1
|
van Hattem T, Verkaar L, Krugliakova E, Adelhöfer N, Zeising M, Drinkenburg WHIM, Claassen JAHR, Bódizs R, Dresler M, Rosenblum Y. Targeting Sleep Physiology to Modulate Glymphatic Brain Clearance. Physiology (Bethesda) 2025; 40:0. [PMID: 39601891 DOI: 10.1152/physiol.00019.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/12/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Sleep has been postulated to play an important role in the removal of potentially neurotoxic molecules, such as amyloid-β, from the brain via the glymphatic system. Disturbed sleep, on the other hand, may contribute to the accumulation of neurotoxins in brain tissue, eventually leading to neuronal death. A bidirectional relationship has been proposed between impaired sleep and neurodegenerative processes, which start years before the onset of clinical symptoms associated with conditions like Alzheimer's and Parkinson's diseases. Given the heavy burden these conditions place on society, it is imperative to develop interventions that promote efficient brain clearance, thereby potentially aiding in the prevention or slowing of neurodegeneration. In this review, we explore whether the metabolic clearance function of sleep can be enhanced through sensory (e.g., auditory, vestibular) or transcranial (e.g., magnetic, ultrasound, infrared light) stimulation, as well as pharmacological (e.g., antiepileptics) and behavioral (e.g., sleeping position, physical exercise, cognitive intervention) modulation of sleep physiology. A particular focus is placed on strategies to enhance slow-wave activity during nonrapid eye movement sleep as a driver of glymphatic brain clearance. Overall, this review provides a comprehensive overview on the potential preventative and therapeutic applications of sleep interventions in combating neurodegeneration, cognitive decline, and dementia.
Collapse
Affiliation(s)
- Timo van Hattem
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lieuwe Verkaar
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elena Krugliakova
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nico Adelhöfer
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel Zeising
- Klinikum Ingolstadt, Centre of Mental Health, Ingolstadt, Germany
| | - Wilhelmus H I M Drinkenburg
- Groningen Institute for Evolutionary Life Sciences, Neurobiology, University of Groningen, Groningen, The Netherlands
| | - Jurgen A H R Claassen
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yevgenia Rosenblum
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Satomi E, Apolinário D, Magaldi RM, Busse AL, Vieira Gomes GC, Ribeiro E, Genta PR, Piovezan RD, Poyares D, Jacob-Filho W, Suemoto CK. Beyond sleep: Rest and activity rhythm as a marker of preclinical and mild dementia in older adults with less education. Neurobiol Sleep Circadian Rhythms 2025; 18:100110. [PMID: 39834590 PMCID: PMC11745811 DOI: 10.1016/j.nbscr.2024.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/22/2024] [Accepted: 12/22/2024] [Indexed: 01/22/2025] Open
Abstract
Background Although sleep duration and sleep-related breathing disorders were associated with dementia previously, few studies examined the association between circadian rhythm association and cognitive status. Objective We aimed to investigate the association of rest and activity rhythm with cognitive performance in older people with cognitive complaints and less education. Methods Activity rhythm was evaluated with wrist actigraphy in 109 community-dwelling older people with cognitive complaints without diagnosed dementia. Each participant completed a neuropsychological battery and was classified as having cognitive impairment (MCI), dementia, or normal cognition. We used adjusted multinomial logistic regression and linear regression models to compare sleep and circadian non-parametric measures with cognitive groups and cognitive z-scores, respectively. Results The mean age of the 109 participants was 79.3 ± 6.3 years old, 74% were women, 68% were white, and the mean education was 5.6 ± 5.2 years. Daytime activity intensity was associated with better language (β = 0.178; 95% CI = 0.022, 0.334; p = 0.03) and visuospatial performance (β = 0.158; 95%CI = 0.008, 0.308; p = 0.04). Also, less fragmented rhythm was associated with better visuospatial (β = 0.172; 95%CI = 0.025, 0.320; p = 0.02) and global cognitive scores (β = 0.134; 95%CI = 0.005, 0.263; p = 0.04). More interdaily stability was associated with a lower risk of MCI and dementia (RR = 0.54; 95%CI = 0.29-0.99; p = 0.04, and RR = 0.44; 95%CI = 0.21-0.94; p = 0.03, respectively). Moreover, more daytime activity (RR = 0.40; 95%CI = 0.18-0.89; p = 0.02) and less rhythm fragmentation (RR = 0.31; 95%CI = 0.14-0.73; p = 0.007) were associated with lower risk for dementia. Conclusion Daytime activity intensity and fragmented rhythm during the day and night may play an important role as markers for cognitive impairment in less educated populations. Future studies with larger samples should confirm these findings.
Collapse
Affiliation(s)
- Erika Satomi
- Division of Geriatrics, University of São Paulo Medical School, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Daniel Apolinário
- Division of Geriatrics, University of São Paulo Medical School, São Paulo, Brazil
- Hospital Do Coração (HCOR), São Paulo, Brazil
| | | | | | - Gisele Cristina Vieira Gomes
- Department of Physical Therapy, Speech Therapy and Occupational Therapy, University of Sao Paulo Medical School, São Paulo, Brazil
| | - Elyse Ribeiro
- Department of Psychology, University of São Paulo Medical School, São Paulo, Brazil
| | - Pedro Rodrigues Genta
- Sleep Laboratory, Pulmonary Division, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Ronaldo Delmonte Piovezan
- Division of Sleep Medicine, Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Adelaide Geriatrics Training and Research with Aged Care (G-TRAC) Centre, Adelaide Medical School, Faculty of Health and Medical Sciences, Adelaide, SA, Australia
| | - Dalva Poyares
- Division of Sleep Medicine, Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Wilson Jacob-Filho
- Division of Geriatrics, University of São Paulo Medical School, São Paulo, Brazil
| | | |
Collapse
|
3
|
Kaur S, Kumari D, Dandekar MP. Importance of Gut Microbiota Dysbiosis and Circadian Disruption-Associated Biomarkers in Emergence of Alzheimer's Disease. Mol Neurobiol 2025; 62:6308-6316. [PMID: 39775480 DOI: 10.1007/s12035-024-04685-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025]
Abstract
Alzheimer's disease (AD) is a major devastating neurodegenerative disorder afflicting majorly the geriatric population. Emerging studies augur the connection of gut dysbiosis and circadian disruption with the early onset of AD. Gut dysbiosis is characterized by dysregulated gut microbiota signature and compromised intestinal integrity, which provokes the translocation of bacterial metabolites into the systemic circulation. Noteworthy, gut-derived metabolites like calprotectin, trimethylamine-N-oxide, kynurenine, isoamylamine, and short-chain fatty acids play a key role in AD pathogenesis. Circadian dysregulation also corresponds with the exacerbated AD pathogenesis by accumulating Aβ and tau proteins. Moreover, circadian dysregulation is one of the causative factors for gut dysbiosis. This review discusses the complex interplay between the microbiota-gut-brain axis, circadian rhythmicity, and the emergence of AD. We reviewed preclinical and clinical studies on AD describing potential biomarkers of gut dysbiosis and circadian dysregulation. The identification of new biomarkers associated with the microbiota-gut-brain axis and circadian rhythmicity may help in early diagnosis and development of targeted therapies for mitigating neurodegenerative AD.
Collapse
Affiliation(s)
- Simranjit Kaur
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India, 500037
| | - Deepali Kumari
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India, 500037
| | - Manoj P Dandekar
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India, 500037.
| |
Collapse
|
4
|
Zou Y, Yang L, Zhu J, Fan J, Zheng H, Liao X, Yang Z, Zhang K, Jia H, Konnerth A, Wang YJ, Zhang C, Zhang Y, Li SC, Chen X. Pitolisant alleviates brain network dysfunction and cognitive deficits in a mouse model of Alzheimer's disease. Transl Psychiatry 2025; 15:126. [PMID: 40185739 PMCID: PMC11971262 DOI: 10.1038/s41398-025-03358-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 03/16/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025] Open
Abstract
Histamine H3 receptor (H3R) antagonists regulate histamine release that modulates neuronal activity and cognitive function. Although H3R is elevated in Alzheimer's disease (AD) patients, whether H3R antagonists can rescue AD-associated neural impairments and cognitive deficits remains unknown. Pitolisant is a clinically approved H3R antagonist/inverse agonist that treats narcolepsy. Here, we find that pitolisant reverses AD-like pathophysiology and cognitive impairments in an AD mouse model. Behavioral assays and in vivo wide-field Ca2+ imaging revealed that recognition memory, learning flexibility, and slow-wave impairment were all improved following the 15-day pitolisant treatment. Improved recognition memory was tightly correlated with slow-wave coherence, suggesting slow waves serve as a biomarker for treatment response and for AD drug screening. Furthermore, pitolisant reduced amyloid-β deposition and dystrophic neurites surrounding plaques, and enhanced neuronal lysosomal activity, inhibiting which blocked cognitive and slow-wave restoration. Our findings identify pitolisant as a potential therapeutic agent for AD treatments.
Collapse
Affiliation(s)
- Yang Zou
- Guangxi Key Laboratory of Special Biomedicine/Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning, 530004, China
| | - Linhan Yang
- Guangxi Key Laboratory of Special Biomedicine/Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning, 530004, China
| | - Jiahui Zhu
- Guangxi Key Laboratory of Special Biomedicine/Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning, 530004, China
| | - Jihua Fan
- Guangxi Key Laboratory of Special Biomedicine/Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning, 530004, China
| | - Hanrun Zheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Xiang Liao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Zhiqi Yang
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, 400038, China
| | - Kuan Zhang
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, 400038, China
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing, 400038, China
- LFC Laboratory and Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China
| | - Hongbo Jia
- Guangxi Key Laboratory of Special Biomedicine/Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning, 530004, China
- Institute of Neuroscience and Munich Cluster for Systems Neurology, Technical University Munich, 80802, Munich, Germany
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
- Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Arthur Konnerth
- Institute of Neuroscience and Munich Cluster for Systems Neurology, Technical University Munich, 80802, Munich, Germany
| | - Yan-Jiang Wang
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing, 400038, China
- LFC Laboratory and Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China
| | - Chunqing Zhang
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing, 400038, China.
- LFC Laboratory and Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China.
| | - Yun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
| | - Sunny C Li
- LFC Laboratory and Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China.
- NewLight Neuroscience Unit, Chongqing, 400064, China.
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, 400038, China.
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing, 400038, China.
- LFC Laboratory and Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China.
| |
Collapse
|
5
|
Khandayataray P, Murthy MK. Exploring the nexus: Sleep disorders, circadian dysregulation, and Alzheimer's disease. Neuroscience 2025; 574:21-41. [PMID: 40189132 DOI: 10.1016/j.neuroscience.2025.03.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/10/2025] [Accepted: 03/29/2025] [Indexed: 04/11/2025]
Abstract
We reviewed the connections among Alzheimer's disease (AD), sleep deprivation, and circadian rhythm disorders. Evidence is mounting that disrupted sleep and abnormal circadian rhythms are not merely symptoms of AD, but are also involved in accelerating the disease. Amyloid-beta (Aβ) accumulates, a feature of AD, and worsens with sleep deprivation because glymphatic withdrawal is required to clear toxic proteins from the brain. In addition, disturbances in circadian rhythm can contribute to the induction of neuroinflammation and oxidative stress, thereby accelerating neurodegenerative processes. While these interactions are bidirectional, Alzheimer's pathology further disrupts sleep and circadian function in a vicious cycle that worsens cognitive decline, which is emphasized in the review. The evidence that targeting sleep and circadian mechanisms may serve as therapeutic strategies for AD was strengthened by this study through the analysis of the molecular and physiological pathways. Further work on this nexus could help unravel the neurobiological mechanisms common to the onset of Alzheimer's and disrupted sleep and circadian regulation, which could result in earlier intervention to slow or prevent the onset of the disease.
Collapse
Affiliation(s)
- Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, Odisha 752057, India
| | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab 140401, India.
| |
Collapse
|
6
|
Lucey BP. Sleep Alterations and Cognitive Decline. Semin Neurol 2025. [PMID: 40081821 DOI: 10.1055/a-2557-8422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Sleep disturbances and cognitive decline are intricately connected, and both are prevalent in aging populations and individuals with neurodegenerative disorders such as Alzheimer's disease (AD) and other dementias. Sleep is vital for cognitive functions including memory consolidation, executive function, and attention. Disruption in these processes is associated with cognitive decline, although causal evidence is mixed. This review delves into the bidirectional relationship between alterations in sleep and cognitive impairment, exploring key mechanisms such as amyloid-β accumulation, tau pathology, synaptic homeostasis, neurotransmitter dysregulation, oxidative stress, and vascular contributions. Evidence from both experimental research and population-based studies underscores the necessity of early interventions targeting sleep to mitigate risks of neurodegenerative diseases. A deeper understanding of the interplay between sleep and cognitive health may pave the way for innovative strategies to prevent or reduce cognitive decline through improved sleep management.
Collapse
Affiliation(s)
- Brendan P Lucey
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri
- Center On Biological Rhythms and Sleep, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
7
|
Kou M, Ma H, Wang X, Heianza Y, Qi L. Plasma proteomics-based brain aging signature and incident dementia risk. GeroScience 2025; 47:2335-2349. [PMID: 39532828 PMCID: PMC11978599 DOI: 10.1007/s11357-024-01407-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Investigating brain-enriched proteins with machine learning methods may enable a brain-specific understanding of brain aging and provide insights into the molecular mechanisms and pathological pathways of dementia. The study aims to analyze associations of brain-specific plasma proteomic aging signature with risks of incident dementia. In 45,429 dementia-free UK Biobank participants at baseline, we generated a brain-specific biological age using 63 brain-enriched plasma proteins with machine learning methods. The brain age gap was estimated, and Cox proportional hazards models were used to study the association with incident all-cause dementia, Alzheimer's disease (AD), and vascular dementia. Per-unit increment in the brain age gap z-score was associated with significantly higher risks of all-cause dementia (hazard ratio [95% confidence interval], 1.67 [1.56-1.79], P < 0.001), AD (1.85 [1.66-2.08], P < 0.001), and vascular dementia (1.86 [1.55-2.24], P < 0.001), respectively. Notably, 2.1% of the study population exhibited extreme old brain aging defined as brain age gap z-score > 2, correlating with over threefold increased risks of all-cause dementia and vascular dementia (3.42 [2.25-5.20], P < 0.001, and 3.41 [1.05-11.13], P = 0.042, respectively), and fourfold increased risk of AD (4.45 [2.32-8.54], P < 0.001). The associations were stronger among participants with healthier lifestyle factors (all P-interaction < 0.05). These findings were corroborated by magnetic resonance imaging assessments showing that a higher brain age gap aligns global pathophysiology of dementia, including global and regional atrophy in gray matter, and white matter lesions (P < 0.001). The brain-specific proteomic age gap is a powerful biomarker of brain aging, indicative of dementia risk and neurodegeneration.
Collapse
Affiliation(s)
- Minghao Kou
- Department of Epidemiology, Celia Scott Weatherhead School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Hao Ma
- Department of Epidemiology, Celia Scott Weatherhead School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Xuan Wang
- Department of Epidemiology, Celia Scott Weatherhead School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Yoriko Heianza
- Department of Epidemiology, Celia Scott Weatherhead School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lu Qi
- Department of Epidemiology, Celia Scott Weatherhead School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
8
|
Dias I, Kollarik S, Siegel M, Baumann CR, Moreira CG, Noain D. Novel murine closed-loop auditory stimulation paradigm elicits macrostructural sleep benefits in neurodegeneration. J Sleep Res 2025; 34:e14316. [PMID: 39223830 PMCID: PMC11911048 DOI: 10.1111/jsr.14316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/05/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Boosting slow-wave activity (SWA) by modulating slow waves through closed-loop auditory stimulation (CLAS) might provide a powerful non-pharmacological tool to investigate the link between sleep and neurodegeneration. Here, we established mouse CLAS (mCLAS)-mediated SWA enhancement and explored its effects on sleep deficits in neurodegeneration, by targeting the up-phase of slow waves in mouse models of Alzheimer's disease (AD, Tg2576) and Parkinson's disease (PD, M83). We found that tracking a 2 Hz component of slow waves leads to highest precision of non-rapid eye movement (NREM) sleep detection in mice, and that its combination with a 30° up-phase target produces a significant 15-30% SWA increase from baseline in wild-type (WTAD) and transgenic (TGAD) mice versus a mock stimulation group. Conversely, combining 2 Hz with a 40° phase target yields a significant increase ranging 30-35% in WTPD and TGPD mice. Interestingly, these phase-target-triggered SWA increases are not genotype dependent but strain specific. Sleep alterations that may contribute to disease progression and burden were described in AD and PD lines. Notably, pathological sleep traits were rescued by mCLAS, which elicited a 14% decrease of pathologically heightened NREM sleep fragmentation in TGAD mice, accompanied by a steep decrease in microarousal events during both light and dark periods. Overall, our results indicate that model-tailored phase targeting is key to modulate SWA through mCLAS, prompting the acute alleviation of key neurodegeneration-associated sleep phenotypes and potentiating sleep regulation and consolidation. Further experiments assessing the long-term effect of mCLAS in neurodegeneration may majorly impact the establishment of sleep-based therapies.
Collapse
Affiliation(s)
- Inês Dias
- Department of NeurologyUniversity Hospital Zurich (USZ)SchlierenSwitzerland
- Department of Health Sciences and Technology (D‐HEST)ETH ZurichZurichSwitzerland
- Neuroscience Center Zurich (ZNZ)University of Zurich (UZH)ZurichSwitzerland
| | - Sedef Kollarik
- Department of NeurologyUniversity Hospital Zurich (USZ)SchlierenSwitzerland
| | - Michelle Siegel
- Department of NeurologyUniversity Hospital Zurich (USZ)SchlierenSwitzerland
| | - Christian R. Baumann
- Department of NeurologyUniversity Hospital Zurich (USZ)SchlierenSwitzerland
- Neuroscience Center Zurich (ZNZ)University of Zurich (UZH)ZurichSwitzerland
- Center of Competence Sleep and HealthUniversity of Zurich (UZH)ZurichSwitzerland
| | - Carlos G. Moreira
- Department of NeurologyUniversity Hospital Zurich (USZ)SchlierenSwitzerland
| | - Daniela Noain
- Department of NeurologyUniversity Hospital Zurich (USZ)SchlierenSwitzerland
- Neuroscience Center Zurich (ZNZ)University of Zurich (UZH)ZurichSwitzerland
- Center of Competence Sleep and HealthUniversity of Zurich (UZH)ZurichSwitzerland
| |
Collapse
|
9
|
Plá V, Kroesbergen E, Deng S, Giannetto MJ, Hablitz LM, Newbold E, Ladrón-de-Guevara A, Esmail T, Gomolka RS, Mori Y, Goldman SA, Kelley DH, Thomas JH, Nedergaard M. A curious concept of CNS clearance. Nat Neurosci 2025; 28:731-733. [PMID: 40069361 DOI: 10.1038/s41593-025-01897-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 01/28/2025] [Indexed: 04/09/2025]
Affiliation(s)
- Virginia Plá
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Erik Kroesbergen
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Saiyue Deng
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Giannetto
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Lauren M Hablitz
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Evan Newbold
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Tina Esmail
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Yuki Mori
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Douglas H Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, USA
| | - John H Thomas
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark.
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
10
|
Mentink LJ, van Osch MJP, Bakker LJ, Olde Rikkert MGM, Beckmann CF, Claassen JAHR, Haak KV. Functional and vascular neuroimaging in maritime pilots with long-term sleep disruption. GeroScience 2025; 47:2351-2364. [PMID: 39531187 PMCID: PMC11978577 DOI: 10.1007/s11357-024-01417-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
The mechanism underlying the possible causal association between long-term sleep disruption and Alzheimer's disease remains unclear Musiek et al. 2015. A hypothesised pathway through increased brain amyloid load was not confirmed in previous work in our cohort of maritime pilots with long-term work-related sleep disruption Thomas et al. Alzheimer's Res Ther 2020;12:101. Here, using functional MRI, T2-FLAIR, and arterial spin labeling MRI scans, we explored alternative neuroimaging biomarkers related to both sleep disruption and AD: resting-state network co-activation and between-network connectivity of the default mode network (DMN), salience network (SAL) and frontoparietal network (FPN), vascular damage and cerebral blood flow (CBF). We acquired data of 16 maritime pilots (56 ± 2.3 years old) with work-related long-term sleep disruption (23 ± 4.8 working years) and 16 healthy controls (59 ± 3.3 years old), with normal sleep patterns (Pittsburgh Sleep Quality Index ≤ 5). Maritime pilots did not show altered co-activation in either the DMN, FPN, or SAL and no differences in between-network connectivity. We did not detect increased markers of vascular damage in maritime pilots, and additionally, maritime pilots did not show altered CBF-patterns compared to healthy controls. In summary, maritime pilots with long-term sleep disruption did not show neuroimaging markers indicative of preclinical AD compared to healthy controls. These findings do not resemble those of short-term sleep deprivation studies. This could be due to resiliency to sleep disruption or selection bias, as participants have already been exposed to and were able to deal with sleep disruption for multiple years, or to compensatory mechanisms Mentink et al. PLoS ONE. 2021;15(12):e0237622. This suggests the relationship between sleep disruption and AD is not as strong as previously implied in studies on short-term sleep deprivation, which would be beneficial for all shift workers suffering from work-related sleep disruptions.
Collapse
Affiliation(s)
- Lara J Mentink
- Department of Geriatrics, Radboudumc Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
- Department of Cognitive Science and Artificial Intelligence, School of Humanity and Digital Sciences, Tilburg University, Tilburg, The Netherlands.
| | | | - Leanne J Bakker
- Department of Geriatrics, Radboudumc Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel G M Olde Rikkert
- Department of Geriatrics, Radboudumc Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian F Beckmann
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Jurgen A H R Claassen
- Department of Geriatrics, Radboudumc Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Koen V Haak
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Cognitive Science and Artificial Intelligence, School of Humanity and Digital Sciences, Tilburg University, Tilburg, The Netherlands
| |
Collapse
|
11
|
Li Z, Li X, Su L, Zhang Z, Guo H, Ge Y, Dong F, Zhang F. From genes to drugs: targeting Alzheimer's with circadian insights. Front Aging Neurosci 2025; 17:1527636. [PMID: 40207046 PMCID: PMC11979290 DOI: 10.3389/fnagi.2025.1527636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/03/2025] [Indexed: 04/11/2025] Open
Abstract
Background Alzheimer's disease (AD) is a typical neurodegenerative disease that presents challenges due to the lack of biomarkers to identify AD. A growing body of evidence highlights the critical role of circadian rhythms in AD. Methods The differentially expressed clock genes (DECGs) were identified between AD and ND groups (non-demented controls). Functional enrichment analysis was executed on the DECGs. Candidate diagnostic biomarkers for AD were screened by machine learning. ROC and nomograms were constructed to evaluate candidate biomarkers. In addition, therapeutics targeting predictive biomarkers were screened through the DGIdb website. Finally, the mRNA-miRNA network was constructed. Results Nine genes were identified through the DECG analysis between the AD and ND groups. Enrichment analysis of nine genes indicated that the pathways were enriched in long-term potentiation and circadian entrainment. Four clock genes (GSTM3, ERC2, PRKCG, and HLA-DMA) of AD were screened using Lasso regression, random forest, SVM, and GMM. The diagnostic performance of four genes was evaluated by the ROC curve. Furthermore, the nomogram indicated that ERC2, PRKCG, and HLA-DMA are good biomarkers in diagnosing AD. Single-gene GSEA indicated that the main enrichment pathways were oxidative phosphorylation, pathways of neurodegeneration-multiple diseases, etc. The results of immune cell infiltration analysis indicated that there were significant differences in 15 immune cell subsets between AD and ND groups. Moreover, 23 drugs targeting HLA-DMA and 8 drugs targeting PRKCG were identified through the DGIdb website. Conclusion We identified three predictive biomarkers for AD associated with clock genes, thus providing promising therapeutic targets for AD.
Collapse
Affiliation(s)
- Zekun Li
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaohan Li
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lei Su
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, China
| | - Zibo Zhang
- Metabolic Diseases and Cancer Research Center, Hebei Medical University, Shijiazhuang, China
| | - Hongmin Guo
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yihao Ge
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
12
|
Zhuang C, Yan H, Lu J, Zhou Y, Liu Y, Shi G, Li Y. Compensatory enhancement of orexinergic system functionality induced by amyloid-β protein: a neuroprotective response in Alzheimer's disease. Front Physiol 2025; 16:1529981. [PMID: 40196718 PMCID: PMC11973307 DOI: 10.3389/fphys.2025.1529981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
Background Amyloid-β protein (Aβ) accumulation is a defining characteristic of Alzheimer's disease (AD), resulting in neurodegeneration and a decline in cognitive function. Given orexin's well-documented role in enhancing memory and cognition, this study investigates its potential to regulate Aβ-induced neurotoxicity, offering new perspectives into AD management. Methods This paper simulated Aβ accumulation in the hippocampus of AD patients by administering Aβ1-42 oligomers into the bilateral hippocampal dentate gyrus of ICR mice. Inflammatory cytokines (IL-6, TNF-α) and orexin-A levels were measured by ELISA. Additionally, the excitability of orexinergic neurons was assessed by IHC targeting c-Fos expression. These methodologies evaluated the Aβ-induced neuroinflammation, orexinergic system functionality, and dexamethasone's (Dex) effects on these processes. Results Injection of Aβ1-42 oligomer resulted in elevated levels of IL-6, TNF-α, and orexin-A in the hippocampus, as well as increased excitability of orexinergic neurons in the lateral hypothalamus (LH). Dex treatment reduced neuroinflammation, causing a reduction in orexin-A levels and the excitability of orexinergic neurons. Conclusion Aβ-induced neuroinflammation is accompanied by enhanced levels of orexin-A and orexinergic neuron excitability. These findings suggest that the enhanced functionality of the orexinergic system may become a compensatory neuroprotective mechanism to counteract neuroinflammation and enhance cognitive function.
Collapse
Affiliation(s)
- Chenyu Zhuang
- Medical College, Yangzhou University, Yangzhou, China
| | - Hengyu Yan
- Medical College, Yangzhou University, Yangzhou, China
| | - Jiayu Lu
- Medical College, Yangzhou University, Yangzhou, China
| | - Yifan Zhou
- Medical College, Yangzhou University, Yangzhou, China
| | - Yanqing Liu
- Medical College, Yangzhou University, Yangzhou, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Guoshan Shi
- Department of Basic Medical Sciences, Guizhou University of Chinese Medicine, Guiyang, China
| | - Yan Li
- Medical College, Yangzhou University, Yangzhou, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, China
- Department of Traditional Chinese Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, China
| |
Collapse
|
13
|
Zhang L, Santoni L, Ngo NA, Simayi R, Ficiará E, de Vivo L, Bellesi M. Rocking during sleep reduces motor deficits and beta-amyloid levels in an Alzheimer's mouse model. iScience 2025; 28:112036. [PMID: 40115028 PMCID: PMC11925102 DOI: 10.1016/j.isci.2025.112036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/27/2024] [Accepted: 02/12/2025] [Indexed: 03/22/2025] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline, beta-amyloid plaques, and tau tangles. Growing evidence suggests a strong link between sleep disturbances and AD progression, with disrupted sleep exacerbating AD progression through increased beta-amyloid and tau accumulation. This relationship indicates that improving sleep quality could slow disease progression and mitigate its effects on the brain. We investigated whether vestibular stimulation (rocking) could mitigate AD pathology in 3xTg mice (n = 58, males). Starting in early adulthood (p60), mice underwent 12-h daily rocking during the light period for four months. Rocking increased non-rapid eye movement (NREM) sleep initially, although habituation reduced this effect over time. Despite habituation, rocking slowed motor decline and reduced beta-amyloid levels in the cerebral cortex and hippocampus. However, tau levels remained unaffected. In conclusion, our findings highlight the potential of non-pharmacological methods to enhance NREM sleep and modify disease trajectory in AD models.
Collapse
Affiliation(s)
- Luyan Zhang
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
- Center for Neuroscience, University of Camerino, Camerino, Italy
- Key Laboratory of Cold Chain Food Processing and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Letizia Santoni
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
- Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Nam Anh Ngo
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
- Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Reyila Simayi
- Center for Neuroscience, University of Camerino, Camerino, Italy
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Eleonora Ficiará
- Center for Neuroscience, University of Camerino, Camerino, Italy
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Luisa de Vivo
- Center for Neuroscience, University of Camerino, Camerino, Italy
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Michele Bellesi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
- Center for Neuroscience, University of Camerino, Camerino, Italy
| |
Collapse
|
14
|
Parhizkar S, Holtzman DM. The night's watch: Exploring how sleep protects against neurodegeneration. Neuron 2025; 113:817-837. [PMID: 40054454 PMCID: PMC11925672 DOI: 10.1016/j.neuron.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/15/2024] [Accepted: 02/04/2025] [Indexed: 03/21/2025]
Abstract
Sleep loss is often regarded as an early manifestation of neurodegenerative diseases given its common occurrence and link to cognitive dysfunction. However, the precise mechanisms by which sleep disturbances contribute to neurodegeneration are not fully understood, nor is it clear why some individuals are more susceptible to these effects than others. This review addresses critical unanswered questions in the field, including whether sleep disturbances precede or result from neurodegenerative diseases, the functional significance of sleep changes during the preclinical disease phase, and the potential role of sleep homeostasis as an adaptive mechanism enhancing resilience against cognitive decline and neurodegeneration.
Collapse
Affiliation(s)
- Samira Parhizkar
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer Disease Research Center, Washington University, St. Louis, MO 63110, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer Disease Research Center, Washington University, St. Louis, MO 63110, USA.
| |
Collapse
|
15
|
Qian S, Yong C, Li S, Peng J, Li X, Ye Q, Liu Q, Li N, Hu J, Deng Q, Wang Y, Zhu J, Zhao X, Zhou J. Bidirectional Relationships Between Sleep Quality and Cognitive Function in Older Chinese Adults: Observational Analysis of SAWA Trial. Am J Health Promot 2025:8901171251326311. [PMID: 40077988 DOI: 10.1177/08901171251326311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
PurposeTo examine the bidirectional relationships between sleep quality and cognitive function in older Chinese, and further examine the sex differences in the relationships using the random intercept cross-lagged panel model.DesignA secondary observational analysis of a physical activity clustered randomized controlled trial (The Stay Active While Aging).SettingEight villages in Sichuan, China.SubjectsA total of 511 adults aged 60 or older. The response rate was 97.3%.MeasuresThe Pittsburgh Sleep Quality Index was used to examine sleep quality. Cognitive function was assessed by the Telephone Interview for Cognitive Status.ResultsThe mean age was 71.0 (SD, 5.710) years and 227 (44.4%) were men. Sleep quality in the previous wave was associated with cognitive function in the subsequent wave (β = -0.135, [95%CI -0.244 to -0.026], wave 2 to 3; β = -0.108, [95%CI -0.204 to -0.013], wave 4 to 5). Cognitive function in the previous wave was associated with sleep quality in the subsequent wave (β = -0.404, [95%CI -0.566 to -0.242], wave 3 to 4; β = -0.224, [95%CI -0.392 to -0.055], wave 4 to 5). Such relationships were significant only in women.ConclusionsThere were bidirectional relationships between sleep quality and cognitive function in older adults, especially in women. Future cognition interventions may find it helpful to improve sleep quality, and vice versa, particularly in women.
Collapse
Affiliation(s)
- Shiyuan Qian
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chan Yong
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shiyi Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | - Xianlan Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qin Ye
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qianqian Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Nanyan Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Julinling Hu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qian Deng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yufei Wang
- School of Public Health, Georgia State University, Atlanta, GA, USA
| | - Jingjie Zhu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junmin Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Ragsdale SM, Radovich JM, Coiduras II, McCall WV, Grant SC, Lee C, Wilber A. Dual orexin receptor antagonists as promising therapeutics for Alzheimer's disease. NPJ BIOLOGICAL TIMING AND SLEEP 2025; 2:11. [PMID: 40066297 PMCID: PMC11890173 DOI: 10.1038/s44323-025-00025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 01/23/2025] [Indexed: 03/15/2025]
Abstract
We examine the relationship between sleep, glymphatics and Alzheimer's disease (AD), and recent work questioning glymphatic clearance during sleep. We highlight a need for understanding glymphatic and/or other mechanism of clearance during sleep, and review glymphatic flow measurement methods. Further, we explore dual orexin receptor antagonists (DORAs) potential to mitigate AD sleep disturbances and enhance clearance. Further research could elucidate a linkage between DORAs, improved sleep and reducing AD pathophysiology.
Collapse
Affiliation(s)
- S. M. Ragsdale
- Department of Psychology; Program in Neuroscience; Florida State University, Tallahassee, FL USA
| | - J. M. Radovich
- Department of Chemical & Biochemical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL USA
- CIMAR, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL USA
| | - I. I. Coiduras
- Department of Psychology; Program in Neuroscience; Florida State University, Tallahassee, FL USA
| | - W. V. McCall
- Department of Psychiatry and Health Behavior; Medical College of Georgia; Augusta University, Augusta, GA USA
| | - S. C. Grant
- Department of Chemical & Biochemical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL USA
- CIMAR, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL USA
| | - C. Lee
- Department of Biomedical Sciences; Program in Neuroscience; College of Medicine, Florida State University, Tallahassee, FL USA
| | - A. Wilber
- Department of Psychology; Program in Neuroscience; Florida State University, Tallahassee, FL USA
| |
Collapse
|
17
|
Song Y, Chen L, Liu Y. Association between nap time, nighttime sleep, and multimorbidity in Chinese older adults: a cross-sectional study. BMC Geriatr 2025; 25:151. [PMID: 40045201 PMCID: PMC11881392 DOI: 10.1186/s12877-025-05807-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/19/2025] [Indexed: 03/09/2025] Open
Abstract
OBJECTIVE This study aims to explore the relationship between sleep duration and multimorbidity among elderly Chinese and to determine the optimal sleep duration for preventing multimorbidity. METHODS This study is based on data from the 2020 China Health and Elderly Care Longitudinal Survey (CHARLS), which collected detailed information from 5,761elderly individuals, including demographic characteristics, sleep duration, health status, and lifestyle information. Logistic regression models were used to investigate the relationship between sleep duration and multimorbidity, and restricted cubic spline analysis was employed to analyze the dose-response relationship between sleep duration and multimorbidity. RESULTS After adjusting for potential confounders, a U-shaped association was found between nighttime sleep duration and the likelihood of multimorbidity among the elderly. Specifically, elderly individuals with a nighttime sleep duration of 7 h had the lowest incidence of multimorbidity. Compared to those with 6-8 h of nighttime sleep, elderly individuals with less than 6 h (OR = 1.24, 95% CI: 1.05-1.48) or more than 8 h (OR = 1.79, 95% CI: 1.37-2.34) of nighttime sleep had a 24% and 79% increased likelihood of multimorbidity, respectively. The restricted cubic spline analysis further confirmed this U-shaped relationship, showing that the likelihood of multimorbidity gradually decreased as sleep duration increased from 6 to 7 h, but gradually increased as sleep duration exceeded 7 h. Additionally, a positive correlation was found between napping habits and the likelihood of multimorbidity, with elderly individuals without napping habits having a lower likelihood of multimorbidity compared to those with napping habits. Subgroup analysis indicated no significant differences in the impact of 6-8 h of nighttime sleep on multimorbidity among male and female elderly individuals and different age groups. CONCLUSION Appropriate nighttime sleep duration may be an important factor in preventing multimorbidity among the elderly, while increased napping duration may increase the likelihood of multimorbidity. These findings provide scientific evidence for sleep health management among the elderly, suggesting the promotion of appropriate sleep duration to reduce the likelihood of multimorbidity in this population.
Collapse
Affiliation(s)
- Yanliqing Song
- College of Sports, Nanjing Tech University, Nanjing, China
| | - Lin Chen
- College of Sports, Nanjing Tech University, Nanjing, China
| | - Yue Liu
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
18
|
Panda SP, Sinha S, Kesharwani A, Kumar S, Singh M, Kondepudi GM, Samuel A, Sanghi AK, Thapliyal S, Chaubey KK, Guru A. Role of OX/OXR cascade in insomnia and sleep deprivation link Alzheimer's disease and Parkinson's disease: Therapeutic avenue of Dual OXR Antagonist (DORA). Biochem Pharmacol 2025; 233:116794. [PMID: 39920976 DOI: 10.1016/j.bcp.2025.116794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/16/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Sleep plays a role in the elimination of neurotoxic metabolites that are accumulated in the waking brain as a result of neuronal activity. Long-term insomnia and sleep deprivation are associated with oxidative stress, neuroinflammation, amyloid beta (Aβ) deposition, and Lewy body formation, which are known to increase the risk of mild cognitive impairment (MCI) and dementia. Orexin A (OXA) and orexin B (OXB), two neuropeptides produced in the lateral hypothalamus, are known to influence the sleep-wake cycle and the stress responses through their interactions with OX receptor 1 (OX1R) and OX receptor 2 (OX2R), respectively. OX/OXR cascade demonstrates intricate neuroprotective and anti-inflammatory effects by inhibiting nuclear factor-kappa B (NF-kB) and PLC/Ca2+ pathway activation. OX1R binds OXA more strongly than OXB by one-order ratio, whereas OX2R binds both OXA and OXB with equal strengths. Overexpression of OXs in individuals experiences sleep deprivation, circadian rhythm disturbances, insomnia-associated MCI, Parkinson's disease (PD), and Alzheimer's disease (AD). Many dual OXR antagonists (DORAs) have been effective in their clinical studies, with suvorexant and daridorexant receiving FDA clearance for insomnia therapy in 2014 and 2022 respectively. The results of clinical studies suggested that there is a new pharmaceutical option for treating insomnia and the sleep deprivation-AD/PD relationship by targeting the OXR system. DORAs treatment reduces Aβ deposition in the brain and improves synaptic plasticity and circadian expression. This review indicates the link between sleep disorders and MCI, DORAs are an appropriate medication category for treating insomnia, and sleep deprivation links AD and PD.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Suman Sinha
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Adarsh Kesharwani
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Sanjesh Kumar
- Rakshpal Bahadur College of Pharmacy, Bareilly, Uttar Pradesh, India.
| | - Mansi Singh
- Rakshpal Bahadur College of Pharmacy, Bareilly, Uttar Pradesh, India.
| | - Gana Manjusha Kondepudi
- Vignan Institute of Pharmaceutical Technology, BesidesVSEZ, Kapu Jaggaraju Peta, Duvvada Station Road, Visakhapatnam 530049, India.
| | - Abhishek Samuel
- Translam Institute of Pharmaceutical Education & Research, Mawana Road, Meerut, Uttar Pradesh, India.
| | | | - Shailendra Thapliyal
- Uttaranchal Institute of Management, Uttaranchal University, Dehradun 248007, Uttarakhand, India.
| | - Kundan Kumar Chaubey
- Department of Biotechnology, School of Basic and Applied Science, Sanskriti University, Mathura, UP, India.
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
19
|
Chen C, Zhang M, Wang Z, Deng J, Bao Y, Shi J, Lu L, Shi L. Associations among sleep quality, sleep duration, and Alzheimer's disease biomarkers: A systematic review and meta-analysis. Alzheimers Dement 2025; 21:e70096. [PMID: 40145494 PMCID: PMC11947999 DOI: 10.1002/alz.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025]
Abstract
INTRODUCTION Although sleep disturbances are widely recognized as risk factors for cognitive decline and Alzheimer's disease (AD), their influence on AD biomarkers remains unclear. This study aimed to clarify whether sleep quality or sleep duration affect amyloid beta (Aβ) and tau levels in plasma, cerebrospinal fluid (CSF), and positron emission tomography (PET) in non-demented populations. METHODS PubMed, Web of Science, and Embase were systematically searched up to February 2025. RESULTS In total, 30 studies were included comprising 14,997 subjects. Individuals with poor sleep quality exhibited greater PET Aβ burden and higher Aβ42 levels in plasma than those with good sleep quality. Shorter sleep duration was associated with higher Aβ burden on PET. However, no association between either sleep quality or sleep duration and tau levels was found. DISCUSSION Sleep may be a modifiable marker of early AD management by modulating Aβ levels. HIGHLIGHTS lPoor sleep quality and shorter sleep duration were significantly associated with higher amyloid beta (Aβ) burden detected by positron emission tomography (PET) in non-demented populations. Poor sleep quality was also associated with elevated Aβ42 levels in plasma. lNo significant associations were found between sleep quality or sleep duration and tau levels in plasma, cerebrospinal fluid, or PET. lInterventions targeting sleep could serve as a viable and low-cost prevention strategy for early management of Alzheimer's disease.
Collapse
Affiliation(s)
- Chun‐Lin Chen
- Peking University Sixth HospitalPeking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University)National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital)BeijingChina
| | - Miao‐Yu Zhang
- Department of PsychiatryHenan Mental HospitalThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of HenanXinxiang Medical UniversityXinxiangChina
| | - Zhi‐Lin Wang
- Peking University Sixth HospitalPeking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University)National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital)BeijingChina
| | - Jia‐Hui Deng
- Peking University Sixth HospitalPeking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University)National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital)BeijingChina
| | - Yan‐Ping Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug DependencePeking UniversityBeijingChina
- School of Public HealthPeking UniversityBeijingChina
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug DependencePeking UniversityBeijingChina
- The State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijingChina
- The Key Laboratory for Neuroscience of the Ministry of Education and HealthPeking UniversityBeijingChina
| | - Lin Lu
- Peking University Sixth HospitalPeking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University)National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital)BeijingChina
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug DependencePeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life Sciences and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijingChina
| | - Le Shi
- Peking University Sixth HospitalPeking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University)National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital)BeijingChina
| |
Collapse
|
20
|
Kourosh-Arami M, Ramezani M, Komaki A. The interaction between orexin, sleep deprivation and Alzheimer's disease: Unveiling an Emerging Connection. J Physiol Sci 2025; 75:100004. [PMID: 39823966 PMCID: PMC11979663 DOI: 10.1016/j.jphyss.2024.100004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/20/2025]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by progressive cognitive decline and memory loss. Sleep-wake disorders are an extremely predominant and often disabling aspect of AD. Ox is vital in maintaining the sleep-wake cycle and promoting wakefulness. Dysfunction of Ox signaling has been associated with sleep disorders such as narcolepsy. In AD patients, the increase in cerebrospinal fluid Ox levels is related to parallel sleep deterioration. The relationship between AD and sleep disturbances has gained increasing attention due to their potential bidirectional influence. Disruptions in sleep patterns are commonly observed in AD patients, leading researchers to investigate the possible involvement of Ox in sleep disturbances characteristic of the disease. This review article explores the role of the Ox system in AD, and the intricate relationship between AD and sleep, highlighting the potential mechanisms, impact on disease pathology, and therapeutic interventions to improve sleep quality in affected individuals.
Collapse
Affiliation(s)
- Masoumeh Kourosh-Arami
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Mahdi Ramezani
- Department of Anatomy, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
21
|
Geng F, Zhao N, Ren Q. Circadian rhythm, microglia-mediated neuroinflammation, and Alzheimer's disease. Neurosci Biobehav Rev 2025; 170:106044. [PMID: 39914702 DOI: 10.1016/j.neubiorev.2025.106044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/16/2024] [Accepted: 02/03/2025] [Indexed: 02/09/2025]
Abstract
Microglia, the brain's resident macrophages, are key mediators of neuroinflammation, responding to immune pathogens and toxins. They play a crucial role in clearing cellular debris, regulating synaptic plasticity, and phagocytosing amyloid-β (Aβ) plaques in Alzheimer's disease (AD). Recent studies indicate that microglia not only exhibit intrinsic circadian rhythms but are also regulated by circadian clock genes, influencing specific functions such as phagocytosis and the modulation of neuroinflammation. Disruption of the circadian rhythm is closely associated with AD pathology. In this review, we will provide an overview of how circadian rhythms regulate microglia-mediated neuroinflammation in the progression of AD, focusing on the pathway from the central nervous system (CNS) and the peripheral immune system. We also discuss potential therapeutic targets, including hormone modulation, lifestyle interventions, and anti-inflammatory therapies, aimed at maintaining brain health in AD. This will shed light on the involvement of circadian rhythm in AD and explore new avenues for AD treatment.
Collapse
Affiliation(s)
- Fan Geng
- Department of Neurology, Zhongda Hospital, School of Medicine, Jiangsu Provincial Key Laboratory of Brain Science and Medicine, Southeast University, Nanjing 210009, China
| | - Na Zhao
- Department of Neurology, Zhongda Hospital, School of Medicine, Jiangsu Provincial Key Laboratory of Brain Science and Medicine, Southeast University, Nanjing 210009, China
| | - Qingguo Ren
- Department of Neurology, Zhongda Hospital, School of Medicine, Jiangsu Provincial Key Laboratory of Brain Science and Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
22
|
Zhang F, Han X, Mu Q, Zailani H, Liu WC, Do QL, Wu Y, Wu N, Kang Y, Su L, Liu Y, Su KP, Wang F. Elevated cerebrospinal fluid biomarkers of neuroinflammation and neuronal damage in essential hypertension with secondary insomnia: Implications for Alzheimer's disease risk. Brain Behav Immun 2025; 125:158-167. [PMID: 39733863 DOI: 10.1016/j.bbi.2024.12.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024] Open
Abstract
Essential hypertension (EH) with secondary insomnia is associated with increased risks of neuroinflammation, neuronal damage, and Alzheimer's disease (AD). However, its relationship with specific cerebrospinal fluid (CSF) biomarkers of neuronal damage and neuroinflammation remains unclear. This case-control study compared CSF biomarker levels across three groups: healthy controls (HC, n = 64), hypertension-controlled (HTN-C, n = 54), and hypertension-uncontrolled (HTN-U, n = 107) groups, all EH participants experiencing secondary insomnia. CSF samples from knee replacement patients were analyzed for key biomarkers, and sleep quality was assessed via the Pittsburgh Sleep Quality Index (PSQI). Our findings showed that the HTN-U group had significantly higher CSF levels of proinflammatory cytokines IL-6, TNF-α, and IL-17 than the HC and HTN-C groups (all p < 0.01). These cytokines correlated positively with secondary insomnia measures, with IL-6 (r = 0.285, p = 0.003), IL-17 (r = 0.324, p = 0.001), and TNF-α (r = 0.274, p = 0.005) linked to PSQI scores. In the HTN-U group, elevated IL-6, TNF-α, and IL-17 levels were also positively associated with neurofilament light (NF-L) and negatively with β-amyloid 42 (Aβ42), both key AD markers (all p < 0.05). Additionally, secondary insomnia was negatively correlated with Aβ42 (r = -0.225, p = 0.021) and positively with NF-L (r = 0.261, p = 0.007). Higher CSF palmitic acid (PA) levels observed in the HTN-U group were linked to poorer sleep quality (r = 0.208, p = 0.033). In conclusion, EH with secondary insomnia is associated with CSF biomarkers of neuronal damage, neuroinflammation, and neurodegeneration, suggesting a potential increase in AD risk among this population.
Collapse
Affiliation(s)
- Feng Zhang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing 100096, China
| | - Xiaoli Han
- Clinical Nutrition Department, Friendship Hospital of Urumqi, Urumqi 830049, China
| | - Qingshuang Mu
- Xinjiang Key Laboratory of Neurological Disorder Research, the Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China
| | - Halliru Zailani
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Nutrition, China Medical University, Taichung, Taiwan; Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Wen-Chun Liu
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; Department of Nursing, National Tainan Junior College of Nursing, Tainan, Taiwan
| | - Quang Le Do
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Nutrition, China Medical University, Taichung, Taiwan
| | - Yan Wu
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing 100096, China
| | - Nan Wu
- Institute of Polygenic Disease, Qiqihar Medical University, Qiqihar 161006, China
| | - Yimin Kang
- Medical Neurobiology Lab, Inner Mongolia Medical University, Huhhot 010110, China
| | - Lidong Su
- Medical Neurobiology Lab, Inner Mongolia Medical University, Baotou 014010, China
| | - Yanlong Liu
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China.
| | - Kuan-Pin Su
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; College of Medicine, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; An-Nan Hospital, China Medical University, Tainan, Taiwan.
| | - Fan Wang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing 100096, China.
| |
Collapse
|
23
|
van Heese EM, Gool JK, Lammers GJ, van der Werf YD, van Osch MJP, Fronczek R, Hirschler L. MRI-based surrogates of brain clearance in narcolepsy type 1. J Sleep Res 2025:e14479. [PMID: 39965782 DOI: 10.1111/jsr.14479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/13/2024] [Accepted: 01/23/2025] [Indexed: 02/20/2025]
Abstract
Brain clearance involves the drainage of waste molecules from the brain, a process that is suggested to be amplified during sleep. Recently proposed MRI-based methods attempt to approximate human brain clearance with surrogate measures. The current study aimed to explore whether two brain clearance surrogates are altered in narcolepsy. We processed diffusion-weighted and functional resting-state images to extract two surrogates: Diffusion Tensor Imaging Along the Perivascular Space (DTI-ALPS index), and dBOLD-CSF coupling. Both measures were analysed in 12 drug-free, awake people with narcolepsy type 1 and 11 age- and sex-matched controls, as well as in relation to clinical features. We also assessed the correlation between the DTI-ALPS index and dBOLD-CSF coupling. The DTI-ALPS index and dBOLD-CSF coupling amplitude did not show significant differences between narcolepsy and controls, nor significant relations with the severity of excessive daytime sleepiness. We found a significant correlation between dBOLD-CSF coupling and sleep efficiency, as well as a significant correlation between the DTI-ALPS index and dBOLD-CSF coupling. The hypothesis of altered brain clearance in narcolepsy type 1 is not supported by evidence from the current study. The two surrogates correlated with each other, suggesting that both offer different perspectives from the same underlying physiology. Yet, the suitability of the surrogates as brain clearance markers remains debatable. Whereas DTI is not exclusively sensitive to perivascular fluid, dBOLD-CSF coupling is reflecting large-scale CSF motion. Future work should explore other surrogate markers, preferably during sleep, to better understand the possible role of altered brain clearance in narcolepsy type 1 symptomatology.
Collapse
Affiliation(s)
- Eva M van Heese
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Sleep-Wake Centre, Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
- C. J. Gorter MRI Center, Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jari K Gool
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Sleep-Wake Centre, Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
- Amsterdam Neuroscience, Compulsivity, Impulsivity and Attention, Amsterdam, the Netherlands
| | - Gert Jan Lammers
- Sleep-Wake Centre, Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Ysbrand D van der Werf
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| | - Matthias J P van Osch
- C. J. Gorter MRI Center, Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Rolf Fronczek
- Sleep-Wake Centre, Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Lydiane Hirschler
- C. J. Gorter MRI Center, Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| |
Collapse
|
24
|
Lu R, Shah K, Toedebusch CD, Hess A, Richardson R, Mignot E, Schindler SE, Benzinger TLS, Flores S, Hassenstab J, Xiong C, Morris JC, Holtzman DM, Lucey BP. Associations of Cerebrospinal Fluid Orexin-A, Alzheimer Disease Biomarkers, and Cognitive Performance. Ann Clin Transl Neurol 2025. [PMID: 39957622 DOI: 10.1002/acn3.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/29/2024] [Accepted: 01/28/2025] [Indexed: 02/18/2025] Open
Abstract
OBJECTIVE Cerebrospinal fluid (CSF) orexin-A has been suggested to be a biomarker of Alzheimer disease (AD). In both cognitively unimpaired healthy older adults and individuals with symptomatic AD, CSF orexin-A is positively associated with CSF Aβ42, p-tau181, and total tau (t-tau) concentrations. However, a recent systematic review and meta-analysis did not support differences in orexin-A between AD and controls. In this study, we tested the association between CSF orexin-A concentrations, AD biomarkers, and cognitive performance in older adults with and without symptomatic AD. METHODS Two hundred and seventy community-dwelling older adults underwent standardized cognitive assessments, sleep monitoring with a single-channel electroencephalography test, one night of home sleep apnea testing, biofluid and imaging AD biomarker measurement within 1 year of sleep monitoring, and APOE genotyping. Plasma and CSF AD biomarkers were measured by immunoassay or mass spectrometry. CSF orexin-A was measured by radioimmunoassay. RESULTS CSF orexin-A levels did not differ by amyloid positivity, cognitive status, or AD stage. However, CSF AD biomarkers (Aβ40, Aβ42, and t-tau) were positively associated with CSF orexin-A levels even after correction for multiple comparisons. CSF orexin-A was not associated with any measure of cognitive performance. INTERPRETATION This study showed that CSF orexin-A is associated with multiple CSF AD biomarkers, but not with AD pathology or cognitive performance. We hypothesize that this is due to similar mechanisms of production/release of these proteins with sleep-wake activity. Future studies measuring other forms of orexin peptides, such as orexin-B, may provide evidence for orexin as a marker for AD.
Collapse
Affiliation(s)
- Ruijin Lu
- Division of Biostatistics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Krish Shah
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Cristina D Toedebusch
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Ashley Hess
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Rachel Richardson
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Emmanuel Mignot
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
| | - Suzanne E Schindler
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, Missouri, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri, USA
| | - Tammie L S Benzinger
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, Missouri, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri, USA
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Shaney Flores
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Jason Hassenstab
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Chengjie Xiong
- Division of Biostatistics, Washington University School of Medicine, St Louis, Missouri, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, Missouri, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri, USA
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, Missouri, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri, USA
| | - Brendan P Lucey
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
25
|
Kroll F, Donnelly J, Özcan GG, Mackay E, Rihel J. Behavioural pharmacology predicts disrupted signalling pathways and candidate therapeutics from zebrafish mutants of Alzheimer's disease risk genes. eLife 2025; 13:RP96839. [PMID: 39960847 PMCID: PMC11832171 DOI: 10.7554/elife.96839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
By exposing genes associated with disease, genomic studies provide hundreds of starting points that should lead to druggable processes. However, our ability to systematically translate these genomic findings into biological pathways remains limited. Here, we combine rapid loss-of-function mutagenesis of Alzheimer's risk genes and behavioural pharmacology in zebrafish to predict disrupted processes and candidate therapeutics. FramebyFrame, our expanded package for the analysis of larval behaviours, revealed that decreased night-time sleep was common to F0 knockouts of all four late-onset Alzheimer's risk genes tested. We developed an online tool, ZOLTAR, which compares any behavioural fingerprint to a library of fingerprints from larvae treated with 3677 compounds. ZOLTAR successfully predicted that sorl1 mutants have disrupted serotonin signalling and identified betamethasone as a drug which normalises the excessive day-time sleep of presenilin-2 knockout larvae with minimal side effects. Predictive behavioural pharmacology offers a general framework to rapidly link disease-associated genes to druggable pathways.
Collapse
Affiliation(s)
- François Kroll
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
- Institut de la Vision, Sorbonne UniversitéParisFrance
| | - Joshua Donnelly
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Güliz Gürel Özcan
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Eirinn Mackay
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| |
Collapse
|
26
|
Bian W, Biswas RK, Ahmadi MN, Bin YS, Postnova S, Phillips AJK, Koemel NA, Chaput JP, Rajaratnam SMW, Cistulli PA, Stamatakis E. Dose-response associations of device-measured sleep regularity and duration with incident dementia in 82391 UK adults. BMC Public Health 2025; 25:516. [PMID: 39920677 PMCID: PMC11806617 DOI: 10.1186/s12889-025-21649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/28/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Sleep is a crucial lifestyle factor with impacts on mental and cognitive health. The associations between objectively measured sleep and risk of incident dementia are not yet fully understood. To evaluate the associations of device-measured sleep duration and regularity with incident dementia and explore whether sleep regularity moderates the association of sleep duration with dementia. METHODS Population-based prospective cohort study of 82,391 adults aged 43 to 79 years from the UK Biobank accelerometry subsample, collected between 2013 and 2015, followed up to 2022. Device-based sleep duration (h/day) and sleep regularity index (SRI), a metric ranging from 0-100 that quantifies a person's sleep regularity (with a greater value indicating higher consistency), were calculated from wrist-worn accelerometry data recorded over the course of one week. Incident all-cause dementia cases were obtained from national hospital admission, primary care and mortality data followed up to 30 November 2022. We used Cox proportional hazard models to estimate the hazard ratios (HRs) for incident dementia after adjustment for common demographic and clinical covariates. RESULTS Over a mean follow-up of 7.9 years, 694 incident dementia cases occurred. We observed a U-shaped association between sleep duration and incident dementia, with only short sleep (< 7 h) being significantly associated with a higher risk of dementia. The median sleep duration for short sleepers (< 7 h) of 6.5 h, compared to the reference point of 7.9 h was associated with HR of 1.19 (95%CI 1.01,1.40) for incident dementia. Sleep regularity was negatively associated with dementia risk in a near-linear fashion (linear p = 0.01, non-linear p = 0.57). When we dichotomized sleep regularity, those in the higher sleep regularity group (SRI ≥ 70) had an HR of 0.74 (95%CI 0.63, 0.87) compared to those with lower sleep regularity (SRI < 70). The beneficial associations between sleep regularity and incident dementia were present only among participants with short (< 7 h) and long (≥ 8 h) sleep duration. CONCLUSIONS Assuming that the associations we observed are causal, maintaining a regular sleep pattern may help offset the deleterious association of inadequate sleep duration with dementia. Interventions aimed at improving sleep regularity may be a viable option for people not able to achieve the recommended hours of sleep.
Collapse
Affiliation(s)
- Wenxin Bian
- Mackenzie Wearables Research Hub, Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
- School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Raaj K Biswas
- Mackenzie Wearables Research Hub, Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
- School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Matthew N Ahmadi
- Mackenzie Wearables Research Hub, Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
- School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Yu Sun Bin
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
- Sleep Research Group, Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| | - Svetlana Postnova
- Sleep Research Group, Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
- Circadian Physics and Sleep Dynamics Group, School of Physics, University of Sydney, Camperdown, NSW, Australia
| | - Andrew J K Phillips
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - Nicholas A Koemel
- Mackenzie Wearables Research Hub, Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
- School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Jean-Philippe Chaput
- Healthy Active Living and Obesity Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
- Department of Pediatrics, University of Ottawa, 75 Laurier Ave. East, Ottawa, ON, K1N 6N5, Canada
| | - Shantha M W Rajaratnam
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Peter A Cistulli
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
- Sleep Research Group, Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
- Department of Respiratory and Sleep Medicine, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Emmanuel Stamatakis
- Mackenzie Wearables Research Hub, Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia.
- School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
27
|
Pathmanathan J, Westover MB, Sivakumaran S, Donoghue J, Puryear CB. The role of sleep in Alzheimer's disease: a mini review. Front Neurosci 2025; 19:1428733. [PMID: 39975973 PMCID: PMC11835855 DOI: 10.3389/fnins.2025.1428733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 01/13/2025] [Indexed: 02/21/2025] Open
Abstract
Sleep is a stereotyped and well-preserved series of neurophysiological states that are essential for overall health and brain functioning. Emerging research suggests that sleep disturbances are not only associated with but also causally contribute to neurodegenerative disease onset and progression. This mini-review examines some of the current knowledge and evidence for relationships between sleep abnormalities and Alzheimer's disease within context of possible uses and limitations of sleep biomarkers for evaluation of Alzheimer's disease. Understanding these relationships could lead to readily accessible and easily quantifiable biomarkers of Alzheimer's dementia.
Collapse
|
28
|
Wu Y, Bhat NR, Liu M. Reduction of orexin-expressing neurons and a unique sleep phenotype in the Tg-SwDI mouse model of Alzheimer's disease. Front Aging Neurosci 2025; 17:1529769. [PMID: 39968126 PMCID: PMC11832706 DOI: 10.3389/fnagi.2025.1529769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/20/2025] [Indexed: 02/20/2025] Open
Abstract
Sleep disturbances are common in Alzheimer's disease (AD) and AD-related dementia (ADRD). We performed a sleep study on Tg-SwDI mice, a cerebral amyloid angiopathy (CAA) model, and age-matched wild-type (WT) control mice. The results showed that at 12 months of age, the hemizygous Tg-SwDI mice spent significantly more time in non-rapid eye movement (NREM) sleep (44.6 ± 2.4% in Tg-SwDI versus 35.9 ± 2.5% in WT) and had a much shorter average length of wake bout during the dark (active) phase (148.5 ± 8.7 s in the Tg-SwDI versus 203.6 ± 13.0 s in WT). Histological analysis revealed stark decreases of orexin immunoreactive (orexin-IR) neuron number and soma size in these Tg-SwDI mice (cell number: 2187 ± 97.1 in Tg-SwDI versus 3318 ± 137.9 in WT. soma size: 109.1 ± 8.1 μm2 in Tg-SwDI versus 160.4 ± 6.6 μm2 in WT), while the number and size of melanin-concentrating hormone (MCH) immunoreactive (MCH-IR) neurons remained unchanged (cell number: 4256 ± 273.3 in Tg-SwDI versus 4494 ± 326.8 in WT. soma size: 220.1 ± 13.6 μm2 in Tg-SwDI versus 202.0 ± 7.8 μm2 in WT). The apoptotic cell death marker cleaved caspase-3 immunoreactive (Caspase-3-IR) percentage in orexin-IR neurons was significantly higher in Tg-SwDI mice than in WT controls. This selective loss of orexin-IR neurons could be associated with the abnormal sleep phenotype in these Tg-SwDI mice. Further studies are needed to determine the cause of the selective death of orexin-IR cells and relevant effects on cognition impairments in this mouse model of microvascular amyloidosis.
Collapse
Affiliation(s)
- Yan Wu
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Narayan R. Bhat
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Meng Liu
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
29
|
Lee JY, Yang E, Cho AY, Choi Y, Lee S, Lee KH. Sleep efficiency in community-dwelling persons living with dementia: exploratory analysis using machine learning. J Clin Sleep Med 2025; 21:393-400. [PMID: 39484800 PMCID: PMC11789254 DOI: 10.5664/jcsm.11436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
STUDY OBJECTIVES Sleep disturbances lead to negative health outcomes and caregiver burden, particularly in community settings. This study aimed to investigate a predictive model for sleep efficiency and its associated features in older adults living with dementia in their own homes. METHODS This was an exploratory, observational study. A total of 69 older adults diagnosed with dementia were included in this study. Data were collected via actigraphy for sleep and physical activity for 14 days, a sweat patch for cytokines for 2-3 days, and a survey of diseases, medications, psychological and behavioral symptoms, functional status, and demographics at baseline. Using 730 days of actigraphy, sweat patches, and baseline data, the best prediction model for sleep efficiency was selected and further investigated to explore its associated top 10 features using machine learning analysis. RESULTS The CatBoost model was selected as the best predictive model for sleep efficiency. In order of importance, the most important features were sleep regularity, number of medications, dementia medication, daytime activity count, instrumental activities of daily living, neuropsychiatric inventory, hypnotics, occupation, tumor necrosis factor-alpha, and waking hour lux. CONCLUSIONS This study established the best sleep efficiency predictive model among community-dwelling older adults with dementia and its associated features using machine learning and various sources, such as the Internet of Things. This study highlights the importance of individualized sleep interventions for community-dwelling older adults with dementia based on associated features. CITATION Lee JY, Yang E, Cho AY, Choi Y, Lee S, Lee KH. Sleep efficiency in community-dwelling persons living with dementia: exploratory analysis using machine learning. J Clin Sleep Med. 2025;21(2):393-400.
Collapse
Affiliation(s)
- Ji Yeon Lee
- School of Nursing, Inha University, Michuhol-Gu, Incheon, Republic of Korea
| | - Eunjin Yang
- College of Nursing, Research Institute of AI and Nursing Science, Gachon University, Yeonsu-Gu, Incheon, Republic of Korea
| | - Ae Young Cho
- Mo-Im Kim Nursing Research Institute, Yonsei University College of Nursing, Seoul, Republic of Korea
| | | | | | - Kyung Hee Lee
- Mo-Im Kim Nursing Research Institute, Yonsei University College of Nursing, Seoul, Republic of Korea
| |
Collapse
|
30
|
Herz DM, Blech J, Winter Y, Gonzalez‐Escamilla G, Groppa S. Low-Frequency Deep Brain Stimulation in Non-Rapid Eye Movement Sleep Modifies Memory Retention in Parkinson's Disease. Mov Disord 2025; 40:285-291. [PMID: 39569914 PMCID: PMC11832815 DOI: 10.1002/mds.30064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Memory impairment is a frequent and debilitating symptom in neurodegenerative disorders. The objective of this study was to provide proof-of-principle that deep brain stimulation during sleep can modify memory consolidation in people with Parkinson's disease depending on the stimulation frequency that is applied. METHODS Twenty-four patients with Parkinson's disease who were treated with deep brain stimulation of the subthalamic nucleus were included in this single-blind pilot study. Six patients had to be excluded because of insomnia on the night of testing. Patients were randomized (1:1 ratio) to receiving either low frequency deep brain stimulation (4 Hz) or clinically used high frequency deep brain stimulation (130 Hz) during early non-rapid eye movement (NREM) sleep. The main outcome measure was overnight memory retention as measured by a validated declarative memory task. RESULTS Patients receiving low frequency deep brain stimulation during early NREM sleep (n = 9, 4 females, mean age 61.1 ± 4.3 years) showed improved overnight memory retention (z = 2.549, P = 0.011). Patients receiving clinically used high frequency deep brain stimulation (n = 9, 2 females, mean age 62.2 ± 7.1) did not show any improvement (z = 1.023, P = 0.306) leading to a significant difference between groups (z = 2.214, P = 0.027). Stronger improvement in memory function was correlated with increased cortical low frequency activity after low frequency deep brain stimulation as measured by electroencephalography (ρ = 0.711, P = 0.037). CONCLUSION These results provide proof-of-principle that memory can be modulated by frequency-specific deep brain stimulation during sleep. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Damian M. Herz
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine‐Main Neuroscience Network (rmn)University Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - Jenny Blech
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine‐Main Neuroscience Network (rmn)University Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - Yaroslav Winter
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine‐Main Neuroscience Network (rmn)University Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - Gabriel Gonzalez‐Escamilla
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine‐Main Neuroscience Network (rmn)University Medical Center of the Johannes Gutenberg University MainzMainzGermany
- Department of NeurologySaarland University ClinicSaarlandGermany
| | - Sergiu Groppa
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine‐Main Neuroscience Network (rmn)University Medical Center of the Johannes Gutenberg University MainzMainzGermany
- Department of NeurologySaarland University ClinicSaarlandGermany
| |
Collapse
|
31
|
Zheng Q, Wang X. Alzheimer's disease: insights into pathology, molecular mechanisms, and therapy. Protein Cell 2025; 16:83-120. [PMID: 38733347 PMCID: PMC11786724 DOI: 10.1093/procel/pwae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
Alzheimer's disease (AD), the leading cause of dementia, is characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. This condition casts a significant shadow on global health due to its complex and multifactorial nature. In addition to genetic predispositions, the development of AD is influenced by a myriad of risk factors, including aging, systemic inflammation, chronic health conditions, lifestyle, and environmental exposures. Recent advancements in understanding the complex pathophysiology of AD are paving the way for enhanced diagnostic techniques, improved risk assessment, and potentially effective prevention strategies. These discoveries are crucial in the quest to unravel the complexities of AD, offering a beacon of hope for improved management and treatment options for the millions affected by this debilitating disease.
Collapse
Affiliation(s)
- Qiuyang Zheng
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Xin Wang
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| |
Collapse
|
32
|
Zhang MY, Yin C, Ding L, Cheng L, Lv Q, Wang P, Zhang SB, You QY. Mechanism of Panax notoginseng saponins in improving cognitive impairment induced by chronic sleep deprivation based on the integrative analysis of serum metabolomics and network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118988. [PMID: 39447711 DOI: 10.1016/j.jep.2024.118988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax notoginseng saponin (PNS) has a variety of biological activities, such as improvement of myocardial ischemia, improvement of learning and memory, hypolipidemia, and immunomodulation. However, its protective mechanism on the central nervous system (CNS) is not clear. AIM OF THE STUDY The present study initially evaluated the possible mechanism of PNS to improve cognitive dysfunction due to chronic sleep deprivation (CSD). MATERIALS AND METHODS In the present study, we used a modified multi-platform aquatic environment sleep deprivation method to induce a cognitively impaired rat model, and explored the mechanism of action of PNS by integrating serum metabolomics and network pharmacology, which was further verified by molecular docking and experiments. RESULTS The results showed that PNS significantly shortened the escape latency, increased the target quadrant time and the number of traversing platforms, and attenuated the inflammatory damage in the hippocampal Cornu Ammonis 1 (CA1) region in CSD rats. The non-targeted metabolomics results indicated that 35 biomarkers significantly altered following PNS therapy intervention, with metabolic pathways enriched for the effects of One carbon pool by folate, Riboflavin metabolism, Glycerophospholipid metabolism, Sphingolipid metabolism, Glycerolipid metabolism, Arachidonic acid metabolism, and Tryptophan metabolism. In addition, network pharmacology identified 234 potential targets for PNS intervention in CSD with cognitive impairment. Metabolite-response-enzyme-gene network was constructed by MetaScape and matched with the network pharmacology results to identify a total of five shared targets (LPL, GPAM, HSD11B1, HSD11B2, and SULT2A1) and two metabolic pathways (Sphingolipid metabolism and Steroid hormone biosynthesis). The results of molecular docking revealed that the five active ingredients had good binding ability with the five core targets. qPCR analysis confirmed the ability of PNS to modulate the above five targets. CONCLUSIONS The combination of metabolomics and network analysis provides a scientific basis for promoting the clinical application of PNS in cognitive impairment.
Collapse
Affiliation(s)
- Mei-Ya Zhang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, China; Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Chao Yin
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, China; Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Li Ding
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, China; Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Li Cheng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Qing Lv
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Ping Wang
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, China; Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Shun-Bo Zhang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, China; Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Qiu-Yun You
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, China; Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
33
|
Bang JW, Parra C, Yu K, Lee HS, Wollstein G, Schuman JS, Chan KC. Stimulus-driven cerebrospinal fluid dynamics is impaired in glaucoma patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633258. [PMID: 39868211 PMCID: PMC11761100 DOI: 10.1101/2025.01.15.633258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Cerebrospinal fluid (CSF) dynamics, driven by sensory stimulation-induced neuronal activity, is crucial for maintaining homeostasis and clearing metabolic waste. However, it remains unclear whether such CSF flow is impaired in age-related neurodegenerative diseases of the visual system. This study addresses this gap by examining CSF flow during visual stimulation in glaucoma patients and healthy older adults using functional magnetic resonance imaging. The findings reveal that in glaucoma, CSF inflow becomes decoupled from visually evoked blood-oxygenation-level-dependent (BOLD) response. Furthermore, stimulus-locked CSF patterns, characterized by decreases following stimulus onset and increases after offset, diminish as glaucoma severity worsens. Mediation analysis suggests that this flattened CSF pattern is driven by a flatter BOLD slope, resulting in a shallower CSF trough and a reduced rebound. These findings unveil a novel pathophysiological mechanism underlying disrupted stimulation-driven CSF dynamics in glaucoma and highlight potential in vivo biomarkers for monitoring CSF in the glaucomatous brain.
Collapse
|
34
|
Kollarik S, Bimbiryte D, Sethi A, Dias I, Moreira CG, Noain D. Pharmacological enhancement of slow-wave activity at an early disease stage improves cognition and reduces amyloid pathology in a mouse model of Alzheimer's disease. Front Aging Neurosci 2025; 16:1519225. [PMID: 39831085 PMCID: PMC11739298 DOI: 10.3389/fnagi.2024.1519225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Improving sleep in murine Alzheimer's disease (AD) is associated with reduced brain amyloidosis. However, the window of opportunity for successful sleep-targeted interventions, regarding the reduction in pathological hallmarks and related cognitive performance, remains poorly characterized. Methods Here, we enhanced slow-wave activity (SWA) during sleep via sodium oxybate (SO) oral administration for 2 weeks at early (6 months old) or moderately late (11 months old) disease stages in Tg2576 mice and evaluated resulting neuropathology and behavioral performance. Results We observed that the cognitive performance of 6-month-old Tg2576 mice significantly improved upon SO treatment, whereas no change was observed in 11-month-old mice. Histochemical assessment of amyloid plaques demonstrated that SO-treated 11-month-old Tg2576 mice had significantly less plaque burden than placebo-treated ones, whereas ELISA of insoluble protein fractions from brains of 6-month-old Tg2576 mice indicated lower Aβ-42/Aβ-40 ratio in SO-treated group vs. placebo-treated controls. Discussion Altogether, our results suggest that SWA-dependent reduction in brain amyloidosis leads to alleviated behavioral impairment in Tg2576 mice only if administered early in the disease course, potentially highlighting the key importance of early sleep-based interventions in clinical cohorts.
Collapse
Affiliation(s)
- Sedef Kollarik
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
- Neuroscience Centre Zurich (ZNZ), Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Dorita Bimbiryte
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
| | - Aakriti Sethi
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
| | - Inês Dias
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
- Neuroscience Centre Zurich (ZNZ), Zurich, Switzerland
- D-HEST, ETHZurich, Zurich, Switzerland
| | - Carlos G. Moreira
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
| | - Daniela Noain
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
- Neuroscience Centre Zurich (ZNZ), Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
- University Center of Competence Sleep and Health Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
35
|
Yu W, Li X, Zhang C, Niu P, Wu J, He W, Gao K, Xu Y, Li Y. KDM6B knockdown alleviates sleep deprivation-induced cerebrovascular lesions in APP/PS1 mice by inhibiting PARP16 expression. Biochem Pharmacol 2025; 231:116650. [PMID: 39603516 DOI: 10.1016/j.bcp.2024.116650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/22/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is a neurological disorder in the elderly, involving the deposition of vascular amyloid-β (Aβ). Sleep deprivation (SD) causes memory deficits during CAA. Lysine specific demethylase 6B (KDM6B) is a histone H3 lysine 27-specific demethylase associated with neuronal injury and inflammation. However, the role of KDM6B in CAA has yet to be studied. In the current study, the multi-platform over-water method was used to induce chronic SD in APP/PS1 mice. Pathological analysis revealed that SD exacerbated vascular lesions in this model, as manifested by extensive formation of Aβ-positive deposits. In addition, SD led to a significant increase in the expression of KDM6B in the cerebral cortex of APP/PS1 mice. Next, the effect of KDM6B on CAA progression was explored through loss of function. Further experiments illustrated that KDM6B knockdown diminished SD-induced memory impairment, neuronal injury and vascular lesions in vivo. Additionally, isolated primary cortical neurons were treated with 10 µM Aβ1-42 for 48 h to induce the cell model. As expected, knockdown of KDM6B inhibited the Aβ1-42-induced cytotoxicity in primary neurons. Mechanistically, our results demonstrated that KDM6B knockdown downregulated poly (ADP-ribose) polymerase16 (PARP16) expression by increasing trimethylated lysine 27 on histone 3 (H3K27me3) levels, indicating that KDM6B epigenetically regulated PARP16 expression. Function recovery experiment results further proved that PARP16 overexpression negated the effect of KDM6B knockdown on Aβ1-42-induced cytotoxicity. Overall, our findings uncover an unanticipated role of KDM6B in CAA, and KDM6B may serve as a potential therapeutic target for CAA. Abbreviations: CAA, cerebral amyloid angiopathy; Aβ, amyloid-β; SD, sleep deprivation; KDM6B, lysine specific demethylase 6B; AD, Alzheimer's disease; H3K27me3, trimethylated lysine 27 on histone 3; PARP16, poly (ADP-ribose) polymerase16; AAV2, adeno-associated virus 2; CHIP, chromatin immunoprecipitation; ANOVA, one-way analysis of variance.
Collapse
Affiliation(s)
- Wenkai Yu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China; National Health Commission Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
| | - Xinyu Li
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China; National Health Commission Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
| | - Chan Zhang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China
| | - Pengpeng Niu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China
| | - Jinghao Wu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China
| | - Wenjun He
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China
| | - Kai Gao
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China
| | - Yuming Xu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China; National Health Commission Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China; Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou, Henan, China.
| | - Yusheng Li
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China; National Health Commission Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China; Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou, Henan, China.
| |
Collapse
|
36
|
Zhang Z, Xue P, Bendlin BB, Zetterberg H, De Felice F, Tan X, Benedict C. Melatonin: A potential nighttime guardian against Alzheimer's. Mol Psychiatry 2025; 30:237-250. [PMID: 39128995 PMCID: PMC11649572 DOI: 10.1038/s41380-024-02691-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
In the context of the escalating global health challenge posed by Alzheimer's disease (AD), this comprehensive review considers the potential of melatonin in both preventive and therapeutic capacities. As a naturally occurring hormone and robust antioxidant, accumulating evidence suggests melatonin is a compelling candidate to consider in the context of AD-related pathologies. The review considers several mechanisms, including potential effects on amyloid-beta and pathologic tau burden, antioxidant defense, immune modulation, and regulation of circadian rhythms. Despite its promise, several gaps need to be addressed prior to clinical translation. These include conducting additional randomized clinical trials in patients with or at risk for AD dementia, determining optimal dosage and timing, and further determining potential side effects, particularly of long-term use. This review consolidates existing knowledge, identifies gaps, and suggests directions for future research to better understand the potential of melatonin for neuroprotection and disease mitigation within the landscape of AD.
Collapse
Affiliation(s)
- Zefan Zhang
- Department of Big Data in Health Science, Zhejiang University School of Public Health and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, China
| | - Pei Xue
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Barbara B Bendlin
- School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, Madison, WI, USA
- Wisconsin Alzheimer's Institute, Madison, WI, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Fernanda De Felice
- Centre for Neurosciences Studies, Departments of Biomedical and Molecular Sciences, and Psychiatry, Queen's University, Kingston, ON, K7L 3N6, Canada
- D'Or Institute for Research and Education, Rio de Janeiro RJ, 22281-100, Brazil
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro RJ, Brazil
| | - Xiao Tan
- Department of Big Data in Health Science, Zhejiang University School of Public Health and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, China.
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Christian Benedict
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
37
|
Fernandes M, Liguori C. Obstructive sleep apnea syndrome, orexin, and sleep-wake cycle: The link with the neurodegeneration. HANDBOOK OF CLINICAL NEUROLOGY 2025; 206:141-160. [PMID: 39864923 DOI: 10.1016/b978-0-323-90918-1.00014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Obstructive sleep apnea syndrome (OSAS) significantly affects the sleep-wake circadian rhythm through intermittent hypoxia and chronic sleep fragmentation. OSAS patients often experience excessive daytime sleepiness, frequent awakenings, and sleep fragmentation, leading to a disrupted circadian rhythm and altered sleep-wake cycle. These disruptions may exacerbate OSAS symptoms and contribute to neurodegenerative processes, particularly through the modulation of clock gene expression such as CLOCK, BMAL1, and PER. Emerging evidence connects OSAS to cognitive impairment and suggests that these changes may contribute to the development of neurodegenerative disorders such as Alzheimer disease, suggesting that OSAS could be a reversible risk factor for these conditions. Biomarkers, including melatonin and orexin, play crucial roles in understanding these mechanisms. In OSAS patients, melatonin, a marker of circadian rhythmicity, often shows altered secretion patterns that are not fully corrected by continuous positive airway pressure therapy. Orexin, which regulates the sleep-wake cycle, exhibits increased cerebrospinal fluid levels in OSAS patients, possibly due to compensatory mechanisms against sleep impairment and daytime sleepiness. These biomarkers highlight the intricate relationship between circadian rhythm disruptions and neurodegenerative risks in OSAS, emphasizing the need for further research and potential therapeutic strategies to mitigate these effects and improve patient outcomes.
Collapse
Affiliation(s)
- Mariana Fernandes
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Sleep Medicine Centre, Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
38
|
Silvestri R, Guarnieri B. Advanced sleep phase syndrome: Role of genetics and aging. HANDBOOK OF CLINICAL NEUROLOGY 2025; 206:61-70. [PMID: 39864932 DOI: 10.1016/b978-0-323-90918-1.00005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Advanced sleep phase (ASP) is seldom brought to medical attention because many individuals easily adapt to their early chronotype, especially if it emerges before the age of 30 and is present in a first-degree relative. In this case, the disorder is considered familial (FASP) and is mostly discovered coincidentally in the presence of other sleep disorders, mainly obstructive sleep apnea syndrome (OSAS). The prevalence of FASP is currently estimated to be between 0.21% and 0.5%. Autosomal dominant mutations in circadian clock genes like PER2, CK1, PER3, CRY2, TIMELESS, and DEC2 have been linked to FASP, some with pleiotropic effects influencing other health aspects like migraine and depression. Early morning awakening is, instead, more common among older individuals, occurring in almost 4% of cases, without considering associated comorbidities. Advanced sleep-wake phase disorder (ASWPD) is characterized by a consistent and distressing anticipation of sleep-wake timing, affecting almost 1% of middle-aged individuals. On average, women have a shorter circadian period than men, making them more susceptible to ASWPD, albeit no significant gender discrepancies have been observed. Age-related alterations in circadian rhythms are exacerbated and compounded by neurodegenerative disorders, impacting the suprachiasmatic nucleus (SCN), sensitivity to light, and light responsiveness in those affected. Conflicting data has surfaced regarding the protective or detrimental effects of ASWPD in studies on aging, mild cognitive impairment (MCI), and diverse dementia conditions.
Collapse
Affiliation(s)
- Rosalia Silvestri
- Sleep Medicine Center, Department of Clinical and Experimental Medicine, AOU G. Martino, Messina, Italy
| | - Biancamaria Guarnieri
- Sleep Medicine Center, Department of Neurology, Villa Serena Hospital, Città S. Angelo, Pescara, Italy; Villaserena Research Foundation, Città S. Angelo, Pescara, Italy
| |
Collapse
|
39
|
Trinh DQ, Mai NH, Pham TD. Insufficient Sleep and Alzheimer's Disease: Potential Approach for Therapeutic Treatment Methods. Brain Sci 2024; 15:21. [PMID: 39851389 PMCID: PMC11763454 DOI: 10.3390/brainsci15010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025] Open
Abstract
The interaction between Alzheimer's disease (AD) and sleep deprivation has recently gained attention in the scientific literature, and recent advances suggest that AD epidemiology management should coincide with the management of sleeping disorders. This review focuses on the aspects of the mechanisms underlying the link between AD and insufficient sleep with progressing age. We also provide information which could serve as evidence for future treatments of AD from the early stages in connection with sleep disorder medication.
Collapse
Affiliation(s)
- Dieu Quynh Trinh
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| | - Nhu Huynh Mai
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam;
| | - Toan Duc Pham
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
40
|
Hussain Y, Dar MI, Pan X. Circadian Influences on Brain Lipid Metabolism and Neurodegenerative Diseases. Metabolites 2024; 14:723. [PMID: 39728504 DOI: 10.3390/metabo14120723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
Circadian rhythms are intrinsic, 24 h cycles that regulate key physiological, mental, and behavioral processes, including sleep-wake cycles, hormone secretion, and metabolism. These rhythms are controlled by the brain's suprachiasmatic nucleus, which synchronizes with environmental signals, such as light and temperature, and consequently maintains alignment with the day-night cycle. Molecular feedback loops, driven by core circadian "clock genes", such as Clock, Bmal1, Per, and Cry, are essential for rhythmic gene expression; disruptions in these feedback loops are associated with various health issues. Dysregulated lipid metabolism in the brain has been implicated in the pathogenesis of neurological disorders by contributing to oxidative stress, neuroinflammation, and synaptic dysfunction, as observed in conditions such as Alzheimer's and Parkinson's diseases. Disruptions in circadian gene expression have been shown to perturb lipid regulatory mechanisms in the brain, thereby triggering neuroinflammatory responses and oxidative damage. This review synthesizes current insights into the interconnections between circadian rhythms and lipid metabolism, with a focus on their roles in neurological health and disease. It further examines how the desynchronization of circadian genes affects lipid metabolism and explores the potential mechanisms through which disrupted circadian signaling might contribute to the pathophysiology of neurodegenerative disorders.
Collapse
Affiliation(s)
- Yusuf Hussain
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA
| | - Mohammad Irfan Dar
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA
| | - Xiaoyue Pan
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA
| |
Collapse
|
41
|
Hopkins MA, Tabuchi M. The power of the rocking cradle: improving sleep function by gentle vibration. Sleep 2024; 47:zsae245. [PMID: 39441991 DOI: 10.1093/sleep/zsae245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Indexed: 10/25/2024] Open
Affiliation(s)
- Makenzie A Hopkins
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Masashi Tabuchi
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
42
|
Leroy V, Ayers E, Adhikari D, Verghese J. Association of Sleep Disturbances With Prevalent and Incident Motoric Cognitive Risk Syndrome in Community-Residing Older Adults. Neurology 2024; 103:e210054. [PMID: 39504508 PMCID: PMC11540459 DOI: 10.1212/wnl.0000000000210054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/10/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND AND OBJECTIVES There is growing evidence that sleep disturbances are associated with cognitive impairment risk, but their association with the incidence of motoric cognitive risk syndrome (MCR)-a predementia syndrome characterized by slow gait speed and cognitive complaints-is unknown. We aimed to examine the association of sleep disturbances, overall and specific subtypes, with (1) incident and (2) prevalent MCR in older adults. METHODS Community-residing adults aged 65 years and older without dementia were recruited from population lists and included in Central Control of Mobility and Aging, a prospective cohort study, in Albert Einstein College of Medicine, Bronx, NY. We included participants with available data for MCR and Pittsburgh Sleep Quality Index (PSQI). MCR was defined as cognitive complaints reported on standardized questionnaires and slow gait speed as recorded on an electronic treadmill and was adjudicated at baseline and annual follow-up visits. Participants were divided into "good" sleepers (≤5) and "poor" sleepers (>5) based on an established PSQI cut score. Among participants without MCR at baseline, Cox proportional hazard models adjusted for (1) age, sex, and education and (2) further for comorbidity index, Geriatric Depression Scale score, and global cognitive score were used to examine the association of baseline sleep disturbances with MCR incidence. Association between poor sleep quality and prevalent MCR at baseline in the overall population was explored using multivariate logistic regression analysis. RESULTS 445 participants were included (56.9% women, mean age: 75.9 years [75.3; 76.5]). In MCR-free participants at baseline (n = 403), 36 developed incident MCR over a mean follow-up of 2.9 years. Poor sleepers had a higher risk of incident MCR (HR = 2.7 [1.2; 5.2]) compared with good sleepers, but this association was not significant after adjustment for depressive symptoms (adjusted hazard ratio [aHR] = 1.6 [0.7-3.4]). Among the 7 PSQI components, only sleep-related daytime dysfunction (excessive sleepiness and lower enthusiasm) showed a significant risk of MCR in fully adjusted models (aHR = 3.3 [1.5-7.4]). Prevalent MCR was not associated with poor sleep quality (OR [95% CI] = 1.1 [0.5-2.3]). DISCUSSION Overall poor sleep quality was associated with incident MCR, but not with prevalent MCR. Specifically, older adults with sleep-related daytime dysfunction are at increased risk of developing MCR. Further studies are needed to validate mechanisms of this relationship.
Collapse
Affiliation(s)
- Victoire Leroy
- From the Department of Neurology (V.L., A.E., D.A.), Albert Einstein College of Medicine, Bronx; Division of Geriatric Medicine (V.L.), Tours University Hospital, France; and Department of Neurology (J.V.), Renaissance School of Medicine, Stony Brook, NY
| | - Emmeline Ayers
- From the Department of Neurology (V.L., A.E., D.A.), Albert Einstein College of Medicine, Bronx; Division of Geriatric Medicine (V.L.), Tours University Hospital, France; and Department of Neurology (J.V.), Renaissance School of Medicine, Stony Brook, NY
| | - Dristi Adhikari
- From the Department of Neurology (V.L., A.E., D.A.), Albert Einstein College of Medicine, Bronx; Division of Geriatric Medicine (V.L.), Tours University Hospital, France; and Department of Neurology (J.V.), Renaissance School of Medicine, Stony Brook, NY
| | - Joe Verghese
- From the Department of Neurology (V.L., A.E., D.A.), Albert Einstein College of Medicine, Bronx; Division of Geriatric Medicine (V.L.), Tours University Hospital, France; and Department of Neurology (J.V.), Renaissance School of Medicine, Stony Brook, NY
| |
Collapse
|
43
|
Dias I, Baumann CR, Noain D. mCLAS adaptively rescues disease-specific sleep and wake phenotypes in neurodegeneration. Sleep Med 2024; 124:704-716. [PMID: 39541605 DOI: 10.1016/j.sleep.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Sleep alterations are hallmarks of prodromal Alzheimer's (AD) and Parkinson's disease (PD), with fundamental neuropathological processes of both diseases showing susceptibility of change upon deep sleep modulation. However, promising pharmacological deep sleep enhancement results are hindered by specificity and scalability issues, thus advocating for noninvasive slow-wave activity (SWA) boosting methods to investigate the links between deep sleep and neurodegeneration. Accordingly, we have recently introduced mouse closed-loop auditory stimulation (mCLAS), which is able to successfully boost SWA during deep sleep in neurodegeneration models. Here, we aim at further exploring mCLAS' acute effect onto disease-specific sleep and wake alterations in AD (Tg2576) and PD (M83) mice. We found that mCLAS adaptively rescues pathological sleep and wake traits depending on the disease-specific impairments observed at baseline in each model. Notably, in AD mice mCLAS significantly increases NREM long/short bout ratio, decreases vigilance state distances by decreasing transition velocities and increases the percentage of cumulative time spent in NREM sleep in the last 3h of the dark period. Contrastingly, in PD mice mCLAS significantly decreases NREM sleep consolidation, by potentiating faster and more frequent transitions between vigilance states, decreases average EMG muscle tone during REM sleep and increases alpha power in WAKE and NREM sleep. Overall, our results indicate that mCLAS selectively prompts an acute alleviation of neurodegeneration-associated sleep and wake phenotypes, by either potentiating sleep consolidation and vigilance state stability in AD or by rescuing bradysomnia and decreasing cortical hyperexcitability in PD. Further experiments assessing the electrophysiological, neuropathological and behavioural long-term effects of mCLAS in neurodegeneration may majorly impact the clinical establishment of sleep-based therapies.
Collapse
Affiliation(s)
- Inês Dias
- Department of Neurology, University Hospital Zurich (USZ), Switzerland; Department of Health Sciences and Technology (D-HEST), ETH Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), Switzerland.
| | - Christian R Baumann
- Department of Neurology, University Hospital Zurich (USZ), Switzerland; Neuroscience Center Zurich (ZNZ), Switzerland; Center of Competence Sleep and Health, University of Zurich (UZH), Switzerland.
| | - Daniela Noain
- Department of Neurology, University Hospital Zurich (USZ), Switzerland; Neuroscience Center Zurich (ZNZ), Switzerland; Center of Competence Sleep and Health, University of Zurich (UZH), Switzerland.
| |
Collapse
|
44
|
Christensen J, Vlassopoulos E, Barlow CK, Schittenhelm RB, Li CN, Sgro M, Warren S, Semple BD, Yamakawa GR, Shultz SR, Mychasiuk R. The beneficial effects of modafinil administration on repeat mild traumatic brain injury (RmTBI) pathology in adolescent male rats are not dependent upon the orexinergic system. Exp Neurol 2024; 382:114969. [PMID: 39332798 DOI: 10.1016/j.expneurol.2024.114969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/22/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
The sleep-wake cycle plays an influential role in the development and progression of repeat mild traumatic brain injury (RmTBI)-related pathology. Therefore, we first aimed to manipulate the sleep-wake cycle post-RmTBI using modafinil, a wake-promoting substance used for the treatment of narcolepsy. We hypothesized that modafinil would exacerbate RmTBI-induced deficits. Chronic behavioural analyses were completed along with a 27-plex serum cytokine array, metabolomic and proteomic analyses of cerebrospinal fluid (CSF), as well as immunohistochemical staining in structures important for sleep/wake cycles, to examine orexin, melanin-concentrating hormone, tyrosine hydroxylase, and choline acetyltransferase, in the lateral hypothalamus, locus coeruleus, and basal forebrain, respectively. Contrary to expectation, modafinil administration attenuated behavioural deficits, metabolomic changes, and neuropathological modifications. Therefore, the second aim was to determine if the beneficial effects of modafinil treatment were driven by the orexinergic system. The same experimental protocol was used; however, RmTBI rats received chronic orexin-A administration instead of modafinil. Orexin-A administration produced drastically different outcomes, exacerbating anxiety-related and motor deficits, while also significantly disrupting their metabolomic and neuropathological profiles. These results suggest that the beneficial effects of modafinil administration post-RmTBI, work independently of its wake-promoting properties, as activation of the orexinergic wake-promoting system with orexin-A was detrimental. Overall, these findings highlight the complexity of sleep-wake changes in the injured brain and showcase the potential of the arousal and sleep systems in its treatment.
Collapse
Affiliation(s)
- Jennaya Christensen
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Elaina Vlassopoulos
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Christopher K Barlow
- Monash Proteomics and Metabolomics Platform, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Platform, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Crystal N Li
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Marissa Sgro
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Samantha Warren
- Monash Micro Imaging, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Bridgette D Semple
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Sandy R Shultz
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Centre for Trauma and Mental Health Research, Vancouver Island University, Nanaimo, B.C., Canada
| | - Richelle Mychasiuk
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
45
|
Li X, Meng X, Zhao RR, Xu YH. A genome-wide methylation analysis of Chinese Han patients with chronic insomnia disorder. Sleep Breath 2024; 28:2397-2407. [PMID: 39186098 DOI: 10.1007/s11325-024-03145-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/25/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND As the most common sleep disorder, chronic insomnia disorder (CID) has become a global health burden to the public. However, it remains unclear about the pathogenesis of this disease. Epigenetic changes may provide important insights into the gene-environment interaction in CID. Therefore, this study was conducted to investigate the DNA methylation pattern in CID and reveal the epigenetic mechanism of this disease. METHODS In this study, whole blood DNA was extracted from 8 CID patients (the CID group) and 8 healthy controls (the control group), respectively. Besides, genome-wide DNA methylation was detected by Illumina Human Methylation 850 K Beadchip. Moreover, the sleep quality and insomnia severity were evaluated by the Pittsburgh Sleep Quality Index (PSQI) and Insomnia Severity Index (ISI), respectively. RESULTS A total of 369 differentially methylated positions (DMPs) and 23 differentially methylated regions (DMRs) were identified between the CID and control groups. LHX6 was identified as the most important differentially methylated gene (DMG). The Gene Ontology (GO) analysis results corroborated that DMPs were significantly enriched in 105 GO terms, including cell signaling, homogenous cell adhesion of plasma membrane adhesion molecules, nervous system development, cell adhesion, and calcium ion binding. In addition, it was demonstrated that DMPs were significantly enriched in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including the hippo signaling pathway, Ras signaling pathway, and vitamin B6 metabolism. The DMR-related GO analysis results revealed the positive regulation of protein kinase activities. CONCLUSIONS DNA methylation plays a critical role in the development of CID, and LHX6 is validated to be an important DMG.
Collapse
Affiliation(s)
- Xiao Li
- Department of Sleep Medicine, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, China
| | - Xue Meng
- Department of Sleep Medicine, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, China
| | - Rong-Rong Zhao
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Ya-Hui Xu
- Department of Sleep Medicine, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, China.
| |
Collapse
|
46
|
Cankar N, Beschorner N, Tsopanidou A, Qvist FL, Colaço AR, Andersen M, Kjaerby C, Delle C, Lambert M, Mundt F, Weikop P, Jucker M, Mann M, Skotte NH, Nedergaard M. Sleep deprivation leads to non-adaptive alterations in sleep microarchitecture and amyloid-β accumulation in a murine Alzheimer model. Cell Rep 2024; 43:114977. [PMID: 39541211 DOI: 10.1016/j.celrep.2024.114977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/09/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Impaired sleep is a common aspect of aging and often precedes the onset of Alzheimer's disease. Here, we compare the effects of sleep deprivation in young wild-type mice and their APP/PS1 littermates, a murine model of Alzheimer's disease. After 7 h of sleep deprivation, both genotypes exhibit an increase in EEG slow-wave activity. However, only the wild-type mice demonstrate an increase in the power of infraslow norepinephrine oscillations, which are characteristic of healthy non-rapid eye movement sleep. Notably, the APP/PS1 mice fail to enhance norepinephrine oscillations 24 h after sleep deprivation, coinciding with an accumulation of cerebral amyloid-β protein. Proteome analysis of cerebrospinal fluid and extracellular fluid further supports these findings by showing altered protein clearance in APP/PS1 mice. We propose that the suppression of infraslow norepinephrine oscillations following sleep deprivation contributes to increased vulnerability to sleep loss and heightens the risk of developing amyloid pathology in early stages of Alzheimer's disease.
Collapse
Affiliation(s)
- Neža Cankar
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Natalie Beschorner
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Anastasia Tsopanidou
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Filippa L Qvist
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Ana R Colaço
- Proteomics Research Infrastructure, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Mie Andersen
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Celia Kjaerby
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Christine Delle
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Marius Lambert
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Filip Mundt
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pia Weikop
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Matthias Mann
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Department for Proteomics and Signal Transduction, Max-Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Niels Henning Skotte
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Center for Translational Neuromedicine, University of Rochester Medical School, Elmwood Avenue 601, Rochester, NY 14642, USA.
| |
Collapse
|
47
|
Sighencea MG, Popescu RȘ, Trifu SC. From Fundamentals to Innovation in Alzheimer's Disease: Molecular Findings and Revolutionary Therapies. Int J Mol Sci 2024; 25:12311. [PMID: 39596378 PMCID: PMC11594972 DOI: 10.3390/ijms252212311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD) is a global health concern and the leading cause of dementia in the elderly. The prevalence of this neurodegenerative condition is projected to increase concomitantly with increased life expectancy, resulting in a significant economic burden. With very few FDA-approved disease-modifying drugs available for AD, there is an urgent need to develop new compounds capable of impeding the progression of the disease. Given the unclear etiopathogenesis of AD, this review emphasizes the underlying mechanisms of this condition. It explores not only well-studied aspects, such as the accumulation of Aβ plaques and neurofibrillary tangles, but also novel areas, including glymphatic and lymphatic pathways, microbiota and the gut-brain axis, serotoninergic and autophagy alterations, vascular dysfunction, the metal hypothesis, the olfactory pathway, and oral health. Furthermore, the potential molecular targets arising from all these mechanisms have been reviewed, along with novel promising approaches such as nanoparticle-based therapy, neural stem cell transplantation, vaccines, and CRISPR-Cas9-mediated genome editing techniques. Taking into account the overlap of these various mechanisms, individual and combination therapies emerge as the future direction in the AD strategy.
Collapse
Affiliation(s)
| | - Ramona Ștefania Popescu
- Department of Infectious Diseases, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania;
| | - Simona Corina Trifu
- Department of Psychiatry, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania
| |
Collapse
|
48
|
Yang Z, Williams SD, Beldzik E, Anakwe S, Schimmelpfennig E, Lewis LD. Attentional failures after sleep deprivation represent moments of cerebrospinal fluid flow. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623271. [PMID: 39605725 PMCID: PMC11601381 DOI: 10.1101/2024.11.15.623271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Sleep deprivation rapidly disrupts cognitive function, and in the long term contributes to neurological disease. Why sleep deprivation has such profound effects on cognition is not well understood. Here, we use simultaneous fast fMRI-EEG to test how sleep deprivation modulates cognitive, neural, and fluid dynamics in the human brain. We demonstrate that after sleep deprivation, sleep-like pulsatile cerebrospinal fluid (CSF) flow events intrude into the awake state. CSF flow is coupled to attentional function, with high flow during attentional impairment. Furthermore, CSF flow is tightly orchestrated in a series of brain-body changes including broadband neuronal shifts, pupil constriction, and altered systemic physiology, pointing to a coupled system of fluid dynamics and neuromodulatory state. The timing of these dynamics is consistent with a vascular mechanism regulated by neuromodulatory state, in which CSF begins to flow outward when attention fails, and flow reverses when attention recovers. The attentional costs of sleep deprivation may thus reflect an irrepressible need for neuronal rest periods and widespread pulsatile fluid flow.
Collapse
Affiliation(s)
- Zinong Yang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
| | - Stephanie D. Williams
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Psychological & Brain Sciences., Boston University, Boston, MA, USA
| | - Ewa Beldzik
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston MA, USA
| | - Stephanie Anakwe
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emilia Schimmelpfennig
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Laura D. Lewis
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
49
|
McGregor JN, Farris CA, Ensley S, Schneider A, Fosque LJ, Wang C, Tilden EI, Liu Y, Tu J, Elmore H, Ronayne KD, Wessel R, Dyer EL, Bhaskaran-Nair K, Holtzman DM, Hengen KB. Failure in a population: Tauopathy disrupts homeostatic set-points in emergent dynamics despite stability in the constituent neurons. Neuron 2024; 112:3567-3584.e5. [PMID: 39241778 PMCID: PMC11560743 DOI: 10.1016/j.neuron.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 06/24/2024] [Accepted: 08/09/2024] [Indexed: 09/09/2024]
Abstract
Homeostatic regulation of neuronal activity is essential for robust computation; set-points, such as firing rate, are actively stabilized to compensate for perturbations. The disruption of brain function central to neurodegenerative disease likely arises from impairments of computationally essential set-points. Here, we systematically investigated the effects of tau-mediated neurodegeneration on all known set-points in neuronal activity. We continuously tracked hippocampal neuronal activity across the lifetime of a mouse model of tauopathy. We were unable to detect effects of disease in measures of single-neuron firing activity. By contrast, as tauopathy progressed, there was disruption of network-level neuronal activity, quantified by measuring neuronal pairwise interactions and criticality, a homeostatically controlled, ideal computational regime. Deviations in criticality correlated with symptoms, predicted underlying anatomical pathology, occurred in a sleep-wake-dependent manner, and could be used to reliably classify an animal's genotype. This work illustrates how neurodegeneration may disrupt the computational capacity of neurobiological systems.
Collapse
Affiliation(s)
- James N McGregor
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Clayton A Farris
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Sahara Ensley
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Aidan Schneider
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Leandro J Fosque
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Chao Wang
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in Saint Louis, St. Louis, MO, USA; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing 400016, China
| | - Elizabeth I Tilden
- Department of Neuroscience, Washington University in Saint Louis, St. Louis, MO, USA
| | - Yuqi Liu
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Jianhong Tu
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Halla Elmore
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Keenan D Ronayne
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Ralf Wessel
- Department of Physics, Washington University in Saint Louis, St. Louis, MO, USA
| | - Eva L Dyer
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in Saint Louis, St. Louis, MO, USA
| | - Keith B Hengen
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA.
| |
Collapse
|
50
|
Ortiz-Vega N, Lobato AG, Canic T, Zhu Y, Lazopulo S, Syed S, Zhai RG. Regulation of proteostasis by sleep through autophagy in Drosophila models of Alzheimer's disease. Life Sci Alliance 2024; 7:e202402681. [PMID: 39237365 PMCID: PMC11377308 DOI: 10.26508/lsa.202402681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
Sleep and circadian rhythm dysfunctions are common clinical features of Alzheimer's disease (AD). Increasing evidence suggests that in addition to being a symptom, sleep disturbances can also drive the progression of neurodegeneration. Protein aggregation is a pathological hallmark of AD; however, the molecular pathways behind how sleep affects protein homeostasis remain elusive. Here we demonstrate that sleep modulation influences proteostasis and the progression of neurodegeneration in Drosophila models of tauopathy. We show that sleep deprivation enhanced Tau aggregational toxicity resulting in exacerbated synaptic degeneration. In contrast, sleep induction using gaboxadol led to reduced toxic Tau accumulation in neurons as a result of modulated autophagic flux and enhanced clearance of ubiquitinated Tau, suggesting altered protein processing and clearance that resulted in improved synaptic integrity and function. These findings highlight the complex relationship between sleep and regulation of protein homeostasis and the neuroprotective potential of sleep-enhancing therapeutics to slow the progression or delay the onset of neurodegeneration.
Collapse
Affiliation(s)
- Natalie Ortiz-Vega
- Department of Neurology, University of Chicago, Chicago, IL, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
- Graduate Program in Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Amanda G Lobato
- Department of Neurology, University of Chicago, Chicago, IL, USA
| | - Tijana Canic
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Physics, University of Miami, Coral Gables, FL, USA
| | - Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Sheyum Syed
- Department of Physics, University of Miami, Coral Gables, FL, USA
| | - R Grace Zhai
- Department of Neurology, University of Chicago, Chicago, IL, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|