1
|
He Z, Yin BK, Wang K, Zhao B, Chen Y, Li ZC, Chen J. The alpha2-adrenergic receptor agonist clonidine protects against cerebral ischemia/reperfusion induced neuronal apoptosis in rats. Metab Brain Dis 2024; 39:741-752. [PMID: 38833094 DOI: 10.1007/s11011-024-01354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/06/2024] [Indexed: 06/06/2024]
Abstract
Apoptosis is the crucial pathological mechanism following cerebral ischemic injury. Our previous studies demonstrated that clonidine, one agonist of alpha2-adrenergic receptor (α2-AR), could attenuate cerebral ischemic injury in a rat model of middle cerebral artery occlusion/reperfusion (MCAO/R). However, it's unclear whether clonidine exerts neuroprotective effects by regulating neuronal apoptosis. In this study, we elucidated whether clonidine can exert anti-apoptotic effects in cerebral ischemic injury, and further explored the possible mechanisms. Neurological deficit score was measured to evaluate the neurological function. TTC staining was used for the measurement of brain infarct size. Hematoxylin-Eosin (HE) staining was applied to examine the cell morphology. TUNEL and DAPI fluorescent staining methods were used to analyze the cell apoptosis in brain tissue. Fluorescence quantitative real-time PCR was performed to assess the gene expression of Caspase-3 and P53. Western blotting assay was applied to detect the protein expression of Caspase-3 and P53. The results showed that clonidine improved neurological function, reduced brain infarct size, alleviated neuronal damage, and reduced the ratio of cell apoptosis in the brain with MCAO/R injury. moreover, clonidine down-regulated the gene and protein expression of Caspase-3 and P53 which were over-expressed after MCAO/R injury. Whereas, yohimbine (one selective α2-AR antagonist) mitigated the anti-apoptosis effects of clonidine, accompanied by reversed gene and protein expression changes. The results indicated that clonidine attenuated cerebral MCAO/R injury via suppressing neuronal apoptosis, which may be mediated, at least in part, by activating α2-AR.
Collapse
Affiliation(s)
- Zhi He
- Department of Pharmacology, College of Medicine, Jiaxing University, 314001, Jiaxing, People's Republic of China.
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, Yichang, People's Republic of China.
- College of Basic Medical Sciences, China Three Gorges University, 443002, Yichang, People's Republic of China.
| | - Bo-Kai Yin
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, Yichang, People's Republic of China
- Yichang Yiling Hospital, 443000, Yichang, People's Republic of China
- Zhongnan Hospital of Wuhan University, 430071, Wuhan, People's Republic of China
| | - Ke Wang
- Department of Pharmacology, College of Medicine, Jiaxing University, 314001, Jiaxing, People's Republic of China
| | - Bo Zhao
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, Yichang, People's Republic of China
- College of Basic Medical Sciences, China Three Gorges University, 443002, Yichang, People's Republic of China
| | - Yue Chen
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, Yichang, People's Republic of China
- College of Basic Medical Sciences, China Three Gorges University, 443002, Yichang, People's Republic of China
| | - Zi-Cheng Li
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, Yichang, People's Republic of China.
- College of Basic Medical Sciences, China Three Gorges University, 443002, Yichang, People's Republic of China.
| | - Jing Chen
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, Yichang, People's Republic of China.
- College of Medicine and Health Sciences, China Three Gorges University, No.8 Daxue Road, 443002, Yichang, People's Republic of China.
| |
Collapse
|
2
|
Yuan HX, Zhang LN, Li G, Qiao L. Brain protective effect of dexmedetomidine vs propofol for sedation during prolonged mechanical ventilation in non-brain injured patients. World J Psychiatry 2024; 14:370-379. [PMID: 38617978 PMCID: PMC11008391 DOI: 10.5498/wjp.v14.i3.370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND Dexmedetomidine and propofol are two sedatives used for long-term sedation. It remains unclear whether dexmedetomidine provides superior cerebral protection for patients undergoing long-term mechanical ventilation. AIM To compare the neuroprotective effects of dexmedetomidine and propofol for sedation during prolonged mechanical ventilation in patients without brain injury. METHODS Patients who underwent mechanical ventilation for > 72 h were randomly assigned to receive sedation with dexmedetomidine or propofol. The Richmond Agitation and Sedation Scale (RASS) was used to evaluate sedation effects, with a target range of -3 to 0. The primary outcomes were serum levels of S100-β and neuron-specific enolase (NSE) every 24 h. The secondary outcomes were remifentanil dosage, the proportion of patients requiring rescue sedation, and the time and frequency of RASS scores within the target range. RESULTS A total of 52 and 63 patients were allocated to the dexmedetomidine group and propofol group, respectively. Baseline data were comparable between groups. No significant differences were identified between groups within the median duration of study drug infusion [52.0 (IQR: 36.0-73.5) h vs 53.0 (IQR: 37.0-72.0) h, P = 0.958], the median dose of remifentanil [4.5 (IQR: 4.0-5.0) μg/kg/h vs 4.6 (IQR: 4.0-5.0) μg/kg/h, P = 0.395], the median percentage of time in the target RASS range without rescue sedation [85.6% (IQR: 65.8%-96.6%) vs 86.7% (IQR: 72.3%-95.3), P = 0.592], and the median frequency within the target RASS range without rescue sedation [72.2% (60.8%-91.7%) vs 73.3% (60.0%-100.0%), P = 0.880]. The proportion of patients in the dexmedetomidine group who required rescue sedation was higher than in the propofol group with statistical significance (69.2% vs 50.8%, P = 0.045). Serum S100-β and NSE levels in the propofol group were higher than in the dexmedetomidine group with statistical significance during the first six and five days of mechanical ventilation, respectively (all P < 0.05). CONCLUSION Dexmedetomidine demonstrated stronger protective effects on the brain compared to propofol for long-term mechanical ventilation in patients without brain injury.
Collapse
Affiliation(s)
- Hong-Xun Yuan
- Intensive Care Unit, Peking University International Hospital, Beijing 102206, China
| | - Li-Na Zhang
- Central Operating Room, The Affiliated Beijing Chaoyang Hospital of Capital Medical University, Beijing 100020, China
| | - Gang Li
- Intensive Care Unit, Peking University International Hospital, Beijing 102206, China
| | - Li Qiao
- Intensive Care Unit, Peking University International Hospital, Beijing 102206, China
| |
Collapse
|
3
|
Maisat W, Han X, Koutsogiannaki S, Soriano SG, Yuki K. Differential effects of dexmedetomidine on Gram-positive and Gram-negative bacterial killing and phagocytosis. Int Immunopharmacol 2023; 120:110327. [PMID: 37201408 PMCID: PMC10330683 DOI: 10.1016/j.intimp.2023.110327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
Dexmedetomidine is a commonly used sedative in perioperative and intensive care settings with purported immunomodulatory properties. Since its effects on immune functions against infections have not been extensively studied, we tested the effects of dexmedetomidine on Gram-positive [Staphylococcus aureus and Enterococcus faecalis] and Gram-negative bacteria [Escherichia coli], and on effector functions of human monocytes THP-1 cells against them. We evaluated phagocytosis, reactive oxygen species (ROS) formation, and CD11b activation, and performed RNA sequencing analyses. Our study revealed that dexmedetomidine improved Gram-positive but mitigated Gram-negative bacterial phagocytosis and killing in THP-1 cells. The attenuation of Toll-like receptor 4 (TLR4) signaling by dexmedetomidine was previously reported. Thus, we tested TLR4 inhibitor TAK242. Similar to dexmedetomidine, TAK242 reduced E. coli phagocytosis but enhanced CD11b activation. The reduced TLR4 response potentially increases CD11b activation and ROS generation and subsequently enhances Gram-positive bacterial killing. Conversely, dexmedetomidine may inhibit the TLR4-signaling pathway and mitigate the alternative phagocytosis pathway induced by TLR4 activation through LPS-mediated Gram-negative bacteria, resulting in worsened bacterial loads. We also examined another α2 adrenergic agonist, xylazine. Because xylazine did not affect bacterial clearance, we proposed that dexmedetomidine may have an off-target effect on bacterial killing process, potentially involving crosstalk between CD11b and TLR4. Despite its potential to attenuate inflammation, we provide a novel insight into potential risks of dexmedetomidine use during Gram-negative infections, highlighting the differential effect of dexmedetomidine on Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Wiriya Maisat
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, USA; Department of Anaesthesia, Harvard Medical School, Boston, USA; Department of Anesthesiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Xiaohui Han
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, USA; Department of Anaesthesia, Harvard Medical School, Boston, USA
| | - Sophia Koutsogiannaki
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, USA; Department of Anaesthesia, Harvard Medical School, Boston, USA; Department of Immunology, Harvard Medical School, Boston, USA
| | - Sulpicio G Soriano
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, USA; Department of Anaesthesia, Harvard Medical School, Boston, USA
| | - Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, USA; Department of Anaesthesia, Harvard Medical School, Boston, USA; Department of Immunology, Harvard Medical School, Boston, USA.
| |
Collapse
|
4
|
Dong X, Zhou S, Nao J. Kaempferol as a therapeutic agent in Alzheimer's disease: Evidence from preclinical studies. Ageing Res Rev 2023; 87:101910. [PMID: 36924572 DOI: 10.1016/j.arr.2023.101910] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common type of dementia and seriously affects human life and health. Kaempferol (KMP) is a common flavonoid, that is mainly derived from the rhizomes of Kaempferol galanga L. and is widely found in various fruits and vegetables. Previous studies have suggested that KMP has multiple pharmacological activities. However, the anti-AD mechanism of KMP has not been elucidated. METHODS This systematic review aims to summarize the existing preclinical experiments on KMP, further confirm the therapeutic effect of KMP in an AD model, and summarize the possible mechanism by which KMP exerts anti-AD effects. Electronic databases, including PubMed, China National Knowledge Infrastructure (CNKI), Baidu Academic, and Wanfang, were searched using the keywords of 'Kaempferol,' 'KMP,' 'pharmacology,' and 'Alzheimer's disease'. RESULTS We evaluated the reliability of the 12 included studies, and the results showed that the anti-AD mechanism of KMP was reliable and that the prospect of KMP in the treatment of cognitive impairment was promising. We comprehensively assessed the neuroprotective effects of KMP in in vivo and in vitro models of AD. These studies shown that KMP ameliorated AD through several mechanisms, including its antioxidant, anti-inflammatory, anti-apoptotic, and anti-acetylcholinesterase effects. CONCLUSION KMP may exert anti-AD effects through various mechanisms and is a potential drug with broad prospects for the treatment of AD.
Collapse
Affiliation(s)
- Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| | - Siyu Zhou
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
5
|
Zhang Z, Mu X, Zhou X. Dexmedetomidine alleviates inflammatory response and oxidative stress injury of vascular smooth muscle cell via α2AR/GSK-3β/MKP-1/NRF2 axis in intracranial aneurysm. BMC Pharmacol Toxicol 2022; 23:81. [PMID: 36273189 PMCID: PMC9588221 DOI: 10.1186/s40360-022-00607-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 08/08/2022] [Indexed: 02/01/2023] Open
Abstract
Vascular smooth muscle cell (VSMC) phenotypic modulation regulates the initiation and progression of intracranial aneurysm (IA). Dexmedetomidine (DEX) is suggested to play neuroprotective roles in patients with craniocerebral injury. Therefore, we investigated the biological functions of DEX and its mechanisms against IA formation and progression in the current study. The rat primary VSMCs were isolated from Sprague-Dawley rats. IA and superficial temporal artery (STA) tissue samples were obtained from patients with IA. Flow cytometry was conducted to identify the characteristics of isolated VSMCs. Hydrogen peroxide (H2O2) was used to mimic IA-like conditions in vitro. Cell viability was detected using CCK-8 assays. Wound healing and Transwell assays were performed to detect cell motility. ROS production was determined by immunofluorescence using DCFH-DA probes. Western blotting and RT-qPCR were carried out to measure gene expression levels. Inflammation responses were determined by measuring inflammatory cytokines. Immunohistochemistry staining was conducted to measure α2-adrenergic receptor levels in tissue samples. DEX alleviated the H2O2-induced cytotoxicity, attenuated the promoting effects of H2O2 on cell malignancy, and protected VSMCs against H2O2-induced oxidative damage and inflammation response. DEX regulated the GSK-3β/MKP-1/NRF2 pathway via the α2AR. DEX alleviates the inflammatory responses and oxidative damage of VSMCs by regulating the GSK-3β/MKP-1/NRF2 pathway via the α2AR in IA.
Collapse
Affiliation(s)
- Ze Zhang
- grid.452458.aDepartment of Anesthesiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050000 Hebei China
| | - Xiue Mu
- grid.452458.aDepartment of Anesthesiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050000 Hebei China
| | - Xiaohui Zhou
- grid.452458.aDepartment of Anesthesiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050000 Hebei China
| |
Collapse
|
6
|
Zeng X, Li J, Yang F, Xia R. The effect of narcotics on ferroptosis-related molecular mechanisms and signalling pathways. Front Pharmacol 2022; 13:1020447. [PMID: 36313359 PMCID: PMC9606818 DOI: 10.3389/fphar.2022.1020447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/30/2022] [Indexed: 11/26/2022] Open
Abstract
Ferroptosis is a novel programmed cell death form characterized by iron-mediated reactive oxygen species-induced lipid peroxidation and subsequent cell damage that is distinct from apoptosis, necroptosis, pyroptosis, and autophagy. Most studies on ferroptosis are based on its function and mechanism, but there have been relatively few studies on the effects of drugs, especially anaesthetics, on ferroptosis. Therefore, we summarized the recent literature on the effects of anaesthetics on ferroptosis to understand the underlying mechanism. In particular, we focused on the targets of various anaesthetics in different mechanisms of ferroptosis and the effects of ferroptosis induction or inhibition by narcotics on various diseases. The aims of this review are to provide a relatively reasonable drug regimen for clinicians, to explore potential ferroptosis protection drugs and targets, to reduce perioperative complications and to improve the postoperative performance of patients, especially those who are critically ill.
Collapse
Affiliation(s)
- Xiaoqin Zeng
- Department of Anaesthesiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Jingda Li
- College of Life Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Fuyuan Yang
- School of Basic Medicine, Yangtze University Health Science Center, Jingzhou, Hubei, China
- *Correspondence: Fuyuan Yang, ; Rui Xia,
| | - Rui Xia
- Department of Anaesthesiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
- *Correspondence: Fuyuan Yang, ; Rui Xia,
| |
Collapse
|
7
|
She H, Hu Y, Zhou Y, Tan L, Zhu Y, Ma C, Wu Y, Chen W, Wang L, Zhang Z, Wang L, Liu L, Li T. Protective Effects of Dexmedetomidine on Sepsis-Induced Vascular Leakage by Alleviating Ferroptosis via Regulating Metabolic Reprogramming. J Inflamm Res 2021; 14:6765-6782. [PMID: 34916824 PMCID: PMC8670891 DOI: 10.2147/jir.s340420] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/03/2021] [Indexed: 12/15/2022] Open
Abstract
Introduction Vascular leakage plays a vital role in sepsis-induced multi-organ dysfunction. Currently, no specific measures are available for vascular leakage. Ferroptosis, as a recently recognized form of cell death, plays a crucial role in cell dysfunction. It is still unknown whether ferroptosis participates in the occurrence of organ dysfunction following sepsis. Our previous study showed that dexmedetomidine (Dex) could alleviate sepsis-induced organ dysfunction. However, whether the mechanism is related to ferroptosis is not clear. Methods The publicly available datasets of septic patients were reanalyzed, and septic models in vivo and vitro by cecal ligation and puncture and lipopolysaccharide-stimulated vascular endothelial cells (VECs) were applied. The occurrence of ferroptosis in septic patients and rats was observed, and the protective effects of Dex on ferroptosis, and related mechanisms on regulating metabolic reprogramming and mitochondrial fission were further studied. Results The transcriptomics data of patients from the GEO database showed that ferroptosis was closely related to sepsis. Sepsis induced significant ferroptosis in VECs by metabolomics analysis. The level of lipid peroxidation was increased in VECs, and the mitochondrial cristae was decreased after sepsis. Metabolomics analysis showed that Dex activated the pentose phosphate pathway and increased glutathione in VECs via up-regulation of G6PD expression. Dex could antagonize sepsis-induced the decrease in the level of Nrf2. The Nrf2 inhibitor reversed the protective effect of Dex on ferroptosis. Further study showed that Dex significantly alleviated sepsis-induced mitochondrial over-division, improved mitochondrial function, and decreased ROS, further inhibiting the ferroptosis of VECs. Dex alleviated the permeability of vessels by reducing ferroptosis and enhanced the intercellular junction of VECs. Conclusion Dex protects vascular leakage following sepsis by inhibiting ferroptosis. The mechanism is mainly related to metabolic reprogramming via Nrf2 up-regulation and inhibition of mitochondrial fission.
Collapse
Affiliation(s)
- Han She
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China.,State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Yi Hu
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Yuanqun Zhou
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Lei Tan
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Yu Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Chunhua Ma
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Yue Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Wei Chen
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Li Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Zisen Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Li Wang
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| |
Collapse
|