1
|
Özdemir AY, Çetin EA, Novotný J, Rudajev V. Daidzein effectively mitigates amyloid-β-induced damage in SH-SY5Y neuroblastoma cells and C6 glioma cells. Biomed Pharmacother 2025; 187:118157. [PMID: 40359691 DOI: 10.1016/j.biopha.2025.118157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/15/2025] Open
Abstract
Alzheimer's disease (AD) is the most debilitating form of dementia, characterized by amyloid-β (Aβ)-related toxic mechanisms such as oxidative stress, neuroinflammation, and mitochondrial dysfunction. The development of AD is influenced by environmental factors linked to lifestyle, including physical and mental inactivity, diet, and smoking, all of which have been associated with the severity of the disease and Aβ-related pathology. In this study, we used differentiated SH-SY5Y neuroblastoma and C6 glioma cells to investigate the neuroprotective and anti-inflammatory effects of daidzein, a naturally occurring isoflavone, in the context of Aβ oligomer-related toxicity. We observed that pre-treatment with daidzein prevented Aβ-induced cell viability loss, increased oxidative stress, and mitochondrial membrane potential decline in both SH-SY5Y and C6 cells. Furthermore, daidzein application reduced elevated levels of MAPK pathway proteins, pro-inflammatory molecules (cyclooxygenase-2 and IL-1β), and pyroptosis markers, including caspase-1 and gasdermin D, all of which were increased by Aβ exposure. These findings strongly suggest that daidzein alleviates inflammation and toxicity caused by Aβ oligomers. Our results indicate that daidzein could be a potential therapeutic agent for AD and other Aβ-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Alp Yiğit Özdemir
- Department of Physiology, Faculty of Sciences, Charles University, Viničná 7, Prague 2 12844, Czech Republic
| | - Esin Akbay Çetin
- Department of Physiology, Faculty of Sciences, Charles University, Viničná 7, Prague 2 12844, Czech Republic; Department of Biology, Hacettepe University, Ankara 06800, Turkey
| | - Jiří Novotný
- Department of Physiology, Faculty of Sciences, Charles University, Viničná 7, Prague 2 12844, Czech Republic
| | - Vladimír Rudajev
- Department of Physiology, Faculty of Sciences, Charles University, Viničná 7, Prague 2 12844, Czech Republic.
| |
Collapse
|
2
|
Khan B, Iqbal MK, Khan MA, Khan H, Kiyani MM, Bashir S, Li S. Unraveling the Complexity of Alzheimer's Disease: Insights into Etiology and Advancements in Treatment Strategies. J Mol Neurosci 2025; 75:57. [PMID: 40279003 DOI: 10.1007/s12031-025-02337-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/20/2025] [Indexed: 04/26/2025]
Abstract
Alzheimer's disease, a complex and progressive neurological disorder, is the leading cause of late-life dementia. Pathologically, it is marked by the presence of amyloid plaques and neurofibrillary tangles in the brain. Over the past two decades, advancements in understanding the disease's pathogenesis have spurred research into new pharmacological treatments that target its underlying mechanisms. Currently available drugs, such as acetylcholinesterase inhibitors (rivastigmine, galantamine, donepezil) and the NMDA receptor antagonist memantine, primarily address symptoms and are effective only in the later stages of the disease. While these medications can slow disease progression and provide symptomatic relief, they do not offer a cure. Despite having a clear understanding of Alzheimer's neuropathology, the precise mechanisms driving the disease remain elusive. The lack of effective treatments that can stop the start and progression of the disease may be caused by our incomplete understanding of the pathogenic process. New therapeutic targets are now available due to the significant advancements made in pathophysiology over the past few years, which should allow for a direct attack on the underlying illness process. The various pathophysiological pathways that underlie Alzheimer's disease and how it is managed by conventional medication therapy, including current exploratory therapeutic options, are covered in this review article. Innovative, beneficial policies are essential to determine and progress therapeutic molecules to defend against AD.
Collapse
Affiliation(s)
- Bakhtawar Khan
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Muhammad Khalid Iqbal
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Muhammad Ajmal Khan
- Division of Life Sciences, Center for Cancer Researchand, State Key Laboratory of Molecular Neurosciencesaq, The Hong Kong University of Science and Technology, Clear Water Bay Hong Kong, China
| | - Hamid Khan
- Department of Biological Science, International Islamic University, Islamabad, Pakistan
| | - Mubin Mustafa Kiyani
- Shifa College of Medical Technology, Shifa Tameer-E-Millat University, Islamabad, Pakistan
| | - Shahid Bashir
- Department of Neuroscience, King Fahad Hospital, Dammam, Saudi Arabia.
- King Salman Center for Disability Research, 11614, Riyadh, Saudi Arabia.
| | - Shao Li
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| |
Collapse
|
3
|
Rimal Y, Sharma N, Paudel S, Alsadoon A, Koirala MP, Gill S. Comparative analysis of heart disease prediction using logistic regression, SVM, KNN, and random forest with cross-validation for improved accuracy. Sci Rep 2025; 15:13444. [PMID: 40251253 PMCID: PMC12008431 DOI: 10.1038/s41598-025-93675-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 03/10/2025] [Indexed: 04/20/2025] Open
Abstract
This primary research paper emphasizes cross-validation, where data samples are reshuffled in each iteration to form randomized subsets divided into n folds. This method improves model performance and achieves higher accuracy than the baseline model. The novelty lies in the data preparation process, where numerical features were imputed using the mean, categorical features were imputed using chi-square methods, and normalization was applied. This research study involves transforming the original datasets and comparative model analysis of four Logistic Regression (LR), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and Random Forest (RF) cross-validation methodologies to heart disease open datasets. The objective is to easily identify the average accuracy of model predictions and subsequently make recommendations for model selection based on data preprocessing cross-validation model increased (5 to 14%) more than baseline model for best model selection. From comparing each model's accuracy scores, it is found that the logistic regression and k-nearest neighbor models achieved the highest accuracy of 81% among the four models when single accuracy is a concern. However, the random forest model summary statistics attained an F1 score of 95%, precision (96%), and recall (97%), indicating the highest overall macro accuracy score. These findings can be further compared using learning curve validation. Conversely, the logistic regression model exhibited the lowest accuracy of 84% among the four machine learning models. However, this research does not cover hyperparameter optimization, which could potentially improve model performance.
Collapse
Affiliation(s)
- Yagyanath Rimal
- IIS (Deemed to be University), Jaipur, India.
- Pokhara University, Pokhara, Nepal.
| | | | | | - Abeer Alsadoon
- Western Sydney University (WSU), Sydney, Australia
- Asia Pacific International College (APIC), Sydney, Australia
| | | | | |
Collapse
|
4
|
Sun X, Hu X, Wei J, An H. Uncovering leading compounds for alzheimer's disease treatment: mendelian randomization and virtual screening insights into plasma protein modulation. Biol Res 2025; 58:19. [PMID: 40186323 PMCID: PMC11971886 DOI: 10.1186/s40659-025-00598-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/10/2025] [Indexed: 04/07/2025] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder influenced by both genetic and environmental factors. Identifying therapeutic targets and interventions remains challenging. This study utilized Mendelian Randomization (MR) to investigate causal relationships between plasma proteins, lifestyle factors, and AD, along with virtual screening to identify potential drug compounds. A two-sample MR analysis assessed associations between plasma proteins, identified through genome-wide association studies (GWAS), and AD risk. Co-localization analysis (CA) confirmed the overlap between protein expression and AD susceptibility loci, and reverse MR ruled out reverse causality. A protein-protein interaction (PPI) network was constructed to explore therapeutic targets, followed by virtual screening to identify small-molecule inhibitors for selected proteins. The analysis found significant associations between eight plasma proteins and AD, with five proteins (GSTP1, BIN1, Siglec-3, SERPINF2, and GRN) showing strong evidence of involvement in AD pathogenesis. Virtual screening identified six compounds as potential inhibitors of GSTP1 and four compounds as potential inhibitors of BIN1. Furthermore, MR analysis of lifestyle factors, such as dietary behaviors and smoking cessation, indicated they may influence AD risk through their effects on specific proteins. These findings offer novel insights into the genetic mechanisms underlying AD and highlight the potential of combining MR with virtual screening to identify therapeutic targets. The study also suggests that lifestyle modifications could offer alternative prevention and treatment strategies for AD. Future research should focus on the experimental validation of the identified compounds and further explore the mechanisms linking lifestyle factors to AD.
Collapse
Affiliation(s)
- Xiaohan Sun
- School of Science, Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Xiaofei Hu
- Department of Nuclear Medicine, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jianming Wei
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Haoyu An
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
5
|
Trabado-Fernández A, García-Colomo A, Cuadrado-Soto E, Peral-Suárez Á, Salas-González MD, Lorenzo-Mora AM, Aparicio A, Delgado-Losada ML, Maestú-Unturbe F, López-Sobaler AM. Association of a DASH diet and magnetoencephalography in dementia-free adults with different risk levels of Alzheimer's disease. GeroScience 2025; 47:1747-1759. [PMID: 39354239 PMCID: PMC11979050 DOI: 10.1007/s11357-024-01361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
This study explored how adherence to the DASH diet relates to electrophysiological measures in individuals at varying Alzheimer's disease (AD) risk due to family history (FH). There were 179 dementia-free subjects. DASH index was calculated, and participants were classified into different DASH adherence groups. Tertiles of relative alpha power in default mode network (DMN) regions were calculated. Multivariate logistic regression models were used to examine the association. Lower DASH adherence was associated with decreased odds of higher relative alpha power in the DMN, observed across the entire sample and specifically among those without a FH of AD. Logistic regression models indicated that participants with poorer DASH adherence had a reduced likelihood of elevated DMN alpha power, potentially influenced by vascular and amyloid-beta mechanisms. These findings underscore the dietary pattern's potential role in neural activity modulation, particularly in individuals not genetically predisposed to AD.
Collapse
Affiliation(s)
- Alfredo Trabado-Fernández
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Pl. de Ramón y Cajal S/N, 28040, Madrid, Spain
| | - Alejandra García-Colomo
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Faculty of Psychology, Complutense University of Madrid, 28223, Madrid, Spain
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223, Madrid, Spain
| | - Esther Cuadrado-Soto
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Pl. de Ramón y Cajal S/N, 28040, Madrid, Spain.
- VALORNUT Research Group, Department of Nutrition and Food Science, Complutense University of Madrid, 28040, Madrid, Spain.
| | - África Peral-Suárez
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Pl. de Ramón y Cajal S/N, 28040, Madrid, Spain
- VALORNUT Research Group, Department of Nutrition and Food Science, Complutense University of Madrid, 28040, Madrid, Spain
| | - María Dolores Salas-González
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Pl. de Ramón y Cajal S/N, 28040, Madrid, Spain
- VALORNUT Research Group, Department of Nutrition and Food Science, Complutense University of Madrid, 28040, Madrid, Spain
| | - Ana María Lorenzo-Mora
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Pl. de Ramón y Cajal S/N, 28040, Madrid, Spain
- Department of Nursing and Nutrition, Faculty of Biomedical Sciences, Universidad Europea de Madrid, 28670, Villaviciosa de Odón, Madrid, Spain
| | - Aránzazu Aparicio
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Pl. de Ramón y Cajal S/N, 28040, Madrid, Spain
- VALORNUT Research Group, Department of Nutrition and Food Science, Complutense University of Madrid, 28040, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
| | - María Luisa Delgado-Losada
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Faculty of Psychology, Complutense University of Madrid, 28223, Madrid, Spain
- VALORNUT Research Group, Department of Nutrition and Food Science, Complutense University of Madrid, 28040, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
| | - Fernando Maestú-Unturbe
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Faculty of Psychology, Complutense University of Madrid, 28223, Madrid, Spain
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
| | - Ana M López-Sobaler
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Pl. de Ramón y Cajal S/N, 28040, Madrid, Spain
- VALORNUT Research Group, Department of Nutrition and Food Science, Complutense University of Madrid, 28040, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
| |
Collapse
|
6
|
Ahmed G, Rahaman MS, Perez E, Khan KM. Associations of Environmental Exposure to Arsenic, Manganese, Lead, and Cadmium with Alzheimer's Disease: A Review of Recent Evidence from Mechanistic Studies. J Xenobiot 2025; 15:47. [PMID: 40278152 PMCID: PMC12029005 DOI: 10.3390/jox15020047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/26/2025] Open
Abstract
Numerous epidemiological studies indicate that populations exposed to environmental toxicants such as heavy metals have a higher likelihood of developing Alzheimer's disease (AD) compared to those unexposed, indicating a potential association between heavy metals exposure and AD. The aim of this review is to summarize contemporary mechanistic research exploring the associations of four important metals, arsenic (As), manganese (Mn), lead (Pb), and cadmium (Cd), with AD and possible pathways, processes, and molecular mechanisms on the basis of data from the most recent mechanistic studies. Primary research publications published during the last decade were identified via a search of the PubMed Database. A thorough literature search and final screening yielded 45 original research articles for this review. Of the 45 research articles, 6 pertain to As, 9 to Mn, 21 to Pb, and 9 to Cd exposures and AD pathobiology. Environmental exposure to these heavy metals induces a wide range of pathological processes that intersect with well-known mechanisms leading to AD, such as oxidative stress, mitochondrial dysfunction, protein aggregation, neuroinflammation, autophagy dysfunction, and tau hyperphosphorylation. While exposure to single metals shares some affected pathways, certain effects are unique to specific metals. For instance, Pb disrupts the blood-brain barrier (BBB) and mitochondrial functions and alters AD-related genes epigenetically. Cd triggers neuronal senescence via p53/p21/Rb. As disrupts nitric oxide (NO) signaling, cortical, and synaptic function. Mn causes glutamate excitotoxicity and dopamine neuron damage. Our review provides a deeper understanding of biological mechanisms showing how metals contribute to AD. Information regarding the potential metal-induced toxicity relevant to AD may help us develop effective therapeutic AD intervention, treatment, and prevention.
Collapse
Affiliation(s)
- Giasuddin Ahmed
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX 78041, USA;
| | - Md. Shiblur Rahaman
- Department of Public Health, College of Health Sciences, Sam Houston State University, Huntsville, TX 77341, USA;
- Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Enrique Perez
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX 78041, USA;
| | - Khalid M. Khan
- Department of Public Health, College of Health Sciences, Sam Houston State University, Huntsville, TX 77341, USA;
| |
Collapse
|
7
|
Bashir B, Gulati M, Vishwas S, Gupta G, Dhanasekaran M, Paudel KR, Chellappan DK, Anand K, Negi P, Singh PK, Rajput A, Dua K, Singh SK. Bridging gap in the treatment of Alzheimer's disease via postbiotics: Current practices and future prospects. Ageing Res Rev 2025; 105:102689. [PMID: 39952328 DOI: 10.1016/j.arr.2025.102689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
Aging is an extremely significant risk associated with neurodegeneration. The most prevalent neurodegenerative disorders (NDs), such as Alzheimer's disease (AD) are distinguished by the prevalence of proteinopathy, aberrant glial cell activation, oxidative stress, neuroinflammation, defective autophagy, cellular senescence, mitochondrial dysfunction, epigenetic changes, neurogenesis suppression, increased blood-brain barrier permeability, and intestinal dysbiosis that is excessive for the patient's age. Substantial body studies have documented a close relationship between gut microbiota and AD, and restoring a healthy gut microbiota may reduce or even ameliorate AD symptoms and progression. Thus, control of the microbiota in the gut has become an innovative model for clinical management of AD, and rising emphasis is focused on finding new techniques for preventing and/or managing the disease. The etiopathogenesis of gut microbiota in driving AD progression and supplementing postbiotics as a preventive and therapeutic treatment for AD is discussed. The review additionally discusses the use of postbiotics in AD prophylaxis and therapy, portraying them as substances that address senescence-triggered dysfunctions and are worthy of translating from bench to biopharmaceutical market in response to "silver consumers" needs. The current review examines and evaluates the impact of postbiotics as whole and specific metabolites, such as short-chain fatty acids (SCFAs), lactate, polyamines, polyphenols, tryptophan metabolites, exopolysaccharides, and bacterial extracellular vesicles, on the aging-associated processes that reinforce AD. Moreover, it provides an overview of the most recent data from both clinical and preclinical research involving the use of postbiotics in AD.
Collapse
Affiliation(s)
- Bushra Bashir
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | | | - Krishnan Anand
- Precision Medicine and Integrated Nano-Diagnostics (P-MIND) Research Group, Office of the Dean, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Poonam Negi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Amarjitsing Rajput
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed to be University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia.
| |
Collapse
|
8
|
Wang XL, Zhao YR, Yu Y, Mao ZF, Tan SX, Yu SS. Impact of dietary nutrition regimens based on body composition analysis on bone metabolism in Alzheimer's disease patients. World J Psychiatry 2025; 15:99008. [PMID: 39974500 PMCID: PMC11758049 DOI: 10.5498/wjp.v15.i2.99008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/27/2024] [Accepted: 12/17/2024] [Indexed: 01/14/2025] Open
Abstract
BACKGROUND Body composition analysis (BCA) is primarily used in the management of conditions such as obesity and endocrine disorders. However, its potential in providing nutritional guidance for patients with Alzheimer's disease (AD) remains relatively unexplored. AIM To explore the clinical efficacy of BCA-based dietary nutrition scheme on bone metabolism in AD patients. METHODS This retrospective study included 96 patients with AD complicated by osteoporosis who were admitted to The Third Hospital of Quzhou between January 2023 and December 2024. Based on data from previous similar studies, the patients were randomly assigned to either a routine diet (RD) group (n = 48) or a personalized nutrition (PN) group (n = 48). The RD group received conventional dietary guidance, while the PN group received individualized diet intervention measures based on human BCA. The intervention period lasted for 12 weeks. Bone mineral density (BMD), body mass index (BMI), muscle mass, mineral content, osteocalcin, 25-hydroxyvitamin D, procollagen type I N-terminal propeptide (PINP), beta C-terminal telopeptide of type I collagen (β-CTX), and serum calcium were measured and compared between the two groups before and 12 weeks after the intervention. RESULTS No significant differences were observed between groups in terms of age, sex, height, BMI, or other baseline data (P > 0.05). In both groups, BMI did not show significant changes after the intervention (P > 0.05), whereas muscle mass and mineral content were significantly increased (P < 0.05). After the intervention, BMI in the PN group did not differ significantly from that of the RD group, but muscle mass and mineral content were significantly higher in the PN group (P < 0.05). After the intervention, a higher proportion of patients in the PN group had a T score > -1 compared to the RD group (P < 0.05). The mini-mental state examination (MMSE) score was similar in both groups before the intervention. However, 12 weeks after the intervention, the MMSE score in the PN group was significantly higher than that in the RD group (P < 0.05). In both groups, the MMSE score significantly increased 12 weeks post-intervention compared to pre-intervention levels (P < 0.05). Before the intervention, the levels of osteocalcin, serum calcium, PINP, β-CTX, and 25-hydroxyvitamin D were not significantly different between the two groups (P > 0.05). After 12 weeks of intervention, the PN group exhibited higher levels of osteocalcin, serum calcium, and 25-hydroxyvitamin D, as well as lower levels of PINP and β-CTX, compared to the RD group (P < 0.05). In both groups, osteocalcin, serum calcium, and 25-hydroxyvitamin D levels were significantly higher, while PINP and β-CTX levels were significantly lower after 12 weeks of intervention compared to baseline (P < 0.05). CONCLUSION The human BCA-based dietary nutrition regimen plays a crucial role in improving BMD and bone metabolism, with effects that surpass those of conventional nutrition strategies. The findings of this study provide strong evidence for the nutritional management of AD patients.
Collapse
Affiliation(s)
- Xue-Lian Wang
- Department of Clinical Nutrition, The Third Hospital of Quzhou, Quzhou 324000, Zhejiang Province, China
| | - Yi-Ran Zhao
- Department of Rehabilitation Treatment Group, The Third Hospital of Quzhou, Quzhou 324000, Zhejiang Province, China
| | - Ying Yu
- Department of Geriatrics, The Third Hospital of Quzhou, Quzhou 324000, Zhejiang Province, China
| | - Zhi-Fang Mao
- Department of Rehabilitation Medicine, The Third Hospital of Quzhou, Quzhou 324000, Zhejiang Province, China
| | - Su-Xian Tan
- Department of Psychiatry, The Third Hospital of Quzhou, Quzhou 324000, Zhejiang Province, China
| | - Shan-Shan Yu
- Department of Geriatric Psychiatry, The Third Hospital of Quzhou, Quzhou 324000, Zhejiang Province, China
| |
Collapse
|
9
|
Yang L, Sun Z, He Q, Zhu M, Sun M, Zhao H, Wang Y, Li J, Shi Y, Lou Z, Liu B, Jiang M, Shen Y. Joint effect of polysocial risk score, lifestyle and genetic susceptibility with the risk of dementia: A prospective cohort study. J Affect Disord 2025; 370:229-234. [PMID: 39505019 DOI: 10.1016/j.jad.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
OBJECTIVES The comprehensive impact of polysocial risk score (PsRS)-encompassing multiple social determinants of health (SDoHs) with genetic and lifestyle factors on dementia incidence remains to be elucidated. STUDY DESIGN This study aimed to clear the associations between PsRS and dementia incidence and evaluated how genetic and lifestyle factors modified these associations in the UK Biobank cohort. METHODS The detailed prospective study involved over 500,000 participants when recruited in 2006-2010. The PsRS was calculated by 12 SDoHs across psychosocial factors, socioeconomic status, and neighborhood and living environment. A healthy lifestyle score was constructed from physical activities, alcohol consumption, smoking status, and diet. A genetic risk score (GRS) was computed via genotype data from UK Biobank. The Cox proportional hazards model was used to estimate hazard ratios (HRs) and 95 % confidence intervals (CIs) for the association between PsRS, lifestyle factors, GRS and dementia. RESULTS Results showed the participants with intermediate (HR = 1.32, 95%CI: 1.20-1.45) and high PsRS (HR = 2.10, 95 % CI: 1.91-2.32) were significantly associated with an increased risk of dementia compared with those with a low PsRS. Then, compared with participants with low PsRS and favorable lifestyle/low GRS, high PsRS and unfavorable lifestyle/high GRS had the highest risk of dementia (HR = 3.11,95%CI: 2.63-3.68)/(HR = 3.56, 95%CI: 2.62-4.85). CONCLUSIONS Both high PsRS and GRS were significantly associated with higher dementia risk. A favorable lifestyle could reduce dementia incidence regardless of high PsRS or GRS. Additionally, focusing on the intervention of SDoHs would be positive in preventing dementia.
Collapse
Affiliation(s)
- Lichao Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou City, Jiangsu Province 215123, China
| | - Ziqing Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou City, Jiangsu Province 215123, China
| | - Qida He
- Department of Infectious Diseases and Public Health, City University of Hong Kong, 999077, Hong Kong
| | - Maosheng Zhu
- China Mobile (Suzhou) Software Technology Co., Ltd, Suzhou 215009, Jiangsu, China
| | - Mengtong Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou City, Jiangsu Province 215123, China
| | - Hanqing Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou City, Jiangsu Province 215123, China
| | - Yu Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou City, Jiangsu Province 215123, China
| | - Jianing Li
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou City, Jiangsu Province 215123, China
| | - Yujie Shi
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou City, Jiangsu Province 215123, China
| | - Zexin Lou
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou City, Jiangsu Province 215123, China
| | - Boyan Liu
- The Fourth Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu, China
| | - Miao Jiang
- The Fourth Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu, China.
| | - Yueping Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou City, Jiangsu Province 215123, China; The Fourth Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu, China.
| |
Collapse
|
10
|
Dominguez-Gortaire J, Ruiz A, Porto-Pazos AB, Rodriguez-Yanez S, Cedron F. Alzheimer's Disease: Exploring Pathophysiological Hypotheses and the Role of Machine Learning in Drug Discovery. Int J Mol Sci 2025; 26:1004. [PMID: 39940772 PMCID: PMC11816687 DOI: 10.3390/ijms26031004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Alzheimer's disease (AD) is a major neurodegenerative dementia, with its complex pathophysiology challenging current treatments. Recent advancements have shifted the focus from the traditionally dominant amyloid hypothesis toward a multifactorial understanding of the disease. Emerging evidence suggests that while amyloid-beta (Aβ) accumulation is central to AD, it may not be the primary driver but rather part of a broader pathogenic process. Novel hypotheses have been proposed, including the role of tau protein abnormalities, mitochondrial dysfunction, and chronic neuroinflammation. Additionally, the gut-brain axis and epigenetic modifications have gained attention as potential contributors to AD progression. The limitations of existing therapies underscore the need for innovative strategies. This study explores the integration of machine learning (ML) in drug discovery to accelerate the identification of novel targets and drug candidates. ML offers the ability to navigate AD's complexity, enabling rapid analysis of extensive datasets and optimizing clinical trial design. The synergy between these themes presents a promising future for more effective AD treatments.
Collapse
Affiliation(s)
- Jose Dominguez-Gortaire
- Department of Computer Science and Information Technologies, Faculty of Computer Science, Universidade da Coruña, 15071 A Coruña, Spain; (J.D.-G.)
- Faculty of Biological Sciences, Universidad Central del Ecuador, Quito 170136, Ecuador
- Faculty of Odontology, UTE University, Quito 170902, Ecuador
| | - Alejandra Ruiz
- Faculty of Medical Sciences, Universidad Central del Ecuador, Quito 170136, Ecuador
| | - Ana Belen Porto-Pazos
- Department of Computer Science and Information Technologies, Faculty of Computer Science, Universidade da Coruña, 15071 A Coruña, Spain; (J.D.-G.)
- CITIC—Research Center of Information and Communication Technologies, Universidade da Coruña, 15008 A Coruña, Spain
| | - Santiago Rodriguez-Yanez
- Department of Computer Science and Information Technologies, Faculty of Computer Science, Universidade da Coruña, 15071 A Coruña, Spain; (J.D.-G.)
- CITEEC—Center for Technological Innovation in Construction and Civil Engineering, Universidade da Coruña, 15008 A Coruña, Spain
| | - Francisco Cedron
- Department of Computer Science and Information Technologies, Faculty of Computer Science, Universidade da Coruña, 15071 A Coruña, Spain; (J.D.-G.)
- CITIC—Research Center of Information and Communication Technologies, Universidade da Coruña, 15008 A Coruña, Spain
| |
Collapse
|
11
|
Albadawi EA. Structural and functional changes in the hippocampus induced by environmental exposures. NEUROSCIENCES (RIYADH, SAUDI ARABIA) 2025; 30:5-19. [PMID: 39800422 PMCID: PMC11753596 DOI: 10.17712/nsj.2025.1.20240052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The hippocampus, noted as (HC), plays a crucial role in the processes of learning, memory formation, and spatial navigation. Recent research reveals that this brain region can undergo structural and functional changes due to environmental exposures, including stress, noise pollution, sleep deprivation, and microgravity. This review synthesizes findings from animal and human studies, emphasizing the HC's plasticity in response to these factors. It examines changes in volume, architecture, neurogenesis, synaptic plasticity, and gene expression and highlights critical periods of vulnerability to environmental influences impacting cognition and behavior. It also investigates underlying mechanisms such as glucocorticoid signaling, epigenetic alterations, and neural circuit adaptations. Understanding how the HC reacts to various environmental exposures is vital for developing strategies to enhance cognitive resilience and mitigate negative effects on this crucial brain region. Further research is needed to identify protective and risk factors and create effective interventions.
Collapse
Affiliation(s)
- Emad A. Albadawi
- From the Department of Basic Medical Sciences, College of Medicine, Taibah University, Madinah, Kingdom of Saudi Arabia
| |
Collapse
|
12
|
Safiri S, Ghaffari Jolfayi A, Fazlollahi A, Morsali S, Sarkesh A, Daei Sorkhabi A, Golabi B, Aletaha R, Motlagh Asghari K, Hamidi S, Mousavi SE, Jamalkhani S, Karamzad N, Shamekh A, Mohammadinasab R, Sullman MJM, Şahin F, Kolahi AA. Alzheimer's disease: a comprehensive review of epidemiology, risk factors, symptoms diagnosis, management, caregiving, advanced treatments and associated challenges. Front Med (Lausanne) 2024; 11:1474043. [PMID: 39736972 PMCID: PMC11682909 DOI: 10.3389/fmed.2024.1474043] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/18/2024] [Indexed: 01/01/2025] Open
Abstract
Background Alzheimer's disease (AD) is a chronic, progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired reasoning. It is the leading cause of dementia in older adults, marked by the pathological accumulation of amyloid-beta plaques and neurofibrillary tangles. These pathological changes lead to widespread neuronal damage, significantly impacting daily functioning and quality of life. Objective This comprehensive review aims to explore various aspects of Alzheimer's disease, including its epidemiology, risk factors, clinical presentation, diagnostic advancements, management strategies, caregiving challenges, and emerging therapeutic interventions. Methods A systematic literature review was conducted across multiple electronic databases, including PubMed, MEDLINE, Cochrane Library, and Scopus, from their inception to May 2024. The search strategy incorporated a combination of keywords and Medical Subject Headings (MeSH) terms such as "Alzheimer's disease," "epidemiology," "risk factors," "symptoms," "diagnosis," "management," "caregiving," "treatment," and "novel therapies." Boolean operators (AND, OR) were used to refine the search, ensuring a comprehensive analysis of the existing literature on Alzheimer's disease. Results AD is significantly influenced by genetic predispositions, such as the apolipoprotein E (APOE) ε4 allele, along with modifiable environmental factors like diet, physical activity, and cognitive engagement. Diagnostic approaches have evolved with advances in neuroimaging techniques (MRI, PET), and biomarker analysis, allowing for earlier detection and intervention. The National Institute on Aging and the Alzheimer's Association have updated diagnostic criteria to include biomarker data, enhancing early diagnosis. Conclusion The management of AD includes pharmacological treatments, such as cholinesterase inhibitors and NMDA receptor antagonists, which provide symptomatic relief but do not slow disease progression. Emerging therapies, including amyloid-beta and tau-targeting treatments, gene therapy, and immunotherapy, offer potential for disease modification. The critical role of caregivers is underscored, as they face considerable emotional, physical, and financial burdens. Support programs, communication strategies, and educational interventions are essential for improving caregiving outcomes. While significant advancements have been made in understanding and managing AD, ongoing research is necessary to identify new therapeutic targets and enhance diagnostic and treatment strategies. A holistic approach, integrating clinical, genetic, and environmental factors, is essential for addressing the multifaceted challenges of Alzheimer's disease and improving outcomes for both patients and caregivers.
Collapse
Affiliation(s)
- Saeid Safiri
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ghaffari Jolfayi
- Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Asra Fazlollahi
- Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soroush Morsali
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Tabriz USERN Office, Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| | - Aila Sarkesh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Daei Sorkhabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnam Golabi
- Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Aletaha
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kimia Motlagh Asghari
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sana Hamidi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Tabriz USERN Office, Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| | - Seyed Ehsan Mousavi
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Jamalkhani
- Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Karamzad
- Department of Persian Medicine, School of Traditional, Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shamekh
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mohammadinasab
- Department of History of Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mark J. M. Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye
| | - Ali-Asghar Kolahi
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Yildirim Z, Sanlier N. The Relationship of Certain Diseases and Dietary Inflammatory Index in Older Adults: A Narrative Review. Curr Nutr Rep 2024; 13:768-785. [PMID: 39230632 DOI: 10.1007/s13668-024-00566-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/05/2024]
Abstract
PURPOSE OF REVIEW One of the important markers affecting aging processes is the increase in inflammatory markers. Many chronic diseases are associated with inflammation and chronic inflammation increases with aging. Inflammation can change with dietary components. Foods, compounds and nutrients that have anti-inflammatory or proinflammatory properties attract attention. According to the Dietary Inflammatory Index, positive scores are obtained if the nutrient has a proinflammatory effect on cytokines, and negative scores are obtained if it has an anti-inflammatory effect. RECENT FINDINGS A higher proinflammatory diet is associated with cardiometabolic diseases, neurodegenerative disease, cancers and musculoskeletal health and related mortality. In this study, its relationship with type 2 diabetes mellitus, obesity, metabolic syndrome, musculoskeletal diseases, dementia, depression and cancer, which are more common in older adults and known to be associated with inflammation, was examined. Although studies involving under 65 years old are more prevalent, research involving older adults and Dietary Inflammatory Index (DII) is more limited. It is known that chronic inflammation increases with aging. Diet is one of the factors affecting inflammation. In the light of these investigations, the topics of anti-inflammatory nutrition and DII for the treatment of inflammation-related diseases in older adults are strong and open to development topics of discussion. Despite the significant interest in the potential positive effects of anti-inflammatory nutrition on diseases, contributing to clearer evidence of its protective effects on health necessitates further randomized controlled trials, in vivo, in vitro, cell, animal, human and case-control studies for better risk assessment.
Collapse
Affiliation(s)
- Zeyneb Yildirim
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, Ankara, Turkey
| | - Nevin Sanlier
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, Ankara, Turkey.
| |
Collapse
|
14
|
Lacerda RAV, Desio JAF, Kammers CM, Henkes S, Freitas de Sá M, de Souza EF, da Silva DM, Teixeira Pinheiro Gusmão C, Santos JCCD. Sleep disorders and risk of alzheimer's disease: A two-way road. Ageing Res Rev 2024; 101:102514. [PMID: 39317268 DOI: 10.1016/j.arr.2024.102514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Substantial sleep impairment in patients with Alzheimer's disease (AD) is one of the emerging points for continued efforts to better understand the disease. Individuals without cognitive decline, an important marker of the clinical phase of AD, may show early alterations in the sleep-wake cycle. The objective of this critical narrative review is to explore the bidirectional pathophysiological correlation between sleep disturbances and Alzheimer's Disease. Specifically, it examines how the disruption of sleep homeostasis in individuals without dementia could contribute to the pathogenesis of AD, and conversely, how neurodegeneration in individuals with Alzheimer's Disease might lead to dysregulation of the sleep-wake cycle. Recent scientific results indicate that sleep disturbances, particularly those related to impaired glymphatic clearance, may act as an important mechanism associated with the genesis of Alzheimer's Disease. Additionally, amyloid deposition and tau protein hyperphosphorylation, along with astrocytic hyperactivation, appear to trigger changes in neurotransmission dynamics in areas related to sleep, which may explain the onset of sleep disturbances in individuals with AD. Disruption of sleep homeostasis appears to be a modifiable risk factor in Alzheimer's disease. Whenever possible, the use of non-pharmacological strategies becomes important in this context. From a different perspective, additional research is needed to understand and treat the dysfunction of the sleep-wake cycle in individuals already affected by AD. Early recognition and correction of sleep disturbances in this population could potentially mitigate the progression of dementia and improve the quality of life for those with AD.
Collapse
Affiliation(s)
| | | | | | - Silvana Henkes
- Lutheran University of Brazil - ULBRA, Carazinho, RS, Brazil
| | | | | | | | | | - Júlio César Claudino Dos Santos
- Medical School of the Christus University Center - UNICHRISTUS, Fortaleza, CE, Brazil; Post-Graduate Program of Morphofunctional Sciences, Federal University of Ceara, Fortaleza, CE, Brazil; Unifacvest University Center - UNIFACVEST, Lages, SC, Brazil.
| |
Collapse
|
15
|
Popescu C, Munteanu C, Anghelescu A, Ciobanu V, Spînu A, Andone I, Mandu M, Bistriceanu R, Băilă M, Postoiu RL, Vlădulescu-Trandafir AI, Giuvara S, Malaelea AD, Onose G. Novelties on Neuroinflammation in Alzheimer's Disease-Focus on Gut and Oral Microbiota Involvement. Int J Mol Sci 2024; 25:11272. [PMID: 39457054 PMCID: PMC11508522 DOI: 10.3390/ijms252011272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/05/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Recent studies underscore the role of gut and oral microbiota in influencing neuroinflammation through the microbiota-gut-brain axis, including in Alzheimer's disease (AD). This review aims to provide a comprehensive synthesis of recent findings on the involvement of gut and oral microbiota in the neuroinflammatory processes associated with AD, emphasizing novel insights and therapeutic implications. This review reveals that dysbiosis in AD patients' gut and oral microbiota is linked to heightened peripheral and central inflammatory responses. Specific bacterial taxa, such as Bacteroides and Firmicutes in the gut, as well as Porphyromonas gingivalis in the oral cavity, are notably altered in AD, leading to significant changes in microglial activation and cytokine production. Gut microbiota alterations are associated with increased intestinal permeability, facilitating the translocation of endotoxins like lipopolysaccharides (LPS) into the bloodstream and exacerbating neuroinflammation by activating the brain's toll-like receptor 4 (TLR4) pathways. Furthermore, microbiota-derived metabolites, including short-chain fatty acids (SCFAs) and amyloid peptides, can cross the blood-brain barrier and modulate neuroinflammatory responses. While microbial amyloids may contribute to amyloid-beta aggregation in the brain, certain SCFAs like butyrate exhibit anti-inflammatory properties, suggesting a potential therapeutic avenue to mitigate neuroinflammation. This review not only highlights the critical role of microbiota in AD pathology but also offers a ray of hope by suggesting that modulating gut and oral microbiota could represent a novel therapeutic strategy for reducing neuroinflammation and slowing disease progression.
Collapse
Affiliation(s)
- Cristina Popescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Constantin Munteanu
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700454 Iași, Romania
| | - Aurelian Anghelescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Vlad Ciobanu
- Department of Computer Science and Engineering, Faculty for Automatic Control and Computers, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Aura Spînu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Ioana Andone
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Mihaela Mandu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Roxana Bistriceanu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Mihai Băilă
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Ruxandra-Luciana Postoiu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Andreea-Iulia Vlădulescu-Trandafir
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Sebastian Giuvara
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Alin-Daniel Malaelea
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Gelu Onose
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| |
Collapse
|
16
|
Godos J, Micek A, Currenti W, Franchi C, Poli A, Battino M, Dolci A, Ricci C, Ungvari Z, Grosso G. Fish consumption, cognitive impairment and dementia: an updated dose-response meta-analysis of observational studies. Aging Clin Exp Res 2024; 36:171. [PMID: 39162889 PMCID: PMC11335789 DOI: 10.1007/s40520-024-02823-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/28/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Cognitive impairment is projected to affect a preponderant proportion of the aging population. Lifelong dietary habits have been hypothesized to play a role in preventing cognitive decline. Among the most studied dietary components, fish consumptionhas been extensively studied for its potential effects on the human brain. AIMS To perform a meta-analysis of observational studies exploring the association between fish intake and cognitive impairment/decline and all types of dementia. METHODS A systematic search of electronic databases was performed to identify observational studies providing quantitative data on fish consumption and outcomes of interest. Random effects models for meta-analyses using only extreme exposure categories, subgroup analyses, and dose-response analyses were performed to estimate cumulative risk ratios (RRs) and 95% confidence intervals (CIs). RESULTS The meta-analysis comprised 35 studies. Individuals reporting the highest vs. the lowest fish consumption were associated with a lower likelihood of cognitive impairment/decline (RR = 0.82, 95% CI: 0.75, 0.90, I2 = 61.1%), dementia (RR = 0.82, 95% CI: 0.73, 0.93, I2 = 38.7%), and Alzheimer's disease (RR = 0.80, 95% CI: 0.67, 0.96, I2 = 20.3%). The dose-response relation revealed a significantly decreased risk of cognitive impairment/decline and all cognitive outcomes across higher levels of fish intake up to 30% for 150 g/d (RR = 0.70, 95% CI: 0.52, 0.95). The results of this relation based on APOE ε4 allele status was mixed based on the outcome investigated. CONCLUSIONS Current findings suggest fish consumption is associated with a lower risk of cognitive impairment/decline in a dose-response manner, while for dementia and Alzheimer's disease there is a need for further studies to improve the strength of evidence.
Collapse
Affiliation(s)
- Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Center for Human Nutrition and Mediterranean Foods (NUTREA), University of Catania, Catania, Italy
| | - Agnieszka Micek
- Statistical Laboratory, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, 31-501, Poland
| | - Walter Currenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Carlotta Franchi
- Laboratory of Pharmacoepidemiology and Human Nutrition, Department of Health Policy, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, 20156, Italy
- Italian Institute for Planetary Health (IIPH), Milan, 20124, Italy
| | - Andrea Poli
- Nutrition Foundation of Italy (NFI), Milan, 20124, Italy
| | - Maurizio Battino
- Department of Clinical Sciences, Università Politecnica Delle Marche, Ancona, Italy
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, Santander, 39011, Spain
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Alberto Dolci
- Sustainable Development Department, Bolton Food SpA, Milan, 20124, Italy
| | - Cristian Ricci
- Africa Unit for Transdisciplinary Health Research (AUTHeR), North-West University, Potchefstroom, 2531, South Africa
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral College, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
- Center for Human Nutrition and Mediterranean Foods (NUTREA), University of Catania, Catania, Italy.
| |
Collapse
|
17
|
Al Shamsi HSS, Rainey-Smith SR, Gardener SL, Sohrabi HR, Canovas R, Martins RN, Fernando WMADB. The Relationship between Diet, Depression, and Alzheimer's Disease: A Narrative Review. Mol Nutr Food Res 2024; 68:e2300419. [PMID: 38973221 DOI: 10.1002/mnfr.202300419] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 02/02/2024] [Indexed: 07/09/2024]
Abstract
PURPOSE OF REVIEW This narrative review evaluates the role of diet in the relationship between depression and Alzheimer's disease (AD). RECENT FINDINGS AD and depression are often comorbid, and depression appears to independently increase the future risk of AD. Evidence suggests diet influences the risk of both conditions directly and indirectly. Diet impacts neurochemical and biological processes that may affect the development and progression of depression and cognitive dysfunction. The dietary components offering the greatest protection against depression and AD are yet to be determined. Current evidence highlights the importance of polyphenolic compounds, folate, B vitamins, and polyunsaturated fatty acids, along with adherence to dietary patterns like the Mediterranean diet, which includes multiple beneficial dietary factors. SUMMARY The investigation of dietary factors in the prevention of depression and AD is a comparatively young field of research. Comprehensive highly characterised longitudinal datasets and advanced analytical approaches are required to further examine the complex relationship between diet, depression, and AD. There is a critical need for more research in this area to develop effective preventive strategies aimed at maintaining mental and physical health with advancing age.
Collapse
Affiliation(s)
- Hilal Salim Said Al Shamsi
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
| | - Stephanie R Rainey-Smith
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
- Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, Western Australia, 6009, Australia
- Lifestyle Approaches Towards Cognitive Health Research Group, Murdoch University, Murdoch, Western Australia, 6150, Australia
- School of Psychological Science, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Samantha L Gardener
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
- Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, Western Australia, 6009, Australia
- Lifestyle Approaches Towards Cognitive Health Research Group, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Hamid R Sohrabi
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
- Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, Western Australia, 6009, Australia
- Department of Biomedical Sciences, Macquarie University, Macquarie Park, New South Wales, 2109, Australia
| | - Rodrigo Canovas
- Health & Biosecurity, The Commonwealth Scientific and Industrial Research Organisation, Herston, Queensland, 4029, Australia
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
- Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, Western Australia, 6009, Australia
- Department of Biomedical Sciences, Macquarie University, Macquarie Park, New South Wales, 2109, Australia
| | - Warnakulasuriya Mary Ann Dipika Binosha Fernando
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
- Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, Western Australia, 6009, Australia
| |
Collapse
|
18
|
Hierro-Bujalance C, Garcia-Alloza M. Empagliflozin reduces brain pathology in Alzheimer's disease and type 2 diabetes. Neural Regen Res 2024; 19:1189-1190. [PMID: 37905858 PMCID: PMC11467955 DOI: 10.4103/1673-5374.385865] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/20/2023] [Accepted: 08/20/2023] [Indexed: 11/02/2023] Open
Affiliation(s)
- Carmen Hierro-Bujalance
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
- Salus Infirmorum-Universidad de Cadiz, Cadiz, Spain
| | - Monica Garcia-Alloza
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| |
Collapse
|
19
|
Umeda T, Sakai A, Shigemori K, Nakata K, Nakajima R, Yamana K, Tomiyama T. New Value of Acorus tatarinowii/ gramineus Leaves as a Dietary Source for Dementia Prevention. Nutrients 2024; 16:1589. [PMID: 38892521 PMCID: PMC11175135 DOI: 10.3390/nu16111589] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
The rhizomes of Acorus tatarinowii Schott and Acorus gramineus Solander are widely used for treating amnesia in traditional Chinese medicine. In contrast, their leaves are usually discarded without their medicinal properties being known. Here, we found that the hot water extract of leaves improved cognition and tau pathology in model mice of frontotemporal dementia, similar to or even better than that of rhizomes. To explore the optimal method of processing, we made three preparations from dried leaves: hot water extract, extraction residue, and non-extracted simple crush powder. Among them, the simple crush powder had the strongest effect on tauopathy in mice. The crush powder also ameliorated Aβ and α-synuclein pathologies and restored cognition in mouse models of Alzheimer's disease and dementia with Lewy bodies. These findings suggest the potential of Acorus tatarinowii/gramineus leaves as a dietary source for dementia prevention and reveal that simple crushing is a better way to maximize their efficacy.
Collapse
Affiliation(s)
- Tomohiro Umeda
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan; (T.U.)
- Cerebro Pharma Inc., 4-5-6-3F Minamikyuhojimachi, Chuo-ku, Osaka 541-0058, Japan
| | - Ayumi Sakai
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan; (T.U.)
- Cerebro Pharma Inc., 4-5-6-3F Minamikyuhojimachi, Chuo-ku, Osaka 541-0058, Japan
| | - Keiko Shigemori
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan; (T.U.)
| | - Kunio Nakata
- NOMON Co., Ltd., New Business Development Unit, Teijin Ltd., Kasumigaseki Common Gate West Tower 3-2-1 Kasumigaseki, Chiyoda-ku, Tokyo 100-8585, Japan; (K.N.); (R.N.); (K.Y.)
| | - Ryota Nakajima
- NOMON Co., Ltd., New Business Development Unit, Teijin Ltd., Kasumigaseki Common Gate West Tower 3-2-1 Kasumigaseki, Chiyoda-ku, Tokyo 100-8585, Japan; (K.N.); (R.N.); (K.Y.)
| | - Kei Yamana
- NOMON Co., Ltd., New Business Development Unit, Teijin Ltd., Kasumigaseki Common Gate West Tower 3-2-1 Kasumigaseki, Chiyoda-ku, Tokyo 100-8585, Japan; (K.N.); (R.N.); (K.Y.)
| | - Takami Tomiyama
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan; (T.U.)
- Cerebro Pharma Inc., 4-5-6-3F Minamikyuhojimachi, Chuo-ku, Osaka 541-0058, Japan
| |
Collapse
|
20
|
Prasanth MI, Sivamaruthi BS, Cheong CSY, Verma K, Tencomnao T, Brimson JM, Prasansuklab A. Role of Epigenetic Modulation in Neurodegenerative Diseases: Implications of Phytochemical Interventions. Antioxidants (Basel) 2024; 13:606. [PMID: 38790711 PMCID: PMC11118909 DOI: 10.3390/antiox13050606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Epigenetics defines changes in cell function without involving alterations in DNA sequence. Neuroepigenetics bridges neuroscience and epigenetics by regulating gene expression in the nervous system and its impact on brain function. With the increase in research in recent years, it was observed that alterations in the gene expression did not always originate from changes in the genetic sequence, which has led to understanding the role of epigenetics in neurodegenerative diseases (NDDs) including Alzheimer's disease (AD) and Parkinson's disease (PD). Epigenetic alterations contribute to the aberrant expression of genes involved in neuroinflammation, protein aggregation, and neuronal death. Natural phytochemicals have shown promise as potential therapeutic agents against NDDs because of their antioxidant, anti-inflammatory, and neuroprotective effects in cellular and animal models. For instance, resveratrol (grapes), curcumin (turmeric), and epigallocatechin gallate (EGCG; green tea) exhibit neuroprotective effects through their influence on DNA methylation patterns, histone acetylation, and non-coding RNA expression profiles. Phytochemicals also aid in slowing disease progression, preserving neuronal function, and enhancing cognitive and motor abilities. The present review focuses on various epigenetic modifications involved in the pathology of NDDs, including AD and PD, gene expression regulation related to epigenetic alterations, and the role of specific polyphenols in influencing epigenetic modifications in AD and PD.
Collapse
Affiliation(s)
- Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand;
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Clerance Su Yee Cheong
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanika Verma
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - James Michael Brimson
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Research, Innovation and International Affairs, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anchalee Prasansuklab
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
21
|
Meng Q, Chen C, Zhu M, Huang Y. Dietary factors and Alzheimer's disease risk: a Mendelian randomization study. Eur J Med Res 2024; 29:261. [PMID: 38698427 PMCID: PMC11067192 DOI: 10.1186/s40001-024-01821-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/29/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Prior observational research has investigated the association between dietary patterns and Alzheimer's disease (AD) risk. Nevertheless, due to constraints in past observational studies, establishing a causal link between dietary habits and AD remains challenging. METHODS Methodology involved the utilization of extensive cohorts sourced from publicly accessible genome-wide association study (GWAS) datasets of European descent for conducting Mendelian randomization (MR) analyses. The principal analytical technique utilized was the inverse-variance weighted (IVW) method. RESULTS The MR analysis conducted in this study found no statistically significant causal association between 20 dietary habits and the risk of AD (All p > 0.05). These results were consistent across various MR methods employed, including MR-Egger, weighted median, simple mode, and weighted mode approaches. Moreover, there was no evidence of horizontal pleiotropy detected (All p > 0.05). CONCLUSION In this MR analysis, our finding did not provide evidence to support the causal genetic relationships between dietary habits and AD risk.
Collapse
Affiliation(s)
- Qi Meng
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, 7 Weiwu Street, Zhengzhou, 450000, China.
| | - Chen Chen
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, 7 Weiwu Street, Zhengzhou, 450000, China
| | - Mingfang Zhu
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, 7 Weiwu Street, Zhengzhou, 450000, China
| | - Yue Huang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, 7 Weiwu Street, Zhengzhou, 450000, China
| |
Collapse
|
22
|
Clemente-Suárez VJ, Redondo-Flórez L, Beltrán-Velasco AI, Belinchón-deMiguel P, Ramos-Campo DJ, Curiel-Regueros A, Martín-Rodríguez A, Tornero-Aguilera JF. The Interplay of Sports and Nutrition in Neurological Health and Recovery. J Clin Med 2024; 13:2065. [PMID: 38610829 PMCID: PMC11012304 DOI: 10.3390/jcm13072065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
This comprehensive review explores the dynamic relationship between sports, nutrition, and neurological health. Focusing on recent clinical advancements, it examines how physical activity and dietary practices influence the prevention, treatment, and rehabilitation of various neurological conditions. The review highlights the role of neuroimaging in understanding these interactions, discusses emerging technologies in neurotherapeutic interventions, and evaluates the efficacy of sports and nutritional strategies in enhancing neurological recovery. This synthesis of current knowledge aims to provide a deeper understanding of how lifestyle factors can be integrated into clinical practices to improve neurological outcomes.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.C.-R.); (J.F.T.-A.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain;
| | | | - Pedro Belinchón-deMiguel
- Department of Nursing and Nutrition, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain;
| | - Domingo Jesús Ramos-Campo
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Agustín Curiel-Regueros
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.C.-R.); (J.F.T.-A.)
| | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.C.-R.); (J.F.T.-A.)
| | - José Francisco Tornero-Aguilera
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.C.-R.); (J.F.T.-A.)
| |
Collapse
|
23
|
Azargoonjahromi A, Abutalebian F. Unraveling the therapeutic efficacy of resveratrol in Alzheimer's disease: an umbrella review of systematic evidence. Nutr Metab (Lond) 2024; 21:15. [PMID: 38504306 PMCID: PMC10953289 DOI: 10.1186/s12986-024-00792-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/13/2024] [Indexed: 03/21/2024] Open
Abstract
CONTEXT Resveratrol (RV), a natural compound found in grapes, berries, and peanuts, has been extensively studied for its potential in treating Alzheimer's disease (AD). RV has shown promise in inhibiting the formation of beta-amyloid plaques (Aβ) and neurofibrillary tangles (NFTs), protecting against neuronal damage and oxidative stress, reducing inflammation, promoting neuroprotection, and improving the function of the blood-brain barrier (BBB). However, conflicting results have been reported, necessitating a comprehensive umbrella review of systematic reviews to provide an unbiased conclusion on the therapeutic effectiveness of RV in AD. OBJECTIVE The objective of this study was to systematically synthesize and evaluate systematic and meta-analysis reviews investigating the role of RV in AD using data from both human and animal studies. DATA SOURCES AND EXTRACTION Of the 34 systematic and meta-analysis reviews examining the association between RV and AD that were collected, six were included in this study based on specific selection criteria. To identify pertinent studies, a comprehensive search was conducted in English-language peer-reviewed journals without any restrictions on the publication date until October 15, 2023. The search was carried out across multiple databases, including Embase, MEDLINE (PubMed), Cochrane Library, Web of Science, and Google Scholar, utilizing appropriate terms relevant to the specific research field. The AMSTAR-2 and ROBIS tools were also used to evaluate the quality and risk of bias of the included systematic reviews, respectively. Two researchers independently extracted and analyzed the data, resolving any discrepancies through consensus. Of note, the study adhered to the PRIOR checklist. DATA ANALYSIS This umbrella review presented robust evidence supporting the positive impacts of RV in AD, irrespective of the specific mechanisms involved. It indeed indicated that all six systematic and meta-analysis reviews unanimously concluded that the consumption of RV can be effective in the treatment of AD. CONCLUSION RV exhibits promising potential for benefiting individuals with AD through various mechanisms. It has been observed to enhance cognitive function, reduce Aβ accumulation, provide neuroprotection, protect the BBB, support mitochondrial function, facilitate synaptic plasticity, stabilize tau proteins, mitigate oxidative stress, and reduce neuroinflammation commonly associated with AD.
Collapse
Affiliation(s)
| | - Fatemeh Abutalebian
- Department of Biotechnology and Medicine, Islamic Azad University of Tehran Central Branch, Tehran, Iran
| |
Collapse
|
24
|
Guarnieri L, Bosco F, Leo A, Citraro R, Palma E, De Sarro G, Mollace V. Impact of micronutrients and nutraceuticals on cognitive function and performance in Alzheimer's disease. Ageing Res Rev 2024; 95:102210. [PMID: 38296163 DOI: 10.1016/j.arr.2024.102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/13/2024]
Abstract
Alzheimer's disease (AD) is a major global health problem today and is the most common form of dementia. AD is characterized by the formation of β-amyloid (Aβ) plaques and neurofibrillary clusters, leading to decreased brain acetylcholine levels in the brain. Another mechanism underlying the pathogenesis of AD is the abnormal phosphorylation of tau protein that accumulates at the level of neurofibrillary aggregates, and the areas most affected by this pathological process are usually the cholinergic neurons in cortical, subcortical, and hippocampal areas. These effects result in decreased cognitive function, brain atrophy, and neuronal death. Malnutrition and weight loss are the most frequent manifestations of AD, and these are also associated with greater cognitive decline. Several studies have confirmed that a balanced low-calorie diet and proper nutritional intake may be considered important factors in counteracting or slowing the progression of AD, whereas a high-fat or hypercholesterolemic diet predisposes to an increased risk of developing AD. Especially, fruits, vegetables, antioxidants, vitamins, polyunsaturated fatty acids, and micronutrients supplementation exert positive effects on aging-related changes in the brain due to their antioxidant, anti-inflammatory, and radical scavenging properties. The purpose of this review is to summarize some possible nutritional factors that may contribute to the progression or prevention of AD, understand the role that nutrition plays in the formation of Aβ plaques typical of this neurodegenerative disease, to identify some potential therapeutic strategies that may involve some natural compounds, in delaying the progression of the disease.
Collapse
Affiliation(s)
- Lorenza Guarnieri
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Antonio Leo
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Rita Citraro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
25
|
Takakura T. Nutrition, Exercise, and Cognitive Rehabilitation for Dementia Prevention. JUNTENDO IJI ZASSHI = JUNTENDO MEDICAL JOURNAL 2024; 70:9-22. [PMID: 38854809 PMCID: PMC11154644 DOI: 10.14789/jmj.jmj23-0032-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/25/2023] [Indexed: 06/11/2024]
Abstract
Dementia is one of the most significant global challenges in medical and social care in the 21st century. It affects not only the patients themselves, but also their families, caregivers, and society in general, causing physical, psychological, and socioeconomic effects. As of 2020, there are approximately 6 million people in Japan aged 65 or older with dementia, and this number is expected to increase to around 7 million by 2025, meaning that one out of every five elderly people will have dementia. To prevent the onset and progression of dementia, it is crucial to have a proper understanding of its risks and adopt a healthy lifestyle. Leading an active life from an early stage can also aid in delaying or preventing the onset of dementia. Livingston has identified 12 risks that can lead to dementia, including physical inactivity, smoking, excessive alcohol consumption, air pollution, head injury, social isolation, poor educational history, obesity, hypertension, diabetes, depression, and hearing loss. Modifying one's lifestyle and leading an active life can be crucial in reducing these risks. The Mediterranean diet is gaining attention as a good practice for dementia prevention due to its diversity, richness in omega-3 fatty acids and vitamins. Exercise has been shown to prevent dementia on biological, behavioral, and socio-psychological levels. Repetitive transcranial magnetic stimulation is a non-invasive brain stimulation method that can alter brain plasticity and is being studied for clinical applications as a non-drug therapy for preventing dementia progression.
Collapse
|
26
|
Zhang T, Gao G, Kwok LY, Sun Z. Gut microbiome-targeted therapies for Alzheimer's disease. Gut Microbes 2023; 15:2271613. [PMID: 37934614 PMCID: PMC10631445 DOI: 10.1080/19490976.2023.2271613] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
The advent of high-throughput 'omics' technologies has improved our knowledge of gut microbiome in human health and disease, including Alzheimer's disease (AD), a neurodegenerative disorder. Frequent bidirectional communications and mutual regulation exist between the gastrointestinal tract and the central nervous system through the gut-brain axis. A large body of research has reported a close association between the gut microbiota and AD development, and restoring a healthy gut microbiota may curb or even improve AD symptoms and progression. Thus, modulation of the gut microbiota has become a novel paradigm for clinical management of AD, and emerging effort has focused on developing potential novel strategies for preventing and/or treating the disease. In this review, we provide an overview of the connection and causal relationship between gut dysbiosis and AD, the mechanisms of gut microbiota in driving AD progression, and the successes and challenges of implementing available gut microbiome-targeted therapies (including probiotics, prebiotics, synbiotics, postbiotics, and fecal microbiota transplantation) in preventive and/or therapeutic preclinical and clinical intervention studies of AD. Finally, we discuss the future directions in this field.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Guangqi Gao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
27
|
Aurelian S, Ciobanu A, Cărare R, Stoica SI, Anghelescu A, Ciobanu V, Onose G, Munteanu C, Popescu C, Andone I, Spînu A, Firan C, Cazacu IS, Trandafir AI, Băilă M, Postoiu RL, Zamfirescu A. Topical Cellular/Tissue and Molecular Aspects Regarding Nonpharmacological Interventions in Alzheimer's Disease-A Systematic Review. Int J Mol Sci 2023; 24:16533. [PMID: 38003723 PMCID: PMC10671501 DOI: 10.3390/ijms242216533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
One of the most complex and challenging developments at the beginning of the third millennium is the alarming increase in demographic aging, mainly-but not exclusively-affecting developed countries. This reality results in one of the harsh medical, social, and economic consequences: the continuously increasing number of people with dementia, including Alzheimer's disease (AD), which accounts for up to 80% of all such types of pathology. Its large and progressive disabling potential, which eventually leads to death, therefore represents an important public health matter, especially because there is no known cure for this disease. Consequently, periodic reappraisals of different therapeutic possibilities are necessary. For this purpose, we conducted this systematic literature review investigating nonpharmacological interventions for AD, including their currently known cellular and molecular action bases. This endeavor was based on the PRISMA method, by which we selected 116 eligible articles published during the last year. Because of the unfortunate lack of effective treatments for AD, it is necessary to enhance efforts toward identifying and improving various therapeutic and rehabilitative approaches, as well as related prophylactic measures.
Collapse
Affiliation(s)
- Sorina Aurelian
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (S.A.); (A.C.); (C.P.); (I.A.); (A.S.); (A.-I.T.); (M.B.); (R.-L.P.); (A.Z.)
- Gerontology and Geriatrics Clinic Division, St. Luca Hospital for Chronic Illnesses, 041915 Bucharest, Romania
| | - Adela Ciobanu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (S.A.); (A.C.); (C.P.); (I.A.); (A.S.); (A.-I.T.); (M.B.); (R.-L.P.); (A.Z.)
- Department of Psychiatry, ‘Prof. Dr. Alexandru Obregia’ Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Roxana Cărare
- Faculty of Medicine, University of Southampton, Southampton SO16 7NS, UK;
| | - Simona-Isabelle Stoica
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
- Faculty of Midwifery and Nursing, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Aurelian Anghelescu
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
- Faculty of Midwifery and Nursing, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Vlad Ciobanu
- Computer Science Department, Politehnica University of Bucharest, 060042 Bucharest, Romania;
| | - Gelu Onose
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (S.A.); (A.C.); (C.P.); (I.A.); (A.S.); (A.-I.T.); (M.B.); (R.-L.P.); (A.Z.)
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
| | - Constantin Munteanu
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania
| | - Cristina Popescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (S.A.); (A.C.); (C.P.); (I.A.); (A.S.); (A.-I.T.); (M.B.); (R.-L.P.); (A.Z.)
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
| | - Ioana Andone
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (S.A.); (A.C.); (C.P.); (I.A.); (A.S.); (A.-I.T.); (M.B.); (R.-L.P.); (A.Z.)
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
| | - Aura Spînu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (S.A.); (A.C.); (C.P.); (I.A.); (A.S.); (A.-I.T.); (M.B.); (R.-L.P.); (A.Z.)
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
| | - Carmen Firan
- NeuroRehabilitation Compartment, The Physical and Rehabilitation Medicine & Balneology Clinic Division, Teaching Emergency Hospital of the Ilfov County, 022104 Bucharest, Romania;
| | - Ioana Simona Cazacu
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
| | - Andreea-Iulia Trandafir
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (S.A.); (A.C.); (C.P.); (I.A.); (A.S.); (A.-I.T.); (M.B.); (R.-L.P.); (A.Z.)
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
| | - Mihai Băilă
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (S.A.); (A.C.); (C.P.); (I.A.); (A.S.); (A.-I.T.); (M.B.); (R.-L.P.); (A.Z.)
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
| | - Ruxandra-Luciana Postoiu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (S.A.); (A.C.); (C.P.); (I.A.); (A.S.); (A.-I.T.); (M.B.); (R.-L.P.); (A.Z.)
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
| | - Andreea Zamfirescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (S.A.); (A.C.); (C.P.); (I.A.); (A.S.); (A.-I.T.); (M.B.); (R.-L.P.); (A.Z.)
- Gerontology and Geriatrics Clinic Division, St. Luca Hospital for Chronic Illnesses, 041915 Bucharest, Romania
| |
Collapse
|