1
|
Xing X, Liu X, Li X, Li M, Wu X, Huang X, Xu A, Liu Y, Zhang J. Insights into spinal muscular atrophy from molecular biomarkers. Neural Regen Res 2025; 20:1849-1863. [PMID: 38934395 PMCID: PMC11691461 DOI: 10.4103/nrr.nrr-d-24-00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/15/2024] [Accepted: 05/11/2024] [Indexed: 06/28/2024] Open
Abstract
Spinal muscular atrophy is a devastating motor neuron disease characterized by severe cases of fatal muscle weakness. It is one of the most common genetic causes of mortality among infants aged less than 2 years. Biomarker research is currently receiving more attention, and new candidate biomarkers are constantly being discovered. This review initially discusses the evaluation methods commonly used in clinical practice while briefly outlining their respective pros and cons. We also describe recent advancements in research and the clinical significance of molecular biomarkers for spinal muscular atrophy, which are classified as either specific or non-specific biomarkers. This review provides new insights into the pathogenesis of spinal muscular atrophy, the mechanism of biomarkers in response to drug-modified therapies, the selection of biomarker candidates, and would promote the development of future research. Furthermore, the successful utilization of biomarkers may facilitate the implementation of gene-targeting treatments for patients with spinal muscular atrophy.
Collapse
Affiliation(s)
- Xiaodong Xing
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xinzhu Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiandeng Li
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Mi Li
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xian Wu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xiaohui Huang
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ajing Xu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Cui X, Liu H, Liu Y, Yu Z, Wang D, Wei W, Wang S. Tissue-specific decellularized extracellular matrix rich in collagen, glycoproteins, and proteoglycans and its applications in advanced organoid engineering: A review. Int J Biol Macromol 2025:144469. [PMID: 40409619 DOI: 10.1016/j.ijbiomac.2025.144469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/14/2025] [Accepted: 05/19/2025] [Indexed: 05/25/2025]
Abstract
Decellularized extracellular matrix derived from specific organs represents a promising platform for organoid development, offering distinct advantages in tissue engineering. This matrix maintains the complex three-dimensional network of biological macromolecules secreted by tissue-specific cells, including collagen, glycoproteins, and proteoglycans. This extracellular matrix orchestrates cellular behaviors, such as proliferation, migration, and differentiation, while maintaining optimal tissue homeostasis. The organ-specific composition of decellularized extracellular matrix preserves native biological cues, including growth factors and cytokines, as well as mechanical properties, facilitating natural cell-matrix interactions and promoting appropriate stem cell development. These characteristics make organ-derived decellularized extracellular matrix an ideal scaffold for organoid construction. The implementation of decellularized extracellular matrix enhances the physiological relevance of organoid models, which is particularly valuable in drug development, personalized medicine, and the study of complex organ microenvironments. This advancement significantly improves the translational potential of organoid technology for organ transplantation while providing robust research tools. Consequently, decellularized extracellular matrix-based organoid models offer superior platforms for preclinical therapeutic evaluation. This review examines recent progress in decellularized extracellular matrix-based organoid development, beginning with current application strategies and proceeding to an analysis of existing decellularized extracellular matrix-derived organoid models.
Collapse
Affiliation(s)
- Xiangran Cui
- Department of Orthopedics, Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110167, PR China
| | - Hongfei Liu
- Department of Orthopedics, Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110167, PR China
| | - Yantong Liu
- Department of Orthopedics, Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110167, PR China
| | - Zhitong Yu
- Department of Orthopedics, Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110167, PR China
| | - Deyu Wang
- Department of Orthopedics, Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110167, PR China
| | - Wei Wei
- Department of Orthopedics, Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110167, PR China.
| | - Shixuan Wang
- Department of Orthopedics, Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110167, PR China.
| |
Collapse
|
3
|
Zhang W, He J, Wang Y, Jin H, Wang R. Scientific status analysis of exercise benefits for vascular cognitive impairment: Evidence of neuroinflammation. J Neuroimmunol 2025; 402:578574. [PMID: 40086400 DOI: 10.1016/j.jneuroim.2025.578574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/07/2025] [Accepted: 03/02/2025] [Indexed: 03/16/2025]
Abstract
Vascular cognitive impairment (VCI) is a syndrome characterized by cognitive decline resulting from insufficient perfusion to the entire brain or specific brain regions. The lack of a clear understanding of the mechanisms linking cerebrovascular disease to cognitive impairment has impeded the development of targeted treatments for VCI. Increasing evidence indicates that exercise may offer significant benefits for patients with VCI. This study explores how neuroinflammatory mechanisms mediate the effects of exercise on VCI, focusing on the broader biological processes involved. Exercise plays a crucial role in mitigating vascular risk factors, reducing oxidative stress, and promoting neurogenesis. Furthermore, exercise influences neuroinflammatory mediators and central immune cells via various signaling pathways. Different types and intensities of exercise, including resistance and endurance training, have been shown to differentially modulate neuroinflammation during the progression of VCI. This paper summarizes the current mechanisms of action and proposes exercise interventions targeting neuroinflammatory pathways, along with biomarker studies, to enhance our understanding of VCI pathogenesis and inform clinical practice. A more in-depth understanding of the inflammatory mechanisms underlying VCI may facilitate the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Wei Zhang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing He
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuxin Wang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - He Jin
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Rong Wang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing, China; Beijing Institute of Major Brain Diseases, Beijing, China.
| |
Collapse
|
4
|
Butelman ER, Huang Y, King SG, Gaudreault PO, Ceceli AO, Kronberg G, Cathomas F, Roussos P, Russo SJ, Garland EL, Goldstein RZ, Alia-Klein N. Peripheral Blood Cytokines as Markers of Longitudinal Change in White Matter Microstructure Following Inpatient Treatment for Opioid Use Disorders. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100480. [PMID: 40248275 PMCID: PMC12005283 DOI: 10.1016/j.bpsgos.2025.100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/24/2025] [Accepted: 02/20/2025] [Indexed: 04/19/2025] Open
Abstract
Background Opioid use disorder (OUD) causes major public health morbidity and mortality. Although standard-of-care treatment with medications for OUD (MOUDs) is available, there are few biological markers of the clinical process of recovery. Neurobiological aspects of recovery can include normalization of brain white matter (WM) microstructure, which is sensitive to cytokine signaling. Here, we determined whether blood-based cytokines can be markers of change in WM microstructure following MOUD. Methods Inpatient individuals with heroin use disorder (iHUDs) (n = 21) with methadone or buprenorphine MOUD underwent magnetic resonance imaging (MRI) scans with diffusion tensor imaging (DTI) and provided ratings of drug cue-induced craving, arousal, and valence earlier in treatment (MRI1) and ≈14 weeks thereafter (MRI2). Healthy control participants (HCs) (n = 24) also underwent 2 MRI scans during a similar time interval. At MRI2, participants provided a peripheral blood sample for multiplex quantification of serum cytokines. We analyzed the correlation of a multitarget biomarker score (from a principal component analysis of 19 cytokines that differed significantly between iHUDs and HCs) with treatment-related change in DTI metrics (ΔDTI; MRI2 - MRI1). Results The cytokine biomarker score was negatively correlated with ΔDTI metrics in frontal, frontoparietal, and corticolimbic WM tracts in iHUDs but not in HCs. Also, serum levels of specific cytokines in the cytokine biomarker score, including the interleukin-related oncostatin M (OSM), similarly correlated with ΔDTI metrics in iHUDs but not in HCs. Serum levels of other specific cytokines were negatively correlated with changes in cue-induced craving and arousal in the iHUDs. Conclusions Specific serum cytokines, studied alone or as a group, may serve as accessible biomarkers of WM microstructure changes and potential recovery in iHUDs undergoing treatment with MOUD.
Collapse
Affiliation(s)
- Eduardo R. Butelman
- Neuropsychoimaging of Addictions and Related Conditions Research Program, Icahn School of Medicine at Mount Sinai, Departments of Psychiatry and Neuroscience, New York, New York
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yuefeng Huang
- Neuropsychoimaging of Addictions and Related Conditions Research Program, Icahn School of Medicine at Mount Sinai, Departments of Psychiatry and Neuroscience, New York, New York
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sarah G. King
- Neuropsychoimaging of Addictions and Related Conditions Research Program, Icahn School of Medicine at Mount Sinai, Departments of Psychiatry and Neuroscience, New York, New York
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Pierre-Olivier Gaudreault
- Neuropsychoimaging of Addictions and Related Conditions Research Program, Icahn School of Medicine at Mount Sinai, Departments of Psychiatry and Neuroscience, New York, New York
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ahmet O. Ceceli
- Neuropsychoimaging of Addictions and Related Conditions Research Program, Icahn School of Medicine at Mount Sinai, Departments of Psychiatry and Neuroscience, New York, New York
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Greg Kronberg
- Neuropsychoimaging of Addictions and Related Conditions Research Program, Icahn School of Medicine at Mount Sinai, Departments of Psychiatry and Neuroscience, New York, New York
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Flurin Cathomas
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Panos Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, New York
- Mental Illness Research, Education, and Clinical Center (VISN 2 South), James J. Peters Veterans Affairs, Medical Center, Bronx, New York
- Center for Precision Medicine and Translational Therapeutics, James J. Peters Veterans Affairs, Medical Center, Bronx, New York
| | - Scott J. Russo
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
- Center of Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Eric L. Garland
- Department of Psychiatry, University of California San Diego, La Jolla, California
- Sanford Institute for Empathy and Compassion, University of California San Diego, La Jolla, California
| | - Rita Z. Goldstein
- Neuropsychoimaging of Addictions and Related Conditions Research Program, Icahn School of Medicine at Mount Sinai, Departments of Psychiatry and Neuroscience, New York, New York
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
- Center of Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nelly Alia-Klein
- Neuropsychoimaging of Addictions and Related Conditions Research Program, Icahn School of Medicine at Mount Sinai, Departments of Psychiatry and Neuroscience, New York, New York
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
- Center of Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
5
|
Sepúlveda-Cuéllar RD, Soria-Medina DA, Cañedo-Solares I, Gómez-Chávez F, Molina-López LM, Cruz-Martínez MY, Correa D. Controversies and insights into cytokine regulation of neurogenesis and behavior in adult rodents. Front Immunol 2025; 16:1550660. [PMID: 40352932 PMCID: PMC12061686 DOI: 10.3389/fimmu.2025.1550660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/24/2025] [Indexed: 05/14/2025] Open
Abstract
Adult learning, memory, and social interaction partially depend on neurogenesis in two regions: the hippocampus and the subventricular zone. There is evidence that the immune system is important for these processes in pathological situations, but there is no review of its role in non-pathological or near-physiological conditions. Although further research is warranted in this area, some conclusions can be drawn. Intrusive LyC6hi monocytes and autoreactive CD4+ T cells have a positive impact on neurogenesis and behavior, but the latter are deleterious if specific to external antigens. Mildly activated microglia play a crucial role in promoting these processes, by eliminating apoptotic neuronal progenitors and producing low levels of interleukins, which increase if the cells are activated, leading to inhibition of neurogenesis. Chemokines are poorly studied, but progenitor cells and neurons express their receptors, which appear important for migration and maturation. The few works that jointly analyzed neurogenesis and behavior showed congruent effects of immune cells and cytokines. In conclusion, the immune system components -mostly local- seem of utmost importance for the control of behavior under non-pathological conditions.
Collapse
Affiliation(s)
- Rodrigo Daniel Sepúlveda-Cuéllar
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, EdoMex, Mexico
| | - Diego Alberto Soria-Medina
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, EdoMex, Mexico
- Facultad de Psicología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Irma Cañedo-Solares
- Laboratorio de Inmunología Experimental, Instituto Nacional de Pediatría (INP), Secretaría de Salud, Ciudad de México, Mexico
| | - Fernando Gómez-Chávez
- Laboratorio de Enfermedades Osteoarticulares e Inmunológicas, Sección de Estudios de Posgrado e Investigación, Escuela Nacional de Medicina y Homeopatía (ENMyH), Instituto Politécnico Nacional (IPN), Ciudad de México, Mexico
| | - Liliana Monserrat Molina-López
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, EdoMex, Mexico
| | - María Yolanda Cruz-Martínez
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, EdoMex, Mexico
| | - Dolores Correa
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, EdoMex, Mexico
| |
Collapse
|
6
|
Wang C, He T, Qin J, Jiao J, Ji F. The roles of immune factors in neurodevelopment. Front Cell Neurosci 2025; 19:1451889. [PMID: 40276707 PMCID: PMC12018394 DOI: 10.3389/fncel.2025.1451889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 03/28/2025] [Indexed: 04/26/2025] Open
Abstract
The development of the nervous system is a highly complex process orchestrated by a multitude of factors, including various immune elements. These immune components play a dual role, not only regulating the immune response but also actively influencing brain development under both physiological and pathological conditions. The brain's immune barrier includes microglia in the brain parenchyma, which act as resident macrophages, astrocytes that support neuronal function and contribute to the inflammatory response, as well as circulating immune cells that reside at the brain's borders, including the choroid plexus, meninges, and perivascular spaces. Cytokines-soluble signaling molecules released by immune cells-play a crucial role in mediating communication between immune cells and the developing nervous system. Cytokines regulate processes such as neurogenesis, synaptic pruning, and inflammation, helping to shape the neural environment. Dysregulation of these immune cells, astrocytes, or cytokine signaling can lead to alterations in neurodevelopment, potentially contributing to neurodevelopmental abnormalities. This article reviews the central role of microglia, astrocytes, cytokines, and other immune factors in neurodevelopment, and explores how neuroinflammation can lead to the onset of neurodevelopmental disorders, shedding new light on their pathogenesis.
Collapse
Affiliation(s)
- Chong Wang
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Tingting He
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Qin
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jianwei Jiao
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Fen Ji
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
7
|
Marcolin E, Chemello C, Piovan A, Barbierato M, Morazzoni P, Ragazzi E, Zusso M. A Combination of 5-(3',4'-Dihydroxyphenyl)-γ-Valerolactone and Curcumin Synergistically Reduces Neuroinflammation in Cortical Microglia by Targeting the NLRP3 Inflammasome and the NOX2/Nrf2 Signaling Pathway. Nutrients 2025; 17:1316. [PMID: 40284180 PMCID: PMC12030566 DOI: 10.3390/nu17081316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: 5-(3',4'-dihydroxyphenyl)-γ-valerolactone (γ-VL), recently identified as a predominant microbial metabolite derived from proanthocyanidins, offers benefits such as reducing inflammation, oxidative stress, and supporting brain health. Its effects on neuroinflammation and microglial activation remain largely unexplored. Curcumin, a bioactive component isolated from Curcuma longa L., is well known for its ability to reduce microglial activation and pro-inflammatory mediator production and release. While the individual effects of γ-VL and curcumin are well documented, their potential combined effects remain unexplored. This research sought to investigate the possible synergistic effects of γ-VL and curcumin in reducing microglial activation. Methods: Primary rat cortical microglia were pre-treated with γ-VL and curcumin, alone or in combination, before stimulation with LPS. An MTT assay was used to evaluate cell viability, while pro-inflammatory mediators were assessed by real-time PCR and ELISA. Nitric oxide production was evaluated with the Griess assay. SynergyFinder Plus software analyzed potential synergistic effects. Results: The combination of low micromolar concentrations of γ-VL and curcumin synergistically reduced LPS-induced microglial activation. Specifically, the combination exhibited a significantly greater ability to inhibit the production and release of pro-inflammatory factors (such as IL-1β, TNF-α, and NO) compared to each compound individually. Mechanistically, the anti-inflammatory activity was attributed to the downregulation of NLRP3 expression, and the reduction in microglial activation was linked to the modulation of the NOX2/Nrf2 signaling pathway. Conclusions: The combination of low micromolar concentrations of γ-VL and curcumin produces synergistic anti-inflammatory effects in microglia by targeting key inflammatory pathways, indicating its potential utility as a treatment strategy for neurodegenerative diseases involving microglial activation.
Collapse
Affiliation(s)
- Emma Marcolin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy; (E.M.); (C.C.); (A.P.); (M.B.); (E.R.)
| | - Chiara Chemello
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy; (E.M.); (C.C.); (A.P.); (M.B.); (E.R.)
| | - Anna Piovan
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy; (E.M.); (C.C.); (A.P.); (M.B.); (E.R.)
| | - Massimo Barbierato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy; (E.M.); (C.C.); (A.P.); (M.B.); (E.R.)
| | - Paolo Morazzoni
- Nutraceutical Division, Distillerie Umberto Bonollo S.p.A., 35035 Mestrino, Italy;
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy; (E.M.); (C.C.); (A.P.); (M.B.); (E.R.)
| | - Morena Zusso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy; (E.M.); (C.C.); (A.P.); (M.B.); (E.R.)
| |
Collapse
|
8
|
López-Cepeda ML, Angarita-Rodríguez A, Rojas-Cruz AF, Pérez Mejia J, Khatri R, Brehler M, Martínez-Martínez E, Pinzón A, Aristizabal-Pachon AF, González J. Extracellular Competing Endogenous RNA Networks Reveal Key Regulators of Early Amyloid Pathology Propagation in Alzheimer's Disease. Int J Mol Sci 2025; 26:3544. [PMID: 40332030 PMCID: PMC12027385 DOI: 10.3390/ijms26083544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/23/2025] [Accepted: 04/06/2025] [Indexed: 05/08/2025] Open
Abstract
Extracellular vesicles (EVs) are small capsular bodies released by cells, mediating responses in intercellular communication. The role of EVs in Aβ pathology spreading in the Alzheimer's disease (AD) brain has been evidenced, although whether this occurs due to the co-transportation of Aβ peptides or contribution of other factors, such as EV-associated transcripts, remains uncertain. In vitro studies of miRNA cargo in neuron-derived extracellular vesicles (NDEVs) show that Aβ hyperexpression alters the transcriptomic profile; however, it is not clear to what extent this causes changes at the organ level. By utilizing datasets from published studies, we generated competing endogenous RNA (ceRNA) networks for miRNAs co-expressed in NDEVs and the brain in different stages of pathology, using both an APP overexpressing neuronal model (in vitro) and brain cortices from 6- and 9-month-old APP/PSEN1 mice (in vivo). Networks integrating information from mRNAs, lncRNAs, and circRNAs showed two candidate lncRNAs (Kcnq1ot1 and Gm42969) and a circRNA (Pum1), while enrichment analyses detected that NDEVs miRNAs signal to other CNS cells and that this signal can be disrupted by Aβ pathology, contributing to the loss of long-term potentiation seen in early AD.
Collapse
Affiliation(s)
- Misael Leonardo López-Cepeda
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (M.L.L.-C.); (A.A.-R.); (A.F.R.-C.); (J.P.M.)
| | - Andrea Angarita-Rodríguez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (M.L.L.-C.); (A.A.-R.); (A.F.R.-C.); (J.P.M.)
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Alexis Felipe Rojas-Cruz
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (M.L.L.-C.); (A.A.-R.); (A.F.R.-C.); (J.P.M.)
| | - Julián Pérez Mejia
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (M.L.L.-C.); (A.A.-R.); (A.F.R.-C.); (J.P.M.)
| | - Robin Khatri
- Institute of Medical Systems Bioinformatics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Michael Brehler
- Institute of Medical Systems Bioinformatics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Eduardo Martínez-Martínez
- Laboratory of Cell Communication & Extracellular Vesicles, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico
| | - Andrés Pinzón
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Andrés Felipe Aristizabal-Pachon
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (M.L.L.-C.); (A.A.-R.); (A.F.R.-C.); (J.P.M.)
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (M.L.L.-C.); (A.A.-R.); (A.F.R.-C.); (J.P.M.)
| |
Collapse
|
9
|
Van Hove H, De Feo D, Greter M, Becher B. Central Nervous System Macrophages in Health and Disease. Annu Rev Immunol 2025; 43:589-613. [PMID: 40036702 DOI: 10.1146/annurev-immunol-082423-041334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The central nervous system (CNS) has a unique set of macrophages that seed the tissue early during embryonic development. Microglia reside in the parenchyma, and border-associated macrophages are present in border regions, including the meninges, perivascular spaces, and choroid plexus. CNS-resident macrophages support brain homeostasis during development and steady state. In the diseased brain, however, the immune landscape is altered, with phenotypic and transcriptional changes in resident macrophages and the invasion of blood-borne monocytes, which differentiate into monocyte-derived macrophages upon entering the CNS. In this review, we focus on the fate and function of the macrophage compartment in health, neurodegenerative conditions such as amyloidosis, and neuroinflammation as observed in multiple sclerosis and infection. We discuss our current understanding that monocyte-derived macrophages contribute to neuropathology whereas native macrophages play a neuroprotective role in disease.
Collapse
Affiliation(s)
- Hannah Van Hove
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland;
| | - Donatella De Feo
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland;
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland;
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland;
| |
Collapse
|
10
|
Rodríguez-Castillo AJ, Pacheco-Tena C, Cuevas-Martínez R, Sánchez-Ramírez BE, González-Chávez SA. Anti-inflammatory Potential of Plants of Genus Rhus: Decrease in Inflammatory Mediators In Vitro and In Vivo - a Systematic Review. PLANTA MEDICA 2025; 91:238-258. [PMID: 40054491 DOI: 10.1055/a-2535-1655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Plants from the Rhus genus are renowned for their medicinal properties, including anti-inflammatory effects; however, the mechanisms underlying these effects remain poorly understood. This systematic review, conducted following PRISMA guidelines, evaluated the anti-inflammatory effects of Rhus plants and explored their potential pharmacological mechanisms. A total of 35 articles were included, with the majority demonstrating a low-risk bias, as assessed using the SYRCLE tool. Rhus verniciflua, Rhus chinensis, Rhus coriaria, Rhus succedanea, Rhus tripartite, Rhus crenata, and Rhus trilobata were analyzed in the reviewed articles. In vitro studies consistently demonstrated the ability of Rhus plants to reduce key inflammatory mediators such as TNF-α, IL-1β, and IL-6. In vivo studies confirmed these effects in murine models of inflammation, with doses mostly of 400 and 800 mg/kg body weight, with no reports of toxicity. Fifty-four distinct inflammatory mediators were assessed in vivo; no pattern of mediators was identified that could elucidate the anti-inflammatory mechanisms of the action of Rhus in acute or chronic inflammation. The clinical trial reported anti-inflammatory effects in humans at 1000 mg/kg for 6 weeks. The review data on the Rhus-mediated reduction in inflammatory mediators were integrated and visualized using the Reactome bioinformatics database, which suggested that the mechanism of action of Rhus involves the inhibition of inflammasome signaling. These findings support the potential of Rhus plants as a basis for developing anti-inflammatory therapies. Further research is needed to optimize dosage regimens and fully explore their pharmacological applications.
Collapse
Affiliation(s)
- Alejandra Jazmín Rodríguez-Castillo
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas; Universidad Autónoma de Chihuahua, Chihuahua, México
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - César Pacheco-Tena
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas; Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Rubén Cuevas-Martínez
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas; Universidad Autónoma de Chihuahua, Chihuahua, México
| | | | - Susana Aideé González-Chávez
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas; Universidad Autónoma de Chihuahua, Chihuahua, México
| |
Collapse
|
11
|
Ribeiro de Novais Júnior L, Vicente da Silva T, da Silva LM, Metzker de Andrade F, da Silva AR, Meneguzzo V, de Souza Ramos S, Michielin Lopes C, Bernardo Saturnino A, Inserra A, de Bitencourt RM. Repeated Administration of a Full-Spectrum Cannabidiol Product, Not a Cannabidiol Isolate, Reverses the Lipopolysaccharide-Induced Depressive-Like Behavior and Hypolocomotion in a Rat Model of Low-Grade Subchronic Inflammation. Cannabis Cannabinoid Res 2025; 10:236-246. [PMID: 39347620 DOI: 10.1089/can.2024.0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
Background: Mounting evidence suggests that the phytocannabinoid cannabidiol (CBD) holds promise as an antidepressant agent in conditions underlined by inflammation. Full-spectrum CBD extracts might provide greater behavioral efficacy than CBD-only isolates and might require lower doses to achieve the same outcomes due to the presence of other cannabinoids, terpenes, and flavonoids. However, investigations in this area remain limited. Methods: We evaluated the behavioral response to the administration for 7 days of 15 and 30 mg/kg of a CBD isolate and a full-spectrum CBD product in a rat model of subchronic lipopolysaccharide (LPS, 0.5 mg/kg/day/7 days, intraperitoneal)-induced depressive-like and sickness behavior. The forced swim test was used to assess depressive-like behavior, the open field test (OFT) to assess locomotion, and the elevated plus maze to assess anxiety-like behavior. Results: The full-spectrum CBD extract at both doses, but not the CBD isolate, reversed the LPS-induced depressive-like behavior in the forced swim test. Moreover, the full-spectrum CBD extract at the higher dose but not the CBD isolate restored the subchronic LPS-induced hypolocomotion in the OFT. Repeated administration of both formulations elicited an anxiogenic-like trend in the elevated plus maze. Conclusion: Full-spectrum CBD products might have greater therapeutic efficacy in resolving inflammation-induced depressive and sickness behavior compared to a CBD-only isolate.
Collapse
Affiliation(s)
| | - Tiago Vicente da Silva
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Santa Catarina, Brazil
| | - Larissa Mendes da Silva
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Santa Catarina, Brazil
| | | | - Alisson Reuel da Silva
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Santa Catarina, Brazil
| | - Vicente Meneguzzo
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Santa Catarina, Brazil
| | - Suelen de Souza Ramos
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Santa Catarina, Brazil
| | - Cyntia Michielin Lopes
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Santa Catarina, Brazil
| | - Artur Bernardo Saturnino
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Santa Catarina, Brazil
| | - Antonio Inserra
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Santa Catarina, Brazil
- Department of Psychiatry, McGill University, Montreal, Canada
| | | |
Collapse
|
12
|
Hamilton OS, Steptoe A. Financial stress and sleep duration in immune and neuroendocrine patterning. An analytical triangulation in ELSA. Brain Behav Immun 2025; 127:396-408. [PMID: 40088958 DOI: 10.1016/j.bbi.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/10/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Proinflammatory and neuroendocrine mediators are implicated in disease aetiopathogenesis. Stress increases concentrations of immune-neuroendocrine biomarkers through a complex network of brain-body signalling pathways. Suboptimal sleep further modulates these processes by altering major effector systems that sensitise the brain to stress. Given the ubiquitous, impactful nature of material deprivation, we tested for a synergistic association of financial stress and suboptimal sleep with these molecular processes. METHODS With data drawn from the English Longitudinal Study of Ageing (ELSA), associations were tested on 4,940 participants (∼66 ± 9.4 years) across four-years (2008-2012). Through analytical triangulation, we tested whether financial stress (>60% insufficient resources) and suboptimal sleep (≤5 / ≥9 h) were independently and interactively associated with immune-neuroendocrine profiles, derived from a latent profile analysis (LPA) of C-reactive protein, fibrinogen, white blood cell counts, hair cortisol, and insulin-like growth factor-1. RESULTS A three-class LPA model offered the greatest parsimony. After adjustment for genetic predisposition, sociodemographics, lifestyle, and health, financial stress was associated with short-sleep cross-sectionally (RRR = 1.45; 95% CI = 1.18-1.79; p < 0.001) and longitudinally (RRR = 1.31; 95% CI = 1.02-1.68; p = 0.035), and it increased risk of belonging to the high-risk inflammatory profile by 42% (95% CI = 1.12-1.80; p = 0.004). Suboptimal sleep was not related to future risk of high-risk profile membership, nor did it moderate financial stress-biomarker profile associations. DISCUSSION Results advance psychoneuroimmunological knowledge by revealing how inflammation and neuroendocrine markers cluster in older cohorts and respond to financial stress over time. Financial stress associations with short-sleep are supported. The null role of suboptimal sleep, as exposure and mediator, in profile membership, provides valuable insight into the dynamic role of sleep in immune-neuroendocrine processes.
Collapse
Affiliation(s)
- Odessa S Hamilton
- Department of Behavioural Science and Health, Institute of Epidemiology and Health Care, University College London, 1-19 Torrington Place, London WC1E 7HB, UK.
| | - Andrew Steptoe
- Department of Behavioural Science and Health, Institute of Epidemiology and Health Care, University College London, 1-19 Torrington Place, London WC1E 7HB, UK
| |
Collapse
|
13
|
Kim J, Jang S, Choi J, Han K, Jung JH, Oh SY, Park KA, Min JH. Association of optic neuritis with incident depressive disorder risk in a Korean nationwide cohort. Sci Rep 2025; 15:7764. [PMID: 40044803 PMCID: PMC11882889 DOI: 10.1038/s41598-025-92370-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/27/2025] [Indexed: 03/09/2025] Open
Abstract
Studies have highlighted complex bidirectional relationships between autoimmune diseases and depressive disorders. Given that early mental health interventions have substantial public health implications, this study investigated association between optic neuritis, an autoimmune inflammatory disorder of the optic nerve, and risk of developing depressive disorders. Utilizing extensive national health insurance data encompassing almost the entire Korean population, this cohort study included 11,745 patients with optic neuritis and 58,725 age- and sex- matched controls between 2010 and 2017. The diagnosis of optic neuritis was confirmed using ICD-10 code H46 and patient medical records. The association with depression risk identified by ICD-10 codes F32 and F33 was assessed using Cox proportional hazards regression models after adjusting for demographics, lifestyle variables, and other comorbidities. Newly diagnosed optic neuritis was associated with an increased risk of depression (hazard ratio = 1.349, 95% confidence interval: 1.277-1.426), independent of potential confounding factors. Subgroup analysis revealed a stronger association for individuals under 50 years, males, current smokers, and those without hypertension. This association suggests that autoimmune neuroinflammatory responses impact mental health differently across demographics. These findings underscore the importance of implementing routine depression screening and developing targeted early intervention strategies for patients with optic neuritis, particularly for those with a high-risk of depression.
Collapse
Affiliation(s)
- Jaeryung Kim
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irown-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Seungwon Jang
- Pyeongtaek Seoul Eye Clinic, Pyeongtaek, Republic of Korea
| | - Junbae Choi
- Samsung Yangjae Forest Mental Clinic, Seoul, Republic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Jin-Hyung Jung
- Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Sei Yeul Oh
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irown-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Kyung-Ah Park
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irown-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
| | - Ju-Hong Min
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irown-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea.
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Huwart SJP, Morales-Puerto N, Everard A. Gut microbiota-related neuroinflammation at the crossroad of food reward alterations: implications for eating disorders. Gut 2025:gutjnl-2024-333397. [PMID: 39961644 DOI: 10.1136/gutjnl-2024-333397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025]
Abstract
The link between gut microbiome and eating behaviours, especially palatable food intake, is a growing focus of scientific investigation. The complex ecosystem of microorganisms in the gut influences host metabolism, immune function and neurobehavioural signalling. This review explores the role of neuroinflammation in dysregulations of food-induced reward signalling and the potential causal role of the gut microbiota on these proinflammatory processes. Particular attention is given to eating disorders (ED, specifically anorexia nervosa, binge eating disorder and bulimia nervosa) and potential links with the gut microbiota, food reward alterations and neuroinflammation. Finally, we propose gut microbiota modulation as a promising therapeutic strategy in food reward alterations and ED.
Collapse
Affiliation(s)
- Sabrina J P Huwart
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
- Walloon Excellence in Life BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Nuria Morales-Puerto
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
- Walloon Excellence in Life BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
- Walloon Excellence in Life BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
15
|
Zheng P, Zhang Y, Shi J, Su Z, Hu G, Bai Y, Chen Z, Jia G. Platelet and IL-33 count as biomarkers for lung function impairment: An 11-year follow-up study on populations exposed to hexavalent chromium. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 114:104660. [PMID: 39978742 DOI: 10.1016/j.etap.2025.104660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Recent research has highlighted the crucial role of immune regulation in lung function impairment due to exposure to hazardous materials. This study aimed to identify dynamic network biomarkers for lung function damage caused by hexavalent chromium inhalation exposure, using immune-related indicators in blood. An 11-year follow-up longitudinal study was conducted on a population occupationally exposed to hexavalent chromate (Cr [VI]) from 2010 to 2020, consisting of sixty-one subjects with 328 repeat measurements. Quantitative analysis of immune-related indicators, including white blood cells, cytokines, and platelet count, was performed. The concentration of urinary Cr served as an indicator of internal exposure, confirming its association with lung function impairment. Dynamic network analysis revealed that platelet count was connected to neutrophils, IL-8, IL-6, and IL-33 when the exposure time was equal to or longer than 9.2 years (the median exposure time). Notably, the association between platelet count and IL-33 was specific to long-term (≥ 9.2 years) exposure. The areas under the receiver operating characteristic (ROC) curves (AUCs) for platelet count combined with IL-33 to predict lung function impairment in the long-term and short-term Cr [VI]-exposed populations were 80.5 % and 55.4 %, respectively. These findings provide evidence that the combination of platelets and IL-33 holds significant promise as biomarkers for predicting lung function impairment. Moreover, they shed light on the potential mechanism involving immune and hematopoiesis functions in the context of environmental hazardous exposure.
Collapse
Affiliation(s)
- Pai Zheng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
| | - Yi Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
| | - Jiaqi Shi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
| | - Zekang Su
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
| | - Guiping Hu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; School of Engineering Medicine and Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Yi Bai
- Department of Epidemiology and Biostatistics,School of Public Health, Peking University, Beijing 100191, China
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China.
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China.
| |
Collapse
|
16
|
Fung JN, Lee JD, Adam R, O'Sullivan JD, Woodruff TM. Peripheral and central elevation of IL-8 in patients with Huntington's disease. Mol Immunol 2025; 179:84-93. [PMID: 39923663 DOI: 10.1016/j.molimm.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 01/20/2025] [Accepted: 02/02/2025] [Indexed: 02/11/2025]
Abstract
OBJECTIVES Huntington's Disease (HD) is a debilitating neurodegenerative condition characterized by motor, cognitive and psychiatric abnormalities. Immune hyperactivity and dysregulation are common in HD. In addition to the central nervous system, HD patients exhibit systemic innate immune activation and inflammation, which has been shown to contribute to the pathogenic effects of the Huntingtin gene mutation. Upregulation of inflammatory mediators including interferon gamma (IFN-γ) and interleukin (IL)-8 has been observed in animal Huntington's disease models. However, studies on HD patients remain limited. METHODS In this study, serum samples from 58 HD patients and 59 age- and gender-matched healthy control individuals were analysed using a bead-based assay, that enabled simultaneous measurement of 13 cytokines and chemokines. Additionally, publicly available transcriptomic data from brain tissues of HD patients and controls were examined. RESULTS Our results confirm that IL-8 protein levels are significantly higher in HD patients compared to non-HD controls, with the highest levels observed in the moderate HD group. In the control group, we found significant positive correlations between IL-8 levels and both IL-17A and IL-10. However, these correlations were not observed in HD patients, where IL-8 levels were notably positively correlated with pro-inflammatory markers including IFNγ and IL-23. Interestingly, IL-17A levels demonstrated a negative correlation with disease parameters, including CAG trinucleotide repeat expansion and disease burden score. Furthermore, cytokines and chemokines such as IFNγ and monocyte chemoattractant protein 1 (MCP-1; CCL2) demonstrated positive correlations with the same disease parameters. In-depth analysis of publicly available bulk RNAseq, and single-nucleus RNA-sequencing (snRNAseq) data from two key HD-affected brain regions- the prefrontal cortex and striatum revealed that IL-8 expression is significantly increased in cortex samples from individuals with HD compared to non-HD controls. Moreover, snRNAseq data in the striatum showed higher IL-8 expression in HD patients than in non-HD controls, with a predominant expression in microglia. CONCLUSION Overall, our findings support an upregulation of IL-8 in patients with HD, evident in both central degenerating brain regions, and peripheral blood samples. We identified unique immunological signatures associated with the severity of HD and provide potential biomarkers that may reflect immune-pathological mechanisms in HD patients.
Collapse
Affiliation(s)
- Jenny N Fung
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - John D Lee
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Robert Adam
- Neurology Department, Royal Brisbane and Women's Hospital, Herston, Brisbane, QLD 4029, Australia; Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane, QLD 4029, Australia
| | - John D O'Sullivan
- Neurology Department, Royal Brisbane and Women's Hospital, Herston, Brisbane, QLD 4029, Australia; Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane, QLD 4029, Australia.
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
17
|
Kooistra SM, Schirmer L. Multiple Sclerosis: Glial Cell Diversity in Time and Space. Glia 2025; 73:574-590. [PMID: 39719685 PMCID: PMC11784844 DOI: 10.1002/glia.24655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024]
Abstract
Multiple sclerosis (MS) is the most prevalent human inflammatory disease of the central nervous system with demyelination and glial scar formation as pathological hallmarks. Glial cells are key drivers of lesion progression in MS with roles in both tissue damage and repair depending on the surrounding microenvironment and the functional state of the individual glial subtype. In this review, we describe recent developments in the context of glial cell diversity in MS summarizing key findings with respect to pathological and maladaptive functions related to disease-associated glial subtypes. A particular focus is on the spatial and temporal dynamics of glial cells including subtypes of microglia, oligodendrocytes, and astrocytes. We contextualize recent high-dimensional findings suggesting that glial cells dynamically change with respect to epigenomic, transcriptomic, and metabolic features across the inflamed rim and during the progression of MS lesions. In summary, detailed knowledge of spatially restricted glial subtype functions is critical for a better understanding of MS pathology and its pathogenesis as well as the development of novel MS therapies targeting specific glial cell types.
Collapse
Affiliation(s)
- Susanne M. Kooistra
- Department of Biomedical Sciences, Section Molecular NeurobiologyUniversity of Groningen and University Medical Center Groningen (UMCG)GroningenThe Netherlands
| | - Lucas Schirmer
- Department of Neurology, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Mannheim Center for Translational Neuroscience, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Mannheim Institute for Innate Immunoscience, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Interdisciplinary Center for NeurosciencesHeidelberg UniversityHeidelbergGermany
| |
Collapse
|
18
|
Zheng H, Fang Y, Wang X, Feng S, Tang T, Chen M. Causal Association Between Major Depressive Disorder and Cortical Structure: A Bidirectional Mendelian Randomization Study and Mediation Analysis. CNS Neurosci Ther 2025; 31:e70319. [PMID: 40059068 PMCID: PMC11890974 DOI: 10.1111/cns.70319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/07/2025] [Accepted: 02/20/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND Previous observational studies have reported a possible association between major depressive disorder (MDD) and abnormal cortical structure. However, it is unclear whether MDD causes reductions in global cortical thickness (CT) and global area (SA). OBJECTIVE We aimed to test the bidirectional causal relationship between MDD and CT and SA using a Mendelian randomization (MR) design and performed exploratory analyses of MDD on CT and SA in different brain regions. METHODS Summary-level data were obtained from two GWAS meta-analysis studies: one screening for single nucleotide polymorphisms (SNPs) predicting the development of MDD (n = 135,458) and the other identifying SNPs predicting the magnitude of cortical thickness (CT) and surface area (SA) (n = 51,665). RESULTS The results showed that MDD caused a decrease in CT in the medial orbitofrontal region, a decrease in SA in the paracentral region, and an increase in SA in the lateral occipital region. C-reactive protein, tumor necrosis factor alpha (TNF-α), interleukin-1β, and interleukin-6 did not mediate the reduction. We also found that a reduction in CT in the precentral region and a reduction in SA in the orbitofrontal regions might be associated with a higher risk of MDD. CONCLUSION Our study did not suggest an association between MDD and cortical CT and SA.
Collapse
Affiliation(s)
- Hui Zheng
- The Acupuncture and Tuina SchoolChengdu University of Traditional Chinese MedicineChengdu CityChina
| | - Yong‐Jiang Fang
- Department of AcupunctureKunming Municipal Hospital of Traditional Chinese MedicineKunming CityChina
| | - Xiao‐Ying Wang
- The Acupuncture and Tuina SchoolChengdu University of Traditional Chinese MedicineChengdu CityChina
| | - Si‐Jia Feng
- The Acupuncture and Tuina SchoolChengdu University of Traditional Chinese MedicineChengdu CityChina
| | - Tai‐Chun Tang
- Department of Colorectal DiseasesHospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Min Chen
- Department of Colorectal DiseasesHospital of Chengdu University of Traditional Chinese MedicineChengduChina
| |
Collapse
|
19
|
Huang S, Lu Y, Fang W, Huang Y, Li Q, Xu Z. Neurodegenerative diseases and neuroinflammation-induced apoptosis. Open Life Sci 2025; 20:20221051. [PMID: 40026360 PMCID: PMC11868719 DOI: 10.1515/biol-2022-1051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/30/2024] [Accepted: 12/27/2024] [Indexed: 03/05/2025] Open
Abstract
Neuroinflammation represents a critical pathway in the brain for the clearance of foreign bodies and the maintenance of homeostasis. When the neuroinflammatory process is dysregulate, such as the over-activation of microglia, which results in the excessive accumulation of free oxygen and inflammatory factors in the brain, among other factors, it can lead to an imbalance in homeostasis and the development of various diseases. Recent research has indicated that the development of numerous neurodegenerative diseases is closely associated with neuroinflammation. The pathogenesis of neuroinflammation in the brain is intricate, involving alterations in numerous genes and proteins, as well as the activation and inhibition of signaling pathways. Furthermore, excessive inflammation can result in neuronal cell apoptosis, which can further exacerbate the extent of the disease. This article presents a summary of recent studies on the relationship between neuronal apoptosis caused by excessive neuroinflammation and neurodegenerative diseases. The aim is to identify the link between the two and to provide new ideas and targets for exploring the pathogenesis, as well as the prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Shi Huang
- School of Clinical Medicine, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Yaxin Lu
- School of Pharmaceutical Sciences, Wannan Medical College,
241002, Wuhu, Anhui, China
| | - Wanzhen Fang
- School of Stomatology, Wannan Medical College,
241002, Wuhu, Anhui, China
| | - Yanjiao Huang
- Human Anatomy Experimental Training Center, School of Basic Medical Science, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Qiang Li
- Human Anatomy Experimental Training Center, School of Basic Medical Science, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Zhiliang Xu
- Department of Human Anatomy, School of Basic Medical Science, Wannan Medical College, 241002, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Basic Research and Translation of Aging-Related Diseases, Wannan Medical College, Wuhu, 241002, Anhui, China
| |
Collapse
|
20
|
Alkhimovitch A, Miller SD, Ifergan I. Wnt-Activated Immunoregulatory Myeloid Cells Prevent Relapse in Experimental Autoimmune Encephalomyelitis and Offer a Potential Therapeutic Strategy for Multiple Sclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.16.638560. [PMID: 40027604 PMCID: PMC11870494 DOI: 10.1101/2025.02.16.638560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) characterized by recurrent inflammatory relapses and neurodegeneration. Myeloid cells play a critical role in shaping the inflammatory environment and influencing disease progression. Here, we demonstrate that activation of the Wnt signaling pathway reprograms myeloid cells into an immunoregulatory phenotype, leading to reduced neuroinflammation and disease severity. Using both experimental autoimmune encephalomyelitis (EAE) and human-derived myeloid cells, we show that Wnt agonist treatment promotes the expression of inhibitory molecules such as PD-L1 and PD-L2, suppressing pro-inflammatory responses. In the chronic and relapsing-remitting EAE models, Wnt activation significantly reduced disease severity, immune cell infiltration into the CNS, and pathogenic T cell responses. Notably, in relapsing-remitting EAE, Wnt treatment prevented new relapses in a PD-L1-dependent manner, highlighting the crucial role of myeloid cell-mediated immune regulation. These findings reveal a previously unrecognized role for Wnt signaling in myeloid cell immunoregulation and suggest that targeting this pathway could provide a novel therapeutic strategy for MS and other autoimmune diseases.
Collapse
|
21
|
Asakage M, Noma H, Yasuda K, Goto H, Shimura M. Dynamics of Inflammatory Factors in Aqueous Humor During Brolucizumab Treatment for Age-Related Macular Degenerations: A Case Series. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:372. [PMID: 40142183 PMCID: PMC11944087 DOI: 10.3390/medicina61030372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/30/2025] [Accepted: 02/19/2025] [Indexed: 03/28/2025]
Abstract
Anti-vascular endothelial growth factor (VEGF) treatment with intravitreal brolucizumab (IVBr) was launched as a novel treatment for neovascular age-related macular degeneration (AMD), but the incidence of intraocular inflammation (IOI) as a specific adverse effect of brolucizumab has been reported. We evaluated the dynamics of inflammatory factors in AMD in patients with or without IOI before and after anti-VEGF treatment with IVBr. We describe three patients who did not develop inflammation after three consecutive administrations of IVBr and three in whom inflammation occurred after the first IVBr treatment. The presence or absence of inflammation was determined by slit-lamp examination and a laser flare meter. Aqueous humor was obtained during anti-VEGF treatment with IVBr. Levels of VEGF, platelet-derived growth factor (PDGF)-AA, monocyte chemoattractant protein 1 (MCP-1), interleukin (IL)-6, IL-8, interferon-inducible 10 kDa protein (IP-10), Fms-related tyrosine kinase 3 ligands (Flt-3L), and fractalkine were measured. Vision worsened in one patient who developed IOI after initial IVBr, so IVBr was discontinued and the patient was switched to intravitreal aflibercept with sub-tenon injection of triamcinolone acetonide. IVBr was continued in the two other patients with IOI. VEGF decreased after IVBr in all patients with and without IOI. On the other hand, at 1 month IL-6, IL-8, MCP-1, IP-10, and Flt-3L were higher in the three patients with IOI compared with baseline and with the three patients without IOI. In two patients with IOI, not only flares but also IL-8, IP-10, and Flt-3L decreased from 1 to 2 months after IVBr despite continued IVBr. This case series might lead to a better understanding of the pathogenesis of IOI after IVBr.
Collapse
Affiliation(s)
- Masaki Asakage
- Department of Ophthalmology, Hachioji Medical Center, Tokyo Medical University, 1163, Tatemachi, Hachioji, Tokyo 193-0998, Japan; (M.A.); (K.Y.); (M.S.)
| | - Hidetaka Noma
- Department of Ophthalmology, Hachioji Medical Center, Tokyo Medical University, 1163, Tatemachi, Hachioji, Tokyo 193-0998, Japan; (M.A.); (K.Y.); (M.S.)
| | - Kanako Yasuda
- Department of Ophthalmology, Hachioji Medical Center, Tokyo Medical University, 1163, Tatemachi, Hachioji, Tokyo 193-0998, Japan; (M.A.); (K.Y.); (M.S.)
| | - Hiroshi Goto
- Department of Ophthalmology, Tokyo Medical University, Tokyo 160-8402, Japan;
| | - Masahiko Shimura
- Department of Ophthalmology, Hachioji Medical Center, Tokyo Medical University, 1163, Tatemachi, Hachioji, Tokyo 193-0998, Japan; (M.A.); (K.Y.); (M.S.)
| |
Collapse
|
22
|
Goshi N, Lam D, Bogguri C, George VK, Sebastian A, Cadena J, Leon NF, Hum NR, Weilhammer DR, Fischer NO, Enright HA. Direct effects of prolonged TNF-α and IL-6 exposure on neural activity in human iPSC-derived neuron-astrocyte co-cultures. Front Cell Neurosci 2025; 19:1512591. [PMID: 40012566 PMCID: PMC11860967 DOI: 10.3389/fncel.2025.1512591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/29/2025] [Indexed: 02/28/2025] Open
Abstract
Cognitive impairment is one of the many symptoms reported by individuals suffering from long-COVID and other post-viral infection disorders such as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). A common factor among these conditions is a sustained immune response and increased levels of inflammatory cytokines. Tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) are two such cytokines that are elevated in patients diagnosed with long-COVID and ME/CFS. In this study, we characterized the changes in neural functionality, secreted cytokine profiles, and gene expression in co-cultures of human iPSC-derived neurons and primary astrocytes in response to prolonged exposure to TNF-α and IL-6. We found that exposure to TNF-α produced both a concentration-independent and concentration-dependent response in neural activity. Burst duration was significantly reduced within a few days of exposure regardless of concentration (1 pg/mL - 100 ng/mL) but returned to baseline after 7 days. Treatment with low concentrations of TNF-α (e.g., 1 and 25 pg/mL) did not lead to changes in the secreted cytokine profile or gene expression but still resulted in significant changes to electrophysiological features such as interspike interval and burst duration. Conversely, treatment with high concentrations of TNF-α (e.g., 10 and 100 ng/mL) led to reduced spiking activity, which may be correlated to changes in neural health, gene expression, and increases in inflammatory cytokine secretion (e.g., IL-1β, IL-4, and CXCL-10) that were observed at higher TNF-α concentrations. Prolonged exposure to IL-6 led to changes in bursting features, with significant reduction in the number of spikes in bursts across a wide range of treatment concentrations (i.e., 1 pg/mL-10 ng/mL). In combination, the addition of IL-6 appears to counteract the changes to neural function induced by low concentrations of TNF-α, while at high concentrations of TNF-α the addition of IL-6 had little to no effect. Conversely, the changes to electrophysiological features induced by IL-6 were lost when the cultures were co-stimulated with TNF-α regardless of the concentration, suggesting that TNF-α may play a more pronounced role in altering neural function. These results indicate that increased concentrations of key inflammatory cytokines associated with long-COVID can directly impact neural function and may be a component of the cognitive impairment associated with long-COVID and other post-viral infection disorders.
Collapse
Affiliation(s)
- Noah Goshi
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Doris Lam
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Chandrakumar Bogguri
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Vivek Kurien George
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Aimy Sebastian
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Jose Cadena
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Nicole F. Leon
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Nicholas R. Hum
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Dina R. Weilhammer
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Nicholas O. Fischer
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Heather A. Enright
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
23
|
Wang Y, Liao B, Shan X, Ye H, Wen Y, Guo H, Xiao F, Zhu H. Revealing rutaecarpine's promise: A pathway to parkinson's disease relief through PPAR modulation. Int Immunopharmacol 2025; 147:114076. [PMID: 39809102 DOI: 10.1016/j.intimp.2025.114076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
The pathological mechanisms of Parkinson's disease (PD) is complex, and no definitive cure currently exists. This study identified Rutaecarpine (Rut), an alkaloid extracted from natural plants, as a potential therapeutic agent for PD. To elucidate its mechanisms of action and specific effects in PD, network pharmacology, molecular docking, and experimental validation methods were employed. Our findings demonstrated the efficacy of Rut in ameliorating PD symptoms. Network pharmacology analysis indicated that Rut exerts its therapeutic effects through the PPAR signaling pathway and the lipid pathway. Molecular docking results revealed that Rut forms stable protein-ligand complexes with PPARα and PPARγ. Animal experiments showed that Rut improved motor function in PD mice, protected dopaminergic neurons, ameliorated lipid metabolism disorders, and reduced neuroinflammation. This study identified the critical molecular mechanisms and therapeutic targets of Rut in the treatment of PD, providing a theoretical foundation for future investigations into the pharmacodynamics of Rut as a potential anti-PD agent.
Collapse
Affiliation(s)
- Yeying Wang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi, China; The Second Clinical Medical College of Nanchang University, Nanchang 330006 Jiangxi, China.
| | - Bin Liao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006 Jiangxi, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006 Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang 330006 Jiangxi, China.
| | - Xuesong Shan
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006 Jiangxi, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006 Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang 330006 Jiangxi, China.
| | - Haonan Ye
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006 Jiangxi, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006 Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang 330006 Jiangxi, China.
| | - Yuqi Wen
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006 Jiangxi, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006 Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang 330006 Jiangxi, China.
| | - Hua Guo
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006 Jiangxi, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006 Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang 330006 Jiangxi, China.
| | - Feng Xiao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006 Jiangxi, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006 Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang 330006 Jiangxi, China.
| | - Hong Zhu
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006 Jiangxi, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006 Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang 330006 Jiangxi, China.
| |
Collapse
|
24
|
Tamatta R, Pai V, Jaiswal C, Singh I, Singh AK. Neuroinflammaging and the Immune Landscape: The Role of Autophagy and Senescence in Aging Brain. Biogerontology 2025; 26:52. [PMID: 39907842 PMCID: PMC11799035 DOI: 10.1007/s10522-025-10199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
Neuroinflammation is closely linked to aging, which damages the structure and function of the brain. It is caused by the intricate interactions of immune cells in the aged brain, such as the dysregulated glial cells and the dysfunctional astrocytes. Aging-associated chronic low inflammation, referred to as neuroinflammaging, shows an upregulated proinflammatory response. Autophagy and senescence play crucial roles as moderators of aging and neuroinflammatory responses. The dysregulated neuroimmune system, dystrophic glial cells, and release of proinflammatory factors alter blood-brain barrier, causing a neuroinflammatory landscape. Chronic inflammation combined with deteriorating neurons exacerbate neurological disorders and decline in cognitive function. This review highlights the neuroinflammaging and mechanism associated with immune cells interplay with central nervous system and aging, cellular senescence, and autophagy regulation in the brain's immune system under neuroinflammatory conditions. Moreover, the roles of microglia and peripheral immune cells in the neuroinflammatory process in the aging brain have also been discussed. Determining treatment targets and comprehending mechanisms that influence immune cells in the aged brain is necessary to decrease neuroinflammation.
Collapse
Affiliation(s)
- Rajesh Tamatta
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576104, India
| | - Varsha Pai
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576104, India
| | - Charu Jaiswal
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576104, India
| | - Ishika Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576104, India
| | - Abhishek Kumar Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576104, India.
| |
Collapse
|
25
|
Sheffield Z, Paul P, Krishnakumar S, Pan D. Current Strategies and Future Directions of Wearable Biosensors for Measuring Stress Biochemical Markers for Neuropsychiatric Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411339. [PMID: 39688117 PMCID: PMC11791988 DOI: 10.1002/advs.202411339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/21/2024] [Indexed: 12/18/2024]
Abstract
Most wearable biosensors aimed at capturing psychological state target stress biomarkers in the form of physical symptoms that can correlate with dysfunction in the central nervous system (CNS). However, such markers lack the specificity needed for diagnostic or preventative applications. Wearable biochemical sensors (WBSs) have the potential to fill this gap, however, the technology is still in its infancy. Most WBSs proposed thus far target cortisol. Although cortisol detection is demonstrated as a viable method for approximating the extent and severity of psychological stress, the hormone also lacks specificity. Multiplex WBSs that simultaneously target cortisol alongside other viable stress-related biochemical markers (SBMs) can prove to be indispensable for understanding how psychological stress contributes to the pathophysiology of neuropsychiatric illnesses (NPIs) and, thus, lead to the discovery of new biomarkers and more objective clinical tools. However, none target more than one SBM implicated in NPIs. Till this review, cortisol's connection to dysfunctions in the CNS, to other SBMs, and their implication in various NPIs has not been discussed in the context of developing WBS technology. As such, this review is meant to inform the biosensing and neuropsychiatric communities of viable future directions and possible challenges for WBS technology for neuropsychiatric applications.
Collapse
Affiliation(s)
- Zach Sheffield
- Huck Institutes of the Life SciencesThe Pennsylvania State UniversityState CollegePA16802USA
- Department of Nuclear EngineeringThe Pennsylvania State UniversityState CollegePA16802USA
- The Center for Advanced Sensing TechnologyUniversity of Maryland – Baltimore CountyBaltimoreMD21250USA
- Chemical, Biochemicaland Environmental Engineering DepartmentUniversity of Maryland – Baltimore CountyBaltimoreMD21250USA
| | - Priyanka Paul
- Department of PediatricsUniversity of Maryland Baltimore School of MedicineBaltimoreMD21201USA
| | - Shraddha Krishnakumar
- Huck Institutes of the Life SciencesThe Pennsylvania State UniversityState CollegePA16802USA
| | - Dipanjan Pan
- Huck Institutes of the Life SciencesThe Pennsylvania State UniversityState CollegePA16802USA
- Department of Nuclear EngineeringThe Pennsylvania State UniversityState CollegePA16802USA
| |
Collapse
|
26
|
de Brito Duval I, Cardozo ME, Souza JLN, de Medeiros Brito RM, Fujiwara RT, Bueno LL, Magalhães LMD. Parasite infections: how inflammation alters brain function. Trends Parasitol 2025; 41:115-128. [PMID: 39779386 DOI: 10.1016/j.pt.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025]
Abstract
Parasitic infections can profoundly impact brain function through inflammation within the central nervous system (CNS). Once viewed as an immune-privileged site, the CNS is now recognized as vulnerable to immune disruptions from both local and systemic infections. Recent studies reveal that certain parasites, such as Toxoplasma gondii and Plasmodium falciparum, can invade the CNS or influence it indirectly by triggering neuroinflammation. These processes may disrupt brain homeostasis, influence neurotransmission, and lead to significant behavioral or cognitive changes. This review discusses the pathways by which parasites disrupt CNS function and highlights systemic inflammation as a critical link between peripheral infections and neuroinflammatory conditions, advancing understanding of parasite-associated neurological complications.
Collapse
Affiliation(s)
- Isabela de Brito Duval
- Laboratory of Interactions in Immuno-Parasitology, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil; Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| | - Marcelo Eduardo Cardozo
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| | - Jorge Lucas Nascimento Souza
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| | - Ramayana Morais de Medeiros Brito
- Laboratory of Interactions in Immuno-Parasitology, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil; Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| | - Ricardo Toshio Fujiwara
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| | - Lilian Lacerda Bueno
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| | - Luisa Mourão Dias Magalhães
- Laboratory of Interactions in Immuno-Parasitology, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil.
| |
Collapse
|
27
|
Liao S, Kang K, Yao Z, Lu Y. Nervous system contributions to small cell lung cancer: Lessons from diverse oncological studies. Biochim Biophys Acta Rev Cancer 2025; 1880:189252. [PMID: 39725176 DOI: 10.1016/j.bbcan.2024.189252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
The nervous system plays a vital role throughout the entire lifecycle and it may regulate the formation, development and metastasis of tumors. Small cell lung cancer is a typical neuroendocrine tumor, and it is naturally equipped with neurotropism. In this review, we firstly summarize current preclinical and clinical evidence to demonstrate the reciprocal crosstalk among the nervous system, tumor, and tumor microenvironment in various ways, including neurotransmitter-receptor pathways, innervations of nerve fibers, different types of synapse formation by neurons, astrocytes, and cancer cells, neoneurogenesis. Futherly, we emphasize how the nervous system interacts with small cell lung cancer and discuss the limitations of current research methods for examining the interactions. We propose that integrating neuroscience, development biology, and tumor biology can be a promising direction to provide new insights into development and metastasis of small cell lung cancer and raise some novel treatment strategies.
Collapse
Affiliation(s)
- Shuangsi Liao
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Kang
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuoran Yao
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China.
| | - You Lu
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
28
|
Ganesan K, Ghorbanpour S, Kendall W, Broome ST, Gladding JM, Dhungana A, Abiero AR, Mahmoudi M, Castorina A, Kendig MD, Becchi S, Valova V, Cole L, Bradfield LA. Hippocampal neuroinflammation induced by lipopolysaccharide causes sex-specific disruptions in action selection, food approach memories, and neuronal activation. Brain Behav Immun 2025; 124:9-27. [PMID: 39547520 DOI: 10.1016/j.bbi.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/24/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024] Open
Abstract
Hippocampal neuroinflammation is present in multiple diseases and disorders that impact motivated behaviour in a sex-specific manner, but whether neuroinflammation alone is sufficient to disrupt this behaviour is unknown. We investigated this question here using mice. First, the application of an endotoxin to primary cultures containing only hippocampal neurons did not affect their activation. However, when the same endotoxin was applied to mixed neuronal/glial cultures it did increase neuronal activation, providing initial indications of how it might be able to effect behavioural change. We next showed neuroinflammatory effects on behaviour directly, demonstrating that intra-hippocampal administration of the same endotoxin increased locomotor activity and accelerated goal-directed learning in both male and female mice. In contrast, lipopolysaccharide-induced hippocampal neuroinflammation caused sex-specific disruptions to the acquisition of instrumental actions and to Pavlovian food-approach memories. Finally, we showed that LPS-induced hippocampal neuroinflammation had a sexually dimorphic effect on neuronal activation: increasing it in females and decreasing it in males.
Collapse
Affiliation(s)
- Kiruthika Ganesan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia; Centre for Neuroscience and Regenerative Medicine, St. Vincent's Centre for Applied Medical Research, St. Vincent's Health Network, Sydney, New South Wales 2010, Australia; School of Psychology, Faculty of Science, University of Sydney, New South Wales 2006, Australia
| | - Sahar Ghorbanpour
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia; Institute of Cell and Tissue Culture Technologies, Department of Biotechnology, BOKU University, Vienna, Austria
| | - William Kendall
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Sarah Thomas Broome
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia; Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Joanne M Gladding
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Amolika Dhungana
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia; Centre for Neuroscience and Regenerative Medicine, St. Vincent's Centre for Applied Medical Research, St. Vincent's Health Network, Sydney, New South Wales 2010, Australia
| | - Arvie Rodriguez Abiero
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia; Centre for Neuroscience and Regenerative Medicine, St. Vincent's Centre for Applied Medical Research, St. Vincent's Health Network, Sydney, New South Wales 2010, Australia; School of Psychology, Faculty of Science, University of Sydney, New South Wales 2006, Australia
| | - Maedeh Mahmoudi
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Alessandro Castorina
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Michael D Kendig
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Serena Becchi
- Decision Neuroscience Laboratory, School of Psychology, University of New South Wales Sydney, Sydney, New South Wales 2052, Australia; Teva Pharmaceuticals, Sydney, New South Wales 2113, Australia
| | - Veronika Valova
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, New South Wales 2050, Australia
| | - Louise Cole
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Laura A Bradfield
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia; Centre for Neuroscience and Regenerative Medicine, St. Vincent's Centre for Applied Medical Research, St. Vincent's Health Network, Sydney, New South Wales 2010, Australia.
| |
Collapse
|
29
|
Sebo DJ, Ali I, Fetsko AR, Trimbach AA, Taylor MR. Activation of Wnt/β-catenin in neural progenitor cells regulates blood-brain barrier development and promotes neuroinflammation. Sci Rep 2025; 15:3496. [PMID: 39875426 PMCID: PMC11775206 DOI: 10.1038/s41598-025-85784-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
The central nervous system (CNS) requires specialized blood vessels to support neural function within specific microenvironments. During neurovascular development, endothelial Wnt/β-catenin signaling is required for BBB development within the brain parenchyma, whereas fenestrated blood vessels that lack BBB properties do not require Wnt/β-catenin signaling. Here, we used zebrafish to further characterize this phenotypic heterogeneity of the CNS vasculature. Using transgenic reporters of Wnt/β-catenin transcriptional activity, we found an inverse correlation between activated Wnt/β-catenin signaling in endothelial cells (ECs) versus non-ECs within these distinct microenvironments. Our results indicated that the level of Wnt/β-catenin signaling in non-ECs may regulate Wnt/β-catenin activity in adjacent ECs. To further test this concept, we generated a transgenic Tet-On inducible system to drive constitutively active β-catenin expression in neural progenitor cells (NPCs). We found that dose-dependent activation of Wnt/β-catenin in NPCs caused severe deficiency in CNS angiogenesis and BBB development. Additionally, we discovered a significant increase in the proliferation of microglia and infiltration of peripheral neutrophils indicative of a stereotypical neuroinflammatory response. In conclusion, our results demonstrate the importance of proper Wnt/β-catenin signaling within specific CNS microenvironments and highlights the potentially deleterious consequences of aberrant Wnt activation.
Collapse
Affiliation(s)
- Dylan J Sebo
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Irshad Ali
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Audrey R Fetsko
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Aubrey A Trimbach
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael R Taylor
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
30
|
Sueyoshi K, Kishi J, Inuki S, Matsumaru T, Fujimoto Y. Highly Selective Cytokine Induction of Nitrated Lipid-Modified α-GalCer Derivatives Demonstrating High Binding Affinity to the Lipid Antigen Presenting Molecule CD1d. Chemistry 2025; 31:e202403871. [PMID: 39632752 DOI: 10.1002/chem.202403871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024]
Abstract
Glycolipid antigens are presented by CD1d on antigen-presenting cells to T cell receptors (TCRs) of natural killer T (NKT) cells, leading to immune responses via cytokine induction. Although various lipid antigens have been found, there are only a limited number of glycolipid antigens having selective cytokine induction. In this study, we identified the glycolipids (α-GalCer nitro-type) that exhibit highly selective induction of Th2 and Th17 type cytokines, with very high binding affinity to CD1d, by introducing nature-inspired nitro-modified fatty acyl groups. The natural nitroalkene moiety of fatty acyl groups in the glycolipids effectively enhances the affinity to CD1d through presumed hydrogen-bonding and NO2-π interactions, leading to the distinctive function in cytokine induction and selectivity.
Collapse
Affiliation(s)
- Kodai Sueyoshi
- Graduate School of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
- Human Biology Microbiome Quantum Research Center (Bio2Q), Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Junichiro Kishi
- Graduate School of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Shinsuke Inuki
- Graduate School of Biomedical Sciences, Tokushima University, 1-78-1, Shoumachi, Tokushima, Tokushima, 770-8505, Japan
| | - Takanori Matsumaru
- Graduate School of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Yukari Fujimoto
- Graduate School of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
- Human Biology Microbiome Quantum Research Center (Bio2Q), Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
31
|
Allami P, Yazdanpanah N, Rezaei N. The role of neuroinflammation in PV interneuron impairments in brain networks; implications for cognitive disorders. Rev Neurosci 2025:revneuro-2024-0153. [PMID: 39842401 DOI: 10.1515/revneuro-2024-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/30/2024] [Indexed: 01/24/2025]
Abstract
Fast spiking parvalbumin (PV) interneuron is an inhibitory gamma-aminobutyric acid (GABA)ergic interneuron diffused in different brain networks, including the cortex and hippocampus. As a key component of brain networks, PV interneurons collaborate in fundamental brain functions such as learning and memory by regulating excitation and inhibition (E/I) balance and generating gamma oscillations. The unique characteristics of PV interneurons, like their high metabolic demands and long branching axons, make them too vulnerable to stressors. Neuroinflammation is one of the most significant stressors that have an adverse, long-lasting impact on PV interneurons. Neuroinflammation affects PV interneurons through specialized inflammatory pathways triggered by cytokines such as tumor necrosis factor (TNF) and interleukin 6 (IL-6). The crucial cells in neuroinflammation, microglia, also play a significant role. The destructive effect of inflammation on PV interneurons can have comprehensive effects and cause neurological disorders such as schizophrenia, Alzheimer's disease (AD), autism spectrum disorder (ASD), and bipolar disorder. In this article, we provide a comprehensive review of mechanisms in which neuroinflammation leads to PV interneuron hypofunction in these diseases. The integrated knowledge about the role of PV interneurons in cognitive networks of the brain and mechanisms involved in PV interneuron impairment in the pathology of these diseases can help us with better therapeutic interventions.
Collapse
Affiliation(s)
- Pantea Allami
- Student's Scientific Research Center, School of Medicine, 48439 Tehran University of Medical Sciences , Pour Sina St, Tehran 1416634793, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran
| | - Niloufar Yazdanpanah
- Student's Scientific Research Center, School of Medicine, 48439 Tehran University of Medical Sciences , Pour Sina St, Tehran 1416634793, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, 48439 Tehran University of Medical Sciences, Children's Medical Center Hospital , Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran
- Department of Immunology, School of Medicine, 48439 Tehran University of Medical Sciences , Pour Sina St, Tehran 1416634793, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, 48439 Tehran University of Medical Sciences, Children's Medical Center Hospital , Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran
- Department of Immunology, School of Medicine, 48439 Tehran University of Medical Sciences , Pour Sina St, Tehran 1416634793, Tehran, Iran
| |
Collapse
|
32
|
Jiang D, Ding Y, Hu S, Wei G, Trujillo C, Yang Z, Wei Z, Li W, Liu D, Li C, Gan W, Santos HA, Yin G, Fan J. Broad-spectrum downregulation of inflammatory cytokines by polydopamine nanoparticles to protect the injured spinal cord. Acta Biomater 2025; 193:559-570. [PMID: 39674244 DOI: 10.1016/j.actbio.2024.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/14/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Acute neuroinflammation, which is notably characterized by a significant elevation in pro-inflammatory cytokines and chemokines, often rapidly develops following a traumatic spinal cord injury and exacerbates damage in the lesion area. This study addresses the limitations inherent in strategies that regulate only a single or a few cytokines, which are often insufficient to counteract the progression of secondary injuries. We explore the use of polydopamine nanoparticles as a broad-spectrum immunomodulator, capable of capturing by adsorption a wide range of cytokines and thereby effectively suppressing neuroinflammation. Leveraging their adhesive properties, these nanoparticles promptly reduce levels of various excessive cytokines, including IL-1α, IL-1β, IL-6, IL-10, IL-17A, IL-18, TNF-α, MCP-1, GRO/KC, M-CSF, MIP-3α, and IFN-γ, primarily through physical adsorption. This reduction in cytokine levels contributes to the subsequent inhibition of pro-inflammatory M1 microglia and A1 astrocyte activation, aiding in the recovery of motor functions in vivo. In summary, polydopamine nanoparticles represent a versatile and effective approach for modulating acute neuroinflammation in spinal cord injuries. By broadly down-regulating cytokines, polydopamine nanoparticles propose an innovative approach for treating spinal cord injuries. STATEMENT OF SIGNIFICANCE: The current study demonstrated the immunomodulatory potential of polydopamine nanoparticles in mitigating neuroinflammation following spinal cord injury. Both in vitro and in vivo analyses revealed significant downregulation of several key cytokines among a panel of 23 cytokines and chemokines. The potential underlying mechanisms governing these interactions were elucidated through comprehensive molecular dynamics simulations for the first time. Consequently, the downregulation of these cytokines and chemokines led to the inhibition of pro-inflammatory M1 microglia and A1 astrocyte activation in both in vitro and in vivo models. This inhibition protected neurons within the microenvironment, resulting in improved locomotor functions. Overall, this study underscores the prominent therapeutic efficacy of polydopamine nanoparticles in alleviating neuroinflammation, highlighting their potential as broad-spectrum regulators in intricate microenvironments.
Collapse
Affiliation(s)
- Dongdong Jiang
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Yaping Ding
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 China; Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Shuai Hu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
| | - Guangfei Wei
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
| | - Claudia Trujillo
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Zhiyuan Yang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenyang Wei
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Wei Li
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Dongfei Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
| | - Cong Li
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wenwu Gan
- Department of Orthopedics, Xuyi People's Hospital Xuyi 211700, Jiangsu, China
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland; Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, AV 9713, the Netherlands.
| | - Guoyong Yin
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Jin Fan
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
33
|
Chen J, Zha H, Xu M, Li S, Han Y, Li Q, Ge W, Lee SMY, Gan Y, Zheng Y. Zebrafish as a Visible Neuroinflammation Model for Evaluating the Anti-Inflammation Effect of Curcumin-Loaded Ferritin Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4450-4462. [PMID: 39789889 DOI: 10.1021/acsami.4c14809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
It is crucial to inhibit the neuroinflammation response as it is a prominent factor contributing to the pathogenesis of neurodegenerative disorders. However, the limited development of neuroinflammation models dramatically hinders the efficiency of nanomedicine discovery. In recent years, the optically transparent zebrafish model provided unique advantages for in vivo imaging of the whole body, allowing the progression of the disease to be visualized. In this study, a lipopolysaccharide (LPS)-mediated zebrafish neuroinflammation model was established to visualize the brain distribution and quickly evaluate the anti-inflammation effect of human ferritin-loaded curcumin (Cur@HFn) nanoparticles. The Cur@HFn drug delivery system was successfully prepared and characterized. The HFn nanocage demonstrated significant brain accumulation and prolonged circulation in a zebrafish larval model. In the LPS-induced zebrafish model, Cur@HFn significantly reduced neutrophil recruitment within the brain region of the LPS-treated zebrafish. Additionally, Cur@HFn mitigated nitric oxide (NO) release and downregulated the mRNA expression levels of proinflammatory cytokines, including TNF-α and IL-1β. Lastly, Cur@HFn significantly reduced the damage of raphe nucleus neurons and alleviated the locomotion deficiency caused by LPS. Overall, our findings highlight that Cur@HFn is a promising drug delivery system for the targeted treatment of brain disorders. This zebrafish neuroinflammation model could be used for high-throughput in vivo drug screening and discovery.
Collapse
Affiliation(s)
- Jiamao Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Haidong Zha
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Meng Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Shuli Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Yunfeng Han
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Qinyu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Simon Ming-Yuen Lee
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Yong Gan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau 999078, China
| |
Collapse
|
34
|
Liu X, Yang L, Su Z, Ma X, Liu Y, Ma L, Ma X, Ma M, Liu X, Zhang K, Chen X. Acupoint catgut embedding alleviates experimental autoimmune encephalomyelitis by modulating neuroinflammation and potentially inhibiting glia activation through JNK and ERK pathways. Front Neurosci 2025; 18:1520092. [PMID: 39850625 PMCID: PMC11755674 DOI: 10.3389/fnins.2024.1520092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/06/2024] [Indexed: 01/25/2025] Open
Abstract
Background Acupoint catgut embedding (ACE) is a traditional Chinese medicine technique commonly used for managing various disorders, including chronic inflammatory pain and allergic asthma. Despite its growing use, the neuroimmunological mechanisms underlying ACE treatment effects remain unclear. Methods This study investigated the roles and potential mechanisms of the effects of ACE in treating experimental autoimmune encephalomyelitis (EAE), a frequently used animal model of autoimmune neuroinflammation. The effects of ACE treatment were evaluated by monitoring body weight and EAE severity scores. Behavioral tests, histopathological analysis, ELISA, and flow cytometry were conducted to assess the therapeutic efficacy of ACE. RNA sequencing was performed to uncover ACE-associated transcriptional signatures in the spinal cords of EAE mice. Results The results were validated through western blotting, qRT-PCR, and immunofluorescence (IF) staining. In ACE-treated mice, EAE disease severity was significantly ameliorated, along with improvements in anxiety-like behaviors and reduced inflammation and demyelination. The ACE treatment restored immune imbalance in the EAE mice by decreasing Th17 and Th1 cells, while increasing Treg cells in peripheral immune organs and reducing serum inflammatory cytokine levels. RNA sequencing revealed significant suppression of the genes and pathways associated with reactive microglial and astrocytic activation, corroborated by IF studies. Additionally, ACE treatment could suppress the ERK and JNK signaling pathways at both RNA and protein levels. Conclusion These findings confirm the protective role of ACE in mitigating EAE symptoms by modulating microglial and astrocytic activity and regulating inflammatory cytokines.
Collapse
Affiliation(s)
- Xiaofang Liu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Liansheng Yang
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhumin Su
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xueying Ma
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yingying Liu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lili Ma
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaomeng Ma
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Mingxia Ma
- Department of Cardiology, Shanxi Province Cardiovascular Hospital, Taiyuan, China
| | - Xiaoyun Liu
- Department of General Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kun Zhang
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Allergy, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaohong Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
35
|
Diaz-Ruiz R, Poca M, Roman E, Panadero-Gomez R, Cuyàs B, Bañares I, Morales A, Puerto M, Lopez-Esteban R, Blazquez E, Fernández-Castillo M, Correa-Rocha R, Rapado-Castro M, Breton I, Bañares R, Soriano G, Garcia-Martinez R. Vitamin D Supplementation Is Associated with Inflammation Amelioration and Cognitive Improvement in Decompensated Patients with Cirrhosis. Nutrients 2025; 17:226. [PMID: 39861356 PMCID: PMC11768058 DOI: 10.3390/nu17020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/10/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
Background/Objectives: Decompensated cirrhosis is characterized by systemic inflammation and innate and adaptive immune dysfunction. Hepatic encephalopathy (HE) is a prevalent and debilitating condition characterized by cognitive disturbances in which ammonia and inflammation play a synergistic pathogenic role. Extraskeletal functions of vitamin D include immunomodulation, and its deficiency has been implicated in immune dysfunction and different forms of cognitive impairment. The aim was to assess changes in cognitive function and inflammation in decompensated patients with cirrhosis receiving vitamin D supplementation. Methods: Patients with cirrhosis discharged from decompensation in two tertiary hospitals in Spain (from September 2017 to January 2020) were assessed before, at 6 and 12 months after vitamin D supplementation. A comprehensive neuropsychological battery and neuroinflammatory markers were examined. In a subgroup of patients, peripheral immune blood cells were analyzed. Results: Thirty-nine patients were recruited. Of those, 27 completed the 6 months evaluation and were analyzed [age 62.4 ± 11.3 years; 22 men; Model for End-Stage Liver Disease (MELD) 11.7 ± 4.0; prior overt HE 33%; median 25-hydroxyvitamin D (25OHD) plasma level 12.7 µgr/L] and 22 achieved 12 months assessment. At baseline, learning and memory (R = 0.382; p = 0.049) and working memory (R = 0.503; p = 0.047) subtests correlated with plasma 25OHD levels. In addition, processing speed (R = -0.42; p = 0.04), attention (R = -0.48; p = 0.04), Tinnetti balance (R = -0.656; p < 0.001) and Tinnetti score (R = -0.659; p < 0.001) were linked to neuroinflammation marker IL-1β. Patients with lower 25OHD had a greater proportion of TH1cells at baseline and a larger amelioration of IL-1β and IL-6 following supplementation. An improvement in working memory was found after 25OHD replacement (46.7 ± 13 to 50 ± 11; p = 0.047). Conclusions: This study supports that vitamin D supplementation modulates low-grade inflammation in decompensated cirrhosis providing cognitive benefits, particularly in working memory.
Collapse
Affiliation(s)
- Raquel Diaz-Ruiz
- Department of Digestive Diseases, Instituto de Investigación Sanitaria, Hospital General Universitario Gregorio Marañón, Universidad Complutense Madrid, 28007 Madrid, Spain; (R.D.-R.); (M.P.); (R.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (M.P.); (E.R.); (B.C.); (G.S.)
| | - Maria Poca
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (M.P.); (E.R.); (B.C.); (G.S.)
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Institut de Recerca Sant Pau (IR Sant Pau), Universitat Autònoma de Barcelona, 08041 Bellaterra, Spain
| | - Eva Roman
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (M.P.); (E.R.); (B.C.); (G.S.)
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Institut de Recerca Sant Pau (IR Sant Pau), Universitat Autònoma de Barcelona, 08041 Bellaterra, Spain
| | - Rocio Panadero-Gomez
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Instituto de Investigación Sanitaria, Hospital General Universitario Gregorio Marañon, Universidad Complutense Madrid, Centro de Investigación Biomédica en Red-Salud Mental (CIBERSam), 28009 Madrid, Spain; (R.P.-G.); (M.R.-C.)
| | - Berta Cuyàs
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (M.P.); (E.R.); (B.C.); (G.S.)
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Institut de Recerca Sant Pau (IR Sant Pau), Universitat Autònoma de Barcelona, 08041 Bellaterra, Spain
| | - Irene Bañares
- Instituto de Investigación Sanitaria Gregorio Marañon, 28009 Madrid, Spain;
| | - Angela Morales
- Nutrition Unit, Hospital General Universitario Gregorio Marañon, Universidad Complutense Madrid, 28007 Madrid, Spain; (A.M.); (I.B.)
| | - Marta Puerto
- Department of Digestive Diseases, Instituto de Investigación Sanitaria, Hospital General Universitario Gregorio Marañón, Universidad Complutense Madrid, 28007 Madrid, Spain; (R.D.-R.); (M.P.); (R.B.)
| | - Rocio Lopez-Esteban
- Laboratory of Immune-Regulation, Instituto de Investigacion Sanitaria Gregorio Marañon, 28009 Madrid, Spain; (R.L.-E.); (E.B.); (M.F.-C.); (R.C.-R.)
| | - Elena Blazquez
- Laboratory of Immune-Regulation, Instituto de Investigacion Sanitaria Gregorio Marañon, 28009 Madrid, Spain; (R.L.-E.); (E.B.); (M.F.-C.); (R.C.-R.)
| | - Marta Fernández-Castillo
- Laboratory of Immune-Regulation, Instituto de Investigacion Sanitaria Gregorio Marañon, 28009 Madrid, Spain; (R.L.-E.); (E.B.); (M.F.-C.); (R.C.-R.)
| | - Rafael Correa-Rocha
- Laboratory of Immune-Regulation, Instituto de Investigacion Sanitaria Gregorio Marañon, 28009 Madrid, Spain; (R.L.-E.); (E.B.); (M.F.-C.); (R.C.-R.)
| | - Marta Rapado-Castro
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Instituto de Investigación Sanitaria, Hospital General Universitario Gregorio Marañon, Universidad Complutense Madrid, Centro de Investigación Biomédica en Red-Salud Mental (CIBERSam), 28009 Madrid, Spain; (R.P.-G.); (M.R.-C.)
- Department of Psychiatry, The University of Melbourne, Melbourne, VIC 3053, Australia
| | - Irene Breton
- Nutrition Unit, Hospital General Universitario Gregorio Marañon, Universidad Complutense Madrid, 28007 Madrid, Spain; (A.M.); (I.B.)
| | - Rafael Bañares
- Department of Digestive Diseases, Instituto de Investigación Sanitaria, Hospital General Universitario Gregorio Marañón, Universidad Complutense Madrid, 28007 Madrid, Spain; (R.D.-R.); (M.P.); (R.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (M.P.); (E.R.); (B.C.); (G.S.)
| | - German Soriano
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (M.P.); (E.R.); (B.C.); (G.S.)
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Institut de Recerca Sant Pau (IR Sant Pau), Universitat Autònoma de Barcelona, 08041 Bellaterra, Spain
| | - Rita Garcia-Martinez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (M.P.); (E.R.); (B.C.); (G.S.)
- Department of Internal Medicine, Instituto de Investigación Sanitaria, Hospital General Universitario Gregorio Marañon, Universidad Complutense Madrid, 28007 Madrid, Spain
| |
Collapse
|
36
|
Kim DU, Kweon B, Oh J, Lim Y, Noh G, Yu J, Kang HR, Kwon T, Lee KY, Bae GS. A Network Pharmacology Study and Experimental Validation to Identify the Potential Mechanism of Heparan Sulfate on Alzheimer's Disease-Related Neuroinflammation. Biomedicines 2025; 13:103. [PMID: 39857687 PMCID: PMC11761859 DOI: 10.3390/biomedicines13010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Heparan sulfate (HS) is a polysaccharide that is found on the surface of cells and has various biological functions in the body. METHODS The purpose of this study was to predict the pharmacological effects and molecular mechanisms of HS on Alzheimer's disease (AD) and neuroinflammation (NI) through a network pharmacology analysis and to experimentally verify them. RESULTS We performed functional enrichment analysis of common genes between HS target genes and AD-NI gene sets and obtained items such as the "Cytokine-Mediated Signaling Pathway", "Positive Regulation Of MAPK Cascade", and "MAPK signaling pathway". To confirm the predicted results, the anti-inflammatory effect of HS was investigated using lipopolysaccharide (LPS)-stimulated BV2 microglia cells. HS inhibited the production of nittic oxide, interleukin (IL)-6, and tumor necrosis factor-α in LPS-stimulated BV2 cells, but not IL-1β. In addition, HS inactivated P38 in the MAPK signaling pathway. CONCLUSIONS These findings suggest the potential for HS to become a new treatment for AD and NI.
Collapse
Affiliation(s)
- Dong-Uk Kim
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (D.-U.K.); (B.K.)
- Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea
| | - Bitna Kweon
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (D.-U.K.); (B.K.)
- Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea
| | - Jinyoung Oh
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (D.-U.K.); (B.K.)
- Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea
| | - Yebin Lim
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (D.-U.K.); (B.K.)
| | - Gyeongran Noh
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (D.-U.K.); (B.K.)
| | - Jihyun Yu
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (D.-U.K.); (B.K.)
| | - Hyang-Rin Kang
- Woori B&B Life Science Laboratory, Jeonju 54853, Republic of Korea; (H.-R.K.)
| | - Tackmin Kwon
- Woori B&B Life Science Laboratory, Jeonju 54853, Republic of Korea; (H.-R.K.)
| | - Kwang youll Lee
- Woori B&B Life Science Laboratory, Jeonju 54853, Republic of Korea; (H.-R.K.)
| | - Gi-Sang Bae
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (D.-U.K.); (B.K.)
- Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea
- Research Center of Traditional Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea
| |
Collapse
|
37
|
An J, Chen B, Zhang R, Tian D, Shi K, Zhang L, Zhang G, Wang J, Yang H. Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes in Spinal Cord Injury. Mol Neurobiol 2025; 62:1291-1315. [PMID: 39312070 DOI: 10.1007/s12035-024-04490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/10/2024] [Indexed: 01/04/2025]
Abstract
Spinal cord injury (SCI) can lead to severe motor and sensory dysfunction, with a high rate of disability and mortality. Due to the complicated pathological process of SCI, there is no effective clinical treatment strategy at present. Although mesenchymal stem cells (MSCs) are effective in the treatment of SCI, their application is limited by factors such as low survival rate, cell dedifferentiation, tumorigenesis, blood-brain barrier, and immune rejection. Fortunately, there is growing evidence that most of the biological and therapeutic effects of MSCs may be mediated by the release of paracrine factors, which are extracellular vesicles called exosomes. Exosomes are small endosomal vesicles with bilaminar membranes that have recently been recognized as key mediators for communication between cells and tissues through the transfer of proteins, lipids, nucleic acids, cytokines, and growth factors. Mesenchymal stem cell-derived exosomes (MSC-exos) play a critical role in SCI repair by promoting angiogenesis and axonal growth, regulating inflammation and immune response, inhibiting apoptosis, and maintaining the integrity of the blood-spinal cord barrier. Furthermore, they can be used to transport genetic material or drugs to target cells, and their relatively small size allows them to permeate the blood-brain barrier. Studies have demonstrated that some exosomal miRNAs derived from MSCs play a significant role in the treatment of SCI. In this review, we summarize recent research advances in MSC-exos and exosomal miRNAs in SCI therapy to better understand this emerging cell-free therapeutic strategy and discuss the advantages and challenges of MSC-exos in future clinical applications.
Collapse
Affiliation(s)
- Jing An
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China
| | - Bo Chen
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China.
| | - Rui Zhang
- Department of Medical Technology, Guiyang Healthcare Vocational University, Guiyang, 550081, Guizhou, China
| | - Ding Tian
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China
| | - Kuohao Shi
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China
| | - Lingling Zhang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China
| | - Gaorong Zhang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China
| | - Jingchao Wang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China
| | - Hao Yang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China.
| |
Collapse
|
38
|
Huang T, Hong J, Ling J, Zhu L, Zhao W, Zhang X, Yan X, Hu C, Zhang R, Gao C, Zhang S, Chen C, Yang R, Wu W, Wang C, Gao Q. IL-12p70 Induces Neuroprotection via the PI3K-AKT-BCL2 Axis to Mediate the Therapeutic Effect of Electroacupuncture on Postoperative Cognitive Dysfunction. Adv Biol (Weinh) 2025; 9:e2400172. [PMID: 39474976 DOI: 10.1002/adbi.202400172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/11/2024] [Indexed: 01/19/2025]
Abstract
Postoperative cognitive dysfunction (POCD), a postsurgical decline in cognitive function, primarily affects older adults and worsens their prognosis. Although elevated interleukin-12p70 (IL-12p70) is closely correlated with slower cognitive decline in older adults, its role in POCD remains unclear. Here, IL-12p70 is identified as a significant mediator of therapeutic effect of electroacupuncture (EA) on POCD. EA at acupoints ST36, GV20, and GV24 significantly enhanced cognitive behaviors of POCD mice. IL-12p70, downregulated in POCD mice but rescued by EA treatment, is the cytokine closely associated with EA's therapeutic effect. Clinically, IL-12p70 is downregulated in older adults' serum post-surgery. Furthermore, IL-12p70 exerts a potent neuroprotective effect in both neuronal cell lines and primary hippocampal neurons. The PI3K-AKT-BCL2 axis enriched by in silico analysis is validated as the signaling mechanism underlying IL-12p70-induced neuroprotection. In vivo, beneficial effects of EA treatment on the activation of PI3K-AKT-BCL2 axis and POCD are reproduced by IL-12p70 administration but attenuated by IL-12p70 knockdown. The findings reveal a novel mechanism underlying the therapeutic effect of EA on POCD, demonstrating that IL-12p70 exerts a neuroprotective effect by activating PI3K-AKT-BCL2 axis in hippocampal neurons. The newly-discovered function and mechanism of IL-12p70 highlight its potential in treating cognitive disorders.
Collapse
Affiliation(s)
- Tingting Huang
- Department of Anesthesiology, The First Affiliated Hospital of AHMU, School of Life Science, Anhui Medical University, Hefei, Anhui, 230032, China
- Anhui Public Health Clinical Center, Hefei, Anhui, 230011, China
| | - Jie Hong
- Department of Anesthesiology, The First Affiliated Hospital of AHMU, School of Life Science, Anhui Medical University, Hefei, Anhui, 230032, China
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, Anhui, 230032, China
- Wanbei Coal Electric Group General Hospital, Suzhou, Anhui, 234000, China
| | - Jia Ling
- Department of Anesthesiology, The First Affiliated Hospital of AHMU, School of Life Science, Anhui Medical University, Hefei, Anhui, 230032, China
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Lin Zhu
- Department of Anesthesiology, The First Affiliated Hospital of AHMU, School of Life Science, Anhui Medical University, Hefei, Anhui, 230032, China
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Wei Zhao
- Department of Anesthesiology, The First Affiliated Hospital of AHMU, School of Life Science, Anhui Medical University, Hefei, Anhui, 230032, China
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Xinlu Zhang
- Department of Anesthesiology, The First Affiliated Hospital of AHMU, School of Life Science, Anhui Medical University, Hefei, Anhui, 230032, China
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Xinze Yan
- Department of Anesthesiology, The First Affiliated Hospital of AHMU, School of Life Science, Anhui Medical University, Hefei, Anhui, 230032, China
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Chen Hu
- Department of Anesthesiology, The First Affiliated Hospital of AHMU, School of Life Science, Anhui Medical University, Hefei, Anhui, 230032, China
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Ruijie Zhang
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Chen Gao
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life, Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Shengzhao Zhang
- School of Biomedical Engineering, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Chen Chen
- Department of Anesthesiology, The First Affiliated Hospital of AHMU, School of Life Science, Anhui Medical University, Hefei, Anhui, 230032, China
- Anhui Public Health Clinical Center, Hefei, Anhui, 230011, China
| | - Runhuai Yang
- School of Biomedical Engineering, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Weiwei Wu
- Department of Anesthesiology, The First Affiliated Hospital of AHMU, School of Life Science, Anhui Medical University, Hefei, Anhui, 230032, China
- Anhui Public Health Clinical Center, Hefei, Anhui, 230011, China
| | - Chunhui Wang
- Department of Anesthesiology, The First Affiliated Hospital of AHMU, School of Life Science, Anhui Medical University, Hefei, Anhui, 230032, China
- Anhui Public Health Clinical Center, Hefei, Anhui, 230011, China
| | - Qian Gao
- Department of Anesthesiology, The First Affiliated Hospital of AHMU, School of Life Science, Anhui Medical University, Hefei, Anhui, 230032, China
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, Anhui, 230032, China
| |
Collapse
|
39
|
Hung H, Lin J, Teng Y, Kao C, Wang P, Soong B, Tsai T. A dominant negative Kcnd3 F227del mutation in mice causes spinocerebellar ataxia type 22 (SCA22) by impairing ER and Golgi functioning. J Pathol 2025; 265:57-68. [PMID: 39562497 PMCID: PMC11638663 DOI: 10.1002/path.6368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/13/2024] [Accepted: 10/13/2024] [Indexed: 11/21/2024]
Abstract
Spinocerebellar ataxia type 22 (SCA22) caused by KCND3 mutations is an autosomal dominant disorder. We established a mouse model carrying the Kcnd3 F227del mutation to study the molecular pathogenesis. Four findings were pinpointed. First, the heterozygous mice exhibited an early onset of defects in motor coordination and balance which mirror those of SCA22 patients. The degeneration and a minor loss of Purkinje cells, together with the concurrent presence of neuroinflammation, as well as the previous finding on electrophysiological changes, may all contribute to the development of the SCA22 ataxia phenotype in mice carrying the Kcnd3 F227del mutant protein. Second, the mutant protein is retained by the endoplasmic reticulum and Golgi, leading to activation of the unfolded protein response and a severe trafficking defect that affects its membrane destination. Intriguingly, profound damage of the Golgi is the earliest manifestation. Third, analysis of the transcriptome revealed that the Kcnd3 F227del mutation down-regulates a panel of genes involved in the functioning of synapses and neurogenesis which are tightly linked to the functioning of Purkinje cells. Finally, no ataxia phenotypes were detectable in knockout mice carrying a loss-of-function Kcnd3 mutation. Thus, Kcnd3 F227del is a dominant-negative mutation. This mouse model may serve as a preclinical model for exploring therapeutic strategies to treat patients. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Hao‐Chih Hung
- Department of Life Sciences and Institute of Genome SciencesNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Jia‐Han Lin
- Department of Life Sciences and Institute of Genome SciencesNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Yuan‐Chi Teng
- Department of Life Sciences and Institute of Genome SciencesNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Department of Medical ResearchTaipei Veterans General HospitalTaipeiTaiwan
| | - Cheng‐Heng Kao
- Center of General EducationChang Gung UniversityTaoyuanTaiwan
| | - Pei‐Yu Wang
- Graduate Institute of Brain and Mind Sciences, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Bing‐Wen Soong
- Department of NeurologyTaipei Veterans General HospitalTaipeiTaiwan
- Brain Research CenterNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Ting‐Fen Tsai
- Department of Life Sciences and Institute of Genome SciencesNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Center for Healthy Longevity and Aging SciencesNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- National Health Research InstitutesInstitute of Molecular and Genomic MedicineMiaoliTaiwan
| |
Collapse
|
40
|
Ma J, Wu H, Ma Z, Wu Z. Bacterial and host factors involved in zoonotic Streptococcal meningitis. Microbes Infect 2025; 27:105335. [PMID: 38582147 DOI: 10.1016/j.micinf.2024.105335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Zoonotic streptococci cause several invasive diseases with high mortality rates, especially meningitis. Numerous studies elucidated the meningitis pathogenesis of zoonotic streptococci, some specific to certain bacterial species. In contrast, others are shared among different bacterial species, involving colonization and invasion of mucosal barriers, survival in the bloodstream, breaching the blood-brain and/or blood-cerebrospinal fluid barrier to access the central nervous system, and triggering inflammation of the meninges. This review focuses on the recent advancements in comprehending the molecular and cellular events of five major zoonotic streptococci responsible for causing meningitis in humans or animals, including Streptococcus agalactiae, Streptococcus equi subspecies zooepidemicus, Streptococcus suis, Streptococcus dysgalactiae, and Streptococcus iniae. The underlying mechanism was summarized into four themes, including 1) bacterial survival in blood, 2) brain microvascular endothelial cell adhesion and invasion, 3) penetration of the blood-brain barrier, and 4) activation of the immune system and inflammatory reaction within the brain. This review may contribute to developing therapeutics to prevent or mitigate injury of streptococcal meningitis and improve risk stratification.
Collapse
Affiliation(s)
- Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China; WOAH Reference Lab for Swine Streptococcosis, Nanjing 210014, China
| | - Huizhen Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China; WOAH Reference Lab for Swine Streptococcosis, Nanjing 210014, China
| | - Zhe Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Zongfu Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China; WOAH Reference Lab for Swine Streptococcosis, Nanjing 210014, China; Guangdong Provincial Key Laboratory of Research on the Technology of Pig-breeding and Pig-disease Prevention, Guangzhou 511400, China.
| |
Collapse
|
41
|
Kim JH, Huh E, Eo H, Kim JS, Kwon Y, Ju IG, Choi Y, Yoon HJ, Son SR, Jang DS, Hong SP, Park HJ, Oh MS. Tribuli Fructus alleviates 1-methyl-4-phenyl 1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease by suppressing neuroinflammation via JNK signaling. Metab Brain Dis 2024; 40:69. [PMID: 39699803 DOI: 10.1007/s11011-024-01498-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the loss of dopaminergic neurons. In particular, neuroinflammation associated with phosphorylation of c-Jun N-terminal kinase (JNK) is likely to cause the death of dopaminergic neurons. Therefore, protecting dopaminergic neurons through anti-neuroinflammation is a promising therapeutic strategy for PD. This study investigated whether Tribuli Fructus (TF) could alleviate PD by inhibiting neuroinflammation. Mouse primary mixed glial culture cells from the mouse cortex were treated with lipopolysaccharide (LPS) to induce neuroinflammation, and 1 h later, cells were treated with TF. 1-methyl-4-phenyl 1,2,3,6-tetrahydropyridine (MPTP) was injected into C57BL/6J mice for 5 days, and TF was co and post-administered for 12 days. Our study showed that TF attenuated pro-inflammatory mediators and cytokines in LPS-stimulated primary mixed glial cultures. In the brains of MPTP-induced PD mouse model, TF inhibited the activation of microglia and astrocytes, protected dopaminergic neurons, and increased dopamine levels. TF alleviated MPTP-induced bradykinesia, a representative behavioral disorder in PD. In addition, the results in vitro and in vivo revealed that TF regulates the phosphorylation of JNK. Collectively, our data suggest that TF may be a new therapeutic candidate for PD by regulating JNK signaling.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 02447, Seoul, Republic of Korea
| | - Eugene Huh
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Formulae Pharmacology, College of Korean Medicine, Gachon University, Seongnam, 1342, Republic of Korea
| | - Hyeyoon Eo
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 02447, Seoul, Republic of Korea
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Jin Se Kim
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 02447, Seoul, Republic of Korea
| | - Youngji Kwon
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 02447, Seoul, South Korea
| | - In Gyoung Ju
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Yujin Choi
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 02447, Seoul, Republic of Korea
| | - Hae-Jee Yoon
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - So-Ri Son
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 02447, Seoul, Republic of Korea
| | - Dae Sik Jang
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 02447, Seoul, Republic of Korea
| | - Seon-Pyo Hong
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Hi-Joon Park
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 02447, Seoul, Republic of Korea
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, 02447, Seoul, Republic of Korea
| | - Myung Sook Oh
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 02447, Seoul, Republic of Korea.
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 02447, Seoul, South Korea.
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul, 02447, Korea.
| |
Collapse
|
42
|
Wang L, Zhang A, Hu Y, Yang W, Zhong L, Shi J, Wang Z, Tao Q, Liang Q, Yao X. Landscape of multiple tissues' gene expression pattern associated with severe sepsis: Genetic insights from Mendelian randomization and trans-omics analysis. Life Sci 2024; 358:123181. [PMID: 39471899 DOI: 10.1016/j.lfs.2024.123181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
BACKGROUND Sepsis, a systemic syndrome often culminating in multiple organ failure (MOF), poses a substantial global health threat. However, the gene expression pattern of various tissues associated with severe sepsis remains elusive. METHODS Applying the summary data-based Mendelian randomization (SMR) method, we integrated sepsis genome-wide association study (GWAS) data and expression quantitative trait loci (eQTLs) summaries. This facilitated the investigation of gene causality across 12 tissue types within 26 cohorts linked to adverse sepsis outcomes, including critical care and 28-day mortality. Additionally, trans-omics analyses, including blood transcriptome and single-cell RNA sequencing, were conducted to examine cellular origins and gene functions. The effects of ST7L on sepsis were validated in vivo and in vitro. RESULTS We identified 127 genes associated with severe sepsis across diverse tissues. Cross-tissue analysis highlighted ST7L as a significant pan-tissue risk factor for severe sepsis, displaying significance across 11 tissues for both critical care sepsis (meta OR 1.19, 95 % CI: 1.14-1.25, meta p < 0.0001) and 28-day-death sepsis (meta OR: 1.22, 95 % CI: 1.17-1.27, meta p < 0.0001). Notably, independent blood single-cell RNA sequencing data showed specific expression of ST7L in dendritic cells (DCs). ST7L+ DCs were elevated in non-surviving sepsis patients and exhibited an augmented inflammatory molecular pattern compared to ST7L- DCs. Both transcription and translation level of ST7L in DCs exhibited a dose-dependent pattern with LPS. Knocking down ST7L by siRNA was sufficient to alleviate the inflammation phenotype of DCs, including inhibiting p65/NF-kB pathway and inflammatory factors. CONCLUSION Our findings underscore ST7L as a pan-tissue risk factor for severe sepsis, specifically manifested in DCs and associated with an inflammatory phenotype. These results offer essential insights into the gene expression profiles across multiple tissues in severe sepsis, potentially identifying therapeutic targets for effective sepsis management.
Collapse
Affiliation(s)
- Lei Wang
- Department of Clinical Laboratory, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Aiping Zhang
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China; Critical Care Medicine Department, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Yehong Hu
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China; Critical Care Medicine Department, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Wanwei Yang
- Department of Clinical Laboratory, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Li Zhong
- Department of Clinical Laboratory, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Jianfeng Shi
- Department of Clinical Laboratory, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Zhiguo Wang
- Department of Clinical Laboratory, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Qing Tao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, Jiangsu, China
| | - Qiao Liang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, Jiangsu, China.
| | - Xiaoming Yao
- Department of Clinical Laboratory, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| |
Collapse
|
43
|
Lubschinski TL, Pollo LAE, de Oliveira PGF, Nardino LA, Mohr ETB, da Silva Buss Z, Sandjo LP, Biavatti MW, Daltoé FP, Dalmarco EM. Preclinical evidence of the anti-inflammatory effect and toxicological safety of aryl-cyclohexanone in vivo. Fundam Clin Pharmacol 2024; 38:1103-1115. [PMID: 39155123 DOI: 10.1111/fcp.13035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/16/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Respiratory distress syndrome is a complex inflammatory condition defined by the presence of acute hypoxemia and cellular infiltration with diffuse alveolar injury following a tissue injury, such as acute lung injury. The inflammatory process involved in this pathology is a defense mechanism of the body against infectious agents and/or tissue injuries. However, when the condition is not reversed, it becomes a significant cause of tissue damage, sometimes leading to loss of function of the affected organ. Therefore, it is essential to understand the mechanisms underlying inflammation, as well as the development of new therapeutic agents that reduce inflammatory damage in these cases. Aryl-cyclohexanone derivatives have previously shown significant anti-inflammatory activity linked to an immunomodulatory capacity in vitro and may be good candidates for therapies in which inflammation plays a central role. METHODS Was evaluated the anti-inflammatory capacity of a synthesized molecule aryl-cyclohexanone in the murine model of lipopolysaccharide (LPS)-induced acute lung injury. The assessment of acute oral toxicity follows the Organization for Economic Co-operation and Development (OECD) guideline 423. RESULTS The results demonstrated that the studied molecule protects against LPS-induced inflammation. We observed a decrease in the migration of total and differential leukocytes to the bronchoalveolar lavage fluid (BALF), in addition to a reduction in exudation, myeloperoxidase (MPO) activity, nitric oxide metabolites, and the secretion of pro-inflammatory cytokines (alpha tumor necrosis factors [TNF-α], interleukin-6 [IL-6], interferon-gamma [IFN-γ], and monocyte chemoattractant protein-1 [MCP-1]). Finally, aryl cyclohexanone did not show signs of acute oral toxicity (OECD 423). CONCLUSIONS The results prove our hypothesis that aryl-cyclohexanone is a promising molecule for developing a new, safe anti-inflammatory drug.
Collapse
Affiliation(s)
- Tainá Larissa Lubschinski
- Department of Clinical Analysis, Center of Health Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Luiz Antonio Escorteganha Pollo
- Department of Pharmaceutical Sciences, Center of Health Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Luigi Arruda Nardino
- Department of Pharmaceutical Sciences, Center of Health Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Eduarda Talita Bramorski Mohr
- Department of Clinical Analysis, Center of Health Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Ziliani da Silva Buss
- Department of Clinical Analysis, Center of Health Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Louis Pergaud Sandjo
- Department of Chemistry, Center for Physical and Mathematical Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Maique Weber Biavatti
- Department of Pharmaceutical Sciences, Center of Health Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Felipe Perozzo Daltoé
- Department of Pathology, Center of Health Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Eduardo Monguilhott Dalmarco
- Department of Clinical Analysis, Center of Health Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
44
|
Becher B, Derfuss T, Liblau R. Targeting cytokine networks in neuroinflammatory diseases. Nat Rev Drug Discov 2024; 23:862-879. [PMID: 39261632 DOI: 10.1038/s41573-024-01026-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 09/13/2024]
Abstract
In neuroinflammatory diseases, systemic (blood-borne) leukocytes invade the central nervous system (CNS) and lead to tissue damage. A causal relationship between neuroinflammatory diseases and dysregulated cytokine networks is well established across several preclinical models. Cytokine dysregulation is also observed as an inadvertent effect of cancer immunotherapy, where it often leads to neuroinflammation. Neuroinflammatory diseases can be separated into those in which a pathogen is at the centre of the immune response and those of largely unknown aetiology. Here, we discuss the pathophysiology, cytokine networks and therapeutic landscape of 'sterile' neuroinflammatory diseases such as multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), neurosarcoidosis and immune effector cell-associated neurotoxicity syndrome (ICANS) triggered by cancer immunotherapy. Despite successes in targeting cytokine networks in preclinical models of neuroinflammation, the clinical translation of targeting cytokines and their receptors has shown mixed and often paradoxical responses.
Collapse
Affiliation(s)
- Burkhard Becher
- Institute of experimental Immunology, University of Zurich, Zurich, Switzerland.
| | - Tobias Derfuss
- Department of Neurology and Biomedicine, Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Roland Liblau
- Institute for inflammatory and infectious diseases, INSERM UMR1291 - CNRS UMR505, Toulouse, France.
| |
Collapse
|
45
|
Hegde M, Singh AK, Kannan S, Kolkundkar U, Seetharam RN. Therapeutic Applications of Engineered Mesenchymal Stromal Cells for Enhanced Angiogenesis in Cardiac and Cerebral Ischemia. Stem Cell Rev Rep 2024; 20:2138-2154. [PMID: 39305405 PMCID: PMC11554727 DOI: 10.1007/s12015-024-10787-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2024] [Indexed: 11/12/2024]
Abstract
Ischemic diseases are characterized by obstruction of blood flow to the respective organs, of which ischemia of the heart and brain are the most prominent manifestations with shared pathophysiological mechanisms and risk factors. While most revascularization therapies aim to restore blood flow, this can be challenging due to the limited therapeutic window available for treatment approaches. For a very long time, mesenchymal stromal cells have been used to treat cerebral and cardiac ischemia. However, their application is restricted either by inefficient mode of delivery or the low cell survival rates following implantation into the ischemic microenvironment. Nonetheless, several studies are currently focusing on using of mesenchymal stromal cells engineered to overexpress therapeutic genes as a cell-based gene therapy to restore angiogenesis. This review delves into the utilization of MSCs for angiogenesis and the applications of engineered MSCs for the treatment of cardiac and cerebral ischemia. Moreover, the safety issues related to the genetic modification of MSCs have also been discussed.
Collapse
Affiliation(s)
- Madhavi Hegde
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Abhishek Kumar Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Suresh Kannan
- Stempeutics Research Pvt. Ltd., 3rd Floor, Manipal Hospitals Whitefield #143, EPIP Industrial Area, ITPL Main Road, Bangalore, 560 048, India
| | - Udaykumar Kolkundkar
- Stempeutics Research Pvt. Ltd., 3rd Floor, Manipal Hospitals Whitefield #143, EPIP Industrial Area, ITPL Main Road, Bangalore, 560 048, India
| | - Raviraja N Seetharam
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India.
| |
Collapse
|
46
|
Benarroch E. What Is the Role of Cytokines in Synaptic Transmission? Neurology 2024; 103:e209928. [PMID: 39303183 DOI: 10.1212/wnl.0000000000209928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
|
47
|
Butelman ER, Huang Y, Cathomas F, Gaudreault PO, Roussos P, Russo SJ, Goldstein RZ, Alia-Klein N. Serum cytokines and inflammatory proteins in individuals with heroin use disorder: potential mechanistically based biomarkers for diagnosis. Transl Psychiatry 2024; 14:414. [PMID: 39362849 PMCID: PMC11450096 DOI: 10.1038/s41398-024-03119-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
Opioid use disorders cause major morbidity and mortality, and there is a pressing need for novel mechanistic targets and biomarkers for diagnosis and prognosis. Exposure to mu-opioid receptor (MOR) agonists causes changes in cytokine and inflammatory protein networks in peripheral blood, and also in brain glia and neurons. Individuals with heroin use disorder (iHUD) show dysregulated levels of several cytokines in the blood. However, there is limited data on a comprehensive panel of such markers in iHUD versus healthy controls (HC), especially considered as a multi-target biomarker. We used a validated proximity extension assay for the relative quantification of 92 cytokines and inflammatory proteins in the serum of iHUD on medication-assisted therapy (MAT; n = 21), compared to HC (n = 24). Twenty-nine targets showed significant group differences (primarily iHUD>HC), surviving multiple comparison corrections (p = 0.05). These targets included 19 members of canonical cytokine families, including specific chemokines, interleukins, growth factors, and tumor necrosis factor (TNF)-related proteins. For dimensionality reduction, data from these 19 cytokines were entered into a principal component (PC) analysis, with PC1 scores showing significant group differences (iHUD > HC; p < 0.0001). A receiver-operating characteristic (ROC) curve analysis yielded an AUROC = 91.7% (p < 0.0001). This PC1 score remained a positive predictor of being in the HUD group in a multivariable logistic regression, that included select demographic/clinical variables. Overall, this study shows a panel of cytokines that differ significantly between iHUD and HC, providing a multi-target "cytokine biomarker score" for potential diagnostic purposes, and future examination of disease severity.
Collapse
Affiliation(s)
- Eduardo R Butelman
- Neuropsychoimaging of Addictions and Related Conditions Research Program (NARC), Icahn School of Medicine at Mount Sinai, Departments of Psychiatry and Neuroscience, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Yuefeng Huang
- Neuropsychoimaging of Addictions and Related Conditions Research Program (NARC), Icahn School of Medicine at Mount Sinai, Departments of Psychiatry and Neuroscience, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Flurin Cathomas
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center of Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pierre-Olivier Gaudreault
- Neuropsychoimaging of Addictions and Related Conditions Research Program (NARC), Icahn School of Medicine at Mount Sinai, Departments of Psychiatry and Neuroscience, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Panos Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education, and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Scott J Russo
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center of Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rita Z Goldstein
- Neuropsychoimaging of Addictions and Related Conditions Research Program (NARC), Icahn School of Medicine at Mount Sinai, Departments of Psychiatry and Neuroscience, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nelly Alia-Klein
- Neuropsychoimaging of Addictions and Related Conditions Research Program (NARC), Icahn School of Medicine at Mount Sinai, Departments of Psychiatry and Neuroscience, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
48
|
Cheng Y, Liu R, Wang RR, Yu K, Shen J, Pang J, Zhang T, Shi H, Sun L, Shyh‐Chang N. The metabaging cycle promotes non-metabolic chronic diseases of ageing. Cell Prolif 2024; 57:e13712. [PMID: 38988247 PMCID: PMC11471437 DOI: 10.1111/cpr.13712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 07/12/2024] Open
Affiliation(s)
- Yeqian Cheng
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Ruirui Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Ruiqi Rachel Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Kang Yu
- Department of Clinical Nutrition, Department of Health MedicinePeking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Peking Union Medical College HospitalBeijingChina
| | - Ji Shen
- Department of Geriatrics, Beijing Hospital, National Center of GerontologyInstitute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Jing Pang
- The Key Laboratory of GeriatricsBeijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health CommissionBeijingChina
| | - Tiemei Zhang
- The Key Laboratory of GeriatricsBeijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health CommissionBeijingChina
| | - Hong Shi
- Department of Geriatrics, Beijing Hospital, National Center of GerontologyInstitute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Liang Sun
- The Key Laboratory of GeriatricsBeijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health CommissionBeijingChina
- The NHC Key laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingChina
| | - Ng Shyh‐Chang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| |
Collapse
|
49
|
Lin B, Zhou Y, Huang Z, Ma M, Qi M, Jiang Z, Li G, Xu Y, Yan J, Wang D, Wang X, Jiang W, Zhou R. GPR34 senses demyelination to promote neuroinflammation and pathologies. Cell Mol Immunol 2024; 21:1131-1144. [PMID: 39030423 PMCID: PMC11442997 DOI: 10.1038/s41423-024-01204-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/21/2024] Open
Abstract
Sterile neuroinflammation is a major driver of multiple neurological diseases. Myelin debris can act as an inflammatory stimulus to promote inflammation and pathologies, but the mechanism is poorly understood. Here, we showed that lysophosphatidylserine (LysoPS)-GPR34 axis played a critical role in microglia-mediated myelin debris sensing and the subsequent neuroinflammation. Myelin debris-induced microglia activation and proinflammatory cytokine expression relied on its lipid component LysoPS. Both myelin debris and LysoPS promoted microglia activation and the production of proinflammatory cytokines via GPR34 and its downstream PI3K-AKT and ERK signaling. In vivo, reducing the content of LysoPS in myelin or inhibition of GPR34 with genetic or pharmacological approaches reduced neuroinflammation and pathologies in the mouse models of multiple sclerosis and stroke. Thus, our results identify GPR34 as a key receptor to sense demyelination and CNS damage and promote neuroinflammation, and suggest it as a potential therapeutic target for demyelination-associated diseases.
Collapse
Affiliation(s)
- Bolong Lin
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yubo Zhou
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zonghui Huang
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Ming Ma
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Minghui Qi
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhongjun Jiang
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Guoyang Li
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yueli Xu
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiaxian Yan
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Di Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaqiong Wang
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Wei Jiang
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Rongbin Zhou
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China.
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
50
|
Ltaief SM, Nour-Eldine W, Manaph NPA, Tan TM, Anuar ND, Bensmail I, George J, Abdesselem HB, Al-Shammari AR. Dysregulated plasma autoantibodies are associated with B cell dysfunction in young Arab children with autism spectrum disorder in Qatar. Autism Res 2024; 17:1974-1993. [PMID: 39315457 DOI: 10.1002/aur.3235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interaction and communication, as well as the occurrence of stereotyped and repetitive behaviors. Previous studies have provided solid evidence of dysregulated immune system in ASD; however, limited studies have investigated autoantibody profiles in individuals with ASD. This study aims to screen plasma autoantibodies in a well-defined cohort of young children with ASD (n = 100) and their matched controls (n = 60) utilizing a high-throughput KoRectly Expressed (KREX) i-Ome protein-array technology. We identified differential protein expression of 16 autoantibodies in ASD, which were correlated with differential gene expression of these markers in independent ASD cohorts. Meanwhile, we identified a distinct list of 33 autoantibodies associated with ASD severity; several of which were correlated with maternal age and birth weight in ASD. In addition, we found dysregulated numbers of circulating B cells and activated HLADR+ B cells in ASD, which were correlated with altered levels of several autoantibodies. Further in-depth analysis of B cell subpopulations revealed an increased frequency of activated naïve B cells in ASD, as well as an association of resting naïve B cells and transitional B cells with ASD severity. Pathway enrichment analysis revealed disrupted MAPK signaling in ASD, suggesting a potential relevance of this pathway to altered autoantibodies and B cell dysfunction in ASD. Finally, we found that a combination of eight autoantibodies associated with ASD severity showed an area under the curve (ROC-AUC) of 0.937 (95% CI = 0.890, 0.983; p < 0.001), which demonstrated the diagnostic accuracy of the eight-marker signature in the severity classification of ASD cases. Overall, this study determined dysregulated autoantibody profiles and B cell dysfunction in children with ASD and identified an eight-autoantibody panel for ASD severity classification.
Collapse
Affiliation(s)
- Samia M Ltaief
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Wared Nour-Eldine
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | | | - Ti-Myen Tan
- Sengenics Corporation, Level M, Plaza Zurich, Damansara Heights, Kuala Lumpur, Malaysia
| | - Nur Diana Anuar
- Sengenics Corporation, Level M, Plaza Zurich, Damansara Heights, Kuala Lumpur, Malaysia
| | - Ilham Bensmail
- Proteomics Core Facility, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Jilbin George
- Proteomics Core Facility, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Houari B Abdesselem
- Proteomics Core Facility, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Abeer R Al-Shammari
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| |
Collapse
|