1
|
Khalifa NR, Alabdulhadi Y, Vazquez P, Wun C, Zhang P. The use of combined cognitive training and non-invasive brain stimulation to modulate impulsivity in adult populations: a systematic review and meta-analysis of existing studies. Front Psychiatry 2024; 15:1510295. [PMID: 39717374 PMCID: PMC11664486 DOI: 10.3389/fpsyt.2024.1510295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/14/2024] [Indexed: 12/25/2024] Open
Abstract
Introduction Impulsivity, a tendency to act rashly and without forethought, is a core feature of many mental disorders that has been implicated in suicidality and offending behaviours. While research supports the use of non-invasive brain stimulation (NIBS) techniques, such as transcranial direct current stimulation (tDCS), to modulate brain functions, no studies specifically reviewed the use of combined cognitive training and NIBS to modulate impulsivity. Methods We aimed to conduct a systematic review and meta-analysis to synthesise the literature on the use of combined cognitive training and NIBS to modulate impulsivity and its subdomains (motor, delay discounting, reflection). We searched Scopus, PsychInfo, Medline, and Cinahl electronic databases, dissertations database, and Google scholar up to September 2024. Results Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, four randomised controlled studies involving the use of combined cognitive training and tDCS in 127 subjects were included in the study. These studies included subjects with substance use disorders, obesity, and Parkinson's disease. Meta-analysis showed that combined cognitive training and tDCS had no statistically significant effects on motor impulsivity as measured using reaction times on the Stop Signal Task and Go/No Go tasks. One study that measured impulsiveness scores on a delay discounting task also showed no significant results. No studies measured reflection or cognitive impulsivity. Discussion There is a dearth of literature on the use of combined cognitive training and NIBS for impulsivity. This in conjunction of clinical heterogeneity across studies makes it difficult to draw definitive conclusions about the neuromodulation of impulsivity and its subdomains using combined cognitive training and NIBS. The findings of this study highlight the need to conduct more studies in the field. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD 42024511576.
Collapse
Affiliation(s)
- Najat R. Khalifa
- Department of Psychiatry, Queen’s University, Kingston, ON, Canada
| | | | - Pilar Vazquez
- Department of Psychiatry, Queen’s University, Kingston, ON, Canada
| | - Charlotte Wun
- Department of Psychiatry, Queen’s University, Kingston, ON, Canada
| | - Peng Zhang
- Department of Public Health Sciences, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
2
|
Santander T, Leslie S, Li LJ, Skinner HE, Simonson JM, Sweeney P, Deen KP, Miller MB, Brunye TT. Towards optimized methodological parameters for maximizing the behavioral effects of transcranial direct current stimulation. Front Hum Neurosci 2024; 18:1305446. [PMID: 39015825 PMCID: PMC11250584 DOI: 10.3389/fnhum.2024.1305446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 06/12/2024] [Indexed: 07/18/2024] Open
Abstract
Introduction Transcranial direct current stimulation (tDCS) administers low-intensity direct current electrical stimulation to brain regions via electrodes arranged on the surface of the scalp. The core promise of tDCS is its ability to modulate brain activity and affect performance on diverse cognitive functions (affording causal inferences regarding regional brain activity and behavior), but the optimal methodological parameters for maximizing behavioral effects remain to be elucidated. Here we sought to examine the effects of 10 stimulation and experimental design factors across a series of five cognitive domains: motor performance, visual search, working memory, vigilance, and response inhibition. The objective was to identify a set of optimal parameter settings that consistently and reliably maximized the behavioral effects of tDCS within each cognitive domain. Methods We surveyed tDCS effects on these various cognitive functions in healthy young adults, ultimately resulting in 721 effects across 106 published reports. Hierarchical Bayesian meta-regression models were fit to characterize how (and to what extent) these design parameters differentially predict the likelihood of positive/negative behavioral outcomes. Results Consistent with many previous meta-analyses of tDCS effects, extensive variability was observed across tasks and measured outcomes. Consequently, most design parameters did not confer consistent advantages or disadvantages to behavioral effects-a domain-general model suggested an advantage to using within-subjects designs (versus between-subjects) and the tendency for cathodal stimulation (relative to anodal stimulation) to produce reduced behavioral effects, but these associations were scarcely-evident in domain-specific models. Discussion These findings highlight the urgent need for tDCS studies to more systematically probe the effects of these parameters on behavior to fulfill the promise of identifying causal links between brain function and cognition.
Collapse
Affiliation(s)
- Tyler Santander
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Sara Leslie
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Luna J. Li
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Henri E. Skinner
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Jessica M. Simonson
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Patrick Sweeney
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Kaitlyn P. Deen
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Michael B. Miller
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Tad T. Brunye
- U. S. Army DEVCOM Soldier Center, Natick, MA, United States
- Center for Applied Brain and Cognitive Sciences, Tufts University, Medford, MA, United States
| |
Collapse
|
3
|
Ehrhardt SE, Wards Y, Rideaux R, Marjańska M, Jin J, Cloos MA, Deelchand DK, Zöllner HJ, Saleh MG, Hui SCN, Ali T, Shaw TB, Barth M, Mattingley JB, Filmer HL, Dux PE. Neurochemical Predictors of Generalized Learning Induced by Brain Stimulation and Training. J Neurosci 2024; 44:e1676232024. [PMID: 38531634 PMCID: PMC11112648 DOI: 10.1523/jneurosci.1676-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/22/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Methods of cognitive enhancement for humans are most impactful when they generalize across tasks. However, the extent to which such "transfer" is possible via interventions is widely debated. In addition, the contribution of excitatory and inhibitory processes to such transfer is unknown. Here, in a large-scale neuroimaging individual differences study with humans (both sexes), we paired multitasking training and noninvasive brain stimulation (transcranial direct current stimulation, tDCS) over multiple days and assessed performance across a range of paradigms. In addition, we varied tDCS dosage (1.0 and 2.0 mA), electrode montage (left or right prefrontal regions), and training task (multitasking vs a control task) and assessed GABA and glutamate concentrations via ultrahigh field 7T magnetic resonance spectroscopy. Generalized benefits were observed in spatial attention, indexed by visual search performance, when multitasking training was combined with 1.0 mA stimulation targeting either the left or right prefrontal cortex (PFC). This transfer effect persisted for ∼30 d post intervention. Critically, the transferred benefits associated with right prefrontal tDCS were predicted by pretraining concentrations of glutamate in the PFC. Thus, the effects of this combined stimulation and training protocol appear to be linked predominantly to excitatory brain processes.
Collapse
Affiliation(s)
- Shane E Ehrhardt
- School of Psychology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yohan Wards
- School of Psychology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Reuben Rideaux
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
- School of Psychology, The University of Sydney, Sydney, New South Wales 2050, Australia
| | - Małgorzata Marjańska
- Department of Radiology, Centre for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota 55455
| | - Jin Jin
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia
- Siemens Healthcare Pty Ltd., Brisbane, Queensland 4006, Australia
| | - Martijn A Cloos
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Dinesh K Deelchand
- Department of Radiology, Centre for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota 55455
| | - Helge J Zöllner
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Muhammad G Saleh
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Steve C N Hui
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Tonima Ali
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2050, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2050, Australia
| | - Thomas B Shaw
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia
- School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Markus Barth
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia
- School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jason B Mattingley
- School of Psychology, The University of Queensland, St Lucia, Queensland 4072, Australia
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
- Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario M5G 1M1, Canada
| | - Hannah L Filmer
- School of Psychology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Paul E Dux
- School of Psychology, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
4
|
Hirosawa T, Soma D, Miyagishi Y, Furutani N, Yoshimura Y, Kameya M, Yamaguchi Y, Yaoi K, Sano M, Kitamura K, Takahashi T, Kikuchi M. Effect of transcranial direct current stimulation on the functionality of 40 Hz auditory steady state response brain network: graph theory approach. Front Psychiatry 2023; 14:1156617. [PMID: 37363170 PMCID: PMC10288104 DOI: 10.3389/fpsyt.2023.1156617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction Measuring whole-brain networks of the 40 Hz auditory steady state response (ASSR) is a promising approach to describe the after-effects of transcranial direct current stimulation (tDCS). The main objective of this study was to evaluate the effect of tDCS on the brain network of 40 Hz ASSR in healthy adult males using graph theory. The second objective was to identify a population in which tDCS effectively modulates the brain network of 40 Hz ASSR. Methods This study used a randomized, sham-controlled, double-blinded crossover approach. Twenty-five adult males (20-24 years old) completed two sessions at least 1 month apart. The participants underwent cathodal or sham tDCS of the dorsolateral prefrontal cortex, after which 40 Hz ASSR was measured using magnetoencephalography. After the signal sources were mapped onto the Desikan-Killiany brain atlas, the statistical relationships between localized activities were evaluated in terms of the debiased weighted phase lag index (dbWPLI). Weighted and undirected graphs were constructed for the tDCS and sham conditions based on the dbWPLI. Weighted characteristic path lengths and clustering coefficients were then measured and compared between the tDCS and sham conditions using mixed linear models. Results The characteristic path length was significantly lower post-tDCS simulation (p = 0.04) than after sham stimulation. This indicates that after tDCS simulation, the whole-brain networks of 40 Hz ASSR show a significant functional integration. Simple linear regression showed a higher characteristic path length at baseline, which was associated with a larger reduction in characteristic path length after tDCS. Hence, a pronounced effect of tDCS is expected for those who have a less functionally integrated network of 40 Hz ASSR. Discussion Given that the healthy brain is functionally integrated, we conclude that tDCS could effectively normalize less functionally integrated brain networks rather than enhance functional integration.
Collapse
Affiliation(s)
- Tetsu Hirosawa
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Daiki Soma
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yoshiaki Miyagishi
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Naoki Furutani
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yuko Yoshimura
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Faculty of Education, Institute of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| | - Masafumi Kameya
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yohei Yamaguchi
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Ken Yaoi
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Masuhiko Sano
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Koji Kitamura
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Tetsuya Takahashi
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Mitsuru Kikuchi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
5
|
Guo Z, Qiu R, Qiu H, Lu H, Zhu X. Long-term effects of repeated multitarget high-definition transcranial direct current stimulation combined with cognitive training on response inhibition gains. Front Neurosci 2023; 17:1107116. [PMID: 36968503 PMCID: PMC10033537 DOI: 10.3389/fnins.2023.1107116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
BackgroundFew studies have investigated the effects of repeated sessions of transcranial direct current stimulation (tDCS) combined with concurrent cognitive training on improving response inhibition, and the findings have been heterogeneous in the limited research. This study investigated the long-lasting and transfer effects of 10 consecutive sessions of multitarget anodal HD-tDCS combined with concurrent cognitive training on improving response inhibition compared with multitarget stimulation or training alone.MethodsNinety-four healthy university students aged 18–25 were randomly assigned to undergo different interventions, including real stimulation combined with stop-signal task (SST) training, real stimulation, sham stimulation combined with SST training, and sham stimulation. Each intervention lasted 20 min daily for 10 consecutive days, and the stimulation protocol targeted right inferior frontal gyrus (rIFG) and pre-supplementary motor area (pre-SMA) simultaneously with a total current intensity of 2.5 mA. Performance on SST and possible transfer effects to Stroop task, attention network test, and N-back task were measured before and 1 day and 1 month after completing the intervention course.ResultsThe main findings showed that the combined protocol and the stimulation alone significantly reduced stop-signal reaction time (SSRT) in the post-intervention and follow-up tests compared to the pre-intervention test. However, training alone only decreased SSRT in the post-test. The sham control exhibited no changes. Subgroup analysis revealed that the combined protocol and the stimulation alone induced a decrease in the SSRT of the low-performance subgroup at the post-test and follow-up test compared with the pre-test. However, only the combined protocol, but not the stimulation alone, improved the SSRT of the high-performance subgroup. The transfer effects were absent.ConclusionThis study provides supportive evidence for the synergistic effect of the combined protocol, indicating its superiority over the single intervention method. In addition, the long-term after-effects can persist for up to at least 1 month. Our findings also provide insights into the clinical application and strategy for treating response inhibition deficits.
Collapse
|
6
|
Mertens N, Cavanagh J, Brandt E, Fratzke V, Story-Remer J, Rieger R, Wilson JK, Gill D, Campbell R, Quinn DK. Effects of anodal tDCS on electroencephalography correlates of cognitive control in mild-to-moderate traumatic brain injury. NeuroRehabilitation 2023; 53:209-220. [PMID: 37638454 PMCID: PMC11436288 DOI: 10.3233/nre-230014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) may provide a potential therapy for cognitive deficits caused by traumatic brain injury (TBI), yet its efficacy and mechanisms of action are still uncertain. OBJECTIVE We hypothesized that anodal tDCS over the left dorsolateral prefrontal cortex (DLPFC) would boost the influence of a cognitive training regimen in a mild-to-moderate TBI (mmTBI) sample. Cognitive enhancement was measured by examining event-related potentials (ERPs) during cognitive control tasks from pre- to post-treatment. METHODS Thirty-four participants with mmTBI underwent ten sessions of cognitive training with active (n = 17) or sham (n = 17) anodal tDCS to the left DLPFC. ERPs were assessed during performance of an auditory oddball (3AOB), N-back, and dot pattern expectancy (DPX) task before and after treatment. RESULTS P3b amplitudes significantly decreased from baseline to post-treatment testing, regardless of tDCS condition, in the N-back task. The active tDCS group demonstrated a significantly increased P3a amplitude in the DPX task. No statistically significant stimulation effects were seen during the 3AOB and N-back tasks. CONCLUSION Active anodal tDCS paired with cognitive training led to increases in P3a amplitudes in the DPX, inferring increased cognitive control. P3b decreased in the N-back task demonstrating the effects of cognitive training. These dissociated P3 findings suggest separate mechanisms invoked by different neuroplasticity-inducing paradigms (stimulation versus training) in brain networks that support executive functioning.
Collapse
Affiliation(s)
- Nickolas Mertens
- Center for Brain Recovery and Repair, University of New Mexico, Albuquerque, NM, USA
| | - James Cavanagh
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Emma Brandt
- Center for Brain Recovery and Repair, University of New Mexico, Albuquerque, NM, USA
| | - Violet Fratzke
- Center for Brain Recovery and Repair, University of New Mexico, Albuquerque, NM, USA
| | | | - Rebecca Rieger
- Center for Brain Recovery and Repair, University of New Mexico, Albuquerque, NM, USA
| | - J Kevin Wilson
- Center for Brain Recovery and Repair, University of New Mexico, Albuquerque, NM, USA
| | - Darbi Gill
- Center for Brain Recovery and Repair, University of New Mexico, Albuquerque, NM, USA
| | - Richard Campbell
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Davin K Quinn
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
7
|
Gordon MS, Seeto JXW, Dux PE, Filmer HL. Intervention is a better predictor of tDCS mind-wandering effects than subjective beliefs about experimental results. Sci Rep 2022; 12:13110. [PMID: 35908042 PMCID: PMC9338927 DOI: 10.1038/s41598-022-16545-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
Blinding in non-invasive brain stimulation research is a topic of intense debate, especially regarding the efficacy of sham-controlled methods for transcranial direct current stimulation (tDCS). A common approach to assess blinding success is the inclusion of correct guess rate. However, this method cannot provide insight into the effect of unblinding on observed stimulation outcomes. Thus, the implementation of measures to systematically evaluate subjective expectation regarding stimulation is needed. Previous work evaluated subjective effects in an earlier study which reported a mind-wandering and tDCS data set and concluded that subjective belief drove the pattern of results observed. Here we consider the subjective and objective intervention effects in a key contrast from that data set-2 mA vs. sham-which was not examined in the reanalysis. In addition, we examine another key contrast from a different tDCS mind-wandering study that employed similar methodology. Our findings support objective intervention as the strongest predictor of the observed effects of mind-wandering in both re-analyses, over and above that of subjective intervention. However, it is important to control for and understand the possible inadequacies of sham-controlled methods.
Collapse
Affiliation(s)
- Matilda S Gordon
- School of Psychology, The University of Queensland, McElwain Building (24A), St Lucia, QLD, 4072, Australia.
| | - Jennifer X W Seeto
- School of Psychology, The University of Queensland, McElwain Building (24A), St Lucia, QLD, 4072, Australia
| | - Paul E Dux
- School of Psychology, The University of Queensland, McElwain Building (24A), St Lucia, QLD, 4072, Australia
| | - Hannah L Filmer
- School of Psychology, The University of Queensland, McElwain Building (24A), St Lucia, QLD, 4072, Australia
| |
Collapse
|
8
|
State-dependent effects of neural stimulation on brain function and cognition. Nat Rev Neurosci 2022; 23:459-475. [PMID: 35577959 DOI: 10.1038/s41583-022-00598-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 01/02/2023]
Abstract
Invasive and non-invasive brain stimulation methods are widely used in neuroscience to establish causal relationships between distinct brain regions and the sensory, cognitive and motor functions they subserve. When combined with concurrent brain imaging, such stimulation methods can reveal patterns of neuronal activity responsible for regulating simple and complex behaviours at the level of local circuits and across widespread networks. Understanding how fluctuations in physiological states and task demands might influence the effects of brain stimulation on neural activity and behaviour is at the heart of how we use these tools to understand cognition. Here we review the concept of such 'state-dependent' changes in brain activity in response to neural stimulation, and consider examples from research on altered states of consciousness (for example, sleep and anaesthesia) and from task-based manipulations of selective attention and working memory. We relate relevant findings from non-invasive methods used in humans to those obtained from direct electrical and optogenetic stimulation of neuronal ensembles in animal models. Given the widespread use of brain stimulation as a research tool in the laboratory and as a means of augmenting or restoring brain function, consideration of the influence of changing physiological and cognitive states is crucial for increasing the reliability of these interventions.
Collapse
|
9
|
Smucny J, Dienel SJ, Lewis DA, Carter CS. Mechanisms underlying dorsolateral prefrontal cortex contributions to cognitive dysfunction in schizophrenia. Neuropsychopharmacology 2022; 47:292-308. [PMID: 34285373 PMCID: PMC8617156 DOI: 10.1038/s41386-021-01089-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023]
Abstract
Kraepelin, in his early descriptions of schizophrenia (SZ), characterized the illness as having "an orchestra without a conductor." Kraepelin further speculated that this "conductor" was situated in the frontal lobes. Findings from multiple studies over the following decades have clearly implicated pathology of the dorsolateral prefrontal cortex (DLPFC) as playing a central role in the pathophysiology of SZ, particularly with regard to key cognitive features such as deficits in working memory and cognitive control. Following an overview of the cognitive mechanisms associated with DLPFC function and how they are altered in SZ, we review evidence from an array of neuroscientific approaches addressing how these cognitive impairments may reflect the underlying pathophysiology of the illness. Specifically, we present evidence suggesting that alterations of the DLPFC in SZ are evident across a range of spatial and temporal resolutions: from its cellular and molecular architecture, to its gross structural and functional integrity, and from millisecond to longer timescales. We then present an integrative model based upon how microscale changes in neuronal signaling in the DLPFC can influence synchronized patterns of neural activity to produce macrocircuit-level alterations in DLPFC activation that ultimately influence cognition and behavior. We conclude with a discussion of initial efforts aimed at targeting DLPFC function in SZ, the clinical implications of those efforts, and potential avenues for future development.
Collapse
Affiliation(s)
- Jason Smucny
- Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, Sacramento, CA, USA
- Center for Neuroscience, University of California Davis, Davis, CA, USA
| | - Samuel J Dienel
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Cameron S Carter
- Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, Sacramento, CA, USA.
- Center for Neuroscience, University of California Davis, Davis, CA, USA.
| |
Collapse
|
10
|
Gaudry KS, Ayaz H, Bedows A, Celnik P, Eagleman D, Grover P, Illes J, Rao RPN, Robinson JT, Thyagarajan K. Projections and the Potential Societal Impact of the Future of Neurotechnologies. Front Neurosci 2021; 15:658930. [PMID: 34867139 PMCID: PMC8634831 DOI: 10.3389/fnins.2021.658930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
Traditionally, recording from and stimulating the brain with high spatial and temporal resolution required invasive means. However, recently, the technical capabilities of less invasive and non-invasive neuro-interfacing technology have been dramatically improving, and laboratories and funders aim to further improve these capabilities. These technologies can facilitate functions such as multi-person communication, mood regulation and memory recall. We consider a potential future where the less invasive technology is in high demand. Will this demand match that the current-day demand for a smartphone? Here, we draw upon existing research to project which particular neuroethics issues may arise in this potential future and what preparatory steps may be taken to address these issues.
Collapse
Affiliation(s)
- Kate S. Gaudry
- Kilpatrick Townsend & Stockton LLP, Washington, DC, United States
| | - Hasan Ayaz
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
- Department of Psychology, College of Arts and Sciences, Drexel University, Philadelphia, PA, United States
- Drexel Solutions Institute, Drexel University, Philadelphia, PA, United States
- Department of Family and Community Health, University of Pennsylvania, Philadelphia, PA, United States
- Center for Injury Research and Prevention, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | | | - Pablo Celnik
- Department of Physical Medicine and Rehabilitation, Johns Hopkins, School of Medicine, Baltimore, MD, United States
| | - David Eagleman
- Department of Psychiatry, Stanford University School of Medicine, Stanford, CA, United States
| | - Pulkit Grover
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, United States
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Judy Illes
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Neuroethics Canada, University of British Columbia, Vancouver, BC, Canada
| | - Rajesh P. N. Rao
- Center for Neurotechnology, Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, DC, United States
| | - Jacob T. Robinson
- Department of Bioengineering, Rice University, Houston, TX, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, United States
- Applied Physics Program, Rice University, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | | |
Collapse
|
11
|
Aryutova K, Paunova R, Kandilarova S, Todeva-Radneva A, Stoyanov D. Implications from translational cross-validation of clinical assessment tools for diagnosis and treatment in psychiatry. World J Psychiatry 2021; 11:169-180. [PMID: 34046313 PMCID: PMC8134869 DOI: 10.5498/wjp.v11.i5.169] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/17/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Traditional therapeutic methods in psychiatry, such as psychopharmacology and psychotherapy help many people suffering from mental disorders, but in the long-term prove to be effective in a relatively small proportion of those affected. Therapeutically, resistant forms of mental disorders such as schizophrenia, major depressive disorder, and bipolar disorder lead to persistent distress and dysfunction in personal, social, and professional aspects. In an effort to address these problems, the translational approach in neuroscience has initiated the inclusion of novel or modified unconventional diagnostic and therapeutic techniques with promising results. For instance, neuroimaging data sets from multiple modalities provide insight into the nature of pathophysiological mechanisms such as disruptions of connectivity, integration, and segregation of neural networks, focusing on the treatment of mental disorders through instrumental biomedical methods such as electro-convulsive therapy (ECT), transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS) and deep brain stimulation (DBS). These methodologies have yielded promising results that have yet to be understood and improved to enhance the prognosis of the severe and persistent psychotic and affective disorders. The current review is focused on the translational approach in the management of schizophrenia and mood disorders, as well as the adaptation of new transdisciplinary diagnostic tools such as neuroimaging with concurrently administered psychopathological questionnaires and integration of the results into the therapeutic framework using various advanced instrumental biomedical tools such as ECT, TMS, tDCS and DBS.
Collapse
Affiliation(s)
- Katrin Aryutova
- Department of Psychiatry and Medical Psychology, Scientific Research Institute, Medical University of Plovdiv, Plovdiv 4002, Bulgaria
| | - Rositsa Paunova
- Department of Psychiatry and Medical Psychology, Scientific Research Institute, Medical University of Plovdiv, Plovdiv 4002, Bulgaria
| | - Sevdalina Kandilarova
- Department of Psychiatry and Medical Psychology, Scientific Research Institute, Medical University of Plovdiv, Plovdiv 4002, Bulgaria
| | - Anna Todeva-Radneva
- Department of Psychiatry and Medical Psychology, Scientific Research Institute, Medical University of Plovdiv, Plovdiv 4002, Bulgaria
| | - Drozdstoy Stoyanov
- Department of Psychiatry and Medical Psychology, Scientific Research Institute, Medical University of Plovdiv, Plovdiv 4002, Bulgaria
| |
Collapse
|
12
|
Feltman KA, Hayes AM, Bernhardt KA, Nwala E, Kelley AM. Viability of tDCS in Military Environments for Performance Enhancement: A Systematic Review. Mil Med 2021; 185:e53-e60. [PMID: 31735955 DOI: 10.1093/milmed/usz189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/23/2019] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Transcranial electrical stimulation (tES) as a method of cognitive enhancement in both diseased and healthy individuals has gained popularity. Its potential for enhancing cognition in healthy individuals has gained the interest of the military. However, before it being implemented into military training or operational settings, further work is needed to determine its efficacy and safety. Although a considerable amount of literature exists, few studies have specifically evaluated its use in enhancing cognition relative to operational, military tasks. Therefore, in a first step to evaluate its efficacy, we completed a systematic literature review of studies using transcranial direct current stimulation (tDCS), a type of tES, to enhance cognitive processes in healthy individuals. METHODS A systematic literature review was conducted to identify literature published between 2008 and 2018 that used a method of tES for cognitive enhancement. As part of a larger literature review effort, 282 articles were initially retrieved. These were then screened to identify articles meeting predetermined criteria, to include those using various methods of tES, resulting in 44 articles. Next, the articles were screened for those using tDCS or high-definition tDCS, resulting in 34 articles for review and information extraction. RESULTS Of the 34 articles reviewed, 28 reported some degree of enhancement (eg, improved accuracy on tasks and reduced reaction times). Areas of cognitive enhancements included executive functioning, creativity/cognitive flexibility, attention/perception, decision-making, memory, and working memory. However, the precise outcomes of enhancement varied given the range in tasks that were used to assess the constructs. Additionally, the stimulation parameters in terms of intensity applied, duration of stimulation, and brain region targeted for stimulation varied. CONCLUSIONS The conclusions to be drawn from this systematic literature review include the identification of a brain region for targeting with stimulation to enhance a broad range of cognitive constructs applicable to military tasks, as well as stimulation parameters for duration and intensity. The dorsolateral prefrontal cortex was most frequently targeted in the studies that found enhanced performance across several cognitive constructs. Stimulation intensities of 2 mA and durations of 20 minutes or longer appeared frequently as well. Although several parameters were identified, further work is required before this type of technology can be recommended for operational use.
Collapse
Affiliation(s)
- Kathryn A Feltman
- U.S. Army Aeromedical Research Laboratory, 6901 Farrel Road, Fort Rucker, AL 36362
| | - Amanda M Hayes
- U.S. Army Aeromedical Research Laboratory, 6901 Farrel Road, Fort Rucker, AL 36362.,Oak Ridge Institute for Science and Education, 100 ORAU Way, Oak Ridge, TN 37830
| | - Kyle A Bernhardt
- U.S. Army Aeromedical Research Laboratory, 6901 Farrel Road, Fort Rucker, AL 36362.,Oak Ridge Institute for Science and Education, 100 ORAU Way, Oak Ridge, TN 37830
| | - Emmanuel Nwala
- U.S. Army Aeromedical Research Laboratory, 6901 Farrel Road, Fort Rucker, AL 36362
| | - Amanda M Kelley
- U.S. Army Aeromedical Research Laboratory, 6901 Farrel Road, Fort Rucker, AL 36362
| |
Collapse
|
13
|
Ehrhardt SE, Filmer HL, Wards Y, Mattingley JB, Dux PE. The influence of tDCS intensity on decision-making training and transfer outcomes. J Neurophysiol 2020; 125:385-397. [PMID: 33174483 DOI: 10.1152/jn.00423.2020] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) has been shown to improve single- and dual-task performance in healthy participants and enhance transferable training gains following multiple sessions of combined stimulation and task practice. However, it has yet to be determined what the optimal stimulation dose is for facilitating such outcomes. We aimed to test the effects of different tDCS intensities, with a commonly used electrode montage, on performance outcomes in a multisession single/dual-task training and transfer protocol. In a preregistered study, 123 participants, who were pseudorandomized across four groups, each completed six sessions (pre- and posttraining sessions and four combined tDCS and training sessions) and received 20 min of prefrontal anodal tDCS at 0.7, 1.0, or 2.0 mA or 15-s sham stimulation. Response time and accuracy were assessed in trained and untrained tasks. The 1.0-mA group showed substantial improvements in single-task reaction time and dual-task accuracy, with additional evidence for improvements in dual-task reaction times, relative to sham performance. This group also showed near transfer to the single-task component of an untrained multitasking paradigm. The 0.7- and 2.0-mA intensities varied in which performance measures they improved on the trained task, but in sum, the effects were less robust than for the 1.0-mA group, and there was no evidence for the transfer of performance. Our study highlights that training performance gains are augmented by tDCS, but their magnitude and nature are not uniform across stimulation intensity.NEW & NOTEWORTHY Using techniques such as transcranial direct current stimulation to modulate cognitive performance is an alluring endeavor. However, the optimal parameters to augment performance are unknown. Here, in a preregistered study with a large sample (123 subjects), three different stimulation dosages (0.7, 1.0, and 2.0 mA) were applied during multitasking training. Different cognitive training performance outcomes occurred across the dosage conditions, with only one of the doses (1.0 mA) leading to training transfer.
Collapse
Affiliation(s)
- Shane E Ehrhardt
- School of Psychology, The University of Queensland, St. Lucia, Australia
| | - Hannah L Filmer
- School of Psychology, The University of Queensland, St. Lucia, Australia
| | - Yohan Wards
- School of Psychology, The University of Queensland, St. Lucia, Australia
| | - Jason B Mattingley
- School of Psychology, The University of Queensland, St. Lucia, Australia.,Queensland Brain Institute, The University of Queensland, St. Lucia, Australia.,Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Paul E Dux
- School of Psychology, The University of Queensland, St. Lucia, Australia
| |
Collapse
|
14
|
Horne KS, Filmer HL, Nott ZE, Hawi Z, Pugsley K, Mattingley JB, Dux PE. Evidence against benefits from cognitive training and transcranial direct current stimulation in healthy older adults. Nat Hum Behav 2020; 5:146-158. [PMID: 33106629 DOI: 10.1038/s41562-020-00979-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
Abstract
Cognitive training and brain stimulation show promise for ameliorating age-related neurocognitive decline. However, evidence for this is controversial. In a Registered Report, we investigated the effects of these interventions, where 133 older adults were allocated to four groups (left prefrontal cortex anodal transcranial direct current stimulation (tDCS) with decision-making training, and three control groups) and trained over 5 days. They completed a task/questionnaire battery pre- and post-training, and at 1- and 3-month follow-ups. COMT and BDNF Val/Met polymorphisms were also assessed. Contrary to work in younger adults, there was evidence against tDCS-induced training enhancement on the decision-making task. Moreover, there was evidence against transfer of training gains to untrained tasks or everyday function measures at any post-intervention time points. As indicated by exploratory work, individual differences may have influenced outcomes. But, overall, the current decision-making training and tDCS protocol appears unlikely to lead to benefits for older adults.
Collapse
Affiliation(s)
- Kristina S Horne
- School of Psychology, University of Queensland, Brisbane, Queensland, Australia.
| | - Hannah L Filmer
- School of Psychology, University of Queensland, Brisbane, Queensland, Australia
| | - Zoie E Nott
- School of Psychology, University of Queensland, Brisbane, Queensland, Australia
| | - Ziarih Hawi
- School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Kealan Pugsley
- School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Jason B Mattingley
- School of Psychology, University of Queensland, Brisbane, Queensland, Australia.,Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Paul E Dux
- School of Psychology, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
15
|
Boudewyn MA, Scangos K, Ranganath C, Carter CS. Using prefrontal transcranial direct current stimulation (tDCS) to enhance proactive cognitive control in schizophrenia. Neuropsychopharmacology 2020; 45:1877-1883. [PMID: 32604401 PMCID: PMC7608454 DOI: 10.1038/s41386-020-0750-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 11/09/2022]
Abstract
The goal of this study was to use transcranial direct current stimulation (tDCS) to examine the role of the prefrontal cortex (PFC) in neural oscillatory activity associated with proactive cognitive control in schizophrenia. To do so, we tested the impact of PFC-targeted tDCS on behavioral and electrophysiological markers of proactive cognitive control engagement in individuals with schizophrenia. Using a within-participants, double-blinded, sham-controlled crossover design, we recorded EEG while participants with schizophrenia completed a proactive cognitive control task (the Dot Pattern Expectancy (DPX) Task), after receiving 20 min of active prefrontal stimulation at 2 mA or sham stimulation. We hypothesized that active stimulation would enhance proactive cognitive control, leading to changes in behavioral performance on the DPX task and in activity in the gamma frequency band during key periods of the task designed to tax proactive cognitive control. The results showed significant changes in the pattern of error rates and increases in EEG gamma power as a function of tDCS condition (active or sham), that were indicative of enhanced proactive cognitive control. These findings, considered alongside our previous work in healthy adults, provides novel support for the role gamma oscillations in proactive cognitive control and they suggest that frontal tDCS may be a promising approach to enhance proactive cognitive control in schizophrenia.
Collapse
Affiliation(s)
- Megan A. Boudewyn
- grid.205975.c0000 0001 0740 6917University of California, Santa Cruz, CA USA
| | - Katherine Scangos
- grid.266102.10000 0001 2297 6811University of California, San Francisco, CA USA
| | - Charan Ranganath
- grid.27860.3b0000 0004 1936 9684University of California, Davis, CA USA
| | - Cameron S. Carter
- grid.27860.3b0000 0004 1936 9684University of California, Davis, CA USA
| |
Collapse
|
16
|
Zhuang W, Yin K, Zi Y, Liu Y. Non-Invasive Brain Stimulation: Augmenting the Training and Performance Potential in Esports Players. Brain Sci 2020; 10:brainsci10070454. [PMID: 32679797 PMCID: PMC7407750 DOI: 10.3390/brainsci10070454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 11/16/2022] Open
Abstract
During the last two decades, esports, a highly competitive sporting activity, has gained increasing popularity. Both performance and competition in esports require players to have fine motor skills and physical and cognitive abilities in controlling and manipulating digital activities in a virtual environment. While strategies for building and improving skills and abilities are crucial for successful gaming performance, few effective training approaches exist in the fast-growing area of competitive esports. In this paper, we describe a non-invasive brain stimulation (NIBS) approach and highlight the relevance and potential areas for research while being cognizant of various technical, safety, and ethical issues related to NIBS when applied to esports.
Collapse
Affiliation(s)
| | | | | | - Yu Liu
- Correspondence: ; Tel.: +86-21-65507860
| |
Collapse
|
17
|
Dormal V, Lannoy S, Bollen Z, D'Hondt F, Maurage P. Can we boost attention and inhibition in binge drinking? Electrophysiological impact of neurocognitive stimulation. Psychopharmacology (Berl) 2020; 237:1493-1505. [PMID: 32036388 DOI: 10.1007/s00213-020-05475-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/28/2020] [Indexed: 12/22/2022]
Abstract
RATIONALE Binge drinking (i.e. excessive episodic alcohol consumption) among young adults has been associated with deleterious consequences, notably at the cognitive and brain levels. These behavioural impairments and brain alterations have a direct impact on psychological and interpersonal functioning, but they might also be involved in the transition towards severe alcohol use disorders. Development of effective rehabilitation programs to reduce these negative effects as they emerge thus constitutes a priority in subclinical populations. OBJECTIVES The present study tested the behavioural and electrophysiological impact of neurocognitive stimulation (i.e. transcranial direct current stimulation (tDCS) applied during a cognitive task) to improve attention and inhibition abilities in young binge drinkers. METHODS Two groups (20 binge drinkers and 20 non-binge drinkers) performed two sessions in a counterbalanced order. Each session consisted of an inhibition task (i.e. Neutral Go/No-Go) while participants received left frontal tDCS or sham stimulation, immediately followed by an Alcohol-related Go/No-Go task, while both behavioural and electrophysiological measures were recorded. RESULTS No significant differences were observed between groups or sessions (tDCS versus sham stimulation) at the behavioural level. However, electrophysiological measurements during the alcohol-related inhibition task revealed a specific effect of tDCS on attentional resource mobilization (indexed by the N2 component) in binge drinkers, whereas later inhibition processes (indexed by the P3 component) remained unchanged in this population. CONCLUSIONS The present findings indicate that tDCS can modify the electrophysiological correlates of cognitive processes in binge drinking. While the impact of such brain modifications on actual neuropsychological functioning and alcohol consumption behaviours remains to be determined, these results underline the potential interest of developing neurocognitive stimulation approaches in this population.
Collapse
Affiliation(s)
- Valérie Dormal
- Louvain Experimental Psychopathology research group (LEP), Psychological Science Research Institute, Université catholique de Louvain, Place Cardinal Mercier, 10, 1348, Louvain-la-Neuve, Belgium
| | - Séverine Lannoy
- Louvain Experimental Psychopathology research group (LEP), Psychological Science Research Institute, Université catholique de Louvain, Place Cardinal Mercier, 10, 1348, Louvain-la-Neuve, Belgium
| | - Zoé Bollen
- Louvain Experimental Psychopathology research group (LEP), Psychological Science Research Institute, Université catholique de Louvain, Place Cardinal Mercier, 10, 1348, Louvain-la-Neuve, Belgium
| | - Fabien D'Hondt
- CNRS, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, University Lille, 59000, Lille, France.,Clinique de Psychiatrie, CURE, CHU Lille, 59000, Lille, France
| | - Pierre Maurage
- Louvain Experimental Psychopathology research group (LEP), Psychological Science Research Institute, Université catholique de Louvain, Place Cardinal Mercier, 10, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
18
|
Transcranial direct current stimulation: a roadmap for research, from mechanism of action to clinical implementation. Mol Psychiatry 2020; 25:397-407. [PMID: 31455860 PMCID: PMC6981019 DOI: 10.1038/s41380-019-0499-9] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/27/2019] [Accepted: 07/09/2019] [Indexed: 01/24/2023]
Abstract
Transcranial direct current stimulation (tDCS) is a promising method for altering the function of neural systems, cognition, and behavior. Evidence is emerging that it can also influence psychiatric symptomatology, including major depression and schizophrenia. However, there are many open questions regarding how the method might have such an effect, and uncertainties surrounding its influence on neural activity, and human cognition and functioning. In the present critical review, we identify key priorities for future research into major depression and schizophrenia, including studies of the mechanism(s) of action of tDCS at the neuronal and systems levels, the establishment of the cognitive impact of tDCS, as well as investigations of the potential clinical efficacy of tDCS. We highlight areas of progress in each of these domains, including data that appear to favor an effect of tDCS on neural oscillations rather than spiking, and findings that tDCS administration to the prefrontal cortex during task training may be an effective way to enhance behavioral performance. Finally, we provide suggestions for further empirical study that will elucidate the impact of tDCS on brain and behavior, and may pave the way for efficacious clinical treatments for psychiatric disorders.
Collapse
|
19
|
Endogenous dopamine release under transcranial direct-current stimulation governs enhanced attention: a study with positron emission tomography. Transl Psychiatry 2019; 9:115. [PMID: 30877269 PMCID: PMC6420561 DOI: 10.1038/s41398-019-0443-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/25/2019] [Accepted: 02/14/2019] [Indexed: 11/08/2022] Open
Abstract
Transcranial direct-current stimulation (tDCS) to the dorsolateral prefrontal cortex (DLPFC) has been established as an effective and noninvasive method to modulate cognitive function. Nevertheless, the mechanisms causing those cognitive changes under the tDCS remain largely unknown. We strove to elucidate the cognito-biological relation under the tDCS condition by examining whether the dopamine system activated by tDCS is involved in cognitive changes in human participants, or not. To evaluate the dopamine system, we used [11C]-raclopride positron emission tomography (PET) scanning: 20 healthy men underwent two [11C]-raclopride PET scans and subsequent neuropsychological tests. One scan was conducted after tDCS to the DLPFC. One was conducted after sham stimulation (control). Results of [11C]-raclopride PET measurements demonstrate that tDCS to the DLPFC caused dopamine release in the right ventral striatum. Neuropsychological tests for attentiveness revealed that tDCS to the DLPFC-enhanced participants' accuracy. Moreover, this effect was correlated significantly with dopamine release. This finding provides clinico-biological evidence, demonstrating that enhancement of dopamine signaling by tDCS in the ventral striatum is associated with attention enhancement.
Collapse
|
20
|
Filmer HL, Lyons M, Mattingley JB, Dux PE. Anodal tDCS applied during multitasking training leads to transferable performance gains. Sci Rep 2017; 7:12988. [PMID: 29021526 PMCID: PMC5636876 DOI: 10.1038/s41598-017-13075-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/19/2017] [Indexed: 01/08/2023] Open
Abstract
Cognitive training can lead to performance improvements that are specific to the tasks trained. Recent research has suggested that transcranial direct current stimulation (tDCS) applied during training of a simple response-selection paradigm can broaden performance benefits to an untrained task. Here we assessed the impact of combined tDCS and training on multitasking, stimulus-response mapping specificity, response-inhibition, and spatial attention performance in a cohort of healthy adults. Participants trained over four days with concurrent tDCS - anodal, cathodal, or sham - applied to the left prefrontal cortex. Immediately prior to, 1 day after, and 2 weeks after training, performance was assessed on the trained multitasking paradigm, an untrained multitasking paradigm, a go/no-go inhibition task, and a visual search task. Training combined with anodal tDCS, compared with training plus cathodal or sham stimulation, enhanced performance for the untrained multitasking paradigm and visual search tasks. By contrast, there were no training benefits for the go/no-go task. Our findings demonstrate that anodal tDCS combined with multitasking training can extend to untrained multitasking paradigms as well as spatial attention, but with no extension to the domain of response inhibition.
Collapse
Affiliation(s)
- Hannah L Filmer
- School of Psychology, The University of Queensland, 4072, St Lucia, Australia.
| | - Maxwell Lyons
- School of Psychology, The University of Queensland, 4072, St Lucia, Australia
| | - Jason B Mattingley
- School of Psychology, The University of Queensland, 4072, St Lucia, Australia
- Queensland Brain Institute, The University of Queensland, 4072, St Lucia, Australia
| | - Paul E Dux
- School of Psychology, The University of Queensland, 4072, St Lucia, Australia
| |
Collapse
|
21
|
Eddy CM, Shapiro K, Clouter A, Hansen PC, Rickards HE. Transcranial direct current stimulation can enhance working memory in Huntington's disease. Prog Neuropsychopharmacol Biol Psychiatry 2017; 77:75-82. [PMID: 28390970 DOI: 10.1016/j.pnpbp.2017.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/03/2017] [Accepted: 04/03/2017] [Indexed: 11/28/2022]
Abstract
UNLABELLED Transcranial direct current stimulation (tDCS) combined with a cognitive task can enhance targeted aspects of cognitive functioning in clinical populations. The movement disorder Huntington's disease (HD) is associated with progressive cognitive impairment. Deficits in working memory (WM) can be apparent early in the disease and impact functional capacity. We investigated whether tDCS combined with cognitive training could improve WM in patients with HD, and if baseline clinical or cognitive measures may predict efficacy. Twenty participants with HD completed this crossover trial, undergoing 1.5mA anodal tDCS over left dorsolateral prefrontal cortex and sham stimulation on separate visits. Participants and assessor were blinded to condition order, which was randomised across participants. All participants completed baseline clinical and cognitive assessments. Pre- and post-stimulation tasks included digit reordering, computerised n-back tests and a Stroop task. During 15min of tDCS/sham stimulation, participants practiced 1- and 2-back WM tasks. Participants exhibited an increase in WM span on the digit re-ordering span task from pre- to post-stimulation after tDCS, but not after sham stimulation. Gains in WM were positively related to motor symptom ratings and negatively associated with verbal fluency scores. Patients with more severe motor symptoms showed greatest improvement, suggesting that motor symptom ratings may help identify patients who are most likely to benefit from tDCS. CONCLUSIONS Dorsolateral prefrontal tDCS appears well tolerated in HD and enhances WM span compared to sham stimulation. Our findings strongly encourage further investigation of the extent to which tDCS combined with cognitive training could enhance everyday function in HD. ClinicalTrials.gov; NCT02216474 Brain stimulation in Movement Disorders; https://clinicaltrials.gov/ct2/show/NCT02216474.
Collapse
Affiliation(s)
- Clare M Eddy
- National Centre for Mental Health, BSMHFT, Birmingham and College of Medical and Dental Sciences, University of Birmingham, UK.
| | - Kimron Shapiro
- School of Psychology, College of Life and Environmental Sciences, University of Birmingham, UK
| | - Andrew Clouter
- School of Psychology, College of Life and Environmental Sciences, University of Birmingham, UK
| | - Peter C Hansen
- School of Psychology, College of Life and Environmental Sciences, University of Birmingham, UK
| | - Hugh E Rickards
- National Centre for Mental Health, BSMHFT, Birmingham and College of Medical and Dental Sciences, University of Birmingham, UK
| |
Collapse
|