1
|
Lertxundi U, Orive G. Por una farmacia más sostenible. FARMACIA HOSPITALARIA 2023; 47:53-54. [PMID: 36801093 DOI: 10.1016/j.farma.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/02/2023] [Accepted: 01/17/2023] [Indexed: 05/19/2023] Open
Affiliation(s)
- Unax Lertxundi
- Instituto de Investigación Sanitaria Bioaraba, Osakidetza-Servicio Vasco de Salud, Red Araba de Salud Mental, Servicio de Farmacia, Hospital Psiquiátrico Araba, Vitoria-Gasteiz, España.
| | - Gorka Orive
- Grupo NanoBioCel, Laboratorio de Farmacia, Facultad de Farmacia, Universidad del País Vasco, Vitoria-Gasteiz, España; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina Nanomedicina (CIBER-BBN), Vitoria-Gasteiz, España; Instituto Universitario de Medicina Regenerativa e Implantología Oral, Vitoria-Gasteiz, España; Instituto de Investigación Ocular de Singapur, Singapur; Grupo de Investigación NanoBioCel, Bioaraba, Vitoria-Gasteiz, España
| |
Collapse
|
2
|
Siddiqui MF, Alam A, Kalmatov R, Mouna A, Villela R, Mitalipova A, Mrad YN, Rahat SAA, Magarde BK, Muhammad W, Sherbaevna SR, Tashmatova N, Islamovna UG, Abuassi MA, Parween Z. Leveraging Healthcare System with Nature-Inspired Computing Techniques: An Overview and Future Perspective. STUDIES IN COMPUTATIONAL INTELLIGENCE 2023:19-42. [DOI: 10.1007/978-981-19-6379-7_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
|
3
|
Chiejina CO, Anih L, Okoye C, Aguzie IO, Ali D, Kumar G, Nwani CD. Haloperidol alters the behavioral, hematological and biochemical parameters of freshwater African catfish, Clarias gariepinus (Burchell 1822). Comp Biochem Physiol C Toxicol Pharmacol 2022; 254:109292. [PMID: 35114394 DOI: 10.1016/j.cbpc.2022.109292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 11/24/2022]
Abstract
The presence of drugs and their metabolites in surface waters and municipal effluents has been reported in several studies, but their impacts on aquatic organisms are not yet well studied. The present study investigated the effects of exposure to the antipsychotic drug, haloperidol on the behavioral, hematological and biochemical parameters in juvenile Clarias gariepinus. The fishes were exposed to 0.12, 0.24 and 0.48 mg/L haloperidol for 15 days and later withdrawn from the toxicant and allowed to recover for 5 days. Blood was sampled on days 1, 5, 10, 15, and after the 5-day recovery for hematological and biochemical analysis. The pack cell volume (PCV), red blood cells (RBC), hemoglobin (Hb), reticulocytes and lymphocyte counts were significantly reduced in the exposed fish. The neutrophil counts were increased while that of monocytes, basophils and eosinophils were not affected by the drug. The mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH) and mean corpuscular hemoglobin concentration (MCHC) were not different from the control on exposure to the drug. The activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and acid phosphatase (ACP); and serum creatinine, bile acid and bilirubin were increased on 15-day exposure to the drug. The activity of the clotting factor fibrinogen was reduced compared to the control after exposure to the drug. Haloperidol at concentrations used on 15-day exposure were toxic to fish, but the effect appeared short-lived, as it dissipated on 5-day withdrawal from the drug. While further studies are needed to ascertain the impact of prolonged exposure to environmentally relevant concentrations, caution is advised to avoid eco-toxicological damage to aquatic organisms.
Collapse
Affiliation(s)
- Chike Obinna Chiejina
- Department of Zoology and Environmental Biology, University of Nigeria Nsukka, Enugu, Nigeria
| | - Lucy Anih
- Department of Zoology and Environmental Biology, University of Nigeria Nsukka, Enugu, Nigeria
| | - Charles Okoye
- Department of Zoology and Environmental Biology, University of Nigeria Nsukka, Enugu, Nigeria
| | - Ifeanyi Oscar Aguzie
- Department of Zoology and Environmental Biology, University of Nigeria Nsukka, Enugu, Nigeria
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | | |
Collapse
|
4
|
Lertxundi U, Domingo-Echaburu S, Orive G. Environmental risk of pharmaceuticals: Let us look at the whole package. Br J Clin Pharmacol 2022; 88:3918-3919. [PMID: 35318697 DOI: 10.1111/bcp.15311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/08/2022] [Accepted: 03/08/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Unax Lertxundi
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba Mental Health Network, Araba Psychiatric Hospital, Pharmacy Service, Vitoria-Gasteiz, Spain
| | - Saioa Domingo-Echaburu
- Osakidetza Basque Health Service, Debagoiena Integrated Health Organisation, Pharmacy Service, Arrasate, Spain
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.,University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain.,Singapore Eye Research Institute, Singapore.,Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| |
Collapse
|
5
|
Domingo-Echaburu S, Dávalos LM, Orive G, Lertxundi U. Drug pollution & Sustainable Development Goals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149412. [PMID: 34391154 DOI: 10.1016/j.scitotenv.2021.149412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
The United Nations set "The 2030 Agenda for Sustainable Development," which includes the Sustainable Development Goals (SDGs), a collection of 17 global goals designed to be a "blueprint to achieve a better and more sustainable future for all". Although only mentioned in one of the seventeen goals (goal 3), we argue that drugs in general, and growing drug pollution in particular, affects the SDGs in deeper, not readily apparent ways. So far, the emerging problem of drug pollution has not been sufficiently addressed. Here, we outline and discuss how drug pollution can affect SDGs and even threaten their achievement.
Collapse
Affiliation(s)
- S Domingo-Echaburu
- Pharmacy Service, Alto Deba-Integrated Health Care Organization, Arrasate, Gipuzkoa, Spain
| | - L M Dávalos
- Department of Ecology and Evolution, Stony Brook University, 626 Life Sciences Building, Stony Brook, NY 11794, USA; Consortium for Inter-Disciplinary Environmental Research, School of Marine and Atmospheric Sciences, Stony Brook University, 129 Dana Hall, Stony Brook, NY 11794, USA
| | - G Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - U Lertxundi
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba Mental Health Network, Araba Psychiatric Hospital, Pharmacy Service, c/Alava 43, 01006 Vitoria-Gasteiz, Alava, Spain.
| |
Collapse
|
6
|
Argaluza J, Domingo-Echaburu S, Orive G, Medrano J, Hernandez R, Lertxundi U. Environmental pollution with psychiatric drugs. World J Psychiatry 2021; 11:791-804. [PMID: 34733642 PMCID: PMC8546762 DOI: 10.5498/wjp.v11.i10.791] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/25/2021] [Accepted: 08/31/2021] [Indexed: 02/06/2023] Open
Abstract
Among all contaminants of emerging interest, drugs are the ones that give rise to the greatest concern. Any of the multiple stages of the drug's life cycle (production, consumption and waste management) is a possible entry point to the different environmental matrices. Psychiatric drugs have received special attention because of two reasons. First, their use is increasing. Second, many of them act on phylogenetically highly conserved neuroendocrine systems, so they have the potential to affect many non-target organisms. Currently, wastewater is considered the most important source of drugs to the environment. Furthermore, the currently available wastewater treatment plants are not specifically prepared to remove drugs, so they reach practically all environmental matrices, even tap water. As drugs are designed to produce pharmacological effects at low concentrations, they are capable of producing ecotoxicological effects on microorganisms, flora and fauna, even on human health. It has also been observed that certain antidepressants and antipsychotics can bioaccumulate along the food chain. Drug pollution is a complicated and diffuse problem characterized by scientific uncertainties, a large number of stakeholders with different values and interests, and enormous complexity. Possible solutions consist on acting at source, using medicines more rationally, eco-prescribing or prescribing greener drugs, designing pharmaceuticals that are more readily biodegraded, educating both health professionals and citizens, and improving coordination and collaboration between environmental and healthcare sciences. Besides, end of pipe measures like improving or developing new purification systems (biological, physical, chemical, combination) that eliminate these residues efficiently and at a sustainable cost should be a priority. Here, we describe and discuss the main aspects of drug pollution, highlighting the specific issues of psychiatric drugs.
Collapse
Affiliation(s)
- Julene Argaluza
- Department of Epidemiology and Public Health, Bioaraba Health Research Institute, Vitoria-Gasteiz 01002, Spain
| | - Saioa Domingo-Echaburu
- Department of Pharmacy, Alto Deba Integrated Health Care Organization, Arrasate 20500, Spain
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz 01006, Spain
- Singapore Eye Research Institute, Discovery Tower, Singapore 168751, Singapore
| | - Juan Medrano
- Department of Psychiatry, Biocruces Bizkaia Health Research Institute, Mental Health Network Research Group, Osakidetza, Portugalete 48920, Spain
| | - Rafael Hernandez
- Department of Internal Medicine, Araba Mental Health Network, Vitoria-Gasteiz 01006, Spain
| | - Unax Lertxundi
- Bioaraba Health Research Institute; Osakidetza Basque Health Service, Araba Mental Health Network, Araba Psychiatric Hospital, Pharmacy Service, Vitoria-Gasteiz 01006, Alava, Spain
| |
Collapse
|
7
|
Cui H, Zhou W, Deng Y, Zheng B, Zhang Q, Zhang Z, Lu T, Qian H. Meta-transcriptomic profiling of functional variation of freshwater microbial communities induced by an antidepressant sertraline hydrochloride. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147434. [PMID: 33964776 DOI: 10.1016/j.scitotenv.2021.147434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Sertraline hydrochloride (Ser-HCl) is an effective and commonly used antidepressant drug, which is also frequently detected in aquatic environments. Our previous research showed that Ser-HCl changes the community composition of aquatic microbiome, but the understanding of the expression of functional pathways in microbial communities is still incomplete; to address this knowledge gap, we used meta-transcriptomics analysis to evaluate the toxicity of Ser-HCl to natural aquatic microbial communities cultured in laboratory microcosms. Meta-transcriptomic results show that a 15-day exposure to 50 μg/L Ser-HCl significantly changed the functional expression activity of aquatic microbial communities. Pathways related to lipid metabolism, energy metabolism, membrane transport function, and genetic information processing in the aquatic microbial community were severely inhibited under Ser-HCl treatment, but metabolism of cofactors and vitamins to alleviate biological toxicity after Ser-HCl exposure was enhanced. Our study thus reveals details of the effects of sertraline on the functioning of aquatic microbiome. Due to the extensive use of Ser-HCl and its strong biological activity, it should not continue to be an overlooked pollutant. Therefore, more attention should be paid to the negative effects of such biologically active drugs on the expression of aquatic microbiome.
Collapse
Affiliation(s)
- Hengzheng Cui
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Wenya Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yu Deng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Binyu Zheng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
8
|
Lertxundi U, Domingo-Echaburu S, Orive G. Rational use of drugs as a source control measure to fight drug pollution. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124664. [PMID: 33272727 DOI: 10.1016/j.jhazmat.2020.124664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Affiliation(s)
- Unax Lertxundi
- Bioaraba Health Research Institute, Araba Mental Health Network, Araba Psychiatric Hospital, Pharmacy Service, c/Alava 43, 01006 Vitoria-Gasteiz, Alava, Spain.
| | - Saioa Domingo-Echaburu
- Pharmacy Service, Alto Deba Integrated Health Care Organization, Arrasate, Gipuzkoa, Spain
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore
| |
Collapse
|
9
|
Escudero J, Muñoz JL, Morera-Herreras T, Hernandez R, Medrano J, Domingo-Echaburu S, Barceló D, Orive G, Lertxundi U. Antipsychotics as environmental pollutants: An underrated threat? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144634. [PMID: 33485196 DOI: 10.1016/j.scitotenv.2020.144634] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
The heterogeneous class of what we nowadays call antipsychotics was born almost 70 years ago with the serendipitous discovery of chlorpromazine. Their utilization is constantly growing because they are used to treat a diverse group of diseases and patients across all age groups: schizophrenia, bipolar disease, depression, autism, attention deficit hyperactivity disorder, behavioural and psychological symptoms in dementia, among others. They possess a complex pharmacological profile, acting on multiple receptors: dopaminergic, serotoninergic, histaminergic, adrenergic, and cholinergic, leading scientists to call them "agents with rich pharmacology" or "dirty drugs". Serotonin, dopamine, acetylcholine, noradrenaline, histamine and their respective receptors are evolutionary ancient compounds, and as such, are found in many different living beings in the environment. Antipsychotics do not disappear once excreted by patient's urine or faeces and are transported to wastewater treatment plants. But as these plant's technology is not designed to eliminate drugs and their metabolites, a variable proportion of the administered dose ends up in the environment, where they have been found in almost every matrix: municipal wastewater, hospital sewage, rivers, lakes, sea and even drinking water. We believe that reported concentrations found in the environment might be high enough to exert significant effect to aquatic wildlife. Besides, recent studies suggest antipsychotics, among others, are very likely bioaccumulating through the web food. Crucially, psychotropics may provoke behavioural changes affecting populations' dynamics at lower concentrations. We believe that so far, antipsychotics have not received the attention they deserve with regards to drug pollution, and that their role as environmental pollutants has been underrated.
Collapse
Affiliation(s)
- J Escudero
- Bioaraba Health Research Institute, Epidemiology and Public Health, Vitoria-Gasteiz, Spain
| | - J L Muñoz
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - T Morera-Herreras
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases Group, BioCruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - R Hernandez
- Internal Medicine Service, Araba Psychiatric Hospital, Araba Mental Health Network, C/Álava 43, 01006 Vitoria-Gasteiz, Alava, Spain
| | - J Medrano
- Biocruces Bizkaia Health Research Institute, Mental Health Network Research Group, Osakidetza, Bizkaia, Spain
| | - S Domingo-Echaburu
- Pharmacy Service, Alto Deba-Integrated Health Care Organization, Arrasate, Gipuzkoa, Spain
| | - D Barceló
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA), C/Emili Grahit 101, 17003 Girona, Spain
| | - G Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore.; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - U Lertxundi
- Bioaraba Health Research Institute; Osakidetza Basque Health Service, Araba Mental Health Network, Araba Psychiatric Hospital, Pharmacy Service, c/Alava 43, 01006 Vitoria-Gasteiz, Alava, Spain.
| |
Collapse
|