Yu T, Pei WZ, Xu CY, Deng CC, Zhang XL. Identification of male schizophrenia patients using brain morphology based on machine learning algorithms. World J Psychiatry 2024; 14(6): 804-811 [PMID: 38984327 DOI: 10.5498/wjp.v14.i6.804]
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
World J Psychiatry. Jun 19, 2024; 14(6): 804-811 Published online Jun 19, 2024. doi: 10.5498/wjp.v14.i6.804
Table 1 Comparison of age and whole volume between two groups
Variables
Healthy controls
Schizophrenia patients
t value
P value
Age (yr)
34.06 ± 8.88
35.04 ± 11.21
-0.338
0.736
Whole volume (mm3)
1203600.00 ± 88093.08
1164100.00 ± 112071.00
1.365
0.176
Table 2 The important features extracted by least absolute shrinkage and selection operator
Variables
Coefficients
Surface area
Bankssts
-0.00005308106
Inferior temporal
-0.00004908730
Lateral occipital
-0.00003610912
Lingual
-0.00022333510
Insula
0.000007207081
Isthmus cingulate
0.000156094500
Paracentral
0.000248385300
Gray matter volume
Superior frontal
-0.00001763374
Temporal pole
0.000149290400
Cortical thickness
Lingual
0.062200590000
Cuneus
0.037246120000
Lateral occipital
0.239341600000
Par sopercularis
0.000000005200
Table 3 Comparison of morphological features between two groups
Variables
Schizophrenia patients
Healthy controls
t value
P value
Left bankssts area
1016.20 ± 170.13
1133.20 ± 186.00
-2.488
0.015
Left inferior temporal area
3492.30 ± 557.45
3856.30 ± 423.39
-2.544
0.013
Left lateral occipital area
4925.30 ± 719.19
5489.80 ± 480.09
-3.111
0.003
Left lingual area
2812.00 ± 444.30
3236.70 ± 479.05
-3.471
0.001
Left lingual thickness
2.08 ± 0.17
1.99 ± 0.10
2.121
0.037
Left superior frontal volume
23123.00 ± 2824.16
24744.00 ± 2448.14
-2.187
0.032
Right cuneus thickness
2.01 ± 0.14
1.89 ± 0.14
2.938
0.004
Right lateral occipital thickness
2.18 ± 0.15
2.07 ± 0.15
2.738
0.008
Table 4 Performance of each machine learning algorithm
Algorithms
AUC
Balanced accuracy, %
Sensitivity
Specificity
GLM
0.728 (0.470-0.986)
61.84
0.737
0.500
RF
0.886 (0.754-1.000)
64.04
0.947
0.333
KNN
0.601 (0.257-0.945)
55.70
0.947
0.167
SVM
0.842 (0.670-1.000)
50.00
1.000
0.000
Table 5 The performance for each structural feature
Features
AUC
Balanced accuracy, %
Sensitivity
Specificity
Surface area
0.474 (0.241-0.706)
39.50
0.789
0.000
Gray matter volume
0.553 (0.235-0.871)
56.60
0.632
0.500
Cortical thickness
0.605 (0.327-0.884)
55.70
0.947
0.167
Citation: Yu T, Pei WZ, Xu CY, Deng CC, Zhang XL. Identification of male schizophrenia patients using brain morphology based on machine learning algorithms. World J Psychiatry 2024; 14(6): 804-811