs/dex) on liver injury induced by experimental cholestatis. Our results showed that NHs and NHs/dex do not reduce cell viability in vitro in human cholangiocyte cell lines. Primary and immortalized human cholangiocytes treated with NHs/dex show an increase in the functional marker expression of NHE1 cholangiocytes compared to control groups. A mouse model of cholangiopathy treated with NHs/dex shows a reduction in markers of hepatocellular injury compared to control groups (NHs, dex, or sham group). In conclusion, we believe that the NHs/dex formulation is a suitable candidate to be investigated in preclinical models of cholangiopathies.
Collapse
Affiliation(s)
- Sabina Di Matteo
- Department of Immunology, Bambino Gesù Childrens Hospital, IRCCS, Rome, Italy
| | - Chiara Di Meo
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy.
| | - Guido Carpino
- Department of Movement, Division of Health Sciences, Human and Health Sciences, University of Rome "Foro Italico, Rome, Italy
| | - Nicole Zoratto
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy.
| | - Lorenzo Nevi
- Department of Biosciences, University of Milan, Milan, Italy
| | - Diletta Overi
- Department of Anatomical, Forensic, Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Daniele Costantini
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudio Pinto
- Department of Gastroenterology and Hepatology, Università Politecnica Delle Marche, Ancona, Italy
| | - Elita Montanari
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Marco Marzioni
- Department of Gastroenterology and Hepatology, Università Politecnica Delle Marche, Ancona, Italy
| | - Luca Maroni
- Department of Gastroenterology and Hepatology, Università Politecnica Delle Marche, Ancona, Italy
| | - Antonio Benedetti
- Department of Gastroenterology and Hepatology, Università Politecnica Delle Marche, Ancona, Italy
| | - Marco Viola
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Tommasina Coviello
- Department of Movement, Division of Health Sciences, Human and Health Sciences, University of Rome "Foro Italico, Rome, Italy
| | - Pietro Matricardi
- Department of Movement, Division of Health Sciences, Human and Health Sciences, University of Rome "Foro Italico, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Forensic, Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
6
|
Zhang W, Lanzoni G, Hani H, Overi D, Cardinale V, Simpson S, Pitman W, Allen A, Yi X, Wang X, Gerber D, Prestwich G, Lozoya O, Gaudio E, Alvaro D, Tokaz D, Dominguez-Bendala J, Adin C, Piedrahita J, Mathews K, Sethupathy P, Carpino G, He Z, Wauthier E, Reid LM. Patch grafting, strategies for transplantation of organoids into solid organs such as liver. Biomaterials 2021; 277:121067. [PMID: 34517276 DOI: 10.1016/j.biomaterials.2021.121067] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 12/28/2022]
Abstract
Epithelial cell therapies have been at an impasse because of inefficient methods of transplantation to solid organs. Patch grafting strategies were established enabling transplantation of ≥107th organoids/patch of porcine GFP+ biliary tree stem/progenitors into livers of wild type hosts. Grafts consisted of organoids embedded in soft (~100 Pa) hyaluronan hydrogels, both prepared in serum-free Kubota's Medium; placed against target sites; covered with a silk backing impregnated with more rigid hyaluronan hydrogels (~700 Pa); and use of the backing to tether grafts with sutures or glue to target sites. Hyaluronan coatings (~200-300 Pa) onto the serosal surface of the graft served to minimize adhesions with neighboring organs. The organ's clearance of hyaluronans enabled restoration of tissue-specific paracrine and systemic signaling, resulting in return of normal hepatic histology, with donor parenchymal cells uniformly integrated amidst host cells and that had differentiated to mature hepatocytes and cholangiocytes. Grafts containing donor mature hepatocytes, partnered with endothelia, and in the same graft biomaterials as for stem/progenitor organoids, did not engraft. Engraftment occurred if porcine liver-derived mesenchymal stem cells (MSCs) were co-transplanted with donor mature cells. RNA-seq analyses revealed that engraftment correlated with expression of matrix-metalloproteinases (MMPs), especially secreted isoforms that were found expressed strongly by organoids, less so by MSCs, and minimally, if at all, by adult cells. Engraftment with patch grafting strategies occurred without evidence of emboli or ectopic cell distribution. It was successful with stem/progenitor organoids or with cells with a source(s) of secreted MMP isoforms and offers significant potential for enabling cell therapies for solid organs.
Collapse
Affiliation(s)
- Wencheng Zhang
- Departments of Cell Biology and Physiology, Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, 27599, USA; Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, 1800 Yuntai Rd, Pudong New Area, Shanghai, 200123, China
| | - Giacomo Lanzoni
- Diabetes Research Institute, U. Miami Leonard M. Miller School of Medicine, 1450 N.W. 10th Avenue, Miami, FL, 33136, USA
| | - Homayoun Hani
- Departments of Cell Biology and Physiology, Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, 27599, USA
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University, Piazzale Aldo Moro, 5, 00185, Roma RM, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University, Piazzale Aldo Moro, 5, 00185, Roma RM, Italy
| | - Sean Simpson
- Department of Molecular Biomedical Sciences, NCSU Colleage of Veterinary Medicine, Raleigh, NC, 27606, USA; The Comparative Medicine Institute, NCSU College of Veterinary Medicine, Raleigh, NC, 27606, USA; Department of Comparative Veterinary Anatomy, NCSU College of Veterinary Medicine, Raleigh, NC, 27606, USA
| | - Wendy Pitman
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, T7 006D Veterinary Research Tower, Box 17, Ithaca, NY, 14853, USA
| | - Amanda Allen
- Departments of Cell Biology and Physiology, Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, 27599, USA
| | - Xianwen Yi
- Departments of Surgery, UNC School of Medicine, Chapel Hill, NC, 27599, USA
| | - Xicheng Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, 1800 Yuntai Rd, Pudong New Area, Shanghai, 200123, China
| | - David Gerber
- Departments of Surgery, UNC School of Medicine, Chapel Hill, NC, 27599, USA
| | - Glenn Prestwich
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Oswaldo Lozoya
- Departments of Cell Biology and Physiology, Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, 27599, USA; Department of Biomedical Engineering, UNC School of Medicine, Chapel Hill, NC, 27599, USA.
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University, Piazzale Aldo Moro, 5, 00185, Roma RM, Italy
| | - Domenico Alvaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University, Piazzale Aldo Moro, 5, 00185, Roma RM, Italy
| | - Debra Tokaz
- Department of Population Health and Pathobiology, NCSU College of Veterinary Medicine, Raleigh, NC, 27606, USA
| | - Juan Dominguez-Bendala
- Diabetes Research Institute, U. Miami Leonard M. Miller School of Medicine, 1450 N.W. 10th Avenue, Miami, FL, 33136, USA
| | - Christopher Adin
- Department of Clinical Sciences, NCSU College of Veterinary Medicine, Raleigh, NC, 27606, USA
| | - Jorge Piedrahita
- Department of Molecular Biomedical Sciences, NCSU Colleage of Veterinary Medicine, Raleigh, NC, 27606, USA; The Comparative Medicine Institute, NCSU College of Veterinary Medicine, Raleigh, NC, 27606, USA; Department of Comparative Veterinary Anatomy, NCSU College of Veterinary Medicine, Raleigh, NC, 27606, USA
| | - Kyle Mathews
- Department of Clinical Sciences, NCSU College of Veterinary Medicine, Raleigh, NC, 27606, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, T7 006D Veterinary Research Tower, Box 17, Ithaca, NY, 14853, USA
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Roma, Italy
| | - Zhiying He
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, 1800 Yuntai Rd, Pudong New Area, Shanghai, 200123, China
| | - Eliane Wauthier
- Departments of Cell Biology and Physiology, Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, 27599, USA
| | - Lola M Reid
- Departments of Cell Biology and Physiology, Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
7
|
Dollet PE, Hsu MJ, Ambroise J, Rozzi M, Ravau J, André F, Evraerts J, Najimi M, Sokal E, Lombard C. Evaluation of Strategies Aimed at Improving Liver Progenitor Cell Rolling and Subsequent Adhesion to the Endothelium. Cell Transplant 2021; 29:963689720912707. [PMID: 32425073 PMCID: PMC7444224 DOI: 10.1177/0963689720912707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Adult-derived human liver stem/progenitor cells (ADHLSCs) are a promising
alternative to orthotopic liver transplantation in the treatment of inborn
errors of metabolism. However, as is the case with many mesenchymal stromal
cells, ADHLSCs have shown a low level of engraftment, which could be explained
by the fact that they lack expression of selectin ligand and LFA-1 and only
slightly express VLA- 4, molecules that have been shown to be involved in cell
adhesion to the endothelium. In this paper, we have investigated strategies to
increase their rolling and adhesion during the homing process by (1) adding a
selectin ligand (Sialyl Lewis X) to their surface using
biotinyl-N-hydroxy-succinimide–streptavidin bridges, and
(2) protecting the adhesion proteins from trypsinization-induced damage using a
thermosensitive polymer for cell culture and a nonenzymatic cell dissociation
solution (CDS) for harvest. Despite increasing adhesion of ADHLSCs to E-selectin
during an adhesion test in vitro performed under shear stress,
the addition of Sialyl Lewis X did not increase adhesion to endothelial cells
under the same conditions. Cultivating cells on a thermosensitive polymer and
harvesting them with CDS increased their adhesion to endothelial cells under
noninflammatory conditions, compared to the use of trypsin. However, we were not
able to demonstrate any improvement in cell adhesion to the endothelium
following culture on polymer and harvest with CDS, suggesting that alternative
methods of improving engraftment still need to be evaluated.
Collapse
Affiliation(s)
- Pierre Edouard Dollet
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Bruxelles, Belgium
| | - Mei Ju Hsu
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Bruxelles, Belgium
| | - Jérôme Ambroise
- Centre de Technologies Moléculaires Appliquées (CTMA), Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Bruxelles, Belgium
| | - Milena Rozzi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Bruxelles, Belgium
| | - Joachim Ravau
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Bruxelles, Belgium
| | - Floriane André
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Bruxelles, Belgium
| | - Jonathan Evraerts
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Bruxelles, Belgium
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Bruxelles, Belgium
| | - Etienne Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Bruxelles, Belgium
| | - Catherine Lombard
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Bruxelles, Belgium
| |
Collapse
|
8
|
Ali M, Payne SL. Biomaterial-based cell delivery strategies to promote liver regeneration. Biomater Res 2021; 25:5. [PMID: 33632335 PMCID: PMC7905561 DOI: 10.1186/s40824-021-00206-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/05/2021] [Indexed: 02/08/2023] Open
Abstract
Chronic liver disease and cirrhosis is a widespread and untreatable condition that leads to lifelong impairment and eventual death. The scarcity of liver transplantation options requires the development of new strategies to attenuate disease progression and reestablish liver function by promoting regeneration. Biomaterials are becoming an increasingly promising option to both culture and deliver cells to support in vivo viability and long-term function. There is a wide variety of both natural and synthetic biomaterials that are becoming established as delivery vehicles with their own unique advantages and disadvantages for liver regeneration. We review the latest developments in cell transplantation strategies to promote liver regeneration, with a focus on the use of both natural and synthetic biomaterials for cell culture and delivery. We conclude that future work will need to refine the use of these biomaterials and combine them with novel strategies that recapitulate liver organization and function in order to translate this strategy to clinical use.
Collapse
Affiliation(s)
- Maqsood Ali
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Samantha L Payne
- Department of Biomedical Engineering, School of Engineering, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
9
|
Cell therapy for advanced liver diseases: Repair or rebuild. J Hepatol 2021; 74:185-199. [PMID: 32976865 DOI: 10.1016/j.jhep.2020.09.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/18/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
Advanced liver disease presents a significant worldwide health and economic burden and accounts for 3.5% of global mortality. When liver disease progresses to organ failure the only effective treatment is liver transplantation, which necessitates lifelong immunosuppression and carries associated risks. Furthermore, the shortage of suitable donor organs means patients may die waiting for a suitable transplant organ. Cell therapies have made their way from animal studies to a small number of early clinical trials. Herein, we review the current state of cell therapies for liver disease and the mechanisms underpinning their actions (to repair liver tissue or rebuild functional parenchyma). We also discuss cellular therapies that are on the clinical horizon and challenges that must be overcome before routine clinical use is a possibility.
Collapse
|
10
|
Furuta T, Furuya K, Zheng YW, Oda T. Novel alternative transplantation therapy for orthotopic liver transplantation in liver failure: A systematic review. World J Transplant 2020; 10:64-78. [PMID: 32257850 PMCID: PMC7109592 DOI: 10.5500/wjt.v10.i3.64] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/10/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Orthotopic liver transplantation (OLT) is the only treatment for end-stage liver failure; however, graft shortage impedes its applicability. Therefore, studies investigating alternative therapies are plenty. Nevertheless, no study has comprehensively analyzed these therapies from different perspectives. AIM To summarize the current status of alternative transplantation therapies for OLT and to support future research. METHODS A systematic literature search was performed using PubMed, Cochrane Library and EMBASE for articles published between January 2010 and 2018, using the following MeSH terms: [(liver transplantation) AND cell] OR [(liver transplantation) AND differentiation] OR [(liver transplantation) AND organoid] OR [(liver transplantation) AND xenotransplantation]. Various types of studies describing therapies to replace OLT were retrieved for full-text evaluation. Among them, we selected articles including in vivo transplantation. RESULTS A total of 89 studies were selected. There are three principle forms of treatment for liver failure: Xeno-organ transplantation, scaffold-based transplantation, and cell transplantation. Xeno-organ transplantation was covered in 14 articles, scaffold-based transplantation was discussed in 22 articles, and cell transplantation was discussed in 53 articles. Various types of alternative therapies were discussed: Organ liver, 25 articles; adult hepatocytes, 31 articles; fetal hepatocytes, three articles; mesenchymal stem cells (MSCs), 25 articles; embryonic stem cells, one article; and induced pluripotent stem cells, three articles and other sources. Clinical applications were discussed in 12 studies: Cell transplantation using hepatocytes in four studies, five studies using umbilical cord-derived MSCs, three studies using bone marrow-derived MSCs, and two studies using hematopoietic stem cells. CONCLUSION The clinical applications are present only for cell transplantation. Scaffold-based transplantation is a comprehensive treatment combining organ and cell transplantations, which warrants future research to find relevant clinical applications.
Collapse
Affiliation(s)
- Tomoaki Furuta
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
| | - Kinji Furuya
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
| | - Yun-Wen Zheng
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
- Institute of Regenerative Medicine and Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
- Department of Regenerative Medicine, School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
- Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
| |
Collapse
|
11
|
Zhao Y, Xu B, Liang W, Ding Y, Li J, Zhang Y, Xu F, Zhou H, Xu Y. Multisite Injection of Bioengineered Hepatic Units from Collagen Hydrogel and Neonatal Liver Cells in Parenchyma Improves Liver Cirrhosis. Tissue Eng Part A 2019; 25:1167-1174. [PMID: 30608034 DOI: 10.1089/ten.tea.2018.0107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Yunshan Zhao
- Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Bingbing Xu
- Graduate School of Peking Union Medical College, Beijing, China
- Department of Biotechnology, Capital Institute of Pediatrics, Beijing, China
| | - Wentao Liang
- Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yi Ding
- Institute of Anorectal Diseases, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jing Li
- Laboratory of Translational Medicine, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yong Zhang
- Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fei Xu
- Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Haiyang Zhou
- Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yingxin Xu
- Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
12
|
Ye S, Boeter JWB, Penning LC, Spee B, Schneeberger K. Hydrogels for Liver Tissue Engineering. Bioengineering (Basel) 2019; 6:E59. [PMID: 31284412 PMCID: PMC6784004 DOI: 10.3390/bioengineering6030059] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 12/14/2022] Open
Abstract
Bioengineered livers are promising in vitro models for drug testing, toxicological studies, and as disease models, and might in the future be an alternative for donor organs to treat end-stage liver diseases. Liver tissue engineering (LTE) aims to construct liver models that are physiologically relevant. To make bioengineered livers, the two most important ingredients are hepatic cells and supportive materials such as hydrogels. In the past decades, dozens of hydrogels have been developed to act as supportive materials, and some have been used for in vitro models and formed functional liver constructs. However, currently none of the used hydrogels are suitable for in vivo transplantation. Here, the histology of the human liver and its relationship with LTE is introduced. After that, significant characteristics of hydrogels are described focusing on LTE. Then, both natural and synthetic materials utilized in hydrogels for LTE are reviewed individually. Finally, a conclusion is drawn on a comparison of the different hydrogels and their characteristics and ideal hydrogels are proposed to promote LTE.
Collapse
Affiliation(s)
- Shicheng Ye
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Jochem W B Boeter
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Louis C Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Kerstin Schneeberger
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CT Utrecht, The Netherlands.
| |
Collapse
|
13
|
Hyaluronan-Based Grafting Strategies for Liver Stem Cell Therapy and Tracking Methods. Stem Cells Int 2019; 2019:3620546. [PMID: 31354838 PMCID: PMC6636496 DOI: 10.1155/2019/3620546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/29/2019] [Accepted: 05/27/2019] [Indexed: 12/20/2022] Open
Abstract
Cell adhesion is essential for survival, it plays important roles in physiological cell functions, and it is an innovative target in regenerative medicine. Among the molecular interactions and the pathways triggered during cell adhesion, the binding of cluster of differentiation 44 (CD44), a cell-surface glycoprotein involved in cell-cell interactions, to hyaluronic acid (HA), a major component of the extracellular matrix, is a crucial step. Cell therapy has emerged as a promising treatment for advanced liver diseases; however, so far, it has led to low cell engraftment and limited cell repopulation of the target tissue. Currently, different strategies are under investigation to improve cell grafting in the liver, including the use of organic and inorganic biomatrices that mimic the microenvironment of the extracellular matrix. Hyaluronans, major components of stem cell niches, are attractive candidates for coating stem cells since they improve viability, proliferation, and engraftment in damaged livers. In this review, we will discuss the new strategies that have been adopted to improve cell grafting and track cells after transplantation.
Collapse
|
14
|
Barahman M, Zhang W, Harris HY, Aiyer A, Kabarriti R, Kinkhabwala M, Roy-Chowdhury N, Beck AP, Scanlan TS, Roy-Chowdhury J, Asp P, Guha C. Radiation-primed hepatocyte transplantation in murine monogeneic dyslipidemia normalizes cholesterol and prevents atherosclerosis. J Hepatol 2019; 70:1170-1179. [PMID: 30654068 PMCID: PMC6986679 DOI: 10.1016/j.jhep.2019.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Inherited abnormalities in apolipoprotein E (ApoE) or low-density lipoprotein receptor (LDLR) function result in early onset cardiovascular disease and death. Currently, the only curative therapy available is liver transplantation. Hepatocyte transplantation is a potential alternative; however, physiological levels of hepatocyte engraftment and repopulation require transplanted cells to have a competitive proliferative advantage of over host hepatocytes. Herein, we aimed to test the efficacy and safety of a novel preparative regimen for hepatocyte transplantation. METHODS Herein, we used an ApoE-deficient mouse model to test the efficacy of a new regimen for hepatocyte transplantation. We used image-guided external-beam hepatic irradiation targeting the median and right lobes of the liver to enhance cell transplant engraftment. This was combined with administration of the hepatic mitogen GC-1, a thyroid hormone receptor-β agonist mimetic, which was used to promote repopulation. RESULTS The non-invasive preparative regimen of hepatic irradiation and GC-1 was well-tolerated in ApoE-/- mice. This regimen led to robust liver repopulation by transplanted hepatocytes, which was associated with significant reductions in serum cholesterol levels after transplantation. Additionally, in mice receiving this regimen, ApoE was detected in the circulation 4 weeks after treatment and did not induce an immunological response. Importantly, the normalization of serum cholesterol prevented the formation of atherosclerotic plaques in this model. CONCLUSIONS Significant hepatic repopulation and the cure of dyslipidemia in this model, using a novel and well-tolerated preparative regimen, demonstrate the clinical potential of applying this method to the treatment of inherited metabolic diseases of the liver. LAY SUMMARY Hepatocyte transplantation is a promising alternative to liver transplantation for the treatment of liver diseases. However, it is inefficient, as restricted growth of transplanted cells in the liver limits its therapeutic benefits. Preparative treatments improve the efficiency of this procedure, but no clinically-feasible options are currently available. In this study we develop a novel well-tolerated preparative treatment to improve growth of cells in the liver and then demonstrate that this treatment completely cures an inherited lipid disorder in a mouse model.
Collapse
Affiliation(s)
- Mark Barahman
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Wei Zhang
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Hillary Yaffe Harris
- Department of Surgery, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Anita Aiyer
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Rafi Kabarriti
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Milan Kinkhabwala
- Department of Surgery, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Namita Roy-Chowdhury
- Department of Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States,Department of Genetics, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States,The Marion Bessin Liver Research Center, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Amanda P. Beck
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Thomas S. Scanlan
- Departments of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, United States
| | - Jayanta Roy-Chowdhury
- Department of Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States,Department of Genetics, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States,The Marion Bessin Liver Research Center, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Patrik Asp
- Department of Surgery, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Chandan Guha
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States; Department of Surgery, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States; Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States; Department of Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States; The Marion Bessin Liver Research Center, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States; Department of Urology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
15
|
Macroporous Dual-compartment Hydrogels for Minimally Invasive Transplantation of Primary Human Hepatocytes. Transplantation 2019; 102:e373-e381. [PMID: 29916986 DOI: 10.1097/tp.0000000000002330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Given the shortage of available organs for whole or partial liver transplantation, hepatocyte cell transplantation has long been considered a potential strategy to treat patients suffering from various liver diseases. Some of the earliest approaches that attempted to deliver hepatocytes via portal vein or spleen achieved little success due to poor engraftment. More recent efforts include transplantation of cell sheets or thin hepatocyte-laden synthetic hydrogels. However, these implants must remain sufficiently thin to ensure that nutrients can diffuse into the implant. METHODS To circumvent these limitations, we investigated the use of a vascularizable dual-compartment hydrogel system for minimally invasive transplantation of primary hepatocytes. The dual-compartment system features a macroporous outer polyethylene glycol diacrylate/hyaluronic acid methacrylate hydrogel compartment for seeding supportive cells and facilitating host cell infiltration and vascularization and a hollow inner core to house the primary human hepatocytes. RESULTS We show that the subcutaneous implantation of these cell-loaded devices in NOD/SCID mice facilitated vascular formation while supporting viability of the transplanted cells. Furthermore, the presence of human serum albumin in peripheral blood and the immunostaining of excised implants indicated that the hepatocytes maintained function in vivo for at least 1 month, the longest assayed time point. CONCLUSIONS Cell transplantation devices that assist the anastomosis of grafts with the host can be potentially used as a minimally invasive ectopic liver accessory to augment liver-specific functions as well as potentially treat various pathologies associated with compromised functions of liver, such as hemophilia B or alpha-1 antitrypsin deficiency.
Collapse
|
16
|
de Jong IE, Matton AP, van Praagh JB, van Haaften WT, Wiersema‐Buist J, van Wijk LA, Oosterhuis D, Iswandana R, Suriguga S, Overi D, Lisman T, Carpino G, Gouw AS, Olinga P, Gaudio E, Porte RJ. Peribiliary Glands Are Key in Regeneration of the Human Biliary Epithelium After Severe Bile Duct Injury. Hepatology 2019; 69:1719-1734. [PMID: 30506902 PMCID: PMC6594148 DOI: 10.1002/hep.30365] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/07/2018] [Indexed: 12/22/2022]
Abstract
Peribiliary glands (PBG) are a source of stem/progenitor cells organized in a cellular network encircling large bile ducts. Severe cholangiopathy with loss of luminal biliary epithelium has been proposed to activate PBG, resulting in cell proliferation and differentiation to restore biliary epithelial integrity. However, formal evidence for this concept in human livers is lacking. We therefore developed an ex vivo model using precision-cut slices of extrahepatic human bile ducts obtained from discarded donor livers, providing an intact anatomical organization of cell structures, to study spatiotemporal differentiation and migration of PBG cells after severe biliary injury. Postischemic bile duct slices were incubated in oxygenated culture medium for up to a week. At baseline, severe tissue injury was evident with loss of luminal epithelial lining and mural stroma necrosis. In contrast, PBG remained relatively well preserved and different reactions of PBG were noted, including PBG dilatation, cell proliferation, and maturation. Proliferation of PBG cells increased after 24 hours of oxygenated incubation, reaching a peak after 72 hours. Proliferation of PBG cells was paralleled by a reduction in PBG apoptosis and differentiation from a primitive and pluripotent (homeobox protein Nanog+/ sex-determining region Y-box 9+) to a mature (cystic fibrosis transmembrane conductance regulator+/secretin receptor+) and activated phenotype (increased expression of hypoxia-inducible factor 1 alpha, glucose transporter 1, and vascular endothelial growth factor A). Migration of proliferating PBG cells in our ex vivo model was unorganized, but resulted in generation of epithelial monolayers at stromal surfaces. Conclusion: Human PBG contain biliary progenitor cells and are able to respond to bile duct epithelial loss with proliferation, differentiation, and maturation to restore epithelial integrity. The ex vivo spatiotemporal behavior of human PBG cells provides evidence for a pivotal role of PBG in biliary regeneration after severe injury.
Collapse
Affiliation(s)
- Iris E.M. de Jong
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of SurgeryUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands,Surgical Research Laboratory, Department of SurgeryUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| | - Alix P.M. Matton
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of SurgeryUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands,Surgical Research Laboratory, Department of SurgeryUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| | - Jasper B. van Praagh
- Surgical Research Laboratory, Department of SurgeryUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands,Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands
| | - Wouter T. van Haaften
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands
| | - Janneke Wiersema‐Buist
- Surgical Research Laboratory, Department of SurgeryUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| | - Louise A. van Wijk
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands
| | - Dorenda Oosterhuis
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands
| | - Raditya Iswandana
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands,Faculty of PharmacyUniversitas IndonesiaIndonesia
| | - Su Suriguga
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic SciencesSapienza University of RomeRomeItaly
| | - Ton Lisman
- Surgical Research Laboratory, Department of SurgeryUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| | - Guido Carpino
- Division of Health Sciences, Department of Movement, Human and Health SciencesUniversity of Rome “Foro Italico”RomeItaly
| | - Annette S.H. Gouw
- Department of PathologyUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic SciencesSapienza University of RomeRomeItaly
| | - Robert J. Porte
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of SurgeryUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| |
Collapse
|
17
|
Barahman M, Asp P, Roy-Chowdhury N, Kinkhabwala M, Roy-Chowdhury J, Kabarriti R, Guha C. Hepatocyte Transplantation: Quo Vadis? Int J Radiat Oncol Biol Phys 2018; 103:922-934. [PMID: 30503786 DOI: 10.1016/j.ijrobp.2018.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 10/10/2018] [Accepted: 11/10/2018] [Indexed: 12/21/2022]
Abstract
Orthotopic liver transplantation (OLT) has been effective in managing end-stage liver disease since the advent of cyclosporine immunosuppression therapy in 1980. The major limitations of OLT are organ supply, monetary cost, and the burden of lifelong immunosuppression. Hepatocyte transplantation, as a substitute for OLT, has been an exciting topic of investigation for several decades. HT is potentially minimally invasive and can serve as a vehicle for delivery of personalized medicine through autologous cell transplant after modification ex vivo. However, 3 major hurdles have prevented large-scale clinical application: (1) availability of transplantable cells; (2) safe and efficient ex vivo gene therapy methods; and (3) engraftment and repopulation efficiency. This review will discuss new sources for transplantable liver cells obtained by lineage reprogramming, clinically acceptable methods of genetic manipulation, and the development of hepatic irradiation-based preparative regimens for enhancing engraftment and repopulation of transplanted hepatocytes. We will also review the results of the first 3 patients with genetic liver disorders who underwent preparative hepatic irradiation before hepatocyte transplantation.
Collapse
Affiliation(s)
- Mark Barahman
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Patrik Asp
- Department of Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Namita Roy-Chowdhury
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Milan Kinkhabwala
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Jayanta Roy-Chowdhury
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Department of Genetics, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Rafi Kabarriti
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Chandan Guha
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Department of Urology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
18
|
Aimaiti Y, Jin X, Shao Y, Wang W, Li D. Hepatic stellate cells regulate hepatic progenitor cells differentiation via the TGF-β1/Jagged1 signaling axis. J Cell Physiol 2018; 234:9283-9296. [PMID: 30317614 DOI: 10.1002/jcp.27609] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/21/2018] [Indexed: 12/29/2022]
Abstract
Hepatic stellate cells (HSCs) play an important microenvironmental role in hepatic progenitor cells (HPCs) differentiation fate. To reveal the specific mechanism of HSCs induced by transforming growth factor β1 (TGF-β1) signaling in HPCs differentiation process, we used Knockin and knockdown technologies induced by lentivirus to upregulate or downregulate TGF-β1 level in mouse HSCs (mHSCs) (mHSCs-TGF-β1 or mHSCs-TGF-βR1sih3). Primary mouse HPCs (mHPCs) were isolated and were cocultured with mHSCs-TGF-β1 and mHSCs-TGF-βR1sih3 for 7 days. Differentiation of mHPCs was detected by quantitative reverse transcriptase polymerase chain reaction analysis and immunofluorence in vitro. mHPCs-E14.5 cell lines and differently treated mHSCs were cotransplanted into mice spleens immediately after establishment of acute liver injury model for animal studies. Engraftment and differentiation of transplanted cells as well as liver function recovery were measured at the seventh day via different methods. mHSCs-TGF-β1 were transformed into myofibroblasts and highly expressed Jagged1, but that expression was reduced after blockage of TGF-β1 signaling. mHPCs highly expressed downstream markers of Jagged1/Notch signaling and cholangiocyte markers (CK19, SOX9, and Hes1) after coculture with mHSCs-TGF-β1 in vitro. In contrast, mature hepatocyte marker (ALB) was upregulated in mHPCs in coculture conditions with mHSCs-TGF-βR1sih3. At the seventh day of cell transplantation assay, mHPCs-E 14.5 engrafted and differentiated into cholangiocytes after cotransplanting with TGF-β1-knockin mHSCs, but the cells had a tendency to differentiate into hepatocytes when transplanted with TGF-βR1-knockdown mHSCs, which corresponded to in vitro studies. HSCs play an important role in regulating HPCs differentiation into cholangiocytes via the TGF-β1/Jagged1 signaling axis. However, HPCs have a tendency to differentiate into hepatocytes after blockage of TGF-β1 signaling in HSCs.
Collapse
Affiliation(s)
- Yasen Aimaiti
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory on Pathogenesis Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China
| | - Xin Jin
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Shao
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dewei Li
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
Wang Y, Zhao J, Duan N, Liu W, Zhang Y, Zhou M, Hu Z, Feng M, Liu X, Wu L, Li Z, Liang D. Paired CRISPR/Cas9 Nickases Mediate Efficient Site-Specific Integration of F9 into rDNA Locus of Mouse ESCs. Int J Mol Sci 2018; 19:ijms19103035. [PMID: 30301136 PMCID: PMC6213315 DOI: 10.3390/ijms19103035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/29/2018] [Accepted: 10/01/2018] [Indexed: 12/11/2022] Open
Abstract
Hemophilia B (HB) is an X-linked recessive bleeding disorder, caused by F9 gene deficiency. Gene therapy combined with the CRISPR/Cas9 technology offers a potential cure for hemophilia B. Now the Cas9 nickase (Cas9n) shows a great advantage in reducing off-target effect compared with wild-type Cas9. In this study, we found that in the multicopy ribosomal DNA (rDNA) locus, the homology directed recombination (HDR) efficiency induced by sgRNA-Cas9n was much higher than sgRNA-Cas9, meanwhile without off-target in six predicted sites. After co-transfection into mESCs with sgRNA-Cas9n and a non-viral rDNA targeting vector pMrnF9, harboring the homology donor template and the human F9 expression cassette, a recombination efficiency of 66.7% was achieved and all targeted clones were confirmed to be site-specific integration of F9 in the rDNA locus by PCR and southern blotting. Targeted mESCs retained the main pluripotent properties and were then differentiated into hepatic progenitor like cells (HPLCs) and mature hepatocytes, which were characterized by hepatic markers and functional assays. Importantly, the differentiated cells could transcribe exogenous F9 and secrete coagulation factor IX (FIX) proteins, suggesting active transcription and stable inheritance of transgenes in the rDNA locus. After intrasplenical transplantation in severe combined immune deficiency (SCID) mice, targeted HPLCs could survive and migrate from spleen to liver, resulting in secretion of exogenous FIX into blood. In summary, we demonstrate an efficient and site-specific gene targeting strategy in rDNA locus for stem cell-based gene therapy for hemophilia B.
Collapse
Affiliation(s)
- Yanchi Wang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China.
| | - Junya Zhao
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China.
| | - Nannan Duan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China.
| | - Wei Liu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China.
| | - Yuxuan Zhang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China.
| | - Miaojin Zhou
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China.
| | - Zhiqing Hu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China.
| | - Mai Feng
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China.
| | - Xionghao Liu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China.
| | - Lingqian Wu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China.
| | - Zhuo Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China.
| | - Desheng Liang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China.
| |
Collapse
|
20
|
Ridola L, Bragazzi MC, Cardinale V, Carpino G, Gaudio E, Alvaro D. Cholangiocytes: Cell transplantation. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1516-1523. [PMID: 28735098 DOI: 10.1016/j.bbadis.2017.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/15/2017] [Accepted: 07/17/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Due to significant limitations to the access to orthotropic liver transplantation, cell therapies for liver diseases have gained large interest worldwide. SCOPE OF REVIEW To revise current literature dealing with cell therapy for liver diseases. We discussed the advantages and pitfalls of the different cell sources tested so far in clinical trials and the rationale underlying the potential benefits of transplantation of human biliary tree stem cells (hBTSCs). MAJOR CONCLUSIONS Transplantation of adult hepatocytes showed transient benefits but requires immune-suppression that is a major pitfall in patients with advanced liver diseases. Mesenchymal stem cells and hematopoietic stem cells transplanted into patients with liver diseases are not able to replace resident hepatocytes but rather they target autoimmune or inflammatory processes into the liver. Stem cells isolated from fetal or adult liver have been recently proposed as alternative cell sources for advanced liver cirrhosis and metabolic liver disease. We demonstrated the presence of multipotent cells expressing a variety of endodermal stem cell markers in (peri)-biliary glands of bile ducts in fetal or adult human tissues, and in crypts of gallbladder epithelium. In the first cirrhotic patients treated in our center with biliary tree stem cell therapy, we registered no adverse event but significant benefits. GENERAL SIGNIFICANCE The biliary tree stem cell could represent the ideal cell source for the cell therapy of liver diseases. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.
Collapse
Affiliation(s)
- Lorenzo Ridola
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza University of Rome, Italy.
| | - Maria Consiglia Bragazzi
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza University of Rome, Italy.
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza University of Rome, Italy.
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Italy.
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy.
| | - Domenico Alvaro
- Department of Internal Medicine and Medical Specialties, Division of Gastroenterology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
21
|
Proceedings of the signature series event of the international society for cellular therapy: "Advancements in cellular therapies and regenerative medicine in digestive diseases," London, United Kingdom, May 3, 2017. Cytotherapy 2018; 20:461-476. [PMID: 29398624 DOI: 10.1016/j.jcyt.2017.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 12/01/2017] [Indexed: 12/18/2022]
Abstract
A summary of the First Signature Series Event, "Advancements in Cellular Therapies and Regenerative Medicine for Digestive Diseases," held on May 3, 2017, in London, United Kingdom, is presented. Twelve speakers from three continents covered major topics in the areas of cellular therapy and regenerative medicine applied to liver and gastrointestinal medicine as well as to diabetes mellitus. Highlights from their presentations, together with an overview of the global impact of digestive diseases and a proposal for a shared online collection and data-monitoring platform tool, are included in this proceedings. Although growing evidence demonstrate the feasibility and safety of exploiting cell-based technologies for the treatment of digestive diseases, regulatory and methodological obstacles will need to be overcome before the successful implementation in the clinic of these novel attractive therapeutic strategies.
Collapse
|
22
|
Zhang RR, Zheng YW, Li B, Nie YZ, Ueno Y, Tsuchida T, Taniguchi H. Hepatic stem cells with self-renewal and liver repopulation potential are harbored in CDCP1-positive subpopulations of human fetal liver cells. Stem Cell Res Ther 2018; 9:29. [PMID: 29402311 PMCID: PMC5800061 DOI: 10.1186/s13287-017-0747-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Mature human hepatocytes are critical in preclinical research and therapy for liver disease, but are difficult to manipulate and expand in vitro. Hepatic stem cells (HpSCs) may be an alternative source of functional hepatocytes for cell therapy and disease modeling. Since these cells play an import role in regenerative medicine, the precise characterization that determines specific markers used to isolate these cells as well as whether they contribute to liver regeneration still remain to be shown. METHOD In this study, human HpSCs were isolated from human primary fetal liver cells (FLCs) by flow cytometry using CDCP1, CD90, and CD66 antibodies. The isolated CDCP1+CD90+CD66- HpSCs were cultured on dishes coated with type IV collagen in DMEM nutrient mixture F-12 Ham supplemented with FBS, human γ-insulin, nicotinamide, dexamethasone, and L-glutamine for at least 2 weeks, and were characterized by transcriptomic profiling, quantitative real-time PCR, immunocytochemistry, and in-vivo transplantation. RESULTS The purified CDCP1+CD90+CD66- subpopulation exhibited clonal expansion and self-renewal capability, and bipotential capacity was further identified in single cell-derived colonies containing distinct hepatocytes and cholangiocytes. Moreover, in-vivo liver repopulation assays demonstrated that human CDCP1+CD90+CD66- HpSCs repopulated over 90% of the mouse liver and differentiated into functional hepatocytes with drug metabolism activity. CONCLUSIONS We identified a human hepatic stem/progenitor population in the CDCP1+CD90+CD66- subpopulation in human FLCs, indicating CDCP1 marker could potentially be utilized to identify and isolate HpSCs for further cytotherapy of liver disease.
Collapse
Affiliation(s)
- Ran-Ran Zhang
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
- Department of Gastroenterology, Hepatology & Nutrition, Developmental Biology and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229 USA
| | - Yun-Wen Zheng
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
- Department of Advanced Gastroenterological Surgical Science and Technology, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575 Japan
- Research Center of Stem Cells and Regenerative Medicine, Jiangsu University Hospital, Zhenjiang, Jiangsu 212001 China
| | - Bin Li
- Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR 97239 USA
| | - Yun-Zhong Nie
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
| | - Yasuharu Ueno
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
| | - Tomonori Tsuchida
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
- Advanced Medical Research Center, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
| |
Collapse
|
23
|
Insulin-like growth factor 2 is a key mitogen driving liver repopulation in mice. Cell Death Dis 2018; 9:26. [PMID: 29348399 PMCID: PMC5833551 DOI: 10.1038/s41419-017-0186-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/02/2017] [Accepted: 11/27/2017] [Indexed: 12/22/2022]
Abstract
Hepatocyte transplantation holds great promise as an alternative to orthotopic organ transplantation in the treatment of liver diseases. However, obtaining clinically meaningful levels of liver repopulation has not been achieved because the mechanisms regulating hepatocyte proliferation in recipient livers have not yet been well characterized. In the mouse model of Hereditary Tyrosinemia Type I, the fumarylacetoacetate hydrolase-deficient (Fah−/−) mouse, we found gradually increasing expression level of insulin-like growth factor 2 (IGF2) in the hepatocytes of host livers. Similarly, high levels of IGF2 were found in the livers of patients with deficient FAH activity. Recombinant IGF2 directly promotes proliferation of primary hepatocytes in vitro. Inhibition on IGF2 expression through the interruption of PI3K/Akt and MAPK pathways significantly reduced the level of liver repopulation in Fah−/− mice. Interestingly, treatment with IGF2 before hepatocyte transplantation generally improved the amount of liver repopulation seen in various mice models of liver injury. Altogether, these findings underscore the underlying mechanisms of therapeutic liver repopulation in Fah−/− mice, and indicate that IGF2 is a potential hepatocyte mitogen for liver cell transplantation therapies.
Collapse
|
24
|
Nemati S, Rezabakhsh A, Khoshfetrat AB, Nourazarian A, Biray Avci Ç, Goker Bagca B, Alizadeh Sardroud H, Khaksar M, Ahmadi M, Delkhosh A, Sokullu E, Rahbarghazi R. Alginate-gelatin encapsulation of human endothelial cells promoted angiogenesis in in vivo and in vitro milieu. Biotechnol Bioeng 2017; 114:2920-2930. [DOI: 10.1002/bit.26395] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Sorour Nemati
- Chemical Engineering Faculty; Sahand University of Technology; Tabriz Iran
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Aysa Rezabakhsh
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Tabriz University of Medical Sciences; Tabriz Iran
| | | | - Alireza Nourazarian
- Department of Biochemistry and Clinical Laboratories; Faculty of Medicine; Tabriz University of Medical Sciences; Tabriz Iran
| | - Çığır Biray Avci
- Department of Medical Biology; Faculty of Medicine; Ege University; Izmir Turkey
| | - Bakiye Goker Bagca
- Department of Medical Biology; Faculty of Medicine; Ege University; Izmir Turkey
| | | | - Majid Khaksar
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Mahdi Ahmadi
- Department of Physiology; Faculty of Medicine; Tabriz University of Medical Sciences; Tabriz Iran
| | - Aref Delkhosh
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Emel Sokullu
- Izmir Katip Celebi University; Bioengineering Department; Izmir Turkey
- Harvard Medical School; Division of Biomedical Engineering at Brigham and Women's Hospital, Harvard-MIT Health Sciences and Technology; Cambridge MA
| | - Reza Rahbarghazi
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Applied Cell Sciences; Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
25
|
Nevi L, Carpino G, Costantini D, Cardinale V, Riccioni O, Di Matteo S, Melandro F, Berloco PB, Reid L, Gaudio E, Alvaro D. Hyaluronan coating improves liver engraftment of transplanted human biliary tree stem/progenitor cells. Stem Cell Res Ther 2017; 8:68. [PMID: 28320463 PMCID: PMC5360089 DOI: 10.1186/s13287-017-0492-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 01/11/2017] [Accepted: 01/28/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Cell therapy of liver diseases with human biliary tree stem cells (hBTSCs) is biased by low engraftment efficiency. Coating the hBTSCs with hyaluronans (HAs), the primary constituents of all stem cell niches, could facilitate cell survival, proliferation, and, specifically, liver engraftment given that HAs are cleared selectively by the liver. METHODS We developed a fast and easy method to coat hBTSCs with HA and assessed the effects of HA-coating on cell properties in vitro and in vivo. RESULTS The HA coating markedly improved the viability, colony formation, and population doubling of hBTSCs in primary cultures, and resulted in a higher expression of integrins that mediate cell attachment to matrix components. When HA-coated hBTSCs were transplanted via the spleen into the liver of immunocompromised mice, the engraftment efficiency increased to 11% with respect to 3% of uncoated cells. Notably, HA-coated hBTSC transplantation in mice resulted in a 10-fold increase of human albumin gene expression in the liver and in a 2-fold increase of human albumin serum levels with respect to uncoated cells. Studies in distant organs showed minimal ectopic cell distribution without differences between HA-coated and uncoated hBTSCs and, specifically, cell seeding in the kidney was excluded. CONCLUSIONS A ready and economical procedure of HA cell coating greatly enhanced the liver engraftment of transplanted hBTSCs and improved their differentiation toward mature hepatocytes. HA coating could improve outcomes of stem cell therapies of liver diseases and could be immediately translated into the clinic given that GMP-grade HAs are already available for clinical use.
Collapse
Affiliation(s)
- Lorenzo Nevi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Daniele Costantini
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Olga Riccioni
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Sabina Di Matteo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Fabio Melandro
- Department of General Surgery and Organ Transplantation, Sapienza University of Rome, Rome, Italy
| | | | - Lola Reid
- Department of Cell Biology and Physiology and Program in Molecular Biology and Biotechnology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy. .,Division of Human Anatomy, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via Borelli 50, 00161, Rome, Italy.
| | - Domenico Alvaro
- Department of Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy. .,Division of Gastroenterology, Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Fondazione Eleonora Lorillard Spencer Cenci, Sapienza University of Rome, Vialedell'Università 37, 00185, Rome, Italy.
| |
Collapse
|
26
|
Qi C, Li Y, Badger P, Yu H, You Z, Yan X, Liu W, Shi Y, Xia T, Dong J, Huang C, Du Y. Pathology-targeted cell delivery via injectable micro-scaffold capsule mediated by endogenous TGase. Biomaterials 2017; 126:1-9. [PMID: 28237907 DOI: 10.1016/j.biomaterials.2017.02.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 12/13/2022]
Abstract
Targeted cell delivery to lesion sites via minimally invasive approach remains an unmet need in regenerative medicine to endow satisfactory therapeutic efficacy and minimized side-effects. Here, we rationally designed a pathology-targeted cell delivery strategy leveraging injectable micro-scaffolds as cell-loading capsule and endogenous tissue transglutaminase (TGase) at lesion site as adhesive. Up-regulated TGase post-liver injury catalyzed chemical bonding between the glutamine and lysine residues on liver surface and micro-scaffolds both ex vivo and in vivo, facilitating sufficient adhesion on the pathological liver. Upon intraperitoneal injection, Mesenchymal Stem Cell-loaded capsules, exhibiting cell protection from shear-induced damage and post-transplantation anoikis, adhered to the CCl4-treated liver with a hundred-fold improvement in targeting efficiency (70.72%) compared to free-cell injection, which dramatically improved mice survival (33.3% vs. 0% for free-cell therapy) even with low-dosage treatment. This unique and widely-applicable cell delivery mechanism and strategy hold great promise for transforming cell therapy for refractory diseases.
Collapse
Affiliation(s)
- Chunxiao Qi
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yaqian Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Patrick Badger
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Hongsheng Yu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zhifeng You
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaojun Yan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wei Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yan Shi
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Tie Xia
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jiahong Dong
- Department of Hepatobiliary Surgery, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Chenyu Huang
- Department of Plastic, Reconstructive and Aesthetic Surgery, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China.
| |
Collapse
|
27
|
Herrero A, Prigent J, Lombard C, Rosseels V, Daujat-Chavanieu M, Breckpot K, Najimi M, Deblandre G, Sokal EM. Adult-Derived Human Liver Stem/Progenitor Cells Infused 3 Days Postsurgery Improve Liver Regeneration in a Mouse Model of Extended Hepatectomy. Cell Transplant 2016; 26:351-364. [PMID: 27657746 DOI: 10.3727/096368916x692960] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
There is growing evidence that cell therapy constitutes a promising strategy for liver regenerative medicine. In the setting of hepatic cancer treatments, cell therapy could prove a useful therapeutic approach for managing the acute liver failure that occurs following extended hepatectomy. In this study, we examined the influence of delivering adult-derived human liver stem/progenitor cells (ADHLSCs) at two different early time points in an immunodeficient mouse model (Rag2-/-IL2Rγ-/-) that had undergone a 70% hepatectomy procedure. The hepatic mesenchymal cells were intrasplenically infused either immediately after surgery (n = 26) or following a critical 3-day period (n = 26). We evaluated the cells' capacity to engraft at day 1 and day 7 following transplantation by means of human Alu qPCR quantification, along with histological assessment of human albumin and α-smooth muscle actin. In addition, cell proliferation (anti-mouse and human Ki-67 staining) and murine liver weight were measured in order to evaluate liver regeneration. At day 1 posttransplantation, the ratio of human to mouse cells was similar in both groups, whereas 1 week posttransplantation this ratio was significantly improved (p < 0.016) in mice receiving ADHLSC injection at day 3 posthepatectomy (1.7%), compared to those injected at the time of surgery (1%). On the basis of liver weight, mouse liver regeneration was more extensive 1 week posttransplantation in mice transplanted with ADHLSCs (+65.3%) compared to that of mice from the sham vehicle group (+42.7%). In conclusion, infusing ADHLSCs 3 days after extensive hepatectomy improves the cell engraftment and murine hepatic tissue regeneration, thereby confirming that ADHLSCs could be a promising cell source for liver cell therapy and hepatic tissue repair.
Collapse
|
28
|
Kim YS, Kong WH, Kim H, Hahn SK. Targeted systemic mesenchymal stem cell delivery using hyaluronate - wheat germ agglutinin conjugate. Biomaterials 2016; 106:217-27. [PMID: 27569867 DOI: 10.1016/j.biomaterials.2016.08.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/28/2016] [Accepted: 08/16/2016] [Indexed: 02/06/2023]
Abstract
A variety of receptors for hyaluronate (HA), a natural linear polysaccharide, were found in the body, which have been exploited as target sites for HA-based drug delivery systems. In this work, mesenchymal stem cells (MSCs) were surface-modified with HA - wheat germ agglutinin (WGA) conjugate for targeted systemic delivery of MSCs to the liver. WGA was conjugated to HA by coupling reaction between aldehyde-modified HA and amine group of WGA. The conjugation of WGA to HA was corroborated by gel permeation chromatography (GPC) and the successful surface modification of MSCs with HA-WGA conjugate was confirmed by confocal microscopy. The synthesized HA-WGA conjugate could be incorporated onto the cellular membrane by agglutinating the cell-associated carbohydrates. Fluorescent imaging for in vivo biodistribution visualized the targeted delivery of the HA-WGA/MSC complex to the liver after intravenous injection. This new strategy for targeted delivery of MSCs using HA-WGA conjugate might be successfully exploited for various regenerative medicines including cell therapy.
Collapse
Affiliation(s)
- Yun Seop Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang, Kyungbuk 790-784, Korea
| | - Won Ho Kong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang, Kyungbuk 790-784, Korea
| | - Hyemin Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang, Kyungbuk 790-784, Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang, Kyungbuk 790-784, Korea.
| |
Collapse
|
29
|
Pahk KJ, Mohammad GH, Malago M, Saffari N, Dhar DK. A Novel Approach to Ultrasound-Mediated Tissue Decellularization and Intra-Hepatic Cell Delivery in Rats. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:1958-1967. [PMID: 27184248 DOI: 10.1016/j.ultrasmedbio.2016.03.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 03/10/2016] [Accepted: 03/20/2016] [Indexed: 06/05/2023]
Abstract
Liver transplantation is the mainstay of treatment for end stage liver diseases, including metabolic and congenital liver diseases. The number of suitable donor organs is, however, limited, and a whole-liver transplant requires complex surgery. Cell therapy, such as intra-portal hepatocytes transplantation, has been considered as a bridging therapy to liver transplantation but has shown a mixed clinical outcome with limited success, including low level of engraftment of transplanted hepatocytes. Here, we report a novel cell delivery technique in a rat model by creating a cavity inside the liver parenchyma by non-invasive high intensity focused ultrasound histotripsy. Our in vivo experimental results together with histologic observations show that direct injection of cells inside the cavity can facilitate successful uptake, proliferation and integration of the transplanted hepatocytes in the recipient liver. We were able to restore the plasma albumin level to 50% of the normal level in Nagase analbuminemic rats (serum albumin level of the Nagase rats was initially nil) by cell therapy after high intensity focused ultrasound-mediated histotripsy. We believe that this novel technique would enable the delivery of a large number of cells into the liver to restore liver function, particularly as a treatment for metabolic liver diseases. This novel method of intra-hepatic hepatocyte transplantation might be an invaluable tool for cell therapy in the future.
Collapse
Affiliation(s)
- Ki Joo Pahk
- Department of Mechanical Engineering, University College London, London, UK
| | - Goran Hamid Mohammad
- Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London, UK
| | - Massimo Malago
- Hepato-pancreatic-biliary and Liver Transplantation Surgery, Royal Free Hospital, University College London, London, UK
| | - Nader Saffari
- Department of Mechanical Engineering, University College London, London, UK.
| | - Dipok Kumar Dhar
- Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London, UK; King Faisal Specialist Hospital and Research Center, Comparative Medicine Department and Organ Transplantation Center, Riyadh, Saudi Arabia
| |
Collapse
|
30
|
Hannoun Z, Steichen C, Dianat N, Weber A, Dubart-Kupperschmitt A. The potential of induced pluripotent stem cell derived hepatocytes. J Hepatol 2016; 65:182-199. [PMID: 26916529 DOI: 10.1016/j.jhep.2016.02.025] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/12/2016] [Accepted: 02/09/2016] [Indexed: 12/21/2022]
Abstract
Orthotopic liver transplantation remains the only curative treatment for liver disease. However, the number of patients who die while on the waiting list (15%) has increased in recent years as a result of severe organ shortages; furthermore the incidence of liver disease is increasing worldwide. Clinical trials involving hepatocyte transplantation have provided encouraging results. However, transplanted cell function appears to often decline after several months, necessitating liver transplantation. The precise aetiology of the loss of cell function is not clear, but poor engraftment and immune-mediated loss appear to be important factors. Also, primary human hepatocytes (PHH) are not readily available, de-differentiate, and die rapidly in culture. Hepatocytes are available from other sources, such as tumour-derived human hepatocyte cell lines and immortalised human hepatocyte cell lines or porcine hepatocytes. However, all these cells suffer from various limitations such as reduced or differences in functions or risk of zoonotic infections. Due to their significant potential, one possible inexhaustible source of hepatocytes is through the directed differentiation of human induced pluripotent stem cells (hiPSCs). This review will discuss the potential applications and existing limitations of hiPSC-derived hepatocytes in regenerative medicine, drug screening, in vitro disease modelling and bioartificial livers.
Collapse
Affiliation(s)
- Zara Hannoun
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94807, France; UMR_S1193, Université Paris-Sud, Hôpital Paul Brousse, Villejuif F-94800, France; Département hospitalo-universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France
| | - Clara Steichen
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94807, France; UMR_S1193, Université Paris-Sud, Hôpital Paul Brousse, Villejuif F-94800, France; Département hospitalo-universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France
| | - Noushin Dianat
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94807, France; UMR_S1193, Université Paris-Sud, Hôpital Paul Brousse, Villejuif F-94800, France; Département hospitalo-universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France
| | - Anne Weber
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94807, France; UMR_S1193, Université Paris-Sud, Hôpital Paul Brousse, Villejuif F-94800, France; Département hospitalo-universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France
| | - Anne Dubart-Kupperschmitt
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94807, France; UMR_S1193, Université Paris-Sud, Hôpital Paul Brousse, Villejuif F-94800, France; Département hospitalo-universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France.
| |
Collapse
|
31
|
Stem/Progenitor Cell Niches Involved in Hepatic and Biliary Regeneration. Stem Cells Int 2016; 2016:3658013. [PMID: 26880956 PMCID: PMC4737003 DOI: 10.1155/2016/3658013] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/16/2015] [Accepted: 11/23/2015] [Indexed: 12/28/2022] Open
Abstract
Niches containing stem/progenitor cells are present in different anatomical locations along the human biliary tree and within liver acini. The most primitive stem/progenitors, biliary tree stem/progenitor cells (BTSCs), reside within peribiliary glands located throughout large extrahepatic and intrahepatic bile ducts. BTSCs are multipotent and can differentiate towards hepatic and pancreatic cell fates. These niches' matrix chemistry and other characteristics are undefined. Canals of Hering (bile ductules) are found periportally and contain hepatic stem/progenitor cells (HpSCs), participating in the renewal of small intrahepatic bile ducts and being precursors to hepatocytes and cholangiocytes. The niches also contain precursors to hepatic stellate cells and endothelia, macrophages, and have a matrix chemistry rich in hyaluronans, minimally sulfated proteoglycans, fetal collagens, and laminin. The microenvironment furnishes key signals driving HpSC activation and differentiation. Newly discovered third niches are pericentral within hepatic acini, contain Axin2+ unipotent hepatocytic progenitors linked on their lateral borders to endothelia forming the central vein, and contribute to normal turnover of mature hepatocytes. Their relationship to the other stem/progenitors is undefined. Stem/progenitor niches have important implications in regenerative medicine for the liver and biliary tree and in pathogenic processes leading to diseases of these tissues.
Collapse
|
32
|
Tolosa L, Caron J, Hannoun Z, Antoni M, López S, Burks D, Castell JV, Weber A, Gomez-Lechon MJ, Dubart-Kupperschmitt A. Transplantation of hESC-derived hepatocytes protects mice from liver injury. Stem Cell Res Ther 2015; 6:246. [PMID: 26652177 PMCID: PMC4676869 DOI: 10.1186/s13287-015-0227-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/25/2015] [Accepted: 11/06/2015] [Indexed: 12/25/2022] Open
Abstract
Background Hepatic cell therapy has become a viable alternative to liver transplantation for life-threatening liver diseases. However, the supply of human hepatocytes is limited due to the shortage of suitable donor organs required to isolate high-quality cells. Human pluripotent stem cells reflect a potential renewable source for generating functional hepatocytes. However, most differentiation protocols use undefined matrices or factors of animal origin; as such, the resulting hepatocytes are not Good Manufacturing Practice compliant. Moreover, the preclinical studies employed to assess safety and function of human embryonic stem cell (hESC)-derived hepatocytes are generally limited to immunodeficient mice. In the present study, we evaluate the generation of hepatocytes under defined conditions using a European hESC line (VAL9) which was derived under animal-free conditions. The function capacity of VAL9-derived hepatocytes was assessed by transplantation into mice with acetaminophen-induced acute liver failure, a clinically relevant model. Methods We developed a protocol that successfully differentiates hESCs into bipotent hepatic progenitors under defined conditions, without the use of chromatin modifiers such as dimethyl sulphoxide. These progenitors can be cryopreserved and are able to generate both committed precursors of cholangiocytes and neonate-like hepatocytes. Results Thirty days post-differentiation, hESCs expressed hepatocyte-specific markers such as asialoglycoprotein receptor and hepatic nuclear factors including HNF4α. The cells exhibited properties of mature hepatocytes such as urea secretion and UGT1A1 and cytochrome P450 activities. When transplanted into mice with acetaminophen-induced acute liver failure, a model of liver damage, the VAL9-derived hepatocytes efficiently engrafted and proliferated, repopulating up to 10 % of the liver. In these transplanted livers, we observed a significant decrease of liver transaminases and found no evidence of tumourigenicity. Thus, VAL9-derived hepatocytes were able to rescue hepatic function in acetaminophen-treated animals. Conclusions Our study reveals an efficient protocol for differentiating VAL9 hESCs to neonatal hepatocytes which are then able to repopulate livers in vivo without tumour induction. The human hepatocytes are able to rescue liver function in mice with acetaminophen-induced acute toxicity. These results provide proof-of-concept that replacement therapies using hESC-derived hepatocytes are effective for treating liver diseases. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0227-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laia Tolosa
- INSERM, U 1193, Hôpital Paul Brousse, Villejuif, F-94807, France. .,Unidad de Hepatología Experimental, IIS LA Fe, Valencia, S-46026, Spain. .,Univ Paris-Sud, UMR-S 1193, Villejuif, F-94800, France. .,DHU Hepatinov, Villejuif, F-94800, France.
| | - Jérôme Caron
- INSERM, U 1193, Hôpital Paul Brousse, Villejuif, F-94807, France. .,Univ Paris-Sud, UMR-S 1193, Villejuif, F-94800, France. .,DHU Hepatinov, Villejuif, F-94800, France.
| | - Zara Hannoun
- INSERM, U 1193, Hôpital Paul Brousse, Villejuif, F-94807, France. .,Univ Paris-Sud, UMR-S 1193, Villejuif, F-94800, France. .,DHU Hepatinov, Villejuif, F-94800, France.
| | - Marc Antoni
- INSERM, U 1193, Hôpital Paul Brousse, Villejuif, F-94807, France. .,Univ Paris-Sud, UMR-S 1193, Villejuif, F-94800, France. .,DHU Hepatinov, Villejuif, F-94800, France.
| | - Silvia López
- Unidad de Hepatología Experimental, IIS LA Fe, Valencia, S-46026, Spain.
| | - Deborah Burks
- CIBERDEM, Centro de Investigacion Prıncipe Felipe, Valencia, S-46012, Spain.
| | - Jose Vicente Castell
- Unidad de Hepatología Experimental, IIS LA Fe, Valencia, S-46026, Spain. .,CIBERehd, FIS, Barcelona, S-08036, Spain.
| | - Anne Weber
- INSERM, U 1193, Hôpital Paul Brousse, Villejuif, F-94807, France. .,Univ Paris-Sud, UMR-S 1193, Villejuif, F-94800, France. .,DHU Hepatinov, Villejuif, F-94800, France.
| | - Maria-Jose Gomez-Lechon
- Unidad de Hepatología Experimental, IIS LA Fe, Valencia, S-46026, Spain. .,CIBERehd, FIS, Barcelona, S-08036, Spain.
| | - Anne Dubart-Kupperschmitt
- INSERM, U 1193, Hôpital Paul Brousse, Villejuif, F-94807, France. .,Univ Paris-Sud, UMR-S 1193, Villejuif, F-94800, France. .,DHU Hepatinov, Villejuif, F-94800, France.
| |
Collapse
|
33
|
Yuan J, Li W, Huang J, Guo X, Li X, Lu X, Huang X, Zhang H. Transplantation of human adipose stem cell-derived hepatocyte-like cells with restricted localization to liver using acellular amniotic membrane. Stem Cell Res Ther 2015; 6:217. [PMID: 26541667 PMCID: PMC4635993 DOI: 10.1186/s13287-015-0208-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 07/31/2015] [Accepted: 08/19/2015] [Indexed: 12/14/2022] Open
Abstract
Introduction Adult stem cell-derived hepatocytes transplantation holds considerable promise for future clinical individualized therapy of liver failure or dysfunction. However, the low engraftment of the available hepatocytes in the liver disease microenvironment has been a major obstacle. Methods Acellular human amniotic membrane was developed as a three-dimensional scaffold and combined with hepatocyte-like cells derived from human adipose stem cells to engineer a hepatic tissue graft that would allow hepatocyte engraftment in the liver effectively. Results The hepatic tissue grafts maintained hepatocyte-specific gene expression and functionality in vitro. When transplanted into the surgical incision in livers for engraftment, the engineered hepatic grafts significantly decreased the degree of liver injury caused by a carbon tetrachloride treatment and generated cords that were similar to the ductal plates in the liver between the acellular human amniotic membrane and the liver of receipts at day 3 post-transplantation. The hepatic tissue grafts maintained the expression of human hepatocyte-specific markers albumin, hepatocyte nuclear factor 4α, and cytochrome P450 2B6 in the liver of receipts, and acquired human-specific drug metabolism ability at eight weeks post-transplantation. Conclusions The acellular human amniotic membrane has the ability to maintain the functional phenotype of the hepatocyte-like cells derived from human adipose stem cells. Functional acellular human amniotic membrane-hepatocytes grafts integrated with the liver decreases the acute liver injury of mice. These engineered tissue constructs may support stem cell-based individualized therapy for liver disease and for bioartificial liver establishment. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0208-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Yuan
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, No. 10, Xitoutiao, You An Men, Beijing, 100069, China.
| | - Weihong Li
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, No. 10, Xitoutiao, You An Men, Beijing, 100069, China.
| | - Jieqiong Huang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, No. 10, Xitoutiao, You An Men, Beijing, 100069, China.
| | - Xinyue Guo
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, No. 10, Xitoutiao, You An Men, Beijing, 100069, China.
| | - Xueyang Li
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, No. 10, Xitoutiao, You An Men, Beijing, 100069, China.
| | - Xin Lu
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, No. 10, Xitoutiao, You An Men, Beijing, 100069, China.
| | - Xiaowu Huang
- Fu Xing Hospital, Capital Medical University, No. 20, Fu xing men wai, Beijing, 100038, China.
| | - Haiyan Zhang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, No. 10, Xitoutiao, You An Men, Beijing, 100069, China.
| |
Collapse
|
34
|
Alejandra MR, Juan AB, Ana SR. Cell therapy for liver diseases: current medicine and future promises. Expert Rev Gastroenterol Hepatol 2015; 9:837-50. [PMID: 25747732 DOI: 10.1586/17474124.2015.1016913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Liver diseases are a major health problem worldwide since they usually represent the main causes of death in most countries, causing excessive costs to public health systems. Nowadays, there are no efficient current therapies for most hepatic diseases and liver transplant is infrequent due to the availability of organs, cost and risk of transplant rejection. Therefore, alternative therapies for liver diseases have been developed, including cell-based therapies. Stem cells (SCs) are characterized by their self-renewing capacity, unlimited proliferation and differentiation under certain conditions into tissue- or organ-specific cells with special functions. Cell-based therapies for liver diseases have been successful in experimental models, showing anti-inflammatory, antifibrogenic and regenerative effects. Nowadays, clinical trials using SCs for liver pathologies are increasing in number, and those that have reached publication have achieved favorable effects, encouraging us to think that SCs will have a potential clinical use in a short time.
Collapse
Affiliation(s)
- Meza-Ríos Alejandra
- Department of Molecular Biology and Genomics, Health Sciences University Center, Institute for Molecular Biology and Gene Therapy, University of Guadalajara, Sierra Mojada 950, Colonia Independencia, Guadalajara, Jalisco 44340, México
| | | | | |
Collapse
|
35
|
He Y, Cui J, He T, Bi Y. 5-azacytidine promotes terminal differentiation of hepatic progenitor cells. Mol Med Rep 2015; 12:2872-8. [PMID: 25975647 DOI: 10.3892/mmr.2015.3772] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 03/24/2015] [Indexed: 11/06/2022] Open
Abstract
5-azacytidine (5-azaC) is known to induce cardiomyocyte differentiation. However, its function in hepatocyte differentiation is unclear. The present study investigated the in vitro capability of 5-azaC to promote maturation and differentiation of mouse embryonic hepatic progenitor cells, with the aim of developing an approach for improving hepatic differentiation. Mouse embryonic hepatic progenitor cells (HP14.5 cells) were treated with 5-azaC at concentrations from 0 to 20 μmol/l, in addition to hepatocyte induction culture medium. Hepatocyte induction medium induces HP14.5 cell differentiation. 5-azaC may enhance the albumin promotor-driven Gaussia luciferase (ALB-GLuc) activity in induced HP14.5 cells. In the present study 2 μmol/l was found to be the optimum concentration with which to achieve this. The expression of hepatocyte-associated factors was not significantly different between the group treated with 5-azaC alone and the control group. The mRNA levels of ALB; cytokeratin 18 (CK18); tyrosine aminotransferase (TAT); and cytochrome p450, family 1, member A1 (CYP1A1); in addition to the protein levels of ALB, CK18 and uridine diphosphate glucuronyltransferase 1A (UGT1A) in the induced group with 5-azaC, were higher than those in the induced group without 5-azaC, although no significant differences were detected in expression of the hepatic stem cell markers, DLK and α-fetoprotein, between the two groups. Treatment with 5-azaC alone did not affect glycogen synthesis or indocyanine green (ICG) metabolic function in HP14.5 cells, although it significantly increased ICG uptake and periodic acid-Schiff-positive cell numbers amongst HP14.5 cells. Therefore, the present study demonstrated that treatment with 5-azaC alone exerted no effects on the maturation and differentiation of HP14.5 cells. However, 5-azaC exhibited a synergistic effect on the terminal differentiation of induced hepatic progenitor cells in association with a hepatic induction medium.
Collapse
Affiliation(s)
- Yun He
- Department of Pediatric Surgery, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Jiejie Cui
- Stem Cell Biology and Therapy Laboratory, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Tongchuan He
- Stem Cell Biology and Therapy Laboratory, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yang Bi
- Department of Pediatric Surgery, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| |
Collapse
|
36
|
Hickey RD, Mao SA, Amiot B, Suksanpaisan L, Miller A, Nace R, Glorioso J, Peng KW, Ikeda Y, Russell SJ, Nyberg SL. Noninvasive 3-dimensional imaging of liver regeneration in a mouse model of hereditary tyrosinemia type 1 using the sodium iodide symporter gene. Liver Transpl 2015; 21:442-53. [PMID: 25482651 PMCID: PMC5957080 DOI: 10.1002/lt.24057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/30/2014] [Indexed: 12/24/2022]
Abstract
Cell transplantation is a potential treatment for the many liver disorders that are currently only curable by organ transplantation. However, one of the major limitations of hepatocyte (HC) transplantation is an inability to monitor cells longitudinally after injection. We hypothesized that the thyroidal sodium iodide symporter (NIS) gene could be used to visualize transplanted HCs in a rodent model of inherited liver disease: hereditary tyrosinemia type 1. Wild-type C57Bl/6J mouse HCs were transduced ex vivo with a lentiviral vector containing the mouse Slc5a5 (NIS) gene controlled by the thyroxine-binding globulin promoter. NIS-transduced cells could robustly concentrate radiolabeled iodine in vitro, with lentiviral transduction efficiencies greater than 80% achieved in the presence of dexamethasone. Next, NIS-transduced HCs were transplanted into congenic fumarylacetoacetate hydrolase knockout mice, and this resulted in the prevention of liver failure. NIS-transduced HCs were readily imaged in vivo by single-photon emission computed tomography, and this demonstrated for the first time noninvasive 3-dimensional imaging of regenerating tissue in individual animals over time. We also tested the efficacy of primary HC spheroids engrafted in the liver. With the NIS reporter, robust spheroid engraftment and survival could be detected longitudinally after direct parenchymal injection, and this thereby demonstrated a novel strategy for HC transplantation. This work is the first to demonstrate the efficacy of NIS imaging in the field of HC transplantation. We anticipate that NIS labeling will allow noninvasive and longitudinal identification of HCs and stem cells in future studies related to liver regeneration in small and large preclinical animal models.
Collapse
Affiliation(s)
- Raymond D. Hickey
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Bruce Amiot
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Amber Miller
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Rebecca Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Kah Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yasuhiro Ikeda
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
37
|
Dollé L, Theise ND, Schmelzer E, Boulter L, Gires O, van Grunsven LA. EpCAM and the biology of hepatic stem/progenitor cells. Am J Physiol Gastrointest Liver Physiol 2015; 308:G233-50. [PMID: 25477371 PMCID: PMC4329473 DOI: 10.1152/ajpgi.00069.2014] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein, which is frequently and highly expressed on carcinomas, tumor-initiating cells, selected tissue progenitors, and embryonic and adult stem cells. During liver development, EpCAM demonstrates a dynamic expression, since it can be detected in fetal liver, including cells of the parenchyma, whereas mature hepatocytes are devoid of EpCAM. Liver regeneration is associated with a population of EpCAM-positive cells within ductular reactions, which gradually lose the expression of EpCAM along with maturation into hepatocytes. EpCAM can be switched on and off through a wide panel of strategies to fine-tune EpCAM-dependent functional and differentiative traits. EpCAM-associated functions relate to cell-cell adhesion, proliferation, maintenance of a pluripotent state, regulation of differentiation, migration, and invasion. These functions can be conferred by the full-length protein and/or EpCAM-derived fragments, which are generated upon regulated intramembrane proteolysis. Control by EpCAM therefore not only depends on the presence of full-length EpCAM at cellular membranes but also on varying rates of the formation of EpCAM-derived fragments that have their own regulatory properties and on changes in the association of EpCAM with interaction partners. Thus spatiotemporal localization of EpCAM in immature liver progenitors, transit-amplifying cells, and mature liver cells will decisively impact the regulation of EpCAM functions and might be one of the triggers that contributes to the adaptive processes in stem/progenitor cell lineages. This review will summarize EpCAM-related molecular events and how they relate to hepatobiliary differentiation and regeneration.
Collapse
Affiliation(s)
- Laurent Dollé
- Department of Biomedical Sciences, Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels, Belgium;
| | - Neil D. Theise
- 2Departments of Pathology and Medicine, Beth Israel Medical Center of Albert Einstein College of Medicine, New York, New York;
| | - Eva Schmelzer
- 3McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania;
| | - Luke Boulter
- 4Medical Research Council Human Genetics Unit, Institute for Genetics and Molecular Medicine, Edinburgh, Scotland; and
| | - Olivier Gires
- 5Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Leo A. van Grunsven
- 1Department of Biomedical Sciences, Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels, Belgium;
| |
Collapse
|
38
|
Logan GJ, de Alencastro G, Alexander IE, Yeoh GC. Exploiting the unique regenerative capacity of the liver to underpin cell and gene therapy strategies for genetic and acquired liver disease. Int J Biochem Cell Biol 2014; 56:141-52. [PMID: 25449261 DOI: 10.1016/j.biocel.2014.10.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/15/2014] [Accepted: 10/21/2014] [Indexed: 02/06/2023]
Abstract
The number of genetic or acquired diseases of the liver treatable by organ transplantation is ever-increasing as transplantation techniques improve placing additional demands on an already limited organ supply. While cell and gene therapies are distinctly different modalities, they offer a synergistic alternative to organ transplant due to distinct architectural and physiological properties of the liver. The hepatic blood supply and fenestrated endothelial system affords relatively facile accessibility for cell and/or gene delivery. More importantly, however, the remarkable capacity of hepatocytes to proliferate and repopulate the liver creates opportunities for new treatments based on emerging technologies. This review will summarise current understanding of liver regeneration, describe clinical and experimental cell and gene therapeutic modalities and discuss critical challenges to translate these new technologies to wider clinical utility. This article is part of a Directed Issue entitled: "Regenerative Medicine: the challenge of translation".
Collapse
Affiliation(s)
- Grant J Logan
- Gene Therapy Research Unit of The Children's Medical Research Institute and The Children's Hospital at Westmead, Australia
| | - Gustavo de Alencastro
- Gene Therapy Research Unit of The Children's Medical Research Institute and The Children's Hospital at Westmead, Australia
| | - Ian E Alexander
- Gene Therapy Research Unit of The Children's Medical Research Institute and The Children's Hospital at Westmead, Australia; University of Sydney Discipline of Paediatrics and Child Health, Westmead, NSW 2145, Australia
| | - George C Yeoh
- The Centre for Medical Research, Harry Perkins Institute of Medical Research, Crawley, WA 6009, Australia.
| |
Collapse
|
39
|
Shin S, Kaestner KH. The origin, biology, and therapeutic potential of facultative adult hepatic progenitor cells. Curr Top Dev Biol 2014; 107:269-92. [PMID: 24439810 DOI: 10.1016/b978-0-12-416022-4.00010-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The liver plays an essential role in glucose and lipid metabolism, synthesis of plasma proteins, and detoxification of xenobiotics and other toxins. Chronic disease of this important organ is one of the leading causes of death in the United States. Following loss of tissue, liver mass can be restored by two mechanisms. Under normal conditions, or after massive loss of parenchyma by surgical resection, liver mass is maintained by division of hepatocytes. After chronic injury, or when proliferation of hepatocytes is impaired, facultative adult hepatic progenitor cells (HPCs) proliferate and differentiate into hepatocytes and cholangiocytes (biliary epithelial cells). HPCs are attractive candidates for cell transplantation because of their potential contribution to liver regeneration. However, until recently, the lack of highly specific markers has hampered efforts to better understand the origin and physiology of HPCs. Recent advances in cell isolation methods and genetic lineage tracing have enabled investigators to explore multiple aspects of HPC biology. In this review, we describe the potential origins of HPCs, the markers used to detect them, the contribution of HPCs to recovery, and the signaling pathways that regulate their biology. We end with an examination of the therapeutic potential of HPCs and their derivatives.
Collapse
Affiliation(s)
- Soona Shin
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
40
|
Zarembinski TI, Doty NJ, Erickson IE, Srinivas R, Wirostko BM, Tew WP. Thiolated hyaluronan-based hydrogels crosslinked using oxidized glutathione: an injectable matrix designed for ophthalmic applications. Acta Biomater 2014; 10:94-103. [PMID: 24096152 DOI: 10.1016/j.actbio.2013.09.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 08/10/2013] [Accepted: 09/23/2013] [Indexed: 02/08/2023]
Abstract
Future ophthalmic therapeutics will require the sustained delivery of bioactive proteins and nucleic acid-based macromolecules and/or provide a suitable microenvironment for the localization and sustenance of reparative progenitor cells after transplantation into or onto the eye. Water-rich hydrogels are ideal vehicles for such cargo, but few have all the qualities desired for novel ophthalmic use, namely in situ gelation speed, cytocompatibility, biocompatibility and capacity to functionalize. We describe here the development of an ophthalmic-compatible crosslinking system using oxidized glutathione (GSSG), a physiologically relevant molecule with a history of safe use in humans. When GSSG is used in conjunction with an existing hyaluronate-based, in situ crosslinkable hydrogel platform, gels form in less than 5 min using the thiol-disulfide exchange reaction. This GSSG hydrogel supports the 3-D culture of adipose-derived stem cells in vitro and shows biocompatibility in preliminary intracutaneous and subconjunctival experiments in vivo. In addition, the thiol-disulfide exchange reaction can also be used in conjunction with other thiol-compatible chemistries to covalently link peptides for more complex formulations. These data suggest that this hydrogel could be well suited for local ocular delivery, focusing initially on front of the eye therapies. Subsequent uses of the hydrogel include delivery of back of the eye treatments and eventually into other soft, hyaluronan-rich tissues such as those from the liver and brain.
Collapse
|
41
|
Avritscher R, Abdelsalam ME, Javadi S, Ensor J, Wallace MJ, Alt E, Madoff DC, Vykoukal JV. Percutaneous intraportal application of adipose tissue-derived mesenchymal stem cells using a balloon occlusion catheter in a porcine model of liver fibrosis. J Vasc Interv Radiol 2013; 24:1871-8. [PMID: 24144538 DOI: 10.1016/j.jvir.2013.08.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/22/2013] [Accepted: 08/26/2013] [Indexed: 02/09/2023] Open
Abstract
PURPOSE To investigate the safety and effectiveness of a novel endovascular approach for therapeutic cell delivery using a balloon occlusion catheter in a large animal model of liver fibrosis. MATERIALS AND METHODS Transcatheter arterial embolization with ethiodized oil (Ethiodol) and ethanol was used to induce liver damage in 11 pigs. Mesenchymal stem cells (MSCs) were harvested from adipose tissue and engineered to express green fluorescent protein (GFP). A balloon occlusion catheter was positioned in the bilateral first-order portal vein branches 2 weeks after embolization to allow intraportal application of MSCs in six experimental animals. MSCs were allowed to dwell for 10 minutes using prolonged balloon inflation. Five control animals received a sham injection of normal saline in a similar fashion. Hepatic venous pressure gradient (HVPG) was measured immediately before necropsy. Specimens from all accessible lobes were obtained with ultrasound-guided percutaneous 18-gauge biopsy 2 hours after cell application. All animals were euthanized within 4 weeks. Fluorescent microscopy was used to assess the presence and distribution of cells. RESULTS Liver injury and fibrosis were successfully induced in all animals. MSCs (6-10 × 10(7)) were successfully delivered into the portal vein in the six experimental animals. Cell application was not associated with vascular complications. HVPG showed no instances of portal hypertension. GFP-expressing MSCs were visualized in biopsy specimens and were distributed primarily within the sinusoidal spaces; however, 4 weeks after implantation, MSCs could not be identified in histologic specimens. CONCLUSIONS A percutaneous endovascular approach for cell delivery using a balloon occlusion catheter proved safe for intraportal MSC application in a large animal model of liver fibrosis.
Collapse
Affiliation(s)
- Rony Avritscher
- Department of Diagnostic Radiology, Interventional Radiology Section, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1471 Houston, TX 77030.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Lanzoni G, Oikawa T, Wang Y, Cui CB, Carpino G, Cardinale V, Gerber D, Gabriel M, Dominguez-Bendala J, Furth ME, Gaudio E, Alvaro D, Inverardi L, Reid LM. Concise review: clinical programs of stem cell therapies for liver and pancreas. Stem Cells 2013; 31:2047-60. [PMID: 23873634 PMCID: PMC3812254 DOI: 10.1002/stem.1457] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/02/2013] [Accepted: 05/15/2013] [Indexed: 12/13/2022]
Abstract
Regenerative medicine is transitioning into clinical programs using stem/progenitor cell therapies for repair of damaged organs. We summarize those for liver and pancreas, organs that share endodermal stem cell populations, biliary tree stem cells (hBTSCs), located in peribiliary glands. They are precursors to hepatic stem/progenitors in canals of Hering and to committed progenitors in pancreatic duct glands. They give rise to maturational lineages along a radial axis within bile duct walls and a proximal-to-distal axis starting at the duodenum and ending with mature cells in the liver or pancreas. Clinical trials have been ongoing for years assessing effects of determined stem cells (fetal-liver-derived hepatic stem/progenitors) transplanted into the hepatic artery of patients with various liver diseases. Immunosuppression was not required. Control subjects, those given standard of care for a given condition, all died within a year or deteriorated in their liver functions. Subjects transplanted with 100-150 million hepatic stem/progenitor cells had improved liver functions and survival extending for several years. Full evaluations of safety and efficacy of transplants are still in progress. Determined stem cell therapies for diabetes using hBTSCs remain to be explored but are likely to occur following ongoing preclinical studies. In addition, mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) are being used for patients with chronic liver conditions or with diabetes. MSCs have demonstrated significant effects through paracrine signaling of trophic and immunomodulatory factors, and there is limited evidence for inefficient lineage restriction into mature parenchymal or islet cells. HSCs' effects are primarily via modulation of immune mechanisms.
Collapse
Affiliation(s)
- Giacomo Lanzoni
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL. 33136
- Department of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Tsunekazu Oikawa
- Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Yunfang Wang
- The Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, PR China, 100850
| | - Cai-Bin Cui
- Department of Surgery, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Guido Carpino
- Department of Health Sciences, University of Rome “ForoItalico”, Rome, Italy
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Fondazione Eleonora Lorillard Spencer Cenci, Sapienza University, Rome, Italy
| | - Vincenzo Cardinale
- Department of Scienze e Biotecnologie Medico-Chirurgiche, Fondazione Eleonora Lorillard Spencer Cenci, Sapienza University, Rome, Italy
| | - David Gerber
- Department of Surgery, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Mara Gabriel
- MGabriel Consulting, 3621 Sweeten Creek Road, Chapel Hill, NC 27514
| | - Juan Dominguez-Bendala
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL. 33136
| | - Mark E. Furth
- Wake Forest Innovations, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Fondazione Eleonora Lorillard Spencer Cenci, Sapienza University, Rome, Italy
| | - Domenico Alvaro
- Department of Scienze e Biotecnologie Medico-Chirurgiche, Fondazione Eleonora Lorillard Spencer Cenci, Sapienza University, Rome, Italy
| | - Luca Inverardi
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL. 33136
| | - Lola M. Reid
- Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
- Program in Molecular Biology and Biotechnology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
- Lineberger Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| |
Collapse
|
43
|
Abstract
Because of their high proliferative capacity, resistance to cryopreservation, and ability to differentiate into hepatocyte-like cells, stem and progenitor cells have recently emerged as attractive cell sources for liver cell therapy, a technique used as an alternative to orthotopic liver transplantation in the treatment of various hepatic ailments ranging from metabolic disorders to end-stage liver disease. Although stem and progenitor cells have been isolated from various tissues, obtaining them from the liver could be an advantage for the treatment of hepatic disorders. However, the techniques available to isolate these stem/progenitor cells are numerous and give rise to cell populations with different morphological and functional characteristics. In addition, there is currently no established consensus on the tests that need to be performed to ensure the quality and safety of these cells when used clinically. The purpose of this review is to describe the different types of liver stem/progenitor cells currently reported in the literature, discuss their suitability and limitations in terms of clinical applications, and examine how the culture and transplantation techniques can potentially be improved to achieve a better clinical outcome.
Collapse
Affiliation(s)
- Catherine A. Lombard
- Université Catholique de Louvain, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Pediatric Hepatology and Cell Therapy, Brussels, Belgium
| | - Julie Prigent
- Université Catholique de Louvain, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Pediatric Hepatology and Cell Therapy, Brussels, Belgium
| | - Etienne M. Sokal
- Université Catholique de Louvain, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Pediatric Hepatology and Cell Therapy, Brussels, Belgium
| |
Collapse
|
44
|
Abstract
Regenerative medicine is a rapidly evolving multidisciplinary, translational research enterprise whose explicit purpose is to advance technologies for the repair and replacement of damaged cells, tissues, and organs. Scientific progress in the field has been steady and expectations for its robust clinical application continue to rise. The major thesis of this review is that the pharmacological sciences will contribute critically to the accelerated translational progress and clinical utility of regenerative medicine technologies. In 2007, we coined the phrase "regenerative pharmacology" to describe the enormous possibilities that could occur at the interface between pharmacology, regenerative medicine, and tissue engineering. The operational definition of regenerative pharmacology is "the application of pharmacological sciences to accelerate, optimize, and characterize (either in vitro or in vivo) the development, maturation, and function of bioengineered and regenerating tissues." As such, regenerative pharmacology seeks to cure disease through restoration of tissue/organ function. This strategy is distinct from standard pharmacotherapy, which is often limited to the amelioration of symptoms. Our goal here is to get pharmacologists more involved in this field of research by exposing them to the tools, opportunities, challenges, and interdisciplinary expertise that will be required to ensure awareness and galvanize involvement. To this end, we illustrate ways in which the pharmacological sciences can drive future innovations in regenerative medicine and tissue engineering and thus help to revolutionize the discovery of curative therapeutics. Hopefully, the broad foundational knowledge provided herein will spark sustained conversations among experts in diverse fields of scientific research to the benefit of all.
Collapse
Affiliation(s)
- George J Christ
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA.
| | | | | | | |
Collapse
|
45
|
Prestwich GD, Erickson IE, Zarembinski TI, West M, Tew WP. The translational imperative: making cell therapy simple and effective. Acta Biomater 2012; 8:4200-7. [PMID: 22776825 DOI: 10.1016/j.actbio.2012.06.043] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/29/2012] [Accepted: 06/29/2012] [Indexed: 02/05/2023]
Abstract
The current practice of cell therapy, in which multipotent or terminally differentiated cells are injected into tissues or intravenously, is inefficient. Few therapeutic cells are retained at the site of administration and engraftment is low. An injectable and biologically appropriate vehicle for delivery, retention, growth and differentiation of therapeutic cells is needed to improve the efficacy of cell therapy. We focus on a hyaluronan-based semi-synthetic extracellular matrix (sECM), HyStem®, which is a manufacturable, approvable and affordable clinical product. The composition of this sECM can be customized for use with mesenchymal stem cells as well as cells derived from embryonic or induced pluripotent sources. In addition, it can support therapeutic uses of progenitor and mature cell populations obtained from skin, fat, liver, heart, muscle, bone, cartilage, nerves and other tissues. This overview presents four pre-clinical uses of HyStem® for cell therapy to repair injured vocal folds, improve post-myocardial infarct heart function, regenerate damaged liver tissue and restore brain function following ischemic stroke. Finally, we address the real-world limitations - manufacture, regulation, market acceptance and financing - surrounding cell therapy and the development of clinical combination products.
Collapse
Affiliation(s)
- Glenn D Prestwich
- Department of Medicinal Chemistry and The Center for Therapeutic Biomaterials, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, UT 84108-1257, USA.
| | | | | | | | | |
Collapse
|