1
|
Zhang X, Hancock R, Santaniello S. Feasibility of phase-locked transcranial magnetic stimulation of cerebellum for the treatment of essential tremor. J Neural Eng 2025; 22:036019. [PMID: 40354811 DOI: 10.1088/1741-2552/add76c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 05/12/2025] [Indexed: 05/14/2025]
Abstract
Objective.Cerebellar transcranial magnetic stimulation (TMS) has been proposed to suppress limb tremors in essential tremor (ET), but mixed results have been reported so far, both when pulses are applied repetitively TMS (rTMS) and in bursts. We aim to investigate the cellular effects of TMS on the cerebellum under ET through numerical simulations.Approach.A computational model of the olivo-cerebello-thalamocortical pathways exhibiting the main neural biomarkers of ET (i.e. circuit-wide tremor-locked neural oscillations) was expanded to incorporate the effects of TMS-induced electric field (E-field) on Purkinje cells. TMS pulse amplitude, frequency, and temporal pattern were varied, and the resultant effects on ET biomarkers were assessed. Four levels of cellular response to TMS were considered, ranging from low to high cell recruitment underneath the coil, and three stimulation patterns were tested, i.e. rTMS, irregular TMS (ir-TMS, pulses were arranged according to Sobol sequences with average frequency matching rTMS), and phase-locked TMS (PL-TMS).Main results.rTMS can suppress ET oscillations, but its efficacy depends on tremor frequency and recruitment level, with these factors shaping a narrow range of effective settings. The ratio between tremor and rTMS frequencies also affects the neural response and further narrows the span of viable settings, while ir-TMS is ineffective. PL-TMS is highly effective and robust against changes to cell recruitment level and tremor frequency. Across all scenarios, PL-TMS provides a rapid (i.e. within seconds) suppression of tremor oscillations and, when both PL-TMS and rTMS are effective, the time to tremor suppression decreases by 50% or more in PL-TMS versus rTMS. At the cellular level, PL-TMS operates by disrupting the synchronization along the olivo-cerebellar loop, and the preferred phases map onto the mid-region of the silent period between complex spikes of the Purkinje cells.Significance.Cerebellar PL-TMS can provide robust suppression of ET oscillations while operating within safety boundaries.
Collapse
Affiliation(s)
- Xu Zhang
- Biomedical Engineering Department, University of Connecticut, Storrs, CT, United States of America
- Brain Imaging Research Center, University of Connecticut, Storrs, CT, United States of America
- Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, United States of America
- Now with Boston Children's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Roeland Hancock
- Brain Imaging Research Center, University of Connecticut, Storrs, CT, United States of America
- Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, United States of America
- Psychological Sciences Department, University of Connecticut, Storrs, CT, United States of America
- Now with the Wu Tsai Institute, Yale University, New Haven, CT, United States of America
| | - Sabato Santaniello
- Biomedical Engineering Department, University of Connecticut, Storrs, CT, United States of America
- Brain Imaging Research Center, University of Connecticut, Storrs, CT, United States of America
- Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, United States of America
| |
Collapse
|
2
|
Hussain SJ, Freedberg MV. Debunking the Myth of Excitatory and Inhibitory Repetitive Transcranial Magnetic Stimulation in Cognitive Neuroscience Research. J Cogn Neurosci 2025; 37:1009-1022. [PMID: 39785679 DOI: 10.1162/jocn_a_02288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Repetitive TMS (rTMS) is a powerful neuroscientific tool with the potential to noninvasively identify brain-behavior relationships in humans. Early work suggested that certain rTMS protocols (e.g., continuous theta-burst stimulation, intermittent theta-burst stimulation, high-frequency rTMS, low-frequency rTMS) predictably alter the probability that cortical neurons will fire action potentials (i.e., change cortical excitability). However, despite significant methodological, conceptual, and technical advances in rTMS research over the past few decades, overgeneralization of early rTMS findings has led to a stubbornly persistent assumption that rTMS protocols by their nature induce behavioral and/or physiological inhibition or facilitation, even when they are applied to nonmotor cortical sites or under untested circumstances. In this Perspectives article, we offer a "public service announcement" that summarizes the origins of this problematic assumption, highlighting limitations of seminal studies that inspired them and results of contemporary studies that violate them. Next, we discuss problems associated with holding this assumption, including making brain-behavior inferences without confirming the locality and directionality of neurophysiological changes. Finally, we provide recommendations for researchers to eliminate this misguided assumption when designing and interpreting their own work, emphasizing results of recent studies showing that the effects of rTMS on neurophysiological metrics and their associated behaviors can be caused by mechanisms other than binary changes in excitability of the stimulated brain region or network. Collectively, we contend that no rTMS protocol is by its nature either excitatory or inhibitory, and that researchers must use caution with these terms when forming experimental hypotheses and testing brain-behavior relationships.
Collapse
|
3
|
Boonstra JT. The cerebellar connectome. Behav Brain Res 2025; 482:115457. [PMID: 39884319 DOI: 10.1016/j.bbr.2025.115457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/14/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
The cerebellum, once primarily associated with motor functions, has emerged as a critical component in higher cognitive processes and emotional regulation. This paradigm shift frames the cerebellum as an essential focal point for elucidating sophisticated functional brain circuitry. Network neuroscience often maintains a cortical-centric viewpoint, potentially overlooking the significant contributions of the cerebellum in connectome organization. Enhanced recognition and integration of cerebellar aspects in connectomic analyses hold significant potential for elucidating cerebellar circuitry within comprehensive brain networks and in neuropsychiatric conditions where cerebellar involvement is evident. This review explores the intricate anatomy, connectivity, and functional organization of the cerebellum within the broader context of large-scale brain networks. Cerebellar-specific networks are examined, emphasizing their role in supporting diverse cognitive functions via the cerebellum's hierarchical functional organization. The clinical significance of cerebellar connectomics is then addressed, highlighting the interplay between cerebellar circuitry and neurological and psychiatric conditions. The paper concludes by considering neurostimulation treatments and future directions in the field. This comprehensive review underscores the cerebellum's integral role in the human connectome.
Collapse
Affiliation(s)
- Jackson Tyler Boonstra
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 BT, The Netherlands; Department of Neurology, Amsterdam University Medical Centers, Amsterdam Neuroscience, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands.
| |
Collapse
|
4
|
Qin Z, Qu H, Zou W, Du X, Li Y, Wang W. Altered degree centrality and functional connectivity in girls with central precocious puberty. Brain Imaging Behav 2025; 19:138-147. [PMID: 39592518 DOI: 10.1007/s11682-024-00954-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2024] [Indexed: 11/28/2024]
Abstract
Girls who suffer from central precocious puberty (CPP) are at risk of experiencing detrimental psychological and behavioural consequences, along with impaired brain development. However, the mechanism by which puberty hormones affect patients with CPP remains unclear. This study aimed to use degree centrality (DC) analysis to explore the impact of premature activation of the hypothalamic-pituitary-gonadal (HPG) axis on brain functional development in girls with CPP. In this cross-sectional study, thirty-four girls (mean ± SD, 7.89 ± 0.81 years) with CPP and 25 age-matched girls without CPP (mean ± SD, 7.58 ± 0.73 years) underwent resting-state functional magnetic resonance imaging. We used DC analysis to explore brain network properties in CPP girls compared to non-CPP girls. Seed-based FC analysis was performed to identify the connections responsible for the observed differences. Our findings showed that female CPP patients had increased DC in the posterior lobe of the cerebellum and prefrontal areas and increased functional connectivity (FC) between the posterior lobe of the cerebellum and default mode network (DMN) regions relative to age-matched non-CPP girls. Additionally, compared with non-CPP patients, female CPP patients exhibited decreased DC in the bilateral superior parietal gyri and left superior occipital gyrus and reduced FC between the left superior occipital gyrus and right calcarine. A negative correlation was found between basal follicle-stimulating hormone level and DC of the bilateral superior parietal gyri in girls with CPP. The current research provides evidence that premature activation of the HPG axis is associated with the development of cortical function, particularly involving the posterior lobe of the cerebellum, DMN, and prefrontal, parietal, and occipital cortices. Our findings suggest that girls with CPP require attention and early treatment for cognitive and emotional problems as well as brain development in clinical practice.
Collapse
Affiliation(s)
- Zhaoxia Qin
- Department of Radiology, Medical Imaging Center, The Affiliated Hospital of Yangzhou University, Yangzhou University, 368 Hanjiang Middle Road, Yangzhou, 225001, China.
| | - Hang Qu
- Department of Radiology, Medical Imaging Center, The Affiliated Hospital of Yangzhou University, Yangzhou University, 368 Hanjiang Middle Road, Yangzhou, 225001, China
| | - Wenlong Zou
- Department of Pediatrics, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiaoxia Du
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Yuefeng Li
- Department of Radiology, Medical Imaging Center, The Affiliated Hospital of Yangzhou University, Yangzhou University, 368 Hanjiang Middle Road, Yangzhou, 225001, China
- The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
- Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Wei Wang
- Department of Radiology, Medical Imaging Center, The Affiliated Hospital of Yangzhou University, Yangzhou University, 368 Hanjiang Middle Road, Yangzhou, 225001, China.
| |
Collapse
|
5
|
Guo Z, Xiao S, Chen G, Zhong S, Zhong H, Sun S, Chen P, Tang X, Yang H, Jia Y, Yin Z, Huang L, Wang Y. Disruption of the gut microbiota-inflammation-brain axis in unmedicated bipolar disorder II depression. Transl Psychiatry 2024; 14:495. [PMID: 39695130 DOI: 10.1038/s41398-024-03207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024] Open
Abstract
The relationships of the gut microbiota-inflammation-brain axis in depressive bipolar disorder (BD) remains under-elaborated. Sixty-five unmedicated depressive patients with BD II and 58 controls (HCs) were prospectively enrolled. Resting-state functional MRI data of static and dynamic amplitude of low-frequency fluctuation (ALFF) was measured, and abnormal ALFF masks were subsequently set as regions of interest to calculate whole-brain static functional connectivity (sFC) and dynamic functional connectivity (dFC). Fecal samples were collected to assess gut diversity and enterotypes using 16S amplicon sequencing. Blood samples were also collected, serum was assayed for levels of cytokines (interleukin [IL]-2, IL-4, IL-6, IL-8, IL-10, tumor necrosis factor [TNF]-α). Patients with BD II exhibited decreased static ALFF values in the left cerebellum Crus II, and decreased cerebellar sFC and dFC to the right inferior parietal lobule and right superior frontal gyrus, respectively. Moreover, higher pro-inflammatory and anti-inflammatory cytokines levels, and increased proinflammatory bacteria and glutamate and gamma-aminobutyric acid metabolism related bacteria were identified in BD II. The interaction of Parabacteroides levels × IL-8 levels was an independent contributor to static ALFF in the left cerebellar Crus II. The findings bridged a gap in the underlying pathophysiological mechanism of the gut microbiota-inflammation-brain axis in BD II depression.
Collapse
Affiliation(s)
- Zixuan Guo
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Shu Xiao
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hui Zhong
- Biomedical Translational Research Institute, Jinan University, Guangzhou, China
| | - Shilin Sun
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Xinyue Tang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Hengwen Yang
- Biomedical Translational Research Institute, Jinan University, Guangzhou, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhinan Yin
- Biomedical Translational Research Institute, Jinan University, Guangzhou, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China.
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China.
| |
Collapse
|
6
|
Liu M, Jin S, Liu M, Yang B, Wang Q, Fan C, Li Z, Wu L. Global research hotspots and trends of theta burst stimulation from 2004 to 2023: a bibliometric analysis. Front Neurol 2024; 15:1469877. [PMID: 39719979 PMCID: PMC11666417 DOI: 10.3389/fneur.2024.1469877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/29/2024] [Indexed: 12/26/2024] Open
Abstract
Background Theta burst stimulation (TBS) has garnered widespread attention in the scientific community, but a comprehensive bibliometric analysis of TBS research remains absent. This study aims to fill this gap by elucidating the characteristics, hotspots, and trends in TBS publications over the past 20 years using bibliometric methods. Methods We retrieved TBS-related publications from January 1, 2004, to December 31, 2023, from the Web of Science Core Collection (WoSCC). The analysis focused on articles and review articles. Data were processed using the bibliometric package in R software, and CiteSpace and VOSviewer were employed for bibliometric and knowledge mapping analyses. Results A total of 1,206 publications were identified, with 858 included in the analysis. The annual publication volume showed a fluctuating upward trend. Leading institutions and authors were predominantly from the United States of America (USA) and European countries. Core journals and publications also primarily originated from these regions. Current research hotspots include the clinical applications and mechanisms of TBS in neurorehabilitation and depression. TBS cerebellar stimulation has emerged as a promising therapeutic target. Future research is likely to focus on dysphagia, cognitive impairments, and post-traumatic stress disorder. Conclusion This bibliometric analysis provides an overview of the basic knowledge structure, research hotspots, and development trends in TBS research over the past two decades. The findings offer valuable insights into the evolving landscape of TBS research and its potential directions.
Collapse
Affiliation(s)
- Mingyue Liu
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Shasha Jin
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Mengya Liu
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Yang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qian Wang
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Chunliang Fan
- Department of Physical Therapy, Beijing Xiaotangshan Hospital, Beijing, China
| | - Zhe Li
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liang Wu
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| |
Collapse
|
7
|
Raies N, Nankoo JF, Madan CR, Chen R. Cerebellar Theta Burst Stimulation Impairs Working Memory. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2324-2331. [PMID: 39172206 DOI: 10.1007/s12311-024-01732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Working memory refers to the process of temporarily storing and manipulating information. The role of the cerebellum in working memory is thought to be achieved through its connections with the prefrontal cortex. Previous studies showed that theta burst stimulation (TBS), a form of repetitive transcranial magnetic stimulation, of the cerebellum changes its functional connectivity with the prefrontal cortex. Specifically, excitatory intermittent TBS (iTBS) increases, whereas inhibitory continuous TBS (cTBS) decreases this functional connectivity. We hypothesized that iTBS on the cerebellum will improve working memory, whereas cTBS will disrupt it. Sixteen healthy participants (10 women) participated in this study. Bilateral cerebellar stimulation was applied with a figure-of-eight coil at 3 cm lateral and 1 cm below the inion. The participants received iTBS, cTBS, and sham iTBS in three separate sessions in random order. Within 30 min after TBS, the participants performed four working memory tasks: letter 1-Back and 2-Back, digit span forward, and digit span backward. Repeated measures analysis of variance revealed a significant effect of the type of stimulation (iTBS/cTBS/Sham) on performance in the digit span backward task (p = 0.02). The planned comparison showed that the cTBS condition had significantly lower scores than the sham condition (p = 0.01). iTBS and cTBS did not affect performance in the 1- and 2-Back and the digit span forward tasks compared to sham stimulation. The findings support the hypothesis that the cerebellum is involved in working memory, and this contribution may be disrupted by cTBS.
Collapse
Affiliation(s)
- Nasem Raies
- Institute of Medical Science, University of Toronto, Toronto, Canada.
- Krembil Research Institute, University Health Network, Toronto, Canada.
| | | | | | - Robert Chen
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
8
|
Wang XY, Zhang YB, Mu RX, Cui LB, Wang HN. Repetitive transcranial magnetic stimulation enhanced by neuronavigation in the treatment of depressive disorder and schizophrenia. World J Psychiatry 2024; 14:1618-1622. [PMID: 39564180 PMCID: PMC11572680 DOI: 10.5498/wjp.v14.i11.1618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/23/2024] [Accepted: 10/18/2024] [Indexed: 11/07/2024] Open
Abstract
This editorial assesses the advancements in neuronavigation enhanced repetitive transcranial magnetic stimulation for depressive disorder and schizophrenia treatment. Conventional repetitive transcranial magnetic stimulation faces challenges due to the intricacies of brain anatomy and patient variability. Neuronavigation offers innovative solutions by integrating neuroimaging with three-dimensional localization to pinpoint brain regions and refine therapeutic targeting. This systematic review of recent literature underscores the enhanced efficacy of neuronavigation in improving treatment outcomes for these disorders. This editorial highlights the pivotal role of neuronavigation in advancing psychiatric care.
Collapse
Affiliation(s)
- Xian-Yang Wang
- Schizophrenia Imaging Laboratory, Xijing 986 Hospital, Fourth Military Medical University, Xi’an 710054, Shaanxi Province, China
| | - Yuan-Bei Zhang
- Schizophrenia Imaging Laboratory, Xijing 986 Hospital, Fourth Military Medical University, Xi’an 710054, Shaanxi Province, China
| | - Rong-Xue Mu
- Simon Fraser University, Vancouver V5A1S6, British Columbia, Canada
| | - Long-Biao Cui
- Schizophrenia Imaging Laboratory, Xijing 986 Hospital, Fourth Military Medical University, Xi’an 710054, Shaanxi Province, China
- Shaanxi Provincial Key Laboratory of Clinic Genetics, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Hua-Ning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| |
Collapse
|
9
|
Liu T, Wang S, Tang Y, Jiang S, Lin H, Li F, Yao D, Zhu X, Luo C, Li Q. Structural and functional alterations in MRI-negative drug-resistant epilepsy and associated gene expression features. Neuroimage 2024; 302:120908. [PMID: 39490944 DOI: 10.1016/j.neuroimage.2024.120908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024] Open
Abstract
Neuroimaging techniques have been widely used in the study of epilepsy. However, structural and functional changes in the MRI-negative drug-resistant epilepsy (DRE) and the genetic mechanisms behind the structural alterations remain poorly understood. Using structural and functional MRI, we analyzed gray matter volume (GMV) and regional homogeneity (ReHo) in DRE, drug-sensitive epilepsy (DSE) and healthy controls. Gene expression data from Allen human brain atlas and GMV/ReHo were evaluated to obtain drug resistance-related and epilepsy-associated gene expression and compared with real transcriptional data in blood. We found structural and functional alterations in the cerebellum of DRE patients, which may be related to the mechanisms of drug resistance in DRE. Our study confirms that changes in brain morphology and regional activity in DRE patients may be associated with abnormal gene expression related to nervous system development. And SP1, as an important transcription factor, plays an important role in the mechanism of drug resistance.
Collapse
Affiliation(s)
- Ting Liu
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Province, PR China; Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, PR China
| | - Sheng Wang
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Province, PR China; Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, PR China
| | - Yingjie Tang
- MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Sisi Jiang
- MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Huixia Lin
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Province, PR China; Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, PR China
| | - Fei Li
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Province, PR China; Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, PR China
| | - Dezhong Yao
- MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 610054, PR China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu 2019RU035, PR China
| | - Xian Zhu
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Province, PR China; Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, PR China.
| | - Cheng Luo
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Province, PR China; MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 610054, PR China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu 2019RU035, PR China.
| | - Qifu Li
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Province, PR China; Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, PR China.
| |
Collapse
|
10
|
Chen K, Sun M, Zhuang H. Effect of theta burst stimulation on lower extremity motor function improvement and balance recovery in patients with stroke: A systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore) 2024; 103:e40098. [PMID: 39495989 PMCID: PMC11537599 DOI: 10.1097/md.0000000000040098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 09/26/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND To investigate the therapeutic benefits of theta burst stimulation on lower-limb motor dysfunction and balance recovery in patients with stroke. METHODS A literature search was performed across CNKI, CBM, WanFang, VIP, PubMed, Embase, Cochrane Library, and Web of Science until November 2023. The Methodological quality of included studies was assessed by using the Cochrane risk-of-bias tool and the PEDro scale, and the meta-analysis was performed by using RevMan 5.3 software. Two independent researchers screened the literature and extracted basic information on participants, interventions, comparisons, outcomes, and studies. RESULTS Eight studies, including cTBS and iTBS, with 290 participants meeting the inclusion criteria for this systematic review, and 7 studies including only iTBS with 230 participants were included in this meta-analysis. The methodological quality of the studies included ranged from moderate to high. The results showed iTBS had significantly higher scores on the Berg Balance Scale (BBS) than the control group. (MD = 4.57, 95% CI: 1.76 to 7.38, Z = 3.19, P = .001). Subgroup analysis showed CRB-iTBS markedly improved BBS scores (MD = 4.52, 95% CI: 1.78 to 7.27, Z = 3.23, P = .001), whereas LE M1-iTBS did not exhibit a significant enhancement in BBS scores (MD = 6.10, 95% CI: -7.34 to 19.53, Z = 0.89, P = .37); iTBS showed no significant increase in lower-limb motor function (FMA-LE) (MD = 1.80, 95% CI: -1.10 to 4.69, Z = 1.22, P = .22). Subgroup analysis revealed both CRB-iTBS and LE M1-iTBS interventions were not effective in improving FMA-LE (MD = 3.15, 95% CI: -4.70 to 11.00, Z = .79, P = .43; MD = 1.05, 95% CI: -2.20 to 4.30, Z = .63, P = .53); iTBS significantly reduced the MEP latency (P = .004), but did not show a significant improvement in walking performance (10 MWT), mobility (TUG), or activities of daily living [M(BI)] (P > .05). CONCLUSION Based the current study, iTBS can increase patients' balance function. The CRB-iTBS protocol is more effective than the LE M1-iTBS protocol. Additionally, iTBS may be a promising therapy tending to enhance lower-limb motor function, walking performance, mobility, and activities of daily living.
Collapse
Affiliation(s)
- Kang Chen
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Meixia Sun
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - He Zhuang
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
11
|
Ren L, Lv M, Wang X, Schwieter JW, Liu H. iTBS reveals the roles of domain-general cognitive control and language-specific brain regions during word formation rule learning. Cereb Cortex 2024; 34:bhae356. [PMID: 39233376 DOI: 10.1093/cercor/bhae356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024] Open
Abstract
Repeated exposure to word forms and meanings improves lexical knowledge acquisition. However, the roles of domain-general and language-specific brain regions during this process remain unclear. To investigate this, we applied intermittent theta burst stimulation over the domain-general (group left dorsolateral prefrontal cortex) and domain-specific (Group L IFG) brain regions, with a control group receiving sham intermittent theta burst stimulation. Intermittent theta burst stimulation effects were subsequently assessed in functional magnetic resonance imaging using an artificial word learning task which consisted of 3 learning phases. A generalized psychophysiological interaction analysis explored the whole brain functional connectivity, while dynamic causal modeling estimated causal interactions in specific brain regions modulated by intermittent theta burst stimulation during repeated exposure. Compared to sham stimulation, active intermittent theta burst stimulation improved word learning performance and reduced activation of the left insula in learning phase 2. Active intermittent theta burst stimulation over the domain-general region increased whole-brain functional connectivity and modulated effective connectivity between brain regions during repeated exposure. This effect was not observed when active intermittent theta burst stimulation was applied to the language-specific region. These findings suggest that the domain-general region plays a crucial role in word formation rule learning, with intermittent theta burst stimulation enhancing whole-brain connectivity and facilitating efficient information exchange between key brain regions during new word learning.
Collapse
Affiliation(s)
- Lanlan Ren
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, 850 Huanghe Road, Shahekou District, Liaoning Province, Dalian 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Normal University, 850 Huanghe Road, Shahekou District, Liaoning Province, Dalian 116029, China
| | - Mengjie Lv
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, 850 Huanghe Road, Shahekou District, Liaoning Province, Dalian 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Normal University, 850 Huanghe Road, Shahekou District, Liaoning Province, Dalian 116029, China
| | - Xiyuan Wang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, 850 Huanghe Road, Shahekou District, Liaoning Province, Dalian 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Normal University, 850 Huanghe Road, Shahekou District, Liaoning Province, Dalian 116029, China
| | - John W Schwieter
- Language Acquisition, Cognition, and Multilingualism Laboratory/Bilingualism Matters, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario N2L 3C5, Canada
- Department of Linguistics and Languages, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M2, Canada
| | - Huanhuan Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, 850 Huanghe Road, Shahekou District, Liaoning Province, Dalian 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Normal University, 850 Huanghe Road, Shahekou District, Liaoning Province, Dalian 116029, China
| |
Collapse
|
12
|
Liu M, Yu C, Shi J, Xu Y, Li Z, Huang J, Si Z, Yao L, Yin K, Zhao Z. Effects of one-week bilateral cerebellar iTBS on resting-state functional brain network and multi-task attentional performance in healthy individuals: A randomized, sham-controlled trial. Neuroimage 2024; 295:120648. [PMID: 38761882 DOI: 10.1016/j.neuroimage.2024.120648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Cerebellar intermittent theta burst stimulation (iTBS) modulates the excitability of the cerebral cortex and may enhance attentional performance. To date, few studies have conducted iTBS on healthy subjects for one week and used electroencephalography (EEG) to investigate the effect of multiple stimulation sessions on resting-state functional brain networks and the daily stimulation effect on attentional performance. METHODS 16 healthy subjects participated in a one-week experiment, receiving bilateral cerebellar iTBS or sham stimulation and engaging in multi-task attentional training. The primary measures were the one-week attentional performance and pre- and post-experiment resting-state EEG activities. Amplitude Envelope Correlation (AEC) was used to construct the functional connectivity in the eye-open (EO) and eye-closed (EC) phases. RESULTS At least three sessions of iTBS were required to enhance multi-task performance significantly, whereas only one or two sessions failed to elicit the improvement. Compared with the control group, iTBS induced significant changes in PSD, AEC functional connectivity, and AEC network properties during the EO phase, while it had little effect during the EC phase. During the EO phase, the network property changes of the iTBS subject were correlated with improved attentional performance. CONCLUSION The multi-task performance requires multiple stimulations to enhance. iTBS affects the resting-state alpha band brain activities during the EO rather than the EC phase. The AEC network properties may serve as a biomarker to assess the attentional potential of healthy subjects.
Collapse
Affiliation(s)
- Meiliang Liu
- School of Artificial Intelligence, Beijing Normal University, Beijing, China.
| | - Chao Yu
- Nanjing Research Institute of Electronics Technology, Nanjing, China.
| | - Jinping Shi
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yunfang Xu
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
| | - Zijin Li
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
| | - Junhao Huang
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
| | - Zhengye Si
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
| | - Li Yao
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
| | - Kuiying Yin
- Nanjing Research Institute of Electronics Technology, Nanjing, China.
| | - Zhiwen Zhao
- School of Artificial Intelligence, Beijing Normal University, Beijing, China; Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China.
| |
Collapse
|
13
|
Walsh KS, Pizer B, Samargia-Grivette S, Lux AL, Schmahmann JD, Hartley H, Avula S. Proceedings of the first global meeting of the Posterior Fossa Society: state of the art in cerebellar mutism syndrome. Childs Nerv Syst 2024; 40:2177-2191. [PMID: 38647662 DOI: 10.1007/s00381-024-06411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE The Posterior Fossa Society, an international multidisciplinary group, hosted its first global meeting designed to share the current state of the evidence across the multidisciplinary elements of pediatric post-operative cerebellar mutism syndrome (pCMS). The agenda included keynote talks from world-leading speakers, compelling abstract presentations and engaging discussions led by members of the PFS special interest groups. METHODS This paper is a synopsis of the first global meeting, a 3-day program held in Liverpool, England, UK, in September 2022. RESULTS Topics included nosology, patient and family experience, cerebellar modulation of cognition, and cerebellar cognitive affective syndrome. In addition, updates from large-scale studies were shared as well as abstracts across neuroradiology, neurosurgery, diagnosis/scoring, ataxia, and rehabilitation. CONCLUSIONS Based on data-driven evidence and discussions, each special interest group created research priorities to target before the second global meeting, in the spring of 2024.
Collapse
Affiliation(s)
- Karin S Walsh
- , 15254 Shady Grove Road, Rockville, MD, 20850, USA.
- The George Washington University School of Medicine and Children's National Hospital, Washington, DC, USA.
| | - Barry Pizer
- Oncology Department, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | | | - Andrew L Lux
- Department of Paediatric Neurology, Bristol Royal Hospital for Children, Bristol, UK
| | - Jeremy D Schmahmann
- Ataxia Center, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Helen Hartley
- Department of Physiotherapy, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Shivaram Avula
- Department of Radiology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
14
|
Haihambo N, Li M, Ma Q, Baeken C, Deroost N, Baetens K, Van Overwalle F. Exciting the social butterfly: Anodal cerebellar transcranial direct current stimulation modulates neural activation during predictive social mentalizing. Int J Clin Health Psychol 2024; 24:100480. [PMID: 39055855 PMCID: PMC11269293 DOI: 10.1016/j.ijchp.2024.100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Transcranial Direct Current Stimulation (tDCS) has emerged as a promising tool for enhancing social cognition. The posterior cerebellum, which is part of the mentalizing network, has been implicated in social processes. In our combined tDCS-fMRI study, we investigated the effects of offline anodal cerebellar tDCS on activation in the cerebellum during social action prediction. Forty-one participants were randomly assigned to receive either anodal (2 mA) or sham (0 mA) stimulation over the midline of the posterior cerebellum for 20 min. Twenty minutes post stimulation, participants underwent a functional MRI scan to complete a social action prediction task, during which they had to correctly order randomly presented sentences that described either actions of social agents (based on their personality traits) or events of objects (based on their characteristics). As hypothesized, our results revealed that participants who received anodal cerebellar tDCS exhibited increased activation in the posterior cerebellar Crus 2 and lobule IX, and in key cerebral mentalizing areas, including the medial prefrontal cortex, temporo-parietal junction, and precuneus. Contrary to our hypotheses, participants who received anodal stimulation demonstrated faster responses to non-social objects compared to social agents, while sham participants showed no significant differences. We did not find a significant relationship between electric field magnitude, neural activation and behavioral outcomes. These findings suggest that tDCS targeting the posterior cerebellum selectively enhances activation in social mentalizing areas, while only facilitating behavioral performance of non-social material, perhaps because of a ceiling effect due to familiarity with social processing.
Collapse
Affiliation(s)
- Naem Haihambo
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Belgium
- Centre for Human Brain Health, University of Birmingham, Bochum, Germany
- Social Neuroscience, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Medicine, Ruhr University Bochum, Germany
| | - Meijia Li
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Belgium
- Language Pathology and Brain Science MEG Lab, School of Communication Sciences, Beijing Language and Culture University, Beijing, China
| | - Qianying Ma
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent Experimental, Ghent University, Ghent 9000, Belgium
- Department of Psychiatry, Vrije Universiteit Brussel, Brussels 1090, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven 5600, The Netherlands
| | - Chris Baeken
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Belgium
| | - Natacha Deroost
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Belgium
| | - Kris Baetens
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Belgium
| | - Frank Van Overwalle
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Belgium
| |
Collapse
|
15
|
Chen G, Guo Z, Chen P, Yang Z, Yan H, Sun S, Ma W, Zhang Y, Qi Z, Fang W, Jiang L, Tao Q, Wang Y. Bright light therapy-induced improvements of mood, cognitive functions and cerebellar functional connectivity in subthreshold depression: A randomized controlled trial. Int J Clin Health Psychol 2024; 24:100483. [PMID: 39101053 PMCID: PMC11296024 DOI: 10.1016/j.ijchp.2024.100483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/25/2024] [Indexed: 08/06/2024] Open
Abstract
Background The efficacy of bright light therapy (BLT) in ameliorating depression has been validated. The present study is to investigate the changes of depressive symptoms, cognitive function and cerebellar functional connectivity (FC) following BLT in individuals with subthreshold depression (StD). Method Participants were randomly assigned to BLT group (N = 47) or placebo (N = 41) in this randomized controlled trial between March 2020 and June 2022. Depression severity and cognitive function were assessed, as well as resting-state functional MRI scan was conducted before and after 8-weeks treatment. Seed-based whole-brain static FC (sFC) and dynamic FC (dFC) analyses of the bilateral cerebellar subfields were conducted. Besides, a multivariate regression model examined whether baseline brain FC was associated with changes of depression severity and cognitive function during BLT treatment. Results After 8-week BLT treatment, individuals with StD showed improved depressive symptoms and attention/vigilance cognitive function. BLT also increased sFC between the right cerebellar lobule IX and left temporal pole, and decreased sFC within the cerebellum, and dFC between the right cerebellar lobule IX and left medial prefrontal cortex. Moreover, the fusion of sFC and dFC at baseline could predict the improvement of attention/vigilance in response to BLT. Conclusions The current study identified that BLT improved depressive symptoms and attention/vigilance, as well as changed cerebellum-DMN connectivity, especially in the cerebellar-frontotemporal and cerebellar internal FC. In addition, the fusion features of sFC and dFC at pre-treatment could serve as an imaging biomarker for the improvement of attention/vigilance cognitive function after BLT in StD.
Collapse
Affiliation(s)
- Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Zixuan Guo
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Zibin Yang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Hong Yan
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Shilin Sun
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Wenhao Ma
- Department of Public Health and Preventive Medicine, School of Basic Medicine, Jinan University, Guangzhou 510632, China
- Division of Medical Psychology and Behavior Science, School of Basic Medicine, Jinan University, Guangzhou 510632, China
| | - Yuan Zhang
- Department of Public Health and Preventive Medicine, School of Basic Medicine, Jinan University, Guangzhou 510632, China
- Division of Medical Psychology and Behavior Science, School of Basic Medicine, Jinan University, Guangzhou 510632, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Wenjie Fang
- Department of Public Health and Preventive Medicine, School of Basic Medicine, Jinan University, Guangzhou 510632, China
- Division of Medical Psychology and Behavior Science, School of Basic Medicine, Jinan University, Guangzhou 510632, China
| | - Lijun Jiang
- Department of Public Health and Preventive Medicine, School of Basic Medicine, Jinan University, Guangzhou 510632, China
- Division of Medical Psychology and Behavior Science, School of Basic Medicine, Jinan University, Guangzhou 510632, China
| | - Qian Tao
- Department of Public Health and Preventive Medicine, School of Basic Medicine, Jinan University, Guangzhou 510632, China
- Division of Medical Psychology and Behavior Science, School of Basic Medicine, Jinan University, Guangzhou 510632, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| |
Collapse
|
16
|
Sveva V, Cruciani A, Mancuso M, Santoro F, Latorre A, Monticone M, Rocchi L. Cerebellar Non-Invasive Brain Stimulation: A Frontier in Chronic Pain Therapy. J Pers Med 2024; 14:675. [PMID: 39063929 PMCID: PMC11277881 DOI: 10.3390/jpm14070675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Chronic pain poses a widespread and distressing challenge; it can be resistant to conventional therapies, often having significant side effects. Non-invasive brain stimulation (NIBS) techniques offer promising avenues for the safe and swift modulation of brain excitability. NIBS approaches for chronic pain management targeting the primary motor area have yielded variable outcomes. Recently, the cerebellum has emerged as a pivotal hub in human pain processing; however, the clinical application of cerebellar NIBS in chronic pain treatment remains limited. This review delineates the cerebellum's role in pain modulation, recent advancements in NIBS for cerebellar activity modulation, and novel biomarkers for assessing cerebellar function in humans. Despite notable progress in NIBS techniques and cerebellar activity assessment, studies targeting cerebellar NIBS for chronic pain treatment are limited in number. Nevertheless, positive outcomes in pain alleviation have been reported with cerebellar anodal transcranial direct current stimulation. Our review underscores the potential for further integration between cerebellar NIBS and non-invasive assessments of cerebellar function to advance chronic pain treatment strategies.
Collapse
Affiliation(s)
- Valerio Sveva
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, University of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Alessandro Cruciani
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.C.); (F.S.)
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Marco Mancuso
- Department of Human Neuroscience, University of Rome “Sapienza”, Viale dell’Università 30, 00185 Rome, Italy;
| | - Francesca Santoro
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.C.); (F.S.)
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
| | - Marco Monticone
- Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy;
| | - Lorenzo Rocchi
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
17
|
Liu Q, Liu Y, Zhang Y. Effects of Cerebellar Non-Invasive Stimulation on Neurorehabilitation in Stroke Patients: An Updated Systematic Review. Biomedicines 2024; 12:1348. [PMID: 38927555 PMCID: PMC11201496 DOI: 10.3390/biomedicines12061348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The cerebellum is emerging as a promising target for noninvasive brain stimulation (NIBS). A systematic review was conducted to evaluate the effects of cerebellar NIBS on both motor and other symptoms in stroke rehabilitation, its impact on functional ability, and potential side effects (PROSPERO number: CRD42022365697). A systematic electronic database search was performed by using PubMed Central (PMC), EMBASE, and Web of Science, with a cutoff date of November 2023. Data extracted included study details, NIBS methodology, outcome measures, and results. The risk of bias in eligible studies was also assessed. Twenty-two clinical studies involving 1016 participants were finally included, with a focus on outcomes related to post-stroke motor recovery (gait and balance, muscle spasticity, and upper limb dexterity) and other functions (dysphagia and aphasia). Positive effects were observed, especially on motor functions like gait and balance. Some efficiency was also observed in dysphagia rehabilitation. However, findings on language recovery were preliminary and inconsistent. A slight improvement in functional ability was noted, with no serious adverse effects reported. Further studies are needed to explore the effects of cerebellar NIBS on post-stroke non-motor deficits and to understand how cerebellar engagement can facilitate more precise treatment strategies for stroke rehabilitation.
Collapse
Affiliation(s)
- Qi Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yang Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yumei Zhang
- Department of Rehabilitation, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| |
Collapse
|
18
|
Hermiller MS. Effects of continuous versus intermittent theta-burst TMS on fMRI connectivity. Front Hum Neurosci 2024; 18:1380583. [PMID: 38883322 PMCID: PMC11177618 DOI: 10.3389/fnhum.2024.1380583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
Transcranial magnetic stimulation is a noninvasive technique that can be used to evoke distributed network-level effects. Previous work demonstrated that the Hippocampal-Cortical Network responds preferably (i.e., greater memory improvement and increases in hippocampal-network connectivity) to continuous theta-burst stimulation protocol relative to intermittent theta-burst and to 20-Hz rTMS. Here, these data were further analyzed to characterize effects of continuous versus intermittent theta-burst stimulation on network-level connectivity measures - as well as local connectedness - via resting-state fMRI. In contrast to theories that propose continuous and intermittent theta-burst cause local inhibitory versus excitatory effects, respectively, both protocols caused local decreases in fMRI connectivity around the stimulated parietal site. While iTBS caused decreases in connectivity across the hippocampal-cortical network, cTBS caused increases and decreases in connectivity across the network. cTBS had no effect on the parietal-cortical network, whereas iTBS caused decreases in the right parietal cortex (contralateral hemisphere to the stimulation target). These findings suggest that continuous theta-burst may have entrained the endogenous hippocampal-cortical network, whereas the intermittent train was unable to maintain entrainment that may have yielded the long-lasting effects measured in this study (i.e., within 20-min post-stimulation). Furthermore, these effects were specific to the hippocampal-cortical network, which has a putative endogenous functionally-relevant theta rhythm, and not to the parietal network. These results add to the growing body of evidence that suggests effects of theta-burst stimulation are not fully characterized by excitatory/inhibitory theories. Further work is required to understand local and network-level effects of noninvasive stimulation.
Collapse
Affiliation(s)
- Molly S Hermiller
- Department of Psychology, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
19
|
Xu M, Nikolin S, Moffa AM, Xu XM, Su Y, Li R, Chan HF, Loo CK, Martin DM. Prolonged intermittent theta burst stimulation targeting the left prefrontal cortex and cerebellum does not affect executive functions in healthy individuals. Sci Rep 2024; 14:11847. [PMID: 38782921 PMCID: PMC11116424 DOI: 10.1038/s41598-024-61404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) for alleviating negative symptoms and cognitive dysfunction in schizophrenia commonly targets the left dorsolateral prefrontal cortex (LDLPFC). However, the therapeutic effectiveness of rTMS at this site remains inconclusive and increasingly, studies are focusing on cerebellar rTMS. Recently, prolonged intermittent theta-burst stimulation (iTBS) has emerged as a rapid-acting form of rTMS with promising clinical benefits. This study explored the cognitive and neurophysiological effects of prolonged iTBS administered to the LDLPFC and cerebellum in a healthy cohort. 50 healthy participants took part in a cross-over study and received prolonged (1800 pulses) iTBS targeting the LDLPFC, cerebellar vermis, and sham iTBS. Mixed effects repeated measures models examined cognitive and event-related potentials (ERPs) from 2-back (P300, N200) and Stroop (N200, N450) tasks after stimulation. Exploratory non-parametric cluster-based permutation tests compared ERPs between conditions. There were no significant differences between conditions for behavioural and ERP outcomes on the 2-back and Stroop tasks. Exploratory cluster-based permutation tests of ERPs did not identify any significant differences between conditions. We did not find evidence that a single session of prolonged iTBS administered to either the LDLPFC or cerebellum could cause any cognitive or ERP changes compared to sham in a healthy sample.
Collapse
Affiliation(s)
- Mei Xu
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, High St, Kensington, Sydney, NSW, 2052, Australia
- Black Dog Institute, Sydney, Australia
| | - Stevan Nikolin
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, High St, Kensington, Sydney, NSW, 2052, Australia
- Black Dog Institute, Sydney, Australia
| | - Adriano M Moffa
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, High St, Kensington, Sydney, NSW, 2052, Australia
- Black Dog Institute, Sydney, Australia
| | - Xiao Min Xu
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, High St, Kensington, Sydney, NSW, 2052, Australia
| | - Yon Su
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, High St, Kensington, Sydney, NSW, 2052, Australia
| | - Roger Li
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, High St, Kensington, Sydney, NSW, 2052, Australia
| | - Ho Fung Chan
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, High St, Kensington, Sydney, NSW, 2052, Australia
| | - Colleen K Loo
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, High St, Kensington, Sydney, NSW, 2052, Australia
- Black Dog Institute, Sydney, Australia
- The George Institute for Global Health, Sydney, Australia
| | - Donel M Martin
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, High St, Kensington, Sydney, NSW, 2052, Australia.
- Black Dog Institute, Sydney, Australia.
| |
Collapse
|
20
|
Browne CJ, Sheeba SR, Astill T, Baily A, Deblieck C, Mucci V, Cavaleri R. Assessing the synergistic effectiveness of intermittent theta burst stimulation and the vestibular ocular reflex rehabilitation protocol in the treatment of Mal de Debarquement Syndrome: a randomised controlled trial. J Neurol 2024; 271:2615-2630. [PMID: 38345630 PMCID: PMC11055743 DOI: 10.1007/s00415-024-12215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 04/28/2024]
Abstract
INTRODUCTION Mal de Debarquement Syndrome (MdDS) is a rare central vestibular disorder characterised by a constant sensation of motion (rocking, swaying, bobbing), which typically arises after motion experiences (e.g. sea, air, and road travel), though can be triggered by non-motion events. The current standard of care is non-specific medications and interventions that only result in mild-to-moderate improvements. The vestibular ocular reflex (VOR) rehabilitation protocol, a specialised form of rehabilitation, has shown promising results in reducing symptoms amongst people with MdDS. Accumulating evidence suggests that it may be possible to augment the effects of VOR rehabilitation via non-invasive brain stimulation protocols, such as theta burst stimulation (TBS). METHODS The aim of this randomised controlled trial was to evaluate the effectiveness of intermittent TBS (iTBS) over the dorsolateral prefrontal cortex in enhancing the effectiveness of a subsequently delivered VOR rehabilitation protocol in people with MdDS. Participants were allocated randomly to receive either Sham (n = 10) or Active (n = 10) iTBS, followed by the VOR rehabilitation protocol. Subjective outcome measures (symptom ratings and mental health scores) were collected 1 week pre-treatment and for 16 weeks post-treatment. Posturography (objective outcome) was recorded each day of the treatment week. RESULTS Significant improvements in subjective and objective outcomes were reported across both treatment groups over time, but no between-group differences were observed. DISCUSSION These findings support the effectiveness of the VOR rehabilitation protocol in reducing MdDS symptoms. Further research into iTBS is required to elucidate whether the treatment has a role in the management of MdDS. TRN: ACTRN12619001519145 (Date registered: 04 November 2019).
Collapse
Affiliation(s)
- Cherylea J Browne
- School of Science, Western Sydney University, Sydney, NSW, Australia.
- Brain Stimulation and Rehabilitation (BrainStAR) Laboratory, Western Sydney University, Sydney, NSW, Australia.
- Translational Neuroscience Facility, School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia.
- Western Sydney University, Translational Health and Research Institute, Sydney, NSW, Australia.
| | - S R Sheeba
- School of Science, Western Sydney University, Sydney, NSW, Australia
- Brain Stimulation and Rehabilitation (BrainStAR) Laboratory, Western Sydney University, Sydney, NSW, Australia
| | - T Astill
- Brain Stimulation and Rehabilitation (BrainStAR) Laboratory, Western Sydney University, Sydney, NSW, Australia
- School of Health Sciences, Western Sydney University, Sydney, NSW, Australia
| | - A Baily
- School of Health Sciences, Western Sydney University, Sydney, NSW, Australia
| | - C Deblieck
- Laboratory of Equilibrium Investigations and Aerospace (LEIA), University of Antwerp, Antwerp, Belgium
| | - V Mucci
- School of Science, Western Sydney University, Sydney, NSW, Australia
| | - R Cavaleri
- Brain Stimulation and Rehabilitation (BrainStAR) Laboratory, Western Sydney University, Sydney, NSW, Australia
- Western Sydney University, Translational Health and Research Institute, Sydney, NSW, Australia
- School of Health Sciences, Western Sydney University, Sydney, NSW, Australia
| |
Collapse
|
21
|
Rakesh G, Adams TG, Morey RA, Alcorn JL, Khanal R, Su AE, Himelhoch SS, Rush CR. Intermittent theta burst stimulation and functional connectivity in people living with HIV/AIDS who smoke tobacco cigarettes: a preliminary pilot study. Front Psychiatry 2024; 15:1315854. [PMID: 38501083 PMCID: PMC10945607 DOI: 10.3389/fpsyt.2024.1315854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/30/2024] [Indexed: 03/20/2024] Open
Abstract
Background People living with HIV (PLWHA) smoke at three times the rate of the general population and respond poorly to cessation strategies. Previous studies examined repetitive transcranial magnetic stimulation (rTMS) over left dorsolateral prefrontal cortex (L. dlPFC) to reduce craving, but no studies have explored rTMS among PLWHA who smoke. The current pilot study compared the effects of active and sham intermittent theta-burst stimulation (iTBS) on resting state functional connectivity (rsFC), cigarette cue attentional bias, and cigarette craving in PLWHA who smoke. Methods Eight PLWHA were recruited (single-blind, within-subject design) to receive one session of iTBS (n=8) over the L. dlPFC using neuronavigation and, four weeks later, sham iTBS (n=5). Cigarette craving and attentional bias assessments were completed before and after both iTBS and sham iTBS. rsFC was assessed before iTBS (baseline) and after iTBS and sham iTBS. Results Compared to sham iTBS, iTBS enhanced rsFC between the L. dlPFC and bilateral medial prefrontal cortex and pons. iTBS also enhanced rsFC between the right insula and right occipital cortex compared to sham iTBS. iTBS also decreased cigarette craving and cigarette cue attentional bias. Conclusion iTBS could potentially offer a therapeutic option for smoking cessation in PLWHA.
Collapse
Affiliation(s)
- Gopalkumar Rakesh
- Department of Psychiatry, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Thomas G. Adams
- Department of Psychology, College of Arts & Sciences, University of Kentucky, Lexington, KY, United States
| | - Rajendra A. Morey
- Brain Imaging and Analyses Center (BIAC), Duke University Medical Center, Durham, NC, United States
| | - Joseph L. Alcorn
- Department of Behavioral Sciences, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Rebika Khanal
- Department of Psychiatry, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Amanda E. Su
- Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX, United States
| | - Seth S. Himelhoch
- Department of Psychiatry, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Craig R. Rush
- Department of Behavioral Sciences, College of Medicine, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
22
|
Fox-Hesling J, Wisseman D, Kantak S. Noninvasive cerebellar stimulation and behavioral interventions: A crucial synergy for post-stroke motor rehabilitation. NeuroRehabilitation 2024; 54:521-542. [PMID: 38943401 DOI: 10.3233/nre-230371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
BACKGROUND Improvement of functional movements after supratentorial stroke occurs through spontaneous biological recovery and training-induced reorganization of remnant neural networks. The cerebellum, through its connectivity with the cortex, brainstem and spinal cord, is actively engaged in both recovery and reorganization processes within the cognitive and sensorimotor systems. Noninvasive cerebellar stimulation (NiCBS) offers a safe, clinically feasible and potentially effective way to modulate the excitability of spared neural networks and promote movement recovery after supratentorial stroke. NiCBS modulates cerebellar connectivity to the cerebral cortex and brainstem, as well as influences the sensorimotor and frontoparietal networks. OBJECTIVE Our objective was twofold: (a) to conduct a scoping review of studies that employed NiCBS to influence motor recovery and learning in individuals with stroke, and (b) to present a theory-driven framework to inform the use of NiCBS to target distinct stroke-related deficits. METHODS A scoping review of current research up to August 2023 was conducted to determine the effect size of NiCBS effect on movement recovery of upper extremity function, balance, walking and motor learning in humans with stroke. RESULTS Calculated effect sizes were moderate to high, offering promise for improving upper extremity, balance and walking outcomes after stroke. We present a conceptual framework that capitalizes on cognitive-motor specialization of the cerebellum to formulate a synergy between NiCBS and behavioral interventions to target specific movement deficits. CONCLUSION NiCBS enhances recovery of upper extremity impairments, balance and walking after stroke. Physiologically-informed synergies between NiCBS and behavioral interventions have the potential to enhance recovery. Finally, we propose future directions in neurophysiological, behavioral, and clinical research to move NiCBS through the translational pipeline and augment motor recovery after stroke.
Collapse
Affiliation(s)
| | - Darrell Wisseman
- Moss Rehabilitation, Elkins Park, PA, USA
- Department of Physical Therapy, Arcadia University, Glenside, PA, USA
| | - Shailesh Kantak
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA
- Department of Physical Therapy, Arcadia University, Glenside, PA, USA
- Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
23
|
Mousa D, Zayed N, Yassine IA. Correlation transfer function analysis as a biomarker for Alzheimer brain plasticity using longitudinal resting-state fMRI data. Sci Rep 2023; 13:21559. [PMID: 38057476 PMCID: PMC10700324 DOI: 10.1038/s41598-023-48693-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023] Open
Abstract
Neural plasticity is the ability of the brain to alter itself functionally and structurally as a result of its experience. However, longitudinal changes in functional connectivity of the brain are still unrevealed in Alzheimer's disease (AD). This study aims to discover the significant connections (SCs) between brain regions for AD stages longitudinally using correlation transfer function (CorrTF) as a new biomarker for the disease progression. The dataset consists of: 29 normal controls (NC), and 23, 24, and 23 for early, late mild cognitive impairments (EMCI, LMCI), and ADs, respectively, along three distant visits. The brain was divided into 116 regions using the automated anatomical labeling atlas, where the intensity time series is calculated, and the CorrTF connections are extracted for each region. Finally, the standard t-test and ANOVA test were employed to investigate the SCs for each subject's visit. No SCs, along three visits, were found For NC subjects. The most SCs were mainly directed from cerebellum in case of EMCI and LMCI. Furthermore, the hippocampus connectivity increased in LMCI compared to EMCI whereas missed in AD. Additionally, the patterns of longitudinal changes among the different AD stages compared to Pearson Correlation were similar, for SMC, VC, DMN, and Cereb networks, while differed for EAN and SN networks. Our findings define how brain changes over time, which could help detect functional changes linked to each AD stage and better understand the disease behavior.
Collapse
Affiliation(s)
- Doaa Mousa
- Computers and Systems Department, Electronics Research Institute, Cairo, Egypt.
| | - Nourhan Zayed
- Computers and Systems Department, Electronics Research Institute, Cairo, Egypt
- Mechanical Engineering Department, The British University in Egypt, Cairo, Egypt
| | - Inas A Yassine
- Systems and Biomedical Engineering Department, Cairo University, Giza, Egypt
| |
Collapse
|
24
|
Bernard JA, McOwen KM, Huynh AT. New Frontiers for the Understanding of Aging: The Power and Possibilities of Studying the Cerebellum. Curr Opin Behav Sci 2023; 54:101311. [PMID: 38496767 PMCID: PMC10939048 DOI: 10.1016/j.cobeha.2023.101311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Understanding behavior in aging has benefited greatly from cognitive neuroscience. Our foundational understanding of the brain in advanced age is based on what now amounts to several decades of work demonstrating differences in brain structure, network organization, and function. Earlier work in this field was focused primarily on the prefrontal cortex and hippocampus. More recent evidence has expanded our understanding of the aging brain to also implicate the cerebellum. Recent frameworks have suggested that the cerebellum may act as scaffolding for cortical function, and there is an emerging literature implicating the structure in Alzheimer's disease. At this juncture, there is evidence highlighting the potential importance of the cerebellum in advanced age, though the field of study is relatively nascent. Here, we provide an overview of key findings in the literature as it stands now and highlight several key future directions for study with respect to the cerebellum in aging.
Collapse
Affiliation(s)
- Jessica A. Bernard
- Department of Psychological and Brain Sciences
- Texas A&M Institute for Neuroscience
| | | | | |
Collapse
|
25
|
Shinn AK, Hurtado-Puerto AM, Roh YS, Ho V, Hwang M, Cohen BM, Öngür D, Camprodon JA. Cerebellar transcranial magnetic stimulation in psychotic disorders: intermittent, continuous, and sham theta-burst stimulation on time perception and symptom severity. Front Psychiatry 2023; 14:1218321. [PMID: 38025437 PMCID: PMC10679721 DOI: 10.3389/fpsyt.2023.1218321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Background The cerebellum contributes to the precise timing of non-motor and motor functions, and cerebellum abnormalities have been implicated in psychosis pathophysiology. In this study, we explored the effects of cerebellar theta burst stimulation (TBS), an efficient transcranial magnetic stimulation protocol, on temporal discrimination and self-reported mood and psychotic symptoms. Methods We conducted a case-crossover study in which patients with psychosis (schizophrenias, schizoaffective disorders, or bipolar disorders with psychotic features) were assigned to three sessions of TBS to the cerebellar vermis: one session each of intermittent (iTBS), continuous (cTBS), and sham TBS. Of 28 enrolled patients, 26 underwent at least one TBS session, and 20 completed all three. Before and immediately following TBS, participants rated their mood and psychotic symptoms and performed a time interval discrimination task (IDT). We hypothesized that cerebellar iTBS and cTBS would modulate these measures in opposing directions, with iTBS being adaptive and cTBS maladaptive. Results Reaction time (RT) in the IDT decreased significantly after iTBS vs. Sham (LS-mean difference = -73.3, p = 0.0001, Cohen's d = 1.62), after iTBS vs. cTBS (LS-mean difference = -137.6, p < 0.0001, d = 2.03), and after Sham vs. cTBS (LS-mean difference = -64.4, p < 0.0001, d = 1.33). We found no effect on IDT accuracy. We did not observe any effects on symptom severity after correcting for multiple comparisons. Conclusion We observed a frequency-dependent dissociation between the effects of iTBS vs. cTBS to the cerebellar midline on the reaction time of interval discrimination in patients with psychosis. iTBS showed improved (adaptive) while cTBS led to worsening (maladaptive) speed of response. These results demonstrate behavioral target engagement in a cognitive dimension of relevance to patients with psychosis and generate testable hypotheses about the potential therapeutic role of cerebellar iTBS in this clinical population. Clinical Trial Registration clinicaltrials.gov, identifier NCT02642029.
Collapse
Affiliation(s)
- Ann K. Shinn
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Aura M. Hurtado-Puerto
- Laboratory for Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, United States
| | - Youkyung S. Roh
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
| | - Victoria Ho
- Laboratory for Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, United States
| | - Melissa Hwang
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
| | - Bruce M. Cohen
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Program for Neuropsychiatric Research, McLean Hospital, Belmont, MA, United States
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Joan A. Camprodon
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Laboratory for Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
26
|
Schmahmann JD. Ferdinando Rossi Lecture: the Cerebellar Cognitive Affective Syndrome-Implications and Future Directions. CEREBELLUM (LONDON, ENGLAND) 2023; 22:947-953. [PMID: 35948744 DOI: 10.1007/s12311-022-01456-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The notion that the cerebellum is devoted exclusively to motor control has been replaced by a more sophisticated understanding of its role in neurological function, one that includes cognition and emotion. Early clinical reports, as well as physiological and behavioral studies in animal models, raised the possibility of a nonmotor role for the cerebellum. Anatomical studies demonstrate cerebellar connectivity with the distributed neural circuits linked with autonomic, sensorimotor, vestibular, associative and limbic/paralimbic brain areas. Identification of the cerebellar cognitive affective syndrome in adults and children underscored the clinical relevance of the role of the cerebellum in cognition and emotion. It opened new avenues of investigation into higher order deficits that accompany the ataxias and other cerebellar diseases, as well as the contribution of cerebellar dysfunction to neuropsychiatric and neurocognitive disorders. Brain imaging studies demonstrate the complexity of cerebellar functional topography, revealing a double representation of the sensorimotor cerebellum in the anterior lobe and lobule VIII and a triple cognitive representation in the cerebellar posterior lobe, as well as representation in the cerebellum of the intrinsic connectivity networks identified in the cerebral hemispheres. This paradigm shift in thinking about the cerebellum has been advanced by the theories of dysmetria of thought and the universal cerebellar transform, harmonizing the dual anatomic realities of homogeneously repeating cerebellar cortical microcircuitry set against the heterogeneous and topographically arranged cerebellar connections with extracerebellar structures. This new appreciation of the cerebellar incorporation into circuits that subserve cognition and emotion enables deeper understanding and improved care of our patients with cerebellar ataxias and novel cerebellar-based approaches to therapy in neuropsychiatry.
Collapse
Affiliation(s)
- Jeremy D Schmahmann
- Ataxia Center, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 100 Cambridge Street, Suite 2000, Boston, MA, 02114, USA.
| |
Collapse
|
27
|
Gatti D, Rinaldi L, Vecchi T, Ferrari C. Understanding cerebellar cognitive and social functions: methodological challenges and new directions for future transcranial magnetic stimulation studies. Curr Opin Behav Sci 2023; 53:101300. [DOI: 10.1016/j.cobeha.2023.101300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
28
|
Martin S, Frieling R, Saur D, Hartwigsen G. TMS over the pre-SMA enhances semantic cognition via remote network effects on task-based activity and connectivity. Brain Stimul 2023; 16:1346-1357. [PMID: 37704032 PMCID: PMC10615837 DOI: 10.1016/j.brs.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND The continuous decline of executive abilities with age is mirrored by increased neural activity of domain-general networks during task processing. So far, it remains unclear how much domain-general networks contribute to domain-specific processes such as language when cognitive demands increase. The current neuroimaging study explored the potential of intermittent theta-burst stimulation (iTBS) over a domain-general hub to enhance executive and semantic processing in healthy middle-aged to older adults. METHODS We implemented a cross-over within-subject study design with three task-based neuroimaging sessions per participant. Using an individualized stimulation approach, each participant received once effective and once sham iTBS over the pre-supplementary motor area (pre-SMA), a region of domain-general control. Subsequently, task-specific stimulation effects were assessed in functional MRI using a semantic and a non-verbal executive task with varying cognitive demand. RESULTS Effective stimulation increased activity only during semantic processing in visual and dorsal attention networks. Further, iTBS induced increased seed-based connectivity in task-specific networks for semantic and executive conditions with high cognitive load but overall reduced whole-brain coupling between domain-general networks. Notably, stimulation-induced changes in activity and connectivity related differently to behavior: While stronger activity of the parietal dorsal attention network was linked to poorer semantic performance, its enhanced coupling with the pre-SMA was associated with more efficient semantic processing. CONCLUSIONS iTBS modulates networks in a task-dependent manner and generates effects at regions remote to the stimulation site. These neural changes are linked to more efficient semantic processing, which underlines the general potential of network stimulation approaches in cognitive aging.
Collapse
Affiliation(s)
- Sandra Martin
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, 04103, Leipzig, Germany; Language & Aphasia Laboratory, Department of Neurology, University of Leipzig Medical Center, Liebigstrasse 20, 04103, Leipzig, Germany.
| | - Regine Frieling
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, 04103, Leipzig, Germany
| | - Dorothee Saur
- Language & Aphasia Laboratory, Department of Neurology, University of Leipzig Medical Center, Liebigstrasse 20, 04103, Leipzig, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, 04103, Leipzig, Germany; Wilhelm Wundt Institute for Psychology, Leipzig University, Neumarkt 9-19, 04109, Leipzig, Germany
| |
Collapse
|
29
|
Gil-Paterna P, Furmark T. Imaging the cerebellum in post-traumatic stress and anxiety disorders: a mini-review. Front Syst Neurosci 2023; 17:1197350. [PMID: 37645454 PMCID: PMC10460913 DOI: 10.3389/fnsys.2023.1197350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) and anxiety disorders are among the most prevalent psychiatric conditions worldwide sharing many clinical manifestations and, most likely, neural mechanisms as suggested by neuroimaging research. While the so-called fear circuitry and traditional limbic structures of the brain, particularly the amygdala, have been extensively studied in sufferers of these disorders, the cerebellum has been relatively underexplored. The aim of this paper was to present a mini-review of functional (task-activity or resting-state connectivity) and structural (gray matter volume) results on the cerebellum as reported in magnetic resonance imaging studies of patients with PTSD or anxiety disorders (49 selected studies in 1,494 patients). While mixed results were noted overall, e.g., regarding the direction of effects and anatomical localization, cerebellar structures like the vermis seem to be highly involved. Still, the neurofunctional and structural alterations reported for the cerebellum in excessive anxiety and trauma are complex, and in need of further evaluation.
Collapse
|
30
|
Yao J, Song B, Shi J, Yin K, Du W. Effects of Repetitive Transcranial Magnetic Stimulation at the Cerebellum on Working Memory. Brain Sci 2023; 13:1158. [PMID: 37626514 PMCID: PMC10452734 DOI: 10.3390/brainsci13081158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Transcranial magnetic stimulation is a widely used brain intervention technique in clinical settings. In recent years, the role of the cerebellum in learning and memory has become one of the hotspots in the field of cognitive neuroscience. In this study, we recruited 36 healthy college or graduate students as subjects and divided them into groups, with 10 to 14 subjects in each group. We performed 5 Hz and 20 Hz repeated transcranial magnetic stimulation and sham stimulation on the Crus II subregion of the cerebellum in different groups, then let them complete the 2-back working memory task before and after the stimulation. We simultaneously recorded the electroencephalogram in the experiment and analyzed the data. We found that after repeated transcranial magnetic stimulation of the cerebellum at 5 Hz and 20 Hz, the N170 and P300 event-related potential components in the prefrontal cortex showed significant differences compared to those in the sham stimulation group. Using phase-locked values to construct brain networks and conduct further analysis, we discovered that stimulation frequencies of 5 Hz and 20 Hz had significant effects on the local and global efficiency of brain networks in comparison to the sham stimulation group. The results showed that repeated transcranial magnetic stimulation on cerebellar targets can effectively affect the subjects' working memory tasks. Repeated transcranial magnetic stimulation at 5 Hz and 20 Hz could enhance the excitatory responses of the frontal lobes. After stimulation at 5 Hz and 20 Hz, the efficiency of the brain network significantly improved.
Collapse
Affiliation(s)
- Jiangnan Yao
- Nanjing Research Institute of Electronic Technology, Nanjing 210019, China
| | - Bo Song
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jingping Shi
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Kuiying Yin
- Nanjing Research Institute of Electronic Technology, Nanjing 210019, China
| | - Wentao Du
- Nanjing Research Institute of Electronic Technology, Nanjing 210019, China
| |
Collapse
|
31
|
Almeida J, Martins AR, Amaral L, Valério D, Bukhari Q, Schu G, Nogueira J, Spínola M, Soleimani G, Fernandes F, Silva AR, Fregni F, Simis M, Simões M, Peres A. The cerebellum is causally involved in episodic memory under aging. GeroScience 2023; 45:2267-2287. [PMID: 36749471 PMCID: PMC10651631 DOI: 10.1007/s11357-023-00738-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/17/2023] [Indexed: 02/08/2023] Open
Abstract
Episodic memory decline is a major signature of both normal and pathological aging. Many neural regions have been implicated in the processes subserving both episodic memory and typical aging decline. Here, we demonstrate that the cerebellum is causally involved episodic memory under aging. We show that a 12-day neurostimulation program delivered to the right cerebellum led to improvements in episodic memory performance under healthy aging that long outlast the stimulation period - healthy elderly individuals show episodic memory improvement both immediately after the intervention program and in a 4-month follow-up. These results demonstrate the causal relevance of the cerebellum in processes associated with long-term episodic memory, potentially highlighting its role in regulating and maintaining cognitive processing. Moreover, they point to the importance of non-pharmacological interventions that prevent or diminish cognitive decline in healthy aging.
Collapse
Affiliation(s)
- Jorge Almeida
- Proaction Lab, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal.
- CINEICC, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal.
| | - Ana R Martins
- Proaction Lab, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
| | - Lénia Amaral
- Proaction Lab, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
- CINEICC, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
- Department of Neuroscience, Georgetown University Medical Center, Washington, USA
| | - Daniela Valério
- Proaction Lab, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
- CINEICC, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
| | - Qasim Bukhari
- Proaction Lab, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
- CINEICC, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
| | - Guilherme Schu
- Proaction Lab, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
- CINEICC, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
| | - Joana Nogueira
- CINEICC, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
- Psychological Assessment and Psychometrics Laboratory, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
| | - Mónica Spínola
- CINEICC, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
- Psychological Assessment and Psychometrics Laboratory, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
- NOVA LINCS, University of Madeira, Caminho da Penteada, 9020-105, Funchal, Portugal
| | - Ghazaleh Soleimani
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
- Department of Psychiatry, University of Minnesota, Minneapolis, USA
| | | | - Ana R Silva
- CINEICC, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
- Psychological Assessment and Psychometrics Laboratory, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
| | - Felipe Fregni
- Spaulding Neuromodulation Center, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marcel Simis
- Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Mário Simões
- CINEICC, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
- Psychological Assessment and Psychometrics Laboratory, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
| | - André Peres
- Proaction Lab, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
- CINEICC, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
| |
Collapse
|
32
|
Eldaief MC, McMains S, Izquierdo-Garcia D, Daneshzand M, Nummenmaa A, Braga RM. Network-specific metabolic and haemodynamic effects elicited by non-invasive brain stimulation. NATURE MENTAL HEALTH 2023; 1:346-360. [PMID: 37982031 PMCID: PMC10655825 DOI: 10.1038/s44220-023-00046-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 03/06/2023] [Indexed: 11/21/2023]
Abstract
Repetitive transcranial magnetic stimulation (TMS), when applied to the dorsolateral prefrontal cortex (dlPFC), treats depression. Therapeutic effects are hypothesized to arise from propagation of local dlPFC stimulation effects across distributed networks; however, the mechanisms of this remain unresolved. dlPFC contains representations of different networks. As such, dlPFC TMS may exert different effects depending on the network being stimulated. Here, to test this, we applied high-frequency TMS to two nearby dlPFC targets functionally embedded in distinct anti-correlated networks-the default and salience networks- in the same individuals in separate sessions. Local and distributed TMS effects were measured with combined 18fluorodeoxyglucose positron emission tomography and functional magnetic resonance imaging. Identical TMS patterns caused opposing effects on local glucose metabolism: metabolism increased at the salience target following salience TMS but decreased at the default target following default TMS. At the distributed level, both conditions increased functional connectivity between the default and salience networks, with this effect being dramatically larger following default TMS. Metabolic and haemodynamic effects were also linked: across subjects, the magnitude of local metabolic changes correlated with the degree of functional connectivity changes. These results suggest that TMS effects upon dlPFC are network specific. They also invoke putative antidepressant mechanisms of TMS: network de-coupling.
Collapse
Affiliation(s)
- Mark C. Eldaief
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Brain Science, Neuroimaging Facility, Harvard University, Cambridge, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | | | - David Izquierdo-Garcia
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Mohammad Daneshzand
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Rodrigo M. Braga
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
33
|
Kirkovski M, Donaldson PH, Do M, Speranza BE, Albein-Urios N, Oberman LM, Enticott PG. A systematic review of the neurobiological effects of theta-burst stimulation (TBS) as measured using functional magnetic resonance imaging (fMRI). Brain Struct Funct 2023; 228:717-749. [PMID: 37072625 PMCID: PMC10113132 DOI: 10.1007/s00429-023-02634-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/20/2023] [Indexed: 04/20/2023]
Abstract
Theta burst stimulation (TBS) is associated with the modulation of a range of clinical, cognitive, and behavioural outcomes, but specific neurobiological effects remain somewhat unclear. This systematic literature review investigated resting-state and task-based functional magnetic resonance imaging (fMRI) outcomes post-TBS in healthy human adults. Fifty studies that applied either continuous-or intermittent-(c/i) TBS, and adopted a pretest-posttest or sham-controlled design, were included. For resting-state outcomes following stimulation applied to motor, temporal, parietal, occipital, or cerebellar regions, functional connectivity generally decreased in response to cTBS and increased in response to iTBS, though there were some exceptions to this pattern of response. These findings are mostly consistent with the assumed long-term depression (LTD)/long-term potentiation (LTP)-like plasticity effects of cTBS and iTBS, respectively. Task-related outcomes following TBS were more variable. TBS applied to the prefrontal cortex, irrespective of task or state, also produced more variable responses, with no consistent patterns emerging. Individual participant and methodological factors are likely to contribute to the variability in responses to TBS. Future studies assessing the effects of TBS via fMRI must account for factors known to affect the TBS outcomes, both at the level of individual participants and of research methodology.
Collapse
Affiliation(s)
- Melissa Kirkovski
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia.
| | - Peter H Donaldson
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Michael Do
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Bridgette E Speranza
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Natalia Albein-Urios
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Lindsay M Oberman
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
34
|
Bylemans T, Heleven E, Baetens K, Deroost N, Baeken C, Van Overwalle F. Mentalizing and narrative coherence in autistic adults: Cerebellar sequencing and prediction. Neurosci Biobehav Rev 2023; 146:105045. [PMID: 36646260 DOI: 10.1016/j.neubiorev.2023.105045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
BYLEMANS, T., et al. Mentalizing and narrative coherence in autistic adults: Cerebellar sequencing and prediction. NEUROSCI BIOBEHAV REV, 2022. - This review focuses on autistic adults and serves 4 purposes: (1) providing an overview of their difficulties regarding mentalizing (understanding others' mental states) and narrative coherence (structured storytelling), (2) highlighting the relations between both skills by examining behavioral observations and shared neural substrates, (3) providing an integrated perspective regarding novel diagnostic tools and support services, and (4) raising awareness of adult autism. We suggest that mentalizing and narrative coherence are related at the behavioral level and neural level. In addition to the traditional mentalizing network, the cerebellum probably serves as an important hub in shared cerebral networks implicated in mentalizing and narrative coherence. Future autism research and support services should tackle new questions within a framework of social cerebellar (dys)functioning.
Collapse
Affiliation(s)
- Tom Bylemans
- Brain, Body and Cognition, Department of Psychology, and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Elien Heleven
- Brain, Body and Cognition, Department of Psychology, and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Kris Baetens
- Brain, Body and Cognition, Department of Psychology, and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Natacha Deroost
- Brain, Body and Cognition, Department of Psychology, and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Chris Baeken
- Ghent University: Department of Head and Skin (UZGent), Ghent Experimental Psychiatry (GHEP) Lab, Belgium; Vrije Universiteit Brussel (VUB), Department of Psychiatry, University Hospital (UZ Brussel), Brussels, Belgium; Eindhoven University of Technology, Department of Electrical Engineering, Eindhoven, the Netherlands.
| | - Frank Van Overwalle
- Brain, Body and Cognition, Department of Psychology, and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
35
|
Lv T, You S, Qin R, Hu Z, Ke Z, Yao W, Zhao H, Xu Y, Bai F. Distinct reserve capacity impacts on default-mode network in response to left angular gyrus-navigated repetitive transcranial magnetic stimulation in the prodromal Alzheimer disease. Behav Brain Res 2023; 439:114226. [PMID: 36436729 DOI: 10.1016/j.bbr.2022.114226] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022]
Abstract
Default-mode network (DMN) may be the earliest affected network and is associated with cognitive decline in Alzheimer's disease (AD). Repetitive transcranial magnetic stimulation (rTMS) may help to modulate DMN plasticity. Still, stimulation effects substantially vary across studies and individuals. Global left frontal cortex (gLFC) connectivity, a substitute for reserve capacity, may contribute to the heterogeneous physiological effects of neuro-navigated rTMS. This study investigated the effects of left angular gyrus-navigated rTMS on DMN connectivity in different reserve capacity participants. gLFC connectivity, was computed through resting-state fMRI correlations. Thirty-one prodromal AD patients were divided into low connection group (LCG) and high connection group (HCG) by the median of gLFC connectivity. Distinct reserve capacity impacts on DMN in response to rTMS were identified in these two groups. Then, brain-behavior relationships were examined. gLFC connectivity within a certain range is directly proportional to cognitive reserve ability (i.e., LCG), and the effectiveness of functional connectivity beyond this range decreases (i.e, HCG). Moreover, LCG exhibited increased DMN connectivity and significantly positive memory improvements, while HCG showed a contrary connectivity decline and maintained or slightly improved their cognitive function after neuro-navigated rTMS treatment. The prodromal AD patients with the distinct reserve capacity may benefit differently from left angular gyrus-navigated rTMS, which may lead to increasing attention in defining personalized medicine approach of AD.
Collapse
Affiliation(s)
- Tingyu Lv
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Shengqi You
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Ruomeng Qin
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Zheqi Hu
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Zhihong Ke
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Weina Yao
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Hui Zhao
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Feng Bai
- Department of Neurology, Nanjing Drum Tower Hospital of The Affiliated Hospital of Nanjing University Medical School, and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China.
| |
Collapse
|
36
|
Liu L, Ding M, Wu J, Zhang Y, Guo S, Wang N, Wang H, Yu K, Weng Y, Luo L, Zhang J, Zhang Q, Qiu K, Wu Y, Xiao X, Zhang Q. Design and evaluation of a rodent-specific focal transcranial magnetic stimulation coil with the custom shielding application in rats. Front Neurosci 2023; 17:1129590. [PMID: 37139516 PMCID: PMC10150080 DOI: 10.3389/fnins.2023.1129590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Repetitive TMS has been used as an alternative treatment for various neurological disorders. However, most TMS mechanism studies in rodents have been based on the whole brain stimulation, the lack of rodent-specific focal TMS coils restricts the proper translation of human TMS protocols to animal models. In this study, we designed a new shielding device, which was made of high magnetic permeability material, to enhance the spatial focus of animal-use TMS coils. With the finite element method, we analyzed the electromagnetic field of the coil with and without the shielding device. Furthermore, to assess the shielding effect in rodents, we compared the c-fos expression, the ALFF and ReHo values in different groups following a 15 min 5 Hz rTMS paradigm. We found that a smaller focality with an identical core stimulation intensity was achieved in the shielding device. The 1 T magnetic field was reduced from 19.1 mm to 13 mm in diameter, and 7.5 to 5.6 mm in depth. However, the core magnetic field over 1.5 T was almost the same. Meanwhile, the area of electric field was reduced from 4.68 cm2 to 4.19 cm2, and 3.8 mm to 2.6 mm in depth. Similar to this biomimetic data, the c-fos expression, the ALFF and ReHo values showed more limited cortex activation with the use of the shielding device. However, compared to the rTMS group without the shielding application, more subcortical regions, like the striatum (CPu), the hippocampus, the thalamus, and the hypothalamus were also activated in the shielding group. This indicated that more deep stimulation may be achieved by the shielding device. Generally, compared with the commercial rodents' TMS coil (15 mm in diameter), TMS coils with the shielding device achieved a better focality (~6 mm in diameter) by reducing at least 30% of the magnetic and electric field. This shielding device may provide a useful tool for further TMS studies in rodents, especially for more specific brain area stimulation.
Collapse
Affiliation(s)
- Li Liu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ming Ding
- Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Junfa Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuwen Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Shaoqian Guo
- Nanjing Vishee Medical Technology Co., Ltd., Nanjing, China
| | - Nianhong Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Kewei Yu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuanfeng Weng
- Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Lu Luo
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingjun Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Quan Zhang
- Nanjing Vishee Medical Technology Co., Ltd., Nanjing, China
| | - Kai Qiu
- Nanjing Vishee Medical Technology Co., Ltd., Nanjing, China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Yi Wu,
| | - Xiao Xiao
- Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Xiao Xiao,
| | - Qun Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Qun Zhang,
| |
Collapse
|
37
|
Jannati A, Oberman LM, Rotenberg A, Pascual-Leone A. Assessing the mechanisms of brain plasticity by transcranial magnetic stimulation. Neuropsychopharmacology 2023; 48:191-208. [PMID: 36198876 PMCID: PMC9700722 DOI: 10.1038/s41386-022-01453-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive technique for focal brain stimulation based on electromagnetic induction where a fluctuating magnetic field induces a small intracranial electric current in the brain. For more than 35 years, TMS has shown promise in the diagnosis and treatment of neurological and psychiatric disorders in adults. In this review, we provide a brief introduction to the TMS technique with a focus on repetitive TMS (rTMS) protocols, particularly theta-burst stimulation (TBS), and relevant rTMS-derived metrics of brain plasticity. We then discuss the TMS-EEG technique, the use of neuronavigation in TMS, the neural substrate of TBS measures of plasticity, the inter- and intraindividual variability of those measures, effects of age and genetic factors on TBS aftereffects, and then summarize alterations of TMS-TBS measures of plasticity in major neurological and psychiatric disorders including autism spectrum disorder, schizophrenia, depression, traumatic brain injury, Alzheimer's disease, and diabetes. Finally, we discuss the translational studies of TMS-TBS measures of plasticity and their therapeutic implications.
Collapse
Affiliation(s)
- Ali Jannati
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Lindsay M Oberman
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Alexander Rotenberg
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA.
- Guttmann Brain Health Institute, Institut Guttmann, Barcelona, Spain.
| |
Collapse
|
38
|
Xia Y, Tang X, Hu R, Liu J, Zhang Q, Tian S, Wang W, Li C, Zhu Y. Cerebellum-Cerebrum paired target magnetic stimulation on balance function and brain network of patients with stroke: A functional near-infrared spectroscopy pilot study. Front Neurol 2022; 13:1071328. [PMID: 36619935 PMCID: PMC9813387 DOI: 10.3389/fneur.2022.1071328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) modulation over the cerebellum, primary motor cortex, and supplementary motor cortex individually can improve the balance function of patients with stroke. However, whether their combination could have a better balance modulation effect is uncertain. Therefore, we hypothesized that performing TMS over a combination of these targets can regulate the balance function of patients with stroke. We compared the effects of one-session TMS on eye-open and eye-closed balance conditions in patients with stroke, using different target pairs of unilateral cerebellar (CB-single), cerebellar-primary motor cortex (CB-M1), and cerebellar-supplementary motor area (CB-SMA) targets. A total of 31 patients with stroke were enrolled and randomly divided into three groups to receive single sessions of intermittent theta burst stimulation each. Functional near-infrared spectrum data on resting and standing task states (eye-open and eye-closed) and center of pressure parameters (eye-open and eye-closed) were collected before and after the intervention. Compared with the results in the CB-single group, five intergroup differences in the changes in the center of pressure parameters in the CB-M1 group and two significant differences in the CB-SMA group were observed after one session of intermittent theta burst stimulation. In the CB-SMA group, 12 out of the 14 parameters improved significantly in the EC condition after the intervention. Meanwhile, the functional near-infrared spectrum results showed that the CB-SMA group exhibited a significant inhibitory pattern in the resting-state functional connectivity, which was not observed in the other two groups. In conclusion, we believe that paired targeting of the CB-SMA can reshape the brain network and improve the balance function of patients with stroke.
Collapse
|
39
|
Zhang X, Ren H, Pei Z, Lian C, Su X, Lan X, Chen C, Lei Y, Li B, Guo Y. Dual-targeted repetitive transcranial magnetic stimulation modulates brain functional network connectivity to improve cognition in mild cognitive impairment patients. Front Physiol 2022; 13:1066290. [PMID: 36467674 PMCID: PMC9716076 DOI: 10.3389/fphys.2022.1066290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/07/2022] [Indexed: 10/15/2023] Open
Abstract
Background: Mild cognitive impairment (MCI) is a condition between normal aging and dementia; nearly 10-15% of MCI patients develop dementia annually. There are no effective interventions for MCI progression. Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique that has attempted to improve the overall cognitive function of MCI patients. However, it does not affect episodic memory improvement. Methods: In this study, we engaged 15 clinically diagnosed MCI patients and normal controls to explore the effect of dual-targeted rTMS on progressing cognitive function, particularly episodic memory in MCI patients. Resting-state EEG recordings and neuropsychological assessments were conducted before and after the intervention. EEG features were extracted using an adaptive algorithm to calculate functional connectivity alterations in relevant brain regions and the mechanisms of altered brain functional networks in response to dual-target rTMS. Results: The study revealed that the functional brain connectivity between the right posterior cingulate gyrus (PCC) and the right dorsal caudate nucleus (DC) was significantly reduced in MCI patients compared to normal controls (p < 0.001). Dual-target rTMS increased the strength of the reduced functional connectivity (p < 0.001), which was related to cognitive enhancement (p < 0.05). Conclusion: This study provides a new stimulation protocol for rTMS intervention. Improving the functional connectivity of the right PCC to the right DC is a possible mechanism by which rTMS improves overall cognitive and memory function in MCI patients.
Collapse
Affiliation(s)
- Xinqi Zhang
- Department of Neurology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Huixia Ren
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, China
| | - Zian Pei
- Shenzhen Bay Laboratory, Institute of Neurological Disease, Shenzhen, China
| | - Chongyuan Lian
- Shenzhen Bay Laboratory, Institute of Neurological Disease, Shenzhen, China
| | - XiaoLin Su
- Department of Neurology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xiaoyong Lan
- Shenzhen Bay Laboratory, Institute of Neurological Disease, Shenzhen, China
| | - Chanjuan Chen
- Department of Neurology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - YuHua Lei
- Department of Neurology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Baima Li
- Department of Neurology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Yi Guo
- Department of Neurology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Shenzhen Bay Laboratory, Institute of Neurological Disease, Shenzhen, China
| |
Collapse
|
40
|
Lynch CJ, Elbau IG, Ng TH, Wolk D, Zhu S, Ayaz A, Power JD, Zebley B, Gunning FM, Liston C. Automated optimization of TMS coil placement for personalized functional network engagement. Neuron 2022; 110:3263-3277.e4. [PMID: 36113473 PMCID: PMC11446252 DOI: 10.1016/j.neuron.2022.08.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/20/2022] [Accepted: 08/05/2022] [Indexed: 12/11/2022]
Abstract
Transcranial magnetic stimulation (TMS) is used to treat multiple psychiatric and neurological conditions by manipulating activity in particular brain networks and circuits, but individual responses are highly variable. In clinical settings, TMS coil placement is typically based on either group average functional maps or scalp heuristics. Here, we found that this approach can inadvertently target different functional networks in depressed patients due to variability in their functional brain organization. More precise TMS targeting should be feasible by accounting for each patient's unique functional neuroanatomy. To this end, we developed a targeting approach, termed targeted functional network stimulation (TANS). The TANS approach improved stimulation specificity in silico in 8 highly sampled patients with depression and 6 healthy individuals and in vivo when targeting somatomotor functional networks representing the upper and lower limbs. Code for implementing TANS and an example dataset are provided as a resource.
Collapse
Affiliation(s)
- Charles J Lynch
- Department of Psychiatry, Weill Cornell Medicine, 413 East 69th Street, Box 204, New York, NY 10021, USA.
| | - Immanuel G Elbau
- Department of Psychiatry, Weill Cornell Medicine, 413 East 69th Street, Box 204, New York, NY 10021, USA
| | - Tommy H Ng
- Department of Psychiatry, Weill Cornell Medicine, 413 East 69th Street, Box 204, New York, NY 10021, USA
| | - Danielle Wolk
- Department of Psychiatry, Weill Cornell Medicine, 413 East 69th Street, Box 204, New York, NY 10021, USA
| | - Shasha Zhu
- Department of Psychiatry, Weill Cornell Medicine, 413 East 69th Street, Box 204, New York, NY 10021, USA
| | - Aliza Ayaz
- Department of Psychiatry, Weill Cornell Medicine, 413 East 69th Street, Box 204, New York, NY 10021, USA
| | - Jonathan D Power
- Department of Psychiatry, Weill Cornell Medicine, 413 East 69th Street, Box 204, New York, NY 10021, USA
| | - Benjamin Zebley
- Department of Psychiatry, Weill Cornell Medicine, 413 East 69th Street, Box 204, New York, NY 10021, USA
| | - Faith M Gunning
- Department of Psychiatry, Weill Cornell Medicine, 413 East 69th Street, Box 204, New York, NY 10021, USA
| | - Conor Liston
- Department of Psychiatry, Weill Cornell Medicine, 413 East 69th Street, Box 204, New York, NY 10021, USA.
| |
Collapse
|
41
|
Siebner HR, Funke K, Aberra AS, Antal A, Bestmann S, Chen R, Classen J, Davare M, Di Lazzaro V, Fox PT, Hallett M, Karabanov AN, Kesselheim J, Beck MM, Koch G, Liebetanz D, Meunier S, Miniussi C, Paulus W, Peterchev AV, Popa T, Ridding MC, Thielscher A, Ziemann U, Rothwell JC, Ugawa Y. Transcranial magnetic stimulation of the brain: What is stimulated? - A consensus and critical position paper. Clin Neurophysiol 2022; 140:59-97. [PMID: 35738037 PMCID: PMC9753778 DOI: 10.1016/j.clinph.2022.04.022] [Citation(s) in RCA: 215] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 03/14/2022] [Accepted: 04/15/2022] [Indexed: 12/11/2022]
Abstract
Transcranial (electro)magnetic stimulation (TMS) is currently the method of choice to non-invasively induce neural activity in the human brain. A single transcranial stimulus induces a time-varying electric field in the brain that may evoke action potentials in cortical neurons. The spatial relationship between the locally induced electric field and the stimulated neurons determines axonal depolarization. The induced electric field is influenced by the conductive properties of the tissue compartments and is strongest in the superficial parts of the targeted cortical gyri and underlying white matter. TMS likely targets axons of both excitatory and inhibitory neurons. The propensity of individual axons to fire an action potential in response to TMS depends on their geometry, myelination and spatial relation to the imposed electric field and the physiological state of the neuron. The latter is determined by its transsynaptic dendritic and somatic inputs, intrinsic membrane potential and firing rate. Modeling work suggests that the primary target of TMS is axonal terminals in the crown top and lip regions of cortical gyri. The induced electric field may additionally excite bends of myelinated axons in the juxtacortical white matter below the gyral crown. Neuronal excitation spreads ortho- and antidromically along the stimulated axons and causes secondary excitation of connected neuronal populations within local intracortical microcircuits in the target area. Axonal and transsynaptic spread of excitation also occurs along cortico-cortical and cortico-subcortical connections, impacting on neuronal activity in the targeted network. Both local and remote neural excitation depend critically on the functional state of the stimulated target area and network. TMS also causes substantial direct co-stimulation of the peripheral nervous system. Peripheral co-excitation propagates centrally in auditory and somatosensory networks, but also produces brain responses in other networks subserving multisensory integration, orienting or arousal. The complexity of the response to TMS warrants cautious interpretation of its physiological and behavioural consequences, and a deeper understanding of the mechanistic underpinnings of TMS will be critical for advancing it as a scientific and therapeutic tool.
Collapse
Affiliation(s)
- Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Klaus Funke
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Aman S Aberra
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Sven Bestmann
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Robert Chen
- Krembil Brain Institute, University Health Network and Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Joseph Classen
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Marco Davare
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Anke N Karabanov
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Nutrition and Exercise, University of Copenhagen, Copenhagen, Denmark
| | - Janine Kesselheim
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Mikkel M Beck
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Giacomo Koch
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Non-invasive Brain Stimulation Unit, Laboratorio di NeurologiaClinica e Comportamentale, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - David Liebetanz
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Sabine Meunier
- Sorbonne Université, Faculté de Médecine, INSERM U 1127, CNRS 4 UMR 7225, Institut du Cerveau, F-75013, Paris, France
| | - Carlo Miniussi
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy; Cognitive Neuroscience Section, IRCCS Centro San Giovanni di DioFatebenefratelli, Brescia, Italy
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Angel V Peterchev
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Psychiatry & Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA; Department of Electrical & Computer Engineering, Duke University, Durham, NC, USA; Department of Neurosurgery, School of Medicine, Duke University, Durham, NC, USA
| | - Traian Popa
- Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, Sion, Switzerland
| | - Michael C Ridding
- University of South Australia, IIMPACT in Health, Adelaide, Australia
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ulf Ziemann
- Department of Neurology & Stroke, University Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, Germany
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Yoshikazu Ugawa
- Department of Neurology, Fukushima Medical University, Fukushima, Japan; Fukushima Global Medical Science Centre, Advanced Clinical Research Centre, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
42
|
Alzheimer disease stages identification based on correlation transfer function system using resting-state functional magnetic resonance imaging. PLoS One 2022; 17:e0264710. [PMID: 35413053 PMCID: PMC9004771 DOI: 10.1371/journal.pone.0264710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 02/15/2022] [Indexed: 11/21/2022] Open
Abstract
Alzheimer’s disease (AD) affects the quality of life as it causes; memory loss, difficulty in thinking, learning, and performing familiar tasks. Resting-state functional magnetic resonance imaging (rs-fMRI) has been widely used to investigate and analyze different brain regions for AD identification. This study investigates the effectiveness of using correlated transfer function (CorrTF) as a new biomarker to extract the essential features from rs-fMRI, along with support vector machine (SVM) ordered hierarchically, in order to distinguish between the different AD stages. Additionally, we explored the regions, showing significant changes based on the CorrTF extracted features’ strength among different AD stages. First, the process was initialized by applying the preprocessing on rs-fMRI data samples to reduce noise and retain the essential information. Then, the automated anatomical labeling (AAL) atlas was employed to divide the brain into 116 regions, where the intensity time series was calculated, and the CorrTF features were extracted for each region. The proposed framework employed the SVM classifier in two different methodologies, hierarchical and flat multi-classification schemes, to differentiate between the different AD stages for early detection purposes. The ADNI rs-fMRI dataset, employed in this study, consists of 167, 102, 129, and 114 normal, early, late mild cognitive impairment (MCI), and AD subjects, respectively. The proposed schemes achieved an average accuracy of 98.2% and 95.5% for hierarchical and flat multi-classification tasks, respectively, calculated using ten folds cross-validation. Therefore, CorrTF is considered a promising biomarker for AD early-stage identification. Moreover, the significant changes in the strengths of CorrTF connections among the different AD stages can help us identify and explore the affected brain regions and their latent associations during the progression of AD.
Collapse
|
43
|
Li H, Yuan Q, Luo YJ, Tao W. A new perspective for understanding the contributions of the cerebellum to reading: The cerebro-cerebellar mapping hypothesis. Neuropsychologia 2022; 170:108231. [DOI: 10.1016/j.neuropsychologia.2022.108231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023]
|
44
|
Liang HB, Dong L, Cui Y, Wu J, Tang W, Du X, Liu JR. Significant Structural Alterations and Functional Connectivity Alterations of Cerebellar Gray Matter in Patients With Somatic Symptom Disorder. Front Neurosci 2022; 16:816435. [PMID: 35350558 PMCID: PMC8957795 DOI: 10.3389/fnins.2022.816435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Recent studies have revealed a strong association between the cerebellum and psychiatric disorders. However, the structural changes in the cerebellar regions and functional connectivity (FC) patterns in patients with somatic symptom disorder (SSD) have not been elucidated. Methods Thirty-seven patients with SSD (29 drug-naive and 8 medicated patients) and 37 sex- and age-matched healthy controls (HCs) were recruited and underwent resting-state functional magnetic resonance imaging scans. The spatially unbiased infratentorial (SUIT) cerebellar atlas-based voxel-based morphometry was used to investigate the changes in cerebellar regional gray matter (GM). Seed-based FC was further computed to explore the pattern of abnormal FC across the whole brain. Correlations were calculated to investigate the relationship between cerebellar structural (and FC) changes and clinical characteristics. Results After controlling for age, sex, total intracranial volume, medication, and mean FD covariates, all patients with SSD had increased mean GM volume (GMV) in the posterior lobules of the cerebellum bilaterally when compared with HCs, specifically, in the bilateral cerebellar crura I and II. Patients with SSD showed significantly stronger FC between the right crura I and II and bilateral precuneus inferior parietal region, and postcentral gyrus, extending to the superior parietal lobe, cingulate gyrus, and the white matter subgyral. In addition to the two clusters, right lingual gyrus was also a surviving cluster with significantly higher FC. Partial correlation analysis revealed that the degree of regional GMV increases in the two significant clusters and the Hamilton Depression Scale (HAMD) score was negatively correlated. Moreover, the FC of right crura I and II with the left parietal lobe and right lingual gyrus were also negatively associated with the HAMD score. Conclusions SSD exhibited significant microstructural changes and changes in FC pattern in the posterior cerebellar lobe. These results shed new light on the psychological and neural substrates of SSD and may serve as a potential treatment target for SSD based on the cerebellar area.
Collapse
Affiliation(s)
- Huai-Bin Liang
- Department of Neurology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liao Dong
- Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Yangyang Cui
- Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Jing Wu
- Department of Neurology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Tang
- Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Xiaoxia Du
- Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai, China
- School of Psychology, Shanghai University of Sport, Shanghai, China
- *Correspondence: Xiaoxia Du,
| | - Jian-Ren Liu
- Department of Neurology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Jian-Ren Liu,
| |
Collapse
|
45
|
Ferrari C, Ciricugno A, Urgesi C, Cattaneo Z. Cerebellar contribution to emotional body language perception: a TMS study. Soc Cogn Affect Neurosci 2022; 17:81-90. [PMID: 31588511 PMCID: PMC8824541 DOI: 10.1093/scan/nsz074] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/23/2019] [Accepted: 09/06/2019] [Indexed: 11/14/2022] Open
Abstract
Consistent evidence suggests that the cerebellum contributes to the processing of emotional facial expressions. However, it is not yet known whether the cerebellum is recruited when emotions are expressed by body postures or movements, or whether it is recruited differently for positive and negative emotions. In this study, we asked healthy participants to discriminate between body postures (with masked face) expressing emotions of opposite valence (happiness vs anger, Experiment 1), or of the same valence (negative: anger vs sadness; positive: happiness vs surprise, Experiment 2). While performing the task, participants received online transcranial magnetic stimulation (TMS) over a region of the posterior left cerebellum and over two control sites (early visual cortex and vertex). We found that TMS over the cerebellum affected participants' ability to discriminate emotional body postures, but only when one of the emotions was negatively valenced (i.e. anger). These findings suggest that the cerebellar region we stimulated is involved in processing the emotional content conveyed by body postures and gestures. Our findings complement prior evidence on the role of the cerebellum in emotional face processing and have important implications from a clinical perspective, where non-invasive cerebellar stimulation is a promising tool for the treatment of motor, cognitive and affective deficits.
Collapse
Affiliation(s)
- Chiara Ferrari
- Department of Psychology, University of Milano–Bicocca, Milan 20126, Italy
| | - Andrea Ciricugno
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy
- IRCCS Mondino Foundation, Pavia 27100, Italy
| | - Cosimo Urgesi
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society University of Udine, Udine 33100, Italy
- Scientific Institute, IRCCS E. Medea, Neuropsychiatry and Neurorehabilitation Unit, Bosisio Parini, Lecco 23900, Italy
| | - Zaira Cattaneo
- Department of Psychology, University of Milano–Bicocca, Milan 20126, Italy
- IRCCS Mondino Foundation, Pavia 27100, Italy
| |
Collapse
|
46
|
McAfee SS, Liu Y, Sillitoe RV, Heck DH. Cerebellar Coordination of Neuronal Communication in Cerebral Cortex. Front Syst Neurosci 2022; 15:781527. [PMID: 35087384 PMCID: PMC8787113 DOI: 10.3389/fnsys.2021.781527] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Cognitive processes involve precisely coordinated neuronal communications between multiple cerebral cortical structures in a task specific manner. Rich new evidence now implicates the cerebellum in cognitive functions. There is general agreement that cerebellar cognitive function involves interactions between the cerebellum and cerebral cortical association areas. Traditional views assume reciprocal interactions between one cerebellar and one cerebral cortical site, via closed-loop connections. We offer evidence supporting a new perspective that assigns the cerebellum the role of a coordinator of communication. We propose that the cerebellum participates in cognitive function by modulating the coherence of neuronal oscillations to optimize communications between multiple cortical structures in a task specific manner.
Collapse
Affiliation(s)
- Samuel S. McAfee
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Yu Liu
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Roy V. Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX, United States
| | - Detlef H. Heck
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
- *Correspondence: Detlef H. Heck,
| |
Collapse
|
47
|
Ward HB, Brady RO, Halko MA, Lizano P. Noninvasive Brain Stimulation for Nicotine Dependence in Schizophrenia: A Mini Review. Front Psychiatry 2022; 13:824878. [PMID: 35222123 PMCID: PMC8863675 DOI: 10.3389/fpsyt.2022.824878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Individuals with schizophrenia are 10 times more likely to have a tobacco use disorder than the general population. Up to 80% of those with schizophrenia smoke tobacco regularly, a prevalence three-times that of the general population. Despite the striking prevalence of tobacco use in schizophrenia, current treatments are not tailored to the pathophysiology of this population. There is growing support for use of noninvasive brain stimulation (NIBS) to treat substance use disorders (SUDs), particularly for tobacco use in neurotypical smokers. NIBS interventions targeting the dorsolateral prefrontal cortex have been effective for nicotine dependence in control populations-so much so that transcranial magnetic stimulation is now FDA-approved for smoking cessation. However, this has not borne out in the studies using this approach in schizophrenia. We performed a literature search to identify articles using NIBS for the treatment of nicotine dependence in people with schizophrenia, which identified six studies. These studies yielded mixed results. Is it possible that nicotine has a unique effect in schizophrenia that is different than its effect in neurotypical smokers? Individuals with schizophrenia may receive additional benefit from nicotine's pro-cognitive effects than control populations and may use nicotine to improve brain network abnormalities from their illness. Therefore, clinical trials of NIBS interventions should test a schizophrenia-specific target for smoking cessation. We propose a generalized approach whereby schizophrenia-specific brain circuitry related to SUDs is be identified and then targeted with NIBS interventions.
Collapse
Affiliation(s)
- Heather Burrell Ward
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, United States.,Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Roscoe O Brady
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, United States.,Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States.,McLean Hospital, Belmont, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Mark A Halko
- McLean Hospital, Belmont, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Paulo Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
48
|
Li X, Liu N, Yang C, Zhang W, Lui S. Cerebellar gray matter volume changes in patients with schizophrenia: A voxel-based meta-analysis. Front Psychiatry 2022; 13:1083480. [PMID: 36620665 PMCID: PMC9814486 DOI: 10.3389/fpsyt.2022.1083480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In schizophrenia, the structural changes in the cerebellum are associated with patients' cognition and motor deficits. However, the findings are inconsistent owing to the heterogeneity in sample size, magnetic resonance imaging (MRI) scanners, and other factors among them. In this study, we conducted a meta-analysis to characterize the anatomical changes in cerebellar subfields in patients with schizophrenia. METHODS Systematic research was conducted to identify studies that compare the gray matter volume (GMV) differences in the cerebellum between patients with schizophrenia and healthy controls with a voxel-based morphometry (VBM) method. A coordinate-based meta-analysis was adopted based on seed-based d mapping (SDM) software. An exploratory meta-regression analysis was conducted to associate clinical and demographic features with cerebellar changes. RESULTS Of note, 25 studies comprising 996 patients with schizophrenia and 1,109 healthy controls were included in the present meta-analysis. In patients with schizophrenia, decreased GMVs were demonstrated in the left Crus II, right lobule VI, and right lobule VIII, while no increased GMV was identified. In the meta-regression analysis, the mean age and illness duration were negatively associated with the GMV in the left Crus II in patients with schizophrenia. CONCLUSION The most significant structural changes in the cerebellum are mainly located in the posterior cerebellar hemisphere in patients with schizophrenia. The decreased GMVs of these regions might partly explain the cognitive deficits and motor symptoms in patients with schizophrenia.
Collapse
Affiliation(s)
- Xing Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Naici Liu
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Chengmin Yang
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Wenjing Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
49
|
Anteraper S, Guell X, Whitfield-Gabrieli S. Big contributions of the little brain for precision psychiatry. Front Psychiatry 2022; 13:1021873. [PMID: 36339842 PMCID: PMC9632752 DOI: 10.3389/fpsyt.2022.1021873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Our previous work using 3T functional Magnetic Resonance Imaging (fMRI) parcellated the human dentate nuclei (DN), the primary output of the cerebellum, to three distinct functional zones each contributing uniquely to default-mode, salience-motor, and visual brain networks. In this perspective piece, we highlight the possibility to target specific functional territories within the cerebellum using non-invasive brain stimulation, potentially leading to the refinement of cerebellar-based therapeutics for precision psychiatry. Significant knowledge gap exists in our functional understanding of cerebellar systems. Intervening early, gauging severity of illness, developing intervention strategies and assessing treatment response, are all dependent on our understanding of the cerebello-cerebral networks underlying the pathology of psychotic disorders. A promising yet under-examined avenue for biomarker discovery is disruptions in cerebellar output circuitry. This is primarily because most 3T MRI studies in the past had to exclude cerebellum from the field of view due to limitations in spatiotemporal resolutions. Using recent technological advances in 7T MRI (e.g., parallel transmit head coils) to identify functional territories of the DN, with a focus on dentato-cerebello-thalamo-cortical (CTC) circuitry can lead to better characterization of brain-behavioral correlations and assessments of co-morbidities. Such an improved mechanistic understanding of psychiatric illnesses can reveal aspects of CTC circuitry that can aid in neuroprognosis, identification of subtypes, and generate testable hypothesis for future studies.
Collapse
Affiliation(s)
- Sheeba Anteraper
- Stephens Family Clinical Research Institute, Carle Foundation Hospital, Urbana, IL, United States.,Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, United States.,Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Xavier Guell
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Susan Whitfield-Gabrieli
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.,Department of Psychology, Northeastern University, Boston, MA, United States
| |
Collapse
|
50
|
Zhang M, He T, Wang Q. Effects of Non-invasive Brain Stimulation on Multiple System Atrophy: A Systematic Review. Front Neurosci 2021; 15:771090. [PMID: 34966257 PMCID: PMC8710715 DOI: 10.3389/fnins.2021.771090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022] Open
Abstract
Background/Objective: Multiple system atrophy (MSA) refers to a progressive neurodegenerative disease characterized by autonomic dysfunction, parkinsonism, cerebellar ataxia, as well as cognitive deficits. Non-invasive brain stimulation (NIBS) has recently served as a therapeutic technique for MSA by personalized stimulation. The primary aim of this systematic review is to assess the effects of NIBS on two subtypes of MSA: parkinsonian-type MSA (MSA-P) and cerebellar-type MSA (MSA-C). Methods: A literature search for English articles was conducted from PubMed, Embase, Web of Science, Cochrane Library, CENTRAL, CINAHL, and PsycINFO up to August 2021. Original articles investigating the therapeutics application of NIBS in MSA were screened and analyzed by two independent reviewers. Moreover, a customized form was adopted to extract data, and the quality of articles was assessed based on the PEDro scale for clinical articles. Results: On the whole, nine articles were included, i.e., five for repetitive transcranial magnetic stimulation (rTMS), two for transcranial direct current stimulation (tDCS), one for paired associative stimulation, with 123 patients recruited. The mentioned articles comprised three randomized controlled trials, two controlled trials, two non-controlled trials, and two case reports which assessed NIBS effects on motor function, cognitive function, and brain modulatory effects. The majority of articles demonstrated significant motor symptoms improvement and increased cerebellar activation in the short term after active rTMS. Furthermore, short-term and long-term effects on improvement of motor performance were significant for tDCS. As opposed to the mentioned, no significant change of motor cortical excitability was reported after paired associative stimulation. Conclusion: NIBS can serve as a useful neurorehabilitation strategy to improve motor and cognitive function in MSA-P and MSA-C patients. However, further high-quality articles are required to examine the underlying mechanisms and standardized protocol of rTMS as well as its long-term effect. Furthermore, the effects of other NIBS subtypes on MSA still need further investigation.
Collapse
Affiliation(s)
- Mengjie Zhang
- Department of Occupational Therapy, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China.,Department of Rehabilitation Sciences, School of Medicine, Tongji University, Shanghai, China
| | - Ting He
- Department of Occupational Therapy, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China.,Department of Rehabilitation Sciences, School of Medicine, Tongji University, Shanghai, China
| | - Quan Wang
- Department of Occupational Therapy, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China.,Department of Rehabilitation Sciences, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|