1
|
Salden S, Xu Y, De Smet S, Peremans K, Dobbeleir A, De Witte S, Van Eeckhaut A, Saunders JH, Haverbeke A, Baeken C. Investigating cerebral blood flow in anxious dogs: a 99mTc-HMPAO SPECT imaging study. Res Vet Sci 2025; 190:105648. [PMID: 40245449 DOI: 10.1016/j.rvsc.2025.105648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 01/17/2025] [Accepted: 04/06/2025] [Indexed: 04/19/2025]
Abstract
Anxiety-related disorders have a significant effect on the welfare of pet dogs, often leading to behavioral problems and straining the human-animal bond. Conventional treatments sometimes prove inadequate, highlighting the need for a more objective understanding of the neurobiological pathways underlying canine anxiety disorders. Therefore, this study aimed to investigate anxiety disorders in dogs using 99mTc-HMPAO single photon emission computed tomography (SPECT), focusing on the left frontal region, subcortical region, and cerebellum. While a frequentist approach found no significant differences in brain perfusion between patient and healthy dogs, Bayesian analyses indicated underpowered results. Subsequent correlational analyses were performed and revealed significant positive associations between cerebellar perfusion and aggression, social fear, and nonsocial fear C-BARQ cluster scores (Canine Behavioral Assessment and Research Questionnaire), as well as a negative correlation between subcortical perfusion and nonsocial fear C-BARQ cluster scores in dogs with an anxiety disorder. This study supports the involvement of subcortical regions in anxious dogs and emphasizes the emerging role of the cerebellum in canine anxiety disorders. This study deepens our understanding of the neural correlates of canine anxiety and underscores the potential of nuclear neuroimaging in clinical practice. Future research into broader neural functioning is warranted for improved diagnostic and therapeutic strategies in veterinary behavioral medicine.
Collapse
Affiliation(s)
- Sofie Salden
- Department of Morphology, Imaging, Orthopedics, Rehabilitation, and Nutrition, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium.
| | - Yangfeng Xu
- Department of Morphology, Imaging, Orthopedics, Rehabilitation, and Nutrition, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Stefanie De Smet
- Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium; Brain Stimulation and Cognition (BSC) Lab, Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands
| | - Kathelijne Peremans
- Department of Morphology, Imaging, Orthopedics, Rehabilitation, and Nutrition, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Andre Dobbeleir
- Department of Morphology, Imaging, Orthopedics, Rehabilitation, and Nutrition, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Sara De Witte
- Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium; Department of Neurology and Bru-BRAIN, University Hospital (UZ Brussel), Brussels, Belgium; Neuroprotection & Neuromodulation Research Group (NEUR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Ann Van Eeckhaut
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information (FASC), Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Jimmy H Saunders
- Department of Morphology, Imaging, Orthopedics, Rehabilitation, and Nutrition, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Anouck Haverbeke
- Department of Morphology, Imaging, Orthopedics, Rehabilitation, and Nutrition, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Chris Baeken
- Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium; Vrije Universiteit Brussel (VUB), Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands.
| |
Collapse
|
2
|
Chai C, Yang X, Zheng Y, Bin Heyat MB, Li Y, Yang D, Chen YH, Sawan M. Multimodal fusion of magnetoencephalography and photoacoustic imaging based on optical pump: Trends for wearable and noninvasive Brain-Computer interface. Biosens Bioelectron 2025; 278:117321. [PMID: 40049046 DOI: 10.1016/j.bios.2025.117321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/19/2025] [Accepted: 02/26/2025] [Indexed: 03/30/2025]
Abstract
Wearable noninvasive brain-computer interface (BCI) technologies, such as electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS), have experienced significant progress since their inception. However, these technologies have not achieved revolutionary advancements, largely because of their inherently low signal-to-noise ratio and limited penetration depth. In recent years, the application of quantum-theory-based optically pumped (OP) technologies, particularly optical pumped magnetometers (OPMs) for magnetoencephalography (MEG) and photoacoustic imaging (PAI) utilizing OP pulsed laser sources, has opened new avenues for development in noninvasive BCIs. These advanced technologies have garnered considerable attention owing to their high sensitivity in tracking neural activity and detecting blood oxygen saturation. This paper represents the first attempt to discuss and compare technologies grounded in OP theory by examining the technical advantages of OPM-MEG and PAI over traditional EEG and fNIRS. Furthermore, the paper investigates the theoretical and structural feasibility of hardware reuse in OPM-MEG and PAI applications.
Collapse
Affiliation(s)
- Chengpeng Chai
- CenBRAIN Neurotech, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou, Zhejiang, 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Street, Xihu District, Hangzhou, Zhejiang, 310024, China
| | - Xi Yang
- CenBRAIN Neurotech, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou, Zhejiang, 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Street, Xihu District, Hangzhou, Zhejiang, 310024, China
| | - Yuqiao Zheng
- CenBRAIN Neurotech, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou, Zhejiang, 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Street, Xihu District, Hangzhou, Zhejiang, 310024, China
| | - Md Belal Bin Heyat
- CenBRAIN Neurotech, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou, Zhejiang, 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Street, Xihu District, Hangzhou, Zhejiang, 310024, China
| | - Yifan Li
- Faculty of Engineering, University of Bristol, Bristol, BS8 1QU, United Kingdom
| | - Dingbo Yang
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, 310000, China; Department of Neurosurgery, Nanjing Medical University Affiliated Hangzhou Hospital, Hangzhou First People's Hospital, Hangzhou, 310000, China
| | - Yun-Hsuan Chen
- CenBRAIN Neurotech, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou, Zhejiang, 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Street, Xihu District, Hangzhou, Zhejiang, 310024, China.
| | - Mohamad Sawan
- CenBRAIN Neurotech, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou, Zhejiang, 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Street, Xihu District, Hangzhou, Zhejiang, 310024, China.
| |
Collapse
|
3
|
Pareto D, Naval-Baudin P, Pons-Escoda A, Bargalló N, Garcia-Gil M, Majós C, Rovira À. Image analysis research in neuroradiology: bridging clinical and technical domains. Neuroradiology 2025:10.1007/s00234-025-03633-x. [PMID: 40434412 DOI: 10.1007/s00234-025-03633-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 04/20/2025] [Indexed: 05/29/2025]
Abstract
PURPOSE Advancements in magnetic resonance imaging (MRI) analysis over the past decades have significantly reshaped the field of neuroradiology. The ability to extract multiple quantitative measures from each MRI scan, alongside the development of extensive data repositories, has been fundamental to the emergence of advanced methodologies such as radiomics and artificial intelligence (AI). This educational review aims to delineate the importance of image analysis, highlight key paradigm shifts, examine their implications, and identify existing constraints that must be addressed to facilitate integration into clinical practice. Particular attention is given to aiding junior neuroradiologists in navigating this complex and evolving landscape. METHODS A comprehensive review of the available analysis toolboxes was conducted, focusing on major technological advancements in MRI analysis, the evolution of data repositories, and the rise of AI and radiomics in neuroradiology. Stakeholders within the field were identified and their roles examined. Additionally, current challenges and barriers to clinical implementation were analyzed. RESULTS The analysis revealed several pivotal shifts, including the transition from qualitative to quantitative imaging, the central role of large datasets in developing AI tools, and the growing importance of interdisciplinary collaboration. Key stakeholders-including academic institutions, industry partners, regulatory bodies, and clinical practitioners-were identified, each playing a distinct role in advancing the field. However, significant barriers remain, particularly regarding standardization, data sharing, regulatory approval, and integration into clinical workflows. CONCLUSIONS While advancements in MRI analysis offer tremendous potential to enhance neuroradiology practice, realizing this potential requires overcoming technical, regulatory, and practical barriers. Education and structured support for junior neuroradiologists are essential to ensure they are well-equipped to participate in and drive future developments. A coordinated effort among stakeholders is crucial to facilitate the seamless translation of these technological innovations into everyday clinical practice.
Collapse
Affiliation(s)
- Deborah Pareto
- Neuroradiology Section, Radiology Department (IDI), Vall Hebron University Hospital, Psg Vall Hebron 119-129, 08035, Barcelona, Spain.
- Neuroradiology Group, Vall Hebron Research Institute, Barcelona, Spain.
| | - Pablo Naval-Baudin
- Neuroradiology Section, Department of Radiology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Spain
- Institut Diagnòstic Per La Imatge (IDI), Centre Bellvitge, L'Hospitalet de Llobregat, Spain
- Diagnostic Imaging and Nuclear Medicine Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Albert Pons-Escoda
- Neuroradiology Section, Department of Radiology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Spain
- Institut Diagnòstic Per La Imatge (IDI), Centre Bellvitge, L'Hospitalet de Llobregat, Spain
- Diagnostic Imaging and Nuclear Medicine Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Núria Bargalló
- Neuroradiology Section, Radiology Department, Diagnostic Image Center, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - María Garcia-Gil
- Institut Diagnòstic Per La Imatge (IDI), Serveis Corporatius, Parc Sanitaria Pere Virgili, Barcelona, Spain
| | - Carlos Majós
- Neuroradiology Section, Department of Radiology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Spain
- Institut Diagnòstic Per La Imatge (IDI), Centre Bellvitge, L'Hospitalet de Llobregat, Spain
- Diagnostic Imaging and Nuclear Medicine Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Àlex Rovira
- Neuroradiology Section, Radiology Department (IDI), Vall Hebron University Hospital, Psg Vall Hebron 119-129, 08035, Barcelona, Spain
- Neuroradiology Group, Vall Hebron Research Institute, Barcelona, Spain
| |
Collapse
|
4
|
Volpi T, Lee JJ, Vlassenko AG, Goyal MS, Corbetta M, Bertoldo A. The brain's "dark energy" puzzle upgraded: [ 18F]FDG uptake, delivery and phosphorylation, and their coupling with resting-state brain activity. J Cereb Blood Flow Metab 2025:271678X251329707. [PMID: 40370305 DOI: 10.1177/0271678x251329707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
The brain's resting-state energy consumption is expected to be driven by spontaneous activity. We previously used 50 resting-state fMRI (rs-fMRI) features to predict [18F]FDG SUVR as a proxy of glucose metabolism. Here, we expanded on our effort by estimating [18F]FDG kinetic parameters Ki (irreversible uptake), K1 (delivery), k3 (phosphorylation) in a large healthy control group (n = 47). Describing the parameters' spatial distribution at high resolution (216 regions), we showed that K1 is the least redundant (strong posteromedial pattern), and Ki and k3 have relevant differences (occipital cortices, cerebellum, thalamus). Using multilevel modeling, we investigated how much spatial variance of [18F]FDG parameters could be explained by a combination of a) rs-fMRI variables, b) cerebral blood flow (CBF) and metabolic rate of oxygen (CMRO2) from 15O PET. Rs-fMRI-only models explained part of the individual variance in Ki (35%), K1 (14%), k3 (21%), while combining rs-fMRI and CMRO2 led to satisfactory description of Ki (46%) especially. Ki was sensitive to both local rs-fMRI variables (ReHo) and CMRO2, k3 to ReHo, K1 to CMRO2. This work represents a comprehensive assessment of the complex underpinnings of brain glucose consumption, and highlights links between 1) glucose phosphorylation and local brain activity, 2) glucose delivery and oxygen consumption.
Collapse
Affiliation(s)
- Tommaso Volpi
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
- Padova Neuroscience Center, University of Padova, Padova, Italy
| | - John J Lee
- Neuroimaging Laboratories at the Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Andrei G Vlassenko
- Neuroimaging Laboratories at the Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Manu S Goyal
- Neuroimaging Laboratories at the Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Maurizio Corbetta
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Alessandra Bertoldo
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Department of Information Engineering, University of Padova, Padova, Italy
| |
Collapse
|
5
|
Ding L, Zhang Y, Xie Y, He Y, Wang Y, Lu J, Pang R, Wang W, Chen Z. Cortical activation and functional connectivity during different attention tasks using functional near-infrared spectroscopy in middle-aged and elderly people. Eur J Med Res 2025; 30:364. [PMID: 40325473 PMCID: PMC12054223 DOI: 10.1186/s40001-025-02597-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/14/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Attention plays a vital part in the cognitive process, where different kinds of attention are associated with separate brain mechanisms. The objective of this research was to investigate the patterns of brain activation and functional connectivity in middle-aged and elderly individuals, while they were engaged in various attentional tasks, with the intention of establishing a reference foundation for the clinical treatment of attention disorders. MATERIALS AND METHODS A total of 44 healthy middle-aged and elderly persons (47.1% women) aged over 40 were enrolled in this study. The digital cancellation test (DCT), the paced auditory serial addition test (PASAT), the Stroop colour-word test, and the trail making test (TMT) are, respectively, associated with four types of attention tasks: sustained attention, divided attention, selective attention, and attention shifting. Functional near-infrared spectroscopic imaging was employed to measure the concentration of brain oxyhaemoglobin in the subjects, while they were performing these four attention tasks. RESULTS In this study, we found distinct activation patterns in brain areas, such as BA-3, BA-4, BA-6, and others. Functional connectivity analysis revealed that the frontal and right parietal lobes consistently showed higher density and strength of connections across tasks, with the PASAT task exhibiting the highest number of connections exceeding the threshold. Notably, the DCT task demonstrated significant correlations in oxygen fluctuations among several brain regions, while the TMT-B task highlighted strong functional connectivity within the bilateral frontal and parietal lobes. CONCLUSIONS This research provides evidence that middle-aged and elderly people have different brain activation and functional connectivity patterns in different attentional tasks, suggesting individualized treatment for attention disorder patients based on impairment type and location. TRIAL REGISTRATION This study has been registered through the Chinese Clinical Trial Registry (ChiCTR2400087755).
Collapse
Affiliation(s)
- Lijuan Ding
- Department of Rehabilitation, the General Hospital of Western Theater Command (Affiliated Hospital of Southwest Jiaotong University), College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Yiru Zhang
- Jinchen Rehabilitation Hospital of Chengdu, Chengdu, China
| | - Youshu Xie
- Department of Occupational Therapy, Guangdong Work Injury Rehabilitation Hospital, Guangzhou, China
| | - Yongzhi He
- North Sichuan Medical College, Nanchong, China
| | - Yunyun Wang
- Department of Rehabilitation, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiachun Lu
- Chengdu Eighth People's Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, China
| | - Rizhao Pang
- Department of Rehabilitation, the General Hospital of Western Theater Command (Affiliated Hospital of Southwest Jiaotong University), College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Wenchun Wang
- Department of Rehabilitation, the General Hospital of Western Theater Command (Affiliated Hospital of Southwest Jiaotong University), College of Medicine, Southwest Jiaotong University, Chengdu, China.
| | - Zhesi Chen
- Department of Rehabilitation, the General Hospital of Western Theater Command (Affiliated Hospital of Southwest Jiaotong University), College of Medicine, Southwest Jiaotong University, Chengdu, China.
| |
Collapse
|
6
|
Gong Y, Wu M, Huang Y, He X, Yuan J, Dang B. Research developments in the neurovascular unit and the blood‑brain barrier (Review). Biomed Rep 2025; 22:88. [PMID: 40166412 PMCID: PMC11956146 DOI: 10.3892/br.2025.1966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/05/2025] [Indexed: 04/02/2025] Open
Abstract
The neurovascular unit (NVU) is composed of neurons, glial cells, brain microvascular endothelial cells (BMECs), pericytes, and the extracellular matrix. The NVU controls the permeability of the blood-brain barrier (BBB) and protects the brain from harmful blood-borne and endogenous and exogenous substances. Among these, neurons transmit signals, astrocytes provide nutrients, microglia regulate inflammation, and BMECs and pericytes strengthen barrier tightness and coverage. These cells, due to their physical structure, anatomical location, or physiological function, maintain the microenvironment required for normal brain function. In this review, the BBB structure and mechanisms are examined to obtain a better understanding of the factors that influence BBB permeability. The findings may aid in safeguarding the BBB and provide potential therapeutic targets for drugs affecting the central nervous system.
Collapse
Affiliation(s)
- Yating Gong
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Muyao Wu
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Yaqian Huang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Xiaoyi He
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Jiaqi Yuan
- Department of Neurosurgery, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Baoqi Dang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| |
Collapse
|
7
|
Verkhratsky A, Li B, Niu J, Lin SS, Su Y, Jin WN, Li Y, Jiang S, Yi C, Shi FD, Tang Y. Neuroglial Advances: New Roles for Established Players. J Neurochem 2025; 169:e70080. [PMID: 40371609 DOI: 10.1111/jnc.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Accepted: 04/17/2025] [Indexed: 05/16/2025]
Abstract
Neuroglial cells perform numerous physiological functions and contribute to the pathogenesis of all diseases of the nervous system. Neuroglial neuroprotection defines the resilience of the nervous tissue to exo- and endogenous pathological challenges, while neuroglial defence determines the progression and outcome of neurological disorders. IN this paper, we overview previously unknown but recently discovered roles of various types of neuroglial cells in diverse physiological and pathological processes. First, we describe the role of ependymal glia in the regulation of cerebrospinal fluid flow from the spinal cord to peripheral tissues through the spinal nerves. This newly discovered pathway provides a highway for the CNS-body volume transmission. Next, we present the mechanism by which astrocytes control migration and differentiation of oligodendrocyte precursor cells (OPCs). In pre- and early postnatal CNS, OPCs migrate using vasculature (which is yet free from glia limitans perivascularis) as a pathfinder. Newly forming astrocytic perivascular endfeet signal (through semaphorin-plexin cascade) to OPCs that detach from the vessels and start to differentiate into myelinating oligodendrocytes. We continue the astrocyte theme by demonstrating the neuroprotective role of APOE-laden astrocytic extracellular vesicles in neuromyelitis optica. Next, we explore the link between astrocytic morphology and stress-induced depression. We discuss the critical role of astrocytic ezrin, the cytosolic linker defining terminal astrocyte arborisation and resilience to stress: overexpression of ezrin in prefrontal cortical astrocytes makes mice resistant to stress, whereas ezrin knockdown increases animals vulnerability to stress. Subsequently, we highlight the pathophysiological role of oligodendroglial lineage in schizophrenia by describing novel hypertrophied OPCs in the post-mortem patient's tissue and in a mouse model with OPCs overexpressing alternative splice variant DISC1-Δ3. These DISC1-Δ3-OPCs demonstrated overactivated Wnt/β-catenin signalling pathway and were sufficient to trigger pathological behaviours. Finally, we deliberate on the pathological role of astrocytic and microglial connexin 43 hemichannels in Alzheimer's disease and present a new formula of Cx43 hemichannel inhibitor with increased blood-brain barrier penetration and brain retention.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- International Joint Research Centre on Purinergic Signalling of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Department of Neurosciences, University of the Basque Country, Leioa, Bizkaia, Spain
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
- Celica, BIOMEDICAL, Technology Park 24, Ljubljana, Slovenia
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Jianqin Niu
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Si-Si Lin
- International Joint Research Centre on Purinergic Signalling of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yixun Su
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Wei-Na Jin
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yifan Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Shihe Jiang
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen, China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, China
| | - Fu-Dong Shi
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
L'Huillier JC, Jones CB, Fu Y, Myneni AA, De S, Cavuoto L, Dutta A, Stefanski M, Cooper CA, Schwaitzberg SD. On the journey to measure cognitive expertise: What can functional imaging tell us? Surgery 2025; 181:109145. [PMID: 39914246 DOI: 10.1016/j.surg.2024.109145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 03/17/2025]
Abstract
BACKGROUND Experience level correlates with motor cortex and supplementary motor area activation during laparoscopy. Whether brain activation patterns correlate with cognitive surgical task expertise is unknown. We compared the functional neuroimaging responses during simulated operative dictation-a cognitive surgical task-by experience level. STUDY DESIGN Junior (postgraduate years 1-3) and senior (postgraduate years 4-5) residents and attendings were recruited over 1 year. After a baseline rest period, participants were asked to dictate a simulated operative note for an open inguinal hernia repair with mesh. Functional near-infrared spectroscopy data were recorded from the prefrontal, sensorimotor, and occipital brain areas. The hemodynamic response based on changes in oxyhemoglobin and deoxyhemoglobin concentrations during the task relative to the pre-task baseline for each participant were calculated. Group-level differences in oxyhemoglobin were evaluated using a general linear model. RESULTS Thirty participants, 10 from each of the 3 experience levels, were recruited. In the left prefrontal cortex, senior activation (-182) was stronger than both junior (14) and attending (27) activation (P < .001). In the left premotor cortex, senior activation (-147) was stronger than both junior (-52) and attending (15) activation (P = .008). In the left parietal cortex, senior activation (-255) was stronger than both junior (-41) and attending (12) activation (P < .001). CONCLUSION Functional neuroimaging responses during the cognitive task of simulated operative dictation differ by skill level. This study represents the first brain imaging analysis of cognitive function connecting mental imagery, brain activation, and a cognitive surgical task linked to previously performed motor tasks. Functional neuroimaging may act as a nonbiased assessment tool of cognitive skill.
Collapse
Affiliation(s)
- Joseph C L'Huillier
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States; Department of Epidemiology and Environmental Health, Division of Health Services Policy and Practice, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States. https://twitter.com/JoeLHuillier101
| | - Cara B Jones
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Yaoyu Fu
- Department of Industrial and Systems Engineering, University at Buffalo, Buffalo, NY, United States; West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ajay A Myneni
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Suvranu De
- College of Engineering, Florida A&M University-Florida State University, Tallahassee, FL, United States
| | - Lora Cavuoto
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States; Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States; Department of Industrial and Systems Engineering, University at Buffalo, Buffalo, NY, United States
| | - Anirban Dutta
- School of Engineering, University of Lincoln, Lincoln, United Kingdom
| | - Marcel Stefanski
- School of Engineering, University of Lincoln, Lincoln, United Kingdom
| | - Clairice A Cooper
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Steven D Schwaitzberg
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
9
|
Zhong J, Li G, Lv Z, Chen J, Wang C, Shao A, Gong Z, Wang J, Liu S, Luo J, Yang S, Wu S, Ning L, Wang Z, Li J, Wu Y. Neuromodulation of Cerebral Blood Flow: A Physiological Mechanism and Methodological Review of Neurovascular Coupling. Bioengineering (Basel) 2025; 12:442. [PMID: 40428061 PMCID: PMC12108752 DOI: 10.3390/bioengineering12050442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/20/2025] [Accepted: 04/21/2025] [Indexed: 05/29/2025] Open
Abstract
Neurovascular coupling (NVC) refers to the dynamic regulation of cerebral blood flow via neuronal activity, a mechanism crucial for maintaining normal brain function. This review elucidates the intricate physiological mechanisms underlying NVC, emphasizing the coordinated roles of neurons, glial cells, and vascular cells in mediating activity-induced changes in blood flow. We examine how NVC is impaired in neurological disorders such as Alzheimer's disease and stroke, where the dysfunction of this coupling contributes to neurodegeneration and neurological deficits. A broad range of techniques for assessing NVC is discussed-encompassing the established modalities like transcranial Doppler, near-infrared spectroscopy, and functional magnetic resonance imaging (fMRI), as well as emerging technologies such as functional ultrasound imaging and miniaturized endoscopy that enable high-resolution monitoring in deep brain regions. We also highlight the computational modeling approaches for simulating NVC dynamics and identify the novel biomarkers of NVC dysfunction with potential utility in early diagnosis. Finally, emerging translational applications-including neuromodulation techniques and targeted pharmacological interventions-are explored as means to restore normal neurovascular function. These advancements underscore the clinical significance of NVC research, paving the way for improved diagnostic tools and therapeutic strategies in neurological disorders.
Collapse
Affiliation(s)
- Jiawen Zhong
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (J.Z.); (Z.L.); (A.S.); (Z.G.); (J.W.); (S.L.); (J.L.); (S.Y.); (S.W.); (L.N.); (Z.W.); (J.L.)
| | - Gen Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (J.Z.); (Z.L.); (A.S.); (Z.G.); (J.W.); (S.L.); (J.L.); (S.Y.); (S.W.); (L.N.); (Z.W.); (J.L.)
| | - Zexiang Lv
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (J.Z.); (Z.L.); (A.S.); (Z.G.); (J.W.); (S.L.); (J.L.); (S.Y.); (S.W.); (L.N.); (Z.W.); (J.L.)
| | - Jingbo Chen
- Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China;
| | - Chunyan Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (J.Z.); (Z.L.); (A.S.); (Z.G.); (J.W.); (S.L.); (J.L.); (S.Y.); (S.W.); (L.N.); (Z.W.); (J.L.)
| | - Ansheng Shao
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (J.Z.); (Z.L.); (A.S.); (Z.G.); (J.W.); (S.L.); (J.L.); (S.Y.); (S.W.); (L.N.); (Z.W.); (J.L.)
| | - Zhiwei Gong
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (J.Z.); (Z.L.); (A.S.); (Z.G.); (J.W.); (S.L.); (J.L.); (S.Y.); (S.W.); (L.N.); (Z.W.); (J.L.)
| | - Junjie Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (J.Z.); (Z.L.); (A.S.); (Z.G.); (J.W.); (S.L.); (J.L.); (S.Y.); (S.W.); (L.N.); (Z.W.); (J.L.)
| | - Siqiao Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (J.Z.); (Z.L.); (A.S.); (Z.G.); (J.W.); (S.L.); (J.L.); (S.Y.); (S.W.); (L.N.); (Z.W.); (J.L.)
| | - Jun Luo
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (J.Z.); (Z.L.); (A.S.); (Z.G.); (J.W.); (S.L.); (J.L.); (S.Y.); (S.W.); (L.N.); (Z.W.); (J.L.)
| | - Shuping Yang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (J.Z.); (Z.L.); (A.S.); (Z.G.); (J.W.); (S.L.); (J.L.); (S.Y.); (S.W.); (L.N.); (Z.W.); (J.L.)
| | - Sibei Wu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (J.Z.); (Z.L.); (A.S.); (Z.G.); (J.W.); (S.L.); (J.L.); (S.Y.); (S.W.); (L.N.); (Z.W.); (J.L.)
| | - Lin Ning
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (J.Z.); (Z.L.); (A.S.); (Z.G.); (J.W.); (S.L.); (J.L.); (S.Y.); (S.W.); (L.N.); (Z.W.); (J.L.)
| | - Zhinong Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (J.Z.); (Z.L.); (A.S.); (Z.G.); (J.W.); (S.L.); (J.L.); (S.Y.); (S.W.); (L.N.); (Z.W.); (J.L.)
| | - Jiahao Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (J.Z.); (Z.L.); (A.S.); (Z.G.); (J.W.); (S.L.); (J.L.); (S.Y.); (S.W.); (L.N.); (Z.W.); (J.L.)
| | - Yu Wu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (J.Z.); (Z.L.); (A.S.); (Z.G.); (J.W.); (S.L.); (J.L.); (S.Y.); (S.W.); (L.N.); (Z.W.); (J.L.)
| |
Collapse
|
10
|
Jordão J, Figueira J, Morgado M, Guimarães P, Serranho P, Castro-Farías D, DeBuc DC, Castelo-Branco M, Paques M, Bernardes R. Direct crosstalk between adult human retinas as suggested by interocular transfer of neurovascular coupling through photic stimulation. Sci Rep 2025; 15:13684. [PMID: 40258943 PMCID: PMC12012064 DOI: 10.1038/s41598-025-98631-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/14/2025] [Indexed: 04/23/2025] Open
Abstract
Crosstalk mechanisms between retinas were never documented in humans despite being documented for several other species, including non-human primates. Results of the first-in-human study that documents the crosstalk between retinas by measuring the vascular response in one retina to the photic stimulation of the contralateral eye in health and disease are reported herein. A stimulation apparatus was developed and integrated into an adaptive-optics fundus camera to image 32 healthy control (HC) subjects and 20 type 1 diabetes mellitus (DM) patients. Ipsilateral and contralateral neurovascular coupling effects were documented, and criteria were established to consider an actual response and find positive and negative responses. Ten (31.2%) and two (6.2%) subjects of the HC group presented contralateral positive and negative responses, respectively, and three (15.0%) positive and four (20.0%) negative responses were found for the DM group. Also, statistically significant differences in the ipsilateral (p < 0.001) and contralateral (p = 0.027) responses were found for the HC group, rejecting the null (non-response) hypothesis. This finding raises the need to revisit the current knowledge of neurovascular coupling mechanisms and the association between its dysregulation and neurological disorders. Further studies involving distinct populations and imaging centers are necessary to validate the findings herein.
Collapse
Affiliation(s)
- João Jordão
- University of Coimbra, Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal
| | - João Figueira
- University of Coimbra, Faculty of Medicine, Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
- University of Coimbra, Faculty of Medicine, Department of Ophthalmology, Coimbra Hospital and University Centre (CHUC), Coimbra, Portugal
| | - Miguel Morgado
- University of Coimbra, Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal
- University of Coimbra, Faculty of Science and Technology, Department of Physics, Coimbra, Portugal
| | - Pedro Guimarães
- University of Coimbra, Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal
- University of Coimbra, Faculty of Medicine, Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Pedro Serranho
- University of Coimbra, Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal
- Department of Sciences and Technology, Universidade Aberta, Lisboa, Portugal
| | | | - Delia Cabrera DeBuc
- Bascom Palmer Eye Institute, University Miami Miller School of Medicine, Miami, FL, USA
| | - Miguel Castelo-Branco
- University of Coimbra, Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal
- University of Coimbra, Faculty of Medicine, Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Michel Paques
- Centre Hospitalier National des Quinze-Vingts, Paris Eye Imaging, Paris, France
| | - Rui Bernardes
- University of Coimbra, Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal.
- University of Coimbra, Faculty of Medicine, Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal.
| |
Collapse
|
11
|
Colombari E, Biancardi VC, Colombari DSA, Katayama PL, Medeiros FDCD, Aitken AV, Xavier CH, Pedrino GR, Bragin DE. Hypertension, blood-brain barrier disruption and changes in intracranial pressure. J Physiol 2025; 603:2245-2261. [PMID: 40163552 DOI: 10.1113/jp285058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Intracranial pressure (ICP) is pressure within the cranium, between 5 and 15 mmHg in a normal brain, and is influenced by the dynamic balance between brain tissue, cerebrospinal fluid (CSF) and cerebral blood volume. ICP is vital for cerebral health, impacting outcomes in various neurological conditions. Disruptions, such as cerebral haemorrhage, hydrocephalus and malignant hypertension, can lead to elevated ICP, a dangerous condition known as intracranial hypertension (IH). Systemic hypertension significantly impacts cerebral health by causing microvascular damage, dysfunction of the blood-brain barrier (BBB) and impairment of intracranial compliance (ICC). This increases the risk of IH), cerebral ischaemia, neuroinflammation and lacunar infarction, further worsening neurological dysfunction. This review describes the complex relationship between hypertension and ICP regulation, focusing on the mechanisms underlying ICP and ICC adjustments in hypertensive conditions and emphasizing the role of BBB integrity and cerebral blood flow (CBF) dynamics. It discusses how the sympathetic output might change the regulation of CBF and the maintenance of ICP, highlighting how hypertensive conditions can impair this mechanism, increasing the risk of cerebral ischaemia. The neurovascular unit, including astrocytes and microglia, plays a significant role in this process, contributing to IH in hypertensive patients. Understanding the effects of hypertension on ICP and ICC could lead to therapies aimed at preserving BBB integrity, reducing inflammation and improving cerebral compliance, potentially preventing brain dysfunction and reducing stroke risk in hypertensive patients. This review underscores the need for early detection and intervention to mitigate the severe consequences of uncontrolled hypertension on cerebral health.
Collapse
Affiliation(s)
- Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Vinícia Campana Biancardi
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Débora Simões Almeida Colombari
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Pedro Lourenço Katayama
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Fernanda de Campos de Medeiros
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Andrew Vieira Aitken
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Carlos Henrique Xavier
- Department of Physiological Science, Biological Science Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Gustavo Rodrigues Pedrino
- Department of Physiological Science, Biological Science Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Denis E Bragin
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
12
|
Sona C, Yeh YT, Li Y, Liu X, Ghosh A, Hinte LC, Ku MC, Rathjen T, Niendorf T, Yu G, Jia S, Kononenko NL, Hermann A, Luo J, Lin J, von Meyenn F, Yan X, Poy MN. Glutamatergic argonaute2 promotes the formation of the neurovascular unit in mice. Sci Signal 2025; 18:eadl6745. [PMID: 39999211 DOI: 10.1126/scisignal.adl6745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/08/2024] [Accepted: 01/28/2025] [Indexed: 02/27/2025]
Abstract
Proper formation of the complex neurovascular unit (NVU) along with the blood-brain barrier is critical for building and sustaining a healthy, functioning central nervous system. The RNA binding protein argonaute2 (Ago2) mediates microRNA (miRNA)-mediated gene silencing, which is critical for many facets of brain development, including NVU development. Here, we found that Ago2 in glutamatergic neurons was critical for NVU formation in the developing cortices of mice. Glutamatergic neuron-specific loss of Ago2 diminished synaptic formation, neuronal-to-endothelial cell contacts, and morphogenesis of the brain vasculature, ultimately compromising the integrity of the blood-brain barrier. Ago2 facilitated miRNA targeting of phosphatase and tensin homolog (Pten) mRNA, which encodes a phosphatase that modulates reelin-dependent phosphatidylinositol 3-kinase (PI3K)-Akt signaling within the glutamatergic subpopulation. Conditionally deleting Pten in Ago2-deficient neurons restored Akt2 phosphorylation as well as postnatal development and survival. Several mutations in AGO2 impair small RNA silencing and are associated with Lessel-Kreienkamp syndrome, a neurodevelopmental disorder. When expressed in a neuronal cell line, these human AGO2 loss-of-function variants failed to suppress PTEN, resulting in attenuated PI3K-Akt signaling, further indicating that dysregulation of Ago2 function may contribute to both impaired development and neurological disorders. Together, these results identify Ago2 as central to the engagement of neurons with blood vessels in the developing brain.
Collapse
Affiliation(s)
- Chandan Sona
- All Children's Hospital, Johns Hopkins University, St. Petersburg, FL 33701, USA
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Yu-Te Yeh
- All Children's Hospital, Johns Hopkins University, St. Petersburg, FL 33701, USA
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Yunxiao Li
- Translational Neurodegeneration Section, "Albrecht Kossel," University Medical Center Rostock, University of Rostock, Rostock 18147, Germany
| | - Xiaoxuan Liu
- Stem Cell and Biotherapy Technology Research Center, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Adhideb Ghosh
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Laura C Hinte
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Min-Chi Ku
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Strasse 10, Berlin 13125, Germany
| | - Thomas Rathjen
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Strasse 10, Berlin 13125, Germany
| | - Thoralf Niendorf
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Strasse 10, Berlin 13125, Germany
| | - Guoxing Yu
- Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Shiqi Jia
- Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Natalia L Kononenko
- CECAD Excellence Center & Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section, "Albrecht Kossel," University Medical Center Rostock, University of Rostock, Rostock 18147, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, Rostock 18147, Germany
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock 17489, Germany
| | - Jiankai Luo
- Translational Neurodegeneration Section, "Albrecht Kossel," University Medical Center Rostock, University of Rostock, Rostock 18147, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, Rostock 18147, Germany
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Ferdinand von Meyenn
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Xin Yan
- Translational Neurodegeneration Section, "Albrecht Kossel," University Medical Center Rostock, University of Rostock, Rostock 18147, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Strasse 10, Berlin 13125, Germany
| | - Matthew N Poy
- All Children's Hospital, Johns Hopkins University, St. Petersburg, FL 33701, USA
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, MD 21287, USA
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Strasse 10, Berlin 13125, Germany
| |
Collapse
|
13
|
Djurich S, Lee GV, Secomb TW. Simulation of Conducted Responses in Microvascular Networks: Role of Gap Junction Current Rectification. Microcirculation 2025; 32:e70002. [PMID: 39945041 PMCID: PMC11899863 DOI: 10.1111/micc.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/19/2024] [Accepted: 02/02/2025] [Indexed: 03/14/2025]
Abstract
OBJECTIVE Local control of blood flow depends on signaling to arterioles via upstream conducted responses. Here, the objective is to examine how electrical properties of gap junctions between endothelial cells (EC) affect the spread of conducted responses in microvascular networks of the brain cortex, using a theoretical model based on EC electrophysiology. METHODS Modeled EC currents are an inward-rectifying potassium current, a non-voltage-dependent potassium current, a leak current, and a gap junction current between adjacent ECs. Effects of varying gap junction conductance are considered, including asymmetric conductance, with higher conductance for forward currents (positive currents from upstream to downstream, based on blood flow direction). The response is initiated by a local increase in extracellular potassium concentration. The model is applied to a 45-segment synthetic network and a 4881-segment network from mouse brain cortex. RESULTS The conducted response propagates preferentially to upstream arterioles when the conductance for forward currents is at least 20 times that for backward currents. The response depends strongly on the site of stimulation. With symmetric gap junction conductance, the network acts as a syncytium and the conducted response is dissipated. CONCLUSIONS Upstream propagation of conducted responses may depend on the asymmetric conductance of EC gap junctions.
Collapse
Affiliation(s)
- Sara Djurich
- Department of Physiology, University of Arizona, Tucson, Arizona 85724, USA
| | - Grace V. Lee
- Program in Applied Mathematics, University of Arizona, Tucson, Arizona 85724, USA
| | - Timothy W. Secomb
- Department of Physiology, University of Arizona, Tucson, Arizona 85724, USA
- Program in Applied Mathematics, University of Arizona, Tucson, Arizona 85724, USA
| |
Collapse
|
14
|
Carr JMJR, Ainslie PN, Day T. Confined spaces in space: Cerebral implications of chronic elevations of inspired carbon dioxide and implications for long-duration space travel. Exp Physiol 2025. [PMID: 39776002 DOI: 10.1113/ep091659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025]
Abstract
Cerebrovascular regulation is critically dependent upon the arterial partial pressure of carbon dioxide (P aC O 2 ${P_{{\mathrm{aC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ), owing to its effect on cerebral blood flow, tissueP C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ , tissue proton concentration, cerebral metabolism and cognitive and neuronal function. In normal environments and in the absence of pathology, at least over acute time frames, hypercapnia is usually managed readily via the respiratory chemoreflex arcs and/or acid-base buffering capacity, such that there is minimal impact on cerebrovascular and neurological function. However, in non-normal environments, such as enclosed spaces, or with pathology, extended exposures to elevations inP aC O 2 ${P_{{\mathrm{aC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ can be detrimental to cerebral health. Given the direct effect of protons on cellular function, even if pH is normalized, it is feasible that higher proton concentrations could still produce detrimental effects. Although it seems that humans can work safely in mildly hypercapnic environments for extended periods, chronic respiratory acidosis can cause bone demineralization, renal calcification, perinatal developmental abnormalities, systemic inflammation and impairments in cognitive function and visuomotor skills and can produce cerebral acidosis, potentially inducing sustained alterations in cerebral function. With the advancement of new initiatives in spaceflight, including proposed long-duration missions to Mars, the study of the effects of chronic inspired CO2 on human health is relevant. In this review, we draw on evidence from preclinical, physiological and clinical research in humans to summarize the cerebral ramifications of prolonged and chronic exposures to elevated partial pressures of inspired CO2 and respiratory acidosis.
Collapse
Affiliation(s)
- Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Trevor Day
- Department of Biology, Mount Royal University, Calgary, AB, Canada
| |
Collapse
|
15
|
Le Bihan D. From Brownian motion to virtual biopsy: a historical perspective from 40 years of diffusion MRI. Jpn J Radiol 2024; 42:1357-1371. [PMID: 39289243 PMCID: PMC11588775 DOI: 10.1007/s11604-024-01642-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/07/2024] [Indexed: 09/19/2024]
Abstract
Diffusion MRI was introduced in 1985, showing how the diffusive motion of molecules, especially water, could be spatially encoded with MRI to produce images revealing the underlying structure of biologic tissues at a microscopic scale. Diffusion is one of several Intravoxel Incoherent Motions (IVIM) accessible to MRI together with blood microcirculation. Diffusion imaging first revolutionized the management of acute cerebral ischemia by allowing diagnosis at an acute stage when therapies can still work, saving the outcomes of many patients. Since then, the field of diffusion imaging has expanded to the whole body, with broad applications in both clinical and research settings, providing insights into tissue integrity, structural and functional abnormalities from the hindered diffusive movement of water molecules in tissues. Diffusion imaging is particularly used to manage many neurologic disorders and in oncology for detecting and classifying cancer lesions, as well as monitoring treatment response at an early stage. The second major impact of diffusion imaging concerns the wiring of the brain (Diffusion Tensor Imaging, DTI), allowing to obtain from the anisotropic movement of water molecules in the brain white-matter images in 3 dimensions of the brain connections making up the Connectome. DTI has opened up new avenues of clinical diagnosis and research to investigate brain diseases, neurogenesis and aging, with a rapidly extending field of application in psychiatry, revealing how mental illnesses could be seen as Connectome spacetime disorders. Adding that water diffusion is closely associated to neuronal activity, as shown from diffusion fMRI, one may consider that diffusion MRI is ideally suited to investigate both brain structure and function. This article retraces the early days and milestones of diffusion MRI which spawned over 40 years, showing how diffusion MRI emerged and expanded in the research and clinical fields, up to become a pillar of modern clinical imaging.
Collapse
Affiliation(s)
- Denis Le Bihan
- NeuroSpin, CEA, Paris-Saclay University, Bât 145, CEA-Saclay Center, 91191, Gif-sur-Yvette, France.
- Human Brain Research Center, Kyoto University, Kyoto, Japan.
- Department of System Neuroscience, National Institutes for Physiological Sciences, Okazaki, Japan.
| |
Collapse
|
16
|
Meng L, Rasmussen M, Meng DM, White FA, Wu LJ. Integrated Feedforward and Feedback Mechanisms in Neurovascular Coupling. Anesth Analg 2024; 139:1283-1293. [PMID: 38345932 DOI: 10.1213/ane.0000000000006891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Neurovascular coupling (NVC) is the mechanism that drives the neurovascular response to neural activation, and NVC dysfunction has been implicated in various neurologic diseases. NVC is driven by (1) nonmetabolic feedforward mechanisms that are mediated by various signaling pathways and (2) metabolic feedback mechanisms that involve metabolic factors. However, the interplay between these feedback and feedforward mechanisms remains unresolved. We propose that feedforward mechanisms normally drive a swift, neural activation-induced regional cerebral blood flow (rCBF) overshoot, which floods the tissue beds, leading to local hypocapnia and hyperoxia. The feedback mechanisms are triggered by the resultant hypocapnia (not hyperoxia), which causes cerebral vasoconstriction in the neurovascular unit that counterbalances the rCBF overshoot and returns rCBF to a level that matches the metabolic activity. If feedforward mechanisms function improperly (eg, in a disease state), the rCBF overshoot, tissue-bed flooding, and local hypocapnia fail to occur or occur on a smaller scale. Consequently, the neural activation-related increase in metabolic activity results in local hypercapnia and hypoxia, both of which drive cerebral vasodilation and increase rCBF. Thus, feedback mechanisms ensure the brain milieu's stability when feedforward mechanisms are impaired. Our proposal integrates the feedforward and feedback mechanisms underlying NVC and suggests that these 2 mechanisms work like a fail-safe system, to a certain degree. We also discussed the difference between NVC and cerebral metabolic rate-CBF coupling and the clinical implications of our proposed framework.
Collapse
Affiliation(s)
- Lingzhong Meng
- From the Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mads Rasmussen
- Department of Anesthesiology, Section of Neuroanesthesia, Aarhus University Hospital, Aarhus, Denmark
| | - Deyi M Meng
- Choate Rosemary Hall School, Wallingford, Connecticut
| | - Fletcher A White
- From the Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana
| | - Long-Jun Wu
- Departments of Neurology and Immunology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
17
|
Meng L, Sun Y, Rasmussen M, Libiran NBS, Naiken S, Meacham KS, Schmidt JD, Lahiri NK, Han J, Liu Z, Adams DC, Gelb AW. Lassen's Cerebral Autoregulation Plot Revisited and Validated 65 Years Later: Impacts of Vasoactive Drug Treatment on Cerebral Blood Flow. Anesth Analg 2024:00000539-990000000-01026. [PMID: 39495668 DOI: 10.1213/ane.0000000000007280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Niels Lassen's seminal 1959 cerebral autoregulation plot, a cornerstone in understanding the relationship between mean arterial pressure (MAP) and cerebral blood flow (CBF), was based on preexisting literature. However, this work has faced criticism for selective data presentation, leading to inaccurate interpretation. This review revisits and validates Lassen's original plot using contemporary data published since 2000. Additionally, we aim to understand the impact of vasoactive drug treatments on CBF, as Lassen's referenced studies used various drugs for blood pressure manipulation. Our findings confirm Lassen's concept of a plateau where CBF remains relatively stable across a specific MAP range in awake humans with normal brains. However, significant variations in cerebral autoregulation among different populations are evident. In critically ill patients and those with traumatic brain injury, the autoregulatory plateau dissipates, necessitating tight blood pressure control to avoid inadequate or excessive cerebral perfusion. A plateau is observed in patients anesthetized with intravenous agents but not with volatile agents. Vasopressor treatments have population-dependent effects, with contemporary data showing increased CBF in critically ill patients but not in awake humans with normal brains. Vasopressor treatment results in a greater increase in CBF during volatile than intravenous anesthesia. Modern antihypertensives do not significantly impact CBF based on contemporary data, exerting a smaller impact on CBF compared to historical data. These insights underscore the importance of individualized blood pressure management guided by modern data in the context of cerebral autoregulation across varied patient populations.
Collapse
Affiliation(s)
- Lingzhong Meng
- From the *Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yanhua Sun
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Mads Rasmussen
- Department of Anesthesiology, Section of Neuroanesthesia, Aarhus University Hospital, Aarhus, Denmark
| | - Nicole Bianca S Libiran
- From the *Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana
| | - Semanti Naiken
- From the *Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kylie S Meacham
- From the *Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jacob D Schmidt
- From the *Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana
| | - Niloy K Lahiri
- From the *Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jiange Han
- Department of Anesthesiology, Tianjin Chest Hospital, Tianjin, China
| | - Ziyue Liu
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana
| | - David C Adams
- From the *Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana
| | - Adrian W Gelb
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California
| |
Collapse
|
18
|
Lin F. Acquisition Time for Resting-State HbO/Hb Coupling Measured by Functional Near-Infrared Spectroscopy in Assessing Autism. JOURNAL OF BIOPHOTONICS 2024; 17:e202400150. [PMID: 39233458 DOI: 10.1002/jbio.202400150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 09/06/2024]
Abstract
Functional near-infrared spectroscopy was used to record spontaneous hemodynamic fluctuations form the bilateral temporal lobes in 25 children with autism spectrum disorder (ASD) and 22 typically developing (TD) children. The coupling between oxygenated hemoglobin (HbO) and deoxygenated hemoglobin (Hb) was calculated by Pearson correlation coefficient, showing significant difference between ASD and TD, thus the coupling could be a characteristic feature for ASD. To evaluate the discrimination ability of the feature obtained in different acquisition times, the receiver operating characteristic curve (ROC) was constructed and the area under curve (AUC) was calculated. The results showed AUC > 0.8 when the time duration was longer than 1.5 min, but longer than 4 min, AUC value (~0.87) hardly varied, implying the maximal discrimination ability reached. This study demonstrated the coupling could be one of characteristic features for ASD even acquired in a short measurement time.
Collapse
Affiliation(s)
- Fang Lin
- Department of Science and Technology, Faculty of Fundamental Sciences, Special Police Academy of the Chinese People's Armed Police Force, Beijing, China
| |
Collapse
|
19
|
Pepperell R. Consciousness and Energy Processing in Neural Systems. Brain Sci 2024; 14:1112. [PMID: 39595875 PMCID: PMC11591782 DOI: 10.3390/brainsci14111112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Our understanding of the relationship between neural activity and psychological states has advanced greatly in recent decades. But we are still unable to explain conscious experience in terms of physical processes occurring in our brains. METHODS This paper introduces a conceptual framework that may contribute to an explanation. All physical processes entail the transfer, transduction, and transformation of energy between portions of matter as work is performed in material systems. If the production of consciousness in nervous systems is a physical process, then it must entail the same. Here the nervous system, and the brain in particular, is considered as a material system that transfers, transduces, and transforms energy as it performs biophysical work. CONCLUSIONS Evidence from neuroscience suggests that conscious experience is produced in the organic matter of nervous systems when they perform biophysical work at classical and quantum scales with a certain level of dynamic complexity or organization. An empirically grounded, falsifiable, and testable hypothesis is offered to explain how energy processing in nervous systems may produce conscious experience at a fundamental physical level.
Collapse
|
20
|
Volpi T, Lee JJ, Vlassenko AG, Goyal MS, Corbetta M, Bertoldo A. The brain's "dark energy" puzzle upgraded: [ 18F]FDG uptake, delivery and phosphorylation, and their coupling with resting-state brain activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.05.615717. [PMID: 39416159 PMCID: PMC11482815 DOI: 10.1101/2024.10.05.615717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The brain's resting-state energy consumption is expected to be mainly driven by spontaneous activity. In our previous work, we extracted a wide range of features from resting-state fMRI (rs-fMRI), and used them to predict [18F]FDG PET SUVR as a proxy of glucose metabolism. Here, we expanded upon our previous effort by estimating [18F]FDG kinetic parameters according to Sokoloff's model, i.e.,K i (irreversible uptake rate),K 1 (delivery),k 3 (phosphorylation), in a large healthy control group. The parameters' spatial distribution was described at a high spatial resolution. We showed that whileK 1 is the least redundant, there are relevant differences betweenK i andk 3 (occipital cortices, cerebellum and thalamus). Using multilevel modeling, we investigated how much of the regional variability of [18F]FDG parameters could be explained by a combination of rs-fMRI variables only, or with the addition of cerebral blood flow (CBF) and metabolic rate of oxygen (CMRO2), estimated from 15O PET data. We found that combining rs-fMRI and CMRO2 led to satisfactory prediction of individualK i variance (45%). Although more difficult to describe,K i andk 3 were both most sensitive to local rs-fMRI variables, whileK 1 was sensitive to CMRO2. This work represents the most comprehensive assessment to date of the complex functional and metabolic underpinnings of brain glucose consumption.
Collapse
Affiliation(s)
- Tommaso Volpi
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
- Padova Neuroscience Center, University of Padova, 35129, Padova, Italy
| | - John J. Lee
- Neuroimaging Laboratories at the Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Andrei G. Vlassenko
- Neuroimaging Laboratories at the Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Manu S. Goyal
- Neuroimaging Laboratories at the Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Maurizio Corbetta
- Padova Neuroscience Center, University of Padova, 35129, Padova, Italy
- Department of Neuroscience, University of Padova, 35121, Padova, Italy
| | - Alessandra Bertoldo
- Padova Neuroscience Center, University of Padova, 35129, Padova, Italy
- Department of Information Engineering, University of Padova, 35131, Padova, Italy
| |
Collapse
|
21
|
Gordon GR. Neurovascular coupling during hypercapnia in cerebral blood flow regulation. Nat Commun 2024; 15:7636. [PMID: 39223137 PMCID: PMC11368962 DOI: 10.1038/s41467-024-50165-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 09/04/2024] Open
Affiliation(s)
- Grant R Gordon
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
22
|
Irastorza-Valera L, Soria-Gómez E, Benitez JM, Montáns FJ, Saucedo-Mora L. Review of the Brain's Behaviour after Injury and Disease for Its Application in an Agent-Based Model (ABM). Biomimetics (Basel) 2024; 9:362. [PMID: 38921242 PMCID: PMC11202129 DOI: 10.3390/biomimetics9060362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
The brain is the most complex organ in the human body and, as such, its study entails great challenges (methodological, theoretical, etc.). Nonetheless, there is a remarkable amount of studies about the consequences of pathological conditions on its development and functioning. This bibliographic review aims to cover mostly findings related to changes in the physical distribution of neurons and their connections-the connectome-both structural and functional, as well as their modelling approaches. It does not intend to offer an extensive description of all conditions affecting the brain; rather, it presents the most common ones. Thus, here, we highlight the need for accurate brain modelling that can subsequently be used to understand brain function and be applied to diagnose, track, and simulate treatments for the most prevalent pathologies affecting the brain.
Collapse
Affiliation(s)
- Luis Irastorza-Valera
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- PIMM Laboratory, ENSAM–Arts et Métiers ParisTech, 151 Bd de l’Hôpital, 75013 Paris, France
| | - Edgar Soria-Gómez
- Achúcarro Basque Center for Neuroscience, Barrio Sarriena, s/n, 48940 Leioa, Spain;
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi, 5, 48009 Bilbao, Spain
- Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - José María Benitez
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
| | - Francisco J. Montáns
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Luis Saucedo-Mora
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave, Cambridge, MA 02139, USA
| |
Collapse
|
23
|
Bou Ghanem GO, Wareham LK, Calkins DJ. Addressing neurodegeneration in glaucoma: Mechanisms, challenges, and treatments. Prog Retin Eye Res 2024; 100:101261. [PMID: 38527623 DOI: 10.1016/j.preteyeres.2024.101261] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Glaucoma is the leading cause of irreversible blindness globally. The disease causes vision loss due to neurodegeneration of the retinal ganglion cell (RGC) projection to the brain through the optic nerve. Glaucoma is associated with sensitivity to intraocular pressure (IOP). Thus, mainstay treatments seek to manage IOP, though many patients continue to lose vision. To address neurodegeneration directly, numerous preclinical studies seek to develop protective or reparative therapies that act independently of IOP. These include growth factors, compounds targeting metabolism, anti-inflammatory and antioxidant agents, and neuromodulators. Despite success in experimental models, many of these approaches fail to translate into clinical benefits. Several factors contribute to this challenge. Firstly, the anatomic structure of the optic nerve head differs between rodents, nonhuman primates, and humans. Additionally, animal models do not replicate the complex glaucoma pathophysiology in humans. Therefore, to enhance the success of translating these findings, we propose two approaches. First, thorough evaluation of experimental targets in multiple animal models, including nonhuman primates, should precede clinical trials. Second, we advocate for combination therapy, which involves using multiple agents simultaneously, especially in the early and potentially reversible stages of the disease. These strategies aim to increase the chances of successful neuroprotective treatment for glaucoma.
Collapse
Affiliation(s)
- Ghazi O Bou Ghanem
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Lauren K Wareham
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - David J Calkins
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
24
|
Yoon JH, Lee D, Lee C, Cho E, Lee S, Cazenave-Gassiot A, Kim K, Chae S, Dennis EA, Suh PG. Paradigm shift required for translational research on the brain. Exp Mol Med 2024; 56:1043-1054. [PMID: 38689090 PMCID: PMC11148129 DOI: 10.1038/s12276-024-01218-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 05/02/2024] Open
Abstract
Biomedical research on the brain has led to many discoveries and developments, such as understanding human consciousness and the mind and overcoming brain diseases. However, historical biomedical research on the brain has unique characteristics that differ from those of conventional biomedical research. For example, there are different scientific interpretations due to the high complexity of the brain and insufficient intercommunication between researchers of different disciplines owing to the limited conceptual and technical overlap of distinct backgrounds. Therefore, the development of biomedical research on the brain has been slower than that in other areas. Brain biomedical research has recently undergone a paradigm shift, and conducting patient-centered, large-scale brain biomedical research has become possible using emerging high-throughput analysis tools. Neuroimaging, multiomics, and artificial intelligence technology are the main drivers of this new approach, foreshadowing dramatic advances in translational research. In addition, emerging interdisciplinary cooperative studies provide insights into how unresolved questions in biomedicine can be addressed. This review presents the in-depth aspects of conventional biomedical research and discusses the future of biomedical research on the brain.
Collapse
Affiliation(s)
- Jong Hyuk Yoon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea.
| | - Dongha Lee
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Chany Lee
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Eunji Cho
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Seulah Lee
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry and Precision Medicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Kipom Kim
- Research Strategy Office, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Sehyun Chae
- Neurovascular Unit Research Group, Korean Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Edward A Dennis
- Department of Pharmacology and Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0601, USA
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| |
Collapse
|
25
|
Linsenmeier RA, Dmitriev AV. Increased Retinal Metabolism Induced by Flicker in the Isolated Mouse Retina. eNeuro 2024; 11:ENEURO.0509-23.2024. [PMID: 38641415 PMCID: PMC11089847 DOI: 10.1523/eneuro.0509-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024] Open
Abstract
Both the retina and brain exhibit neurovascular coupling, increased blood flow during increased neural activity. In the retina increased blood flow can be evoked by flickering light, but the magnitude of the metabolic change that underlies this is not known. Local changes in oxygen consumption (QO2) are difficult to measure in vivo when both supply and demand are changing. Here we isolated the C57BL/6J mouse retina and supplied it with oxygen from both sides of the tissue. Microelectrode recordings of PO2 were made in darkness and during 20 s of high scotopic flickering light at 1 Hz. Flicker led to a PO2 increase in the outer retina and a decrease in the inner retina, indicating that outer retinal QO2 (QOR) decreased and inner retinal QO2 (QIR) increased. A four-layer oxygen diffusion model was fitted to PO2 values obtained in darkness and at the end of flicker to determine the values of QOR and QIR. QOR in flicker was 76 ± 14% (mean and SD, n = 10) of QOR in darkness. The increase in QIR was smaller, 6.4 ± 5.0%. These metabolic changes are likely smaller than the maximum changes, because with no regeneration of pigment in the isolated retina, we limited the illumination. Further modeling indicated that at high illumination, QIR could increase by up to 45%, which is comparable to the magnitude of flow changes. This suggests that the blood flow increase is at least roughly matched to the increased metabolic demands of activity in the retina.
Collapse
Affiliation(s)
- Robert A Linsenmeier
- Departments of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208
- Neurobiology, Northwestern University, Evanston, Illinois 60208
- Department of Ophthalmology, Northwestern University, Chicago, Illinois 60611
| | - Andrey V Dmitriev
- Departments of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
26
|
Avilez-Avilez JJ, Medina-Flores MF, Gómez-Gonzalez B. Sleep loss impairs blood-brain barrier function: Cellular and molecular mechanisms. VITAMINS AND HORMONES 2024; 126:77-96. [PMID: 39029977 DOI: 10.1016/bs.vh.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Sleep is a physiological process that preserves the integrity of the neuro-immune-endocrine network to maintain homeostasis. Sleep regulates the production and secretion of hormones, neurotransmitters, cytokines and other inflammatory mediators, both at the central nervous system (CNS) and at the periphery. Sleep promotes the removal of potentially toxic metabolites out of the brain through specialized systems such as the glymphatic system, as well as the expression of specific transporters in the blood-brain barrier. The blood-brain barrier maintains CNS homeostasis by selectively transporting metabolic substrates and nutrients into the brain, by regulating the efflux of metabolic waste products, and maintaining bidirectional communication between the periphery and the CNS. All those processes are disrupted during sleep loss. Brain endothelial cells express the blood-brain barrier phenotype, which arises after cell-to-cell interactions with mural cells, like pericytes, and after the release of soluble factors by astroglial endfeet. Astroglia, pericytes and brain endothelial cells respond differently to sleep loss; evidence has shown that sleep loss induces a chronic low-grade inflammatory state at the CNS, which is associated with blood-brain barrier dysfunction. In animal models, blood-brain barrier dysfunction is characterized by increased blood-brain barrier permeability, decreased tight junction protein expression and pericyte detachment from the capillary wall. Blood-brain barrier dysfunction may promote defects in brain clearance of potentially neurotoxic metabolites and byproducts of neural physiology, which may eventually contribute to neurodegenerative diseases. This chapter aims to describe the cellular and molecular mechanisms by which sleep loss modifies the function of the blood-brain barrier.
Collapse
Affiliation(s)
- Jessica Janeth Avilez-Avilez
- Graduate Program in Experimental Biology, Universidad Autónoma Metropolitana, Mexico City, Mexico; Area of Neurosciences, Department of Biology of Reproduction, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - María Fernanda Medina-Flores
- Graduate Program in Experimental Biology, Universidad Autónoma Metropolitana, Mexico City, Mexico; Area of Neurosciences, Department of Biology of Reproduction, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Beatriz Gómez-Gonzalez
- Area of Neurosciences, Department of Biology of Reproduction, Universidad Autónoma Metropolitana, Mexico City, Mexico.
| |
Collapse
|
27
|
Notte C, Alionte C, Strubakos CD. The efficacy and methodology of using near-infrared spectroscopy to determine resting-state brain networks. J Neurophysiol 2024; 131:668-677. [PMID: 38416714 DOI: 10.1152/jn.00357.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/01/2024] Open
Abstract
Functional connectivity is a critical aspect of brain function and is essential for understanding, diagnosing, and treating neurological and psychiatric disorders. It refers to the synchronous activity between different regions of the brain, which gives rise to communication and information processing. Resting-state functional connectivity is a subarea of study that allows researchers to examine brain activity in the absence of a task or stimulus. This can provide insight into the brain's intrinsic functional architecture and help identify neural networks that are active during rest. Thus, determining functional connectivity topography is valuable both clinically and in research. Traditional methods using functional magnetic resonance imaging have proven to be effective, however, they have their limitations. In this review, we investigate the feasibility of using functional near-infrared spectroscopy (fNIRS) as a low-cost, portable alternative for measuring functional connectivity. We first establish fNIRS' ability to detect localized brain activity during task-based experiments. Next, we verify its use in resting-state studies with results showing a high degree of correspondence with resting-state functional magnetic resonance imaging (rs-fMRI). Also discussed are various data-processing methods and the validity of filtering the global signal, which is the current standard for analysis. We consider the possible origins of the global signal, if it contains pertinent neuronal information that could be of importance in better understanding neuronal networks, and what we believe is the best method of approaching signal analysis and regression.
Collapse
Affiliation(s)
- Christian Notte
- Department of Physics, University of Windsor, Windsor, Ontario, Canada
| | - Caroline Alionte
- Department of Physics, University of Windsor, Windsor, Ontario, Canada
| | | |
Collapse
|
28
|
Amemiya S, Takao H, Abe O. Resting-State fMRI: Emerging Concepts for Future Clinical Application. J Magn Reson Imaging 2024; 59:1135-1148. [PMID: 37424140 DOI: 10.1002/jmri.28894] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/11/2023] Open
Abstract
Resting-state functional magnetic resonance imaging (rsfMRI) has been developed as a method of investigating spontaneous neural activity. Based on its low-frequency signal synchronization, rsfMRI has made it possible to identify multiple macroscopic structures termed resting-state networks (RSNs) on a single scan of less than 10 minutes. It is easy to implement even in clinical practice, in which assigning tasks to patients can be challenging. These advantages have accelerated the adoption and growth of rsfMRI. Recently, studies on the global rsfMRI signal have attracted increasing attention. Because it primarily arises from physiological events, less attention has hitherto been paid to the global signal than to the local network (i.e., RSN) component. However, the global signal is not a mere nuisance or a subsidiary component. On the contrary, it is quantitatively the dominant component that accounts for most of the variance in the rsfMRI signal throughout the brain and provides rich information on local hemodynamics that can serve as an individual-level diagnostic biomarker. Moreover, spatiotemporal analyses of the global signal have revealed that it is closely and fundamentally associated with the organization of RSNs, thus challenging the basic assumptions made in conventional rsfMRI analyses and views on RSNs. This review introduces new concepts emerging from rsfMRI spatiotemporal analyses focusing on the global signal and discusses how they may contribute to future clinical medicine. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Shiori Amemiya
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Hidemasa Takao
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
Salvagno M, Sterchele ED, Zaccarelli M, Mrakic-Sposta S, Welsby IJ, Balestra C, Taccone FS. Oxidative Stress and Cerebral Vascular Tone: The Role of Reactive Oxygen and Nitrogen Species. Int J Mol Sci 2024; 25:3007. [PMID: 38474253 DOI: 10.3390/ijms25053007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
The brain's unique characteristics make it exceptionally susceptible to oxidative stress, which arises from an imbalance between reactive oxygen species (ROS) production, reactive nitrogen species (RNS) production, and antioxidant defense mechanisms. This review explores the factors contributing to the brain's vascular tone's vulnerability in the presence of oxidative damage, which can be of clinical interest in critically ill patients or those presenting acute brain injuries. The brain's high metabolic rate and inefficient electron transport chain in mitochondria lead to significant ROS generation. Moreover, non-replicating neuronal cells and low repair capacity increase susceptibility to oxidative insult. ROS can influence cerebral vascular tone and permeability, potentially impacting cerebral autoregulation. Different ROS species, including superoxide and hydrogen peroxide, exhibit vasodilatory or vasoconstrictive effects on cerebral blood vessels. RNS, particularly NO and peroxynitrite, also exert vasoactive effects. This review further investigates the neuroprotective effects of antioxidants, including superoxide dismutase (SOD), vitamin C, vitamin E, and the glutathione redox system. Various studies suggest that these antioxidants could be used as adjunct therapies to protect the cerebral vascular tone under conditions of high oxidative stress. Nevertheless, more extensive research is required to comprehensively grasp the relationship between oxidative stress and cerebrovascular tone, and explore the potential benefits of antioxidants as adjunctive therapies in critical illnesses and acute brain injuries.
Collapse
Affiliation(s)
- Michele Salvagno
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| | - Elda Diletta Sterchele
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| | - Mario Zaccarelli
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology-National Research Council (CNR-IFC), 20133 Milan, Italy
| | - Ian James Welsby
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- Anatomical Research and Clinical Studies, Vrije Universiteit Brussels (VUB), 1050 Elsene, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Motor Sciences Department, Physical Activity Teaching Unit, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| |
Collapse
|
30
|
Young MJ, Fecchio M, Bodien YG, Edlow BL. Covert cortical processing: a diagnosis in search of a definition. Neurosci Conscious 2024; 2024:niad026. [PMID: 38327828 PMCID: PMC10849751 DOI: 10.1093/nc/niad026] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/22/2023] [Accepted: 12/10/2023] [Indexed: 02/09/2024] Open
Abstract
Historically, clinical evaluation of unresponsive patients following brain injury has relied principally on serial behavioral examination to search for emerging signs of consciousness and track recovery. Advances in neuroimaging and electrophysiologic techniques now enable clinicians to peer into residual brain functions even in the absence of overt behavioral signs. These advances have expanded clinicians' ability to sub-stratify behaviorally unresponsive and seemingly unaware patients following brain injury by querying and classifying covert brain activity made evident through active or passive neuroimaging or electrophysiologic techniques, including functional MRI, electroencephalography (EEG), transcranial magnetic stimulation-EEG, and positron emission tomography. Clinical research has thus reciprocally influenced clinical practice, giving rise to new diagnostic categories including cognitive-motor dissociation (i.e. 'covert consciousness') and covert cortical processing (CCP). While covert consciousness has received extensive attention and study, CCP is relatively less understood. We describe that CCP is an emerging and clinically relevant state of consciousness marked by the presence of intact association cortex responses to environmental stimuli in the absence of behavioral evidence of stimulus processing. CCP is not a monotonic state but rather encapsulates a spectrum of possible association cortex responses from rudimentary to complex and to a range of possible stimuli. In constructing a roadmap for this evolving field, we emphasize that efforts to inform clinicians, philosophers, and researchers of this condition are crucial. Along with strategies to sensitize diagnostic criteria and disorders of consciousness nosology to these vital discoveries, democratizing access to the resources necessary for clinical identification of CCP is an emerging clinical and ethical imperative.
Collapse
Affiliation(s)
- Michael J Young
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 101 Merrimac Street, Suite 310, Boston, MA 02114, USA
| | - Matteo Fecchio
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 101 Merrimac Street, Suite 310, Boston, MA 02114, USA
| | - Yelena G Bodien
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 101 Merrimac Street, Suite 310, Boston, MA 02114, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, 300 1st Ave, Charlestown, Boston, MA 02129, USA
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 101 Merrimac Street, Suite 310, Boston, MA 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 149 13th St, Charlestown, Charlestown, MA 02129, USA
| |
Collapse
|
31
|
Zhang D, Ruan J, Peng S, Li J, Hu X, Zhang Y, Zhang T, Ge Y, Zhu Z, Xiao X, Zhu Y, Li X, Li T, Zhou L, Gao Q, Zheng G, Zhao B, Li X, Zhu Y, Wu J, Li W, Zhao J, Ge WP, Xu T, Jia JM. Synaptic-like transmission between neural axons and arteriolar smooth muscle cells drives cerebral neurovascular coupling. Nat Neurosci 2024; 27:232-248. [PMID: 38168932 PMCID: PMC10849963 DOI: 10.1038/s41593-023-01515-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/02/2023] [Indexed: 01/05/2024]
Abstract
Neurovascular coupling (NVC) is important for brain function and its dysfunction underlies many neuropathologies. Although cell-type specificity has been implicated in NVC, how active neural information is conveyed to the targeted arterioles in the brain remains poorly understood. Here, using two-photon focal optogenetics in the mouse cerebral cortex, we demonstrate that single glutamatergic axons dilate their innervating arterioles via synaptic-like transmission between neural-arteriolar smooth muscle cell junctions (NsMJs). The presynaptic parental-daughter bouton makes dual innervations on postsynaptic dendrites and on arteriolar smooth muscle cells (aSMCs), which express many types of neuromediator receptors, including a low level of glutamate NMDA receptor subunit 1 (Grin1). Disruption of NsMJ transmission by aSMC-specific knockout of GluN1 diminished optogenetic and whisker stimulation-caused functional hyperemia. Notably, the absence of GluN1 subunit in aSMCs reduced brain atrophy following cerebral ischemia by preventing Ca2+ overload in aSMCs during arteriolar constriction caused by the ischemia-induced spreading depolarization. Our findings reveal that NsMJ transmission drives NVC and open up a new avenue for studying stroke.
Collapse
Affiliation(s)
- Dongdong Zhang
- School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jiayu Ruan
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Shiyu Peng
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Jinze Li
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xu Hu
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yiyi Zhang
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Tianrui Zhang
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yaping Ge
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Zhu Zhu
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xian Xiao
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yunxu Zhu
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xuzhao Li
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Tingbo Li
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Lili Zhou
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Qingzhu Gao
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Guoxiao Zheng
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Bingrui Zhao
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xiangqing Li
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, China
| | - Yanming Zhu
- Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, USA
| | - Jinsong Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China
- Institute of Brain-Intelligence Technology, Zhangjiang Lab, Shanghai, China, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Wensheng Li
- Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jingwei Zhao
- Department of Anatomy, Histology, and Embryology, Research Center of Systemic Medicine, School of Basic Medicine, and Department of Pathology of the Sir Run-Run Shaw Hospital, The Cryo-EM Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Woo-Ping Ge
- Chinese Institute for Brain Research, Beijing, Beijing, China
| | - Tian Xu
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Jie-Min Jia
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China.
| |
Collapse
|
32
|
Buxton RB. Thermodynamic limitations on brain oxygen metabolism: physiological implications. J Physiol 2024; 602:683-712. [PMID: 38349000 DOI: 10.1113/jp284358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/03/2024] [Indexed: 02/20/2024] Open
Abstract
Recent thermodynamic modelling indicates that maintaining the brain tissue ratio of O2 to CO2 (abbreviated tissue O2 /CO2 ) is critical for preserving the entropy increase available from oxidative metabolism of glucose, with a fall of that available entropy leading to a reduction of the phosphorylation potential and impairment of brain energy metabolism. This provides a novel perspective for understanding physiological responses under different conditions in terms of preserving tissue O2 /CO2 . To enable estimation of tissue O2 /CO2 in the human brain, a detailed mathematical model of O2 and CO2 transport was developed, and applied to reported physiological responses to different challenges, asking: how well is tissue O2 /CO2 preserved? Reported experimental results for increased neural activity, hypercapnia and hypoxia due to high altitude are consistent with preserving tissue O2 /CO2 . The results highlight two physiological mechanisms that control tissue O2 /CO2 : cerebral blood flow, which modulates tissue O2 ; and ventilation rate, which modulates tissue CO2 . The hypoxia modelling focused on humans at high altitude, including acclimatized lowlanders and Tibetan and Andean adapted populations, with a primary finding that decreasing CO2 by increasing ventilation rate is more effective for preserving tissue O2 /CO2 than increasing blood haemoglobin content to maintain O2 delivery to tissue. This work focused on the function served by particular physiological responses, and the underlying mechanisms require further investigation. The modelling provides a new framework and perspective for understanding how blood flow and other physiological factors support energy metabolism in the brain under a wide range of conditions. KEY POINTS: Thermodynamic modelling indicates that preserving the O2 /CO2 ratio in brain tissue is critical for preserving the entropy change available from oxidative metabolism of glucose and the phosphorylation potential underlying energy metabolism. A detailed model of O2 and CO2 transport was developed to allow estimation of the tissue O2 /CO2 ratio in the human brain in different physiological states. Reported experimental results during hypoxia, hypercapnia and increased oxygen metabolic rate in response to increased neural activity are consistent with maintaining brain tissue O2 /CO2 ratio. The hypoxia modelling of high-altitude acclimatization and adaptation in humans demonstrates the critical role of reducing CO2 with increased ventilation for preserving tissue O2 /CO2 . Preservation of tissue O2 /CO2 provides a novel perspective for understanding the function of observed physiological responses under different conditions in terms of preserving brain energy metabolism, although the mechanisms underlying these functions are not well understood.
Collapse
Affiliation(s)
- Richard B Buxton
- Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California, San Diego, California, USA
| |
Collapse
|
33
|
Steffen S, Buscher L, Leclaire MD, Nelis P, Alnawaiseh M, Schneider G, Conrad R, Eter N, Brücher VC. Originalbeiträge (Originals). Altered microvascular density in patients with anorexia nervosa – an optical coherence tomography angiography (OCTA) pilot study. ZEITSCHRIFT FUR PSYCHOSOMATISCHE MEDIZIN UND PSYCHOTHERAPIE 2024; 70:24-34. [PMID: 38598705 DOI: 10.13109/zptm.2024.70.1.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
OBJECTIVES To investigate macular and peripapillary vascular density (VD) in patients with anorexia nervosa (AN) compared to healthy controls. Methods:Whole face scans of the superficial and deep macular layers and whole face and peripapillary scans of the radial peripapillary capillaries (RPC) were obtained using optical coherence tomography angiography (OCTA, AngioVueR, Optovue) in ten patients with AN and ten age-matched controls.The primary objective was to determine whether there was a difference between the vessel density (VD) in the above areas in AN and controls. P-values ≤ 0.0125 were considered statistically significant. Results: VD in the superficialmacular en-face OCTA image was significantly lower in the study group compared to the control group. Neither the deepmacula nor the radial peripapillary capillary (RPC) in the whole-face image nor the RPC-peripapillary imaging appeared to be significantly different. Conclusion: Patients with AN showed reduced VD in the superficialmacular layers compared to healthy controls, which can be discussed as a consequence of the malnutrition. OCTA could be a useful non- invasive tool to detect reduced peripheral blood supply to show vascular changes that occur before ocular symptoms.
Collapse
|
34
|
Fong H, Zhou B, Feng H, Luo C, Bai B, Zhang J, Wang Y. Recapitulation of Structure-Function-Regulation of Blood-Brain Barrier under (Patho)Physiological Conditions. Cells 2024; 13:260. [PMID: 38334652 PMCID: PMC10854731 DOI: 10.3390/cells13030260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 02/10/2024] Open
Abstract
The blood-brain barrier (BBB) is a remarkable and intricate barrier that controls the exchange of molecules between the bloodstream and the brain. Its role in maintaining the stability of the central nervous system cannot be overstated. Over the years, advancements in neuroscience and technology have enabled us to delve into the cellular and molecular components of the BBB, as well as its regulation. Yet, there is a scarcity of comprehensive reviews that follow a logical framework of structure-function-regulation, particularly focusing on the nuances of BBB regulation under both normal and pathological conditions. This review sets out to address this gap by taking a historical perspective on the discovery of the BBB and highlighting the major observations that led to its recognition as a distinct brain barrier. It explores the intricate cellular elements contributing to the formation of the BBB, including endothelial cells, pericytes, astrocytes, and neurons, emphasizing their collective role in upholding the integrity and functionality of the BBB. Furthermore, the review delves into the dynamic regulation of the BBB in physiological states, encompassing neural, humoral, and auto-regulatory mechanisms. By shedding light on these regulatory processes, a deeper understanding of the BBB's response to various physiological cues emerges. This review also investigates the disruption of the BBB integrity under diverse pathological conditions, such as ischemia, infection, and toxin exposure. It elucidates the underlying mechanisms that contribute to BBB dysfunction and explores potential therapeutic strategies that aim to restore the BBB integrity and function. Overall, this recapitulation provides valuable insights into the structure, functions, and regulation of the BBB. By integrating historical perspectives, cellular elements, regulatory mechanisms, and pathological implications, this review contributes to a more comprehensive understanding of the BBB and paves the way for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Hin Fong
- Faculty of Medicine, International School, Jinan University, Guangzhou 510632, China; (H.F.); (C.L.); (B.B.)
| | - Botao Zhou
- Department of Physiology, Basic Medical and Public Health School, Jinan University, Guangzhou 510632, China;
| | - Haixiao Feng
- Gies College of Business, University of Illinois Urbana-Champaign, Urbana-Champaign, IL 61801, USA;
| | - Chuoying Luo
- Faculty of Medicine, International School, Jinan University, Guangzhou 510632, China; (H.F.); (C.L.); (B.B.)
| | - Boren Bai
- Faculty of Medicine, International School, Jinan University, Guangzhou 510632, China; (H.F.); (C.L.); (B.B.)
| | - John Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA;
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA 92350, USA
| | - Yuechun Wang
- Department of Physiology, Basic Medical and Public Health School, Jinan University, Guangzhou 510632, China;
| |
Collapse
|
35
|
Kiyatkin EA, Choi S. Brain oxygen responses induced by opioids: focus on heroin, fentanyl, and their adulterants. Front Psychiatry 2024; 15:1354722. [PMID: 38299188 PMCID: PMC10828032 DOI: 10.3389/fpsyt.2024.1354722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
Opioids are important tools for pain management, but abuse can result in serious health complications. Of these complications, respiratory depression that leads to brain hypoxia is the most dangerous, resulting in coma and death. Although all opioids at large doses induce brain hypoxia, danger is magnified with synthetic opioids such as fentanyl and structurally similar analogs. These drugs are highly potent, act rapidly, and are often not effectively treated by naloxone, the standard of care for opioid-induced respiratory depression. The goal of this review paper is to present and discuss brain oxygen responses induced by opioids, focusing on heroin and fentanyl. In contrast to studying drug-induced changes in respiratory activity, we used chronically implanted oxygen sensors coupled with high-speed amperometry to directly evaluate physiological and drug-induced fluctuations in brain oxygen levels in awake, freely moving rats. First, we provide an overview of brain oxygen responses to physiological stimuli and discuss the mechanisms regulating oxygen entry into brain tissue. Next, we present data on brain oxygen responses induced by heroin and fentanyl and review underlying mechanisms. These data allowed us to compare the effects of these drugs on brain oxygen in terms of their potency, time-dependent response pattern, and potentially lethal effect at high doses. Then, we present the interactive effects of opioids during polysubstance use (alcohol, ketamine, xylazine) on brain oxygenation. Finally, we consider factors that affect the therapeutic potential of naloxone, focusing on dosage, timing of drug delivery, and contamination of opioids by other neuroactive drugs. The latter issue is considered chiefly with respect to xylazine, which strongly potentiates the hypoxic effects of heroin and fentanyl. Although this work was done in rats, the data are human relevant and will aid in addressing the alarming rise in lethality associated with opioid misuse.
Collapse
Affiliation(s)
- Eugene A. Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse–Intramural Research Program, National Institutes of Health, DHHS, Baltimore, MD, United States
| | | |
Collapse
|
36
|
Bröhl T, Rings T, Pukropski J, von Wrede R, Lehnertz K. The time-evolving epileptic brain network: concepts, definitions, accomplishments, perspectives. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 3:1338864. [PMID: 38293249 PMCID: PMC10825060 DOI: 10.3389/fnetp.2023.1338864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024]
Abstract
Epilepsy is now considered a network disease that affects the brain across multiple levels of spatial and temporal scales. The paradigm shift from an epileptic focus-a discrete cortical area from which seizures originate-to a widespread epileptic network-spanning lobes and hemispheres-considerably advanced our understanding of epilepsy and continues to influence both research and clinical treatment of this multi-faceted high-impact neurological disorder. The epileptic network, however, is not static but evolves in time which requires novel approaches for an in-depth characterization. In this review, we discuss conceptual basics of network theory and critically examine state-of-the-art recording techniques and analysis tools used to assess and characterize a time-evolving human epileptic brain network. We give an account on current shortcomings and highlight potential developments towards an improved clinical management of epilepsy.
Collapse
Affiliation(s)
- Timo Bröhl
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
| | - Thorsten Rings
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
| | - Jan Pukropski
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | - Randi von Wrede
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | - Klaus Lehnertz
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
- Interdisciplinary Center for Complex Systems, University of Bonn, Bonn, Germany
| |
Collapse
|
37
|
McDonald H, Gardner-Russell J, Alarcon-Martinez L. Orchestrating Blood Flow in the Retina: Interpericyte Tunnelling Nanotube Communication. Results Probl Cell Differ 2024; 73:229-247. [PMID: 39242382 DOI: 10.1007/978-3-031-62036-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
The retina transforms light into electrical signals, which are sent to the brain via the optic nerve to form our visual perception. This complex signal processing is performed by the retinal neuron and requires a significant amount of energy. Since neurons are unable to store energy, they must obtain glucose and oxygen from the bloodstream to produce energy to match metabolic needs. This process is called neurovascular coupling (NVC), and it is based on a precise mechanism that is not totally understood. The discovery of fine tubular processes termed tunnelling nanotubes (TNTs) set a new type of cell-to-cell communication. TNTs are extensions of the cellular membrane that allow the transfer of material between connected cells. Recently, they have been reported in the brain and retina of living mice, where they connect pericytes, which are vascular mural cells that regulate vessel diameter. Accordingly, these TNTs were termed interpericyte tunnelling nanotubes (IPTNTs), which showed a vital role in blood delivery and NVC. In this chapter, we review the involvement of TNTs in NVC and discuss their implications in retinal neurodegeneration.
Collapse
Affiliation(s)
- Hannah McDonald
- Centre for Eye Research Australia, Melbourne, VIC, Australia
- Department of Ophthalmology, University of Melbourne, Melbourne, VIC, Australia
- The Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Jesse Gardner-Russell
- Centre for Eye Research Australia, Melbourne, VIC, Australia
- Department of Ophthalmology, University of Melbourne, Melbourne, VIC, Australia
- The Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Luis Alarcon-Martinez
- Centre for Eye Research Australia, Melbourne, VIC, Australia.
- Department of Ophthalmology, University of Melbourne, Melbourne, VIC, Australia.
- The Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
38
|
Sams A, Haanes KA, Holm A, Kazantzi S, Mikkelsen LF, Edvinsson L, Brain S, Sheykhzade M. Heterogeneous vasomotor responses in segments from Göttingen Minipigs coronary, cerebral, and mesenteric artery: A comparative study. Vascul Pharmacol 2023; 153:107231. [PMID: 37730143 DOI: 10.1016/j.vph.2023.107231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
Göttingen Minipigs (GM) are used as an important preclinical model for cardiovascular safety pharmacology and for evaluation of cardiovascular drug targets. To improve the translational value of the GM model, the current study represents a basic characterization of vascular responses to endothelial regulators and sympathetic, parasympathetic, and sensory neurotransmitters in different anatomical origins. The aim of the current comparative and descriptive study is to use myography to characterize the vasomotor responses of coronary artery isolated from GM and compare the responses to those obtained from parallel studies using cerebral and mesenteric arteries. The selected agonists for sympathetic (norepinephrine), parasympathetic (carbachol), sensory (calcitonin gene-related peptide, CGRP), and endothelial pathways (endothelin-1, ET-1, and bradykinin) were used for comparison. Further, the robust nature of the vasomotor responses was evaluated after 24 h of cold storage of vascular tissue mimicking the situation under which human biopsies are often kept before experiments or grafting is feasible. Results show that bradykinin and CGRP consistently dilated, and endothelin consistently contracted artery segments from coronary, cerebral, and mesenteric origin. By comparison, norepinephrine and carbachol, had responses that varied with the anatomical source of the tissues. To support the basic characterization of GM vasomotor responses, we demonstrated the presence of mRNA encoding selected vascular receptors (CGRP- and ETA-receptors) in fresh artery segments. In conclusion, the vasomotor responses of isolated coronary, cerebral, and mesenteric arteries to selected agonists of endothelial, sympathetic, parasympathetic, and sensory pathways are different and the phenotypes are similar to sporadic human findings.
Collapse
Affiliation(s)
- Anette Sams
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Clinical Experimental Research, Rigshospitalet, Glostrup, Denmark; Epoqe Pharma, Ole Maaloes Vej 3, 2200 Copenhagen N, Denmark.
| | | | - Anja Holm
- Department of Clinical Experimental Research, Rigshospitalet, Glostrup, Denmark; Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Spyridoula Kazantzi
- Department of Clinical Experimental Research, Rigshospitalet, Glostrup, Denmark
| | | | - Lars Edvinsson
- Department of Clinical Experimental Research, Rigshospitalet, Glostrup, Denmark
| | - Susan Brain
- Section of Vascular Biology & Inflammation, School of Cardiovascular Medicine & Research, BHF Centre of Excellence, King's College London, London, United Kingdom
| | - Majid Sheykhzade
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
39
|
Wakid M, Almeida D, Aouabed Z, Rahimian R, Davoli MA, Yerko V, Leonova-Erko E, Richard V, Zahedi R, Borchers C, Turecki G, Mechawar N. Universal method for the isolation of microvessels from frozen brain tissue: A proof-of-concept multiomic investigation of the neurovasculature. Brain Behav Immun Health 2023; 34:100684. [PMID: 37822873 PMCID: PMC10562768 DOI: 10.1016/j.bbih.2023.100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 10/13/2023] Open
Abstract
The neurovascular unit, comprised of vascular cell types that collectively regulate cerebral blood flow to meet the needs of coupled neurons, is paramount for the proper function of the central nervous system. The neurovascular unit gatekeeps blood-brain barrier properties, which experiences impairment in several central nervous system diseases associated with neuroinflammation and contributes to pathogenesis. To better understand function and dysfunction at the neurovascular unit and how it may confer inflammatory processes within the brain, isolation and characterization of the neurovascular unit is needed. Here, we describe a singular, standardized protocol to enrich and isolate microvessels from archived snap-frozen human and frozen mouse cerebral cortex using mechanical homogenization and centrifugation-separation that preserves the structural integrity and multicellular composition of microvessel fragments. For the first time, microvessels are isolated from postmortem ventromedial prefrontal cortex tissue and are comprehensively investigated as a structural unit using both RNA sequencing and Liquid Chromatography with tandem mass spectrometry (LC-MS/MS). Both the transcriptome and proteome are obtained and compared, demonstrating that the isolated brain microvessel is a robust model for the NVU and can be used to generate highly informative datasets in both physiological and disease contexts.
Collapse
Affiliation(s)
- Marina Wakid
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec, Canada
| | - Daniel Almeida
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec, Canada
| | - Zahia Aouabed
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
| | - Reza Rahimian
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
| | | | - Volodymyr Yerko
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
| | - Elena Leonova-Erko
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
| | - Vincent Richard
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, Quebec, Canada
| | - René Zahedi
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, Quebec, Canada
| | - Christoph Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, Quebec, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec, Canada
- Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec, Canada
- Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
40
|
Cha J, Kim HS, Kwon G, Cho SY, Kim JM. Acute effects of (-)-gallocatechin gallate-rich green tea extract on the cerebral hemodynamic response of the prefrontal cortex in healthy humans. FRONTIERS IN NEUROERGONOMICS 2023; 4:1136362. [PMID: 38234497 PMCID: PMC10790935 DOI: 10.3389/fnrgo.2023.1136362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 11/01/2023] [Indexed: 01/19/2024]
Abstract
Objective The benefits of long-term consumption of green tea on the brain are well known. However, among many ingredients of green tea, the acute effects of (-)-gallocatechin gallate-rich green tea extract (GCG-GTE), have received comparatively less attention. Herein, we investigated the acute effects of oral ingestion of green tea with GCG-GTE, which contains close replicas of the ingredients of hot green tea, on task-dependent hemodynamics in the prefrontal cortex of healthy adult human brains. Methods In this randomized, double-blind, placebo-controlled, parallel group trial, 35 healthy adults completed computerized cognitive tasks that demand activation of the prefrontal cortex at baseline and 1 h after consumption of placebo and 900 mg of GCG-GTE extract supplement. During cognitive testing, hemodynamic responses (change in HbO2 concentration) in the prefrontal cortex were assessed using functional near-infrared spectroscopy (fNIRS). Results In fNIRS data, significant group x session interactions were found in the left (p = 0.035) and right (p = 0.036) dorsolateral prefrontal cortex (DLPFC). In behavioral data, despite the numerical increase in the GCG-GTE group and the numerical decrease in the Placebo group, no significant differences were observed in the cognitive performance measure between the groups. Conclusion The result suggests a single dose of orally administered GCG-GTE can reduce DLPFC activation in healthy humans even with increased task demand. GCG-GTE is a promising functional material that can affect neural efficiency to lower mental workload during cognitively demanding tasks. However, further studies are needed to verify this.
Collapse
Affiliation(s)
- Jihyun Cha
- Department of Research and Development, OBELAB Inc., Seoul, Republic of Korea
| | - Hyung-Su Kim
- Amorepacific R&I Center, Yongin-si, Republic of Korea
| | - Gusang Kwon
- Amorepacific R&I Center, Yongin-si, Republic of Korea
| | - Si-Young Cho
- Amorepacific R&I Center, Yongin-si, Republic of Korea
| | - Jae-Myoung Kim
- Department of Research and Development, OBELAB Inc., Seoul, Republic of Korea
| |
Collapse
|
41
|
Larriva-Sahd J, Martínez-Cabrera G, Lozano-Flores C, Concha L, Varela-Echavarría A. The neurovascular unit of capillary blood vessels in the rat nervous system. A rapid-Golgi electron microscopy study. J Comp Neurol 2023; 532:e25559. [PMID: 38009706 DOI: 10.1002/cne.25559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/28/2023] [Accepted: 10/17/2023] [Indexed: 11/29/2023]
Abstract
We describe a pericapillary organ in the rat forebrain and cerebellar cortex. It consists of a series of tripartite synapses with synaptic extensions enveloped by astrocytic endfeet that are linked to the capillary wall by synaptic extensions. Reciprocal specializations of the pericyte-capillary blood vessel (CBV) with such specialized synapses suggest a mechanoreceptor role. In Golgi-impregnated and 3D reconstructions of the cerebral cortex and thalamus, a series of TSs appear to be sequentially ordered in a common dendrite, paralleled by synaptic outgrowths termed golf club synaptic extensions (GCE) opposed to a longitudinal crest (LC) from the capillary basal lamina (BL). Our results show that, in the cerebellar cortex, afferent fibers and interneurons display microanatomical structures that strongly suggest an interaction with the capillary wall. Afferent mossy fiber (MF) rosettes and ascending granule cell axons and their dendrites define the pericapillary passage interactions that are entangled by endfeet. The presence of mRNA of the mechanosensitive channel Piezo1 in the MF rosettes, together with the surrounding end-feet and the capillary wall form mechanosensory units. The ubiquity of such units to modulate synaptic transmission is also supported by Piezo1 mRNA expressing pyramidal isocortical and thalamic neurons. This scenario suggests that ascending impulses to the cerebellar and cortical targets are presynaptically modulated by the reciprocal interaction with the mechanosensory pericapillary organ that ultimately modulates the vasomotor response.
Collapse
Affiliation(s)
- Jorge Larriva-Sahd
- Campus Juriquilla, Instituto de Neurobiología Universidad Nacional Autónoma de México, Querétaro, México
| | - Gema Martínez-Cabrera
- Campus Juriquilla, Instituto de Neurobiología Universidad Nacional Autónoma de México, Querétaro, México
| | - Carlos Lozano-Flores
- Campus Juriquilla, Instituto de Neurobiología Universidad Nacional Autónoma de México, Querétaro, México
| | - Luis Concha
- Campus Juriquilla, Instituto de Neurobiología Universidad Nacional Autónoma de México, Querétaro, México
| | - Alfredo Varela-Echavarría
- Campus Juriquilla, Instituto de Neurobiología Universidad Nacional Autónoma de México, Querétaro, México
| |
Collapse
|
42
|
Mauricio D, Gratacòs M, Franch-Nadal J. Diabetic microvascular disease in non-classical beds: the hidden impact beyond the retina, the kidney, and the peripheral nerves. Cardiovasc Diabetol 2023; 22:314. [PMID: 37968679 PMCID: PMC10652502 DOI: 10.1186/s12933-023-02056-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023] Open
Abstract
Diabetes microangiopathy, a hallmark complication of diabetes, is characterised by structural and functional abnormalities within the intricate network of microvessels beyond well-known and documented target organs, i.e., the retina, kidney, and peripheral nerves. Indeed, an intact microvascular bed is crucial for preserving each organ's specific functions and achieving physiological balance to meet their respective metabolic demands. Therefore, diabetes-related microvascular dysfunction leads to widespread multiorgan consequences in still-overlooked non-traditional target organs such as the brain, the lung, the bone tissue, the skin, the arterial wall, the heart, or the musculoskeletal system. All these organs are vulnerable to the physiopathological mechanisms that cause microvascular damage in diabetes (i.e., hyperglycaemia-induced oxidative stress, inflammation, and endothelial dysfunction) and collectively contribute to abnormalities in the microvessels' structure and function, compromising blood flow and tissue perfusion. However, the microcirculatory networks differ between organs due to variations in haemodynamic, vascular architecture, and affected cells, resulting in a spectrum of clinical presentations. The aim of this review is to focus on the multifaceted nature of microvascular impairment in diabetes through available evidence of specific consequences in often overlooked organs. A better understanding of diabetes microangiopathy in non-target organs provides a broader perspective on the systemic nature of the disease, underscoring the importance of recognising the comprehensive range of complications beyond the classic target sites.
Collapse
Affiliation(s)
- Dídac Mauricio
- DAP-Cat group, Unitat de Suport a la Recerca Barcelona, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain.
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain.
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, IR Sant Pau, Barcelona, Spain.
- Department of Medicine, University of Vic - Central University of Catalonia, Vic, Spain.
| | - Mònica Gratacòs
- DAP-Cat group, Unitat de Suport a la Recerca Barcelona, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
| | - Josep Franch-Nadal
- DAP-Cat group, Unitat de Suport a la Recerca Barcelona, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| |
Collapse
|
43
|
James S, Sanggaard S, Akif A, Mishra SK, Sanganahalli BG, Blumenfeld H, Verhagen JV, Hyder F, Herman P. Spatiotemporal features of neurovascular (un)coupling with stimulus-induced activity and hypercapnia challenge in cerebral cortex and olfactory bulb. J Cereb Blood Flow Metab 2023; 43:1891-1904. [PMID: 37340791 PMCID: PMC10676132 DOI: 10.1177/0271678x231183887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/22/2023]
Abstract
Carbon dioxide (CO2) is traditionally considered as metabolic waste, yet its regulation is critical for brain function. It is well accepted that hypercapnia initiates vasodilation, but its effect on neuronal activity is less clear. Distinguishing how stimulus- and CO2-induced vasodilatory responses are (dis)associated with neuronal activity has profound clinical and experimental relevance. We used an optical method in mice to simultaneously image fluorescent calcium (Ca2+) transients from neurons and reflectometric hemodynamic signals during brief sensory stimuli (i.e., hindpaw, odor) and CO2 exposure (i.e., 5%). Stimuli-induced neuronal and hemodynamic responses swiftly increased within locally activated regions exhibiting robust neurovascular coupling. However, hypercapnia produced slower global vasodilation which was temporally uncoupled to neuronal deactivation. With trends consistent across cerebral cortex and olfactory bulb as well as data from GCaMP6f/jRGECO1a mice (i.e., green/red Ca2+ fluorescence), these results unequivocally reveal that stimuli and CO2 generate comparable vasodilatory responses but contrasting neuronal responses. In summary, observations of stimuli-induced regional neurovascular coupling and CO2-induced global neurovascular uncoupling call for careful appraisal when using CO2 in gas mixtures to affect vascular tone and/or neuronal excitability, because CO2 is both a potent vasomodulator and a neuromodulator.
Collapse
Affiliation(s)
- Shaun James
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Simon Sanggaard
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Adil Akif
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Sandeep K Mishra
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | | | - Hal Blumenfeld
- Department of Neurology, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Justus V Verhagen
- Department of Neuroscience, Yale University, New Haven, CT, USA
- John B. Pierce Laboratory, New Haven, CT, USA
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Peter Herman
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| |
Collapse
|
44
|
Alarcon-Martinez L, Shiga Y, Villafranca-Baughman D, Cueva Vargas JL, Vidal Paredes IA, Quintero H, Fortune B, Danesh-Meyer H, Di Polo A. Neurovascular dysfunction in glaucoma. Prog Retin Eye Res 2023; 97:101217. [PMID: 37778617 DOI: 10.1016/j.preteyeres.2023.101217] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Retinal ganglion cells, the neurons that die in glaucoma, are endowed with a high metabolism requiring optimal provision of oxygen and nutrients to sustain their activity. The timely regulation of blood flow is, therefore, essential to supply firing neurons in active areas with the oxygen and glucose they need for energy. Many glaucoma patients suffer from vascular deficits including reduced blood flow, impaired autoregulation, neurovascular coupling dysfunction, and blood-retina/brain-barrier breakdown. These processes are tightly regulated by a community of cells known as the neurovascular unit comprising neurons, endothelial cells, pericytes, Müller cells, astrocytes, and microglia. In this review, the neurovascular unit takes center stage as we examine the ability of its members to regulate neurovascular interactions and how their function might be altered during glaucomatous stress. Pericytes receive special attention based on recent data demonstrating their key role in the regulation of neurovascular coupling in physiological and pathological conditions. Of particular interest is the discovery and characterization of tunneling nanotubes, thin actin-based conduits that connect distal pericytes, which play essential roles in the complex spatial and temporal distribution of blood within the retinal capillary network. We discuss cellular and molecular mechanisms of neurovascular interactions and their pathophysiological implications, while highlighting opportunities to develop strategies for vascular protection and regeneration to improve functional outcomes in glaucoma.
Collapse
Affiliation(s)
- Luis Alarcon-Martinez
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada; Centre for Eye Research Australia, University of Melbourne, Melbourne, Australia
| | - Yukihiro Shiga
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada
| | - Deborah Villafranca-Baughman
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada
| | - Jorge L Cueva Vargas
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada
| | - Isaac A Vidal Paredes
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada
| | - Heberto Quintero
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada
| | - Brad Fortune
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Healthy, Portland, OR, USA
| | - Helen Danesh-Meyer
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Adriana Di Polo
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada.
| |
Collapse
|
45
|
Epp R, Glück C, Binder NF, El Amki M, Weber B, Wegener S, Jenny P, Schmid F. The role of leptomeningeal collaterals in redistributing blood flow during stroke. PLoS Comput Biol 2023; 19:e1011496. [PMID: 37871109 PMCID: PMC10621965 DOI: 10.1371/journal.pcbi.1011496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 11/02/2023] [Accepted: 09/03/2023] [Indexed: 10/25/2023] Open
Abstract
Leptomeningeal collaterals (LMCs) connect the main cerebral arteries and provide alternative pathways for blood flow during ischaemic stroke. This is beneficial for reducing infarct size and reperfusion success after treatment. However, a better understanding of how LMCs affect blood flow distribution is indispensable to improve therapeutic strategies. Here, we present a novel in silico approach that incorporates case-specific in vivo data into a computational model to simulate blood flow in large semi-realistic microvascular networks from two different mouse strains, characterised by having many and almost no LMCs between middle and anterior cerebral artery (MCA, ACA) territories. This framework is unique because our simulations are directly aligned with in vivo data. Moreover, it allows us to analyse perfusion characteristics quantitatively across all vessel types and for networks with no, few and many LMCs. We show that the occlusion of the MCA directly caused a redistribution of blood that was characterised by increased flow in LMCs. Interestingly, the improved perfusion of MCA-sided microvessels after dilating LMCs came at the cost of a reduced blood supply in other brain areas. This effect was enhanced in regions close to the watershed line and when the number of LMCs was increased. Additional dilations of surface and penetrating arteries after stroke improved perfusion across the entire vasculature and partially recovered flow in the obstructed region, especially in networks with many LMCs, which further underlines the role of LMCs during stroke.
Collapse
Affiliation(s)
- Robert Epp
- Institute of Fluid Dynamics, ETH Zurich, Zurich, Switzerland
| | - Chaim Glück
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Nadine Felizitas Binder
- Deptartment of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Mohamad El Amki
- Deptartment of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Susanne Wegener
- Deptartment of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Patrick Jenny
- Institute of Fluid Dynamics, ETH Zurich, Zurich, Switzerland
| | - Franca Schmid
- Institute of Fluid Dynamics, ETH Zurich, Zurich, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| |
Collapse
|
46
|
Ozawa K, Nagao M, Konno A, Iwai Y, Vittani M, Kusk P, Mishima T, Hirai H, Nedergaard M, Hirase H. Astrocytic GPCR-Induced Ca 2+ Signaling Is Not Causally Related to Local Cerebral Blood Flow Changes. Int J Mol Sci 2023; 24:13590. [PMID: 37686396 PMCID: PMC10487464 DOI: 10.3390/ijms241713590] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/17/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Activation of Gq-type G protein-coupled receptors (GPCRs) gives rise to large cytosolic Ca2+ elevations in astrocytes. Previous in vitro and in vivo studies have indicated that astrocytic Ca2+ elevations are closely associated with diameter changes in the nearby blood vessels, which astrocytes enwrap with their endfeet. However, the causal relationship between astrocytic Ca2+ elevations and blood vessel diameter changes has been questioned, as mice with diminished astrocytic Ca2+ signaling show normal sensory hyperemia. We addressed this controversy by imaging cortical vasculature while optogenetically elevating astrocyte Ca2+ in a novel transgenic mouse line, expressing Opto-Gq-type GPCR Optoα1AR (Astro-Optoα1AR) in astrocytes. Blue light illumination on the surface of the somatosensory cortex induced Ca2+ elevations in cortical astrocytes and their endfeet in mice under anesthesia. Blood vessel diameter did not change significantly with Optoα1AR-induced Ca2+ elevations in astrocytes, while it was increased by forelimb stimulation. Next, we labeled blood plasma with red fluorescence using AAV8-P3-Alb-mScarlet in Astro-Optoα1AR mice. We were able to identify arterioles that display diameter changes in superficial areas of the somatosensory cortex through the thinned skull. Photo-stimulation of astrocytes in the cortical area did not result in noticeable changes in the arteriole diameters compared with their background strain C57BL/6. Together, compelling evidence for astrocytic Gq pathway-induced vasodiameter changes was not observed. Our results support the notion that short-term (<10 s) hyperemia is not mediated by GPCR-induced astrocytic Ca2+ signaling.
Collapse
Affiliation(s)
- Katsuya Ozawa
- Laboratory for Neuron-Glia Circuitry, RIKEN Center for Brain Science, Wako 351-0106, Saitama, Japan; (K.O.)
| | - Masaki Nagao
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, 1172 Copenhagen, Denmark
| | - Ayumu Konno
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi 371-8511, Gunma, Japan
- Viral Vector Core, Gunma University, Initiative for Advanced Research, Maebashi 371-8511, Gunma, Japan
| | - Youichi Iwai
- Laboratory for Neuron-Glia Circuitry, RIKEN Center for Brain Science, Wako 351-0106, Saitama, Japan; (K.O.)
| | - Marta Vittani
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, 1172 Copenhagen, Denmark
| | - Peter Kusk
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, 1172 Copenhagen, Denmark
| | - Tsuneko Mishima
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, 1172 Copenhagen, Denmark
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi 371-8511, Gunma, Japan
- Viral Vector Core, Gunma University, Initiative for Advanced Research, Maebashi 371-8511, Gunma, Japan
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, 1172 Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hajime Hirase
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, 1172 Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
47
|
Thakore P, Yamasaki E, Ali S, Sanchez Solano A, Labelle-Dumais C, Gao X, Chaumeil MM, Gould DB, Earley S. PI3K block restores age-dependent neurovascular coupling defects associated with cerebral small vessel disease. Proc Natl Acad Sci U S A 2023; 120:e2306479120. [PMID: 37607233 PMCID: PMC10467353 DOI: 10.1073/pnas.2306479120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/17/2023] [Indexed: 08/24/2023] Open
Abstract
Neurovascular coupling (NVC), a vital physiological process that rapidly and precisely directs localized blood flow to the most active regions of the brain, is accomplished in part by the vast network of cerebral capillaries acting as a sensory web capable of detecting increases in neuronal activity and orchestrating the dilation of upstream parenchymal arterioles. Here, we report a Col4a1 mutant mouse model of cerebral small vessel disease (cSVD) with age-dependent defects in capillary-to-arteriole dilation, functional hyperemia in the brain, and memory. The fundamental defect in aged mutant animals was the depletion of the minor membrane phospholipid phosphatidylinositol 4,5 bisphosphate (PIP2) in brain capillary endothelial cells, leading to the loss of inwardly rectifying K+ (Kir2.1) channel activity. Blocking phosphatidylinositol-3-kinase (PI3K), an enzyme that diminishes the bioavailability of PIP2 by converting it to phosphatidylinositol (3, 4, 5)-trisphosphate (PIP3), restored Kir2.1 channel activity, capillary-to-arteriole dilation, and functional hyperemia. In longitudinal studies, chronic PI3K inhibition also improved the memory function of aged Col4a1 mutant mice. Our data suggest that PI3K inhibition is a viable therapeutic strategy for treating defective NVC and cognitive impairment associated with cSVD.
Collapse
Affiliation(s)
- Pratish Thakore
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System University of Nevada, Reno School of Medicine, Reno, NV89557-0318
| | - Evan Yamasaki
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System University of Nevada, Reno School of Medicine, Reno, NV89557-0318
| | - Sher Ali
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System University of Nevada, Reno School of Medicine, Reno, NV89557-0318
| | - Alfredo Sanchez Solano
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System University of Nevada, Reno School of Medicine, Reno, NV89557-0318
| | - Cassandre Labelle-Dumais
- Department of Ophthalmology and Anatomy, Institute for Human Genetics, University of California San Francisco School of Medicine, San Francisco, CA94143
| | - Xiao Gao
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA94158
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA94143-0628
| | - Myriam M. Chaumeil
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA94158
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA94143-0628
| | - Douglas B. Gould
- Department of Ophthalmology and Anatomy, Institute for Human Genetics, University of California San Francisco School of Medicine, San Francisco, CA94143
| | - Scott Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System University of Nevada, Reno School of Medicine, Reno, NV89557-0318
| |
Collapse
|
48
|
Nishida T, Suzumura N, Nakanishi Y, Maki N, Komeda H, Kawasaki M, Funabiki Y. Measurements of the lateral cerebellar hemispheres using near-infrared spectroscopy through comparison between autism spectrum disorder and typical development. Neurosci Lett 2023; 812:137381. [PMID: 37419305 DOI: 10.1016/j.neulet.2023.137381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
The cerebellum plays a vital role in cognition, communication with the cerebral cortex, and fine motor coordination. Near-infrared spectroscopy (NIRS) is a portable, less restrictive, and noninvasive functional brain imaging method that can capture brain activity during movements by measuring the relative oxyhemoglobin (oxy-Hb) concentrations in the blood. However, the feasibility of using NIRS to measure cerebellar activity requires discussion. We compared NIRS responses between areas assumed to be the cerebellum and the occipital lobe during a fine motor task (tying a bow knot) and a visual task. Our results showed that the oxy-Hb concentration increased more in the occipital lobe than in the cerebellum during the visual task (p =.034). In contrast, during the fine motor task, the oxy-Hb concentration decreased in the occipital lobe but increased significantly in the cerebellum, indicating a notable difference (p =.015). These findings suggest that we successfully captured cerebellar activity associated with processing, particularly fine motor coordination. Moreover, the observed responses did not differ between individuals with autism spectrum disorder and those with typical development. Our study demonstrates the meaningful utility of NIRS as a method for measuring cerebellar activity during movements.
Collapse
Affiliation(s)
- Toshiki Nishida
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto, Japan
| | - Nao Suzumura
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto, Japan
| | - Yuto Nakanishi
- Department of Psychiatry, Kyoto University Hospital, 54, Shogoin-kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Nao Maki
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto, Japan
| | - Hidetsugu Komeda
- Department of Education, College of Education, Psychology and Human Studies, Aoyama Gakuin University, 4 4 25, Shibuya, Shibuya-ku, Tokyo, Japan
| | - Masahiro Kawasaki
- Department of Intelligent Interaction Technology, Graduate School of Systems and Information Engineering, University of Tsukuba, 1-1-1, Tennodai, Tsukuba-shi, Ibaraki, Japan
| | - Yasuko Funabiki
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto, Japan.
| |
Collapse
|
49
|
Chalak LF, Kang S, Kota S, Liu H, Liu Y, Juul SE, Wu YW. Evaluation of neurovascular coupling during neuroprotective therapies: A single site HEAL ancillary study. Early Hum Dev 2023; 183:105815. [PMID: 37419079 PMCID: PMC10824020 DOI: 10.1016/j.earlhumdev.2023.105815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND There is a critical need for development of physiological biomarkers in infants with birth asphyxia to identify the physiologic response to therapies in real time. This is an ancillary single site study of the High-Dose Erythropoietin for Asphyxia and Encephalopathy (Wu et al., 2022 [1]) to measure neurovascular coupling (NVC) non-invasively during an ongoing blinded randomized trial. METHODS Neonates who randomized in the HEAL enrolled at a single-center Level III Neonatal Intensive Care Unit were recruited between 2017 and 2019. Neurodevelopmental impairment was blinded and defined as any of the following: cognitive score <90 on Bayley Scales of Infant Toddler Development, third edition (BSID-III), Gross Motor Function Classification Score (GMFCS) ≥1. RESULTS All twenty-seven neonates enrolled in HEAL were recruited and 3 died before complete recording. The rank-based analysis of covariance models demonstrated lack of difference in NVC between the two groups (Epo versus Placebo) that was consistent with the observed lack of effect on neurodevelopmental outcomes. CONCLUSION We demonstrate no difference in neurovascular coupling after Epo administration. These findings are consistent with overall negative trial results. Physiological biomarkers can help elucidate mechanisms of neuroprotective therapies in real time in future trials.
Collapse
Affiliation(s)
- Lina F Chalak
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States of America.
| | - Shu Kang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States of America
| | - Srinivas Kota
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States of America
| | - Yulun Liu
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Sandra E Juul
- Division of Neonatology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Yvonne W Wu
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
50
|
Hiura M, Funaki A, Shibutani H, Takahashi K, Katayama Y. Dissociated coupling between cerebral oxygen metabolism and perfusion in the prefrontal cortex during exercise: a NIRS study. Front Physiol 2023; 14:1165939. [PMID: 37565141 PMCID: PMC10411551 DOI: 10.3389/fphys.2023.1165939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023] Open
Abstract
Purpose: The present study used near-infrared spectroscopy to investigate the relationships between cerebral oxygen metabolism and perfusion in the prefrontal cortex (PFC) during exercises of different intensities. Methods: A total of 12 recreationally active men (age 24 ± 6 years) were enrolled. They performed 17 min of low-intensity exercise (ExL), followed by 3 min of moderate-intensity exercise (ExM) at constant loads. Exercise intensities for ExL and ExM corresponded to 30% and 45% of the participants' heart rate reserve, respectively. Cardiovascular and respiratory parameters were measured. We used near-infrared time-resolved spectroscopy (TRS) to measure the cerebral hemoglobin oxygen saturation (ScO2) and total hemoglobin concentration ([HbT]), which can indicate the cerebral blood volume (CBV). As the cerebral metabolic rate for oxygen (CMRO2) is calculated using cerebral blood flow (CBF) and ScO2, we assumed a constant power law relationship between CBF and CBV based on investigations by positron emission tomography (PET). We estimated the relative changes in CMRO2 (rCMRO2) and CBV (rCBV) from the baseline. During ExL and ExM, the rate of perceived exertion was monitored, and alterations in the subjects' mood induced by exercise were evaluated using the Profile of Moods Scale-Brief. Results: Three minutes after exercise initiation, ScO2 decreased and rCMRO2 surpassed rCBV in the left PFC. When ExL changed to ExM, cardiovascular variables and the sense of effort increased concomitantly with an increase in [HbT] but not in ScO2, and the relationship between rCMRO2 and rCBV was dissociated in both sides of the PFC. Immediately after ExM, [HbT], and ScO2 increased, and the disassociation between rCMRO2 and rCBV was prominent in both sides of the PFC. While blood pressure decreased and a negative mood state was less prominent following ExM compared with that at rest, ScO2 decreased 15 min after exercise and rCMRO2 surpassed rCBV in the left PFC. Conclusion: Dissociated coupling between cerebral oxidative metabolism and perfusion in the PFC was consistent with the effort required for increased exercise intensity and associated with post-exercise hypotension and altered mood status after exercise. Our result demonstrates the first preliminary results dealing with the coupling between cerebral oxidative metabolism and perfusion in the PFC using TRS.
Collapse
Affiliation(s)
- Mikio Hiura
- Center for Brain and Health Sciences, Aomori University, Aomori, Japan
| | - Akio Funaki
- Faculty of Sociology, Aomori University, Aomori, Japan
| | | | - Katsumi Takahashi
- Faculty of Creative Engineering, Kanagawa Institute of Technology, Atsugi, Japan
| | - Yoichi Katayama
- Center for Brain and Health Sciences, Aomori University, Aomori, Japan
| |
Collapse
|