1
|
Capatina TF, Oatu A, Babasan C, Trifu S. Translating Molecular Psychiatry: From Biomarkers to Personalized Therapies-A Narrative Review. Int J Mol Sci 2025; 26:4285. [PMID: 40362522 PMCID: PMC12072283 DOI: 10.3390/ijms26094285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/10/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
In this review, we explore the biomarkers of different psychiatric disorders, such as major depressive disorder, generalized anxiety disorder, schizophrenia, and bipolar disorder. Moreover, we show the interplay between genetic and environmental factors. Novel techniques such as genome-wide association studies (GWASs) have identified numerous risk loci and single-nucleotide polymorphisms (SNPs) implicated in these conditions, contributing to a better understanding of their mechanisms. Moreover, the impact of genetic variations on drug metabolisms, particularly through cytochrome P450 (CYP450) enzymes, highlights the importance of pharmacogenomics in optimizing psychiatric treatment. This review also explores the role of neurotransmitter regulation, immune system interactions, and metabolic pathways in psychiatric disorders. As the technology advances, integrating genetic markers into clinical practice will be crucial in advancing precision psychiatry, improving diagnostic accuracy and therapeutic interventions for individual patients.
Collapse
Affiliation(s)
| | - Anamaria Oatu
- Department of Psychiatry, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.O.); (C.B.)
| | - Casandra Babasan
- Department of Psychiatry, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.O.); (C.B.)
| | - Simona Trifu
- Department of Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
2
|
Limongi R, Skelton AB, Tzianas LH, Silva AM. Increasing the Construct Validity of Computational Phenotypes of Mental Illness Through Active Inference and Brain Imaging. Brain Sci 2024; 14:1278. [PMID: 39766477 PMCID: PMC11674655 DOI: 10.3390/brainsci14121278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
After more than 30 years since its inception, the utility of brain imaging for understanding and diagnosing mental illnesses is in doubt, receiving well-grounded criticisms from clinical practitioners. Symptom-based correlational approaches have struggled to provide psychiatry with reliable brain-imaging metrics. However, the emergence of computational psychiatry has paved a new path not only for understanding the psychopathology of mental illness but also to provide practical tools for clinical practice in terms of computational metrics, specifically computational phenotypes. However, these phenotypes still lack sufficient test-retest reliability. In this review, we describe recent works revealing that mind and brain-related computational phenotypes show structural (not random) variation over time, longitudinal changes. Furthermore, we show that these findings suggest that understanding the causes of these changes will improve the construct validity of the phenotypes with an ensuing increase in test-retest reliability. We propose that the active inference framework offers a general-purpose approach for causally understanding these longitudinal changes by incorporating brain imaging as observations within partially observable Markov decision processes.
Collapse
Affiliation(s)
- Roberto Limongi
- Department of Psychology, Brandon University, Brandon, MB R7A 6A9, Canada;
| | | | - Lydia H. Tzianas
- Department of Psychology, University of Western Ontario, London, ON N6A 3K7, Canada;
| | - Angelica M. Silva
- Department of French and Francophone Studies, Brandon University, Brandon, MB R7A 6A9, Canada;
| |
Collapse
|
3
|
Cooper JJ, Valencia VA, Niu K. Neuroimaging education in psychiatric training. Neuropsychopharmacology 2024; 50:298-304. [PMID: 39025952 PMCID: PMC11525630 DOI: 10.1038/s41386-024-01909-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/06/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024]
Abstract
As the histories of psychiatry, neurology, and neuroimaging interweave through time, psychiatry has only recently started to recognize the need to embrace neuroimaging like its sibling specialty. While imaging in psychiatric research is well accepted, there is current clinical utility as well. Standards for psychiatry residency and board certification in the USA and abroad have carved out a place for neuroimaging, but the implementation is variable and sparse in the USA. The few publications that describe neuroimaging teaching to psychiatrists have barriers to widespread adoption, and no comprehensive curricular solution has been developed. In this context, we describe some of the barriers and propose solutions to shape the future of neuroimaging education for psychiatrists.
Collapse
Affiliation(s)
| | | | - Kathy Niu
- Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
4
|
Rodrigues A, Santos HC, Ferreira S, Diogo V, Costa M, Brissos S, Marques JG, Prata D. An exploration of blood-based biomarkers of negative symptoms of psychosis in men. J Psychiatr Res 2024; 177:256-263. [PMID: 39047549 DOI: 10.1016/j.jpsychires.2024.06.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/31/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
Negative symptoms in the context of psychosis are still poorly understood and diagnosed, which impairs the treatment efficacy of current therapies and patient's integration in society. In this study, we aimed to test hypothesis-based and exploratory associations of negative symptom domains, as defined by the Brief Negative Symptom Scale (BNSS), with hormonal and hematological variables, and, complementarily, with standard psychological/cognitive and psychopathological measures. Fifty-one male patients diagnosed with a psychotic disorder underwent a structured interview and blood collection. Standard Spearmen bivariate correlations were used for data analysis. We obtained evidence of hypothesis-based associations between specific negative symptoms and oxytocin, thyroid stimulating hormone levels and neutrophil-to-lymphocyte ratio; as well as novel and hypothesis-free associations with erythrocyte and lymphocyte count, mean corpuscular volume and red cell distribution width. Complementarily, we also obtained some validation of previous associations of negative symptoms with illness resolution, cognitive symptom severity and social performance, and a novel association with anger contagion. We hope our results can generate new hypotheses in psychosis research. Our work suggests further avenues in research on erythrocytic, inflammatory, thyroid and oxytocin-related markers and abnormalities in psychosis, especially in regards to specific negative symptoms, towards more precise and comprehensive etiological, diagnostic and therapeutic models.
Collapse
Affiliation(s)
- Alexandra Rodrigues
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal; Neuroradiology Department, Centro Hospitalar Universitário de Lisboa Central, Lisboa, Portugal; Unidade de Neurorradiologia, Hospital Central do Funchal, Funchal, Portugal
| | - Henrique Castro Santos
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal; Unidade Local de Saúde de São José - Polo Júlio de Matos, Centro Hospitalar Psiquiátrico de Lisboa, Lisboa, Portugal
| | - Sara Ferreira
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Vasco Diogo
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Marco Costa
- Departamento de Imagiologia, Hospital CUF Tejo, Lisboa, Portugal
| | - Sofia Brissos
- Unidade Local de Saúde de São José - Polo Júlio de Matos, Centro Hospitalar Psiquiátrico de Lisboa, Lisboa, Portugal
| | - João Gama Marques
- Unidade Local de Saúde de São José - Polo Júlio de Matos, Centro Hospitalar Psiquiátrico de Lisboa, Lisboa, Portugal; Clínica Universitária de Psiquiatria e Psicologia Médica, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Diana Prata
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal; Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
5
|
Eken A, Nassehi F, Eroğul O. Diagnostic machine learning applications on clinical populations using functional near infrared spectroscopy: a review. Rev Neurosci 2024; 35:421-449. [PMID: 38308531 DOI: 10.1515/revneuro-2023-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/12/2024] [Indexed: 02/04/2024]
Abstract
Functional near-infrared spectroscopy (fNIRS) and its interaction with machine learning (ML) is a popular research topic for the diagnostic classification of clinical disorders due to the lack of robust and objective biomarkers. This review provides an overview of research on psychiatric diseases by using fNIRS and ML. Article search was carried out and 45 studies were evaluated by considering their sample sizes, used features, ML methodology, and reported accuracy. To our best knowledge, this is the first review that reports diagnostic ML applications using fNIRS. We found that there has been an increasing trend to perform ML applications on fNIRS-based biomarker research since 2010. The most studied populations are schizophrenia (n = 12), attention deficit and hyperactivity disorder (n = 7), and autism spectrum disorder (n = 6) are the most studied populations. There is a significant negative correlation between sample size (>21) and accuracy values. Support vector machine (SVM) and deep learning (DL) approaches were the most popular classifier approaches (SVM = 20) (DL = 10). Eight of these studies recruited a number of participants more than 100 for classification. Concentration changes in oxy-hemoglobin (ΔHbO) based features were used more than concentration changes in deoxy-hemoglobin (ΔHb) based ones and the most popular ΔHbO-based features were mean ΔHbO (n = 11) and ΔHbO-based functional connections (n = 11). Using ML on fNIRS data might be a promising approach to reveal specific biomarkers for diagnostic classification.
Collapse
Affiliation(s)
- Aykut Eken
- Department of Biomedical Engineering, Faculty of Engineering, TOBB University of Economics and Technology, Sogutozu, 06510, Ankara, Türkiye
| | - Farhad Nassehi
- Department of Biomedical Engineering, Faculty of Engineering, TOBB University of Economics and Technology, Sogutozu, 06510, Ankara, Türkiye
| | - Osman Eroğul
- Department of Biomedical Engineering, Faculty of Engineering, TOBB University of Economics and Technology, Sogutozu, 06510, Ankara, Türkiye
| |
Collapse
|
6
|
Singh SB, Tiwari A, Katta MR, Kafle R, Ayubcha C, Patel KH, Bhattarai Y, Werner TJ, Alavi A, Revheim ME. The utility of PET imaging in depression. Front Psychiatry 2024; 15:1322118. [PMID: 38711875 PMCID: PMC11070570 DOI: 10.3389/fpsyt.2024.1322118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/28/2024] [Indexed: 05/08/2024] Open
Abstract
This educational review article aims to discuss growing evidence from PET studies in the diagnosis and treatment of depression. PET has been used in depression to explore the neurotransmitters involved, the alterations in neuroreceptors, non-neuroreceptor targets (e.g., microglia and astrocytes), the severity and duration of the disease, the pharmacodynamics of various antidepressants, and neurobiological mechanisms of non-pharmacological therapies like psychotherapy, electroconvulsive therapy, and deep brain stimulation therapy, by showing changes in brain metabolism and receptor and non-receptor targets. Studies have revealed alterations in neurotransmitter systems such as serotonin, dopamine, GABA, and glutamate, which are linked to the pathophysiology of depression. Overall, PET imaging has furthered the neurobiological understanding of depression. Despite these advancements, PET findings have not yet led to significant changes in evidence-based practices. Addressing the reasons behind inconsistencies in PET imaging results, conducting large sample size studies with a more standardized methodological approach, and investigating further the genetic and neurobiological aspects of depression may better leverage PET imaging in future studies.
Collapse
Affiliation(s)
- Shashi B. Singh
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Atit Tiwari
- BP Koirala Institute of Health Sciences, Dharan, Nepal
| | | | - Riju Kafle
- Rhythm Neuropsychiatry Hospital and Research Center Pvt. Ltd, Lalitpur, Nepal
| | - Cyrus Ayubcha
- Harvard Medical School, Boston, MA, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Krishna H. Patel
- Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Yash Bhattarai
- Case Western Reserve University/The MetroHealth System, Cleveland, OH, United States
| | - Thomas J. Werner
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Mona-Elisabeth Revheim
- The Intervention Center, Division of Technology and Innovation, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Fu L, Aximu R, Zhao G, Chen Y, Sun Z, Xue H, Wang S, Zhang N, Zhang Z, Lei M, Zhai Y, Xu J, Sun J, Ma J, Liu F. Mapping the landscape: a bibliometric analysis of resting-state fMRI research on schizophrenia over the past 25 years. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:35. [PMID: 38490990 PMCID: PMC10942978 DOI: 10.1038/s41537-024-00456-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Schizophrenia, a multifaceted mental disorder characterized by disturbances in thought, perception, and emotion, has been extensively investigated through resting-state fMRI, uncovering changes in spontaneous brain activity among those affected. However, a bibliometric examination regarding publication trends in resting-state fMRI studies related to schizophrenia is lacking. This study obtained relevant publications from the Web of Science Core Collection spanning the period from 1998 to 2022. Data extracted from these publications included information on countries/regions, institutions, authors, journals, and keywords. The collected data underwent analysis and visualization using VOSviewer software. The primary analyses included examination of international and institutional collaborations, authorship patterns, co-citation analyses of authors and journals, as well as exploration of keyword co-occurrence and temporal trend networks. A total of 859 publications were retrieved, indicating an overall growth trend from 1998 to 2022. China and the United States emerged as the leading contributors in both publication outputs and citations, with Central South University and the University of New Mexico being identified as the most productive institutions. Vince D. Calhoun had the highest number of publications and citation counts, while Karl J. Friston was recognized as the most influential author based on co-citations. Key journals such as Neuroimage, Schizophrenia Research, Schizophrenia Bulletin, and Biological Psychiatry played pivotal roles in advancing this field. Recent popular keywords included support vector machine, antipsychotic medication, transcranial magnetic stimulation, and related terms. This study systematically synthesizes the historical development, current status, and future trends in resting-state fMRI research in schizophrenia, offering valuable insights for future research directions.
Collapse
Affiliation(s)
- Linhan Fu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300070, China
| | - Remilai Aximu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300070, China
| | - Guoshu Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yayuan Chen
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zuhao Sun
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Hui Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Shaoying Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Nannan Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zhihui Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Minghuan Lei
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ying Zhai
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jinglei Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jie Sun
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Juanwei Ma
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
8
|
Li J, Wang W, Cheng J, Li H, Feng L, Ren Y, Liu L, Qian Q, Wang Y. Relationships between sensory integration and the core symptoms of attention-deficit/hyperactivity disorder: the mediating effect of executive function. Eur Child Adolesc Psychiatry 2023; 32:2235-2246. [PMID: 35999304 DOI: 10.1007/s00787-022-02069-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/14/2022] [Indexed: 11/03/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is often accompanied by executive function deficits and functional alterations in sensory integration. The present study aimed to investigate the relationship between ADHD core symptoms, executive function, and sensory integration in children with ADHD. A total of 228 children with ADHD were recruited for our study. The Sensory Organization Test (SOT) and Child Sensory Integration Scale (CSIS) evaluated the sensory integration ability from lab-based and scaled-based perspectives, respectively. Three core components of executive functions (inhibition, working memory, and set-shifting) were assessed using both lab-based tests and the relevant factors from the behavior rating inventory of executive function (BRIEF). Partial correlation analysis was performed to explore the correlation of sensory integration with EF and ADHD core symptoms. Based on the observed significant correlation, bootstrap analyses were further conducted to explore the potential mediating effect of EF on the relationship between sensory integration and ADHD core symptoms. ADHD symptoms and EF were significantly correlated with CSIS scores; no factors were significantly correlated with SOT performance. In detail, the vestibular-balance score was negatively correlated with both inattention and hyperactivity/impulsivity symptoms, while the hyper-sensory and proprioception scores were negatively correlated with only inattention symptoms. For the scaled-based EF, vestibular-balance was negatively correlated with inhibition and working memory, and the hyper-sensory score was negatively correlated with shift factor. No correlation was found for the lab-based EF tests. The subsequent mediation analysis found that inhibition partially mediated the relationship between vestibular balance and hyperactivity/impulsivity symptoms. Working memory completely mediated the relationship between vestibular-balance, hyper-sensory, proprioception, and inattention symptoms. These results were well validated in an independent sample. Our present findings demonstrated that the functional alteration in basic sensory integration might be associated with impairments of executive functions and then lead to the behavioral expression of ADHD. The present findings might provide a new perspective to understand the occurrence of ADHD symptoms and potential precise intervention methods.
Collapse
Affiliation(s)
- Jing Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenchen Wang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Jia Cheng
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Haimei Li
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Lei Feng
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yuanchun Ren
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Lu Liu
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China.
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| | - Qiujin Qian
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China.
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| | - Yufeng Wang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China.
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| |
Collapse
|
9
|
Northoff G, Hirjak D. Integrating subjective and objective-spatiotemporal approach to psychiatric disorders. Mol Psychiatry 2023; 28:4022-4024. [PMID: 37198263 DOI: 10.1038/s41380-023-02100-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023]
Affiliation(s)
- Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada.
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
10
|
Wang K, Fu W, Li S, Chen L, Gan Y, Xiang W, Chen L, Zhou J. Preoperative symptoms of depression, anxiety, and cognitive impairment in glioma patients: A cerebral perfusion CT study. Brain Behav 2023; 13:e3020. [PMID: 37128127 PMCID: PMC10275540 DOI: 10.1002/brb3.3020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023] Open
Abstract
PURPOSE Glioma patients have varying degrees of psychiatric symptoms, which severely affect the quality of life of patients and their families. The present study investigated the correlation between preoperative psychiatric symptoms and local cerebral perfusion parameters of in glioma patients. PATIENTS AND METHODS The depression, anxiety, and cognitive impairment (CI) scores of 39 patients were assessed separately, and all of the patients underwent a preoperative perfusion computed tomography scan. RESULTS This study found that: (1) The incidence of preoperative symptoms of depression, anxiety, and CI was 46.15%, 48.72%, and 25.64%, respectively. (2) Cerebral blood volume (CBV) (lesion-sided [LS] occipital lobe white matter [WM] and parietal lobe WM and normal-sided temporal lobe WM), permeability surface (PS) (LS temporal lobe gray matter [GM] and parietal lobe WM) in the depression group were significantly decreased (p < .05). (3) CBV (LS occipital lobe WM), cerebral blood flow (LS parietal lobe GM, centrum ovale and frontal lobe WM and normal-sided frontal lobe WM, temporal lobe WM and parietal lobe WM), and mean transition time (MTT) (normal-sided frontal lobe WM and temporal lobe WM) in the anxiety group were significantly increased (p < .05). (4) CBV (LS temporal lobe GM), MTT (LS anterior limb of internal capsule), and PS (LS thalamus) in the CI group were significantly increased (p < .05). CONCLUSION This study showed that glioma patients had different levels of psychological distress in glioma patients before surgery, which may be related to the changes in brain perfusion caused by the tumor.
Collapse
Affiliation(s)
- Ke Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and EngineeringSouthwest Jiaotong UniversityChengduChina
- Department of NeurosurgeryThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Wanrui Fu
- Huadong HospitalFudan UniversityShanghaiChina
| | - Shenjie Li
- Department of NeurosurgeryThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
- Neurosurgery Clinical Medical Research Center of Sichuan ProvinceLuzhouChina
- Neurological Diseases and Brain Function LaboratoryLuzhouChina
| | - Lizhen Chen
- Department of Clinical LaboratoryChengdu Women's and Children's Central HospitalChengduChina
| | - Yajie Gan
- Department of NeurosurgeryThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Wei Xiang
- Department of NeurosurgeryThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
- Neurosurgery Clinical Medical Research Center of Sichuan ProvinceLuzhouChina
- Neurological Diseases and Brain Function LaboratoryLuzhouChina
| | - Ligang Chen
- Department of NeurosurgeryThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
- Neurosurgery Clinical Medical Research Center of Sichuan ProvinceLuzhouChina
- Neurological Diseases and Brain Function LaboratoryLuzhouChina
| | - Jie Zhou
- Department of NeurosurgeryThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
- Neurosurgery Clinical Medical Research Center of Sichuan ProvinceLuzhouChina
- Neurological Diseases and Brain Function LaboratoryLuzhouChina
| |
Collapse
|
11
|
McFadyen J, Dolan RJ. Spatiotemporal Precision of Neuroimaging in Psychiatry. Biol Psychiatry 2023; 93:671-680. [PMID: 36376110 DOI: 10.1016/j.biopsych.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/20/2022] [Accepted: 08/12/2022] [Indexed: 12/23/2022]
Abstract
Aberrant patterns of cognition, perception, and behavior seen in psychiatric disorders are thought to be driven by a complex interplay of neural processes that evolve at a rapid temporal scale. Understanding these dynamic processes in vivo in humans has been hampered by a trade-off between spatial and temporal resolutions inherent to current neuroimaging technology. A recent trend in psychiatric research has been the use of high temporal resolution imaging, particularly magnetoencephalography, often in conjunction with sophisticated machine learning decoding techniques. Developments here promise novel insights into the spatiotemporal dynamics of cognitive phenomena, including domains relevant to psychiatric illnesses such as reward and avoidance learning, memory, and planning. This review considers recent advances afforded by exploiting this increased spatiotemporal precision, with specific reference to applications that seek to drive a mechanistic understanding of psychopathology and the realization of preclinical translation.
Collapse
Affiliation(s)
- Jessica McFadyen
- UCL Max Planck Centre for Computational Psychiatry and Ageing Research and Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| | - Raymond J Dolan
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
12
|
Joyce DW, Kormilitzin A, Smith KA, Cipriani A. Explainable artificial intelligence for mental health through transparency and interpretability for understandability. NPJ Digit Med 2023; 6:6. [PMID: 36653524 PMCID: PMC9849399 DOI: 10.1038/s41746-023-00751-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
The literature on artificial intelligence (AI) or machine learning (ML) in mental health and psychiatry lacks consensus on what "explainability" means. In the more general XAI (eXplainable AI) literature, there has been some convergence on explainability meaning model-agnostic techniques that augment a complex model (with internal mechanics intractable for human understanding) with a simpler model argued to deliver results that humans can comprehend. Given the differing usage and intended meaning of the term "explainability" in AI and ML, we propose instead to approximate model/algorithm explainability by understandability defined as a function of transparency and interpretability. These concepts are easier to articulate, to "ground" in our understanding of how algorithms and models operate and are used more consistently in the literature. We describe the TIFU (Transparency and Interpretability For Understandability) framework and examine how this applies to the landscape of AI/ML in mental health research. We argue that the need for understandablity is heightened in psychiatry because data describing the syndromes, outcomes, disorders and signs/symptoms possess probabilistic relationships to each other-as do the tentative aetiologies and multifactorial social- and psychological-determinants of disorders. If we develop and deploy AI/ML models, ensuring human understandability of the inputs, processes and outputs of these models is essential to develop trustworthy systems fit for deployment.
Collapse
Affiliation(s)
- Dan W Joyce
- University of Oxford, Department of Psychiatry, Warneford Hospital, Oxford, OX3 7JX, UK.
- Institute of Population Health, Department of Primary Care and Mental Health, University of Liverpool, Liverpool, L69 3GF, UK.
| | - Andrey Kormilitzin
- University of Oxford, Department of Psychiatry, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Katharine A Smith
- University of Oxford, Department of Psychiatry, Warneford Hospital, Oxford, OX3 7JX, UK
- Oxford Precision Psychiatry Lab, NIHR Oxford Health Biomedical Research Centre, Warneford Hospital, Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Andrea Cipriani
- University of Oxford, Department of Psychiatry, Warneford Hospital, Oxford, OX3 7JX, UK
- Oxford Precision Psychiatry Lab, NIHR Oxford Health Biomedical Research Centre, Warneford Hospital, Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, OX3 7JX, UK
| |
Collapse
|
13
|
Goodman ZT, Banerjee N, Rooks J, McInerney K, Sun X, Getz S, Kaur S, Sun-Suslow N, Junco B, Levin BE. Measuring the Frailty Phenotype and its Association with Cognition in Mid-Life and Older Age. J Alzheimers Dis 2022; 89:415-426. [DOI: 10.3233/jad-215475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Frailty is directly linked to physical robustness and cognitive decline in older age. The Fried Frailty phenotype (FP) is a construct composed of five core symptoms that has been studied predominately in older age. There is little research contrasting the psychometric properties of the FP in mid-life versus older age. Objective: We compared the psychometric properties of the FP in mid-life and older age and investigated relationships between the FP and cognition. Methods: Frailty and neuropsychological assessments were completed on 361 adults, between 45 and 92 years of age, without primary neurological disorders. Confirmatory factor analysis was used to examine FP, indicated by Grip Strength, Gait Speed, Physical Activity, Fatigue, and Weight Loss. Measurement invariance was tested in mid-life (45–64 years) versus older age (≥65 years). Associations were examined between FP and language, executive functions, memory, processing speed, and visuospatial domains as well as a Generalized Cognition factor. Age was tested as a moderator of these associations. Results: Weight Loss was a poor indicator of FP. Factor loadings were comparable across age groups; however, Fatigue was disproportionately higher among those in mid-life. FP was negatively associated with all cognitive domains and remained invariant across age groups. Conclusion: Results support the construct validity of the FP and document its stable associations with poorer cognition in middle and older life. Future research investigating central features of frailty earlier in life may offer avenues for developing targeted prevention measures and better characterization of individuals with elevated dementia risk.
Collapse
Affiliation(s)
- Zachary T. Goodman
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Psychology, University of Miami, Miami, FL, USA
| | - Nikhil Banerjee
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joshua Rooks
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Katalina McInerney
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xiaoyan Sun
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sarah Getz
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sonya Kaur
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ni Sun-Suslow
- UCSD School of Medicine, Department of Psychiatry, San Diego, CA, USA
| | - Barbara Junco
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Bonnie E. Levin
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
14
|
Pavel DG, Henderson TA, DeBruin S, Cohen PF. The Legacy of the TTASAAN Report - Premature Conclusions and Forgotten Promises About SPECT Neuroimaging: A Review of Policy and Practice Part II. Front Neurol 2022; 13:851609. [PMID: 35655621 PMCID: PMC9152128 DOI: 10.3389/fneur.2022.851609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/28/2022] [Indexed: 11/29/2022] Open
Abstract
Brain perfusion single photon emission computed tomography (SPECT) scans were initially developed in 1970s. A key radiopharmaceutical, hexamethylpropyleneamine oxime (HMPAO), was not stabilized until 1993 and most early SPECT scans were performed on single-head gamma cameras. These early scans were of inferior quality. In 1996, the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology (TTASAAN) issued a report regarding the use of SPECT in the evaluation of neurological disorders. This two-part series explores the policies and procedures related to perfusion SPECT functional neuroimaging. In Part I, the comparison between the quality of the SPECT scans and the depth of the data for key neurological and psychiatric indications at the time of the TTASAAN report vs. the intervening 25 years were presented. In Part II, the technical aspects of perfusion SPECT neuroimaging and image processing will be explored. The role of color scales will be reviewed and the process of interpreting a SPECT scan will be presented. Interpretation of a functional brain scans requires not only anatomical knowledge, but also technical understanding on correctly performing a scan, regardless of the scanning modality. Awareness of technical limitations allows the clinician to properly interpret a functional brain scan. With this foundation, four scenarios in which perfusion SPECT neuroimaging, together with other imaging modalities and testing, lead to a narrowing of the differential diagnoses and better treatment. Lastly, recommendations for the revision of current policies and practices are made.
Collapse
Affiliation(s)
- Dan G Pavel
- PathFinder Brain SPECT, Deerfield, IL, United States.,The International Society of Applied Neuroimaging (ISAN), Denver, CO, United States
| | - Theodore A Henderson
- The International Society of Applied Neuroimaging (ISAN), Denver, CO, United States.,The Synaptic Space, Inc., Denver, CO, United States.,Neuro-Luminance, Inc., Denver, CO, United States.,Dr. Theodore Henderson, Inc., Denver, CO, United States.,Neuro-Laser Foundation, Denver, CO, United States
| | - Simon DeBruin
- The International Society of Applied Neuroimaging (ISAN), Denver, CO, United States.,Good Lion Imaging, Baltimore, MD, United States
| | - Philip F Cohen
- The International Society of Applied Neuroimaging (ISAN), Denver, CO, United States.,Nuclear Medicine, Lions Gate Hospital, Vancouver, BC, Canada.,Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
15
|
Pavel DG, Henderson TA, DeBruin S. The Legacy of the TTASAAN Report-Premature Conclusions and Forgotten Promises: A Review of Policy and Practice Part I. Front Neurol 2022; 12:749579. [PMID: 35450131 PMCID: PMC9017602 DOI: 10.3389/fneur.2021.749579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022] Open
Abstract
Brain perfusion single photon emission computed tomography (SPECT) scans were initially developed in 1970's. A key radiopharmaceutical, hexamethylpropyleneamine oxime (HMPAO), was originally approved in 1988, but was unstable. As a result, the quality of SPECT images varied greatly based on technique until 1993, when a method of stabilizing HMPAO was developed. In addition, most SPECT perfusion studies pre-1996 were performed on single-head gamma cameras. In 1996, the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology (TTASAAN) issued a report regarding the use of SPECT in the evaluation of neurological disorders. Although the TTASAAN report was published in January 1996, it was approved for publication in October 1994. Consequently, the reported brain SPECT studies relied upon to derive the conclusions of the TTASAAN report largely pre-date the introduction of stabilized HMPAO. While only 12% of the studies on traumatic brain injury (TBI) in the TTASAAN report utilized stable tracers and multi-head cameras, 69 subsequent studies with more than 23,000 subjects describe the utility of perfusion SPECT scans in the evaluation of TBI. Similarly, dementia SPECT imaging has improved. Modern SPECT utilizing multi-headed gamma cameras and quantitative analysis has a sensitivity of 86% and a specificity of 89% for the diagnosis of mild to moderate Alzheimer's disease-comparable to fluorodeoxyglucose positron emission tomography. Advances also have occurred in seizure neuroimaging. Lastly, developments in SPECT imaging of neurotoxicity and neuropsychiatric disorders have been striking. At the 25-year anniversary of the publication of the TTASAAN report, it is time to re-examine the utility of perfusion SPECT brain imaging. Herein, we review studies cited by the TTASAAN report vs. current brain SPECT imaging research literature for the major indications addressed in the report, as well as for emerging indications. In Part II, we elaborate technical aspects of SPECT neuroimaging and discuss scan interpretation for the clinician.
Collapse
Affiliation(s)
- Dan G Pavel
- Pathfinder Brain SPECT Imaging, Deerfield, IL, United States.,The International Society of Applied Neuroimaging (ISAN), Denver, CO, United States
| | - Theodore A Henderson
- The International Society of Applied Neuroimaging (ISAN), Denver, CO, United States.,The Synaptic Space, Inc., Denver, CO, United States.,Neuro-Luminance, Inc., Denver, CO, United States.,Dr. Theodore Henderson, Inc., Denver, CO, United States
| | - Simon DeBruin
- The International Society of Applied Neuroimaging (ISAN), Denver, CO, United States.,Good Lion Imaging, Columbia, SC, United States
| |
Collapse
|
16
|
Iorio-Morin C, Sarica C, Elias GJB, Harmsen I, Hodaie M. Neuroimaging of psychiatric disorders. PROGRESS IN BRAIN RESEARCH 2022; 270:149-169. [PMID: 35396025 DOI: 10.1016/bs.pbr.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Psychiatry remains the only medical specialty where diagnoses are still based on clinical syndromes rather than measurable biological abnormalities. As imaging technology and analytical methods evolve, it is becoming clear that subtle but measurable radiological characteristics exist and can be used to experimentally classify psychiatric disorders, predict response to treatment and, hopefully, develop new, more effective therapies. This review highlights advances in neuroimaging modalities that are now allowing assessment of brain structure, connectivity and neural network function, describes technical aspects of the most promising methods, and summarizes observations made in some frequent psychiatric disorders.
Collapse
Affiliation(s)
- Christian Iorio-Morin
- Division of Neurosurgery, Department of Surgery, Université de Sherbrooke, Sherbrooke, QC, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Can Sarica
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Gavin J B Elias
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Irene Harmsen
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Mojgan Hodaie
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
17
|
Thornton JF, Schneider H, Cohen PF, DeBruin S, Uszler JM, Siow YH, McLean MK, van Lierop MJ, Pavel DG, Henderson TA. Longitudinal Single Photon Emission Computed Tomography Neuroimaging as an Indication of Improvement in Psychiatric Disorders in a Community Psychiatric Practice. Front Psychiatry 2022; 13:787186. [PMID: 35401270 PMCID: PMC8990854 DOI: 10.3389/fpsyt.2022.787186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
In the community, there is a need to more objectively evaluate the response of common chronic psychiatric disorders to treatment. Brain single photon emission computed tomography (SPECT) indirectly measures cerebral functional activity by uptake of a radiotracer, which follows regional cerebral blood flow. Brain 3D Thresholded SPECT scans are thresholded three dimensional images derived from brain SPECT data. A retrospective community study of longitudinal (before and after treatment) brain 3D Thresholded SPECT scans of 73 patients with all-cause psychiatric disorders (most frequent diagnostic clusters: attention-deficit hyperactivity disorder, post-mild traumatic brain injury, affective disorders, psychotic disorders, post-viral chronic syndromes), shows these baseline SPECT scans predict improvement (non-worsening to large improvement) in clinical functioning with a sensitivity of 94% (95% confidence interval 86-98%) and a specificity of 67% (95% confidence interval 21-94%). In contrast, contemporaneous analysis by the same radiologist of conventional 2D reading of the same before and after treatment brain SPECT scan data of the same 73 patients, predicted improvement (non-worsening to large improvement) in clinical functioning with a sensitivity of only 26% (95% confidence interval 17-37%) although with a specificity of 100% (95% confidence interval 44-100%). These data suggest 3D Thresholded SPECT scans can provide the clinician with a more objective measure for verifying improvement in psychiatric disorders seen in the community, consistent with prior studies of SPECT as a measure of neurobiological change. Furthermore, these data suggest 3D Thresholded SPECT scans may have clinical application in guiding treatment and potentially improving outcomes.
Collapse
Affiliation(s)
- John F. Thornton
- Rossiter-Thornton Associates, Toronto, ON, Canada
- International Society of Applied Neuroimaging, Denver, CO, United States
| | - Howard Schneider
- International Society of Applied Neuroimaging, Denver, CO, United States
- Sheppard Clinic North, Vaughan, ON, Canada
| | - Philip F. Cohen
- International Society of Applied Neuroimaging, Denver, CO, United States
- Nuclear Medicine, Lions Gate Hospital, Vancouver, BC, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | | | - John Michael Uszler
- International Society of Applied Neuroimaging, Denver, CO, United States
- DrSPECTscan Inc., Lake Elsinore, CA, United States
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yin-Hui Siow
- International Society of Applied Neuroimaging, Denver, CO, United States
- Nuclear Medicine, Southlake Regional Health Centre, Newmarket, ON, Canada
| | - Mary K. McLean
- International Society of Applied Neuroimaging, Denver, CO, United States
- Private Practice, Toronto, ON, Canada
| | - Muriel J. van Lierop
- International Society of Applied Neuroimaging, Denver, CO, United States
- Private Practice, Toronto, ON, Canada
| | - Dan G. Pavel
- International Society of Applied Neuroimaging, Denver, CO, United States
- PathFinder Brain SPECT LLC, Deerfield, IL, United States
| | - Theodore A. Henderson
- International Society of Applied Neuroimaging, Denver, CO, United States
- Dr. Theodore Henderson, Inc., Denver, CO, United States
- The Synaptic Space, Inc., Denver, CO, United States
- Neuro-Luminance, Inc., Denver, CO, United States
| |
Collapse
|
18
|
Best SRD, Haustrup N, Pavel DG. Brain SPECT as an Imaging Biomarker for Evaluating Effects of Novel Treatments in Psychiatry-A Case Series. Front Psychiatry 2022; 12:713141. [PMID: 35095582 PMCID: PMC8793864 DOI: 10.3389/fpsyt.2021.713141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 12/13/2021] [Indexed: 01/23/2023] Open
Abstract
The difficulties of evaluating patients with complex neuropsychiatric conditions and prescribing appropriate treatments are well known. Imaging complements clinical assessments and allows a clinician to narrow the differential diagnosis by facilitating accurate and efficient evaluation. This is particularly relevant to neuropsychiatric conditions that are often diagnosed using a trial-and error process of exclusion. Single Photon Emission Computed Tomography (SPECT) is a functional brain imaging procedure that allows practitioners to measure the functional changes of gray matter structures based on regional cerebral blood flow (rCBF). The accurate diagnosis and treatment selection in psychiatry is challenging due to complex cases and frequent comorbidities. However, such complex neuropsychiatric conditions are increasingly benefitting from new treatment approaches, in addition to established medications. Among these are combination transcranial magnetic stimulation with ketamine infusions (CTK), hyperbaric oxygen therapy (HBOT) and perispinal administration of etanercept (PSE). This article provides readers with six case study examples that demonstrate how brain SPECT imaging can be used, both as a diagnostic tool, and as a potential biomarker for monitoring and evaluating novel treatments for patients with complex neuropsychiatric conditions. Six patients were assessed in our clinic and baseline brain SPECT imagesTourettes and a long history of alcohol were visually compared with SPECT images collected after periods of treatment with CTK or HBOT followed by PSE. This retrospective review demonstrates the clinical utility of these novel treatments and describes how SPECT imaging can complement standard diagnostic assessments. A novel display technique for SPECT images is described and we argue that SPECT imaging can be used for monitoring biomarker for clinical change.
Collapse
Affiliation(s)
| | | | - Dan G. Pavel
- PathFinder Brain SPECT, Deerfield, IL, United States
| |
Collapse
|
19
|
Schneider H. Artificial Intelligence in Schizophrenia. Artif Intell Med 2022. [DOI: 10.1007/978-3-030-64573-1_214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Henderson TA, Cohen PF, Cardaci G, Urbain JLC. Editorial: The Emerging Role of SPECT Functional Neuroimaging in Psychiatry & Neurology. Front Psychiatry 2022; 13:928653. [PMID: 35859601 PMCID: PMC9289600 DOI: 10.3389/fpsyt.2022.928653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Theodore A Henderson
- The International Society of Applied Neuroimaging (ISAN), Denver, CO, United States.,The Synaptic Space, Inc., Denver, CO, United States.,Neuro-Luminance, Inc., Denver, CO, United States.,Dr. Theodore Henderson, Inc., Denver, CO, United States.,Neuro-Laser Foundation, Denver, CO, United States
| | - Philip F Cohen
- The International Society of Applied Neuroimaging (ISAN), Denver, CO, United States.,Nuclear Medicine, Lions Gate Hospital, Vancouver, BC, Canada.,Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Giuseppe Cardaci
- The International Society of Applied Neuroimaging (ISAN), Denver, CO, United States.,University of Notre Dame, Fremantle, WA, Australia
| | - Jean-Luc C Urbain
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Nuclear Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
21
|
|
22
|
McLean M, Henderson TA, Pavel DG, Cohen P. Increased Asymmetric Perfusion of the Cerebral Cortices and Thalamus Indicates Individuals at Risk for Bipolar Disorder: A Family Cohort Single Photon Emission Computed Tomography Neuroimaging Study. Front Psychiatry 2022; 13:829561. [PMID: 35619621 PMCID: PMC9127269 DOI: 10.3389/fpsyt.2022.829561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/23/2022] [Indexed: 12/28/2022] Open
Abstract
Bipolar disorder is a significant mental illness affecting over 4 million people in North America and approximately 46 million worldwide. While the onset of bipolar disorder is typically in late adolescence and early adulthood, the correct diagnosis can be delayed for several years. This delay can result in inappropriate pharmaceutical interventions, loss of career or productivity, suicide, family hardship, and unnecessary expense. Moreover, prolonged untreated or inappropriately treated bipolar disorder may cause damage to the brain. Early diagnosis is a critical need to circumvent the damage, suffering, and expense caused by the current delay. Brain perfusion single photon emission computed tomography (SPECT) neuroimaging reveals visual correlates of brain function. Herein, a family cohort all with bipolar disorder is described and their symptoms correlated with findings on the individual SPECT brain scans. The family consisted of two parents and three children (one female). The scans were interpreted by a panel of experts. Then a post hoc region-of-interest (ROI) analysis was conducted on SPECT data normalized to the cerebellum maximum with comparison to similarly normalized data from a normative sample. These findings support two distinct patterns of SPECT perfusion scan changes that can be found in individuals with bipolar disorder. In addition, these findings indicate that SPECT scan findings may be predictive of individual risk for progressing to symptomatic bipolar disorder. While preliminary, the findings in this cohort support the need for larger, diverse cohort studies of bipolar and control subjects to assess the predictive value of these particular SPECT perfusion findings in bipolar disorder.
Collapse
Affiliation(s)
- Mary McLean
- Private Practice, Toronto, ON, Canada.,The International Society of Applied Neuroimaging (ISAN), Denver, CO, United States
| | - Theodore A Henderson
- The International Society of Applied Neuroimaging (ISAN), Denver, CO, United States.,The Synaptic Space, Inc., Denver, CO, United States.,Neuro-Luminance, Inc., Denver, CO, United States.,Dr. Theodore Henderson, Inc., Denver, CO, United States.,The Neuro-Laser Foundation, Denver, CO, United States
| | - Dan G Pavel
- The International Society of Applied Neuroimaging (ISAN), Denver, CO, United States.,PathFinder Brain SPECT, Deerfield, IL, United States
| | - Phil Cohen
- The International Society of Applied Neuroimaging (ISAN), Denver, CO, United States.,Lions Gate Hospital, Vancouver, BC, Canada.,Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
23
|
A Novel Knowledge Distillation-Based Feature Selection for the Classification of ADHD. Biomolecules 2021; 11:biom11081093. [PMID: 34439759 PMCID: PMC8393979 DOI: 10.3390/biom11081093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 01/17/2023] Open
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is a brain disorder with characteristics such as lack of concentration, excessive fidgeting, outbursts of emotions, lack of patience, difficulty in organizing tasks, increased forgetfulness, and interrupting conversation, and it is affecting millions of people worldwide. There is, until now, not a gold standard test using which an ADHD expert can differentiate between an individual with ADHD and a healthy subject, making accurate diagnosis of ADHD a challenging task. We are proposing a Knowledge Distillation-based approach to search for discriminating features between the ADHD and healthy subjects. Learned embeddings from a large neural network, trained on the functional connectivity features, were fed to one hidden layer Autoencoder for reproduction of the embeddings using the same connectivity features. Finally, a forward feature selection algorithm was used to select a combination of most discriminating features between the ADHD and the Healthy Controls. We achieved promising classification results for each of the five individual sites. A combined accuracy of 81% in KKI, 60% Peking, 56% in NYU, 64% NI, and 56% OHSU and individual site wise accuracy of 72% in KKI, 60% Peking, 73% in NYU, 70% NI, and 71% OHSU were obtained using our extracted features. Our results also outperformed state-of-the-art methods in literature which validates the efficacy of our proposed approach.
Collapse
|
24
|
Aryutova K, Paunova R, Kandilarova S, Todeva-Radneva A, Stoyanov D. Implications from translational cross-validation of clinical assessment tools for diagnosis and treatment in psychiatry. World J Psychiatry 2021; 11:169-180. [PMID: 34046313 PMCID: PMC8134869 DOI: 10.5498/wjp.v11.i5.169] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/17/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Traditional therapeutic methods in psychiatry, such as psychopharmacology and psychotherapy help many people suffering from mental disorders, but in the long-term prove to be effective in a relatively small proportion of those affected. Therapeutically, resistant forms of mental disorders such as schizophrenia, major depressive disorder, and bipolar disorder lead to persistent distress and dysfunction in personal, social, and professional aspects. In an effort to address these problems, the translational approach in neuroscience has initiated the inclusion of novel or modified unconventional diagnostic and therapeutic techniques with promising results. For instance, neuroimaging data sets from multiple modalities provide insight into the nature of pathophysiological mechanisms such as disruptions of connectivity, integration, and segregation of neural networks, focusing on the treatment of mental disorders through instrumental biomedical methods such as electro-convulsive therapy (ECT), transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS) and deep brain stimulation (DBS). These methodologies have yielded promising results that have yet to be understood and improved to enhance the prognosis of the severe and persistent psychotic and affective disorders. The current review is focused on the translational approach in the management of schizophrenia and mood disorders, as well as the adaptation of new transdisciplinary diagnostic tools such as neuroimaging with concurrently administered psychopathological questionnaires and integration of the results into the therapeutic framework using various advanced instrumental biomedical tools such as ECT, TMS, tDCS and DBS.
Collapse
Affiliation(s)
- Katrin Aryutova
- Department of Psychiatry and Medical Psychology, Scientific Research Institute, Medical University of Plovdiv, Plovdiv 4002, Bulgaria
| | - Rositsa Paunova
- Department of Psychiatry and Medical Psychology, Scientific Research Institute, Medical University of Plovdiv, Plovdiv 4002, Bulgaria
| | - Sevdalina Kandilarova
- Department of Psychiatry and Medical Psychology, Scientific Research Institute, Medical University of Plovdiv, Plovdiv 4002, Bulgaria
| | - Anna Todeva-Radneva
- Department of Psychiatry and Medical Psychology, Scientific Research Institute, Medical University of Plovdiv, Plovdiv 4002, Bulgaria
| | - Drozdstoy Stoyanov
- Department of Psychiatry and Medical Psychology, Scientific Research Institute, Medical University of Plovdiv, Plovdiv 4002, Bulgaria
| |
Collapse
|
25
|
Goodman ZT, Bainter SA, Kornfeld S, Chang C, Nomi JS, Uddin LQ. Whole-Brain Functional Dynamics Track Depressive Symptom Severity. Cereb Cortex 2021; 31:4867-4876. [PMID: 33774654 DOI: 10.1093/cercor/bhab047] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/14/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
Depressive symptoms are reported by 20% of the population and are related to altered functional integrity of large-scale brain networks. The link between moment-to-moment brain function and depressive symptomatology, and the implications of these relationships for clinical and community populations alike, remain understudied. The present study examined relationships between functional brain dynamics and subclinical-to-mild depressive symptomatology in a large community sample of adults with and without psychiatric diagnoses. This study used data made available through the Enhanced Nathan Kline Institute-Rockland Sample; 445 participants between 18 and 65 years of age completed a 10-min resting-state functional MRI scan. Coactivation pattern analysis was used to examine the dimensional relationship between depressive symptoms and whole-brain states. Elevated levels of depressive symptoms were associated with increased frequency and dwell time of the default mode network, a brain network associated with self-referential thought, evaluative judgment, and social cognition. Furthermore, increased depressive symptom severity was associated with less frequent occurrences of a hybrid brain network implicated in cognitive control and goal-directed behavior, which may impair the inhibition of negative thinking patterns in depressed individuals. These findings demonstrate how temporally dynamic techniques offer novel insights into time-varying neural processes underlying subclinical and clinically meaningful depressive symptomatology.
Collapse
Affiliation(s)
- Zachary T Goodman
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Sierra A Bainter
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Salome Kornfeld
- REHAB Basel - Klinik für Neurorehabilitation und Paraplegiologie, Basel, Switzerland
| | - Catie Chang
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.,Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| | - Jason S Nomi
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Lucina Q Uddin
- Department of Psychology, University of Miami, Coral Gables, FL, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
26
|
Nagappan A, Kalokairinou L, Wexler A. Ethical and Legal Considerations of Alternative Neurotherapies. AJOB Neurosci 2021; 12:257-269. [PMID: 33759705 DOI: 10.1080/21507740.2021.1896601] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Neurotherapies for diagnostics and treatment-such as electroencephalography (EEG) neurofeedback, single-photon emission computerized tomography (SPECT) imaging for neuropsychiatric evaluation, and off-label/experimental uses of brain stimulation-are continuously being offered to the public outside mainstream healthcare settings. Because these neurotherapies share many key features of complementary and alternative medicine (CAM) techniques-and meet the definition of CAM as set out in Kaptchuk and Eisenberg-here we refer to them as "alternative neurotherapies." By explicitly linking these alternative neurotherapy practices under a common conceptual framework, this paper draws attention to, and critically considers, the cross-cutting ethical and legal issues related to the provision of these services. The first section of this paper provides an updated empirical overview of uses of SPECT neuropsychiatric evaluations, EEG neurofeedback, and experimental/off-label forms of brain stimulation. Next, drawing on CAM bioethics scholarship, we highlight the pertinent ethical issues in the alternative neurotherapy context, including the truthful representation of evidence base, marketing to vulnerable populations, potential harms, provider competency, and conflicts of interest. Finally, we consider the principal legal issues at stake for the provision of alternative neurotherapies in the U.S., namely those related to licensing and scope-of-practice considerations. We conclude with recommendations for future research in this domain.
Collapse
|
27
|
Pereira-Sanchez V, Franco AR, Vieira D, de Castro-Manglano P, Soutullo C, Milham MP, Castellanos FX. Systematic Review: Medication Effects on Brain Intrinsic Functional Connectivity in Patients With Attention-Deficit/Hyperactivity Disorder. J Am Acad Child Adolesc Psychiatry 2021; 60:222-235. [PMID: 33137412 DOI: 10.1016/j.jaac.2020.10.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 10/02/2020] [Accepted: 10/24/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Resting-state functional magnetic resonance imaging (R-fMRI) studies of the neural correlates of medication treatment in attention-deficit/hyperactivity disorder (ADHD) have not been systematically reviewed. Our objective was to systematically identify, assess and summarize within-subject R-fMRI studies of pharmacological-induced changes in patients with ADHD. We critically appraised strengths and limitations, and provide recommendations for future research. METHOD Systematic review of published original reports in English meeting criteria in pediatric and adult patients with ADHD up to July 1, 2020. A thorough search preceded selection of studies matching prespecified criteria. Strengths and limitations of selected studies, regarding design and reporting, were identified based on current best practices. RESULTS We identified and reviewed 9 studies (5 pediatric and 4 adult studies). Sample sizes were small-medium (16-38 patients), and included few female participants. Medications were methylphenidate, amphetamines, and atomoxetine. Wide heterogeneity was observed in designs, analyses and results, which could not be combined quantitatively. Qualitatively, the multiplicity of brain regions and networks identified, some of which correlated with clinical improvements, do not support a coherent mechanistic hypothesis of medication effects. Overall, reports did not meet current standards to ensure reproducibility. CONCLUSION In this emerging field, the few studies using R-fMRI to analyze the neural correlates of medications in patients with ADHD suggest a potential modulatory effect of stimulants and atomoxetine on several intrinsic brain activity metrics. However, methodological heterogeneity and reporting issues need to be addressed in future research to validate findings which may contribute to clinical care. Such a goal is not yet at hand.
Collapse
Affiliation(s)
- Victor Pereira-Sanchez
- NYU Grossman School of Medicine, New York, New York; Clinica Universidad de Navarra, Pamplona, Navarra, Spain.
| | - Alexandre R Franco
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York; Child Mind Institute, New York, New York
| | | | | | | | - Michael P Milham
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York; Child Mind Institute, New York, New York
| | - Francisco X Castellanos
- NYU Grossman School of Medicine, New York, New York; Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York
| |
Collapse
|
28
|
Kalyoncu A, Gonul AS. The Emerging Role of SPECT Functional Neuroimaging in Schizophrenia and Depression. Front Psychiatry 2021; 12:716600. [PMID: 34975556 PMCID: PMC8714796 DOI: 10.3389/fpsyt.2021.716600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Over the last three decades, the brain's functional and structural imaging has become more prevalent in psychiatric research and clinical application. A substantial amount of psychiatric research is based on neuroimaging studies that aim to illuminate neural mechanisms underlying psychiatric disorders. Single-photon emission computed tomography (SPECT) is one of those developing brain imaging techniques among various neuroimaging technologies. Compared to PET, SPECT imaging is easy, less expensive, and practical for radioligand use. Current technologies increased the spatial accuracy of SPECT findings by combining the functional SPECT images with CT images. The radioligands bind to receptors such as 5-hydroxytryptamine 2A, and dopamine transporters can help us comprehend neural mechanisms of psychiatric disorders based on neurochemicals. This mini-review focuses on the SPECT-based neuroimaging approach to psychiatric disorders such as schizophrenia and major depressive disorder (MDD). Research-based SPECT findings of psychiatric disorders indicate that there are notable changes in biochemical components in certain disorders. Even though many studies support that SPECT can be used in psychiatric clinical practice, we still only use subjective diagnostic criteria such as the Diagnostic Statistical Manual of Mental Disorders (DSM-5). Glimpsing into the brain's biochemical world via SPECT in psychiatric disorders provides more information about the pathophysiology and future implication of neuroimaging techniques.
Collapse
Affiliation(s)
- Anil Kalyoncu
- Department of Psychiatry, Ege University School of Medicine, Izmir, Turkey
| | - Ali Saffet Gonul
- Department of Psychiatry, Ege University School of Medicine, Izmir, Turkey
| |
Collapse
|
29
|
Artificial Intelligence in Schizophrenia. Artif Intell Med 2021. [DOI: 10.1007/978-3-030-58080-3_214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Arseniou S, Siokas V, Aloizou AM, Stamati P, Mentis AFA, Tsouris Z, Dastamani M, Peristeri E, Valotassiou V, Bogdanos DP, Hadjigeorgiou GM, Dardiotis E. SLC2A3 rs12842 polymorphism and risk for Alzheimer’s disease. Neurol Res 2020; 42:853-861. [DOI: 10.1080/01616412.2020.1786973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Stylianos Arseniou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Athina-Maria Aloizou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Polyxeni Stamati
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Alexios-Fotios A. Mentis
- Department of Microbiology, University of Thessaly, University Hospital of Larissa, Larissa, Greece
- Public Health Laboratories, Hellenic Pasteur Institute, Athens, Greece
| | - Zisis Tsouris
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Metaxia Dastamani
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Eleni Peristeri
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Varvara Valotassiou
- Department of Nuclear Medicine, University Hospital of Larissa, Mezourlo Larissa, Greece
| | - Dimitrios P. Bogdanos
- Department of Rheumatology and Clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Georgios M. Hadjigeorgiou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
- Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| |
Collapse
|
31
|
Henderson TA, Cohen P, van Lierop M, Thornton J, McLean MK, Uszler JM, Siow YH, Cardaci G. A Reckoning to Keep Doing What We Are Already Doing With PET and SPECT Functional Neuroimaging. Am J Psychiatry 2020; 177:637-638. [PMID: 32605445 DOI: 10.1176/appi.ajp.2020.19080801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Theodore A Henderson
- Synaptic Space, Denver, Neuro-Luminance Brain Health Centers, Denver, and Neuro-Laser Foundation, Denver (Henderson); Department of Nuclear Medicine, Lions Gate Hospital, University of British Columbia, Vancouver, Canada (Cohen); Rossiter-Thornton Associates, Toronto (Thornton); DrSpectScan.org, Lake Elsinore, Calif. (Uszler); Department of Nuclear Medicine, Southlake Regional Health Center, Newmarket, Ontario, Canada (Siow); Hollywood Private Hospital, Perth, Australia (Cardaci); Drs. van Lierop and McLean are in private practice in Toronto
| | - Philip Cohen
- Synaptic Space, Denver, Neuro-Luminance Brain Health Centers, Denver, and Neuro-Laser Foundation, Denver (Henderson); Department of Nuclear Medicine, Lions Gate Hospital, University of British Columbia, Vancouver, Canada (Cohen); Rossiter-Thornton Associates, Toronto (Thornton); DrSpectScan.org, Lake Elsinore, Calif. (Uszler); Department of Nuclear Medicine, Southlake Regional Health Center, Newmarket, Ontario, Canada (Siow); Hollywood Private Hospital, Perth, Australia (Cardaci); Drs. van Lierop and McLean are in private practice in Toronto
| | - Muriel van Lierop
- Synaptic Space, Denver, Neuro-Luminance Brain Health Centers, Denver, and Neuro-Laser Foundation, Denver (Henderson); Department of Nuclear Medicine, Lions Gate Hospital, University of British Columbia, Vancouver, Canada (Cohen); Rossiter-Thornton Associates, Toronto (Thornton); DrSpectScan.org, Lake Elsinore, Calif. (Uszler); Department of Nuclear Medicine, Southlake Regional Health Center, Newmarket, Ontario, Canada (Siow); Hollywood Private Hospital, Perth, Australia (Cardaci); Drs. van Lierop and McLean are in private practice in Toronto
| | - John Thornton
- Synaptic Space, Denver, Neuro-Luminance Brain Health Centers, Denver, and Neuro-Laser Foundation, Denver (Henderson); Department of Nuclear Medicine, Lions Gate Hospital, University of British Columbia, Vancouver, Canada (Cohen); Rossiter-Thornton Associates, Toronto (Thornton); DrSpectScan.org, Lake Elsinore, Calif. (Uszler); Department of Nuclear Medicine, Southlake Regional Health Center, Newmarket, Ontario, Canada (Siow); Hollywood Private Hospital, Perth, Australia (Cardaci); Drs. van Lierop and McLean are in private practice in Toronto
| | - Mary K McLean
- Synaptic Space, Denver, Neuro-Luminance Brain Health Centers, Denver, and Neuro-Laser Foundation, Denver (Henderson); Department of Nuclear Medicine, Lions Gate Hospital, University of British Columbia, Vancouver, Canada (Cohen); Rossiter-Thornton Associates, Toronto (Thornton); DrSpectScan.org, Lake Elsinore, Calif. (Uszler); Department of Nuclear Medicine, Southlake Regional Health Center, Newmarket, Ontario, Canada (Siow); Hollywood Private Hospital, Perth, Australia (Cardaci); Drs. van Lierop and McLean are in private practice in Toronto
| | - John Michael Uszler
- Synaptic Space, Denver, Neuro-Luminance Brain Health Centers, Denver, and Neuro-Laser Foundation, Denver (Henderson); Department of Nuclear Medicine, Lions Gate Hospital, University of British Columbia, Vancouver, Canada (Cohen); Rossiter-Thornton Associates, Toronto (Thornton); DrSpectScan.org, Lake Elsinore, Calif. (Uszler); Department of Nuclear Medicine, Southlake Regional Health Center, Newmarket, Ontario, Canada (Siow); Hollywood Private Hospital, Perth, Australia (Cardaci); Drs. van Lierop and McLean are in private practice in Toronto
| | - Yin-Hui Siow
- Synaptic Space, Denver, Neuro-Luminance Brain Health Centers, Denver, and Neuro-Laser Foundation, Denver (Henderson); Department of Nuclear Medicine, Lions Gate Hospital, University of British Columbia, Vancouver, Canada (Cohen); Rossiter-Thornton Associates, Toronto (Thornton); DrSpectScan.org, Lake Elsinore, Calif. (Uszler); Department of Nuclear Medicine, Southlake Regional Health Center, Newmarket, Ontario, Canada (Siow); Hollywood Private Hospital, Perth, Australia (Cardaci); Drs. van Lierop and McLean are in private practice in Toronto
| | - Giuseppe Cardaci
- Synaptic Space, Denver, Neuro-Luminance Brain Health Centers, Denver, and Neuro-Laser Foundation, Denver (Henderson); Department of Nuclear Medicine, Lions Gate Hospital, University of British Columbia, Vancouver, Canada (Cohen); Rossiter-Thornton Associates, Toronto (Thornton); DrSpectScan.org, Lake Elsinore, Calif. (Uszler); Department of Nuclear Medicine, Southlake Regional Health Center, Newmarket, Ontario, Canada (Siow); Hollywood Private Hospital, Perth, Australia (Cardaci); Drs. van Lierop and McLean are in private practice in Toronto
| |
Collapse
|