1
|
Zhong M, Hou W, Liu Z, Wang F, Yang J, Xu Y, Long X, Chen Y, Kang Y, Wang Y, Wang Y, Zhang M, Yang J. Temporal dynamic changes of intrinsic brain regional activity in depression with smoking. J Affect Disord 2025; 377:175-183. [PMID: 39988134 DOI: 10.1016/j.jad.2025.02.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/25/2025]
Abstract
BACKGROUND Depression is often accompanied by high levels of smoking behavior, and smoking can act as a risk factor for depression. However, there is limited neuroimaging evidence regarding the association between depression and smoking, especially the impact of this association on the brain stability remains unclear. Therefore, this study aimed to assess the interaction effect between smoking and depression from a neurodynamic perspective. METHOD We assessed the resting-state functional magnetic resonance imaging from 193 participants (55 depressed smokers; 51 depressed non-smokers; 25 healthy smokers; 62 healthy non-smokers) and calculated 3 regional activity dynamic indicators, including dynamic regional homogeneity (dReHo), dynamic amplitude of low-frequency fluctuations (dALFF), and dynamic fractional ALFF (dfALFF). Principal component analysis was conducted on these 3 dynamic indicators, and the first component was extracted for the subsequent 2 × 2 factor designs statistical analysis. RESULT We observed the interaction between smoking and depression increases the instability of regional activity in the precentral gyrus and precuneus. Compared with HCs, patients with depression showed increased instability of regional activity across widespread regions such as the precentral gyrus, thalamus, and medial frontal gyrus. No main effects of smoking were observed. In depressed smokers, the instability of regional activity in left precuneus is positively correlated with anxiety symptoms. CONCLUSIONS Our findings indicate that smoking potentially exacerbates brain abnormal instability in depression, implying a clinical need to require patients with depression to abstain from smoking.
Collapse
Affiliation(s)
- Maoxing Zhong
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Wenfei Hou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhening Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Feiwen Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jun Yang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - YiFan Xu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xinrui Long
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yaxuan Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yiping Kang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yuxi Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yiju Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Miao Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jie Yang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
2
|
Gao YJ, Meng LL, Lu ZY, Li XY, Luo RQ, Lin H, Pan ZM, Xu BH, Huang QK, Xiao ZG, Li TT, Yin E, Wei N, Liu C, Lin H. Degree centrality values in the left calcarine as a potential imaging biomarker for anxious major depressive disorder. World J Psychiatry 2025; 15:100289. [DOI: 10.5498/wjp.v15.i4.100289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/23/2024] [Accepted: 01/23/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Major depressive disorder (MDD) with comorbid anxiety is an intricate psychiatric condition, but limited research is available on the degree centrality (DC) between anxious MDD and nonanxious MDD patients.
AIM To examine changes in DC values and their use as neuroimaging biomarkers in anxious and non-anxious MDD patients.
METHODS We examined 23 anxious MDD patients, 30 nonanxious MDD patients, and 28 healthy controls (HCs) using the DC for data analysis.
RESULTS Compared with HCs, the anxious MDD group reported markedly reduced DC values in the right fusiform gyrus (FFG) and inferior occipital gyrus, whereas elevated DC values in the left middle frontal gyrus and left inferior parietal angular gyrus. The nonanxious MDD group exhibited surged DC values in the bilateral cerebellum IX, right precuneus, and opercular part of the inferior frontal gyrus. Unlike the nonanxious MDD group, the anxious MDD group exhibited declined DC values in the right FFG and bilateral calcarine (CAL). Besides, declined DC values in the right FFG and bilateral CAL negatively correlated with anxiety scores in the MDD group.
CONCLUSION This study shows that abnormal DC patterns in MDD, especially in the left CAL, can distinguish MDD from its anxiety subtype, indicating a potential neuroimaging biomarker.
Collapse
Affiliation(s)
- Yu-Jun Gao
- Department of Psychiatry, Wuhan Wuchang Hospital, Wuhan 430064, Hubei Province, China
- Department of Psychiatry, Yichang Mental Health Center, Yichang 443000, Hubei Province, China
- Institute of Mental Health, Three Gorges University, Yichang 443000, Hubei Province, China
- Department of Psychiatry, Yichang City Clinical Research Center for Mental Disorders, Yichang 443000, Hubei Province, China
| | - Li-Li Meng
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan Hospital of Psychotherapy, Wuhan 430030, Hubei Province, China
| | - Zhao-Yuan Lu
- Department of Psychiatry, Wuhan Wuchang Hospital, Wuhan 430064, Hubei Province, China
| | - Xiang-You Li
- Department of Nephrology, Wuhan Wuchang Hospital, Wuhan University of Science and Technology, Wuhan 430064, Hubei Province, China
| | - Ru-Qin Luo
- Department of Psychiatry, Wuhan Wuchang Hospital, Wuhan 430064, Hubei Province, China
| | - Hang Lin
- Department of Nephrology, Xiaogan Central Hospital, Xiaogan 432000, Hubei Province, China
| | - Zhi-Ming Pan
- Department of Psychiatry, Yichang Mental Health Center, Yichang 443000, Hubei Province, China
- Institute of Mental Health, Three Gorges University, Yichang 443000, Hubei Province, China
- Department of Psychiatry, Yichang City Clinical Research Center for Mental Disorders, Yichang 443000, Hubei Province, China
| | - Bao-Hua Xu
- Department of Psychiatry, Yichang Mental Health Center, Yichang 443000, Hubei Province, China
- Institute of Mental Health, Three Gorges University, Yichang 443000, Hubei Province, China
- Department of Psychiatry, Yichang City Clinical Research Center for Mental Disorders, Yichang 443000, Hubei Province, China
| | - Qian-Kun Huang
- Department of Psychiatry, Yichang Mental Health Center, Yichang 443000, Hubei Province, China
- Institute of Mental Health, Three Gorges University, Yichang 443000, Hubei Province, China
- Department of Psychiatry, Yichang City Clinical Research Center for Mental Disorders, Yichang 443000, Hubei Province, China
| | - Zhi-Gang Xiao
- Department of Psychiatry, Yichang Mental Health Center, Yichang 443000, Hubei Province, China
- Institute of Mental Health, Three Gorges University, Yichang 443000, Hubei Province, China
- Department of Psychiatry, Yichang City Clinical Research Center for Mental Disorders, Yichang 443000, Hubei Province, China
| | - Ting-Ting Li
- Department of Psychiatry, Yichang Mental Health Center, Yichang 443000, Hubei Province, China
- Institute of Mental Health, Three Gorges University, Yichang 443000, Hubei Province, China
- Department of Psychiatry, Yichang City Clinical Research Center for Mental Disorders, Yichang 443000, Hubei Province, China
| | - E Yin
- Department of Psychiatry, Yichang Mental Health Center, Yichang 443000, Hubei Province, China
- Institute of Mental Health, Three Gorges University, Yichang 443000, Hubei Province, China
- Department of Psychiatry, Yichang City Clinical Research Center for Mental Disorders, Yichang 443000, Hubei Province, China
| | - Nian Wei
- Department of Psychiatry, Yichang Mental Health Center, Yichang 443000, Hubei Province, China
- Institute of Mental Health, Three Gorges University, Yichang 443000, Hubei Province, China
- Department of Psychiatry, Yichang City Clinical Research Center for Mental Disorders, Yichang 443000, Hubei Province, China
| | - Chen Liu
- Department of Psychiatry, Yichang Mental Health Center, Yichang 443000, Hubei Province, China
- Institute of Mental Health, Three Gorges University, Yichang 443000, Hubei Province, China
- Department of Psychiatry, Yichang City Clinical Research Center for Mental Disorders, Yichang 443000, Hubei Province, China
| | - Hong Lin
- Department of Psychiatry, Yichang Mental Health Center, Yichang 443000, Hubei Province, China
- Institute of Mental Health, Three Gorges University, Yichang 443000, Hubei Province, China
- Department of Psychiatry, Yichang City Clinical Research Center for Mental Disorders, Yichang 443000, Hubei Province, China
| |
Collapse
|
3
|
Li T, Ding Y, Zhang L, Li H, Liu F, Li P, Zhao J, Lv D, Lang B, Guo W. Potential associations between altered brain function, cognitive deficits and gene expressing profiles in bipolar disorder across three clinical stages. J Affect Disord 2025; 374:606-615. [PMID: 39832645 DOI: 10.1016/j.jad.2025.01.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
AIMS We aimed to determine the relationship between altered brain imaging characteristics, cognitive function and profiles of gene expression of bipolar disorder (BD). METHODS Functional magnetic resonance imaging (fMRI) was presented in three groups of BD participants (depressed, manic and euthymic) and healthy controls. Regional Homogeneity (ReHo) and region of interest based functional analysis combining with neuroimaging-transcription association analysis were utilized to investigate abnormalities and their correlation with clinical symptoms. RESULTS Our data showed that all three groups of BD patients exhibited significantly altered ReHo values whilst the bilateral precuneus/posterior cingulate cortex (PCC) and lateral occipital cortex exhibited significant increase in BD. Functional connectivity (FC) revealed distinct characteristics of the precuneus/PCC-based default mode network. ReHo values in the Precuneus/middle cingulate cortex displayed significantly negative correlations with cognition and YMRS scores. Gene enrichment analysis also revealed that ReHo values were spatially correlated with pathways including chromatin organization and innate immune response. CONCLUSION Altered ReHo values in specific brain regions may be associated with different clinical stages and increased FC in brain may potentially function as BD imaging biomarkers. The heterogeneity of gene expression was associated with altered brain imaging properties in BD, contributing to distinguishing different stages of BD from healthy individuals.
Collapse
Affiliation(s)
- Tingting Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yudan Ding
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Leyi Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Jingping Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Dongsheng Lv
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Center of Mental Health, Inner Mongolia Autonomous Region, Hohhot 010010, China.
| | - Bing Lang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
4
|
He Y, Liu H, Ren M, Sun G, Ma Y, Cai M, Wang R, Wang L, Zhang T, Zhang Y. Brain injury, endocrine disruption, and immune dysregulation in HIV-positive men who have sex with men with late HIV diagnosis. Front Immunol 2025; 16:1436589. [PMID: 40176812 PMCID: PMC11961418 DOI: 10.3389/fimmu.2025.1436589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 02/28/2025] [Indexed: 04/04/2025] Open
Abstract
Background In the realm of public health, late human immunodeficiency virus (HIV) diagnosis remains prevalent and is associated with neuropsychiatric adverse events. However, there is limited documentation regarding the impact of late HIV diagnosis (LD) on brain integrity, neurotrophic factors, endocrine function, and immunity in HIV-positive men who have sex with men (MSM). Methods Participants (38 LD and 34 non-LD of MSM) underwent comprehensive infectious disease and psychiatric assessments, multimodal magnetic resonance imaging (MRI) scans, neurotrophic factors, endocrine, and immunological evaluations. Immune cell levels, along with peripheral plasma concentrations of neurotrophic factors and hormones, were measured using enzyme-linked immunosorbent assays and flow cytometry, respectively. T1-weighted images along with resting-state functional MRI were applied to assess brain function and structure while also examining correlations between imaging alterations and clinical as well as peripheral blood variables. The data for this study originated from a subset of the cohort in HIV-associated neuropsychiatric disorders research. Results Compared to participants in the non-LD group, those in the LD group showed a lower total gray matter volume (GMV), with reduced GMV primarily observed in the left supramarginal gyrus. Participants in the LD group exhibited differences in brain function with certain regions and decreased functional connectivity between these altered regions and connected structures. A two-way factorial analysis of variance examining the main effects and interactions between groups and neuropsychiatric disorders revealed significant main effects of LD on specific brain regions. Furthermore, we found that individuals in the LD group had higher levels of cortisol, a lower frequency of central memory T cells, and elevated expression levels of perforin in double-negative T cells. These imaging findings were significantly correlated with endocrine, immune, and clinical variables. Conclusion This study suggests that LD may contribute to brain injury, endocrine disruption, and immune dysregulation in HIV-positive MSM. Consequently, there is an urgent need to develop public health strategies targeting late diagnosis, with a focus on strengthening screening and early detection for high-risk populations, as well as monitoring brain injury, endocrine, and immune functions in individuals with LD, and formulating precise, individualized intervention strategies to reduce the long-term impact of LD on the health of HIV-positive MSM.
Collapse
Affiliation(s)
- Yihui He
- Postgraduate Union Training Base of Jinzhou Medical University, PLA Rocket Force Characteristic Medical Center, Beijing, China
- Department of Neurology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Hao Liu
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Sexually Transmitted Disease Control, Beijing, China
| | - Meixin Ren
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Sexually Transmitted Disease Control, Beijing, China
| | - Gaungqiang Sun
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yundong Ma
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Miaotian Cai
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Rui Wang
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Sexually Transmitted Disease Control, Beijing, China
| | - Lei Wang
- Department of Neurology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Tong Zhang
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Sexually Transmitted Disease Control, Beijing, China
| | - Yang Zhang
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Sexually Transmitted Disease Control, Beijing, China
| |
Collapse
|
5
|
Müller T, Krug S, Kayali Ö, Leichter E, Jahn N, Winter L, Krüger THC, Kahl KG, Sinke C, Heitland I. Initial evidence for neural correlates following a therapeutic intervention: altered resting state functional connectivity in the default mode network following attention training technique. Front Psychiatry 2025; 16:1479283. [PMID: 40115647 PMCID: PMC11922856 DOI: 10.3389/fpsyt.2025.1479283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/27/2025] [Indexed: 03/23/2025] Open
Abstract
Introduction The Attention Training Technique (ATT) is a psychotherapeutic intervention in Metacogntive Therapy (MCT) and aims at reducing maladaptive processes by strengthening attentional flexibility. ATT has demonstrated efficacy in treating depression on a clinical level. Here, we evaluated ATT at the neural level. We examined functional connectivity (FC) of the default mode network (DMN). Method 48 individuals diagnosed with Major Depressive Disorder (MDD) and 51 healthy controls (HC) participated in a resting-state (rs) functional magnetic resonance imaging (fMRI) experiment. The participants received either one week of ATT or a sham intervention. Rs-fMRI scans before and after treatment were compared using seed-to-voxel analysis. Results The 2x2x2 analysis did not reach significance. Nevertheless, a resting-state connectivity effect was found on the basis of a posttest at the second measurement time point in MDD. After one week, MDD patients who had received ATT intervention presented lower functional connectivity between the left posterior cingulate cortex (PCC) and the bilateral middle frontal gyrus (MFG) as well as between the right PCC and the left MFG compared to the MDD patients in the sham group. In HC we observed higher rsFC in spatially close but not the same brain regions under the same experimental condition. Conclusion We found a first hint of a change at the neural level on the basis of ATT. Whether the changes in rsFC found here indicate an improvement in the flexible shift of attentional focus due to ATT needs to be investigated in further research paradigms. Further experiments have to show whether this change in functional connectivity can be used as a specific outcome measure of ATT treatment.
Collapse
Affiliation(s)
- Torben Müller
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Svenja Krug
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Özlem Kayali
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Erik Leichter
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Niklas Jahn
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Lotta Winter
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Tillmann H C Krüger
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
- Division of Clinical Psychology and Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
- Center for Systems Neuroscience Hannover, Hanover, Germany
| | - Kai G Kahl
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Christopher Sinke
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
- Division of Clinical Psychology and Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Ivo Heitland
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| |
Collapse
|
6
|
Li H, Han M, Tang S, Yang Y. Dynamic and static brain functional abnormalities in autism patients at different developmental stages. Neuroreport 2025; 36:202-210. [PMID: 39976045 PMCID: PMC11867798 DOI: 10.1097/wnr.0000000000002139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 02/21/2025]
Abstract
To date, most studies on autism spectrum disorder (ASD) have focused on specific age ranges, while the mechanisms underlying the entire developmental process of autism patients remain unclear. The aim of this study was to investigate the alterations in brain function in autistic individuals at different developmental stages by resting-state functional MRI (rs-fMRI). We obtained rs-fMRI data from 173 ASD and 178 typical development (TD) individuals in Autism Brain Imaging Data Exchange, spanning child, adolescent, and adult groups. We characterized local brain activity using the amplitude of low-frequency fluctuations (ALFFs), regional homogeneity (ReHo), dynamic ALFF (dALFF), and dynamic ReHo (dReHo) metrics. Pearson correlation analyses were conducted on relationships between Autism Diagnostic Observation Schedule scores and activity measures in abnormal brain regions. We found abnormal ALFF values in the medial and lateral orbitofrontal gyrus and right insula cortex with ASD compared with the TD group. In addition, compared with adolescents with ASD, we found that adults with ASD exhibited an increase in dReHo values in the posterior lateral frontal lobe. We also found that changes in ALFF were associated with the severity of autism. We found abnormal activity in multiple brain regions in individuals with autism and correlated it with clinical characteristics. Our results may provide some help for further exploring the age-related neurobiological mechanisms of ASD patients.
Collapse
Affiliation(s)
- Haonan Li
- School of Medical Imaging, Binzhou Medical University, Yantai
| | - Mingxing Han
- Medical Imaging Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian
| | - Shaoting Tang
- School of Medical Imaging, Binzhou Medical University, Yantai
| | - Yaqian Yang
- Institute of Artificial Intelligence, Beihang University
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
| |
Collapse
|
7
|
Wang Z, Yang Y, Huang Z, Zhao W, Su K, Zhu H, Yin D. Exploring the transmission of cognitive task information through optimal brain pathways. PLoS Comput Biol 2025; 21:e1012870. [PMID: 40053566 PMCID: PMC11957563 DOI: 10.1371/journal.pcbi.1012870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/18/2025] [Accepted: 02/12/2025] [Indexed: 03/09/2025] Open
Abstract
Understanding the large-scale information processing that underlies complex human cognition is the central goal of cognitive neuroscience. While emerging activity flow models demonstrate that cognitive task information is transferred by interregional functional or structural connectivity, graph-theory-based models typically assume that neural communication occurs via the shortest path of brain networks. However, whether the shortest path is the optimal route for empirical cognitive information transmission remains unclear. Based on a large-scale activity flow mapping framework, we found that the performance of activity flow prediction with the shortest path was significantly lower than that with the direct path. The shortest path routing was superior to other network communication strategies, including search information, path ensembles, and navigation. Intriguingly, the shortest path outperformed the direct path in activity flow prediction when the physical distance constraint and asymmetric routing contribution were simultaneously considered. This study not only challenges the shortest path assumption through empirical network models but also suggests that cognitive task information routing is constrained by the spatial and functional embedding of the brain network.
Collapse
Affiliation(s)
- Zhengdong Wang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yifeixue Yang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Ziyi Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Wanyun Zhao
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Kaiqiang Su
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Hengcheng Zhu
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Dazhi Yin
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Changning Mental Health Center, Shanghai, China
| |
Collapse
|
8
|
Di X, Biswal BB. Comparing Intra- and Inter-individual Correlational Brain Connectivity from Functional and Structural Neuroimaging Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.03.626661. [PMID: 39677724 PMCID: PMC11642825 DOI: 10.1101/2024.12.03.626661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Inferring brain connectivity from inter-individual correlations has been applied across various neuroimaging modalities, including positron emission tomography (PET) and MRI. The variability underlying these inter-individual correlations is generally attributed to factors such as genetics, life experiences, and long-term influences like aging. This study leveraged two unique longitudinal datasets to examine intra-individual correlations of structural and functional brain measures across an extended time span. By focusing on intra-individual correlations, we aimed to minimize individual differences and investigate how aging and state-like effects contribute to brain connectivity patterns. Additionally, we compared intra-individual correlations with inter-individual correlations to better understand their relationship. In the first dataset, which included repeated scans from a single individual over 15 years, we found that intra-individual correlations in both regional homogeneity (ReHo) during resting-state and gray matter volumes (GMV) from structural MRI closely resembled resting-state functional connectivity. However, ReHo correlations were primarily driven by state-like variability, whereas GMV correlations were mainly influenced by aging. The second dataset, comprising multiple participants with longitudinal Fludeoxyglucose (18F) FDG-PET and MRI scans, replicated these findings. Both intra- and inter-individual correlations were strongly associated with resting-state functional connectivity, with functional measures (i.e., ReHo and FDG-PET) exhibiting greater similarity to resting-state connectivity than structural measures. This study demonstrated that controlling for various factors can enhance the interpretability of brain correlation structures. While inter- and intra-individual correlation patterns showed similarities, accounting for additional variables may improve our understanding of inter-individual connectivity measures.
Collapse
Affiliation(s)
- Xin Di
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Bharat B. Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | | |
Collapse
|
9
|
Zhou S, Kuang Q, Huang H, She S, Zheng Y, Li X. Resting-state degree centrality and Granger causality analysis in relation to facial working memory in patients with first-episode schizophrenia. BMC Psychiatry 2025; 25:147. [PMID: 39972263 PMCID: PMC11841165 DOI: 10.1186/s12888-025-06535-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/24/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND This study focused on the relationship between facial working memory and resting-state brain function abnormalities in patients with schizophrenia. METHODS Resting-state functional magnetic resonance imaging (rs-fMRI) data were collected from 28 first-episode schizophrenia (FSZ) patients and 33 healthy controls (HCs). Degree centrality (DC) and Granger causality analysis (GCA) were used to assess brain region connectivity. A delayed matching-to-sample task was used to examine visual working memory for faces and houses. Correlations between DC and facial working memory accuracy were analysed. Brain regions were selected as regions of interest (ROIs) and subjected to further GCA. MRI signals of the DC or GCA were extracted and analysed for correlation with clinical symptom scores. RESULT The results revealed that FSZ patients presented facial working memory impairments at high loads (t = 2.21, P = 0.03). DC values of the right middle frontal gyrus (MFG) were linked to facial working memory accuracy (P < 0.05, false discovery rate (FDR) correction). GCA indicated inhibited connectivity from the right MFG to the right inferior frontal gyrus (IFG) and right thalamus and from the right postcentral gyrus to the right MFG in FSZ patients (P < 0.05, FDR correction). The DC values of the right thalamus were correlated with negative symptom scores (r = -0.44, P = 0.02) and affective symptom scores (r = -0.57, P < 0.01). CONCLUSIONS Our findings suggest that FSZ patients may have impaired facial working memory ability, which may be associated with altered functions in multiple brain regions. Some of these functions are associated with clinical symptoms, which may provide insight into the underlying neural mechanisms of schizophrenia.
Collapse
Affiliation(s)
- Sumiao Zhou
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, 510370, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510000, China
| | - Qijie Kuang
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, 510370, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510000, China
| | - Huaqin Huang
- Department of Psychiatry, The Fourth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510000, China
| | - Shenglin She
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, 510370, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510000, China
| | - Yingjun Zheng
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, 510370, China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510000, China.
| | - Xuanzi Li
- School of Mental Health, Guangzhou Medical University, Guangzhou, 510370, China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510000, China.
| |
Collapse
|
10
|
Dalkeranidis E, Kümpers FMLM, Sinke C, Krüger THC. Investigating brain activity at rest in patients with persistent genital arousal disorder (PGAD) using functional magnetic resonance imaging. Sci Rep 2025; 15:5063. [PMID: 39934180 DOI: 10.1038/s41598-024-82695-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/09/2024] [Indexed: 02/13/2025] Open
Abstract
Persistent genital arousal disorder (PGAD) is a rare disease causing high emotional distress eminently impacting the individual's quality of life. Experts in this field assume that the disease is caused by a multifaceted interplay of different etiologies which may share a common neurobiological basis. However, only one functional neuroimaging investigation exist, and a more in-depth comprehension of the neurobiological foundation is required. Therefore, this study aims to provide new insights into how the functional integration of brain regions may relate to PGAD. By using the functional magnetic resonance imaging (fMRI) technique, functional connectivity at rest (rs-FC) was compared between patients suffering PGAD (n = 26) and healthy controls (n = 26). Patients with PGAD showed different pattern in connectivity within brain structures putatively associated with the psychological and somatic dimensions of the disease including the right amygdala, left anterior cingulate cortex, right insula cortex, thalamic nuclei and prefrontal regions as seeds. The majority of these showed differences in brain connectivity pattern to the precuneus and prefrontal regions. The study offers preliminary insights into the characteristics and relevant neural mechanisms of PGAD. Nevertheless, since this study did not identify any peripheral correlates that would corroborate the interpretation of these findings, they were interpreted from a more theoretical perspective, thereby offering potential areas of focus for future research.
Collapse
Affiliation(s)
- Eleni Dalkeranidis
- Division of Clinical Psychology and Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hanover, Germany
| | - Franziska M L M Kümpers
- Division of Clinical Psychology and Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hanover, Germany
- Department of Psychiatry and Psychotherapy, Medical Faculty, LVR-Klinikum Düsseldorf, Heinrich-Heine-University, Duesseldorf, Germany
| | - Christopher Sinke
- Division of Clinical Psychology and Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hanover, Germany
| | - Tillmann H C Krüger
- Division of Clinical Psychology and Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hanover, Germany.
- Center for Systems Neuroscience, Bünteweg 2, 30559, Hanover, Germany.
| |
Collapse
|
11
|
Lu ZK, Huang Y, Wang B, Zheng Q, Bai PY, Guo WL, Bian WJ, Niu JL. Altered resting-state functional brain activity in patients with chronic post-burn pruritus. Burns 2025; 51:107305. [PMID: 39546823 DOI: 10.1016/j.burns.2024.107305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/16/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Pruritus, a common symptom of burn wounds, arises from skin tissue damage and abnormal tissue healing. Chronic post-burn pruritus (CPBP) is defined as itching that persists for six weeks or more. The brain mechanisms underlying CPBP are not understood adequately. This study aims to explore abnormal brain function in CPBP patients and identify potential pathogenesis of pruritus. MATERIALS AND METHODS Twenty patients with CPBP and twenty healthy controls (HCs) participated in the study and underwent resting-state functional magnetic resonance imaging (fMRI) scans. Brain activity was evaluated using regional homogeneity (ReHo), amplitude of low-frequency fluctuations (ALFF), and fractional ALFF (fALFF) measures. Preprocessing of fMRI data involved steps such as slice timing correction, motion correction, and nuisance regression to account for physiological noise and head motion. Statistical analyses included two-sample t-tests to compare ReHo, ALFF, and fALFF values between CPBP patients and HCs, with age as a covariate, and Spearman correlation analysis to explore relationships between brain activity measures and clinical characteristics. RESULTS The study revealed significant differences in brain activity between CPBP patients and HCs. CPBP patients exhibited altered higher ReHo in regions including the bilateral middle frontal gyrus, medial superior frontal gyrus, precuneus, left insula, right caudate, and bilateral cerebellar tonsils, with decreased ReHo in the right precentral gyrus. ALFF analysis showed increased activity in the bilateral middle frontal gyrus, medial superior frontal gyrus, right precuneus, and right inferior frontal gyrus, and decreased ALFF in the left precentral gyrus and right postcentral gyrus. fALFF values were notably higher in the bilateral medial superior frontal gyrus and precuneus. Several brain regions with significant differences in ReHo, ALFF, and fALFF were extensively correlated with the burned area and pruritus scale scores. CONCLUSION Our data suggest that patients with CPBP show alterations in ReHo, ALFF, and fALFF values primarily in brain regions associated with the default mode network and sensorimotor areas. These results may provide valuable insights relevant to the neuropathology of CPBP.
Collapse
Affiliation(s)
- Zhi-Kai Lu
- Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China; CT Room, General Hospital of Tisco, The Sixth Hospital of Shanxi Medical University, Taiyuan 030008, Shanxi Province, China
| | - Yin Huang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China
| | - Bin Wang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China
| | - Qian Zheng
- Department of Radiology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Pei-Yi Bai
- Department of Burns, General Hospital of Tisco, The Sixth Hospital of Shanxi Medical University, Taiyuan 030008, Shanxi Province, China
| | - Wan-Li Guo
- Department of Burns, General Hospital of Tisco, The Sixth Hospital of Shanxi Medical University, Taiyuan 030008, Shanxi Province, China
| | - Wen-Jin Bian
- Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Jin-Liang Niu
- Department of Radiology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China.
| |
Collapse
|
12
|
Shakeel MK, Metzak PD, Lasby M, Long X, Souza R, Bray S, Goldstein BI, MacQueen G, Wang J, Kennedy SH, Addington J, Lebel C. Brain connectomes in youth at risk for serious mental illness: a longitudinal perspective. Brain Imaging Behav 2025; 19:82-98. [PMID: 39511103 DOI: 10.1007/s11682-024-00953-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 11/15/2024]
Abstract
Identifying biomarkers for serious mental illnesses (SMI) has significant implications for prevention and early intervention. In the current study, changes in whole brain structural and functional connectomes were investigated in youth at transdiagnostic risk over a one-year period. Based on clinical assessments, participants were assigned to one of 5 groups: healthy controls (HC; n = 33), familial risk for serious mental illness (stage 0; n = 31), mild symptoms (stage 1a; n = 37), attenuated syndromes (stage 1b; n = 61), or discrete disorder (transition; n = 9). Constrained spherical deconvolution was used to generate whole brain tractography maps, which were then used to calculate connectivity matrices for graph theory analysis. Graph theory was also used to analyze correlations of functional magnetic resonance imaging (fMRI) signal between pairs of brain regions. Linear mixed models revealed structural and functional abnormalities in global metrics of small world lambda, and resting state networks involving the fronto-parietal, default mode, and deep grey matter networks, along with the visual and dorsal attention networks. Machine learning analysis additionally identified changes in nodal metrics of betweenness centrality in the angular gyrus and bilateral temporal gyri as potential features which can discriminate between the groups. Our findings further support the view that abnormalities in large scale networks (particularly those involving fronto-parietal, temporal, default mode, and deep grey matter networks) may underlie transdiagnostic risk for SMIs.
Collapse
Affiliation(s)
- Mohammed K Shakeel
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
- Department of Psychology, St.Mary's University, Calgary, AB, Canada.
- Mathison Centre, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada.
| | - Paul D Metzak
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Mike Lasby
- Department of Electrical and Software Engineering, University of Calgary, Calgary, AB, Canada
| | - Xiangyu Long
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Department of Radiology, Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Department of Radiology, Child and Adolescent Imaging Research Program, Calgary, AB, Canada
| | - Roberto Souza
- Department of Electrical and Software Engineering, University of Calgary, Calgary, AB, Canada
| | - Signe Bray
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Department of Radiology, Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Department of Radiology, Child and Adolescent Imaging Research Program, Calgary, AB, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Center for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Glenda MacQueen
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - JianLi Wang
- Department of Community Health and Epidemiology, Faculty of Medicine, Dalhousie University, Nova Scotia, Canada
| | - Sidney H Kennedy
- Department of Psychiatry, University Health Network, Toronto, ON, Canada
- Department of Psychiatry, St. Michael's Hospital, Toronto, ON, Canada
- Arthur Sommer Rotenberg Chair in Suicide and Depression Studies, St. Michael's Hospital, Toronto, ON, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Jean Addington
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Catherine Lebel
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Department of Radiology, Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Department of Radiology, Child and Adolescent Imaging Research Program, Calgary, AB, Canada
| |
Collapse
|
13
|
Zhang Y, He Y, Fang Y, Cai M, Sun G, Wang R, Zhen J, Zhang Y, Li Z, Ma Y, Zhang T. Brain function abnormalities and inflammation in HIV-positive men who have sex with men with depressive disorders. Front Psychiatry 2025; 15:1438085. [PMID: 39902245 PMCID: PMC11788281 DOI: 10.3389/fpsyt.2024.1438085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 12/27/2024] [Indexed: 02/05/2025] Open
Abstract
Background Depressive disorders are highly prevalent among people with HIV (PWH) and are related to aberrant inflammation and immune responses. However, there is currently a lack of investigation into the neurological, inflammatory, endocrine, and immune aspects of HIV-associated depressive disorders (HADD). Methods The study involved 33 HIV-positive men who have sex with men with depressive disorders (HADD group) and 47 without neuropsychiatric disorders (HIV control group). Participants underwent resting-state functional magnetic resonance imaging (rs-fMRI) scans and assessments of peripheral blood. Peripheral blood cytokines, plasma concentrations of hormone and neurotrophic factors, and immune cell levels were determined using liquid chip, enzyme-linked immunosorbent assay, and flow cytometry, respectively. The correlation of imaging alterations with clinical variables and peripheral blood indicators was assessed. Results Compared to the HIV control group, the HADD group exhibited a higher fractional amplitude of low-frequency fluctuations in the left superior parietal gyrus, lower regional homogeneity in the left precentral gyrus, and reduced voxel-wise functional connectivity for the seed region in the right precentral gyrus with clusters in the right cuneus, etc. Furthermore, the HADD group had higher levels of interferon-gamma, a higher frequency of non-classical monocytes, and higher expression levels of perforin and CD38 on specific cells. These imaging results were significantly correlated with peripheral blood indicators and clinical variables. Conclusion This rs-fMRI study provides considerable evidence for abnormal intrinsic brain activity in people with HADD. Furthermore, our data also indicate the detrimental effects of depression-related inflammation on PWH. Therefore, it is imperative to increase attention to HADD and implement effective preventive interventions accordingly.
Collapse
Affiliation(s)
- Yang Zhang
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Sexually Transmitted Disease Control, Beijing, China
| | - Yihui He
- Postgraduate Union Training Base of Jinzhou Medical University, PLA Rocket Force Characteristic Medical Center, Beijing, China
- Department of Neurology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yuan Fang
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Sexually Transmitted Disease Control, Beijing, China
| | - Miaotian Cai
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Guangqiang Sun
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Rui Wang
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Sexually Transmitted Disease Control, Beijing, China
| | - Jiaxin Zhen
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Sexually Transmitted Disease Control, Beijing, China
| | - Yulin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zhen Li
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of HIV/AIDS Research, Beijing, China
| | - Yundong Ma
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Tong Zhang
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Sexually Transmitted Disease Control, Beijing, China
| |
Collapse
|
14
|
Fang Y, Zhang J, Wang L, Wang Q, Liu M. ACTION: Augmentation and computation toolbox for brain network analysis with functional MRI. Neuroimage 2025; 305:120967. [PMID: 39716522 PMCID: PMC11726259 DOI: 10.1016/j.neuroimage.2024.120967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/09/2024] [Accepted: 12/06/2024] [Indexed: 12/25/2024] Open
Abstract
Functional magnetic resonance imaging (fMRI) has been increasingly employed to investigate functional brain activity. Many fMRI-related software/toolboxes have been developed, providing specialized algorithms for fMRI analysis. However, existing toolboxes seldom consider fMRI data augmentation, which is quite useful, especially in studies with limited or imbalanced data. Moreover, current studies usually focus on analyzing fMRI using conventional machine learning models that rely on human-engineered fMRI features, without investigating deep learning models that can automatically learn data-driven fMRI representations. In this work, we develop an open-source toolbox, called Augmentation and Computation Toolbox for braIn netwOrk aNalysis (ACTION), offering comprehensive functions to streamline fMRI analysis. The ACTION is a Python-based and cross-platform toolbox with graphical user-friendly interfaces. It enables automatic fMRI augmentation, covering blood-oxygen-level-dependent (BOLD) signal augmentation and brain network augmentation. Many popular methods for brain network construction and network feature extraction are included. In particular, it supports constructing deep learning models, which leverage large-scale auxiliary unlabeled data (3,800+ resting-state fMRI scans) for model pretraining to enhance model performance for downstream tasks. To facilitate multi-site fMRI studies, it is also equipped with several popular federated learning strategies. Furthermore, it enables users to design and test custom algorithms through scripting, greatly improving its utility and extensibility. We demonstrate the effectiveness and user-friendliness of ACTION on real fMRI data and present the experimental results. The software, along with its source code and manual, can be accessed online.
Collapse
Affiliation(s)
- Yuqi Fang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Junhao Zhang
- School of Mathematics Science, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Linmin Wang
- School of Mathematics Science, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Qianqian Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Mingxia Liu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
15
|
Lai M, Jiang P, Xu P, Luo D, Bao W, Li J, Xu J. Effects of childhood trauma on sustained attention in major depressive disorder: the mediating role of brain activity and functional connectivity. BMC Psychiatry 2024; 24:918. [PMID: 39695465 DOI: 10.1186/s12888-024-06385-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Sustained attention deficits were reported more significant in patients with major depressive disorder (MDD) than in healthy controls (HCs), and are pivotal in both the development and aggravation of depression. Childhood trauma is also common in MDD and the exposure to childhood trauma may impede sustained attention and increase the treatment resistance in MDD. However, the underlying neuro-mechanisms link the childhood trauma to sustained attention deficits in MDD remain unclear. METHODS We collected resting-state functional magnetic resonance imaging data, and measured childhood trauma severity using the Childhood Trauma Questionnaire and sustained attention using the Continuous Performance Test, Identical Pairs version. After excluding subjects with significant head movement, 45 MDDs and 54 HCs were included in the analysis. We compared fractional amplitude of low-frequency fluctuation (fALFF) between the groups, conducted whole-brain correlation analysis between the fALFF and sustained attention in the MDD group, and defined significant regions as the regions of interest for the seed-to-whole brain functional connectivity (FC) analysis. We further performed mediation analyses to investigate the relationships among the childhood trauma, fALFF and FC values, and the level of sustained attention in the MDD group. RESULTS Compared with HCs, MDDs exhibited higher fALFF in the right middle frontal gyrus and left inferior frontal gyrus, and lower fALFF in the bilateral insular cortex, left medial orbital superior frontal gyrus and left angular gyrus (ANG.L). Whole-brain correlation analysis showed that impaired sustained attention was associated with increased fALFF in the left postcentral gyrus (PoCG.L), and FC of PoCG.L-left precentral gyrus (PreCG.L) and ANG.L-right superior temporal gyrus (STG.R) in the MDD group. Furthermore, mediation analyses showed that the fALFF in PoCG.L, and FC of PoCG.L-PreCG.L and ANG.L-STG.R mediated the relationship between the childhood trauma and sustained attention in the MDD group. CONCLUSION The fALFF in PoCG.L, and FC of PoCG.L-PreCG.L and ANG.L-STG.R might be potential neural substrate in the association between the childhood trauma and poor sustained attention in the MDDs, and might serve as potential intervention targets for the treatment of sustained attention deficits in MDDs with childhood trauma history.
Collapse
Affiliation(s)
- Mingfeng Lai
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, 610041, PR China
| | - Ping Jiang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
- West China Hospital, West China Medical Publishers, Sichuan University, Chengdu, 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Peiwei Xu
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, 610041, PR China
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Dan Luo
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, 610041, PR China
| | - Wenxin Bao
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, 610041, PR China
| | - Jing Li
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, 610041, PR China.
| | - Jiajun Xu
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
16
|
Bao YW, Wang ZJ, Shea YF, Chiu PKC, Kwan JS, Chan FHW, Mak HKF. Combined Quantitative amyloid-β PET and Structural MRI Features Improve Alzheimer's Disease Classification in Random Forest Model - A Multicenter Study. Acad Radiol 2024; 31:5154-5163. [PMID: 39003227 DOI: 10.1016/j.acra.2024.06.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/18/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
RATIONALE AND OBJECTIVES Prior to clinical presentations of Alzheimer's Disease (AD), neuropathological changes, such as amyloid-β and brain atrophy, have accumulated at the earlier stages of the disease. The combination of such biomarkers assessed by multiple modalities commonly improves the likelihood of AD etiology. We aimed to explore the discriminative ability of Aβ PET features and whether combining Aβ PET and structural MRI features can improve the classification performance of the machine learning model in older healthy control (OHC) and mild cognitive impairment (MCI) from AD. MATERIAL AND METHODS We collected 94 AD patients, 82 MCI patients, and 85 OHC from three different cohorts. 17 global/regional Aβ features in Centiloid, 122 regional volume, and 68 regional cortical thickness were extracted as imaging features. Single or combined modality features were used to train the random forest model on the testing set. The top 10 features were sorted based on the Gini index in each binary classification. RESULTS The results showed that AUC scores were 0.81/0.86 and 0.69/0.68 using sMRI/Aβ PET features on the testing set in differentiating OHC and MCI from AD. The performance was improved while combining two-modality features with an AUC of 0.89 and an AUC of 0.71 in two classifications. Compared to sMRI features, particular Aβ PET features contributed more to differentiating AD from others. CONCLUSION Our study demonstrated the discriminative ability of Aβ PET features in differentiating AD from OHC and MCI. A combination of Aβ PET and structural MRI features can improve the RF model performance.
Collapse
Affiliation(s)
- Yi-Wen Bao
- Department of Medical Imaging Center, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China (Y-W.B.)
| | - Zuo-Jun Wang
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China (Z-J.W., H.K-F.M.)
| | - Yat-Fung Shea
- Department of Medicine, Queen Mary Hospital, Hong Kong SAR, China (Y-F.S., P.K-C.C., J.S.K., F.H-W.C.)
| | - Patrick Ka-Chun Chiu
- Department of Medicine, Queen Mary Hospital, Hong Kong SAR, China (Y-F.S., P.K-C.C., J.S.K., F.H-W.C.)
| | - Joseph Sk Kwan
- Department of Medicine, Queen Mary Hospital, Hong Kong SAR, China (Y-F.S., P.K-C.C., J.S.K., F.H-W.C.)
| | - Felix Hon-Wai Chan
- Department of Medicine, Queen Mary Hospital, Hong Kong SAR, China (Y-F.S., P.K-C.C., J.S.K., F.H-W.C.)
| | - Henry Ka-Fung Mak
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China (Z-J.W., H.K-F.M.).
| |
Collapse
|
17
|
Li K, Zhang R, Feng T. Functional connectivity in procrastination and emotion regulation. Brain Cogn 2024; 182:106240. [PMID: 39515273 DOI: 10.1016/j.bandc.2024.106240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Procrastination, an irrational delay of intended action, leads to numerous adverse effects in many life domains, such as low academic performance, poor mental health, and financial distress. Previous studies have revealed a substantial negative correlation between emotional regulation and procrastination. However, the neural basis for the association between emotion regulation and procrastination remains unclear. Therefore, we employed the voxel-based morphometry (VBM) and resting-state functional connectivity (RSFC) methods to explore the neural substrates underlying how emotion regulation is responsible for procrastination (N = 243). In line with our hypothesis, the results showed a significant negative correlation between emotion regulation ability and procrastination. Additionally, the VBM analysis showed that emotion regulation ability was positively correlated with gray matter (GM) volumes in the right dorsal-lateral prefrontal cortex (dlPFC). The mediation analysis revealed that emotion regulation ability mediated the relationship between the GM volumes of the right dlPFC and procrastination. Furthermore, the RSFC results indicated that right dlPFC-left insula functional connectivity was positively associated with emotion regulation ability. Emotion regulation ability further mediated the relationship between the right dlPFC-left insula functional connectivity and procrastination. The current findings suggest that the neural pathway related to cognitive control over aversive emotion may be responsible for the close relationship between emotion regulation and procrastination, which provides a novel perspective for explaining the tight association between emotion regulation and procrastination.
Collapse
Affiliation(s)
- Keli Li
- Faculty of Psychology, Southwest University, Chongqing, China.
| | - Rong Zhang
- Faculty of Psychology, Southwest University, Chongqing, China.
| | - Tingyong Feng
- Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China.
| |
Collapse
|
18
|
Zhou Y, Liu Y, Yang C, Zhang X, Liu R, Chen H. Motor impulsivity and spicy food craving: A mediation analysis of insula-based resting state functional connectivity. Brain Imaging Behav 2024; 18:1407-1417. [PMID: 39313561 DOI: 10.1007/s11682-024-00932-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2024] [Indexed: 09/25/2024]
Abstract
In China, the rate of spicy food consumption is rising, and chili pepper is among the most popular spicy foods consumed nationwide. However, little effort has been made to understand the mechanism behind spicy food craving. This exploratory study aimed to investigate differences in insula-based resting state functional connectivity (rsFC) between spicy food cravers and non-cravers, and the association between rsFC, impulsivity and spicy food craving. A group of extreme cravers (n = 49) and a group of age- and sex-matched non-cravers (n = 46) completed a resting-state fMRI scan, during which participants were instructed to keep their eyes closed, to not think of anything in particular, and to remain awake. Participants completed the Spicy Food Craving Questionnaire, Barratt Impulsiveness Scale, Sensation Seeking Scale and Positive and Negative Affect Schedule, and rated the frequency of spicy food intake. Results revealed increased insula-occipital lobe resting-state functional connectivity in individuals with spicy food cravings, and the positive correlations between insula-middle occipital gyrus rsFC, impulsivity and spicy food craving. Specifically, the insula-middle occipital gyrus rsFC strength mediated the relationship between the motor impulsivity and spicy food craving. It is hoped that our exploratory findings may shed new insights into the neural mechanisms of spicy food craving and motivate further exploration of spicy food craving in diverse contexts and cultures.
Collapse
Affiliation(s)
- Yizhou Zhou
- School of Education, Chongqing Normal University, Chongqing, China
| | - Yong Liu
- School of Psychology, Southwest University, Chongqing, China
| | - Chao Yang
- School of Psychology, Guizhou Normal University, Guiyang, China
| | - Xuemeng Zhang
- School of Education, Chongqing Normal University, Chongqing, China
| | - Rensijing Liu
- The Chinese University of Hong Kong, N.T. Hong Kong, Sha Tin, China
| | - Hong Chen
- School of Psychology, Southwest University, Chongqing, China.
| |
Collapse
|
19
|
Guo ZP, Chen L, Tang LR, Gao Y, Qu M, Wang L, Liu CH. The differential orbitofrontal activity and connectivity between atypical and typical major depressive disorder. Neuroimage Clin 2024; 45:103717. [PMID: 39613493 PMCID: PMC11636129 DOI: 10.1016/j.nicl.2024.103717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/24/2024] [Accepted: 11/24/2024] [Indexed: 12/01/2024]
Abstract
OBJECTIVE Atypical major depressive disorder (MDD) is a distinct subtype of MDD, characterized by increased appetite and/or weight gain, excessive sleep, leaden paralysis, and interpersonal rejection sensitivity. Delineating different neural circuits associated with atypical and typical MDD would better inform clinical personalized interventions. METHODS Using resting-state fMRI, we investigated the voxel-level regional homogeneity (ReHo) and functional connectivity (FC) in 55 patients with atypical MDD, 51 patients with typical MDD, and 49 healthy controls (HCs). Support vector machine (SVM) approaches were applied to examine the validity of the findings in distinguishing the two types of MDD. RESULTS Compared to patients with typical MDD and HCs, patients with atypical MDD had increased ReHo values in the right lateral orbitofrontal cortex (OFC) and enhanced FC between the right lateral OFC and right dorsolateral prefrontal cortex (dlPFC), and between the right striatum and left OFC. The ReHo in the right lateral OFC and the significant FCs found were significantly correlated with body mass index (BMI) in all groups of participants with MDD. The connectivity of the right striatum and left OFC was positively correlated with the retardation scores in the atypical MDD group. Using the ReHo of the right lateral OFC as a feature, we achieved 76.42% accuracy to differentiate atypical MDD from typical MDD. CONCLUSION Our findings show that atypical MDD might be associated with altered OFC activity and connectivity. Furthermore, our findings highlight the key role of lateral OFC in atypical MDD, which may provide valuable information for future personalized interventions.
Collapse
Affiliation(s)
- Zhi-Peng Guo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Lei Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Li-Rong Tang
- Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Yue Gao
- Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Miao Qu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Lihong Wang
- Department of Psychiatry, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Chun-Hong Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Institute of Traditional Chinese Medicine, Beijing 100010, China.
| |
Collapse
|
20
|
Liu X, Zhao Y, Li J, Suo X, Gong Q, Wang S. Brain structure and functional connectivity linking childhood cumulative trauma to COVID-19 vicarious traumatization. J Child Psychol Psychiatry 2024; 65:1407-1418. [PMID: 38629717 DOI: 10.1111/jcpp.13989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND The COVID-19 pandemic has caused some individuals to experience vicarious traumatization (VT), an adverse psychological reaction to those who are primarily traumatized, which may negatively impact one's mental health and well-being and has been demonstrated to vary with personal trauma history. The neural mechanism of VT and how past trauma history affects current VT remain largely unknown. This study aimed to identify neurobiological markers that track individual differences in VT and reveal the neural link between childhood cumulative trauma (CCT) and VT. METHODS We used structural and resting-state functional magnetic resonance imaging before the pandemic to identify prospective brain markers for COVID-related VT by correlating individuals' VT levels during the pandemic with the gray matter volume (GMV) and seed-based resting-state functional connectivity (RSFC) and examined how these brain markers linked CCT to VT in a sample of general young adults (N = 115/100). RESULTS Whole-brain GMV-behavior correlation analysis showed that VT was positively associated with GMV in the right dorsolateral prefrontal gyrus (DLPFC). Using the cluster derived from the GMV-behavior correlation analysis as the seed region, we further revealed that the RSFC between the right DLPFC and right precuneus was negatively associated with VT. Importantly, the right DLPFC volume and DLPFC-precuneus RSFC mediated the effect of CCT on VT. These findings remained unaffected by factors such as family socioeconomic status, other stressful life events, and general mental health. CONCLUSIONS Overall, our study presents structural and functional brain markers for VT and highlights these brain-based markers as a potential neural mechanism linking CCT to COVID-related VT, which has implications for treating and preventing the development of trauma-related mental disorders.
Collapse
Affiliation(s)
- Xiqin Liu
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Yajun Zhao
- School of Education and Psychology, Southwest Minzu University, Chengdu, China
| | - Jingguang Li
- College of Teacher Education, Dali University, Dali, China
| | - Xueling Suo
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Qiyong Gong
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Song Wang
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
21
|
Forlim CG, Klock L, Gallinat J, Kühn S. Altered resting-state functional connectivity in a thalamo-cortico-cerebellar network in patients with schizophrenia. Sci Rep 2024; 14:26284. [PMID: 39487353 PMCID: PMC11530429 DOI: 10.1038/s41598-024-78297-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024] Open
Abstract
The diagnosis of schizophrenia is associated with a complex psychopathology related to disrupted brain circuitry causing a failure in coordinating information across brain sites with no consensus regarding the mechanisms. Although schizophrenia is well-studied, the great majority of studies investigated pre-selected ROIs or Seed-based connectivity. Whole brain ROI-wise studies that consider all ROIs available simultaneously are lacking. This technique helps understand large- and local-scale dynamics of information exchange across the whole brain. We investigated ROI-wise whole brain networks in 35 participants diagnosed with schizophrenia and 41 control participants. To unveil dysfunctions in brain subnetworks and to characterize network topology, we applied a statistical tool specially developed for network comparison called network-based statistic and graph theory. We observed a hyperconnected thalamo-cortico-cerebellar subnetwork in participants with schizophrenia; nodal analysis revealed higher number of thalamic connections. Our results suggest disruptions at the local level of the subnetwork rather than globally spread across the brain and driven by hyperconnectivity. Importantly, this subnetwork emerged from an exploratory analysis directly comparing ROI-wise whole brain network. This fact makes it an important contribution to the field as additional evidence, demonstrating the high reliability of malfunction in the local thalamo-cortico-cerebellar network.
Collapse
Affiliation(s)
- Caroline Garcia Forlim
- Clinic and Policlinic for Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Martinistraße, 52, W37, EG, Room 107/109, 20246, Hamburg, Germany.
- Center for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany.
| | - Leonie Klock
- Clinic and Policlinic for Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Martinistraße, 52, W37, EG, Room 107/109, 20246, Hamburg, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jürgen Gallinat
- Clinic and Policlinic for Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Martinistraße, 52, W37, EG, Room 107/109, 20246, Hamburg, Germany
| | - Simone Kühn
- Clinic and Policlinic for Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Martinistraße, 52, W37, EG, Room 107/109, 20246, Hamburg, Germany.
- Center for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany.
| |
Collapse
|
22
|
Demirlek C, Verim B, Zorlu N, Demir M, Yalincetin B, Eyuboglu MS, Cesim E, Uzman-Özbek S, Süt E, Öngür D, Bora E. Functional brain networks in clinical high-risk for bipolar disorder and psychosis. Psychiatry Res 2024; 342:116251. [PMID: 39488942 DOI: 10.1016/j.psychres.2024.116251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/20/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
Abnormal connectivity in the brain has been linked to the pathophysiology of severe mental illnesses, including bipolar disorder and schizophrenia. The current study aimed to investigate large-scale functional networks and global network metrics in clinical high-risk for bipolardisorder (CHR-BD, n = 25), clinical high-risk for psychosis (CHR-P, n = 30), and healthy controls (HCs, n = 19). Help-seeking youth at CHR-BD and CHR-P were recruited from the early intervention program at Dokuz Eylul University, Izmir, Turkey. Resting-state functional magnetic resonance imaging scans were obtained from youth at CHR-BD, CHR-P, and HCs. Graph theoretical analysis and network-based statistics were employed to construct and examine the topological features of the whole-brain metrics and large-scale functional networks. Connectivity was increased (i) between the visual and default mode, (ii) between the visual and salience, (iii) between the visual and cingulo-opercular networks, and decreased (i) within the default mode and (ii) between the default mode and fronto-parietal networks in the CHR-P compared to HCs. Decreased global efficiency was found in CHR-P compared to CHR-BD. Functional networks were not different between CHR-BD and HCs. Global efficiency was negatively correlated with subthreshold positive symptoms and thought disorder in the high-risk groups. The current results suggest disrupted networks in CHR-P compared to HCs and CHR-BD. Moreover, transdiagnostic psychosis features are linked to functional brain networks in the at-risk groups. However, given the small, medicated sample, results are exploratory and hypothesis-generating.
Collapse
Affiliation(s)
- Cemal Demirlek
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA; Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Burcu Verim
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Nabi Zorlu
- Department of Psychiatry, Katip Celebi University, Ataturk Education and Research Hospital, Izmir, Turkey
| | - Muhammed Demir
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Berna Yalincetin
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Merve S Eyuboglu
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Ezgi Cesim
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Simge Uzman-Özbek
- Department of Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ekin Süt
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Dost Öngür
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Emre Bora
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey; Department of Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey; Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Victoria, Australia
| |
Collapse
|
23
|
Ma J, Wu JJ, Xing XX, Xue X, Xiang YT, Zhen XM, Li JH, Lu JJ, Zhang JP, Zheng MX, Hua XY, Xu JG. Circuit-based neuromodulation enhances delayed recall in amnestic mild cognitive impairment. J Neurol Neurosurg Psychiatry 2024; 95:902-911. [PMID: 38503484 PMCID: PMC11420734 DOI: 10.1136/jnnp-2023-333152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/28/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND This study aimed to investigate the efficacy of circuits-based paired associative stimulation (PAS) in adults with amnestic mild cognitive impairment (aMCI). METHODS We conducted a parallel-group, randomised, controlled clinical trial. Initially, a cohort of healthy subjects was recruited to establish the cortical-hippocampal circuits by tracking white matter fibre connections using diffusion tensor imaging. Subsequently, patients diagnosed with aMCI, matched for age and education, were randomly allocated in a 1:1 ratio to undergo a 2-week intervention, either circuit-based PAS or sham PAS. Additionally, we explored the relationship between changes in cognitive performance and the functional connectivity (FC) of cortical-hippocampal circuits. RESULTS FCs between hippocampus and precuneus and between hippocampus and superior frontal gyrus (orbital part) were most closely associated with the Auditory Verbal Learning Test (AVLT)_N5 score in 42 aMCI patients, thus designated as target circuits. The AVLT_N5 score improved from 2.43 (1.43) to 5.29 (1.98) in the circuit-based PAS group, compared with 2.52 (1.44) to 3.86 (2.39) in the sham PAS group (p=0.003; Cohen's d=0.97). A significant decrease was noted in FC between the left hippocampus and left precuneus in the circuit-based PAS group from baseline to postintervention (p=0.013). Using a generalised linear model, significant group×FC interaction effects for the improvements in AVLT_N5 scores were found within the circuit-based PAS group (B=3.4, p=0.017). CONCLUSIONS Circuit-based PAS effectively enhances long-term delayed recall in adults diagnosed with aMCI, which includes individuals aged 50-80 years. This enhancement is potentially linked to the decreased functional connectivity between the left hippocampus and left precuneus. TRIAL REGISTRATION NUMBER ChiCTR2100053315; Chinese Clinical Trial Registry.
Collapse
Affiliation(s)
- Jie Ma
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Wu
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Xiang-Xin Xing
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Xue
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Yun-Ting Xiang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Min Zhen
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-Hua Li
- Department of Heart Disease, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Juan-Juan Lu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun-Peng Zhang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mou-Xiong Zheng
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| |
Collapse
|
24
|
Song S, Fang Y, Wan X, Shen L, Hu Y, Lu C, Yue T, Chen L, Chen J, Xue M. Changes of regional brain activity following Tuina therapy for patients with painful cervical spondylosis: a resting-state fMRI study. Front Neurol 2024; 15:1399487. [PMID: 39346767 PMCID: PMC11428409 DOI: 10.3389/fneur.2024.1399487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Background The effectiveness of Tuina therapy has been confirmed in treating pain of patients with cervical spondylosis (CS), however, its therapeutic mechanism is still unclear. This study aimed to observe the changes of regional brain activity following Tuina therapy in patients with painful CS based on resting-state functional magnetic resonance imaging (rs-fMRI) data. Methods A total of 27 patients with CS and 27 healthy subjects (HCs) were enrolled in this study. All patients received Tuina therapy every 2 days for 2 weeks. The clinical manifestations of patients were evaluated by the Visual Analog Scale (VAS) and Neck Disability Index (NDI) before and after treatment. In addition, rs-fMRI data were collected and preprocessed in all patients before and after treatment, as well as HCs. HCs underwent a 1-time rs-fMRI scan, whereas CS patients underwent 2-times of rs-fMRI scan. The measure of regional homogeneity (ReHo) was calculated and compared between groups. Finally, relationships between altered brain regions and clinical characteristics were evaluated by Pearson's correlation analysis. Results After Tuina therapy, VAS and NDI scores of patients decreased. Before treatment, CS patients showed higher ReHo values in the left middle temporal gyrus, left thalamus, right anterior and posterior cingulate gyrus, left inferior parietal gyrus and lower ReHo values in the right gyrus rectus when compared with HCs. After treatment, CS patients exhibited higher ReHo values in the left inferior temporal gyrus, right anterior and posterior cingulate gyrus, left inferior parietal gyrus and lower ReHo values in the right rectus gyrus when compared with HCs. CS patients after treatment demonstrated higher ReHo values in the left inferior occipital gyrus when compared with those before treatment. Positive correlations were found between ReHo values of the right rectus gyrus and VAS, NDI scores in CS patients before treatment. Differences of VAS scores between before and after treatment were negatively correlated with ReHo values of the left inferior temporal gyrus in CS patients after treatment. Conclusion This study demonstrated the presence of asynchronous activity in certain brain regions in CS patients, which might be associated with pain and cervical spine dysfunction. Tuina therapy might modulate asynchronous activity of abnormal brain regions, which might contribute to the effectiveness of Tuina therapy in alleviating pain and cervical spine dysfunction in CS patients.
Collapse
Affiliation(s)
- Shilong Song
- Department of Tuina, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Fang
- Department of Tuina, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xing Wan
- Department of Tuina, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lili Shen
- Department of Tuina, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yidan Hu
- Department of Tuina, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Chao Lu
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Tao Yue
- Department of Tuina, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lu Chen
- Department of Acupuncture and Rehabilitation, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianhuai Chen
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingxin Xue
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
25
|
Di Tella S, De Marco M, Anzuino I, Quaranta D, Baglio F, Silveri MC. The Contribution of Cognitive Control Networks in Word Selection Processing in Parkinson's Disease: Novel Insights from a Functional Connectivity Study. Brain Sci 2024; 14:913. [PMID: 39335408 PMCID: PMC11430391 DOI: 10.3390/brainsci14090913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Parkinson's disease (PD) patients are impaired in word production when the word has to be selected among competing alternatives requiring higher attentional resources. In PD, word selection processes are correlated with the structural integrity of the inferior frontal gyrus, which is critical for response selection, and the uncinate fasciculus, which is necessary for processing lexical information. In early PD, we investigated the role of the main cognitive large-scale networks, namely the salience network (SN), the central executive networks (CENs), and the default mode network (DMN), in word selection. Eighteen PD patients and sixteen healthy controls were required to derive nouns from verbs or generate verbs from nouns. Participants also underwent a resting-state functional MRI. Functional connectivity (FC) was examined using independent component analysis. Functional seeds for the SN, CENs, and DMN were defined as spheres, centered at the local activation maximum. Correlations were calculated between the FC of each functional seed and word production. A significant association between SN connectivity and task performance and, with less evidence, between CEN connectivity and the task requiring selection among a larger number of competitors, emerged in the PD group. These findings suggest the involvement of the SN and CEN in word selection in early PD, supporting the hypothesis of impaired executive control.
Collapse
Affiliation(s)
- Sonia Di Tella
- Department of Psychology, Catholic University of the Sacred Heart, 20123 Milan, Italy
| | - Matteo De Marco
- Department of Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Isabella Anzuino
- Department of Psychology, Catholic University of the Sacred Heart, 20123 Milan, Italy
| | - Davide Quaranta
- Department of Psychology, Catholic University of the Sacred Heart, 20123 Milan, Italy
- Department of Neuroscience, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Neurology Unit, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | | | | |
Collapse
|
26
|
Bao YW, Wang ZJ, Guo LL, Bai GJ, Feng Y, Zhao GD. Expression of regional brain amyloid-β deposition with [18F]Flutemetamol in Centiloid scale -a multi-site study. Neuroradiology 2024; 66:1537-1551. [PMID: 38676749 DOI: 10.1007/s00234-024-03364-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
PURPOSE The Centiloid project helps calibrate the quantitative amyloid-β (Aβ) load into a unified Centiloid (CL) scale that allows data comparison across multi-site. How the smaller regional amyloid converted into CL has not been attempted. We first aimed to express regional Aβ deposition in CL using [18F]Flutemetamol and evaluate regional Aβ deposition in CL with that in standardized uptake value ratio (SUVr). Second, we aimed to determine the presence or absence of focal Aβ deposition by measuring regional CL in equivocal cases showing negative global CL. METHODS Following the Centiloid project pipeline, Level-1 replication, Level-2 calibration, and quality control were completed to generate corresponding Centiloid conversion equations to convert SUVr into Centiloid at regional levels. In equivocal cases, the regional CL was compared with visual inspection to evaluate regional Aβ positivity. RESULTS 14 out of 16 regional conversions from [18F]Flutemetamol SUVr to Centiloid successfully passed the quality control, showing good reliability and relative variance, especially precuneus/posterior cingulate and prefrontal regions with good stability for Centiloid scaling. The absence of focal Aβ deposition could be detected by measuring regional CL, showing a high agreement rate with visual inspection. The regional Aβ positivity in the bilateral anterior cingulate cortex was most prevalent in equivocal cases. CONCLUSION The expression of regional brain Aβ deposition in CL with [18F]Flutemetamol has been attempted in this study. Equivocal cases had focal Aβ deposition that can be detected by measuring regional CL.
Collapse
Affiliation(s)
- Yi-Wen Bao
- Department of Medical Imaging Center, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, 1 Huanghe West Road, Huaiyin District, 223300, Huai'an, Jiangsu, China.
| | - Zuo-Jun Wang
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Li-Li Guo
- Department of Medical Imaging Center, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, 1 Huanghe West Road, Huaiyin District, 223300, Huai'an, Jiangsu, China
| | - Gen-Ji Bai
- Department of Medical Imaging Center, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, 1 Huanghe West Road, Huaiyin District, 223300, Huai'an, Jiangsu, China
| | - Yun Feng
- Department of Medical Imaging Center, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, 1 Huanghe West Road, Huaiyin District, 223300, Huai'an, Jiangsu, China
| | - Guo-Dong Zhao
- Department of General Surgery, Lianshui County People's Hospital, 223400, Huai'an, Jiang Su, China
| |
Collapse
|
27
|
Yang Y, Ye H, Yan H, Zhang C, Li W, Li Z, Jing H, Li X, Liang J, Xie G, Liang W, Ou Y, Li X, Guo W. Potential correlations between asymmetric disruption of functional connectivity and metabolism in major depressive disorder. Brain Res 2024; 1838:148977. [PMID: 38705556 DOI: 10.1016/j.brainres.2024.148977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/14/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
OBJECTIVE Previous research has suggested a connection between major depressive disorder (MDD) and certain comorbidities, including gastrointestinal issues, thyroid dysfunctions, and glycolipid metabolism abnormalities. However, the relationships between these factors and asymmetrical alterations in functional connectivity (FC) in adults with MDD remain unclear. METHOD We conducted a study on a cohort of 42 MDD patients and 42 healthy controls (HCs). Participants underwent comprehensive clinical assessments, including evaluations of blood lipids and thyroid hormone levels, as well as resting-state functional magnetic resonance imaging (Rs-fMRI) scans. Data analysis involved correlation analysis to compute the parameter of asymmetry (PAS) for the entire brain's functional connectome. We then examined the interrelationships between abnormal PAS regions in the brain, thyroid hormone levels, and blood lipid levels. RESULTS The third-generation ultra-sensitive thyroid stimulating hormone (TSH3UL) level was found to be significantly lower in MDD patients compared to HCs. The PAS score of the left inferior frontal gyrus (IFG) decreased, while the bilateral posterior cingulate cortex (Bi-PCC) PAS increased in MDD patients relative to HCs. Notably, the PAS score of the left IFG negatively correlated with both TSH and total cholesterol (CHOL) levels. However, these correlations lose significance after the Bonferroni correction. CONCLUSION MDD patients demonstrated abnormal asymmetry in resting-state FC (Rs-FC) within the fronto-limbic system, which may be associated with CHOL and thyroid hormone levels.
Collapse
Affiliation(s)
- Yu Yang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Haibiao Ye
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Chunguo Zhang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Wenxuan Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Zhijian Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Huang Jing
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Xiaoling Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Jiaquan Liang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Wenting Liang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Yangpan Ou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xuesong Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China.
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
28
|
Gao QQ, Chen JH, Lu JM, Wang B, Han YF, Gao SZ, Yang J, Dai YT. Altered regional brain activity and functional connectivity in primary intravaginal anejaculation patients revealed by resting-state fMRI. Asian J Androl 2024; 26:510-516. [PMID: 38722110 PMCID: PMC11449417 DOI: 10.4103/aja202413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/13/2024] [Indexed: 09/03/2024] Open
Abstract
ABSTRACT Ejaculation is regulated by the central nervous system. However, the central pathophysiology of primary intravaginal anejaculation (PIAJ) is unclear. The present study aimed to examine the changes in regional brain activity and functional connectivity underlying PIAJ. A total of 20 PIAJ patients and 16 healthy controls (HCs) were enrolled from September 2020 to September 2022 in the Department of Andrology, Nanjing Drum Tower Hospital (Nanjing, China). Magnetic resonance imaging data were acquired from all participants and then were preprocessed. The measures of fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), and functional connectivity (FC) were calculated and compared between the groups. PIAJ patients showed increased fALFF values in the left precuneus compared with HCs. Additionally, PIAJ patients showed increased ReHo values in the left precuneus, left postcentral gyrus, left superior occipital gyrus, left calcarine fissure, right precuneus, and right middle temporal gyrus, and decreased ReHo values in the left inferior parietal gyrus, compared with HCs. Finally, brain regions with altered fALFF and ReHo values in PIAJ patients showed increased FC with widespread cortical regions, which included the frontal, parietal, temporal, and occipital regions, compared with HCs. In conclusion, increased regional brain activity in the parietal, temporal, and occipital regions, and increased FC between these brain regions, may be associated with PIAJ occurrence.
Collapse
Affiliation(s)
- Qing-Qiang Gao
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
- Department of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Jian-Huai Chen
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Jia-Ming Lu
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Bin Wang
- Department of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - You-Feng Han
- Department of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Song-Zhan Gao
- Department of Andrology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jie Yang
- Department of Urology, Jiangsu Provincial People's Hospital, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Department of Urology, People's Hospital of Xinjiang Kizilsu Kirgiz Autonomous Prefecture, Kizilsu Kirgiz Autonomous Prefecture 845350, China
| | - Yu-Tian Dai
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
- Department of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
29
|
Dai K, Liu X, Hu J, Ren F, Jin Z, Xu S, Cao P. Insomnia-related brain functional correlates in first-episode drug-naïve major depressive disorder revealed by resting-state fMRI. Front Neurosci 2024; 18:1290345. [PMID: 39268040 PMCID: PMC11390676 DOI: 10.3389/fnins.2024.1290345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Insomnia is a common comorbidity symptom in major depressive disorder (MDD) patients. Abnormal brain activities have been observed in both MDD and insomnia patients, however, the central pathological mechanisms underlying the co-occurrence of insomnia in MDD patients are still unclear. This study aimed to explore the differences of spontaneous brain activity between MDD patients with and without insomnia, as well as patients with different level of insomnia. Methods A total of 88 first-episode drug-naïve MDD patients including 44 with insomnia (22 with high insomnia and 22 with low insomnia) and 44 without insomnia, as well as 44 healthy controls (HC), were enrolled in this study. The level of depression and insomnia were evaluated by HAMD-17, adjusted HAMD-17 and its sleep disturbance subscale in all subjects. Resting-state functional and structural magnetic resonance imaging data were acquired from all participants and then were preprocessed by the software of DPASF. Regional homogeneity (ReHo) values of brain regions were calculated by the software of REST and were compared. Finally, receiver operating characteristic (ROC) curves were conducted to determine the values of abnormal brain regions for identifying MDD patients with insomnia and evaluating the severity of insomnia. Results Analysis of variance showed that there were significant differences in ReHo values in the left middle frontal gyrus, left pallidum, right superior frontal gyrus, right medial superior frontal gyrus and right rectus gyrus among three groups. Compared with HC, MDD patients with insomnia showed increased ReHo values in the medial superior frontal gyrus, middle frontal gyrus, triangular inferior frontal gyrus, calcarine fissure and right medial superior frontal gyrus, medial orbital superior frontal gyrus, as well as decreased ReHo values in the left middle occipital gyrus, pallidum and right superior temporal gyrus, inferior temporal gyrus, middle cingulate gyrus, hippocampus, putamen. MDD patients without insomnia demonstrated increased ReHo values in the left middle frontal gyrus, orbital middle frontal gyrus, anterior cingulate gyrus and right triangular inferior frontal gyrus, as well as decreased ReHo values in the left rectus gyrus, postcentral gyrus and right rectus gyrus, fusiform gyrus, pallidum. In addition, MDD patients with insomnia had decreased ReHo values in the left insula when compared to those without insomnia. Moreover, MDD patients with high insomnia exhibited increased ReHo values in the right middle temporal gyrus, and decreased ReHo values in the left orbital superior frontal gyrus, lingual gyrus, right inferior parietal gyrus and postcentral gyrus compared to those with low insomnia. ROC analysis demonstrated that impaired brain region might be helpful for identifying MDD patients with insomnia and evaluating the severity of insomnia. Conclusion These findings suggested that MDD patients with insomnia had wider abnormalities of brain activities in the prefrontal-limbic circuits including increased activities in the prefrontal cortex, which might be the compensatory mechanism underlying insomnia in MDD. In addition, decreased activity of left insula might be associated with the occurrence of insomnia in MDD patients and decreased activities of the frontal-parietal network might cause more serious insomnia related to MDD.
Collapse
Affiliation(s)
- Ke Dai
- Department of Radiology, Nanjing Brain Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xianwei Liu
- Department of Radiology, Nanjing Brain Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Hu
- Department of Radiology, Nanjing Brain Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fangfang Ren
- Department of Psychiatry, Nanjing Brain Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhuma Jin
- Department of Psychiatry, Nanjing Brain Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shulan Xu
- Department of Gerontology, Nanjing Brain Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ping Cao
- Department of Radiology, Nanjing Brain Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
30
|
Zhao W, Su K, Zhu H, Kaiser M, Fan M, Zou Y, Li T, Yin D. Activity flow under the manipulation of cognitive load and training. Neuroimage 2024; 297:120761. [PMID: 39069226 DOI: 10.1016/j.neuroimage.2024.120761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/11/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024] Open
Abstract
Flexible cognitive functions, such as working memory (WM), usually require a balance between localized and distributed information processing. However, it is challenging to uncover how local and distributed processing specifically contributes to task-induced activity in a region. Although the recently proposed activity flow mapping approach revealed the relative contribution of distributed processing, few studies have explored the adaptive and plastic changes that underlie cognitive manipulation. In this study, we recruited 51 healthy volunteers (31 females) and investigated how the activity flow and brain activation of the frontoparietal systems was modulated by WM load and training. While the activation of both executive control network (ECN) and dorsal attention network (DAN) increased linearly with memory load at baseline, the relative contribution of distributed processing showed a linear response only in the DAN, which was prominently attributed to within-network activity flow. Importantly, adaptive training selectively induced an increase in the relative contribution of distributed processing in the ECN and also a linear response to memory load, which were predominantly due to between-network activity flow. Furthermore, we demonstrated a causal effect of activity flow prediction through training manipulation on connectivity and activity. In contrast with classic brain activation estimation, our findings suggest that the relative contribution of distributed processing revealed by activity flow prediction provides unique insights into neural processing of frontoparietal systems under the manipulation of cognitive load and training. This study offers a new methodological framework for exploring information integration versus segregation underlying cognitive processing.
Collapse
Affiliation(s)
- Wanyun Zhao
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Kaiqiang Su
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Hengcheng Zhu
- Division of Biostatistics, University of Minnesota, Minneapolis 55455, MN, USA
| | - Marcus Kaiser
- Precision Imaging Beacon, School of Medicine, University of Nottingham, Nottingham NG7 2UH, United Kingdom; School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Mingxia Fan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Yong Zou
- Institute of Theoretical Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Ting Li
- Shanghai Changning Mental Health Center, Shanghai 200335, China
| | - Dazhi Yin
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Shanghai Changning Mental Health Center, Shanghai 200335, China.
| |
Collapse
|
31
|
Chen R, Jiao Y, Zhu JS, Wang XH, Zhao MT. Frequency-specific static and dynamic neural activity indices in children with different attention deficit hyperactivity disorder subtypes: a resting-state fMRI study. Front Hum Neurosci 2024; 18:1412572. [PMID: 39188407 PMCID: PMC11345791 DOI: 10.3389/fnhum.2024.1412572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/17/2024] [Indexed: 08/28/2024] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders in childhood. Numerous resting-state functional magnetic resonance imaging (rs-fMRI) studies in ADHD have been performed using traditional low-frequency bands (0.01-0.08 Hz). However, the neural activity patterns of frequency subbands in ADHD still require further investigation. The purpose of this study is to explore the frequency-dependent characteristics and neural activity patterns of ADHD subtypes. We selected the ADHD combined type (ADHD-C, N = 25), ADHD inattentive type (ADHD-I, N = 26) and typically developing (TD, N = 28) children from the ADHD-200 Consortium. Based on the slow-5 band (0.01-0.027 Hz) and slow-4 band (0.027-0.073 Hz), we generated static and dynamic fractional amplitude of low-frequency fluctuation (fALFF) and regional homogeneity (ReHo) maps for each participant. A flexible-factorial analysis of variance model was performed on static and temporal dynamic rs-fMRI measurements within two subbands. Results revealed that the orbital-frontal gyrus, precuneus, superior temporal gyrus and angular gyrus were found to have obvious frequency band and group interaction effects. The intrinsic neural activity differences among three groups were more prominent in the slow-5 frequency band compared to the slow-4 band. In addition, the indices of significant interaction regions showed correlations with the progression of the disease and the features in slow-5 showed an advantageous diagnostic performance compared with those in slow-4. The results suggested the intrinsic neural activities of ADHD subtypes were frequency-dependent. The frequency-specific analysis of static and dynamic brain activity may provide a deeper understanding of neurophysiological dysfunction patterns in ADHD subtypes and provide supplementary information for assessing ADHD subtypes.
Collapse
Affiliation(s)
- Ran Chen
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging and Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
- Department of Radiology, Nanjing BenQ Medical Center, the Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Yun Jiao
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging and Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
- Network Information Center, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Jun-Sa Zhu
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging and Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Xun-Heng Wang
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
| | - Mei-Ting Zhao
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging and Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
32
|
Xu J, Liang J, Yan H, Zhang C, Zhang X, Li X, Huang W, Guo H, Yang Y, Ye J, Ou Y, Deng W, Xu J, Li X, Xie G, Guo W. Alterations in amygdala subregions-Default mode network connectivity after treatment in patients with schizophrenia. J Neurosci Res 2024; 102:e25376. [PMID: 39158151 DOI: 10.1002/jnr.25376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/22/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Abstract
Disrupted connectivity in the default mode network (DMN) during resting-state functional MRI (rs-fMRI) is well-documented in schizophrenia (SCZ). The amygdala, a key component in the neurobiology of SCZ, comprises distinct subregions that may exert varying effects on the disorder. This study aimed to investigate variations in functional connectivity (FC) between distinct amygdala subregions and the DMN in SCZ individuals and explore the effects of treatment on these connections. Fifty-six SCZ patients and 51 healthy controls underwent FC analysis and questionnaire surveys during resting state. The amygdala was selected as the region of interest (ROI) and subdivided into four parts. Changes in FC were examined, and correlations between questionnaire scores and brain activity were explored. Pre-treatment, SCZ patients exhibited reduced FC between the amygdala and DMN compared to HCs. After treatment, significant differences persisted in the right medial amygdala, while other regions did not differ significantly from controls. In addition, PANSS scores positively correlated with FC between the Right Medial Amygdala and the left SMFC (r = .347, p = .009), while RBANS5A scores showed a positive correlation with FC between the Left Lateral Amygdala and the right MTG (rho = -.347, p = .009). The rsFC between the amygdala and the DMN plays a crucial role in the treatment mechanisms of SCZ. This could provide a promising predictive indicator for understanding the neural mechanisms behind treatment and symptomatic improvement.
Collapse
Affiliation(s)
- Jianxiong Xu
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Jiaquan Liang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Haohao Yan
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chunguo Zhang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Xinglian Zhang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Xuesong Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Wei Huang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Huagui Guo
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Yu Yang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Jinzhong Ye
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Yangpan Ou
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wen Deng
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Jinbing Xu
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Xiaoling Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Wenbin Guo
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
33
|
Du Y, Zhang S, Qiu Q, Fang Y, Zhao L, Yue L, Wang J, Yan F, Li X. The mediating effect of the amygdala-frontal circuit on the association between depressive symptoms and cognitive function in Alzheimer's disease. Transl Psychiatry 2024; 14:301. [PMID: 39039061 PMCID: PMC11263372 DOI: 10.1038/s41398-024-03026-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
Depressive symptoms occur commonly in Alzheimer's disease (AD). Although abnormalities in the amygdala-frontal circuit have been linked to emotional dysregulation and cognitive impairment, the neurological basis underlying these associations in AD patients with depressive symptoms (ADD) is unclear. We aimed to investigate the relationship between the amygdala-frontal circuit and depressive symptoms and cognitive function in ADD. We recruited 60 ADD, 60 AD patients without depressive symptoms (ADND), and 60 healthy controls (HC). Functional connectivity (FC) maps of the bilateral amygdala were compared. Fractional anisotropy (FA) of the amygdala-frontal circuit connected by the uncinate fasciculus (UF) was calculated using automated fiber quantification (AFQ). In addition, mediation analysis was performed to explore the effects of the amygdala-frontal circuit on the relationship between depressive symptoms and cognitive function. We found decreased bilateral amygdala FC with the inferior frontal gyrus (IFG) in the ADD group compared to the ADND and HC groups. Moreover, FA in the left frontal UF (nodes 64-97) was significantly lower in the ADD group than ADND group. Notably, amygdala-based FC with IFG and the left frontal UF FA mediated the relationship between depressive symptoms and cognitive function in ADD, with mediating effects ranging between 15 and 18%. Our study is the first to demonstrate the mediating effect of functional and microstructural abnormalities in the amygdala-frontal circuit in ADD. The findings suggest that the amygdala-frontal circuit may underlie emotional dysregulation in ADD, providing potential targets for treatment strategies.
Collapse
Affiliation(s)
- Yang Du
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shaowei Zhang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Qiu
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Fang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Zhao
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Yue
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinghua Wang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Yan
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Li
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
34
|
Xiao S, Yang Z, Yan H, Chen G, Zhong S, Chen P, Zhong H, Yang H, Jia Y, Yin Z, Gong J, Huang L, Wang Y. Gut proinflammatory bacteria is associated with abnormal functional connectivity of hippocampus in unmedicated patients with major depressive disorder. Transl Psychiatry 2024; 14:292. [PMID: 39013880 PMCID: PMC11253007 DOI: 10.1038/s41398-024-03012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
Accumulating evidence has revealed the gut bacteria dysbiosis and brain hippocampal functional and structural alterations in major depressive disorder (MDD). However, the potential relationship between the gut microbiota and hippocampal function alterations in patients with MDD is still very limited. Data of resting-state functional magnetic resonance imaging were acquired from 44 unmedicated MDD patients and 42 demographically matched healthy controls (HCs). Severn pairs of hippocampus subregions (the bilateral cornu ammonis [CA1-CA3], dentate gyrus (DG), entorhinal cortex, hippocampal-amygdaloid transition area, and subiculum) were selected as the seeds in the functional connectivity (FC) analysis. Additionally, fecal samples of participants were collected and 16S rDNA amplicon sequencing was used to identify the altered relative abundance of gut microbiota. Then, association analysis was conducted to investigate the potential relationships between the abnormal hippocampal subregions FC and microbiome features. Also, the altered hippocampal subregion FC values and gut microbiota levels were used as features separately or together in the support vector machine models distinguishing the MDD patients and HCs. Compared with HCs, patients with MDD exhibited increased FC between the left hippocampus (CA2, CA3 and DG) and right hippocampus (CA2 and CA3), and decreased FC between the right hippocampal CA3 and bilateral posterior cingulate cortex. In addition, we found that the level of proinflammatory bacteria (i.e., Enterobacteriaceae) was significantly increased, whereas the level of short-chain fatty acids producing-bacteria (i.e., Prevotellaceae, Agathobacter and Clostridium) were significantly decreased in MDD patients. Furthermore, FC values of the left hippocampal CA3- right hippocampus (CA2 and CA3) was positively correlated with the relative abundance of Enterobacteriaceae in patients with MDD. Moreover, altered hippocampal FC patterns and gut microbiota level were considered in combination, the best discrimination was obtained (AUC = 0.92). These findings may provide insights into the potential role of gut microbiota in the underlying neuropathology of MDD patients.
Collapse
Affiliation(s)
- Shu Xiao
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Zibin Yang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Hong Yan
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Hui Zhong
- Biomedical Translational Research Institute, Jinan University, 510630, Guangzhou, China
| | - Hengwen Yang
- Biomedical Translational Research Institute, Jinan University, 510630, Guangzhou, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhinan Yin
- Biomedical Translational Research Institute, Jinan University, 510630, Guangzhou, China
| | - Jiaying Gong
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
- Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China.
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China.
| |
Collapse
|
35
|
Yang Y, Wang Z, Hu Q, Long X, Ma G, Cui S, Xu M, Tang C, Yang C. The short-term effects of Jin's three needles in conjunction with mirror therapy on brain function in patients with upper limb disability following an ischemic stroke were evaluated using ReHo analysis. Medicine (Baltimore) 2024; 103:e38707. [PMID: 38968538 PMCID: PMC11224885 DOI: 10.1097/md.0000000000038707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/05/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Jin's three needle (JTN) is a commonly utilized treatment for ischemic stroke in China. Mirror therapy (MT) is also gradually transitioning from treating limb discomfort to restoring motor function in the damaged limb. Investigations into the 2 treatments' mechanisms of action are still ongoing. We used functional magnetic resonance imaging (fMRI) technique in this study to examine the effects of JTN combined with mirror therapy MT on brain function in patients with upper limb dysfunction in ischemic stroke, as well as potential central mechanisms. The goal was to provide a solid evidence-based medical basis to support the continued use of JTN combination MT. METHODS This study will be a single-blind, randomized, and controlled experiment. Randomization was used to assign 20 patients who met the study's eligibility requirements to the JTN + MT treatment group or the JTN control group. Each intervention will last for 4 weeks, with 6 days of treatment per week. The JTN acupuncture points are 3 temporal acupuncture points on the opposite side of the wounded limb, 3 hand acupuncture points on the injured upper limb, 3 shoulder acupuncture points, Renzhong and Baihui, The (JTN + MT) group simultaneously takes MT for 30 minutes. fMRI of the brain using BOLD and T1-weighted images was done both before and after therapy. Brain areas exhibiting changes in regional homogeneity during the pre and posttreatment periods were analyzed. RESULTS By the end of the treatment course, Jin three-needle therapy plus MT activated more relevant brain functional regions and increased cerebral blood oxygen perfusion than Jin three-needle therapy alone (P <.05). CONCLUSION In patients with upper limb impairment following an ischemic stroke, JTN with MT may improve brain function reconstruction in the relevant areas.
Collapse
Affiliation(s)
- Yunqiu Yang
- Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Zhuhai Institute of Advanced Technology Chinese Academy of Sciences, Zhuhai, Guangdong Province, China
| | - Zhen Wang
- Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Zhuhai Institute of Advanced Technology Chinese Academy of Sciences, Zhuhai, Guangdong Province, China
| | - Qingmao Hu
- Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Xiaojing Long
- Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Guorui Ma
- Zhuhai Institute of Advanced Technology Chinese Academy of Sciences, Zhuhai, Guangdong Province, China
| | - Shaoyang Cui
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, Guangdong, China
| | - Mingzhu Xu
- Department of Rehabilitation Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Chunzhi Tang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Chen Yang
- Shenzhen Futian District Maternal and Child Health Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
36
|
Zhang C, Ruan F, Yan H, Liang J, Li X, Liang W, Ou Y, Xu C, Xie G, Guo W. Potential correlations between abnormal homogeneity of default mode network and personality or lipid level in major depressive disorder. Brain Behav 2024; 14:e3622. [PMID: 39021241 PMCID: PMC11255032 DOI: 10.1002/brb3.3622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Default mode network (DMN) is one of the most recognized resting-state networks in major depressive disorder (MDD). However, the homogeneity of this network in MDD remains incompletely explored. Therefore, this study aims to determine whether there is abnormal network homogeneity (NH) of the DMN in MDD patients. At the same time, correlations between clinical variables and brain functional connectivity are examined. METHODS We enrolled 42 patients diagnosed with MDD and 42 HCs. A variety of clinical variables were collected, and data analysis was conducted using the NH and independent component analysis methods. RESULTS The study shows that MDD patients have higher NH values in the left superior medial prefrontal cortex (MPFC) and left posterior cingulate cortex (PCC) compared to HCs. Additionally, there is a positive correlation between NH values of the left superior MPFC and Eysenck Personality Questionnaire values. NH values of the left PCC are positively linked to CHOL levels, LDL levels, and utilization scores. However, these correlations lose significance after the Bonferroni correction. CONCLUSION Our findings indicate the presence of abnormal DMN homogeneity in MDD, underscoring the significance of DMN in the pathophysiology of MDD. Simultaneously, the study provides preliminary evidence for the correlation between clinical variables and brain functional connectivity.
Collapse
Affiliation(s)
- Chunguo Zhang
- Department of PsychiatryThe Third People's Hospital of FoshanFoshanGuangdongChina
| | - Feichao Ruan
- Department of PsychiatryThe Third People's Hospital of FoshanFoshanGuangdongChina
| | - Haohao Yan
- Department of PsychiatryNational Clinical Research Center for Mental Disordersand National Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Jiaquan Liang
- Department of PsychiatryThe Third People's Hospital of FoshanFoshanGuangdongChina
| | - Xiaoling Li
- Department of PsychiatryThe Third People's Hospital of FoshanFoshanGuangdongChina
| | - Wenting Liang
- Department of PsychiatryThe Third People's Hospital of FoshanFoshanGuangdongChina
| | - Yangpan Ou
- Department of PsychiatryNational Clinical Research Center for Mental Disordersand National Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Caixia Xu
- Department of PsychiatryThe Third People's Hospital of FoshanFoshanGuangdongChina
| | - Guojun Xie
- Department of PsychiatryThe Third People's Hospital of FoshanFoshanGuangdongChina
| | - Wenbin Guo
- Department of PsychiatryNational Clinical Research Center for Mental Disordersand National Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| |
Collapse
|
37
|
Moazeni O, Northoff G, Batouli SAH. The subcortical brain regions influence the cortical areas during resting-state: an fMRI study. Front Hum Neurosci 2024; 18:1363125. [PMID: 39055533 PMCID: PMC11271203 DOI: 10.3389/fnhum.2024.1363125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/06/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction Numerous modes or patterns of neural activity can be seen in the brain of individuals during the resting state. However, those functions do not persist long, and they are continuously altering in the brain. We have hypothesized that the brain activations during the resting state should themselves be responsible for this alteration of the activities. Methods Using the resting-state fMRI data of 63 healthy young individuals, we estimated the causality effects of each resting-state activation map on all other networks. The resting-state networks were identified, their causality effects on the other components were extracted, the networks with the top 20% of the causality were chosen, and the networks which were under the influence of those causal networks were also identified. Results Our results showed that the influence of each activation component over other components is different. The brain areas which showed the highest causality coefficients were subcortical regions, such as the brain stem, thalamus, and amygdala. On the other hand, nearly all the areas which were mostly under the causal effects were cortical regions. Discussion In summary, our results suggest that subcortical brain areas exert a higher influence on cortical regions during the resting state, which could help in a better understanding the dynamic nature of brain functions.
Collapse
Affiliation(s)
- Omid Moazeni
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Seyed Amir Hossein Batouli
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- BrainEE Research Group, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Cheng L, Zhang J, Xi H, Li M, Hu S, Yuan W, Wang P, Chen L, Zhan L, Jia X. Abnormalities of brain structure and function in cervical spondylosis: a multi-modal voxel-based meta-analysis. Front Neurosci 2024; 18:1415411. [PMID: 38948928 PMCID: PMC11211609 DOI: 10.3389/fnins.2024.1415411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Background Previous neuroimaging studies have revealed structural and functional brain abnormalities in patients with cervical spondylosis (CS). However, the results are divergent and inconsistent. Therefore, the present study conducted a multi-modal meta-analysis to investigate the consistent structural and functional brain alterations in CS patients. Methods A comprehensive literature search was conducted in five databases to retrieve relevant resting-state functional magnetic resonance imaging (rs-fMRI), structural MRI and diffusion tensor imaging (DTI) studies that measured brain functional and structural differences between CS patients and healthy controls (HCs). Separate and multimodal meta-analyses were implemented, respectively, by employing Anisotropic Effect-size Signed Differential Mapping software. Results 13 rs-fMRI studies that used regional homogeneity, amplitude of low-frequency fluctuations (ALFF) and fractional ALFF, seven voxel-based morphometry (VBM) studies and one DTI study were finally included in the present research. However, no studies on surface-based morphometry (SBM) analysis were included in this research. Due to the insufficient number of SBM and DTI studies, only rs-fMRI and VBM meta-analyses were conducted. The results of rs-fMRI meta-analysis showed that compared to HCs, CS patients demonstrated decreased regional spontaneous brain activities in the right lingual gyrus, right middle temporal gyrus (MTG), left inferior parietal gyrus and right postcentral gyrus (PoCG), while increased activities in the right medial superior frontal gyrus, bilateral middle frontal gyrus and right precuneus. VBM meta-analysis detected increased GMV in the right superior temporal gyrus (STG) and right paracentral lobule (PCL), while decreased GMV in the left supplementary motor area and left MTG in CS patients. The multi-modal meta-analysis revealed increased GMV together with decreased regional spontaneous brain activity in the left PoCG, right STG and PCL among CS patients. Conclusion This meta-analysis revealed that compared to HCs, CS patients had significant alterations in GMV and regional spontaneous brain activity. The altered brain regions mainly included the primary visual cortex, the default mode network and the sensorimotor area, which may be associated with CS patients' symptoms of sensory deficits, blurred vision, cognitive impairment and motor dysfunction. The findings may contribute to understanding the underlying pathophysiology of brain dysfunction and provide references for early diagnosis and treatment of CS. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, CRD42022370967.
Collapse
Affiliation(s)
- Lulu Cheng
- School of Foreign Studies, China University of Petroleum (East China), Qingdao, China
- Shanghai Center for Research in English Language Education, Shanghai International Studies University, Shanghai, China
| | - Jianxin Zhang
- School of Foreign Studies, China University of Petroleum (East China), Qingdao, China
| | - Hongyu Xi
- School of Western Studies, Heilongjiang University, Harbin, China
| | - Mengting Li
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Su Hu
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Wenting Yuan
- School of Western Studies, Heilongjiang University, Harbin, China
- English Department, Heilongjiang International University, Harbin, China
| | - Peng Wang
- Department of Language, Literature and Communication, Faculty of Humanities, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Psychology, Education, and Child Studies, Erasmus School of Social and Behavioural Sciences, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Lanfen Chen
- School of Medical Imaging, Shandong Second Medical University, Weifang, Shandong, China
| | - Linlin Zhan
- School of Western Studies, Heilongjiang University, Harbin, China
| | - Xize Jia
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
39
|
Di X, Jain P, Biswal BB. Effects of Tasks on Functional Brain Connectivity Derived from Inter-Individual Correlations: Insights from Regional Homogeneity of Functional MRI Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.597063. [PMID: 38895341 PMCID: PMC11185525 DOI: 10.1101/2024.06.02.597063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Research on brain functional connectivity often relies on intra-individual moment-to-moment correlations of functional brain activity, typically using techniques like functional MRI (fMRI). Inter-individual correlations are also employed on data from fMRI and positron emission tomography (PET). Many past studies have not specified tasks for participants, keeping them in an implicit "resting" condition. This lack of task specificity raises questions about how different tasks impact inter-individual correlation estimates. In our analysis of fMRI data from 100 unrelated participants, scanned during seven task conditions and in a resting state, we calculated Regional Homogeneity (ReHo) for each task as a regional measure of brain functions. We found that changes in ReHo due to different tasks were relatively small compared with the variations across brain regions. Cross-region variations of ReHo were highly correlated between different tasks. Similarly, whole-brain inter-individual correlation patterns were remarkably consistent across the tasks, showing correlations greater than 0.78. Changes in inter-individual correlations between tasks were primarily driven by connectivity in the visual, somatomotor, default mode network, and the interactions between them. The subtle yet statistically significant differences in functional connectivity may be linked to specific brain regions associated with the studied tasks. Future studies should consider task design when exploring inter-individual connectivity in specific brain systems.
Collapse
Affiliation(s)
- Xin Di
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Pratik Jain
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Bharat B. Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| |
Collapse
|
40
|
Guo Y, Bao H, Wei Z, Fang S, Jiang T, Wang Y. Structural changes in eloquent cortex secondary to glioma in sensorimotor area. Hum Brain Mapp 2024; 45:e26723. [PMID: 38864296 PMCID: PMC11167403 DOI: 10.1002/hbm.26723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/13/2024] [Accepted: 05/08/2024] [Indexed: 06/13/2024] Open
Abstract
This study aims to investigate the structural reorganization in the sensorimotor area of the brain in patients with gliomas, distinguishing between those with impaired and unimpaired strength. Using voxel-based morphometry (VBM) and region of interest (ROI) analysis, gray matter volumes (GMV) were compared in the contralesional primary motor gyrus, primary sensory gyrus, premotor area, bilateral supplementary motor area, and medial Brodmann area 8 (BA8). The results revealed that in patients with right hemisphere gliomas, the right medial BA8 volume was significantly larger in the impaired group than in the unimpaired group, with both groups exceeding the volume in 16 healthy controls (HCs). In patients with left hemisphere gliomas, the right supplementary motor area (SMA) was more pronounced in the impaired group compared to the unimpaired group, and both groups were greater than HCs. Additionally, the volumes of the right medial BA8 in both the impaired group were greater than HCs. Contralateral expansions in the gray matter of hand- and trunk-related cortices of the premotor area, precentral gyrus, and postcentral gyrus were observed compared to HCs. Furthermore, a negative correlation was found between hand Medical Research Council (MRC) score and volumes of the contralateral SMA and bilateral medial BA8. Notably, our findings reveal consistent results across both analytical approaches in identifying significant structural reorganizations within the sensorimotor cortex. These consistent findings underscore the adaptive neuroplastic responses to glioma presence, highlighting potential areas of interest for further neurosurgical planning and rehabilitation strategies.
Collapse
Affiliation(s)
- Yuhao Guo
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Hongbo Bao
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of NeurosurgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Zhishuo Wei
- Department of Neurological SurgeryUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Shengyu Fang
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Research Unit of Accurate Diagnosis, Treatment, and Translational Medicine of Brain TumorsChinese Academy of Medical SciencesBeijingChina
| | - Yinyan Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
41
|
Lu B, Chen X, Xavier Castellanos F, Thompson PM, Zuo XN, Zang YF, Yan CG. The power of many brains: Catalyzing neuropsychiatric discovery through open neuroimaging data and large-scale collaboration. Sci Bull (Beijing) 2024; 69:1536-1555. [PMID: 38519398 DOI: 10.1016/j.scib.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/12/2023] [Accepted: 02/27/2024] [Indexed: 03/24/2024]
Abstract
Recent advances in open neuroimaging data are enhancing our comprehension of neuropsychiatric disorders. By pooling images from various cohorts, statistical power has increased, enabling the detection of subtle abnormalities and robust associations, and fostering new research methods. Global collaborations in imaging have furthered our knowledge of the neurobiological foundations of brain disorders and aided in imaging-based prediction for more targeted treatment. Large-scale magnetic resonance imaging initiatives are driving innovation in analytics and supporting generalizable psychiatric studies. We also emphasize the significant role of big data in understanding neural mechanisms and in the early identification and precise treatment of neuropsychiatric disorders. However, challenges such as data harmonization across different sites, privacy protection, and effective data sharing must be addressed. With proper governance and open science practices, we conclude with a projection of how large-scale imaging resources and collaborations could revolutionize diagnosis, treatment selection, and outcome prediction, contributing to optimal brain health.
Collapse
Affiliation(s)
- Bin Lu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao Chen
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Francisco Xavier Castellanos
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, New York 10016, USA; Nathan Kline Institute for Psychiatric Research, Orangeburg 10962, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles 90033, USA
| | - Xi-Nian Zuo
- Developmental Population Neuroscience Research Center, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; National Basic Science Data Center, Beijing 100190, China
| | - Yu-Feng Zang
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310004, China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou 310030, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairment, Hangzhou 311121, China
| | - Chao-Gan Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China; International Big-Data Center for Depression Research, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
42
|
Ester-Nacke T, Berti K, Veit R, Dannecker C, Salvador R, Ruffini G, Heni M, Birkenfeld AL, Plewnia C, Preissl H, Kullmann S. Network-targeted transcranial direct current stimulation of the hypothalamus appetite-control network: a feasibility study. Sci Rep 2024; 14:11341. [PMID: 38762574 PMCID: PMC11102513 DOI: 10.1038/s41598-024-61852-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
The hypothalamus is the key regulator for energy homeostasis and is functionally connected to striatal and cortical regions vital for the inhibitory control of appetite. Hence, the ability to non-invasively modulate the hypothalamus network could open new ways for the treatment of metabolic diseases. Here, we tested a novel method for network-targeted transcranial direct current stimulation (net-tDCS) to influence the excitability of brain regions involved in the control of appetite. Based on the resting-state functional connectivity map of the hypothalamus, a 12-channel net-tDCS protocol was generated (Neuroelectrics Starstim system), which included anodal, cathodal and sham stimulation. Ten participants with overweight or obesity were enrolled in a sham-controlled, crossover study. During stimulation or sham control, participants completed a stop-signal task to measure inhibitory control. Overall, stimulation was well tolerated. Anodal net-tDCS resulted in faster stop signal reaction time (SSRT) compared to sham (p = 0.039) and cathodal net-tDCS (p = 0.042). Baseline functional connectivity of the target network correlated with SSRT after anodal compared to sham stimulation (p = 0.016). These preliminary data indicate that modulating hypothalamus functional network connectivity via net-tDCS may result in improved inhibitory control. Further studies need to evaluate the effects on eating behavior and metabolism.
Collapse
Affiliation(s)
- Theresa Ester-Nacke
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany.
- German Center of Diabetes Research (DZD), Tübingen, Germany.
| | - Katharina Berti
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center of Diabetes Research (DZD), Tübingen, Germany
| | - Ralf Veit
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center of Diabetes Research (DZD), Tübingen, Germany
| | - Corinna Dannecker
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center of Diabetes Research (DZD), Tübingen, Germany
| | | | | | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center of Diabetes Research (DZD), Tübingen, Germany
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- Division of Endocrinology and Diabetology, Department of Internal Medicine 1, University Hospital Ulm, Ulm, Germany
| | - Andreas L Birkenfeld
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center of Diabetes Research (DZD), Tübingen, Germany
| | - Christian Plewnia
- Department of Psychiatry and Psychotherapy, German Center for Mental Health (DZPG), Neurophysiology and Interventional Neuropsychiatry, University Hospital Tübingen, Tübingen, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center of Diabetes Research (DZD), Tübingen, Germany
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center of Diabetes Research (DZD), Tübingen, Germany
| |
Collapse
|
43
|
Unadkat P, Vo A, Ma Y, Peng S, Nguyen N, Niethammer M, Tang CC, Dhawan V, Ramdhani R, Fenoy A, Caminiti SP, Perani D, Eidelberg D. Deep brain stimulation of the subthalamic nucleus for Parkinson's disease: A network imaging marker of the treatment response. RESEARCH SQUARE 2024:rs.3.rs-4178280. [PMID: 38766007 PMCID: PMC11100869 DOI: 10.21203/rs.3.rs-4178280/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Subthalamic nucleus deep brain stimulation (STN-DBS) alleviates motor symptoms of Parkinson's disease (PD), thereby improving quality of life. However, quantitative brain markers to evaluate DBS responses and select suitable patients for surgery are lacking. Here, we used metabolic brain imaging to identify a reproducible STN-DBS network for which individual expression levels increased with stimulation in proportion to motor benefit. Of note, measurements of network expression from metabolic and BOLD imaging obtained preoperatively predicted motor outcomes determined after DBS surgery. Based on these findings, we computed network expression in 175 PD patients, with time from diagnosis ranging from 0 to 21 years, and used the resulting data to predict the outcome of a potential STN-DBS procedure. While minimal benefit was predicted for patients with early disease, the proportion of potential responders increased after 4 years. Clinically meaningful improvement with stimulation was predicted in 18.9 - 27.3% of patients depending on disease duration.
Collapse
Affiliation(s)
| | - An Vo
- The Feinstein Institutes for Medical Research
| | - Yilong Ma
- Center for Neurosciences, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Shichun Peng
- Center for Neurosciences, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | | | | | | | | | - Ritesh Ramdhani
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell
| | | | | | | | | |
Collapse
|
44
|
Zhang X, Liu Y, Yuan F, Hang Y, Zhang R, Lin J, Wang X, Zhang J. Neuroplasticity of visual brain network induced by hypoxia. Cereb Cortex 2024; 34:bhae198. [PMID: 38752980 DOI: 10.1093/cercor/bhae198] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 01/28/2025] Open
Abstract
The effects of hypoxia on brain function remain largely unknown. This study aimed to clarify this issue by visual-stimulated functional magnetic resonance imaging design. Twenty-three college students with a 30-d high-altitude exposure were tested before, 1 week and 3 months after returning to sea level. Brain functional magnetic resonance imaging and retinal electroretinogram were acquired. One week after returning to sea level, decreased blood oxygenation level dependent in the right lingual gyrus accompanied with increased blood oxygenation level dependent in the frontal cortex and insular cortex, and decreased amplitude of electroretinogram a-wave in right eye; moreover, the bilateral lingual gyri showed increased functional connectivity within the dorsal visual stream pathway, and the blood oxygenation level dependent signals in the right lingual gyrus showed positive correlation with right retinal electroretinogram a-wave. Three months after returning to sea level, the blood oxygenation level dependent signals recovered to normal level, while intensively increased blood oxygenation level dependent signals in a broad of brain regions and decreased retinal electroretinogram were also existed. In conclusion, hypoxic exposure has long-term effects on visual cortex, and the impaired retinal electroretinogram may contribute to it. The increased functional connectivity of dorsal stream may compensate for the decreased function of retinal photoreceptor cells to maintain normal visual function.
Collapse
Affiliation(s)
- Xinjuan Zhang
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, 4221 Xiang'an South Road, Xiamen 361102, China
- School of Education and Psychology, Minnan Normal University, 36 Xianqianzhi Street, Zhangzhou 363000, China
| | - Yanqiu Liu
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, 4221 Xiang'an South Road, Xiamen 361102, China
| | - Fengjuan Yuan
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, 4221 Xiang'an South Road, Xiamen 361102, China
| | - Yang Hang
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, 4221 Xiang'an South Road, Xiamen 361102, China
| | - Ran Zhang
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, 4221 Xiang'an South Road, Xiamen 361102, China
| | - Jianzhong Lin
- Department of Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, 201-209 Hubin South Road, Xiamen University, Xiamen 361004, China
| | - Xiaochuan Wang
- Department of Neurology, Affiliated Hospital of Hangzhou Normal University, 126 Wenzhou Road, Hangzhou 310015, China
| | - Jiaxing Zhang
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, 4221 Xiang'an South Road, Xiamen 361102, China
| |
Collapse
|
45
|
Cao P, Dai K, Liu X, Hu J, Jin Z, Xu S, Ren F. Differences in resting-state brain activity in first-episode drug-naïve major depressive disorder patients with and without suicidal ideation. Eur J Neurosci 2024; 59:2766-2777. [PMID: 38515219 DOI: 10.1111/ejn.16315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/23/2024]
Abstract
Despite altered brain activities being associated with suicidal ideation (SI), the neural correlates of SI in major depressive disorder (MDD) have remained elusive. We enrolled 82 first-episode drug-naïve MDD patients including 41 with SI and 41 without SI, as well as 41 healthy controls (HCs). Resting-state functional and structural MRI data were collected. The measures of fractional amplitude of low-frequency fluctuation (fALFF) and grey matter volume (GMV) were calculated and compared. Compared with HCs, patients with SI exhibited increased fALFF values in the right rectus gyrus and left medial superior frontal gyrus, middle frontal gyrus and precuneus. Decreased GMV in the right parahippocampal gyrus, insula and middle occipital gyrus and increased GMV in the left superior frontal gyrus were detected in patients with SI. In addition, patients without SI demonstrated increased fALFF values in the right superior frontal gyrus and decreased fALFF values in the right postcentral gyrus. Decreased GMV in the left superior frontal gyrus, right medial superior frontal gyrus, opercular part of inferior frontal gyrus, postcentral gyrus, fusiform gyrus and increased left supplementary motor area, superior occipital gyrus, right anterior cingulate gyrus and superior temporal gyrus were revealed in patients with SI. Moreover, in comparison with patients without SI, increased fALFF values were identified in the left precuneus of patients with SI. However, no significant differences were found in GMV between patients with and without SI. These findings might be helpful for finding neuroimaging markers predicting individual suicide risk and detecting targeted brain regions for effective early interventions.
Collapse
Affiliation(s)
- Ping Cao
- Department of Radiology, Nanjing Brain Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ke Dai
- Department of Radiology, Nanjing Brain Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xianwei Liu
- Department of Radiology, Nanjing Brain Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Hu
- Department of Radiology, Nanjing Brain Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhuma Jin
- Department of Psychiatry, Nanjing Brain Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shulan Xu
- Department of Gerontology, Nanjing Brain Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fangfang Ren
- Department of Psychiatry, Nanjing Brain Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
46
|
Zhang C, Liang J, Yan H, Li X, Li X, Jing H, Liang W, Li R, Ou Y, Wu W, Guo H, Deng W, Xie G, Guo W. Fractional amplitude of low-frequency fluctuations in sensory-motor networks and limbic system as a potential predictor of treatment response in patients with schizophrenia. Schizophr Res 2024; 267:519-527. [PMID: 38704344 DOI: 10.1016/j.schres.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/21/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Previous investigations have revealed substantial differences in neuroimaging characteristics between healthy controls (HCs) and individuals diagnosed with schizophrenia (SCZ). However, we are not entirely sure how brain activity links to symptoms in schizophrenia, and there is a need for reliable brain imaging markers for treatment prediction. METHODS In this longitudinal study, we examined 56 individuals diagnosed with 56 SCZ and 51 HCs. The SCZ patients underwent a three-month course of antipsychotic treatment. We employed resting-state functional magnetic resonance imaging (fMRI) along with fractional Amplitude of Low Frequency Fluctuations (fALFF) and support vector regression (SVR) methods for data acquisition and subsequent analysis. RESULTS In this study, we initially noted lower fALFF values in the right postcentral/precentral gyrus and left postcentral gyrus, coupled with higher fALFF values in the left hippocampus and right putamen in SCZ patients compared to the HCs at baseline. However, when comparing fALFF values in brain regions with abnormal baseline fALFF values for SCZ patients who completed the follow-up, no significant differences in fALFF values were observed after 3 months of treatment compared to baseline data. The fALFF values in the right postcentral/precentral gyrus and left postcentral gyrus, and the left postcentral gyrus were useful in predicting treatment effects. CONCLUSION Our findings suggest that reduced fALFF values in the sensory-motor networks and increased fALFF values in the limbic system may constitute distinctive neurobiological features in SCZ patients. These findings may serve as potential neuroimaging markers for the prognosis of SCZ patients.
Collapse
Affiliation(s)
- Chunguo Zhang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Jiaquan Liang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xiaoling Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Xuesong Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Huan Jing
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Wenting Liang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Rongwei Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Yangpan Ou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Weibin Wu
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Huagui Guo
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Wen Deng
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China.
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
47
|
Zhu QQ, Tian S, Zhang L, Ding HY, Gao YX, Tang Y, Yang X, Zhu Y, Qi M. Altered dynamic amplitude of low-frequency fluctuation in individuals at high risk for Alzheimer's disease. Eur J Neurosci 2024; 59:2391-2402. [PMID: 38314647 DOI: 10.1111/ejn.16267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 02/06/2024]
Abstract
The brain's dynamic spontaneous neural activity is significant in supporting cognition; however, how brain dynamics go awry in subjective cognitive decline (SCD) and mild cognitive impairment (MCI) remains unclear. Thus, the current study aimed to investigate the dynamic amplitude of low-frequency fluctuation (dALFF) alterations in patients at high risk for Alzheimer's disease and to explore its correlation with clinical cognitive assessment scales, to identify an early imaging sign for these special populations. A total of 152 participants, including 72 SCD patients, 44 MCI patients and 36 healthy controls (HCs), underwent a resting-state functional magnetic resonance imaging and were assessed with various neuropsychological tests. The dALFF was measured using sliding-window analysis. We employed canonical correlation analysis (CCA) to examine the bi-multivariate correlations between neuropsychological scales and altered dALFF among multiple regions in SCD and MCI patients. Compared to those in the HC group, both the MCI and SCD groups showed higher dALFF values in the right opercular inferior frontal gyrus (voxel P < .001, cluster P < .05, correction). Moreover, the CCA models revealed that behavioural tests relevant to inattention correlated with the dALFF of the right middle frontal gyrus and right opercular inferior frontal gyrus, which are involved in frontoparietal networks (R = .43, P = .024). In conclusion, the brain dynamics of neural activity in frontal areas provide insights into the shared neural basis underlying SCD and MCI.
Collapse
Affiliation(s)
- Qin-Qin Zhu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shui Tian
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ling Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hong-Yuan Ding
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ya-Xin Gao
- Rehabilitation Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Yin Tang
- Department of Medical imaging, Jingjiang People's Hospital, Jingjiang, China
| | - Xi Yang
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Yi Zhu
- Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Qi
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
48
|
Ma Y, Zou Y, Liu X, Chen T, Kemp GJ, Gong Q, Wang S. Social intelligence mediates the protective role of resting-state brain activity in the social cognition network against social anxiety. PSYCHORADIOLOGY 2024; 4:kkae009. [PMID: 38799033 PMCID: PMC11119848 DOI: 10.1093/psyrad/kkae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/02/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024]
Abstract
Background Social intelligence refers to an important psychosocial skill set encompassing an array of abilities, including effective self-expression, understanding of social contexts, and acting wisely in social interactions. While there is ample evidence of its importance in various mental health outcomes, particularly social anxiety, little is known on the brain correlates underlying social intelligence and how it can mitigate social anxiety. Objective This research aims to investigate the functional neural markers of social intelligence and their relations to social anxiety. Methods Data of resting-state functional magnetic resonance imaging and behavioral measures were collected from 231 normal students aged 16 to 20 years (48% male). Whole-brain voxel-wise correlation analysis was conducted to detect the functional brain clusters related to social intelligence. Correlation and mediation analyses explored the potential role of social intelligence in the linkage of resting-state brain activities to social anxiety. Results Social intelligence was correlated with neural activities (assessed as the fractional amplitude of low-frequency fluctuations, fALFF) among two key brain clusters in the social cognition networks: negatively correlated in left superior frontal gyrus (SFG) and positively correlated in right middle temporal gyrus. Further, the left SFG fALFF was positively correlated with social anxiety; brain-personality-symptom analysis revealed that this relationship was mediated by social intelligence. Conclusion These results indicate that resting-state activities in the social cognition networks might influence a person's social anxiety via social intelligence: lower left SFG activity → higher social intelligence → lower social anxiety. These may have implication for developing neurobehavioral interventions to mitigate social anxiety.
Collapse
Affiliation(s)
- Yingqiao Ma
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Yuhan Zou
- Department of Psychiatry, University of Cambridge, Cambridgeshire, United Kingdom
| | - Xiqin Liu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Taolin Chen
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Qiyong Gong
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China
| | - Song Wang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
49
|
Lin C, Lee SH, Huang CM, Wu YW, Chang YX, Liu HL, Ng SH, Cheng YC, Chiu CC, Wu SC. Cognitive protection and brain entropy changes from omega-3 polyunsaturated fatty acids supplement in late-life depression: A 52-week randomized controlled trial. J Affect Disord 2024; 351:15-23. [PMID: 38281596 DOI: 10.1016/j.jad.2024.01.205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Late-life depression (LLD) is associated with risk of dementia, yet intervention of LLD provides an opportunity to attenuate subsequent cognitive decline. Omega-3 polyunsaturated fatty acids (PUFAs) supplement is a potential intervention due to their beneficial effect in depressive symptoms and cognitive function. To explore the underlying neural mechanism, we used resting-state functional MRI (rs-fMRI) before and after omega-3 PUFAs supplement in older adults with LLD. METHODS A 52-week double-blind randomized controlled trial was conducted. We used multi-scale sample entropy to analyze rs-fMRI data. Comprehensive cognitive tests and inflammatory markers were collected to correlate with brain entropy changes. RESULTS A total of 20 patients completed the trial with 11 under omega-3 PUFAs and nine under placebo. While no significant global cognitive improvement was observed, a marginal enhancement in processing speed was noted in the omega-3 PUFAs group. Importantly, participants receiving omega-3 PUFAs exhibited decreased brain entropy in left posterior cingulate gyrus (PCG), multiple visual areas, the orbital part of the right middle frontal gyrus, and the left Rolandic operculum. The brain entropy changes of the PCG in the omega-3 PUFAs group correlated with improvement of language function and attenuation of interleukin-6 levels. LIMITATIONS Sample size is small with only marginal clinical effect. CONCLUSION These findings suggest that omega-3 PUFAs supplement may mitigate cognitive decline in LLD through anti-inflammatory mechanisms and modulation of brain entropy. Larger clinical trials are warranted to validate the potential therapeutic implications of omega-3 PUFAs for deterring cognitive decline in patients with late-life depression.
Collapse
Affiliation(s)
- Chemin Lin
- Department of Psychiatry, Keelung Chang Gung Memorial Hospital, Keelung City, Taiwan; College of Medicine, Chang Gung University, Taoyuan County, Taiwan.; Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Keelung, Taiwan
| | - Shwu-Hua Lee
- College of Medicine, Chang Gung University, Taoyuan County, Taiwan.; Department of Psychiatry, Linkou Chang Gung Memorial Hospital, Taoyuan County, Taiwan
| | - Chih-Mao Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yu-Wen Wu
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
| | - You-Xun Chang
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ho-Ling Liu
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Shu-Hang Ng
- Department of Head and Neck Oncology Group, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan; Department of Diagnostic Radiology, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Ying-Chih Cheng
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Psychiatry, China Medical University Hsinchu Hospital, China Medical University, Hsinchu, Taiwan; Research Center of Big Data and Meta-analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chih-Chiang Chiu
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan; Department of Psychiatry, Taipei Medical University, Taipei, Taiwan.
| | - Shun-Chi Wu
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
50
|
Chang J, Liu X, Xue S, Qiu J. An amygdala-centered effective connectivity network in trait anxiety. Brain Imaging Behav 2024; 18:324-330. [PMID: 38078980 DOI: 10.1007/s11682-023-00837-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 06/07/2024]
Abstract
Previous studies have established that the amygdala plays an important role in trait anxiety. However, there remains limited knowledge regarding the changes in amygdala-centered effective connectivity network associated with this trait. The current study employed the Granger Causal analysis to investigate the directional connectivity patterns involving the amygdala in relation to trait anxiety in a large cohort of young adults (N = 424). The results revealed a negative association between trait anxiety scores and the Granger causality from the left middle frontal gyrus and right superior frontal gyrus to the right amygdala. Conversely, higher trait anxiety levels were found to be associated with increased effective connectivity from the left amygdala to the left hippocampus. These results demonstrated the significance of the prefrontal cortex-amygdala-hippocampus neural circuitry in the neurobiological mechanisms underlying trait anxiety. Our findings advance the comprehension of this characteristic, holding promise for informing strategies in the prevention and treatment of related mental disorders.
Collapse
Affiliation(s)
- Jingjing Chang
- Institute of Psychology, School of Public Policy, Xiamen University, Xiamen, China
| | - Xin Liu
- Department of Neurology, Affiliated Hospital of Chengdu University, Chengdu, China
| | - Song Xue
- School of Psychology, Nanjing Normal University, Nanjing, 210097, China.
- Faculty of Psychology, Key Laboratory of Cognition and Personality, Southwest University, Ministry of Education, Chongqing, China.
| | - Jiang Qiu
- Faculty of Psychology, Key Laboratory of Cognition and Personality, Southwest University, Ministry of Education, Chongqing, China
| |
Collapse
|