1
|
Sezer I, Sacchet MD. Advanced and long-term meditation and the autonomic nervous system: A review and synthesis. Neurosci Biobehav Rev 2025:106141. [PMID: 40204160 DOI: 10.1016/j.neubiorev.2025.106141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/07/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Meditation has become prominent in both clinical and non-clinical applications for its effects on psychological and physical well-being. Long-term meditators, who have dedicated extensive time to their practice, present a unique opportunity to explore the effects of prolonged meditation training on the autonomic nervous system. Research has reported concomitant activation of both sympathetic (aroused) and parasympathetic (relaxed) branches of the autonomic nervous system during some forms of meditation, leading to the term 'relaxed alertness.' However, findings are not consistent, with reports of both sympathetic and parasympathetic activation, sympathetic-only, parasympathetic-only, or temporally variable activations, depending on several factors. This review synthesizes these heterogeneous and seemingly inconsistent results in relation to three explanatory factors: (1) specific classification of style or type of meditation; (2) specific definition of the level of expertise of the meditators; and (3) intra-individual variations within a given meditation practice. When these factors are considered, convergent and meaningful patterns emerge, allowing for a shift from the broad notion of 'long-term' meditation to a more precise characterization of 'advanced' meditation, highlighting skills, states, and stages of mastery developed over time. Our synthesis is particularly useful for understanding both long-term and advanced meditation, as it reveals specific heart rate variability patterns, including very low and low-frequency spectral power peaks, along with cardiac and respiratory coupling. Better characterization of the role of the autonomic nervous system in the context of advanced meditation promises to inform improved meditation training, including training assisted by technology, toward more impactful outcomes.
Collapse
Affiliation(s)
- Idil Sezer
- FrontLab, INSERM U1127, Paris Brain Institute, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, FRANCE; Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew D Sacchet
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Tripathi V, Batta I, Zamani A, Atad DA, Sheth SKS, Zhang J, Wager TD, Whitfield-Gabrieli S, Uddin LQ, Prakash RS, Bauer CCC. Default Mode Network Functional Connectivity As a Transdiagnostic Biomarker of Cognitive Function. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025; 10:359-368. [PMID: 39798799 DOI: 10.1016/j.bpsc.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025]
Abstract
The default mode network (DMN) is intricately linked with processes such as self-referential thinking, episodic memory recall, goal-directed cognition, self-projection, and theory of mind. In recent years, there has been a surge in the number of studies examining its functional connectivity, particularly its relationship with frontoparietal networks involved in top-down attention, executive function, and cognitive control. The fluidity in switching between these internal and external modes of processing, which is highlighted by anticorrelated functional connectivity, has been proposed as an indicator of cognitive health. Due to the ease of estimation of functional connectivity-based measures through resting-state functional magnetic resonance imaging paradigms, there is now a wealth of large-scale datasets, paving the way for standardized connectivity benchmarks. In this review, we explore the promising role of DMN connectivity metrics as potential biomarkers of cognitive state across attention, internal mentation, mind wandering, and meditation states and investigate deviations in trait-level measures across aging and in clinical conditions such as Alzheimer's disease, Parkinson's disease, depression, attention-deficit/hyperactivity disorder, and others. We also tackle the issue of reliability of network estimation and functional connectivity and share recommendations for using functional connectivity measures as a biomarker of cognitive health.
Collapse
Affiliation(s)
- Vaibhav Tripathi
- Center for Brain Science and Department of Psychology, Harvard University, Cambridge, Massachusetts; Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts
| | - Ishaan Batta
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia
| | - Andre Zamani
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel A Atad
- Faculty of Education, Department of Counseling and Human Development, University of Haifa, Haifa, Israel; The Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel; Edmond Safra Brain Research Center, Faculty of Education, University of Haifa, Haifa, Israel
| | - Sneha K S Sheth
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jiahe Zhang
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Psychology, Northeastern University, Boston, Massachusetts
| | - Tor D Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire
| | - Susan Whitfield-Gabrieli
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lucina Q Uddin
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California; Department of Psychology, University of California Los Angeles, Los Angeles, California
| | - Ruchika S Prakash
- Department of Psychology & Center for Cognitive and Behavioral Brain Imaging, The Ohio State University, Columbus, Ohio
| | - Clemens C C Bauer
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Psychology, Northeastern University, Boston, Massachusetts; Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
3
|
Chen JCC, Ziegler DA. Closed-Loop Systems and Real-Time Neurofeedback in Mindfulness Meditation Research. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025; 10:377-383. [PMID: 39481470 DOI: 10.1016/j.bpsc.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/05/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024]
Abstract
Mindfulness meditation has numerous purported benefits for psychological well-being; however, problems such as adherence to mindfulness tasks, quality of mindfulness sessions, or dosage of mindfulness interventions may hinder individuals from accessing the purported benefits of mindfulness. Methodologies including closed-loop systems and real-time neurofeedback may provide tools to help bolster success in mindfulness task performance, titrate the exposure to mindfulness interventions, or improve engagement with mindfulness sessions. In this review, we explore the use of closed-loop systems and real-time neurofeedback to influence, augment, or promote mindfulness interventions. Various closed-loop neurofeedback signals from functional magnetic resonance imaging and electroencephalography have been used to provide subjective correlates of mindfulness states including functional magnetic resonance imaging region-of-interest-based signals (e.g., posterior cingulate cortex), functional magnetic resonance imaging network-based signals (e.g., default mode network, central executive network, salience network), and electroencephalography spectral-based signals (e.g., alpha, theta, and gamma bands). Past research has focused on how successful interventions have aligned with the subjective mindfulness meditation experience. Future research may pivot toward using appropriate control conditions (e.g., mindfulness only or sham neurofeedback) to quantify the effects of closed-loop systems and neurofeedback-guided mindfulness meditation in improving cognition and well-being.
Collapse
Affiliation(s)
- Joseph C C Chen
- Department of Neurology, University of California San Francisco, San Francisco, California; Neuroscape, University of California San Francisco, San Francisco, California; Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California
| | - David A Ziegler
- Department of Neurology, University of California San Francisco, San Francisco, California; Neuroscape, University of California San Francisco, San Francisco, California; Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California.
| |
Collapse
|
4
|
Prakash RS, Shankar A, Tripathi V, Yang WFZ, Fisher M, Bauer CCC, Betzel R, Sacchet MD. Mindfulness Meditation and Network Neuroscience: Review, Synthesis, and Future Directions. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025; 10:350-358. [PMID: 39561891 DOI: 10.1016/j.bpsc.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
Network neuroscience is an interdisciplinary field, which can be used to understand the brain by examining the connections between its constituent elements. In recent years, the application of network neuroscience approaches to study the intricate nature of the structural and functional relationships within the human brain has yielded unique insights into its organization. In this review, we begin by defining network neuroscience and providing an overview of the common metrics that describe the topology of human structural and functional brain networks. Then, we present a detailed overview of a limited but growing body of literature that has leveraged network neuroscience metrics to demonstrate the impact of mindfulness meditation on modulating the fundamental structural and functional network properties of segregation, integration, and influence. Although preliminary, results across studies suggest that mindfulness meditation results in a shift in connector hubs, such as the anterior cingulate cortex, the thalamus, and the mid-insula. Although there is mixed evidence regarding the impact of mindfulness training on global metrics of connectivity, the default mode network exhibits reduced intraconnectivity following mindfulness training. Our review also underscores essential directions for future research, including a more comprehensive examination of mindfulness training and its potential to influence structural and functional connections at the nodal, network, and whole-brain levels. Furthermore, we emphasize the importance of open science, adoption of rigorous study designs to improve the internal validity of studies, and the inclusion of diverse samples in neuroimaging studies to comprehensively characterize the impact of mindfulness on brain organization.
Collapse
Affiliation(s)
- Ruchika S Prakash
- Department of Psychology, The Ohio State University, Columbus, Ohio; Center for Cognitive and Behavioral Brain Imaging, The Ohio State University, Columbus, Ohio.
| | - Anita Shankar
- Department of Psychology, The Ohio State University, Columbus, Ohio; Center for Cognitive and Behavioral Brain Imaging, The Ohio State University, Columbus, Ohio
| | - Vaibhav Tripathi
- Center for Brain Science & Department of Psychology, Harvard University, Cambridge, Massachusetts; Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts
| | - Winson F Z Yang
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Megan Fisher
- Department of Psychology, The Ohio State University, Columbus, Ohio; Center for Cognitive and Behavioral Brain Imaging, The Ohio State University, Columbus, Ohio
| | - Clemens C C Bauer
- Department of Psychology, Northeastern University, Boston, Massachusetts; Department of Brain and Cognitive Science, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts; Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Richard Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - Matthew D Sacchet
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
5
|
Plini ERG, Melnychuk MC, Dockree PM. Meditation Linked to Enhanced MRI Signal Intensity in the Pineal Gland and Reduced Predicted Brain Age. J Pineal Res 2025; 77:e70033. [PMID: 39940075 PMCID: PMC11822093 DOI: 10.1111/jpi.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/14/2025]
Abstract
Growing evidence demonstrates that meditation practice supports cognitive functions, including attention and interoceptive processing, and is associated with structural changes across cortical networks, including prefrontal regions and the insula. However, the extent of subcortical morphometric changes linked to meditation practice is less appreciated. A noteworthy candidate is the pineal gland, a key producer of melatonin, which regulates circadian rhythms that augment sleep-wake patterns and may also provide neuroprotective benefits to offset cognitive decline. Increased melatonin levels, as well as increased fMRI BOLD signal in the pineal gland, have been observed in meditators versus controls. However, it is not known if long-term meditators exhibit structural changes in the pineal gland linked to the lifetime duration of practice. In the current study, we performed voxel-based morphometry (VBM) analysis to investigate: (1) whether long-term meditators (LTMs) (n = 14) exhibited greater pineal gland MRI-derived signal intensity compared to a control group (n = 969), (2) a potential association between the estimated lifetime hours of meditation (ELHOM) and pineal gland signal intensity, and (3) whether LTMs show greater grey matter (GM) maintenance (BrainPAD) that is associated with pineal gland signal intensity. The results revealed greater pineal gland signal intensity and lower BrainPAD scores (younger brain age) in LTMs compared to controls. Exploratory analysis revealed a positive association between ELHOM and greater signal intensity in the pineal gland but not with GM maintenance as measured by BrainPAD score. However, greater pineal signal intensity and lower BrainPAD scores were correlated in LTMs. The potential mechanisms by which meditation influences pineal gland function, hormonal metabolism, and GM maintenance are discussed - in particular, melatonin's roles in sleep, immune response, inflammation modulation, and stem cell and neural regeneration.
Collapse
Grants
- R01 AG033106 NIA NIH HHS
- R01 NS067015 NINDS NIH HHS
- RC1 AG035954 NIA NIH HHS
- This research was supported by the Centre of Brain Health-Dallas Texas which was supported by a grant from the National Institute of Health (RC1-AG035954, R01-NS067015, R01-AG033106), ProApto, Irish Research Council - (2018-23) IRCLA/2017/306) and the Berlin Aging Study II project, which was supported by the German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung [BMBF]) under grant numbers #01UW0808, #16SV5536K, #16SV5537, #16SV5538, #16SV5837, #01GL1716A, and #01GL1716B.
Collapse
Affiliation(s)
- Emanuele R. G. Plini
- School of PsychologyTrinity College Institute of Neuroscience, Trinity College DublinDublinIreland
| | - Michael C. Melnychuk
- School of PsychologyTrinity College Institute of Neuroscience, Trinity College DublinDublinIreland
| | - Paul M. Dockree
- School of PsychologyTrinity College Institute of Neuroscience, Trinity College DublinDublinIreland
| |
Collapse
|
6
|
Bhattacharjee M, Christen T, Delon-Martin C, Dojat M, Hugues E, Goldberg Y, Graff C, Laurençon A, Oujamaa L, Pernet-Gallay K, Vercueil L. [The shifting territories of mental travel]. Med Sci (Paris) 2025; 41:239-245. [PMID: 40117548 DOI: 10.1051/medsci/2025022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025] Open
Abstract
How does experience outside the present moment become part of living matter? Mental travel, which is both creative and low-carbon, is an experience that anyone can enjoy without needing to abstract from immediacy and project themselves beyond reality. The possibility of such a virtual journey has long fascinated philosophers and then scientists. What does mental travel actually involve? Which neural circuits are engaged? What are the conditions that take us on a hallucinatory journey, deprive us of it, or enable us to control it? What are the adaptive advantages of this imaginary journey? Is it present in other living beings and in our "intelligent" machines?
Collapse
Affiliation(s)
- Manik Bhattacharjee
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, INP, TIMC, Grenoble, France
| | - Thomas Christen
- Université Grenoble Alpes, Inserm, U1216, Institut Neurosciences, Grenoble, France
| | - Chantal Delon-Martin
- Université Grenoble Alpes, Inserm, U1216, Institut Neurosciences, Grenoble, France
| | - Michel Dojat
- Université Grenoble Alpes, Inserm, U1216, Institut Neurosciences, Grenoble, France - Université Grenoble Alpes, Inria, CNRS, INP, LJK, Grenoble, France
| | - Etienne Hugues
- Université Grenoble Alpes, Inserm, U1216, Institut Neurosciences, Grenoble, France
| | - Yves Goldberg
- Université Grenoble Alpes, Inserm, U1216, Institut Neurosciences, Grenoble, France
| | | | | | - Lydia Oujamaa
- Service de rééducation post-réanimation, Groupement de coopération sanitaire CHU St Étienne - Centre médical de l'Argentière, Saint-Étienne, France
| | - Karin Pernet-Gallay
- Université Grenoble Alpes, Inserm, U1216, Institut Neurosciences, Grenoble, France
| | - Laurent Vercueil
- Université Grenoble Alpes, CNRS, LPNC, Grenoble, France - CHU, Grenoble Alpes, Grenoble, France
| |
Collapse
|
7
|
Zeng G, Niu J, Zhu K, Li F, Li L, Gao K, Zhuang Y, Zhang B, Han X, Ye G, Gao Z, Li H. Effects of non-pharmacological interventions on depressive and anxiety symptoms in pregnant women: a systematic review and network meta-analysis. EClinicalMedicine 2025; 79:103011. [PMID: 39802308 PMCID: PMC11718295 DOI: 10.1016/j.eclinm.2024.103011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/23/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025] Open
Abstract
Background Given the distinctive physiological characteristics of pregnant women, non-pharmacological therapies are increasingly being used to improve depressive and anxiety symptoms. Our objective was to explore and compare the impact of various non-pharmacological interventions in improving depressive and anxiety symptoms, and to identify the most effective strategies for pregnant women with depressive and/or anxiety symptoms. Methods We conducted a systematic search of PubMed, Embase, the Cochrane Library, and Web of Science for randomized controlled trials (RCTs) that compared non-pharmacological interventions to usual care, from the inception of each database up to October 5, 2024. We included pregnant women with singleton pregnancies who, at baseline, exhibited early signs of depressive and/or anxiety symptoms but did not meet clinical diagnostic criteria or exceed the threshold for clinically significant symptoms. We excluded pregnant women diagnosed with schizophrenia, bipolar disorder, or severe acute psychiatric conditions, those with a history of substance abuse, and those undergoing in vitro fertilisation. We performed both pairwise meta-analyses and random-effects network meta-analyses (NMAs), calculating standardised mean differences (SMDs) with 95% credible intervals (CrI). We used the surface under the cumulative ranking probability curve (SUCRA) to estimate treatment ranking probabilities. The outcomes were assessed in two groups of participants: a high-risk pregnancy group, including pregnant women with depressive and/or anxiety symptoms and high-risk pregnancies (defined as having a history of miscarriage, pregnancy complications such as gestational hypertension, gestational diabetes mellitus, or preeclampsia, and advanced maternal age (i.e., over 35 years old); and a healthy group, including participants who exhibited depressive and/or anxiety symptoms only during pregnancy and did not have other high-risk pregnancy conditions or underlying health issues. This study is registered with PROSPERO, CRD42024523053. Findings We included 101 studies (92 RCTs and 9 quasi-RCTs) involving a total of 15,330 participants across 11 interventions (mindfulness, education, counseling, cognitive behavioral therapy, muscle acupoint therapy, relaxation, mind-body exercise, psychotherapy, foetal movement counting, physical exercise, and music). Among the studies included in this analysis, 73 studies exhibited a low risk of bias, 9 studies had an unclear risk of bias, and 19 studies demonstrated a high risk of bias. The results indicate that, for both high-risk pregnancy population and healthy populations, mindfulness therapy was found to be an effective non-pharmacological treatment for significantly improving depressive and anxiety symptoms in pregnant women compared with control groups. For pregnant women with depressive symptoms, mindfulness therapy (SUCRA = 80%; SMD = -0.86, 95% CrI = -1.2, -0.52; Nn = 598), cognitive behavioral therapy (CBT) (SUCRA = 65%; SMD = -0.69, 95% CrI = -1.0, -0.39; Nn = 712), and education therapy (SUCRA = 48%; SMD = -0.54, 95% CrI = -0.86, -0.23; Nn = 2285) all significantly improve depressive symptoms. In the subgroup analysis of healthy populations, muscle acupoint therapy (SUCRA = 77.17%; SMD = -0.89, 95% CrI = -1.55, -0.23; N = 99) and mind-body exercise (SUCRA = 47.54%; SMD = -0.53, 95% CrI = -0.88, -0.19; N = 352) also significantly reduce depressive symptoms. Subgroup analysis shows that, in addition to mindfulness therapy, mind-body exercises (SUCRA = 67.43%; SMD = -0.97, 95% CrI = -1.61, -0.33; N = 382) and cognitive-behavioral therapy (SUCRA = 52.60%; SMD = -0.74, 95% CrI = -1.38, -0.09; N = 480) may also be effective in alleviating anxiety symptoms among healthy pregnant women. Interpretation Our findings indicate that mindfulness therapy significantly reduces the risk of depressive and anxiety symptoms in both high-risk pregnancy population and healthy populations. Therefore, when selecting non-pharmacologic therapies for managing depressive and anxiety symptoms during pregnancy, it is recommended that this therapy be considered. We cannot overlook the limitations of this study. For example, some interventions, such as muscle acupoint therapy for depressive symptoms and relaxation therapy for anxiety symptoms, have limited literature support. Additionally, the diversity of conditions within the high-risk pregnancy population and the high heterogeneity observed in certain interventions are also issues that require attention. These factors may affect the accuracy of the data results. Although we have employed reliable methods to address these issues, the findings of this study should still be interpreted with caution. Funding None.
Collapse
Affiliation(s)
- Guowei Zeng
- College of Competitive Sports, Beijing Sport University, Beijing, China
| | - Jianfeng Niu
- College of Competitive Sports, Beijing Sport University, Beijing, China
| | - Ke Zhu
- College of Competitive Sports, Beijing Sport University, Beijing, China
| | - Fei Li
- School of Medicine, Tsinghua University, Beijing, China
- Orthopedics Department of the First Affiliated Hospital of Tsinghua University, Beijing, China
| | - Liwen Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai, China
| | - Kaiming Gao
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yanlong Zhuang
- College of Competitive Sports, Beijing Sport University, Beijing, China
| | - Boyang Zhang
- College of Competitive Sports, Beijing Sport University, Beijing, China
| | - Xiaoqiang Han
- Department of Orthopedics, The First Hospital of Shanxi Medical University, Taiyuan, 030000, China
| | - Gang Ye
- Department of Orthopaedics, The People's Hospital of Huangpi District, Wuhan, China
| | - Zhikun Gao
- College of Competitive Sports, Beijing Sport University, Beijing, China
| | - Haobai Li
- College of Competitive Sports, Beijing Sport University, Beijing, China
| |
Collapse
|
8
|
Bruner E. In search for evolutionary roots of a mindful cognition: A Darwinian view on sustained intentional awareness. Biosystems 2024; 246:105321. [PMID: 39233109 DOI: 10.1016/j.biosystems.2024.105321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
The attention system underwent important evolutionary changes and specializations in the human genus. In fact, our outstanding social and technological complexity strictly depends on our attentional ability, which is sustained, intentional, and conscious. Attention, intention, and awareness are key features for what can be defined a mindful cognition, and we may wonder whether a specific combination of these cognitive traits may be the result of a natural selective process, or else an accidental by-product of mental complexity. In this article, basic concepts in evolutionary anthropology are reviewed, to consider whether positive, neutral, or negative selective forces might have influenced the evolution of a mindful cognitive ability. At present, all these alternatives are potentially supported by different kinds of evidence. Hybrid hypotheses, considering stabilizing mechanisms or distinct social roles and intra-specific variation, are also likely. An evolutionary approach to the cognitive abilities involved in attention and awareness can reveal potentialities, limitations, and drawbacks of our individual and collective natural behaviors, especially when dealing with the evolution of the human consciousness.
Collapse
Affiliation(s)
- Emiliano Bruner
- Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain; Reina Sofia Alzheimer Center, CIEN Foundation, ISCIII, Madrid, Spain.
| |
Collapse
|
9
|
Girgenti SG, Dallasta I, Lawrence E, Merbach D, Simon JZ, Llinas R, Gould NF, Marsh EB. Modified-Mindfulness-Based Stress Reduction as a Treatment for Cognitive Recovery in Patients with Minor Stroke: a Randomized Controlled Pilot Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.11.24317111. [PMID: 39606389 PMCID: PMC11601751 DOI: 10.1101/2024.11.11.24317111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background Well-developed rehabilitation paradigms exist for post-stroke language and motor impairments. However, no such recovery program has been identified for commonly disabling cognitive deficits in patients following minor stroke. Mindfulness Based Stress Reduction (MBSR) is thought to engage the frontal lobes, improving concentration and attention, and therefore may be an effective option. Methods We prospectively enrolled a cohort of patients with subacute minor stroke and randomized them to either an 8-week online modified-MBSR course or online traditional Stroke Support Group (SSG). All patients underwent a battery of cognitive tests and measures of patient reported outcomes (PROs) pre- and post-intervention. ANOVA was used to compare changes in scores over time across both groups, as well as a third group of control patients having received neither intervention (n=128). Results A total of 30 patients were randomized (n=16 for m-MBSR; n=14 for SSG). The average age of the cohort was 65.9 years. Both groups scored similarly on assessments one-month post-stroke and demonstrated increased T-scores on cognitive tasks at the 3-month visit. However, the m-MBSR group showed moderately elevated levels of improvement, specifically in processing speed, executive, and global cognitive function. Level of engagement was not associated with better clinical scores, though was unexpectedly low for both groups. Conclusions m-MBSR appears to modestly improve frontal lobe activity and demonstrates some success in increasing cognitive performance. However, further studies are needed to determine if it is more efficacious in the chronic stage of recovery when more patients are able to fully engage and actively participate.
Collapse
Affiliation(s)
- Sophia G Girgenti
- Johns Hopkins School of Medicine, Departments of Neurology, Baltimore, MD, USA
| | - Isabella Dallasta
- Johns Hopkins School of Medicine, Departments of Neurology, Baltimore, MD, USA
| | - Erin Lawrence
- Johns Hopkins School of Medicine, Departments of Neurology, Baltimore, MD, USA
| | - Dawn Merbach
- Johns Hopkins School of Medicine, Departments of Neurology, Baltimore, MD, USA
| | - Jonathan Z Simon
- University of Maryland, Departments of Electrical Engineering, College Park, MD, USA
- University of Maryland, Departments of Electrical Biology, College Park, MD, USA
| | - Rafael Llinas
- Johns Hopkins School of Medicine, Departments of Neurology, Baltimore, MD, USA
| | - Neda F Gould
- Johns Hopkins School of Medicine, Departments of Psychiatry and Behavioral Sciences, Baltimore, MD, USA
| | | |
Collapse
|
10
|
Gibson JE. Meditation and interoception: a conceptual framework for the narrative and experiential self. Front Psychol 2024; 15:1393969. [PMID: 39478794 PMCID: PMC11521916 DOI: 10.3389/fpsyg.2024.1393969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/09/2024] [Indexed: 11/02/2024] Open
Abstract
The concept of the self is complex and there is no consensus on what the self is. However, there are emerging patterns in the literature that point to two different selves, the narrative and experiential self. The narrative self refers to a conceptual or representational knowledge of the self that extends across time and manifests in self-reflection and personality assessments. The experiential self refers to first-person perception, moment-to-moment awareness, embodiment, and a sense of agency. These two selves are reliably linked to two distinct neural circuits, the default mode network (DMN) and the insula and salience network (SN). One of the consistent themes in the meditative and mindfulness literature is a change in the perspective of the self. In this paper, I will review how meditation alters those neural circuits providing a plausible mechanism that can explain the changes in the self. I also propose a rudimentary conceptual framework to account for some of the mixed results found throughout meditation literature.
Collapse
|
11
|
Bos DPA, Keesman M, Roggeveen A, Vase L, Evers AWM, Peerdeman KJ. Mindfulness Effects on Anxiety: Disentangling the Role of Decentering and Treatment Expectations. Behav Ther 2024; 55:1059-1070. [PMID: 39174265 DOI: 10.1016/j.beth.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 08/24/2024]
Abstract
Mindfulness interventions have been found to lower anxiety. However, the current literature has not adequately considered the role of its individual components and of placebo effects. In an online experiment using a balanced placebo design, we aimed to disentangle effects of decentering, a key component of mindfulness, and expectations, a key component of placebo effects, on anxiety related to the COVID-19 pandemic. One hundred twenty-eight adults were randomly assigned to one of four groups: placebo/mindful decentering, placebo/sham decentering, sham/mindful decentering, and sham/sham decentering. Instructions were provided using standardized audio instructions. Current anxiety was assessed pre- and postintervention with the Short State version of the State-Trait Anxiety Inventory. Mindful decentering was found to reduce anxiety postintervention, as compared to sham decentering, regardless of induced expectations regarding its effectiveness. Participants in the mindful decentering group also mentioned more decentering-related words than those in the sham decentering group. These findings indicate that a short, standardized, and online mindful decentering intervention can effectively decrease pandemic-related anxiety independently of one's expectations. These findings provide insights into the efficacy of the individual elements of mindfulness, highlighting decentering as an effective active component for anxiety relief. Moreover, these findings suggest that, in a nonclinical sample, individuals can apply mindful decentering with minimal training.
Collapse
|
12
|
Adachi K, Takizawa R. Effects of an online mindfulness-based intervention on brain haemodynamics: a pilot randomized controlled trial using functional near-infrared spectroscopy. Cereb Cortex 2024; 34:bhae321. [PMID: 39147390 PMCID: PMC11326825 DOI: 10.1093/cercor/bhae321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/13/2024] [Accepted: 07/25/2024] [Indexed: 08/17/2024] Open
Abstract
Although many neuroimaging studies have evaluated changes in the prefrontal cortex during mindfulness-based interventions, most of these studies were cross-sectional studies of skilled participants or involved pre-post comparisons before and after a single session. While functional near-infrared spectroscopy is a useful tool to capture changes in the hemodynamic response of the prefrontal cortex during continuous mindfulness-based intervention, its ability to detect the accumulated effects of continuous mindfulness-based intervention is currently unclear. We investigated whether a 12-wk online mindfulness-based intervention changed the hemodynamic response of the prefrontal cortex during a verbal fluency task. Eighty-two healthy university students were randomly allocated to a 12-wk online mindfulness-based intervention group or a wait-list control group. The integral values of oxygenated hemoglobin measured using functional near-infrared spectroscopy before and after the intervention were compared to the values in the wait-list group. The intervention condition showed significantly greater functional near-infrared spectroscopy signal activation than the control condition; however, the effect sizes before and after the intervention were small. Thus, continuous mindfulness-based intervention could alter prefrontal cortex function, and functional near-infrared spectroscopy could be useful for measuring the accumulated effects of continuous mindfulness-based interventions. With a better understanding of the association between mindfulness and functional near-infrared spectroscopy signals, functional near-infrared spectroscopy can be used for biofeedback analyses.
Collapse
Affiliation(s)
- Koichiro Adachi
- Department of Clinical Psychology, Graduate School of Education, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ryu Takizawa
- Department of Clinical Psychology, Graduate School of Education, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Strand, London, WC2R 2LS, United Kingdom
| |
Collapse
|
13
|
Siffredi V, Liverani MC, Fernandez N, Freitas LGA, Borradori Tolsa C, Van De Ville D, Hüppi PS, Ha‐Vinh Leuchter R. Impact of a mindfulness-based intervention on neurobehavioral functioning and its association with large-scale brain networks in preterm young adolescents. Psychiatry Clin Neurosci 2024; 78:416-425. [PMID: 38757554 PMCID: PMC11488620 DOI: 10.1111/pcn.13675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024]
Abstract
AIM Adolescents born very preterm (VPT; <32 weeks of gestation) face an elevated risk of executive, behavioral, and socioemotional difficulties. Evidence suggests beneficial effects of mindfulness-based intervention (MBI) on these abilities. This study seeks to investigate the association between the effects of MBI on executive, behavioral, and socioemotional functioning and reliable changes in large-scale brain networks dynamics during rest in VPT young adolescents who completed an 8-week MBI program. METHODS Neurobehavioral assessments and resting-state functional magnetic resonance imaging were performed before and after MBI in 32 VPT young adolescents. Neurobehavioral abilities in VPT participants were compared with full-term controls. In the VPT group, dynamic functional connectivity was extracted by using the innovation-driven coactivation patterns framework. The reliable change index was used to quantify change after MBI. A multivariate data-driven approach was used to explore associations between MBI-related changes on neurobehavioral measures and temporal brain dynamics. RESULTS Compared with term-born controls, VPT adolescents showed reduced executive and socioemotional functioning before MBI. After MBI, a significant improvement was observed for all measures that were previously reduced in the VPT group. The increase in executive functioning, only, was associated with reliable changes in the duration of activation of large-scale brain networks, including frontolimbic, amygdala-hippocampus, dorsolateral prefrontal, and visual networks. CONCLUSION The improvement in executive functioning after an MBI was associated with reliable changes in large-scale brain network dynamics during rest. These changes encompassed frontolimbic, amygdala-hippocampus, dorsolateral prefrontal, and visual networks that are related to different executive processes including self-regulation, attentional control, and attentional awareness of relevant sensory stimuli.
Collapse
Affiliation(s)
- Vanessa Siffredi
- Division of Development and Growth, Department of Paediatrics, Gynaecology and ObstetricsGeneva University Hospitals and University of GenevaGenevaSwitzerland
- Neuro‐X InstituteÉcole polytechnique fédérale de LausanneGenevaSwitzerland
- Department of Radiology and Medical Informatics, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Maria Chiara Liverani
- Division of Development and Growth, Department of Paediatrics, Gynaecology and ObstetricsGeneva University Hospitals and University of GenevaGenevaSwitzerland
- SensoriMotor, Affective and Social Development Laboratory, Faculty of Psychology and Educational SciencesUniversity of GenevaGenevaSwitzerland
| | - Natalia Fernandez
- Division of Development and Growth, Department of Paediatrics, Gynaecology and ObstetricsGeneva University Hospitals and University of GenevaGenevaSwitzerland
| | - Lorena G. A. Freitas
- Division of Development and Growth, Department of Paediatrics, Gynaecology and ObstetricsGeneva University Hospitals and University of GenevaGenevaSwitzerland
- Neuro‐X InstituteÉcole polytechnique fédérale de LausanneGenevaSwitzerland
- Department of Radiology and Medical Informatics, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Cristina Borradori Tolsa
- Division of Development and Growth, Department of Paediatrics, Gynaecology and ObstetricsGeneva University Hospitals and University of GenevaGenevaSwitzerland
| | - Dimitri Van De Ville
- Division of Development and Growth, Department of Paediatrics, Gynaecology and ObstetricsGeneva University Hospitals and University of GenevaGenevaSwitzerland
- Neuro‐X InstituteÉcole polytechnique fédérale de LausanneGenevaSwitzerland
- Department of Radiology and Medical Informatics, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Petra Susan Hüppi
- Division of Development and Growth, Department of Paediatrics, Gynaecology and ObstetricsGeneva University Hospitals and University of GenevaGenevaSwitzerland
| | - Russia Ha‐Vinh Leuchter
- Division of Development and Growth, Department of Paediatrics, Gynaecology and ObstetricsGeneva University Hospitals and University of GenevaGenevaSwitzerland
| |
Collapse
|
14
|
Fedeli D, Ciullo G, Demichelis G, Medina Carrion JP, Bruzzone MG, Ciusani E, Erbetta A, Ferraro S, Grisoli M, Guastafierro E, D'Amico D, Raggi A, Nigri A, Grazzi L. Longitudinal neurofunctional changes in medication overuse headache patients after mindfulness practice in a randomized controlled trial (the MIND-CM study). J Headache Pain 2024; 25:97. [PMID: 38858629 PMCID: PMC11165872 DOI: 10.1186/s10194-024-01803-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Mindfulness practice has gained interest in the management of Chronic Migraine associated with Medication Overuse Headache (CM-MOH). Mindfulness is characterized by present-moment self-awareness and relies on attention control and emotion regulation, improving headache-related pain management. Mindfulness modulates the Default Mode Network (DMN), Salience Network (SN), and Fronto-Parietal Network (FPN) functional connectivity. However, the neural mechanisms underlying headache-related pain management with mindfulness are still unclear. In this study, we tested neurofunctional changes after mindfulness practice added to pharmacological treatment as usual in CM-MOH patients. METHODS The present study is a longitudinal phase-III single-blind Randomized Controlled Trial (MIND-CM study; NCT03671681). Patients had a diagnosis of CM-MOH, no history of neurological and severe psychiatric comorbidities, and were attending our specialty headache centre. Patients were divided in Treatment as Usual (TaU) and mindfulness added to TaU (TaU + MIND) groups. Patients underwent a neuroimaging and clinical assessment before the treatment and after one year. Longitudinal comparisons of DMN, SN, and FPN connectivity were performed between groups and correlated with clinical changes. Vertex-wise analysis was performed to assess cortical thickness changes. RESULTS 177 CM-MOH patients were randomized to either TaU group or TaU + MIND group. Thirty-four patients, divided in 17 TaU and 17 TaU + MIND, completed the neuroimaging follow-up. At the follow-up, both groups showed an improvement in most clinical variables, whereas only TaU + MIND patients showed a significant headache frequency reduction (p = 0.028). After one year, TaU + MIND patients showed greater SN functional connectivity with the left posterior insula (p-FWE = 0.007) and sensorimotor cortex (p-FWE = 0.026). In TaU + MIND patients only, greater SN-insular connectivity was associated with improved depression scores (r = -0.51, p = 0.038). A longitudinal increase in cortical thickness was observed in the insular cluster in these patients (p = 0.015). Increased anterior cingulate cortex thickness was also reported in TaU + MIND group (p-FWE = 0.02). CONCLUSIONS Increased SN-insular connectivity might modulate chronic pain perception and the management of negative emotions. Enhanced SN-sensorimotor connectivity could reflect improved body-awareness of painful sensations. Expanded cingulate cortex thickness might sustain improved cognitive processing of nociceptive information. Our findings unveil the therapeutic potential of mindfulness and the underlying neural mechanisms in CM-MOH patients. TRIAL REGISTRATION Name of Registry; MIND-CM study; Registration Number ClinicalTrials.gov identifier: NCT0367168; Registration Date: 14/09/2018.
Collapse
Affiliation(s)
- Davide Fedeli
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milano, Italy
| | - Giuseppe Ciullo
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milano, Italy
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, 43125, Italy
| | - Greta Demichelis
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milano, Italy
| | - Jean Paul Medina Carrion
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milano, Italy
| | - Maria Grazia Bruzzone
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milano, Italy
| | - Emilio Ciusani
- Department of Diagnostic and Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Alessandra Erbetta
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milano, Italy
| | - Stefania Ferraro
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milano, Italy
- School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Marina Grisoli
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milano, Italy
| | - Erika Guastafierro
- Neurology, Public Health and Disability Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Domenico D'Amico
- Neuroalgology Unit and Headache Center, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Alberto Raggi
- Neurology, Public Health and Disability Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Anna Nigri
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milano, Italy.
| | - Licia Grazzi
- Neuroalgology Unit and Headache Center, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| |
Collapse
|
15
|
Newberg AB, Wintering NA, Hriso C, Vedaei F, Gottfried S, Ross R. Neuroimaging evaluation of the long term impact of a novel paired meditation practice on brain function. FRONTIERS IN NEUROIMAGING 2024; 3:1368537. [PMID: 38915737 PMCID: PMC11194388 DOI: 10.3389/fnimg.2024.1368537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/23/2024] [Indexed: 06/26/2024]
Abstract
Background A growing number of advanced neuroimaging studies have compared brain structure and function in long term meditators to non-meditators. The goal is to determine if there may be long term effects on the brain from practicing meditation. In this paper, we present new data on the long term effects of a novel meditation practice in which the focus is on clitoral stimulation. The findings from such a study have implications for potential therapeutic uses with regard to various neurological or psychiatric conditions. Methods We evaluated the cerebral glucose metabolism in 40 subjects with an extended history (>1 year of practice, 2-3 times per week) performing the meditation practice called Orgasmic Meditation (OM) and compared their brains to a group of non-meditating healthy controls (N = 19). Both meditation and non-meditation subjects underwent brain PET after injection with 148 to 296 MBq of FDG using a standard imaging protocol. Resting FDG PET scans of the OM group were compared to the resting scans of healthy, non-meditating, controls using statistical parametric mapping. Results The OM group showed significant differences in metabolic activity at rest compared to the controls. Specifically, there was significantly lower metabolism in select areas of the frontal, temporal, and parietal lobes, as well as the anterior cingulate, insula, and thalamus, in the OM group compared to the controls. In addition, there were notable distinctions between the males and females with the females demonstrating significantly lower metabolism in the thalamus and insula. Conclusions Overall, these findings suggest that the long term meditation practitioners of OM have different patterns of resting brain metabolism. Since these areas of the brain in which OM practitioners differ from controls are involved in cognition, attention, and emotional regulation, such findings have implications for understanding how this meditation practice might affect practitioners over long periods of time.
Collapse
Affiliation(s)
- Andrew B. Newberg
- Department of Integrative Medicine and Nutritional Sciences, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nancy A. Wintering
- Department of Integrative Medicine and Nutritional Sciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Chloe Hriso
- Department of Integrative Medicine and Nutritional Sciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Faezeh Vedaei
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sara Gottfried
- Department of Integrative Medicine and Nutritional Sciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Reneita Ross
- Department of Obstetrics and Gynecology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
16
|
Fialoke S, Tripathi V, Thakral S, Dhawan A, Majahan V, Garg R. Functional connectivity changes in meditators and novices during yoga nidra practice. Sci Rep 2024; 14:12957. [PMID: 38839877 PMCID: PMC11153538 DOI: 10.1038/s41598-024-63765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024] Open
Abstract
Yoga nidra (YN) practice aims to induce a deeply relaxed state akin to sleep while maintaining heightened awareness. Despite the growing interest in its clinical applications, a comprehensive understanding of the underlying neural correlates of the practice of YN remains largely unexplored. In this fMRI investigation, we aim to discover the differences between wakeful resting states and states attained during YN practice. The study included individuals experienced in meditation and/or yogic practices, referred to as 'meditators' (n = 30), and novice controls (n = 31). The GLM analysis, based on audio instructions, demonstrated activation related to auditory cues without concurrent default mode network (DMN) deactivation. DMN seed based functional connectivity (FC) analysis revealed significant reductions in connectivity among meditators during YN as compared to controls. We did not find differences between the two groups during the pre and post resting state scans. Moreover, when DMN-FC was compared between the YN state and resting state, meditators showed distinct decoupling, whereas controls showed increased DMN-FC. Finally, participants exhibit a remarkable correlation between reduced DMN connectivity during YN and self-reported hours of cumulative meditation and yoga practice. Together, these results suggest a unique neural modulation of the DMN in meditators during YN which results in being restful yet aware, aligned with their subjective experience of the practice. The study deepens our understanding of the neural mechanisms of YN, revealing distinct DMN connectivity decoupling in meditators and its relationship with meditation and yoga experience. These findings have interdisciplinary implications for neuroscience, psychology, and yogic disciplines.
Collapse
Affiliation(s)
- Suruchi Fialoke
- National Resource Center for Value Education in Engineering, Indian Institute of Technology, Delhi, India
| | - Vaibhav Tripathi
- Psychological and Brain Sciences, Boston University, Boston, USA
| | - Sonika Thakral
- Department of Computer Science, Shaheed Sukhdev College of Business Studies, University of Delhi, Delhi, India
| | - Anju Dhawan
- National Drug Dependence Treatment Centre, All India Institute of Medical Sciences (AIIMS), Delhi, India
| | | | - Rahul Garg
- National Resource Center for Value Education in Engineering, Indian Institute of Technology, Delhi, India.
- Amar Nath and Shashi Khosla School of Information Technology, Indian Institute of Technology, Delhi, India.
- Department of Computer Science and Engineering, Indian Institute of Technology, Delhi, India.
| |
Collapse
|
17
|
Gerhardt E, Baird B. Frequent Lucid Dreaming Is Associated with Meditation Practice Styles, Meta-Awareness, and Trait Mindfulness. Brain Sci 2024; 14:496. [PMID: 38790474 PMCID: PMC11120098 DOI: 10.3390/brainsci14050496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Lucid dreaming involves becoming aware that one's current experience is a dream, which has similarities with the notion of mindfulness-becoming aware of moment-to-moment changes in experience. Additionally, meta-awareness, the ability to explicitly notice the current content of one's own mental state, has also been proposed to play an important role both in lucid dreaming and mindfulness meditation practices. However, research has shown conflicting strengths of associations between mindfulness, meditation, and lucid dreaming frequency, and the link between lucid dreaming and meta-awareness has not yet been empirically studied. This study evaluated the associations between lucid dreaming frequency and different meditation practice styles, mindfulness traits, and individual differences in meta-awareness through an online survey (n = 635). The results suggest that daily frequent meditators experience more lucid dreams than non-frequent meditators. However, weekly frequent meditators did not have a higher lucid dreaming frequency. A positive association was observed between open monitoring styles of meditation and lucid dreaming. The findings also indicate that meta-awareness is higher for meditators and weekly lucid dreamers. Furthermore, frequent lucid dreaming was commonly associated with a non-reactive stance and experiencing transcendence. Overall, the findings suggest a positive relationship between specific meditation practices and lucid dreaming as well as the importance of meta-awareness as a cognitive process linking meditation, mindfulness, and lucid dreaming.
Collapse
Affiliation(s)
- Elena Gerhardt
- Institute of Psychology, Osnabrück University, 49076 Osnabrück, Germany;
| | - Benjamin Baird
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
18
|
Li CN, Keay KA, Henderson LA, Mychasiuk R. Re-examining the Mysterious Role of the Cerebellum in Pain. J Neurosci 2024; 44:e1538232024. [PMID: 38658164 PMCID: PMC11044115 DOI: 10.1523/jneurosci.1538-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 04/26/2024] Open
Abstract
Pain is considered a multidimensional experience that embodies not merely sensation, but also emotion and perception. As is appropriate for this complexity, pain is represented and processed by an extensive matrix of cortical and subcortical structures. Of these structures, the cerebellum is gaining increasing attention. Although association between the cerebellum and both acute and chronic pain have been extensively detailed in electrophysiological and neuroimaging studies, a deep understanding of what functions are mediated by these associations is lacking. Nevertheless, the available evidence implies that lobules IV-VI and Crus I are especially pertinent to pain processing, and anatomical studies reveal that these regions connect with higher-order structures of sensorimotor, emotional, and cognitive function. Therefore, we speculate that the cerebellum exerts a modulatory role in pain via its communication with sites of sensorimotor, executive, reward, and limbic function. On this basis, in this review, we propose numerous ways in which the cerebellum might contribute to both acute and chronic pain, drawing particular attention to emotional and cognitive elements of pain. In addition, we emphasise the importance of advancing our knowledge about the relationship between the cerebellum and pain by discussing novel therapeutic opportunities that capitalize on this association.
Collapse
Affiliation(s)
- Crystal N Li
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Kevin A Keay
- School of Medical Sciences (Neuroscience) and Brain and Mind Centre, University of Sydney, NSW 2006, Australia
| | - Luke A Henderson
- School of Medical Sciences (Neuroscience) and Brain and Mind Centre, University of Sydney, NSW 2006, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
19
|
Zarka D, Cevallos C, Ruiz P, Petieau M, Cebolla AM, Bengoetxea A, Cheron G. Electroencephalography microstates highlight specific mindfulness traits. Eur J Neurosci 2024; 59:1753-1769. [PMID: 38221503 DOI: 10.1111/ejn.16247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024]
Abstract
The present study aimed to investigate the spontaneous dynamics of large-scale brain networks underlying mindfulness as a dispositional trait, through resting-state electroencephalography (EEG) microstates analysis. Eighteen participants had attended a standardized mindfulness-based stress reduction training (MBSR), and 18 matched waitlist individuals (CTRL) were recorded at rest while they were passively exposed to auditory stimuli. Participants' mindfulness traits were assessed with the Five Facet Mindfulness Questionnaire (FFMQ). To further explore the relationship between microstate dynamics at rest and mindfulness traits, participants were also asked to rate their experience according to five phenomenal dimensions. After training, MBSR participants showed a highly significant increase in FFMQ score, as well as higher observing and non-reactivity FFMQ sub-scores than CTRL participants. Microstate analysis revealed four classes of microstates (A-D) in global clustering across all subjects. The MBSR group showed lower duration, occurrence and coverage of microstate C than the control group. Moreover, these microstate C parameters were negatively correlated to non-reactivity sub-scores of FFMQ across participants, whereas the microstate A occurrence was negatively correlated to FFMQ total score. Further analysis of participants' self-reports suggested that MBSR participants showed a better sensory-affective integration of auditory interferences. In line with previous studies, our results suggest that temporal dynamics of microstate C underlie specifically the non-reactivity trait of mindfulness. These findings encourage further research into microstates in the evaluation and monitoring of the impact of mindfulness-based interventions on the mental health and well-being of individuals.
Collapse
Affiliation(s)
- D Zarka
- Laboratory of Neurophysiology and Movement Biomechanics, Research Unit in Sciences of Osteopathy, Faculty of Human Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
- Research Unit in Sciences of Osteopathy, Faculty of Human Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - C Cevallos
- Laboratory of Neurophysiology and Movement Biomechanics, Research Unit in Sciences of Osteopathy, Faculty of Human Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería Mecánica, Escuela Politécnica Nacional, Quito, Ecuador
| | - P Ruiz
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería Mecánica, Escuela Politécnica Nacional, Quito, Ecuador
| | - M Petieau
- Laboratory of Neurophysiology and Movement Biomechanics, Research Unit in Sciences of Osteopathy, Faculty of Human Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - A M Cebolla
- Laboratory of Neurophysiology and Movement Biomechanics, Research Unit in Sciences of Osteopathy, Faculty of Human Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - A Bengoetxea
- Research Unit in Sciences of Osteopathy, Faculty of Human Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
- Athenea Neuroclinics, San Sebastian, Spain
| | - G Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, Research Unit in Sciences of Osteopathy, Faculty of Human Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Electrophysiology, Université de Mons, Mons, Belgium
| |
Collapse
|
20
|
Singer B, Meling D, Hirsch-Hoffmann M, Michels L, Kometer M, Smigielski L, Dornbierer D, Seifritz E, Vollenweider FX, Scheidegger M. Psilocybin enhances insightfulness in meditation: a perspective on the global topology of brain imaging during meditation. Sci Rep 2024; 14:7211. [PMID: 38531905 PMCID: PMC10966054 DOI: 10.1038/s41598-024-55726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
In this study, for the first time, we explored a dataset of functional magnetic resonance images collected during focused attention and open monitoring meditation before and after a five-day psilocybin-assisted meditation retreat using a recently established approach, based on the Mapper algorithm from topological data analysis. After generating subject-specific maps for two groups (psilocybin vs. placebo, 18 subjects/group) of experienced meditators, organizational principles were uncovered using graph topological tools, including the optimal transport (OT) distance, a geometrically rich measure of similarity between brain activity patterns. This revealed characteristics of the topology (i.e. shape) in space (i.e. abstract space of voxels) and time dimension of whole-brain activity patterns during different styles of meditation and psilocybin-induced alterations. Most interestingly, we found that (psilocybin-induced) positive derealization, which fosters insightfulness specifically when accompanied by enhanced open-monitoring meditation, was linked to the OT distance between open-monitoring and resting state. Our findings suggest that enhanced meta-awareness through meditation practice in experienced meditators combined with potential psilocybin-induced positive alterations in perception mediate insightfulness. Together, these findings provide a novel perspective on meditation and psychedelics that may reveal potential novel brain markers for positive synergistic effects between mindfulness practices and psilocybin.
Collapse
Affiliation(s)
- Berit Singer
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland.
| | - Daniel Meling
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center - University of Freiburg, Freiburg, Germany
| | - Matthias Hirsch-Hoffmann
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
| | - Lars Michels
- Department of Neuroradiology, University Hospital Zurich, Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Michael Kometer
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
| | - Lukasz Smigielski
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
| | - Dario Dornbierer
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
| | - Erich Seifritz
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
| | - Franz X Vollenweider
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland.
| | - Milan Scheidegger
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
- Department of Neuroradiology, University Hospital Zurich, Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Plini ERG, Melnychuk MC, Dockree PM. Meditation Experience is Associated with Increased Structural Integrity of the Pineal Gland and greater total Grey Matter maintenance. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.04.24303649. [PMID: 38496551 PMCID: PMC10942509 DOI: 10.1101/2024.03.04.24303649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Growing evidence demonstrates that meditation practice supports cognitive functions including attention and interoceptive processing, and is associated with structural changes across cortical networks including prefrontal regions, and the insula. However, the extent of subcortical morphometric changes linked to meditation practice is less appreciated. A noteworthy candidate is the Pineal Gland, a key producer of melatonin, which regulates circadian rhythms that augment sleep-wake patterns, and may also provide neuroprotective benefits to offset cognitive decline. Increased melatonin levels as well as increased fMRI BOLD signal in the Pineal Gland has been observed in mediators vs. controls. However, it is not known if long-term meditators exhibit structural change in the Pineal Gland linked to lifetime duration of practice. In the current study we performed Voxel-based morphometry (VBM) analysis to investigate: 1) whether long-term meditators (LTMs) (n=14) exhibited greater Pineal Gland integrity compared to a control group (n=969), 2) a potential association between the estimated lifetime hours of meditation (ELHOM) and Pineal Gland integrity, and 3) whether LTMs show greater Grey Matter (GM) maintenance (BrainPAD) that is associated with Pineal Gland integrity. The results revealed greater Pineal Gland integrity and lower BrainPAD scores (younger brain age) in LTMs compared to controls. Exploratory analysis revealed a positive association between ELHOM and greater signal intensity in the Pineal Gland but not with GM maintenance as measured by BrainPAD score. However, greater Pineal integrity and lower BrainPAD scores were correlated in LTMs. The potential mechanisms by which meditation influences Pineal Gland function, hormonal metabolism, and GM maintenance are discussed - in particular melatonin's roles in sleep, immune response, inflammation modulation, and stem cell and neural regeneration.
Collapse
Affiliation(s)
- Emanuele RG Plini
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland
| | | | - Paul M Dockree
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland
| |
Collapse
|
22
|
Bruner E. Cognitive archaeology, and the psychological assessment of extinct minds. J Comp Neurol 2024; 532:e25583. [PMID: 38289186 DOI: 10.1002/cne.25583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024]
Abstract
Evolutionary anthropology relies on both neontological and paleontological information. In the latter case, fields such as paleoneurology, neuroarchaeology, and cognitive archaeology are supplying new perspectives in prehistory and neuroscience. Cognitive archaeology, in particular, investigates the behaviors associated with extinct species or cultures according to specific psychological models. For example, changes in working memory, attention, or visuospatial integration can be postulated when related behavioral changes are described in the archaeological record. However, cognition is a process based on different and partially independent functional elements, and extinct species could hence have evolved distinct combinations of cognitive abilities or features, based on both quantitative and qualitative differences. Accordingly, differences in working memory can lead to more conceptual or more holistic mindsets, with important changes in the perception and management of the mental experience. The parietal cortex is particularly interesting, in this sense, being involved in functions associated with body-tool integration, attention, and visual imaging. In some cases, evolutionary mismatches among these elements can induce drawbacks that, despite their positive effects on natural selection, can introduce important constraints in our own mental skills. Beyond the theoretical background, some hypotheses can be tested following methods in experimental psychology. In any case, theories in cognitive evolution must acknowledge that, beyond the brain and its biology, the human mind is also deeply rooted in body perception, in social networks, and in technological extension.
Collapse
Affiliation(s)
- Emiliano Bruner
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
- Alzheimer's Centre Reina Sofia-CIEN Foundation-ISCIII, Madrid, Spain
| |
Collapse
|
23
|
Leow Y, Rashid NLBA, Klainin-Yobas P, Zhang Z, Wu XV. Effectiveness of mindfulness-based interventions on mental, cognitive outcomes and neuroplastic changes in older adults with mild cognitive impairment: A systematic review and meta-analysis. J Adv Nurs 2023; 79:4489-4505. [PMID: 37248564 DOI: 10.1111/jan.15720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 04/01/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
AIMS To evaluate the effectiveness of mindfulness-based interventions (MBIs) on mental and cognitive outcomes including, anxiety, depression, attention, memory, global cognition and neuroplastic changes in older adults with mild cognitive impairment (MCI). DESIGN Systematic review and meta-analysis. DATA SOURCE A three-step search strategy was conducted on eight electronic databases, grey literature and reference lists from inception to February 2022. REVIEW METHODS Randomized controlled trials (RCTs) examining MBIs on older adults with MCI were screened and assessed for risk of bias using the Cochrane Risk of Bias Tool. Meta-analysis was conducted using RevMan using a random-effect model. Narrative synthesis was performed for studies where results could not be pooled statistically. RESULTS Ten RCTs were included in the review. Results suggested that right frontal parietal and left inferior temporal gyrus of the brain showed increased cortical thickness after receiving MBIs. There were significant interaction effects for global efficiency and significant interactions in the insular and gyrus regions. Functional connectivity between the posterior cingulate cortex, bilateral medial prefrontal cortex and left hippocampus were increased in participants undergoing MBIs. Nevertheless, meta-analysis showed non-significant pooled effects, favouring control groups on anxiety, depression, attention, memory and global cognition. CONCLUSION This review suggested the potential effects of MBIs in improving cortical thickness and connectivity in regions associated with memory and attention. Nevertheless, the effects of MBIs compared to active control groups on depression, anxiety, attention, memory and global cognition are inconclusive due to the lack of studies and non-significant results. IMPACT The review advocates for more rigorous studies with larger sample size and utilizing wait-list controls to evaluate the effects of MBIs. MBIs can be considered as an adjunct with other therapies to further enhance the effect on psychological and cognitive outcomes for older adults with MCI. No Patient or Public Contribution as this is a meta-analysis.
Collapse
Affiliation(s)
- Yihong Leow
- Emergency Medicine, Woodlands Health, Singapore, Singapore
| | | | - Piyanee Klainin-Yobas
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zemiao Zhang
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Vivien Wu
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUSMED Healthy Longevity Translational Research Programme, National University of Singapore, Singapore, Singapore
| |
Collapse
|
24
|
Rahrig H, Ma L, Brown KW, Martelli AM, West SJ, Lasko EN, Chester DS. Inside the mindful moment: The effects of brief mindfulness practice on large-scale network organization and intimate partner aggression. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:1581-1597. [PMID: 37880570 PMCID: PMC10842035 DOI: 10.3758/s13415-023-01136-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/06/2023] [Indexed: 10/27/2023]
Abstract
Mindfulness can produce neuroplastic changes that support adaptive cognitive and emotional functioning. Recently interest in single-exercise mindfulness instruction has grown considerably because of the advent of mobile health technology. Accordingly, the current study sought to extend neural models of mindfulness by investigating transient states of mindfulness during single-dose exposure to focused attention meditation. Specifically, we examined the ability of a brief mindfulness induction to attenuate intimate partner aggression via adaptive changes to intrinsic functional brain networks. We employed a dual-regression approach to examine a large-scale functional network organization in 50 intimate partner dyads (total n = 100) while they received either mindfulness (n = 50) or relaxation (n = 50) instruction. Mindfulness instruction reduced coherence within the Default Mode Network and increased functional connectivity within the Frontoparietal Control and Salience Networks. Additionally, mindfulness decoupled primary visual and attention-linked networks. Yet, this induction was unable to elicit changes in subsequent intimate partner aggression, and such aggression was broadly unassociated with any of our network indices. These findings suggest that minimal doses of focused attention-based mindfulness can promote transient changes in large-scale brain networks that have uncertain implications for aggressive behavior.
Collapse
Affiliation(s)
- Hadley Rahrig
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Liangsuo Ma
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA
| | - Kirk Warren Brown
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA
- Carnegie Mellon University, Pittsburgh, PA, USA
| | | | | | - Emily N Lasko
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA
| | - David S Chester
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
25
|
Gu YQ, Zhu Y. A randomized controlled trial of mindfulness-based cognitive therapy for body dysmorphic disorder: Impact on core symptoms, emotion dysregulation, and executive functioning. J Behav Ther Exp Psychiatry 2023; 81:101869. [PMID: 37311379 DOI: 10.1016/j.jbtep.2023.101869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVES Mindfulness-based cognitive therapy (MBCT) is garnering increasing empirical interest as an intervention for Body Dysmorphic Disorder (BDD), although no studies of mindfulness as a standalone treatment have included a sample composed entirely of patients with BDD or a comparison group. The aim of this study was to investigate the improvement of MBCT intervention on the core symptoms, emotional dysfunction, and executive function of BDD patients, as well as the feasibility and acceptability of MBCT training. METHOD Patients with BDD were randomized into an 8-week MBCT group (n = 58) or treatment-as-usual (TAU) control group (n = 58) and were assessed at pre-treatment, post-treatment, and 3-month follow-up. RESULTS Participants who received MBCT showed greater improvement on self-reported and clinician ratings of BDD symptoms, self-reported emotion dysregulation symptoms and executive function compared with TAU participants. Improvement for executive function tasks was partially supported. In addition, feasibility and acceptability of MBCT training were positive. LIMITATIONS There is no systematic assessment of the severity of key potential outcome variables associated with BDD. CONCLUSION MBCT may be a useful intervention for patients with BDD, improving patients' BDD symptoms, emotion dysregulation, and executive functioning.
Collapse
Affiliation(s)
- Ying-Qi Gu
- Department of Psychology, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang Province, China.
| | - Yi Zhu
- Department of Psychology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, Hainan Province, China; School of Psychology, Hainan Medical University, Haikou, 571199, Hainan Province, China
| |
Collapse
|
26
|
Zhang Y, Chen S, Zhang Z, Duan W, Zhao L, Weinschenk G, Luh WM, Anderson AK, Dai W. Effect of Meditation on Brain Activity during an Attention Task: A Comparison Study of ASL and BOLD Task fMRI. Brain Sci 2023; 13:1653. [PMID: 38137100 PMCID: PMC10741430 DOI: 10.3390/brainsci13121653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Focused attention meditation (FAM) training has been shown to improve attention, but the neural basis of FAM on attention has not been thoroughly understood. Here, we aim to investigate the neural effect of a 2-month FAM training on novice meditators in a visual oddball task (a frequently adopted task to evaluate attention), evaluated with both ASL and BOLD fMRI. Using ASL, activation was increased in the middle cingulate (part of the salience network, SN) and temporoparietal (part of the frontoparietal network, FPN) regions; the FAM practice time was negatively associated with the longitudinal changes in activation in the medial prefrontal (part of the default mode network, DMN) and middle frontal (part of the FPN) regions. Using BOLD, the FAM practice time was positively associated with the longitudinal changes of activation in the inferior parietal (part of the dorsal attention network, DAN), dorsolateral prefrontal (part of the FPN), and precentral (part of the DAN) regions. The effect sizes for the activation changes and their association with practice time using ASL are significantly larger than those using BOLD. Our study suggests that FAM training may improve attention via modulation of the DMN, DAN, SN, and FPN, and ASL may be a sensitive tool to study the FAM effect on attention.
Collapse
Affiliation(s)
- Yakun Zhang
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY 13902, USA (S.C.)
| | - Shichun Chen
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY 13902, USA (S.C.)
| | - Zongpai Zhang
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY 13902, USA (S.C.)
| | - Wenna Duan
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY 13902, USA (S.C.)
| | - Li Zhao
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - George Weinschenk
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY 13902, USA (S.C.)
| | - Wen-Ming Luh
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21225, USA
| | - Adam K. Anderson
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA;
| | - Weiying Dai
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY 13902, USA (S.C.)
| |
Collapse
|
27
|
Yue WL, Ng KK, Koh AJ, Perini F, Doshi K, Zhou JH, Lim J. Mindfulness-based therapy improves brain functional network reconfiguration efficiency. Transl Psychiatry 2023; 13:345. [PMID: 37951943 PMCID: PMC10640625 DOI: 10.1038/s41398-023-02642-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 08/29/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023] Open
Abstract
Mindfulness-based interventions are showing increasing promise as a treatment for psychological disorders, with improvements in cognition and emotion regulation after intervention. Understanding the changes in functional brain activity and neural plasticity that underlie these benefits from mindfulness interventions is thus of interest in current neuroimaging research. Previous studies have found functional brain changes during resting and task states to be associated with mindfulness both cross-sectionally and longitudinally, particularly in the executive control, default mode and salience networks. However, limited research has combined information from rest and task to study mindfulness-related functional changes in the brain, particularly in the context of intervention studies with active controls. Recent work has found that the reconfiguration efficiency of brain activity patterns between rest and task states is behaviorally relevant in healthy young adults. Thus, we applied this measure to investigate how mindfulness intervention changed functional reconfiguration between rest and a breath-counting task in elderly participants with self-reported sleep difficulties. Improving on previous longitudinal designs, we compared the intervention effects of a mindfulness-based therapy to an active control (sleep hygiene) intervention. We found that mindfulness intervention improved self-reported mindfulness measures and brain functional reconfiguration efficiency in the executive control, default mode and salience networks, though the brain and behavioral changes were not associated with each other. Our findings suggest that neuroplasticity may be induced through regular mindfulness practice, thus bringing the intrinsic functional configuration in participants' brains closer to a state required for mindful awareness.
Collapse
Affiliation(s)
- Wan Lin Yue
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, Singapore
| | - Kwun Kei Ng
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amelia Jialing Koh
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Francesca Perini
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kinjal Doshi
- Department of Psychology, Singapore General Hospital, Singapore, Singapore
| | - Juan Helen Zhou
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, Singapore.
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.
| | - Julian Lim
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Psychology, National University of, Singapore, Singapore.
| |
Collapse
|
28
|
Sakuragi M, Shinagawa K, Terasawa Y, Umeda S. Effect of subconscious changes in bodily response on thought shifting in people with accurate interoception. Sci Rep 2023; 13:16651. [PMID: 37789067 PMCID: PMC10547779 DOI: 10.1038/s41598-023-43861-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023] Open
Abstract
Our thought states shift from one state to another from moment to moment. The relationship between the thought shifting and bodily responses is yet to be directly examined. This exploratory study examined the influence of cardiovascular reactivity and interoception-sensing an internal bodily state-on the shifting of thought states. Participants (N = 100, 70 women) completed two tasks: the heartbeat counting task (HCT) and the vigilance task (VT). We assessed their interoceptive accuracy through their performance on the HCT. The VT was a simple sustained attention task in which participants pressed a key when the target stimulus appeared and were asked to report their thoughts. We presented subliminal vibration stimuli to induce alterations in heart rate (i.e., vibration block). Results showed that participants with higher interoceptive accuracy reported more continuation of self-referential thought (about past episodes and future plans regarding themselves) during the vibration block than did those with lower interoceptive accuracy. These results suggest that individuals with higher interoceptive accuracy are more likely to be influenced by their subliminal bodily response, resulting in divergent attention from the task and intermittent self-referential thought.
Collapse
Affiliation(s)
- Mai Sakuragi
- Department of Psychology, Graduate School of Human Relations, Keio University, 2-15-45 Mita, Minato-ku, Tokyo, 108-8345, Japan.
| | - Kazushi Shinagawa
- Keio University Global Research Institute, 2-15-45 Mita, Minato-ku, Tokyo, 108-8345, Japan
| | - Yuri Terasawa
- Keio University Global Research Institute, 2-15-45 Mita, Minato-ku, Tokyo, 108-8345, Japan
- Department of Psychology, Faculty of Letters, Keio University, 2-15-45 Mita, Minato-ku, Tokyo, 108-8345, Japan
| | - Satoshi Umeda
- Keio University Global Research Institute, 2-15-45 Mita, Minato-ku, Tokyo, 108-8345, Japan
- Department of Psychology, Faculty of Letters, Keio University, 2-15-45 Mita, Minato-ku, Tokyo, 108-8345, Japan
| |
Collapse
|
29
|
Giommi F, Bauer PR, Berkovich-Ohana A, Barendregt H, Brown KW, Gallagher S, Nyklíček I, Ostafin B, Raffone A, Slagter HA, Trautwein FM, Vago DR. The (In)flexible self: Psychopathology, mindfulness, and neuroscience. Int J Clin Health Psychol 2023; 23:100381. [PMID: 36969914 PMCID: PMC10033904 DOI: 10.1016/j.ijchp.2023.100381] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/14/2023] [Indexed: 03/19/2023] Open
Abstract
Clinical and neuroscientific evidence indicates that transdiagnostic processes contribute to the generation and maintenance of psychopathological symptoms and disorders. Rigidity (inflexibility) appears a core feature of most transdiagnostic pathological processes. Decreasing rigidity may prove important to restore and maintain mental health. One of the primary domains in which rigidity and flexibility plays a role concerns the self. We adopt the pattern theory of self (PTS) for a working definition of self. This incorporates the pluralist view on self as constituted by multiple aspects or processes, understood to constitute a self-pattern, i.e. processes organized in non-linear dynamical relations across a number of time scales. The use of mindfulness meditation in the format of Mindfulness Based Interventions (MBIs) has been developed over four decades in Clinical Psychology. MBIs are promising as evidence-based treatments, shown to be equivalent to gold-standard treatments and superior to specific active controls in several randomized controlled trials. Notably, MBIs have been shown to target transdiagnostic symptoms. Given the hypothesized central role of rigid, habitual self-patterns in psychopathology, PTS offers a useful frame to understand how mindfulness may be beneficial in decreasing inflexibility. We discuss the evidence that mindfulness can alter the psychological and behavioral expression of individual aspects of the self-pattern, as well as favour change in the self-pattern as a whole gestalt. We discuss neuroscientific research on how the phenomenology of the self (pattern) is reflected in associated cortical networks and meditation-related alterations in cortical networks. Creating a synergy between these two aspects can increase understanding of psychopathological processes and improve diagnostic and therapeutic options.
Collapse
Affiliation(s)
- Fabio Giommi
- NOUS-School of Specialization (PsyD) in Psychotherapy, Milano, Italy
- Insight Dialogue Community [insightdialogue.org/teachers]
| | - Prisca R. Bauer
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Aviva Berkovich-Ohana
- Edmond Safra Brain Research Center, Faculty of Education, University of Haifa, Israel
- Faculty of Education, Department of Learning and Instructional Sciences, University of Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Israel
- Faculty of Education, Department of Counseling and Human Development, University of Haifa, Israel
| | - Henk Barendregt
- Faculty of Science, Radboud University, Nijmegen, the Netherlands
| | | | - Shaun Gallagher
- Department of Philosophy, University of Memphis, USA and SOLA, University of Wollongong, Australia
| | - Ivan Nyklíček
- Department of Medical and Clinical Psychology, Tilburg University, the Netherlands
| | - Brian Ostafin
- Department of Clinical Psychology, University of Groningen, the Netherlands
| | - Antonino Raffone
- Department of Psychology, Sapienza University of Rome, Italy
- School of Buddhist Studies, Philosophy and Comparative Religions, Nalanda University, India
| | | | - Fynn-Mathis Trautwein
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - David R. Vago
- Contemplative Sciences Center, University of Virginia
| |
Collapse
|
30
|
Bruner E. Cognitive Archeology and the Attentional System: An Evolutionary Mismatch for the Genus Homo. J Intell 2023; 11:183. [PMID: 37754912 PMCID: PMC10532831 DOI: 10.3390/jintelligence11090183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Brain evolution is a key topic in evolutionary anthropology. Unfortunately, in this sense the fossil record can usually support limited anatomical and behavioral inferences. Nonetheless, information from fossil species is, in any case, particularly valuable, because it represents the only direct proof of cerebral and behavioral changes throughout the human phylogeny. Recently, archeology and psychology have been integrated in the field of cognitive archeology, which aims to interpret current cognitive models according to the evidence we have on extinct human species. In this article, such evidence is reviewed in order to consider whether and to what extent the archeological record can supply information regarding changes of the attentional system in different taxa of the human genus. In particular, behavioral correlates associated with the fronto-parietal system and working memory are employed to consider recent changes in our species, Homo sapiens, and a mismatch between attentional and visuospatial ability is hypothesized. These two functional systems support present-moment awareness and mind-wandering, respectively, and their evolutionary unbalance can explain a structural sensitivity to psychological distress in our species.
Collapse
Affiliation(s)
- Emiliano Bruner
- Centro Nacional de Investigación sobre la Evolución Humana, Paseo Sierra de Atapuerca 3, 09002 Burgos, Spain
| |
Collapse
|
31
|
do Nascimento DC, Santos da Silva JR, Ara A, Sato JR, Costa L. Hyperscanning fNIRS data analysis using multiregression dynamic models: an illustration in a violin duo. Front Comput Neurosci 2023; 17:1132160. [PMID: 37576070 PMCID: PMC10413103 DOI: 10.3389/fncom.2023.1132160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/13/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Interpersonal neural synchronization (INS) demands a greater understanding of a brain's influence on others. Therefore, brain synchronization is an even more complex system than intrasubject brain connectivity and must be investigated. There is a need to develop novel methods for statistical inference in this context. Methods In this study, motivated by the analysis of fNIRS hyperscanning data, which measure the activity of multiple brains simultaneously, we propose a two-step network estimation: Tabu search local method and global maximization in the selected subgroup [partial conditional directed acyclic graph (DAG) + multiregression dynamic model]. We illustrate this approach in a dataset of two individuals who are playing the violin together. Results This study contributes new tools to the social neuroscience field, which may provide new perspectives about intersubject interactions. Our proposed approach estimates the best probabilistic network representation, in addition to providing access to the time-varying parameters, which may be helpful in understanding the brain-to-brain association of these two players. Discussion The illustration of the violin duo highlights the time-evolving changes in the brain activation of an individual influencing the other one through a data-driven analysis. We confirmed that one player was leading the other given the ROI causal relation toward the other player.
Collapse
Affiliation(s)
| | - José Roberto Santos da Silva
- Department of Statistics, Federal University of Bahia, Salvador, Brazil
- EcMetrics Pesquisa de Mercado, Salvador, Brazil
| | - Anderson Ara
- Departamento de Estatística, Universidade Federal do Parana, Curitiba, Brazil
| | - João Ricardo Sato
- Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Lilia Costa
- Department of Statistics, Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
32
|
Weisbrod AV, Bohman LC, Ramdial KJ. From theory to practice: a novel meditation program at a global corporation. CURRENT PSYCHOLOGY 2023:1-18. [PMID: 37359588 PMCID: PMC10113717 DOI: 10.1007/s12144-023-04516-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2023] [Indexed: 06/28/2023]
Abstract
Global levels of stress, worry, sadness, and anger hit new highs in recent years, and employee well-being has been identified as a necessary focus in occupational health. Developed over 6 years in a large multi-national company, the Meditation Without Expectations™ 8-week course evolved from theories to practice. The intervention teaches 8 meditation techniques in a specific order and incorporates health coaching and adult learning principles that drive impact. The wellbeing program was offered using a virtual online platform to employees in more than 30 countries during 2021-22. Its effectiveness was evaluated using established standard questions and cutting-edge consumer research methods. The descriptive study uses quantitative and qualitative analyses from more than a thousand employees. Paired t-tests are used to compare pre- and post-course survey scores. The test subjects who completed the 8-week course had significant improvements (p < 0.0001) across genders, geographies, and durations of employment, and in all measured domains of stress, mindfulness, resiliency, and empathy, whereas the comparison group did not. Advanced topics analysis is used to extract common learning objectives from unstructured text submitted by enrolled employees, which helped focus the intervention on what people need or want to learn. A proprietary artificial intelligence model is used to classify subjects' comments after completing the course, finding highly positive outcomes with potential for new habit creation due to a mental model change. A framework of characteristics that make the intervention impactful is also shared.
Collapse
Affiliation(s)
- Anne V. Weisbrod
- Resilience Arts & Science, LLC, Cincinnati, OH USA
- Global Sustainability, The Procter & Gamble Company, 8700 S. Mason Montgomery Road, Cincinnati, OH 45050 USA
| | - Lisa C. Bohman
- Advanced Consumer Modeling & Statistics, The Procter & Gamble Company, Cincinnati, OH USA
| | - Krystyn J. Ramdial
- Global Talent Development, The Procter & Gamble Company, Cincinnati, OH USA
| |
Collapse
|
33
|
Bavato F, Esposito F, Dornbierer DA, Zölch N, Quednow BB, Staempfli P, Landolt HP, Seifritz E, Bosch OG. Subacute changes in brain functional network connectivity after nocturnal sodium oxybate intake are associated with anterior cingulate GABA. Cereb Cortex 2023:7086058. [DOI: 10.1093/cercor/bhad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/29/2023] Open
Abstract
AbstractSodium oxybate (γ-hydroxybutyrate, GHB) is an endogenous GHB/GABAB receptor agonist, clinically used to promote slow-wave sleep and reduce next-day sleepiness in disorders such as narcolepsy and fibromyalgia. The neurobiological signature of these unique therapeutic effects remains elusive. Promising current neuropsychopharmacological approaches to understand the neural underpinnings of specific drug effects address cerebral resting-state functional connectivity (rsFC) patterns and neurometabolic alterations. Hence, we performed a placebo-controlled, double-blind, randomized, cross-over pharmacological magnetic resonance imaging study with a nocturnal administration of GHB, combined with magnetic resonance spectroscopy of GABA and glutamate in the anterior cingulate cortex (ACC). In sum, 16 healthy male volunteers received 50 mg/kg GHB p.o. or placebo at 02:30 a.m. to maximize deep sleep enhancement and multi-modal brain imaging was performed at 09:00 a.m. of the following morning. Independent component analysis of whole-brain rsFC revealed a significant increase of rsFC between the salience network (SN) and the right central executive network (rCEN) after GHB intake compared with placebo. This SN-rCEN coupling was significantly associated with changes in GABA levels in the ACC (pall < 0.05). The observed neural pattern is compatible with a functional switch to a more extrinsic brain state, which may serve as a neurobiological signature of the wake-promoting effects of GHB.
Collapse
|
34
|
Shrivastava A, Singh BK, Krishna D, Krishna P, Singh D. Effect of Heartfulness Meditation Among Long-Term, Short-Term and Non-meditators on Prefrontal Cortex Activity of Brain Using Machine Learning Classification: A Cross-Sectional Study. Cureus 2023; 15:e34977. [PMID: 36938168 PMCID: PMC10019753 DOI: 10.7759/cureus.34977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 02/16/2023] Open
Abstract
Background Meditation is a mental practice with health benefits and may increase activity in the prefrontal cortex of the brain. Heartfulness meditation (HM) is a modified form of rajyoga meditation supported by a unique feature called "yogic transmission." This feasibility study aimed to explore the effect of HM on electroencephalogram (EEG) connectivity parameters of long-term meditators (LTM), short-term meditators (STM), and non-meditators (NM) with an application of machine learning models and determining classifier methods that can effectively discriminate between the groups. Materials and methods EEG data were collected from 34 participants. The functional connectivity parameters, correlation coefficient, clustering coefficient, shortest path, and phase locking value were utilized as a feature vector for classification. To evaluate the various states of HM practice, the categorization was done between (LTM, NM) and (STM, NM) using a multitude of machine learning classifiers. Results The classifier's performances were evaluated based on accuracy using 10-fold cross-validation. The results showed that the accuracy of machine learning models ranges from 84% to 100% while classifying LTM and NM, and accuracy from 80% to 93% while classifying STM and NM. It was found that decision trees, support vector machines, k-nearest neighbors, and ensemble classifiers performed better than linear discriminant analysis and logistic regression. Conclusion This is the first study to our knowledge employing machine learning for the classification among HM meditators and NM The results indicated that machine learning classifiers with EEG functional connectivity as a feature vector could be a viable marker for accessing meditation ability.
Collapse
Affiliation(s)
- Anurag Shrivastava
- Biomedical Engineering, National Institute of Technology, Raipur, Raipur, IND
| | - Bikesh K Singh
- Biomedical Engineering, National Institute of Technology, Raipur, Raipur, IND
| | - Dwivedi Krishna
- Yoga Life Sciences, Swami Vivekananda Yoga Anusandhana Samsthana (S-VYASA), Bengluru, IND
| | | | - Deepeshwar Singh
- Yoga and Life Sciences, Swami Vivekananda Yoga Anusandhana Samsthana (S-VYASA), Bangalore, IND
| |
Collapse
|
35
|
Ng HYH, Wu CW, Huang FY, Huang CM, Hsu CF, Chao YP, Jung TP, Chuang CH. Enhanced electroencephalography effective connectivity in frontal low-gamma band correlates of emotional regulation after mindfulness training. J Neurosci Res 2023; 101:901-915. [PMID: 36717762 DOI: 10.1002/jnr.25168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/08/2022] [Accepted: 01/06/2023] [Indexed: 02/01/2023]
Abstract
Practicing mindfulness, focusing attention on the internal and external experiences occurring in the present moment with open and nonjudgement stance, can lead to the development of emotional regulation skills. Yet, the effective connectivity of brain regions during mindfulness has been largely unexplored. Studies have shown that mindfulness practice promotes functional connectivity in practitioners, potentially due to improved emotional regulation abilities and increased connectivity in the lateral prefrontal areas. To examine the changes in effective connectivity due to mindfulness training, we analyzed electroencephalogram (EEG) signals taken before and after mindfulness training, focusing on training-related effective connectivity changes in the frontal area. The mindfulness training group participated in an 8-week mindfulness-based stress reduction (MBSR) program. The control group did not take part. Regardless of the specific mindfulness practice used, low-gamma band effective connectivity increased globally after the mindfulness training. High-beta band effective connectivity increased globally only during Breathing. Moreover, relatively higher outgoing effective connectivity strength was seen during Resting and Breathing and Body-scan. By analyzing the changes in outgoing and incoming connectivity edges, both F7 and F8 exhibited strong parietal connectivity during Resting and Breathing. Multiple regression analysis revealed that the changes in effective connectivity of the right lateral prefrontal area predicted mindfulness and emotional regulation abilities. These results partially support the theory that the lateral prefrontal areas have top-down modulatory control, as these areas have high outflow effective connectivity, implying that mindfulness training cultivates better emotional regulation.
Collapse
Affiliation(s)
- Hei-Yin Hydra Ng
- Research Center for Education and Mind Sciences, College of Education, National Tsing Hua University, Hsinchu, Taiwan.,Department of Educational Psychology and Counseling, College of Education, National Tsing Hua University, Hsinchu, Taiwan
| | - Changwei W Wu
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.,Brain and Consciousness Research Center, Taipei Medical University-Shuang Ho Hospital, New Taipei, Taiwan
| | - Feng-Ying Huang
- Department of Education, National Taipei University of Education, Taipei, Taiwan
| | - Chih-Mao Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chia-Fen Hsu
- Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan.,Department of Child Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yi-Ping Chao
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tzyy-Ping Jung
- Institute for Neural Computation and Institute of Engineering in Medicine, University of California, San Diego, California, La Jolla, USA
| | - Chun-Hsiang Chuang
- Research Center for Education and Mind Sciences, College of Education, National Tsing Hua University, Hsinchu, Taiwan.,Institute of Information Systems and Applications, College of Electrical Engineering and Computer Science, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
36
|
Zhou D, Kang Y, Cosme D, Jovanova M, He X, Mahadevan A, Ahn J, Stanoi O, Brynildsen JK, Cooper N, Cornblath EJ, Parkes L, Mucha PJ, Ochsner KN, Lydon-Staley DM, Falk EB, Bassett DS. Mindful attention promotes control of brain network dynamics for self-regulation and discontinues the past from the present. Proc Natl Acad Sci U S A 2023; 120:e2201074119. [PMID: 36595675 PMCID: PMC9926276 DOI: 10.1073/pnas.2201074119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 10/17/2022] [Indexed: 01/05/2023] Open
Abstract
Mindful attention is characterized by acknowledging the present experience as a transient mental event. Early stages of mindfulness practice may require greater neural effort for later efficiency. Early effort may self-regulate behavior and focalize the present, but this understanding lacks a computational explanation. Here we used network control theory as a model of how external control inputs-operationalizing effort-distribute changes in neural activity evoked during mindful attention across the white matter network. We hypothesized that individuals with greater network controllability, thereby efficiently distributing control inputs, effectively self-regulate behavior. We further hypothesized that brain regions that utilize greater control input exhibit shorter intrinsic timescales of neural activity. Shorter timescales characterize quickly discontinuing past processing to focalize the present. We tested these hypotheses in a randomized controlled study that primed participants to either mindfully respond or naturally react to alcohol cues during fMRI and administered text reminders and measurements of alcohol consumption during 4 wk postscan. We found that participants with greater network controllability moderated alcohol consumption. Mindful regulation of alcohol cues, compared to one's own natural reactions, reduced craving, but craving did not differ from the baseline group. Mindful regulation of alcohol cues, compared to the natural reactions of the baseline group, involved more-effortful control of neural dynamics across cognitive control and attention subnetworks. This effort persisted in the natural reactions of the mindful group compared to the baseline group. More-effortful neural states had shorter timescales than less effortful states, offering an explanation for how mindful attention promotes being present.
Collapse
Affiliation(s)
- Dale Zhou
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Yoona Kang
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, PA 19104
| | - Danielle Cosme
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, PA 19104
| | - Mia Jovanova
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, PA 19104
| | - Xiaosong He
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104
- Department of Psychology, School of Humanities and Social Sciences, University of Science and Technology of China, 230026 Hefei, People’s Republic of China
| | - Arun Mahadevan
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104
| | - Jeesung Ahn
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104
| | - Ovidia Stanoi
- Department of Psychology, Columbia University, New York, NY 19104
| | - Julia K. Brynildsen
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104
| | - Nicole Cooper
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, PA 19104
| | - Eli J. Cornblath
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104
| | - Linden Parkes
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104
| | - Peter J. Mucha
- Department of Mathematics, Dartmouth College, Hanover, NH 03755
| | - Kevin N. Ochsner
- Department of Psychology, Columbia University, New York, NY 19104
| | - David M. Lydon-Staley
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, PA 19104
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA 19104
| | - Emily B. Falk
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, PA 19104
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104
- Marketing Department, Wharton School, University of Pennsylvania, Philadelphia, PA 19104
| | - Dani S. Bassett
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104
- Department of Physics & Astronomy, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Electrical & Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Santa Fe Institute, Santa Fe, NM 87501
| |
Collapse
|
37
|
Madhira A, Srinivasan N. Letting it go: The interplay between mind wandering, mindfulness, and creativity. PROGRESS IN BRAIN RESEARCH 2023. [DOI: 10.1016/bs.pbr.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
38
|
Pavlovian-based neurofeedback enhances meta-awareness of mind-wandering. Neural Netw 2023; 158:239-248. [PMID: 36473291 DOI: 10.1016/j.neunet.2022.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022]
Abstract
Absorption in mind-wandering (MW) may worsen our mood and can cause psychological disorders. Researchers indicate the possibility that meta-awareness of MW prevents these mal-effects and enhances favorable consequences of MW, such as boosting creativity; thus, meta-awareness has attracted psychological and clinical attention. However, few studies have investigated the nature of meta-awareness of MW, because there has been no method to isolate and operate this ability. Therefore, we propose a new approach to manipulate the ability of meta-awareness. We used Pavlovian conditioning, tying to it an occurrence of MW and a neutral tone sound inducing the meta-awareness of MW. To perform paired presentations of the unconditioned stimulus (neutral tone) and the conditioned stimulus (perception accompanying MW), we detected participants' natural occurrence of MW via electroencephalogram and a machine-learning estimation method. The double-blinded randomized controlled trial with 37 participants found that a single 20-min conditioning session significantly increased the meta-awareness of MW as assessed by behavioral and neuroscientific measures. The core protocol of the proposed method is real-time feedback on participants' neural information, and in that sense, we can refer to it as neurofeedback. However, there are some differences from typical neurofeedback protocols, and we discuss them in this paper. Our novel classical conditioning is expected to contribute to future research on the modulation effect of meta-awareness on MW.
Collapse
|
39
|
Lindström L, Goldin P, Mårtensson J, Cardeña E. Nonlinear brain correlates of trait self-boundarylessness. Neurosci Conscious 2023; 2023:niad006. [PMID: 37114163 PMCID: PMC10129386 DOI: 10.1093/nc/niad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/24/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Alterations of the sense of self induced by meditation include an increased sense of boundarylessness. In this study, we investigated behavioural and functional magnetic resonance imaging correlates of trait self-boundarylessness during resting state and the performance of two experimental tasks. We found that boundarylessness correlated with greater self-endorsement of words related to fluidity and with longer response times in a math task. Boundarylessness also correlated negatively with brain activity in the posterior cingulate cortex/precuneus during mind-wandering compared to a task targeting a minimal sense of self. Interestingly, boundarylessness showed quadratic relations to several measures. Participants reporting low or high boundarylessness, as compared to those in between, showed higher functional connectivity within the default mode network during rest, less brain activity in the medial prefrontal cortex during self-referential word processing, and less self-endorsement of words related to constancy. We relate these results to our previous findings of a quadratic relation between boundarylessness and the sense of perspectival ownership of experience. Additionally, an instruction to direct attention to the centre of experience elicited brain activation similar to that of meditation onset, including increases in anterior precentral gyrus and anterior insula and decreases in default mode network areas, for both non-meditators and experienced meditators.
Collapse
Affiliation(s)
- Lena Lindström
- * Corresponding author. Department of Psychology, Lund University, Box 213, Lund 221 00, Sweden. E-mail:
| | - Philippe Goldin
- Department of Psychology, Lund University, Box 213, Lund 221 00, Sweden
- Betty Irene Moore School of Nursing, University of California Davis Medical Center, 2570 48th Street, Sacramento, CA 95817, United States
| | - Johan Mårtensson
- Department of Clinical Sciences, Logopedics, Phoniatrics and Audiology, Lund University, Box 213, Lund 221 00, Sweden
| | - Etzel Cardeña
- Department of Psychology, Lund University, Box 213, Lund 221 00, Sweden
| |
Collapse
|
40
|
Woollacott M, Shumway-Cook A, Renesch J. Reflections on extraordinary knowing: Insight into the nature of the mind. Explore (NY) 2022:S1550-8307(22)00215-4. [PMID: 36581541 DOI: 10.1016/j.explore.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Scientists have spent considerable time and effort studying and mapping the geography of the brain, with the expectation that this understanding will lead to insights related to the nature of the mind. This article discusses evidence that, while the mind utilizes sensory information processed by the brain, awareness is not limited to these structures. Research studies give evidence supporting the mind's ability to expand awareness to include perception of objects and events not available to the five senses. This awareness also extends to moments in the future, including the mind's ability to access information seconds or even days in advance of the occurrence. A major brain filter that limits this capacity for expanded awareness is the Default Mode Network (DMN). We summarize research showing that when the DMN activity is reduced, e.g., through meditation, ingestion of neuromodulatory drugs, or NDEs, filtering within the brain is reduced, there is a concomitant development of new connectivity, and these neural changes are correlated with access to expanded awareness.
Collapse
Affiliation(s)
| | - Anne Shumway-Cook
- Department of Rehabilitation Medicine, University of Washington, USA
| | | |
Collapse
|
41
|
Isham A, Elf P, Jackson T. Self-transcendent experiences as promoters of ecological wellbeing? Exploration of the evidence and hypotheses to be tested. Front Psychol 2022; 13:1051478. [PMID: 36452396 PMCID: PMC9701724 DOI: 10.3389/fpsyg.2022.1051478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/26/2022] [Indexed: 08/15/2023] Open
Abstract
In recent years, much has been written on the role of different mental states and their potential to influence our way of thinking and, perhaps more importantly, the way we act. With the recent acceleration of environmental and mental health issues, alongside the limited effectiveness of existing interventions, an exploration of new approaches to deliver transformative change is required. We therefore explore the emerging potential of a type of mental state known as self-transcendent experiences (STEs) as a driver of ecological wellbeing. We focus on four types of STEs: those facilitated by experiences of flow, awe, and mindfulness, as well as by psychedelic-induced experiences. Some of these experiences can occur naturally, through sometimes unexpected encounters with nature or during immersion in every-day activities that one intrinsically enjoys, as well as through more intentional practices such as meditation or the administration of psychedelics in controlled, legal settings. We explore the evidence base linking each of the four types of STE to ecological wellbeing before proposing potential hypotheses to be tested to understand why STEs can have such beneficial effects. We end by looking at the factors that might need to be considered if STEs are going to be practically implemented as a means of achieving ecological wellbeing.
Collapse
Affiliation(s)
- Amy Isham
- Centre for the Understanding of Sustainable Prosperity (CUSP), Centre for Environment and Sustainability, University of Surrey, Guildford, United Kingdom
- School of Psychology, Swansea University, Swansea, United Kingdom
| | - Patrick Elf
- Middlesex University Business School, Centre for Enterprise and Economic Development Research (CEEDR), Middlesex University, London, United Kingdom
| | - Tim Jackson
- Centre for the Understanding of Sustainable Prosperity (CUSP), Centre for Environment and Sustainability, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
42
|
Weder BJ. Mindfulness in the focus of the neurosciences - The contribution of neuroimaging to the understanding of mindfulness. Front Behav Neurosci 2022; 16:928522. [PMID: 36325155 PMCID: PMC9622333 DOI: 10.3389/fnbeh.2022.928522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/11/2022] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Mindfulness affects human levels of experience by facilitating the immediate and impartial perception of phenomena, including sensory stimulation, emotions, and thoughts. Mindfulness is now a focus of neuroimaging, since technical and methodological developments in magnetic resonance imaging have made it possible to observe subjects performing mindfulness tasks. OBJECTIVE We set out to describe the association between mental processes and characteristics of mindfulness, including their specific cerebral patterns, as shown in structural and functional neuroimaging studies. METHODS We searched the MEDLINE databank of references and abstracts on life sciences and biomedical topics via PubMed using the keywords: "mindfulness," "focused attention (FA)," "open monitoring (OM)," "mind wandering," "emotional regulation," "magnetic resonance imaging (MRI)" and "default mode network (DMN)." This review extracted phenomenological experiences across populations with varying degrees of mindfulness training and correlated these experiences with structural and functional neuroimaging patterns. Our goal was to describe how mindful behavior was processed by the constituents of the default mode network during specific tasks. RESULTS AND CONCLUSIONS Depending on the research paradigm employed to explore mindfulness, investigations of function that used fMRI exhibited distinct activation patterns and functional connectivities. Basic to mindfulness is a long-term process of learning to use meditation techniques. Meditators progress from voluntary control of emotions and subjective preferences to emotional regulation and impartial awareness of phenomena. As their ability to monitor perception and behavior, a metacognitive skill, improves, mindfulness increases self-specifying thoughts governed by the experiential phenomenological self and reduces self-relational thoughts of the narrative self. The degree of mindfulness (ratio of self-specifying to self-relational thoughts) may affect other mental processes, e.g., awareness, working memory, mind wandering and belief formation. Mindfulness prevents habituation and the constant assumptions associated with mindlessness. Self-specifying thinking during mindfulness and self-relational thinking in the narrative self relies on the default mode network. The main constituents of this network are the dorsal and medial prefrontal cortex, and posterior cingulate cortex. These midline structures are antagonistic to self-specifying and self-relational processes, since the predominant process determines their differential involvement. Functional and brain volume changes indicate brain plasticity, mediated by mental training over the long-term.
Collapse
Affiliation(s)
- Bruno J. Weder
- Support Centre for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
43
|
Cooper AC, Ventura B, Northoff G. Beyond the veil of duality-topographic reorganization model of meditation. Neurosci Conscious 2022; 2022:niac013. [PMID: 36237370 PMCID: PMC9552929 DOI: 10.1093/nc/niac013] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 08/08/2022] [Accepted: 09/01/2022] [Indexed: 11/14/2022] Open
Abstract
Meditation can exert a profound impact on our mental life, with proficient practitioners often reporting an experience free of boundaries between a separate self and the environment, suggesting an explicit experience of "nondual awareness." What are the neural correlates of such experiences and how do they relate to the idea of nondual awareness itself? In order to unravel the effects that meditation has on the brain's spatial topography, we review functional magnetic resonance imaging brain findings from studies specific to an array of meditation types and meditator experience levels. We also review findings from studies that directly probe the interaction between meditation and the experience of the self. The main results are (i) decreased posterior default mode network (DMN) activity, (ii) increased central executive network (CEN) activity, (iii) decreased connectivity within posterior DMN as well as between posterior and anterior DMN, (iv) increased connectivity within the anterior DMN and CEN, and (v) significantly impacted connectivity between the DMN and CEN (likely a nonlinear phenomenon). Together, these suggest a profound organizational shift of the brain's spatial topography in advanced meditators-we therefore propose a topographic reorganization model of meditation (TRoM). One core component of the TRoM is that the topographic reorganization of DMN and CEN is related to a decrease in the mental-self-processing along with a synchronization with the more nondual layers of self-processing, notably interoceptive and exteroceptive-self-processing. This reorganization of the functionality of both brain and self-processing can result in the explicit experience of nondual awareness. In conclusion, this review provides insight into the profound neural effects of advanced meditation and proposes a result-driven unifying model (TRoM) aimed at identifying the inextricably tied objective (neural) and subjective (experiential) effects of meditation.
Collapse
Affiliation(s)
- Austin Clinton Cooper
- Integrated Program of Neuroscience, Room 302, Irving Ludmer Building, 1033 Pine Avenue W., McGill University, Montreal, QC H3A 1A1, Canada
| | - Bianca Ventura
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
- Mental Health Center, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
44
|
Chen P, Kirk U, Dikker S. Trait mindful awareness predicts inter-brain coupling but not individual brain responses during naturalistic face-to-face interactions. Front Psychol 2022; 13:915345. [PMID: 36248509 PMCID: PMC9561904 DOI: 10.3389/fpsyg.2022.915345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022] Open
Abstract
In recent years, the possible benefits of mindfulness meditation have sparked much public and academic interest. Mindfulness emphasizes cultivating awareness of our immediate experience and has been associated with compassion, empathy, and various other prosocial traits. However, neurobiological evidence pertaining to the prosocial benefits of mindfulness in social settings is sparse. In this study, we investigate neural correlates of trait mindful awareness during naturalistic dyadic interactions, using both intra-brain and inter-brain measures. We used the Muse headset, a portable electroencephalogram (EEG) device often used to support mindfulness meditation, to record brain activity from dyads as they engaged in naturalistic face-to-face interactions in a museum setting. While we did not replicate prior laboratory-based findings linking trait mindfulness to individual brain responses (N = 379 individuals), self-reported mindful awareness did predict dyadic inter-brain synchrony, in theta (~5-8 Hz) and beta frequencies (~26-27 Hz; N = 62 dyads). These findings underscore the importance of conducting social neuroscience research in ecological settings to enrich our understanding of how (multi-brain) neural correlates of social traits such as mindful awareness manifest during social interaction, while raising critical practical considerations regarding the viability of commercially available EEG systems.
Collapse
Affiliation(s)
- Phoebe Chen
- Psychology Department, New York University, New York City, NY, United States
| | - Ulrich Kirk
- Department of Psychology, University of Southern Denmark, Odense, Denmark
| | - Suzanne Dikker
- Psychology Department, New York University, New York City, NY, United States
- Department of Clinical Psychology, Free University Amsterdam, Amsterdam, Netherlands
- Max Planck - NYU Center for Language Music and Emotion, New York University, New York City, NY, United States
| |
Collapse
|
45
|
Gu YQ, Zhu Y. Underlying mechanisms of mindfulness meditation: Genomics, circuits, and networks. World J Psychiatry 2022; 12:1141-1149. [PMID: 36186506 PMCID: PMC9521538 DOI: 10.5498/wjp.v12.i9.1141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/29/2022] [Accepted: 08/18/2022] [Indexed: 02/05/2023] Open
Abstract
Understanding neuropsychological mechanisms of mindfulness meditation (MM) has been a hot topic in recent years. This review was conducted with the goal of synthesizing empirical relationships via the genomics, circuits and networks between MM and mental disorders. We describe progress made in assessing the effects of MM on gene expression in immune cells, with particular focus on stress-related inflammatory markers and associated biological pathways. We then focus on key brain circuits associated with mindfulness practices and effects on symptoms of mental disorders, and expand our discussion to identify three key brain networks associated with mindfulness practices including default mode network, central executive network, and salience network. More research efforts need to be devoted into identifying underlying neuropsychological mechanisms of MM on how it alleviates the symptoms of mental disorders.
Collapse
Affiliation(s)
- Ying-Qi Gu
- Department of Psychology, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Yi Zhu
- School of Psychology, Hainan Medical University, Haikou 571199, Hainan Province, China
- Department of Psychology, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan Province, China
| |
Collapse
|
46
|
Sars D. PE augmented mindfulness: A neurocognitive framework for research and future healthcare. Front Hum Neurosci 2022; 16:899988. [PMID: 36082227 PMCID: PMC9446465 DOI: 10.3389/fnhum.2022.899988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Various well-controlled studies have suggested that practitioners in mindfulness can be prone to patient drop-out (e.g., due to chronic stress, pathology, cognitive reactivity), despite researchers having identified the underlying mechanisms that link mindfulness to mental health. In this article, a framework for physical exercise (PE) augmented mindfulness is proposed, which posits that consistently practiced PE before meditation can support (early-stage) mindfulness. Neurocognitive research shows PE (aerobic exercises or yoga) and mindfulness to impact similar pathways of stress regulation that involve cognitive control and stress regulation, thereby supporting the proposed synergistic potential of PE augmented mindfulness. Research focused on the psychophysiological impact of PE, showed its practice to promote short-term neurocognitive changes that can promote both cognitive control and the attainment of mindful awareness (MA). In order to chart dose responses required for protocol development, further research will be presented. Together these findings are discussed in light of future research on this multidisciplinary topic, protocol development, mindful walking, and further application in healthcare and beyond.
Collapse
Affiliation(s)
- David Sars
- Mettaminds.org, Mindfulness Based Projects, Amsterdam, Netherlands
- Centre for Integral Rehabilitation (CIR), Amsterdam, Netherlands
| |
Collapse
|
47
|
Rahrig H, Vago DR, Passarelli MA, Auten A, Lynn NA, Brown KW. Meta-analytic evidence that mindfulness training alters resting state default mode network connectivity. Sci Rep 2022; 12:12260. [PMID: 35851275 PMCID: PMC9293892 DOI: 10.1038/s41598-022-15195-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/20/2022] [Indexed: 11/09/2022] Open
Abstract
This meta-analysis sought to expand upon neurobiological models of mindfulness through investigation of inherent brain network connectivity outcomes, indexed via resting state functional connectivity (rsFC). We conducted a systematic review and meta-analysis of rsFC as an outcome of mindfulness training (MT) relative to control, with the hypothesis that MT would increase cross-network connectivity between nodes of the Default Mode Network (DMN), Salience Network (SN), and Frontoparietal Control Network (FPCN) as a mechanism of internally-oriented attentional control. Texts were identified from the databases: MEDLINE/PubMed, ERIC, PSYCINFO, ProQuest, Scopus, and Web of Sciences; and were screened for inclusion based on experimental/quasi-experimental trial design and use of mindfulness-based training interventions. RsFC effects were extracted from twelve studies (mindfulness n = 226; control n = 204). Voxel-based meta-analysis revealed significantly greater rsFC (MT > control) between the left middle cingulate (Hedge's g = .234, p = 0.0288, I2 = 15.87), located within the SN, and the posterior cingulate cortex, a focal hub of the DMN. Egger's test for publication bias was nonsignificant, bias = 2.17, p = 0.162. In support of our hypothesis, results suggest that MT targets internetwork (SN-DMN) connectivity implicated in the flexible control of internally-oriented attention.
Collapse
Affiliation(s)
- Hadley Rahrig
- Department of Psychology, Virginia Commonwealth University, 806 W. Franklin Street, Richmond, VA, 23284, USA.
| | - David R Vago
- Department of Psychology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, USA, TN
| | - Matthew A Passarelli
- Department of Psychology, Virginia Commonwealth University, 806 W. Franklin Street, Richmond, VA, 23284, USA
| | - Allison Auten
- Department of Psychology, Virginia Commonwealth University, 806 W. Franklin Street, Richmond, VA, 23284, USA
| | - Nicholas A Lynn
- Department of Psychology, Virginia Commonwealth University, 806 W. Franklin Street, Richmond, VA, 23284, USA
| | - Kirk Warren Brown
- Department of Psychology, Virginia Commonwealth University, 806 W. Franklin Street, Richmond, VA, 23284, USA.
| |
Collapse
|
48
|
Magan D, Yadav RK. Psychoneuroimmunology of Meditation. Ann Neurosci 2022; 29:170-176. [DOI: 10.1177/09727531221109117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Meditation is a conscious mental discipline, that has been implicated in the relaxation response. The mechanism behind such a relaxing effect is psychoneuroimmunology (PNI), based on the interaction between mind, physical health, and self-healing; that conceptualizes that stress and an individual’s emotional state led to predisposition to diseases. Research to date suggests that meditation may play an active role in remodeling the imbalance between mind and body by modulating the psychoneuroimmunological effects of stress. However, to date, the multi-dimensional psychoneuroimmune aspects of meditation together have not been completely explicated. An evidence-based mechanism has been framed for the first time in India to explain the psychoneuroimmunology of regular and long-term meditation practice. Summary: Present evidence-based mechanism confirms prefrontal cortex (PFC) acts as a ‘Functional Connectome’ where psycho-neuro-immune aspects of meditation function simultaneously to exert positive benefits in the regulation of cognitive and emotional behavior. Also, this mechanism will help us to understand how human augmentation with lifestyle modification fosters brain plasticity to overcome various neuropsychiatric illnesses. Key Message: Meditation is a scientific tool against neuro-psychiatric illnesses.
Collapse
Affiliation(s)
- Dipti Magan
- Department of Physiology, All India Institute of Medical Sciences, Bathinda, Punjab, India
| | - Raj Kumar Yadav
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, Delhi, India
| |
Collapse
|
49
|
Can a Neandertal meditate? An evolutionary view of attention as a core component of general intelligence. INTELLIGENCE 2022. [DOI: 10.1016/j.intell.2022.101668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
50
|
Escrichs A, Perl YS, Uribe C, Camara E, Türker B, Pyatigorskaya N, López-González A, Pallavicini C, Panda R, Annen J, Gosseries O, Laureys S, Naccache L, Sitt JD, Laufs H, Tagliazucchi E, Kringelbach ML, Deco G. Unifying turbulent dynamics framework distinguishes different brain states. Commun Biol 2022; 5:638. [PMID: 35768641 PMCID: PMC9243255 DOI: 10.1038/s42003-022-03576-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/10/2022] [Indexed: 12/21/2022] Open
Abstract
Significant advances have been made by identifying the levels of synchrony of the underlying dynamics of a given brain state. This research has demonstrated that non-conscious dynamics tend to be more synchronous than in conscious states, which are more asynchronous. Here we go beyond this dichotomy to demonstrate that different brain states are underpinned by dissociable spatiotemporal dynamics. We investigated human neuroimaging data from different brain states (resting state, meditation, deep sleep and disorders of consciousness after coma). The model-free approach was based on Kuramoto's turbulence framework using coupled oscillators. This was extended by a measure of the information cascade across spatial scales. Complementarily, the model-based approach used exhaustive in silico perturbations of whole-brain models fitted to these measures. This allowed studying of the information encoding capabilities in given brain states. Overall, this framework demonstrates that elements from turbulence theory provide excellent tools for describing and differentiating between brain states.
Collapse
Grants
- A.E and Y.S.P. are supported by the HBP SGA3 Human Brain Project Specific Grant Agreement 3 (grant agreement no. 945539), funded by the EU H2020 FET Flagship programme. Y.S.P is supported by European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant 896354. G.D. is supported Spanish national research project (ref. PID2019-105772GB-I00 MCIU AEI) funded by the Spanish Ministry of Science, Innovation and Universities (MCIU), State Research Agency (AEI); HBP SGA3 Human Brain Project Specific Grant Agreement 3 (grant agreement no. 945539), funded by the EU H2020 FET Flagship programme; SGR Research Support Group support (ref. 2017 SGR 1545), funded by the Catalan Agency for Management of University and Research Grants (AGAUR); Neurotwin Digital twins for model-driven non-invasive electrical brain stimulation (grant agreement ID: 101017716) funded by the EU H2020 FET Proactive programme; euSNN European School of Network Neuroscience (grant agreement ID: 860563) funded by the EU H2020 MSCA-ITN Innovative Training Networks; CECH The Emerging Human Brain Cluster (Id. 001-P-001682) within the framework of the European Research Development Fund Operational Program of Catalonia 2014-2020; Brain-Connects: Brain Connectivity during Stroke Recovery and Rehabilitation (id. 201725.33) funded by the Fundacio La Marato TV3; Corticity, FLAG–ERA JTC 2017 (ref. PCI2018-092891) funded by the Spanish Ministry of Science, Innovation and Universities (MCIU), State Research Agency (AEI). MLK is supported by the Center for Music in the Brain, funded by the Danish National Research Foundation (DNRF117), and Centre for Eudaimonia and Human Flourishing at Linacre College funded by the Pettit and Carlsberg Foundations. The study was supported by the University and University Hospital of Liège, the Belgian National Funds for Scientific Research (FRS-FNRS), the European Space Agency (ESA) and the Belgian Federal Science Policy Office (BELSPO) in the framework of the PRODEX Programme, the BIAL Foundation, the Mind Science Foundation, the fund Generet of the King Baudouin Foundation, the Mind-Care foundation and AstraZeneca Foundation, the National Natural Science Foundation of China (Joint Research Project 81471100) and the European Foundation of Biomedical Research FERB Onlus. RP is research fellow, OG is research associate, and SL is research director at FRS-FNRS. The authors thank all the patients and participants, the whole staff from the Radiodiagnostic and Nuclear departments of the University Hospital of Liège.
Collapse
Affiliation(s)
- Anira Escrichs
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.
| | - Yonatan Sanz Perl
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.
- Universidad de San Andrés, Buenos Aires, Argentina.
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.
| | - Carme Uribe
- Medical Psychology Unit, Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Catalonia, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Estela Camara
- Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain
| | - Basak Türker
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
- Inserm U 1127, Paris, France
- CNRS UMR 7225, Paris, France
| | - Nadya Pyatigorskaya
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
- Inserm U 1127, Paris, France
- CNRS UMR 7225, Paris, France
- Department of Neuroradiology, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Ane López-González
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Carla Pallavicini
- Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
- Department of Physics, University of Buenos Aires, Buenos Aires, Argentina
| | - Rajanikant Panda
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Jitka Annen
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
- Joint International Research Unit on Consciousness, CERVO Brain Research Centre, U Laval CANADA, Québec, QC, Canada
- International Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
| | - Lionel Naccache
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
- Inserm U 1127, Paris, France
- CNRS UMR 7225, Paris, France
| | - Jacobo D Sitt
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
- Inserm U 1127, Paris, France
- CNRS UMR 7225, Paris, France
| | - Helmut Laufs
- Department of Neurology, Christian Albrechts University, Kiel, Germany
- Department of Neurology and Brain Imaging Center, Goethe University, Frankfurt am Main, Germany
| | - Enzo Tagliazucchi
- Department of Physics, University of Buenos Aires, Buenos Aires, Argentina
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, UK.
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, DK, Jutland, Denmark.
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK.
| | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.
- Institució Catalana de la Recerca i Estudis Avancats (ICREA), Barcelona, Catalonia, Spain.
- Department of Neuropsychology, Max Planck Institute for human Cognitive and Brain Sciences, Leipzig, Germany.
- School of Psychological Sciences, Monash University, Melbourne, Australia.
| |
Collapse
|