1
|
Yu SP, Choi E, Jiang MQ, Wei L. Acute and chronic excitotoxicity in ischemic stroke and late-onset Alzheimer's disease. Neural Regen Res 2025; 20:1981-1988. [PMID: 39101641 PMCID: PMC11691467 DOI: 10.4103/nrr.nrr-d-24-00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/13/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Stroke and Alzheimer's disease are common neurological disorders and often occur in the same individuals. The comorbidity of the two neurological disorders represents a grave health threat to older populations. This review presents a brief background of the development of novel concepts and their clinical potentials. The activity of glutamatergic N-methyl-D-aspartate receptors and N-methyl-D-aspartate receptor-mediated Ca 2+ influx is critical for neuronal function. An ischemic insult induces prompt and excessive glutamate release and drastic increases of intracellular Ca 2+ mainly via N-methyl-D-aspartate receptors, particularly of those at the extrasynaptic site. This Ca 2+ -evoked neuronal cell death in the ischemic core is dominated by necrosis within a few hours and days known as acute excitotoxicity. Furthermore, mild but sustained Ca 2+ increases under neurodegenerative conditions such as in the distant penumbra of the ischemic brain and early stages of Alzheimer's disease are not immediately toxic, but gradually set off deteriorating Ca 2+ -dependent signals and neuronal cell loss mostly because of activation of programmed cell death pathways. Based on the Ca 2+ hypothesis of Alzheimer's disease and recent advances, this Ca 2+ -activated "silent" degenerative excitotoxicity evolves from years to decades and is recognized as a unique slow and chronic neuropathogenesis. The N-methyl-D-aspartate receptor subunit GluN3A, primarily at the extrasynaptic site, serves as a gatekeeper for the N-methyl-D-aspartate receptor activity and is neuroprotective against both acute and chronic excitotoxicity. Ischemic stroke and Alzheimer's disease, therefore, share an N-methyl-D-aspartate receptor- and Ca 2+ -mediated mechanism, although with much different time courses. It is thus proposed that early interventions to control Ca 2+ homeostasis at the preclinical stage are pivotal for individuals who are susceptible to sporadic late-onset Alzheimer's disease and Alzheimer's disease-related dementia. This early treatment simultaneously serves as a preconditioning therapy against ischemic stroke that often attacks the same individuals during abnormal aging.
Collapse
Affiliation(s)
- Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Emily Choi
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael Q. Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
2
|
Trudler D, Ghatak S, Bula M, Parker J, Talantova M, Luevanos M, Labra S, Grabauskas T, Noveral SM, Teranaka M, Schahrer E, Dolatabadi N, Bakker C, Lopez K, Sultan A, Patel P, Chan A, Choi Y, Kawaguchi R, Stankiewicz P, Garcia-Bassets I, Kozbial P, Rosenfeld MG, Nakanishi N, Geschwind DH, Chan SF, Lin W, Schork NJ, Ambasudhan R, Lipton SA. Dysregulation of miRNA expression and excitation in MEF2C autism patient hiPSC-neurons and cerebral organoids. Mol Psychiatry 2025; 30:1479-1496. [PMID: 39349966 PMCID: PMC11919750 DOI: 10.1038/s41380-024-02761-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 03/20/2025]
Abstract
MEF2C is a critical transcription factor in neurodevelopment, whose loss-of-function mutation in humans results in MEF2C haploinsufficiency syndrome (MHS), a severe form of autism spectrum disorder (ASD)/intellectual disability (ID). Despite prior animal studies of MEF2C heterozygosity to mimic MHS, MHS-specific mutations have not been investigated previously, particularly in a human context as hiPSCs afford. Here, for the first time, we use patient hiPSC-derived cerebrocortical neurons and cerebral organoids to characterize MHS deficits. Unexpectedly, we found that decreased neurogenesis was accompanied by activation of a micro-(mi)RNA-mediated gliogenesis pathway. We also demonstrate network-level hyperexcitability in MHS neurons, as evidenced by excessive synaptic and extrasynaptic activity contributing to excitatory/inhibitory (E/I) imbalance. Notably, the predominantly extrasynaptic (e)NMDA receptor antagonist, NitroSynapsin, corrects this aberrant electrical activity associated with abnormal phenotypes. During neurodevelopment, MEF2C regulates many ASD-associated gene networks, suggesting that treatment of MHS deficits may possibly help other forms of ASD as well.
Collapse
Affiliation(s)
- Dorit Trudler
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA
| | - Swagata Ghatak
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, an Off Campus Center of Homi Bhabha National Institute, Jatani, Odisha, India
| | - Michael Bula
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - James Parker
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA
| | - Maria Talantova
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA
| | - Melissa Luevanos
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Sergio Labra
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Titas Grabauskas
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Sarah Moore Noveral
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Mayu Teranaka
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA
| | - Emily Schahrer
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Nima Dolatabadi
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA
| | - Clare Bakker
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Kevin Lopez
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA
| | - Abdullah Sultan
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA
| | - Parth Patel
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Agnes Chan
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Yongwook Choi
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Riki Kawaguchi
- Departments of Psychiatry and Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ivan Garcia-Bassets
- Howard Hughes Medical Institute, School and Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Piotr Kozbial
- Howard Hughes Medical Institute, School and Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, School and Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Nobuki Nakanishi
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA
| | - Daniel H Geschwind
- Department of Neurology, Center for Autism Research and Treatment, Program in Neurobehavioral Genetics, Department of Human Genetics, Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Shing Fai Chan
- Center for Neuroscience, Aging, and Stem Cell Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Department of Medicine, Indiana University-Purdue University, Indianapolis, IN, USA
| | - Wei Lin
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Nicholas J Schork
- Translational Genomics Research Institute, Phoenix, AZ, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Rajesh Ambasudhan
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA
| | - Stuart A Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA.
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
3
|
Estevez I, Buckley BD, Lindman M, Panzera N, Chou TW, McCourt M, Vaglio BJ, Atkins C, Firestein BL, Daniels BP. The kinase RIPK3 promotes neuronal survival by suppressing excitatory neurotransmission during central nervous system viral infection. Immunity 2025; 58:666-682.e6. [PMID: 39999836 PMCID: PMC11903149 DOI: 10.1016/j.immuni.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/17/2024] [Accepted: 01/30/2025] [Indexed: 02/27/2025]
Abstract
While recent work has identified roles for immune mediators in regulating neural activity, how innate immune signaling within neurons influences neurotransmission remains poorly understood. Emerging evidence suggests that the modulation of neurotransmission may serve important roles in host protection during infection of the central nervous system. Here, we showed that receptor-interacting protein kinase-3 (RIPK3) preserved neuronal survival during flavivirus infection through the suppression of excitatory neurotransmission. These effects occurred independently of the traditional functions of RIPK3 in promoting necroptosis and inflammatory transcription. Instead, RIPK3 promoted phosphorylation of the neuronal regulatory kinase calcium/calmodulin-dependent protein kinase II (CaMKII), which in turn activated the transcription factor cyclic AMP response element-binding protein (CREB) to drive a neuroprotective transcriptional program and suppress deleterious glutamatergic signaling. These findings identify an unexpected function for a canonical cell death protein in promoting neuronal survival during viral infection through the modulation of neuronal activity, highlighting mechanisms of neuroimmune crosstalk.
Collapse
Affiliation(s)
- Irving Estevez
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Benjamin D Buckley
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Marissa Lindman
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Nicholas Panzera
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Tsui-Wen Chou
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Micheal McCourt
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Brandon J Vaglio
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Colm Atkins
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Brian P Daniels
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
4
|
Zhang X, Vlkolinsky R, Wu C, Dolatabadi N, Scott H, Prikhodko O, Zhang A, Blanco M, Lang N, Piña-Crespo J, Nakamura T, Roberto M, Lipton SA. S-Nitrosylation of CRTC1 in Alzheimer's disease impairs CREB-dependent gene expression induced by neuronal activity. Proc Natl Acad Sci U S A 2025; 122:e2418179122. [PMID: 40014571 PMCID: PMC11892585 DOI: 10.1073/pnas.2418179122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/10/2025] [Indexed: 03/01/2025] Open
Abstract
cAMP response element-binding protein (CREB)-regulated transcription coactivator 1 (CRTC1) plays an important role in synaptic plasticity, learning, and long-term memory formation through the regulation of neuronal activity-dependent gene expression, and CRTC1 dysregulation is implicated in Alzheimer's disease (AD). Here, we show that increased S-nitrosylation of CRTC1 (forming SNO-CRTC1), as seen in cell-based, animal-based, and human-induced pluripotent stem cell (hiPSC)-derived cerebrocortical neuron-based AD models, disrupts its binding with CREB and diminishes the activity-dependent gene expression mediated by the CRTC1/CREB pathway. We identified Cys216 of CRTC1 as the primary target of S-nitrosylation by nitric oxide (NO)-related species. Using CRISPR/Cas9 techniques, we mutated Cys216 to Ala in hiPSC-derived cerebrocortical neurons bearing one allele of the APPSwe mutation (AD-hiPSC neurons). Introduction of this nonnitrosylatable CRTC1 mutant rescued defects in AD-hiPSC neurons, including decreased neurite length and increased neuronal cell death. Additionally, expression of nonnitrosylatable CRTC1 in vivo in the hippocampus rescued synaptic plasticity in the form of long-term potentiation in 5XFAD mice. Taken together, these results demonstrate that formation of SNO-CRTC1 contributes to the pathogenesis of AD by attenuating the neuronal activity-dependent CREB transcriptional pathway, and suggests a therapeutic target for AD.
Collapse
Affiliation(s)
- Xu Zhang
- Neurodegeneration New Medicines Center and Department of Molecular & Cellular Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Roman Vlkolinsky
- Department of Translational Medicine, The Scripps Research Institute, La Jolla, CA92037
| | - Chongyang Wu
- Neurodegeneration New Medicines Center and Department of Molecular & Cellular Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Nima Dolatabadi
- Neurodegeneration New Medicines Center and Department of Molecular & Cellular Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Henry Scott
- Neurodegeneration New Medicines Center and Department of Molecular & Cellular Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Olga Prikhodko
- Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, CA92093
| | - Andrew Zhang
- Neurodegeneration New Medicines Center and Department of Molecular & Cellular Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Mayra Blanco
- Neurodegeneration New Medicines Center and Department of Molecular & Cellular Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Nhi Lang
- Neurodegeneration New Medicines Center and Department of Molecular & Cellular Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Juan Piña-Crespo
- Neurodegeneration New Medicines Center and Department of Molecular & Cellular Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Tomohiro Nakamura
- Neurodegeneration New Medicines Center and Department of Molecular & Cellular Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Marisa Roberto
- Department of Translational Medicine, The Scripps Research Institute, La Jolla, CA92037
| | - Stuart A. Lipton
- Neurodegeneration New Medicines Center and Department of Molecular & Cellular Biology, The Scripps Research Institute, La Jolla, CA92037
- Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, CA92093
| |
Collapse
|
5
|
Caffino L, Targa G, Mottarlini F, Thielens S, Rizzi B, Villers A, Ris L, Gainetdinov RR, Leo D, Fumagalli F. Memantine-induced functional rewiring of the glutamate synapse in the striatum of dopamine transporter knockout rats. Br J Pharmacol 2025; 182:1377-1393. [PMID: 39653030 DOI: 10.1111/bph.17403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/27/2024] [Accepted: 10/29/2024] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND AND PURPOSE Slow-acting biogenic amines, such as dopamine, are known to modulate fast neurotransmitters e.g. glutamate. In the striatum, dopamine (DA) interacts with glutamate, influencing neural excitability and promoting synaptic plasticity. The exact mechanism of such interaction is not fully understood. This study investigates, in detail, how dopamine overactivity in dopamine transporter knockout (DAT-/-) rats, alters the homeostasis of the striatal glutamate synapse from a molecular, behavioural and functional point of view. EXPERIMENTAL APPROACH The expression, localisation, retention and electrophysiological properties of N-methyl-D-aspartate (NMDA) receptors as well as dendritic spine density and morphology were investigated in the striatum of DAT-/- rats, at baseline and after treatment with the non-competitive NMDA receptor antagonist memantine (30 mg kg-1). KEY RESULTS Dopamine overactivity dramatically reorganises the striatal glutamate synapse, redistributing NMDA receptors in the synapse as typified by reduced synaptic availability and reduced expression of NMDA scaffolding proteins, as well as by increased GluN2B-containing NMDA receptors in the extra synapse. Such changes are accompanied by reduced spine density, suggesting dopamine-induced structural rearrangements. These results converge into a compromised plasticity, as shown by the impaired ability to promote long-term depression (LTD) in the striatum of DAT-/-rats. Notably, memantine counteracts hyperlocomotion, reverses spine alterations and abolishes the extrasynaptic movements of NMDA receptors in the striatum of DAT-/- rats, thus restoring functional LTD. CONCLUSION AND IMPLICATIONS A hyperdopaminergic condition seems to alter striatal homeostasis by increasing extrasynaptic NMDA receptors. These findings may be relevant to manipulate disorders characterised by elevated dopaminergic activity.
Collapse
Affiliation(s)
- Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Giorgia Targa
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Sarah Thielens
- Department of Neurosciences, University of Mons, Mons, Belgium
| | - Beatrice Rizzi
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
- Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Agnes Villers
- Department of Neurosciences, University of Mons, Mons, Belgium
| | - Laurence Ris
- Department of Neurosciences, University of Mons, Mons, Belgium
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- St. Petersburg University Hospital, St. Petersburg State University, St. Petersburg, Russia
| | - Damiana Leo
- Department of Neurosciences, University of Mons, Mons, Belgium
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
6
|
Choquet D, Opazo P, Zhang H. AMPA receptor diffusional trapping machinery as an early therapeutic target in neurodegenerative and neuropsychiatric disorders. Transl Neurodegener 2025; 14:8. [PMID: 39934896 DOI: 10.1186/s40035-025-00470-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025] Open
Abstract
Over the past two decades, there has been a growing recognition of the physiological importance and pathological implications surrounding the surface diffusion of AMPA receptors (AMPARs) and their diffusional trapping at synapses. AMPAR surface diffusion entails the thermally powered random Brownian lateral movement of these receptors within the plasma membrane, facilitating dynamic exchanges between synaptic and extrasynaptic compartments. This process also enables the activity-dependent diffusional trapping and accumulation of AMPARs at synapses through transient binding to synaptic anchoring slots. Recent research highlights the critical role of synaptic recruitment of AMPARs via diffusional trapping in fundamental neural processes such as the development of the early phases of long-term potentiation (LTP), contextual fear memory, memory consolidation, and sensory input-induced cortical remapping. Furthermore, studies underscore that regulation of AMPAR diffusional trapping is altered across various neurological disease models, including Huntington's disease (HD), Alzheimer's disease (AD), and stress-related disorders like depression. Notably, pharmacological interventions aimed at correcting deficits in AMPAR diffusional trapping have demonstrated efficacy in restoring synapse numbers, LTP, and memory functions in these diverse disease models, despite their distinct pathogenic mechanisms. This review provides current insights into the molecular mechanisms underlying the dysregulation of AMPAR diffusional trapping, emphasizing its role as a converging point for multiple pathological signaling pathways. We propose that targeting AMPAR diffusional trapping represents a promising early therapeutic strategy to mitigate synaptic plasticity and memory deficits in a spectrum of brain disorders, encompassing but not limited to HD, AD, and stress-related conditions. This approach underscores an integrated therapeutic target amidst the complexity of these neurodegenerative and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Daniel Choquet
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000, Bordeaux, France
- Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UAR 3420, US 4, 33000, Bordeaux, France
| | - Patricio Opazo
- UK Dementia Research Institute, Centre for Discovery Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh, EH16 4SB, UK
| | - Hongyu Zhang
- Department of Biomedicine, University of Bergen, 5009, Bergen, Norway.
- Mohn Research Center for the Brain, University of Bergen, 5009, Bergen, Norway.
- Department of Radiology, Haukeland University Hospital, 5021, Bergen, Norway.
| |
Collapse
|
7
|
Joyce M, Datta D, Arellano J, Duque A, Morozov YM, Morrison JH, Arnsten A. Contrasting patterns of extrasynaptic NMDAR-GluN2B expression in macaque subgenual cingulate and dorsolateral prefrontal cortices. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636752. [PMID: 39975025 PMCID: PMC11839065 DOI: 10.1101/2025.02.05.636752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Expression of the N-methyl-D-aspartate receptor, particularly when containing the GluN2B subunit (NMDAR-GluN2B) varies across the prefrontal cortex (PFC). In humans, the subgenual cingulate cortex (SGC) contains among the highest levels of NMDAR-GluN2B expression, while the dorsolateral prefrontal cortex (dlPFC) exhibits a more moderate level of NMDAR-GluN2B expression. NMDAR-GluN2B are commonly associated with ionotropic synaptic function and plasticity, and are essential to the neurotransmission underlying working memory in the macaque dlPFC in the layer III circuits afflicted in schizophrenia. However, NMDAR-GluN2B can also be found at extrasynaptic sites, where they may trigger distinct events, including some linked to neurodegenerative processes. The SGC is an early site of tau pathology in sporadic Alzheimer's Disease (sAD), which mirrors its high NMDAR-GluN2B expression. Additionally, the SGC is hyperactive in depression, which is treated with NMDAR antagonists. Given the clinical relevance of NMDAR in the SGC and dlPFC, the current study used immunoelectron microscopy (immunoEM) to quantitatively compare the synaptic and extrasynaptic expression patterns of NMDAR-GluN2B across excitatory and inhibitory neuron dendrites in the rhesus macaque SGC and dlPFC. We found a larger population of extrasynaptic NMDAR-GluN2B in dendritic shafts and spines of putative pyramidal neurons in SGC as compared to the dlPFC, while the dlPFC had a higher proportion of synaptic NMDAR-GluN2B. In contrast, in putative inhibitory dendrites from both areas, extrasynaptic expression of NMDAR-GluN2B was far more frequently observed over synaptic expression. These findings may provide insight into varying cortical vulnerability to alterations in excitability and to neurodegenerative forces. Scope Statement NMDAR are ionotropic receptors that contribute to neurotransmission and second messenger signaling events. NMDAR can induce a diverse array of neuronal events, in part due to variation in subunit composition and subcellular localization of receptor expression. Expression of the GluN2B subunit varies across the prefrontal cortex in humans. This subunit is highly expressed in the subgenual cingulate, an area associated with mood and emotion, and more moderately expressed in the dorsolateral prefrontal cortex, an area associated with cognitive processes. Extrasynaptic NMDAR, which often contain with the GluN2B subunit, have been linked to detrimental cellular events like neurodegeneration. Here, using high resolution electron microscopy in rhesus macaques, we found evidence that extrasynaptic NMDAR-GluN2B expression may be more prominent in subgenual cortex than in the dorsolateral prefrontal cortex. Conversely, synaptic NMDAR-GluN2B may be more prominent in the dorsolateral prefrontal cortex, consistent with their essential contribution to neuronal firing during working memory. These findings may help to illuminate the propensity of the subgenual cortex to tonic hyperactivity in major depression and its vulnerability to neurodegeneration in Alzheimer's disease, and may help to explain how rapid acting antidepressants exert therapeutic action across diverse neural circuits.
Collapse
|
8
|
Liu Y, Wu L, Peng W, Mao X. Glial polarization in neurological diseases: Molecular mechanisms and therapeutic opportunities. Ageing Res Rev 2025; 104:102638. [PMID: 39672208 DOI: 10.1016/j.arr.2024.102638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
Glial cell polarization plays a pivotal role in various neurological disorders. In response to distinct stimuli, glial cells undergo polarization to either mitigate neurotoxicity or facilitate neural repair following injury, underscoring the importance of glial phenotypic polarization in modulating central nervous system function. This review presents an overview of glial cell polarization, focusing on astrocytes and microglia. It explores the involvement of glial polarization in neurological diseases such as Alzheimer's disease, Parkinson's disease, stroke, epilepsy, traumatic brain injury, amyotrophic lateral sclerosis, multiple sclerosis and meningoencephalitis. Specifically, it emphasizes the role of glial cell polarization in disease pathogenesis through mechanisms including neuroinflammation, neurodegeneration, calcium signaling dysregulation, synaptic dysfunction and immune response. Additionally, it summarizes various therapeutic strategies including pharmacological treatments, dietary supplements and cell-based therapies, aimed at modulating glial cell polarization to ameliorate brain dysfunction. Future research focused on the spatio-temporal manipulation of glial polarization holds promise for advancing precision diagnosis and treatment of neurological diseases.
Collapse
Affiliation(s)
- Yuqing Liu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, China; National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Lei Wu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha 410008, China; Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, China; National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Xiaoyuan Mao
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha 410008, China; Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China.
| |
Collapse
|
9
|
Carmi I, Zoabi S, Bittan AM, Kellner S, Oz S, Heinrich R, Berlin S. A genetically encoded secreted toxin potentiates synaptic NMDA receptors in hippocampal neurons and confers neuroprotection. PNAS NEXUS 2025; 4:pgaf041. [PMID: 39959712 PMCID: PMC11826341 DOI: 10.1093/pnasnexus/pgaf041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 01/27/2025] [Indexed: 02/18/2025]
Abstract
NMDA receptors (NMDARs) play essential roles in neuronal development, survival, and synaptic plasticity, to name a few. However, dysregulation in receptors' activity can lead to neuronal and synaptic damage, contributing to the development of various brain pathologies. Current pharmacological treatments targeting NMDARs remain limited, for instance due to insufficient receptor selectivity and poor spatial targeting. Genetic approaches hold promise to overcome some of these issues; however, require genetically encodable NMDAR-modulating peptides, which are scarce. Here, we explored NMDAR-selective peptide toxins from marine cone snails, which resulted in the necessary engineering of a posttranslational modification-free variant of Conantokin-P (naked Con-P). The naked form is essential for expression in mammalian cells. We systematically explored the naked variant and discovered that naked Con-P maintains its ability to inhibit GluN2B-containing receptors, but uniquely acquired the ability to potentiate GluN2A-containing synaptic receptors. We then engineered a secreted naked Con-P that readily enhances NMDAR-mediated synaptic events in primary hippocampal neurons, and mitigates neuronal damage induced by staurosporine. We therefore provide a genetically encodable, subtype selective, and secreted bimodulator of NMDARs. This new variant and approach should pave the way for the development of additional genetic tools, specifically tailored to target NMDARs within distinct cellular populations in the brain.
Collapse
Affiliation(s)
- Ido Carmi
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| | - Shaden Zoabi
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| | - Asaf M Bittan
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| | - Shai Kellner
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| | - Shimrit Oz
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| | - Ronit Heinrich
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| | - Shai Berlin
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| |
Collapse
|
10
|
Zong P, Legere N, Feng J, Yue L. TRP Channels in Excitotoxicity. Neuroscientist 2025; 31:80-97. [PMID: 38682490 DOI: 10.1177/10738584241246530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Glutamate excitotoxicity is a central mechanism contributing to cellular dysfunction and death in various neurological disorders and diseases, such as stroke, traumatic brain injury, epilepsy, schizophrenia, addiction, mood disorders, Huntington's disease, Alzheimer's disease, Parkinson's disease, multiple sclerosis, pathologic pain, and even normal aging-related changes. This detrimental effect emerges from glutamate binding to glutamate receptors, including α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, N-methyl-d-aspartate receptors, kainate receptors, and GluD receptors. Thus, excitotoxicity could be prevented by targeting glutamate receptors and their downstream signaling pathways. However, almost all the glutamate receptor antagonists failed to attenuate excitotoxicity in human patients, mainly due to the limited understanding of the underlying mechanisms regulating excitotoxicity. Transient receptor potential (TRP) channels serve as ancient cellular sensors capable of detecting and responding to both external and internal stimuli. The study of human TRP channels has flourished in recent decades since the initial discovery of mammalian TRP in 1995. These channels have been found to play pivotal roles in numerous pathologic conditions, including excitotoxicity. In this review, our focus centers on exploring the intricate interactions between TRP channels and glutamate receptors in excitotoxicity.
Collapse
Affiliation(s)
- Pengyu Zong
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), Farmington, CT, USA
- Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, USA
| | - Nicholas Legere
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), Farmington, CT, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jianlin Feng
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), Farmington, CT, USA
| | - Lixia Yue
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), Farmington, CT, USA
| |
Collapse
|
11
|
Ramírez OA, Hellwig A, Zhang Z, Bading H. Pharmacological Targeting of the NMDAR/TRPM4 Death Signaling Complex with a TwinF Interface Inhibitor Prevents Excitotoxicity-Associated Dendritic Blebbing and Organelle Damage. Cells 2025; 14:195. [PMID: 39936986 DOI: 10.3390/cells14030195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
Focal swellings of dendrites ("dendritic blebbing") together with structural damage of mitochondria and the endoplasmic reticulum (ER) are morphological hallmarks of glutamate neurotoxicity, also known as excitotoxicity. These pathological alterations are generally thought to be caused by the so-called "overactivation" of N-methyl-D-aspartate receptors (NMDARs). Here, we demonstrate that the activation of extrasynaptic NMDARs, specifically when forming a protein-protein complex with TRPM4, drives these pathological traits. In contrast, strong activation of synaptic NMDARs fails to induce cell damage despite evoking plateau-type calcium signals that are comparable to those generated by activation of the NMDAR/TRPM4 complex, indicating that high intracellular calcium levels per se are not toxic to neurons. Using confocal laser scanning microscopy and transmission electron microscopy, we show that disrupting the NMDAR/TRPM4 complex using the recently discovered small-molecule TwinF interface inhibitor FP802 inhibits the NMDA-induced neurotoxicity-associated dendritic blebbing and structural damage to mitochondria and the ER. It also prevents, at least in part, the disruption of ER-mitochondria contact sites. These findings establish the NMDAR/TRPM4 complex as the trigger for the structural damage of dendrites and intracellular organelles associated with excitotoxicity. They also suggest that activation of the NMDAR/TRPM4 complex, in addition to inducing high-amplitude, plateau-type calcium signals, generates a second signal required for glutamate neurotoxicity ("two-hit hypothesis"). As structural damage to organelles, particularly mitochondria, is a common feature of many human neurodegenerative diseases, including Alzheimer's disease and amyotrophic lateral sclerosis (ALS), TwinF interface inhibitors have the potential to provide neuroprotection across a broad spectrum of these diseases.
Collapse
Affiliation(s)
- Omar A Ramírez
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Andrea Hellwig
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Zihong Zhang
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
- Network Aging Research, Heidelberg University, 69115 Heidelberg, Germany
| |
Collapse
|
12
|
Sun M, Wang L, Cao Q, Wang X, Zhang Y, Guo M, Chen J, Ma Y, Niu L, Zhang Y, Hu M, Gu M, Zhu Z, Yao X, Yao J, Zhao C, Wu J, Liu X, Lu Y, Wang Z, Xiang Q, Han F, Zhu D. Discovery of HZS60 as a Novel Brain Penetrant NMDAR/TRPM4 Interaction Interface Inhibitor with Improved Activity and Pharmacokinetic Properties for the Treatment of Cerebral Ischemia. J Med Chem 2025; 68:2008-2043. [PMID: 39745498 DOI: 10.1021/acs.jmedchem.4c02772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The death signaling complex comprising extrasynaptic NMDAR and TRPM4 plays a pivotal role in the pathogenesis of ischemic stroke. Targeting the protein-protein interactions between NMDAR and TRPM4 represents a promising therapeutic strategy for ischemic stroke. Herein, we describe the discovery of a novel series of NMDAR/TRPM4 interaction interface inhibitors aimed at enhancing neuroprotective efficacy and optimizing pharmacokinetic profiles. The representative compound HZS60 displayed significant neuroprotective effects against both NMDA and oxygen-glucose deprivation/reoxygenation-induced ischemic injury in primary neurons. Notably, HZS60 exhibited a favorable pharmacokinetic profile and excellent brain permeability. Furthermore, HZS60 provided effective neuroprotection following brain ischemia and reperfusion injury in vivo. Collectively, these findings underscore the potential of HZS60 as a promising candidate for the development of novel therapeutic strategies for ischemic stroke.
Collapse
Affiliation(s)
- Meiling Sun
- Department of Neurology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Lin Wang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Qiaofeng Cao
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xuechun Wang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ying Zhang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Manyu Guo
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jie Chen
- Department of Neurology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Yuchen Ma
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Le Niu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yanping Zhang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Mengdie Hu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Mengli Gu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Zhihui Zhu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xinyi Yao
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Junchen Yao
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Chen Zhao
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jin Wu
- Department of Neurology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Xiuxiu Liu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yingmei Lu
- Department of Neurology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Rd., Shanghai 200032, China
| | - Qiuping Xiang
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo No.2 Hospital, Ningbo 315000, China
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- The affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Northern Jiangsu Institute of Clinical Medicine, Huaian 223300, China
| | - Dongsheng Zhu
- Department of Neurology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
13
|
Ferreira IL, Marinho D, de Rosa V, Castanheira B, Fang Z, Caldeira GL, Mota SI, Rego AC. Linking activation of synaptic NMDA receptors-induced CREB signaling to brief exposure of cortical neurons to oligomeric amyloid-beta peptide. J Neurochem 2025; 169:e16222. [PMID: 39263896 DOI: 10.1111/jnc.16222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024]
Abstract
Amyloid-beta peptide oligomers (AβO) have been considered "primum movens" for a cascade of events that ultimately cause selective neuronal death in Alzheimer's disease (AD). However, initial events triggered by AβO have not been clearly defined. Synaptic (Syn) N-methyl-d-aspartate receptors (NMDAR) are known to activate cAMP response element-binding protein (CREB), a transcriptional factor involved in gene expression related to cell survival, memory formation and synaptic plasticity, whereas activation of extrasynaptic (ESyn) NMDARs was linked to excitotoxic events. In AD brain, CREB phosphorylation/activation was shown to be altered, along with dyshomeostasis of intracellular Ca2+ (Ca2+ i). Thus, in this work, we analyze acute/early and long-term AβO-mediated changes in CREB activation involving Syn or ESyn NMDARs in mature rat cortical neurons. Our findings show that acute AβO exposure produce early increase in phosphorylated CREB, reflecting CREB activity, in a process occurring through Syn NMDAR-mediated Ca2+ influx. Data also demonstrate that AβO long-term (24 h) exposure compromises synaptic function related to Ca2+-dependent CREB phosphorylation/activation and nuclear CREB levels and related target genes, namely Bdnf, Gadd45γ, and Btg2. Data suggest a dual effect of AβO following early or prolonged exposure in mature cortical neurons through the activation of the CREB signaling pathway, linked to the activation of Syn NMDARs.
Collapse
Affiliation(s)
- I Luísa Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Daniela Marinho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Valéria de Rosa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Bárbara Castanheira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Zongwei Fang
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Gladys L Caldeira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Sandra I Mota
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - A Cristina Rego
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
14
|
Pan Y, Pan C, Mao L, Yu P. Neuromodulation with chemicals: Opportunities and challenges. FUNDAMENTAL RESEARCH 2025; 5:55-62. [PMID: 40166084 PMCID: PMC11955035 DOI: 10.1016/j.fmre.2024.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/02/2025] Open
Abstract
Chemicals play a crucial role in neurophysiological and neuropathological processes. By regulating the concentration of specific chemicals, receptors on the neuron cell membrane can be modulated to activate or inhibit, thereby influencing specific ion channels and facilitating neuromodulation. This review introduces several chemical modulation techniques, such as microinjection, electrode/nanoparticle-based chemical delivery methods, in situ electrochemical synthesis and chemogenetics. While these techniques show promise in expanding the application of chemical neuromodulation, they currently exhibit different degrees of shortcomings and room for improvement. This review summarizes the opportunities and challenges for chemical neuromodulation methods and provide an outlook for their prospects in the future.
Collapse
Affiliation(s)
- Yifei Pan
- Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Cong Pan
- Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ping Yu
- Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
15
|
Wang H, Dingledine RJ, Myers SJ, Traynelis SF, Fang C, Tan Y, Koszalka GW, Laskowitz DT. Clinical development of the GluN2B-selective NMDA receptor inhibitor NP10679 for the treatment of neurologic deficit after subarachnoid hemorrhage. J Pharmacol Exp Ther 2025; 392:100046. [PMID: 39892986 DOI: 10.1124/jpet.124.002334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) may be associated with cerebral vasospasm, which can lead to delayed cerebral ischemia, infarction, and worsened functional outcomes. The delayed nature of cerebral ischemia secondary to SAH-related vasculopathy presents a window of opportunity for the evaluation of well tolerated neuroprotective agents administered soon after ictus. Secondary ischemic injury in SAH is associated with increased extracellular glutamate, which can overactivate N-methyl-d-aspartate receptors (NMDARs), thereby triggering NMDAR-mediated cellular damage. In this study, we evaluated the effect of the pH-sensitive GluN2B-selective NMDAR inhibitor NP10679 on neurologic impairment after SAH. This compound demonstrates a selective increase in potency at the acidic extracellular pH levels that occur in the setting of ischemia. We found that NP10679 produced durable improvement of behavioral deficits in a well characterized murine model of SAH, and these effects were greater than those produced by nimodipine alone, the current standard of care. In addition, we observed an unexpected reduction in SAH-induced luminal narrowing of the middle cerebral artery. Neither nimodipine nor NP10679 alters each other's pharmacokinetic profile, suggesting no obvious drug-drug interactions. Based on allometric scaling of both toxicological and efficacy data, the therapeutic margin in humans should be at least 2. These results further demonstrate the utility of pH-dependent neuroprotective agents and GluN2B-selective NMDAR inhibitors as potential therapeutic strategies for the treatment of aneurysmal SAH. SIGNIFICANCE STATEMENT: This report describes the properties and utility of the GluN2B-selective pH-sensitive N-methyl-d-aspartate receptor inhibitor, NP10679, in a well characterized rodent model of subarachnoid hemorrhage. We show that the administration of NP10679 improves long-term neurological function following subarachnoid hemorrhage and that in rats, there are no drug-drug interactions between NP10679 and nimodipine, the standard of care for this indication.
Collapse
Affiliation(s)
- Haichen Wang
- Department of Neurology, Duke University, Durham, North Carolina
| | - Raymond J Dingledine
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia; Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia
| | - Scott J Myers
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia; NeurOp Inc, Atlanta, Georgia
| | - Chuan Fang
- Department of Neurology, Duke University, Durham, North Carolina; Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Yanli Tan
- Department of Neurology, Duke University, Durham, North Carolina; Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | | | | |
Collapse
|
16
|
Binkle-Ladisch L, Pironet A, Zaliani A, Alcouffe C, Mensching D, Haferkamp U, Willing A, Woo MS, Erdmann A, Jessen T, Hess SD, Gribbon P, Pless O, Vennekens R, Friese MA. Identification and development of TRPM4 antagonists to counteract neuronal excitotoxicity. iScience 2024; 27:111425. [PMID: 39687019 PMCID: PMC11648915 DOI: 10.1016/j.isci.2024.111425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/21/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegeneration in central nervous system disorders is linked to dysregulated neuronal calcium. Direct inhibition of glutamate-induced neuronal calcium influx, particularly via N-methyl-D-aspartate receptors (NMDAR), has led to adverse effects and clinical trial failures. A more feasible approach is to modulate NMDAR activity or calcium signaling indirectly. In this respect, the calcium-activated non-selective cation channel transient receptor potential melastatin 4 (TRPM4) has been identified as a promising target. However, high affinity and specific antagonists are lacking. Here, we conducted high-throughput screening of a compound library to identify high affinity TRPM4 antagonists. This yielded five lead compound series with nanomolar half-maximal inhibitory concentration values. Through medicinal chemistry optimization of two series, we established detailed structure-activity relationships and inhibition of excitotoxicity in neurons. Moreover, we identified their potential binding site supported by electrophysiological measurements. These potent TRPM4 antagonists are promising drugs for treating neurodegenerative disorders and TRPM4-related pathologies, potentially overcoming previous therapeutic challenges.
Collapse
Affiliation(s)
- Lars Binkle-Ladisch
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Andy Pironet
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, Campus Gasthuisberg O/N1, Herestraat 49-Bus 802, 3000 Leuven, Belgium
| | - Andrea Zaliani
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 22525 Hamburg, Germany
| | - Chantal Alcouffe
- Department of Chemistry, Evotec SE, 195 Route D'Espagne, 31036 Toulouse, France
| | - Daniel Mensching
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Undine Haferkamp
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 22525 Hamburg, Germany
| | - Anne Willing
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Marcel S. Woo
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Alexandre Erdmann
- Department of Chemistry, Evotec SE, 195 Route D'Espagne, 31036 Toulouse, France
| | | | - Stephen D. Hess
- Evotec Asia Pte Ltd, 79 Science Park Drive, #04-05 Cintech IV, Singapore 118264, Singapore
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 22525 Hamburg, Germany
| | - Ole Pless
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 22525 Hamburg, Germany
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, Campus Gasthuisberg O/N1, Herestraat 49-Bus 802, 3000 Leuven, Belgium
| | - Manuel A. Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
17
|
Xu S, Chen J, Xu C, Xu Y, Xu L, Zhao M, Xu T, Cao Y, Li P, Han Z. 2-BFI protects against ischemic stroke by selectively acting on NR2B-containing NMDA receptors. Brain Res 2024; 1845:149284. [PMID: 39423961 DOI: 10.1016/j.brainres.2024.149284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/06/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND AND PURPOSE The intricate roles of NMDA receptors, specifically those containing the NR2A or NR2B subunit, in ischemic stroke pathology necessitate targeted therapeutic investigations. Building on our prior discovery showcasing the neuroprotective potential of 2-(benzofuran-2-yl)-2-imidazoline (2-BFI), an imidazoline I2 receptor ligand, in inhibiting NMDA receptor currents during ischemic stroke, this study aims to elucidate the specific impact of 2-BFI on NR2A- and NR2B-containing NMDARs. EXPERIMENTAL APPROACH Through whole-cell patch-clamp techniques, we observed an inhibition by 2-BFI on NR2A-containing NMDAR currents (IC50 = 238.6 μM) and NR2B-containing NMDAR currents (IC50 = 18.47 μM). Experiments with HEK293 cells expressing exogenous receptor subunits revealed a significantly higher affinity of 2-BFI towards NR2B-containing NMDARs. In vivo studies involved the co-administration of 2-BFI and the NR2A subunit antagonist NVP-AAM077 in rats subjected to transient middle cerebral artery occlusion (tMCAO). Key results 2-BFI exhibited a pronounced preference for inhibiting NR2B-containing NMDAR currents, leading to a notable mitigation of cerebral ischemic injury when administered in conjunction with NVP-AAM077 in the tMCAO rat model. Furthermore, alterations in the expression of downstream proteins specific to NR2B-containing NMDA receptors were observed, suggesting targeted molecular effects. Conclusion and implications This study unveils the neuroprotective potential of 2-BFI in ischemic stroke by selectively inhibiting NR2B-containing NMDA receptors. These findings lay the foundation for precise therapeutic strategies, showcasing the differential roles of NR2A and NR2B subunits and paving the way for advancements in targeted interventions for ischemic stroke treatment.
Collapse
Affiliation(s)
- Shasha Xu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Department of Critical Care Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Jiaou Chen
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chunfei Xu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ye Xu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lu Xu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Meiqi Zhao
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tong Xu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yungang Cao
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peijun Li
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhao Han
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
18
|
Konecny J, Misiachna A, Chvojkova M, Kleteckova L, Kolcheva M, Novak M, Prchal L, Ladislav M, Hemelikova K, Netolicky J, Hrabinova M, Kobrlova T, Karasova JZ, Pejchal J, Fibigar J, Vecera Z, Kucera T, Jendelova P, Zahumenska P, Langore E, Doderovic J, Pang YP, Vales K, Korabecny J, Soukup O, Horak M. Dizocilpine derivatives as neuroprotective NMDA receptor antagonists without psychomimetic side effects. Eur J Med Chem 2024; 280:116981. [PMID: 39442339 DOI: 10.1016/j.ejmech.2024.116981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/02/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
We aimed to prepare novel dibenzo [a,d][7]annulen derivatives that act on N-methyl-d-aspartate (NMDA) receptors with potential neuroprotective effects. Our approach involved modifying the tropane moiety of MK-801, a potent open-channel blocker known for its psychomimetic side effects, by introducing a seven-membered ring with substituted base moieties specifically to alleviate these undesirable effects. Our in silico analyses showed that these derivatives should have high gastrointestinal absorption and cross the blood-brain barrier (BBB). Our pharmacokinetic studies in rats supported this conclusion and confirmed the ability of leading compounds 3l and 6f to penetrate the BBB. Electrophysiological experiments showed that all compounds exhibited different inhibitory activity towards the two major NMDA receptor subtypes, GluN1/GluN2A and GluN1/GluN2B. Of the selected compounds intentionally differing in the inhibitory efficacy, 6f showed high relative inhibition (∼90 % for GluN1/GluN2A), while 3l showed moderate inhibition (∼50 %). An in vivo toxicity study determined that compounds 3l and 6f were safe at 10 mg/kg doses with no adverse effects. Behavioral studies demonstrated that these compounds did not induce hyperlocomotion or impair prepulse inhibition of startle response in rats. Neuroprotective assays using a model of NMDA-induced hippocampal neurodegeneration showed that compound 3l at a concentration of 30 μM significantly reduced hippocampal damage in rats. These results suggest that these novel dibenzo [a,d][7]annulen derivatives are promising candidates for developing NMDA receptor-targeted therapies with minimal psychotomimetic side effects.
Collapse
Affiliation(s)
- Jan Konecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Anna Misiachna
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Marketa Chvojkova
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Lenka Kleteckova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic; National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Marharyta Kolcheva
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Martin Novak
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Lukas Prchal
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Marek Ladislav
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Katarina Hemelikova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Jakub Netolicky
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Martina Hrabinova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Tereza Kobrlova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Jana Zdarova Karasova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Jaroslav Pejchal
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Jakub Fibigar
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Zbynek Vecera
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Tomas Kucera
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Pavla Jendelova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Petra Zahumenska
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Emily Langore
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Jovana Doderovic
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Yuan-Ping Pang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, 55905, MN, USA
| | - Karel Vales
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic; National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic.
| | - Martin Horak
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic.
| |
Collapse
|
19
|
Casby J, Gansemer BM, Thayer SA. NMDA Receptor-Mediated Ca 2+ Flux Attenuated by the NMDA Receptor/TRPM4 Interface Inhibitor Brophenexin. Pharmacol Res Perspect 2024; 12:e70038. [PMID: 39574295 PMCID: PMC11582383 DOI: 10.1002/prp2.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/12/2024] [Accepted: 11/01/2024] [Indexed: 11/25/2024] Open
Abstract
Transient receptor potential melastatin-4 (TRPM4) forms a complex with N-methyl-D-aspartate receptors (NMDARs) that facilitates NMDAR-mediated neurotoxicity. Here we used pharmacological tools to determine how TRPM4 regulates NMDAR signaling. Brophenexin, a compound that binds to TRPM4 at the NMDAR binding interface, protected hippocampal neurons in culture from NMDA-induced death, consistent with published work. Brophenexin (10 μM) reduced NMDA-evoked whole-cell currents recorded at 22°C by 87% ± 14% with intracellular Ca2+ chelated to prevent TRPM4 activation. Brophenexin inhibited NMDA-evoked currents recorded in Na+-free solution by 87% ± 13%, suggesting that brophenexin and TRPM4 modulate NMDAR function. Incubating cultures in Mg2+-free buffer containing tetrodotoxin, 6-cyano-7-nitroquinoxaline-2,3-dione, and bicuculline for 30 min inhibited NMDA-evoked increases in intracellular Ca2+ concentration ([Ca2+]i) recorded at 22°C by 50% ± 18% and prevented inhibition by brophenexin. In the absence of these inhibitors, brophenexin inhibited the NMDA-evoked response by 51% ± 16%. Treatment with the TRPM4 inhibitor 4-chloro-2-(1-naphthyloxyacetamido)benzoic acid (NBA; 10 μM) increased NMDA-evoked Ca2+ influx by 90% ± 15%. Increasing extracellular NaCl to 237 mM, a treatment that activates TRPM4, inhibited the NMDA-evoked increase in [Ca2+]i by a process that occluded the inhibition produced by brophenexin and was prevented by NBA. In recordings performed at 32°C-34°C, brophenexin inhibited the NMDA-evoked [Ca2+]i response by 42% ± 10% but NBA was without effect. These results are consistent with a model in which TRPM4 interacts with NMDARs to potentiate Ca2+ flux through the NMDAR ion channel and thus provides a potential mechanism for the neuroprotection afforded by NMDAR/TRPM4 interface inhibitors such as brophenexin.
Collapse
Affiliation(s)
- Jordan Casby
- Department of PharmacologyUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
| | - Benjamin M. Gansemer
- Department of PharmacologyUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
| | - Stanley A. Thayer
- Department of PharmacologyUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
| |
Collapse
|
20
|
Escamilla S, Badillos R, Comella JX, Solé M, Pérez-Otaño I, Mut JVS, Sáez-Valero J, Cuchillo-Ibáñez I. Synaptic and extrasynaptic distribution of NMDA receptors in the cortex of Alzheimer's disease patients. Alzheimers Dement 2024; 20:8231-8245. [PMID: 39450669 DOI: 10.1002/alz.14125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 06/17/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Synaptic and extrasynaptic distribution of N-methyl-D-aspartate receptors (NMDARs) has not been addressed in the brain from Alzheimer´s disease (AD) subjects, despite their contribution to neurodegeneration. METHODS We have developed a protocol to isolate synaptic and extrasynaptic membranes from controls and AD frontal cortex. We characterized the distribution of the NMDAR subunits GluN2B, GluN2A, GluN1, and GluN3A, as well as post-translational modifications, such as phosphorylation and glycosylation. RESULTS Lower levels of synaptic GluN2B and GluN2A were found in AD fractions, while extrasynaptic GluN2B and GluN1 levels were significantly higher; GluN3A distribution remained unaffected in AD. We also identified different glycoforms of GluN2B and GluN2A in extrasynaptic membranes. Synaptic Tyr1472 GluN2B phosphorylation was significantly lower in AD fractions. DISCUSSION Reduction of synaptic NMDAR subunits, particularly for GluN2B, is likely to contribute to synaptic transmission failure in AD. Additionally, the increment of extrasynaptic NMDAR subunits could favor the activation of excitotoxicity in AD. HIGHLIGHTS New protocol to isolate synaptic and extrasynaptic membranes from the human cortex. Low GluN2B and GluN2A levels in Alzheimer´s disease (AD) synaptic membranes. High GluN2B and GluN1 levels in AD extrasynaptic membranes. Specific glycoforms of extrasynaptic GluN2B and GluN2A. Low phosphorylation at Tyr1472 in synaptic GluN2B in AD.
Collapse
Affiliation(s)
- Sergio Escamilla
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (Ciberned), Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (Isabial), Alicante, Spain
| | - Raquel Badillos
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (Ciberned), Madrid, Spain
- Departament de Bioquímica i Biologia Molecular, School of Medicine, Universitat Autònoma de Barcelona (UAB), Bellaterra (Barcelona), Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona (UAB), Bellaterra (Barcelona), Spain
| | - Joan X Comella
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (Ciberned), Madrid, Spain
- Departament de Bioquímica i Biologia Molecular, School of Medicine, Universitat Autònoma de Barcelona (UAB), Bellaterra (Barcelona), Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona (UAB), Bellaterra (Barcelona), Spain
- Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Montse Solé
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (Ciberned), Madrid, Spain
- Departament de Bioquímica i Biologia Molecular, School of Medicine, Universitat Autònoma de Barcelona (UAB), Bellaterra (Barcelona), Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona (UAB), Bellaterra (Barcelona), Spain
| | - Isabel Pérez-Otaño
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Jose V Sánchez Mut
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Javier Sáez-Valero
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (Ciberned), Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (Isabial), Alicante, Spain
| | - Inmaculada Cuchillo-Ibáñez
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (Ciberned), Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (Isabial), Alicante, Spain
| |
Collapse
|
21
|
Perdaens O, van Pesch V. Should We Consider Neurodegeneration by Itself or in a Triangulation with Neuroinflammation and Demyelination? The Example of Multiple Sclerosis and Beyond. Int J Mol Sci 2024; 25:12637. [PMID: 39684351 PMCID: PMC11641818 DOI: 10.3390/ijms252312637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegeneration is preeminent in many neurological diseases, and still a major burden we fail to manage in patient's care. Its pathogenesis is complicated, intricate, and far from being completely understood. Taking multiple sclerosis as an example, we propose that neurodegeneration is neither a cause nor a consequence by itself. Mitochondrial dysfunction, leading to energy deficiency and ion imbalance, plays a key role in neurodegeneration, and is partly caused by the oxidative stress generated by microglia and astrocytes. Nodal and paranodal disruption, with or without myelin alteration, is further involved. Myelin loss exposes the axons directly to the inflammatory and oxidative environment. Moreover, oligodendrocytes provide a singular metabolic and trophic support to axons, but do not emerge unscathed from the pathological events, by primary myelin defects and cell apoptosis or secondary to neuroinflammation or axonal damage. Hereby, trophic failure might be an overlooked contributor to neurodegeneration. Thus, a complex interplay between neuroinflammation, demyelination, and neurodegeneration, wherein each is primarily and secondarily involved, might offer a more comprehensive understanding of the pathogenesis and help establishing novel therapeutic strategies for many neurological diseases and beyond.
Collapse
Affiliation(s)
- Océane Perdaens
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
| | - Vincent van Pesch
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
- Department of Neurology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| |
Collapse
|
22
|
Sasaki T, Hisada S, Kanki H, Nunomura K, Lin B, Nishiyama K, Kawano T, Matsumura S, Mochizuki H. Modulation of Ca 2+ oscillation following ischemia and nicotinic acetylcholine receptors in primary cortical neurons by high-throughput analysis. Sci Rep 2024; 14:27667. [PMID: 39532929 PMCID: PMC11557898 DOI: 10.1038/s41598-024-77882-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Calcium oscillations in primary neuronal cultures and iPSCs have been employed to investigate arrhythmogenicity and epileptogenicity in drug development. Previous studies have demonstrated that Ca2+ influx via NMDA and nicotinic acetylcholine receptors (nAChRs) modulates Ca2+ oscillations. Nevertheless, there has been no comprehensive investigation into the impact of ischemia or nAChR-positive allosteric modulators (PAM) drugs on Ca2+ oscillations at a level that would facilitate high-throughput screening. We investigated the effects of ischemia and nAChR subtypes or nAChR PAM agonists on Ca2+ oscillations in high-density 2D and 3D-sphere primary neuronal cultures using 384-well plates with FDSS-7000. Ischemia for 1 and 2 h resulted in an increase in the frequency of Ca2+ oscillations and a decrease in their amplitude in a time-dependent manner. The NMDA and AMPA receptor inhibition significantly suppressed Ca2+ oscillation. Inhibition of NR2A or NR2B had the opposite effect on Ca oscillations. The potentiation of ischemia-induced Ca2+ oscillations was significantly inhibited by the NMDA receptor antagonist, MK-801, and the frequency of these oscillations was suppressed by the NR2B inhibitor, Ro-256981. In the 3D-neurosphere, the application of an α7nAChR agonist increased the frequency of Ca2+ oscillations, whereas the activation of α4β2 had no effect. The combination of nicotine and PNU-120596 (type II PAM) affected the frequency and amplitude of Ca2+ oscillations in a manner distinct from that of type I PAM. These systems may be useful not only for detecting epileptogenicity but also in the search for neuroprotective agents against cerebral ischemia.
Collapse
Affiliation(s)
- Tsutomu Sasaki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan.
- StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan.
| | - Sunao Hisada
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Hideaki Kanki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Kazuto Nunomura
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Science, Osaka University, 1‑6 Yamadaoka, Suita, Osaka, 565‑0871, Japan
| | - Bangzhong Lin
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Science, Osaka University, 1‑6 Yamadaoka, Suita, Osaka, 565‑0871, Japan
| | - Kumiko Nishiyama
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Tomohito Kawano
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Shigenobu Matsumura
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Osaka, 583-8555, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
23
|
El Samad A, Jaffal J, Ibrahim DR, Schwarz K, Schmitz F. Decreased Expression of the EAAT5 Glutamate Transporter at Photoreceptor Synapses in Early, Pre-Clinical Experimental Autoimmune Encephalomyelitis, a Mouse Model of Multiple Sclerosis. Biomedicines 2024; 12:2545. [PMID: 39595111 PMCID: PMC11591696 DOI: 10.3390/biomedicines12112545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Multiple sclerosis is a frequent neuroinflammatory and neurodegenerative disease of the central nervous system that includes alterations in the white and gray matter of the brain. The visual system is frequently affected in multiple sclerosis. Glutamate excitotoxicity might play a role in disease pathogenesis. METHODOLOGY In the present study, we analyzed with qualitative and quantitative immunofluorescence microscopy and Western blot analyses whether alterations in the EAAT5 (SLC1A7) glutamate transporter could be involved in the previously observed alterations in structure and function of glutamatergic photoreceptor ribbon synapses in the EAE mouse model of MS. EAAT5 is a presynaptic glutamate transporter located near the presynaptic release sites. RESULTS We found that EAAT5 was strongly reduced at the photoreceptor synapses of EAE retinas in comparison to the photoreceptor synapses of the respective control retinas as early as day 9 post-immunization. The Western blot analyses demonstrated a decreased EAAT5 expression in EAE retinas. CONCLUSIONS Our data illustrate early alterations of the EAAT5 glutamate transporter in the early pre-clinical phase of EAE/MS and suggest an involvement of EAAT5 in the previously observed early synaptic changes at photoreceptor synapses. The precise mechanisms need to be elucidated by future investigations.
Collapse
Affiliation(s)
| | | | | | | | - Frank Schmitz
- Institute of Anatomy, Department of Neuroanatomy, Medical School Homburg, Saarland University, 66421 Homburg, Germany; (A.E.S.); (J.J.); (D.R.I.); (K.S.)
| |
Collapse
|
24
|
Zima L, Moore AN, Smolen P, Kobori N, Noble B, Robinson D, Hood KN, Homma R, Al Mamun A, Redell JB, Dash PK. The evolving pathophysiology of TBI and the advantages of temporally-guided combination therapies. Neurochem Int 2024; 180:105874. [PMID: 39366429 DOI: 10.1016/j.neuint.2024.105874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Several clinical and experimental studies have demonstrated that traumatic brain injury (TBI) activates cascades of biochemical, molecular, structural, and pathological changes in the brain. These changes combine to contribute to the various outcomes observed after TBI. Given the breadth and complexity of changes, combination treatments may be an effective approach for targeting multiple detrimental pathways to yield meaningful improvements. In order to identify targets for therapy development, the temporally evolving pathophysiology of TBI needs to be elucidated in detail at both the cellular and molecular levels, as it has been shown that the mechanisms contributing to cognitive dysfunction change over time. Thus, a combination of individual mechanism-based therapies is likely to be effective when maintained based on the time courses of the cellular and molecular changes being targeted. In this review, we will discuss the temporal changes of some of the key clinical pathologies of human TBI, the underlying cellular and molecular mechanisms, and the results from preclinical and clinical studies aimed at mitigating their consequences. As most of the pathological events that occur after TBI are likely to have subsided in the chronic stage of the disease, combination treatments aimed at attenuating chronic conditions such as cognitive dysfunction may not require the initiation of individual treatments at a specific time. We propose that a combination of acute, subacute, and chronic interventions may be necessary to maximally improve health-related quality of life (HRQoL) for persons who have sustained a TBI.
Collapse
Affiliation(s)
- Laura Zima
- Departments of Neurosurgery, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Anthony N Moore
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Paul Smolen
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Nobuhide Kobori
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Brian Noble
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Dustin Robinson
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Kimberly N Hood
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Ryota Homma
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Amar Al Mamun
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - John B Redell
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Pramod K Dash
- Departments of Neurosurgery, The University of Texas McGovern Medical School, Houston, TX, USA; Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
25
|
Ferreira LDNM, Fisberg RM, Sarti FM, Rogero MM. Association between Inflammatory and Metabolic Biomarkers and Common Mental Disorders among Adults: 2015 Health Survey of São Paulo, SP, Brazil. Metabolites 2024; 14:535. [PMID: 39452916 PMCID: PMC11509269 DOI: 10.3390/metabo14100535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/18/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Recent studies suggest that plasma inflammatory biomarker concentrations may represent valuable indicators for the diagnosis and prognosis of mental disorders. At the same time, metabolic alterations may contribute to the development and progression of systemic low-grade inflammation. Background/Objectives: This study evaluated the association between plasma inflammatory biomarkers and common mental disorders (CMD), exploring the relationship between metabolic biomarkers, metabolic syndrome (MetS), and inflammatory biomarkers in younger and older adults. Methods: This cross-sectional study used data from the 2015 Health Survey of São Paulo with a Focus on Nutrition Study. The occurrence of CMD was assessed through the Self-Reporting Questionnaire (SRQ-20). Blood samples were used to measure plasma concentrations of inflammatory and cardiometabolic biomarkers. MetS was defined according to the International Diabetes Federation Consensus. The Mann-Whitney test compared inflammatory biomarker concentrations across CMD groups and cardiometabolic conditions, and logistic regression models explored associations between inflammatory biomarker concentration and CMD. Results: The sample included 575 participants, 22.6% (n = 130) of whom had CMD. Concentrations of plasminogen activator inhibitor 1, C-reactive protein (CRP), and the systemic low-grade inflammation score varied significantly among CMD groups. CRP concentrations were positively associated with the presence of CMD, independent of confounding factors. Participants with insulin resistance, dyslipidemia, and MetS exhibited significantly higher CRP concentrations than individuals without these conditions. Conclusions: The findings suggest that increased plasma CRP concentrations may be a potential risk factor for CMD. Higher CRP concentrations were observed in individuals with insulin resistance, dyslipidemia, and MetS. Future interventional studies should explore these hypotheses in diverse populations.
Collapse
Affiliation(s)
| | - Regina Mara Fisberg
- Department of Nutrition, School of Public Health, University of São Paulo, 715 Dr. Arnaldo Avenue, São Paulo 01246-904, SP, Brazil; (L.d.N.M.F.); (R.M.F.)
| | - Flavia Mori Sarti
- School of Arts, Sciences and Humanities, University of São Paulo, 1000 Arlindo Bettio Avenue, São Paulo 03828-000, SP, Brazil;
| | - Marcelo Macedo Rogero
- Department of Nutrition, School of Public Health, University of São Paulo, 715 Dr. Arnaldo Avenue, São Paulo 01246-904, SP, Brazil; (L.d.N.M.F.); (R.M.F.)
| |
Collapse
|
26
|
Hilton BJ, Griffin JM, Fawcett JW, Bradke F. Neuronal maturation and axon regeneration: unfixing circuitry to enable repair. Nat Rev Neurosci 2024; 25:649-667. [PMID: 39164450 DOI: 10.1038/s41583-024-00849-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 08/22/2024]
Abstract
Mammalian neurons lose the ability to regenerate their central nervous system axons as they mature during embryonic or early postnatal development. Neuronal maturation requires a transformation from a situation in which neuronal components grow and assemble to one in which these components are fixed and involved in the machinery for effective information transmission and computation. To regenerate after injury, neurons need to overcome this fixed state to reactivate their growth programme. A variety of intracellular processes involved in initiating or sustaining neuronal maturation, including the regulation of gene expression, cytoskeletal restructuring and shifts in intracellular trafficking, have been shown to prevent axon regeneration. Understanding these processes will contribute to the identification of targets to promote repair after injury or disease.
Collapse
Affiliation(s)
- Brett J Hilton
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Jarred M Griffin
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - James W Fawcett
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK.
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine Czech Academy of Science (CAS), Prague, Czechia.
| | - Frank Bradke
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
27
|
Wall RV, Basavarajappa D, Klistoner A, Graham S, You Y. Mechanisms of Transsynaptic Degeneration in the Aging Brain. Aging Dis 2024; 15:2149-2167. [PMID: 39191395 PMCID: PMC11346400 DOI: 10.14336/ad.2024.03019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/19/2024] [Indexed: 08/29/2024] Open
Abstract
A prominent feature in many neurodegenerative diseases involves the spread of the pathology from the initial site of damage to anatomically and functionally connected regions of the central nervous system (CNS), referred to as transsynaptic degeneration (TSD). This review covers the possible mechanisms of both retrograde and anterograde TSD in various age-related neurodegenerative diseases, including synaptically and glial mediated changes contributing to TDS and their potential as therapeutic targets. This phenomenon is well documented in clinical and experimental studies spanning various neurodegenerative diseases and their respective models, with a significant emphasis on the visual pathway, to be explored herein. With the increase in the aging population and subsequent rise in age-related neurodegenerative diseases, it is crucial to understand the underlying mechanisms of.
Collapse
Affiliation(s)
- Roshana Vander Wall
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Devaraj Basavarajappa
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Alexander Klistoner
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Stuart Graham
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Save Sight Institute, Sydney University, Sydney, NSW, 2000, Australia
| | - Yuyi You
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Save Sight Institute, Sydney University, Sydney, NSW, 2000, Australia
| |
Collapse
|
28
|
Beaurain M, Salabert AS, Payoux P, Gras E, Talmont F. NMDA Receptors: Distribution, Role, and Insights into Neuropsychiatric Disorders. Pharmaceuticals (Basel) 2024; 17:1265. [PMID: 39458906 PMCID: PMC11509972 DOI: 10.3390/ph17101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND N-methyl-D-aspartate receptors (NMDARs) are members of the ionotropic glutamate receptor family. These ligand-gated channels are entwined with numerous fundamental neurological functions within the central nervous system (CNS), and numerous neuropsychiatric disorders may arise from their malfunction. METHODS The purpose of the present review is to provide a detailed description of NMDARs by addressing their molecular structures, activation mechanisms, and physiological roles in the mammalian brain. In the second part, their role in various neuropsychiatric disorders including stroke, epilepsy, anti-NMDA encephalitis, Alzheimer's and Huntington's diseases, schizophrenia, depression, neuropathic pain, opioid-induced tolerance, and hyperalgesia will be covered. RESULTS Finally, through a careful exploration of the main non-competitive NMDARs antagonists (channel-blockers). CONCLUSION We discuss the strengths and limitations of the various molecular structures developed for diagnostic or therapeutic purposes.
Collapse
Affiliation(s)
- Marie Beaurain
- ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Université de Toulouse, 31024 Toulouse, France; (M.B.); (A.-S.S.); (P.P.)
| | - Anne-Sophie Salabert
- ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Université de Toulouse, 31024 Toulouse, France; (M.B.); (A.-S.S.); (P.P.)
| | - Pierre Payoux
- ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Université de Toulouse, 31024 Toulouse, France; (M.B.); (A.-S.S.); (P.P.)
| | - Emmanuel Gras
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), CNRS, UPS, Université de Toulouse, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France;
| | - Franck Talmont
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, UPS, Université de Toulouse, 31077 Toulouse, France
| |
Collapse
|
29
|
Escamilla S, Sáez-Valero J, Cuchillo-Ibáñez I. NMDARs in Alzheimer's Disease: Between Synaptic and Extrasynaptic Membranes. Int J Mol Sci 2024; 25:10220. [PMID: 39337704 PMCID: PMC11431980 DOI: 10.3390/ijms251810220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are glutamate receptors with key roles in synaptic communication and plasticity. The activation of synaptic NMDARs initiates plasticity and stimulates cell survival. In contrast, the activation of extrasynaptic NMDARs can promote cell death underlying a potential mechanism of neurodegeneration occurring in Alzheimer's disease (AD). The distribution of synaptic versus extrasynaptic NMDARs has emerged as an important parameter contributing to neuronal dysfunction in neurodegenerative diseases including AD. Here, we review the concept of extrasynaptic NMDARs, as this population is present in numerous neuronal cell membranes but also in the membranes of various non-neuronal cells. Previous evidence regarding the membranal distribution of synaptic versus extrasynaptic NMDRs in relation to AD mice models and in the brains of AD patients will also be reviewed.
Collapse
Affiliation(s)
- Sergio Escamilla
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d’Alacant, Spain;
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), 03550 Sant Joan d’Alacant, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Javier Sáez-Valero
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d’Alacant, Spain;
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), 03550 Sant Joan d’Alacant, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Inmaculada Cuchillo-Ibáñez
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d’Alacant, Spain;
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), 03550 Sant Joan d’Alacant, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
30
|
Wang YM, Yan J, Williams SK, Fairless R, Bading H. TwinF interface inhibitor FP802 prevents retinal ganglion cell loss in a mouse model of amyotrophic lateral sclerosis. Acta Neuropathol Commun 2024; 12:149. [PMID: 39267142 PMCID: PMC11391826 DOI: 10.1186/s40478-024-01858-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/31/2024] [Indexed: 09/14/2024] Open
Abstract
Motor neuron loss is well recognized in amyotrophic lateral sclerosis (ALS), but research on retinal ganglion cells (RGCs) is limited. Ocular symptoms are generally not considered classic ALS symptoms, although RGCs and spinal motor neurons share certain cell pathologies, including hallmark signs of glutamate neurotoxicity, which may be triggered by activation of extrasynaptic NMDA receptors (NMDARs). To explore potential novel strategies to prevent ALS-associated death of RGCs, we utilized inhibition of the TwinF interface, a new pharmacological principle that detoxifies extrasynaptic NMDARs by disrupting the NMDAR/TRPM4 death signaling complex. Using the ALS mouse model SOD1G93A, we found that the small molecule TwinF interface inhibitor FP802 prevents the loss of RGCs, improves pattern electroretinogram (pERG) performance, increases the retinal expression of Bdnf, and restores the retinal expression of the immediate early genes, Inhibin beta A and Npas4. Thus, FP802 not only prevents, as recently described, death of spinal motor neurons in SOD1G93A mice, but it also mitigates ALS-associated retinal damage. TwinF interface inhibitors have great potential for alleviating neuro-ophthalmologic symptoms in ALS patients and offer a promising new avenue for therapeutic intervention.
Collapse
Affiliation(s)
- Yu Meng Wang
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany
| | - Jing Yan
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany
- FundaMental Pharma GmbH, 69120, Heidelberg, Germany
| | - Sarah K Williams
- Department of Neurology, University Clinic Heidelberg, 69120, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DFKZ), 69120, Heidelberg, Germany
| | - Richard Fairless
- Department of Neurology, University Clinic Heidelberg, 69120, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DFKZ), 69120, Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany.
| |
Collapse
|
31
|
Ahtiainen A, Genocchi B, Subramaniyam NP, Tanskanen JMA, Rantamäki T, Hyttinen JAK. Astrocytes facilitate gabazine-evoked electrophysiological hyperactivity and distinct biochemical responses in mature neuronal cultures. J Neurochem 2024; 168:3076-3094. [PMID: 39001671 DOI: 10.1111/jnc.16182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 10/04/2024]
Abstract
Gamma-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter in the adult brain that binds to GABA receptors and hyperpolarizes the postsynaptic neuron. Gabazine acts as a competitive antagonist to type A GABA receptors (GABAAR), thereby causing diminished neuronal hyperpolarization and GABAAR-mediated inhibition. However, the biochemical effects and the potential regulatory role of astrocytes in this process remain poorly understood. To address this, we investigated the neuronal responses of gabazine in rat cortical cultures containing varying ratios of neurons and astrocytes. Electrophysiological characterization was performed utilizing microelectrode arrays (MEAs) with topologically controlled microcircuit cultures that enabled control of neuronal network growth. Biochemical analysis of the cultures was performed using traditional dissociated cultures on coverslips. Our study indicates that, upon gabazine stimulation, astrocyte-rich neuronal cultures exhibit elevated electrophysiological activity and tyrosine phosphorylation of tropomyosin receptor kinase B (TrkB; receptor for brain-derived neurotrophic factor), along with distinct cytokine secretion profiles. Notably, neurons lacking proper astrocytic support were found to experience synapse loss and decreased mitogen-activated protein kinase (MAPK) phosphorylation. Furthermore, astrocytes contributed to neuronal viability, morphology, vascular endothelial growth factor (VEGF) secretion, and overall neuronal network functionality, highlighting the multifunctional role of astrocytes.
Collapse
Affiliation(s)
- Annika Ahtiainen
- Computational Biophysics and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Barbara Genocchi
- Computational Biophysics and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Narayan Puthanmadam Subramaniyam
- Computational Biophysics and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jarno M A Tanskanen
- Computational Biophysics and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tomi Rantamäki
- Laboratory of Neurotherapeutics, Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jari A K Hyttinen
- Computational Biophysics and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
32
|
Kolić D, Kovarik Z. N-methyl-d-aspartate receptors: Structure, function, and role in organophosphorus compound poisoning. Biofactors 2024; 50:868-884. [PMID: 38415801 DOI: 10.1002/biof.2048] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024]
Abstract
Acute organophosphorus compound (OP) poisoning induces symptoms of the cholinergic crises with the occurrence of severe epileptic seizures. Seizures are induced by hyperstimulation of the cholinergic system, but are enhanced by hyperactivation of the glutamatergic system. Overstimulation of muscarinic cholinergic receptors by the elevated acetylcholine causes glutamatergic hyperexcitation and an increased influx of Ca2+ into neurons through a type of ionotropic glutamate receptors, N-methyl-d-aspartate (NMDA) receptors (NMDAR). These excitotoxic signaling processes generate reactive oxygen species, oxidative stress, and activation of the neuroinflammatory response, which can lead to recurrent epileptic seizures, neuronal cell death, and long-term neurological damage. In this review, we illustrate the NMDAR structure, complexity of subunit composition, and the various receptor properties that change accordingly. Although NMDARs are in normal physiological conditions important for controlling synaptic plasticity and mediating learning and memory functions, we elaborate the detrimental role NMDARs play in neurotoxicity of OPs and focus on the central role NMDAR inhibition plays in suppressing neurotoxicity and modulating the inflammatory response. The limited efficacy of current medical therapies for OP poisoning concerning the development of pharmacoresistance and mitigating proinflammatory response highlights the importance of NMDAR inhibitors in preventing neurotoxic processes and points to new avenues for exploring therapeutics for OP poisoning.
Collapse
Affiliation(s)
- Dora Kolić
- Division of Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Zrinka Kovarik
- Division of Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
33
|
García-Revilla J, Ruiz R, Espinosa-Oliva AM, Santiago M, García-Domínguez I, Camprubí-Ferrer L, Bachiller S, Deierborg T, Joseph B, de Pablos RM, Rodríguez-Gómez JA, Venero JL. Dopaminergic neurons lacking Caspase-3 avoid apoptosis but undergo necrosis after MPTP treatment inducing a Galectin-3-dependent selective microglial phagocytic response. Cell Death Dis 2024; 15:625. [PMID: 39223107 PMCID: PMC11369297 DOI: 10.1038/s41419-024-07014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Parkinson's Disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the Substantia nigra pars compacta (SNpc). Apoptosis is thought to play a critical role in the progression of PD, and thus understanding the effects of antiapoptotic strategies is crucial for developing potential therapies. In this study, we developed a unique genetic model to selectively delete Casp3, the gene encoding the apoptotic protein caspase-3, in dopaminergic neurons (TH-C3KO) and investigated its effects in response to a subacute regime of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration, which is known to trigger apoptotic loss of SNpc dopaminergic neurons. We found that Casp3 deletion did not protect the dopaminergic system in the long term. Instead, we observed a switch in the cell death pathway from apoptosis in wild-type mice to necrosis in TH-C3KO mice. Notably, we did not find any evidence of necroptosis in our model or in in vitro experiments using primary dopaminergic cultures exposed to 1-methyl-4-phenylpyridinium in the presence of pan-caspase/caspase-8 inhibitors. Furthermore, we detected an exacerbated microglial response in the ventral mesencephalon of TH-C3KO mice in response to MPTP, which mimicked the microglia neurodegenerative phenotype (MGnD). Under these conditions, it was evident the presence of numerous microglial phagocytic cups wrapping around apparently viable dopaminergic cell bodies that were inherently associated with galectin-3 expression. We provide evidence that microglia exhibit phagocytic activity towards both dead and stressed viable dopaminergic neurons through a galectin-3-dependent mechanism. Overall, our findings suggest that inhibiting apoptosis is not a beneficial strategy for treating PD. Instead, targeting galectin-3 and modulating microglial response may be more promising approaches for slowing PD progression.
Collapse
Affiliation(s)
- Juan García-Revilla
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, BMC B11, 221 84, Lund, Sweden.
| | - Rocío Ruiz
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Ana M Espinosa-Oliva
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Marti Santiago
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Irene García-Domínguez
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Faculty of Health Sciences, Universidad Loyola Andalucía, Seville, Spain
| | - Lluís Camprubí-Ferrer
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, BMC B11, 221 84, Lund, Sweden
| | - Sara Bachiller
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, BMC B11, 221 84, Lund, Sweden
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
- Center for Neuromusculoskeletal Restorative Medicine, Shui On Centre, Wan Chai, Hong Kong
| | - Rocío M de Pablos
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - José A Rodríguez-Gómez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - José Luis Venero
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
34
|
Chowdhury MAR, Haq MM, Lee JH, Jeong S. Multi-faceted regulation of CREB family transcription factors. Front Mol Neurosci 2024; 17:1408949. [PMID: 39165717 PMCID: PMC11333461 DOI: 10.3389/fnmol.2024.1408949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/12/2024] [Indexed: 08/22/2024] Open
Abstract
cAMP response element-binding protein (CREB) is a ubiquitously expressed nuclear transcription factor, which can be constitutively activated regardless of external stimuli or be inducibly activated by external factors such as stressors, hormones, neurotransmitters, and growth factors. However, CREB controls diverse biological processes including cell growth, differentiation, proliferation, survival, apoptosis in a cell-type-specific manner. The diverse functions of CREB appear to be due to CREB-mediated differential gene expression that depends on cAMP response elements and multi-faceted regulation of CREB activity. Indeed, the transcriptional activity of CREB is controlled at several levels including alternative splicing, post-translational modification, dimerization, specific transcriptional co-activators, non-coding small RNAs, and epigenetic regulation. In this review, we present versatile regulatory modes of CREB family transcription factors and discuss their functional consequences.
Collapse
Affiliation(s)
- Md Arifur Rahman Chowdhury
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| | - Md Mazedul Haq
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jeong Hwan Lee
- Division of Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Sangyun Jeong
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
35
|
Hu Y, Wang Y, Wang Y, Zhang Y, Wang Z, Xu X, Zhang T, Zhang T, Zhang S, Hu R, Shi L, Wang X, Li J, Shen H, Liu J, Noda M, Peng Y, Long J. Sleep Deprivation Triggers Mitochondrial DNA Release in Microglia to Induce Neural Inflammation: Preventative Effect of Hydroxytyrosol Butyrate. Antioxidants (Basel) 2024; 13:833. [PMID: 39061901 PMCID: PMC11273532 DOI: 10.3390/antiox13070833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Sleep deprivation (SD) triggers mitochondrial dysfunction and neural inflammation, leading to cognitive impairment and mental issues. However, the mechanism involving mitochondrial dysfunction and neural inflammation still remains unclear. Here, we report that SD rats exhibited multiple behavioral disorders, brain oxidative stress, and robust brain mitochondrial DNA (mtDNA) oxidation. In particular, SD activated microglia and microglial mtDNA efflux to the cytosol and provoked brain pro-inflammatory cytokines. We observed that the mtDNA efflux and pro-inflammatory cytokines significantly reduced with the suppression of the mtDNA oxidation. With the treatment of a novel mitochondrial nutrient, hydroxytyrosol butyrate (HTHB), the SD-induced behavioral disorders were significantly ameliorated while mtDNA oxidation, mtDNA release, and NF-κB activation were remarkably alleviated in both the rat brain and the N9 microglial cell line. Together, these results indicate that microglial mtDNA oxidation and the resultant release induced by SD mediate neural inflammation and HTHB prevents mtDNA oxidation and efflux, providing a potential treatment for SD-induced mental issues.
Collapse
Affiliation(s)
- Yachong Hu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.H.); (Y.W.); (Y.W.); (Y.Z.); (Z.W.); (T.Z.); (S.Z.); (R.H.); (L.S.); (X.W.); (J.L.); (M.N.)
| | - Yongyao Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.H.); (Y.W.); (Y.W.); (Y.Z.); (Z.W.); (T.Z.); (S.Z.); (R.H.); (L.S.); (X.W.); (J.L.); (M.N.)
| | - Yifang Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.H.); (Y.W.); (Y.W.); (Y.Z.); (Z.W.); (T.Z.); (S.Z.); (R.H.); (L.S.); (X.W.); (J.L.); (M.N.)
| | - Yuxia Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.H.); (Y.W.); (Y.W.); (Y.Z.); (Z.W.); (T.Z.); (S.Z.); (R.H.); (L.S.); (X.W.); (J.L.); (M.N.)
| | - Zhen Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.H.); (Y.W.); (Y.W.); (Y.Z.); (Z.W.); (T.Z.); (S.Z.); (R.H.); (L.S.); (X.W.); (J.L.); (M.N.)
| | - Xiaohong Xu
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (X.X.); (T.Z.)
| | - Tinghua Zhang
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (X.X.); (T.Z.)
| | - Tiantian Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.H.); (Y.W.); (Y.W.); (Y.Z.); (Z.W.); (T.Z.); (S.Z.); (R.H.); (L.S.); (X.W.); (J.L.); (M.N.)
| | - Shuangxi Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.H.); (Y.W.); (Y.W.); (Y.Z.); (Z.W.); (T.Z.); (S.Z.); (R.H.); (L.S.); (X.W.); (J.L.); (M.N.)
| | - Ranrui Hu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.H.); (Y.W.); (Y.W.); (Y.Z.); (Z.W.); (T.Z.); (S.Z.); (R.H.); (L.S.); (X.W.); (J.L.); (M.N.)
| | - Le Shi
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.H.); (Y.W.); (Y.W.); (Y.Z.); (Z.W.); (T.Z.); (S.Z.); (R.H.); (L.S.); (X.W.); (J.L.); (M.N.)
| | - Xudong Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.H.); (Y.W.); (Y.W.); (Y.Z.); (Z.W.); (T.Z.); (S.Z.); (R.H.); (L.S.); (X.W.); (J.L.); (M.N.)
| | - Jin Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China;
| | - Hui Shen
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China;
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.H.); (Y.W.); (Y.W.); (Y.Z.); (Z.W.); (T.Z.); (S.Z.); (R.H.); (L.S.); (X.W.); (J.L.); (M.N.)
- School of Health and Life Science, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Mami Noda
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.H.); (Y.W.); (Y.W.); (Y.Z.); (Z.W.); (T.Z.); (S.Z.); (R.H.); (L.S.); (X.W.); (J.L.); (M.N.)
- Research and Educational Resource Center for Immunophenotyping, RUDN University, 6 Miklukho-Maklaya St, 117198 Moscow, Russia
| | - Yunhua Peng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.H.); (Y.W.); (Y.W.); (Y.Z.); (Z.W.); (T.Z.); (S.Z.); (R.H.); (L.S.); (X.W.); (J.L.); (M.N.)
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.H.); (Y.W.); (Y.W.); (Y.Z.); (Z.W.); (T.Z.); (S.Z.); (R.H.); (L.S.); (X.W.); (J.L.); (M.N.)
| |
Collapse
|
36
|
Wang K, Tan X, Ding KM, Feng XZ, Zhao YY, Zhu WL, Li GH, Li SX. Dynamic regulation of phosphorylation of NMDA receptor GluN2B subunit tyrosine residues mediates ketamine rapid antidepressant effects. Pharmacol Res 2024; 205:107236. [PMID: 38797358 DOI: 10.1016/j.phrs.2024.107236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
The rapid antidepressant effects of ketamine depend on the N-methyl-D-aspartate (NMDA) receptor containing 2B subunit (NR2B), whose function is influenced by its phosphorylated regulation and distribution within and outside synapses. It remains unclear if ketamine's rapid onset of antidepressant effects relies on the dynamic phosphorylated regulation of NR2B within and outside synapses. Here, we show that ketamine rapidlyalleviated depression-like behaviors and normalized abnormal expression of pTyr1472NR2B and striatal-enriched protein tyrosine phosphatase (STEP) 61 within and outside synapses in the medial prefrontal cortex (mPFC) induced by chronic unpredictable stress (CUS) and conditional knockdown of STEP 61, a key phosphatase of NR2B, within 1 hour after administration Together, our results delineate the rapid initiation of ketamine's antidepressant effects results from the restoration of NR2B phosphorylation homeostasis within and outside synapses. The dynamic regulation of phosphorylation of NR2B provides a new perspective for developing new antidepressant strategies.
Collapse
Affiliation(s)
- Ke Wang
- National Institute on Drug Dependence and Beijing Key laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Department of Pharmacology, Peking University Health Science Center, Beijing 100191, China
| | - Xuan Tan
- National Institute on Drug Dependence and Beijing Key laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Department of Neurobiology, Peking University Health Science Center, Beijing 100191, China
| | - Kai-Mo Ding
- National Institute on Drug Dependence and Beijing Key laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Zhenjiang Mental Health Center, Jiangsu 212000, China
| | - Xue-Zhu Feng
- National Institute on Drug Dependence and Beijing Key laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Department of Neurobiology, Peking University Health Science Center, Beijing 100191, China
| | - Yu-Yu Zhao
- National Institute on Drug Dependence and Beijing Key laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Department of Neurobiology, Peking University Health Science Center, Beijing 100191, China
| | - Wei-Li Zhu
- National Institute on Drug Dependence and Beijing Key laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Guo-Hai Li
- Zhenjiang Mental Health Center, Jiangsu 212000, China
| | - Su-Xia Li
- National Institute on Drug Dependence and Beijing Key laboratory of Drug Dependence Research, Peking University, Beijing 100191, China.
| |
Collapse
|
37
|
Du R, Wang P, Tian N. CD3ζ-Mediated Signaling Protects Retinal Ganglion Cells in Glutamate Excitotoxicity of the Retina. Cells 2024; 13:1006. [PMID: 38920637 PMCID: PMC11201742 DOI: 10.3390/cells13121006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Excessive levels of glutamate activity could potentially damage and kill neurons. Glutamate excitotoxicity is thought to play a critical role in many CNS and retinal diseases. Accordingly, glutamate excitotoxicity has been used as a model to study neuronal diseases. Immune proteins, such as major histocompatibility complex (MHC) class I molecules and their receptors, play important roles in many neuronal diseases, while T-cell receptors (TCR) are the primary receptors of MHCI. We previously showed that a critical component of TCR, CD3ζ, is expressed by mouse retinal ganglion cells (RGCs). The mutation of CD3ζ or MHCI molecules compromises the development of RGC structure and function. In this study, we investigated whether CD3ζ-mediated molecular signaling regulates RGC death in glutamate excitotoxicity. We show that mutation of CD3ζ significantly increased RGC survival in NMDA-induced excitotoxicity. In addition, we found that several downstream molecules of TCR, including Src (proto-oncogene tyrosine-protein kinase) family kinases (SFKs) and spleen tyrosine kinase (Syk), are expressed by RGCs. Selective inhibition of an SFK member, Hck, or Syk members, Syk or Zap70, significantly increased RGC survival in NMDA-induced excitotoxicity. These results provide direct evidence to reveal the underlying molecular mechanisms that control RGC death under disease conditions.
Collapse
Affiliation(s)
- Rui Du
- Department of Ophthalmology and Visual Science, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (R.D.); (P.W.)
| | - Ping Wang
- Department of Ophthalmology and Visual Science, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (R.D.); (P.W.)
| | - Ning Tian
- Department of Ophthalmology and Visual Science, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (R.D.); (P.W.)
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84132, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84132, USA
- Veterans Affairs Medical Center, Salt Lake City, UT 84148, USA
| |
Collapse
|
38
|
Stykel MG, Ryan SD. Network analysis of S-nitrosylated synaptic proteins demonstrates unique roles in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119720. [PMID: 38582237 DOI: 10.1016/j.bbamcr.2024.119720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
Nitric oxide can covalently modify cysteine thiols on target proteins to alter that protein's function in a process called S-nitrosylation (SNO). S-nitrosylation of synaptic proteins plays an integral part in neurotransmission. Here we review the function of the SNO-proteome at the synapse and whether clusters of SNO-modification may predict synaptic dysfunction associated with disease. We used a systematic search strategy to concatenate SNO-proteomic datasets from normal human or murine brain samples. Identified SNO-modified proteins were then filtered against proteins reported in the Synaptome Database, which provides a detailed and experimentally verified annotation of all known synaptic proteins. Subsequently, we performed an unbiased network analysis of all known SNO-synaptic proteins to identify clusters of SNO proteins commonly involved in biological processes or with known disease associations. The resulting SNO networks were significantly enriched in biological processes related to metabolism, whereas significant gene-disease associations were related to Schizophrenia, Alzheimer's, Parkinson's and Huntington's disease. Guided by an unbiased network analysis, the current review presents a thorough discussion of how clustered changes to the SNO-proteome influence health and disease.
Collapse
Affiliation(s)
- Morgan G Stykel
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON, Canada
| | - Scott D Ryan
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON, Canada; Hotchkiss Brain Institute, Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
39
|
Kellner S, Berlin S. Rescuing tri-heteromeric NMDA receptor function: the potential of pregnenolone-sulfate in loss-of-function GRIN2B variants. Cell Mol Life Sci 2024; 81:235. [PMID: 38795169 PMCID: PMC11127902 DOI: 10.1007/s00018-024-05243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/27/2024]
Abstract
N-methyl-D-aspartate receptors (NMDARs emerging from GRIN genes) are tetrameric receptors that form diverse channel compositions in neurons, typically consisting of two GluN1 subunits combined with two GluN2(A-D) subunits. During prenatal stages, the predominant channels are di-heteromers with two GluN1 and two GluN2B subunits due to the high abundance of GluN2B subunits. Postnatally, the expression of GluN2A subunits increases, giving rise to additional subtypes, including GluN2A-containing di-heteromers and tri-heteromers with GluN1, GluN2A, and GluN2B subunits. The latter emerge as the major receptor subtype at mature synapses in the hippocampus. Despite extensive research on purely di-heteromeric receptors containing two identical GRIN variants, the impact of a single variant on the function of other channel forms, notably tri-heteromers, is lagging. In this study, we systematically investigated the effects of two de novo GRIN2B variants (G689C and G689S) in pure, mixed di- and tri-heteromers. Our findings reveal that incorporating a single variant in mixed di-heteromers or tri-heteromers exerts a dominant negative effect on glutamate potency, although 'mixed' channels show improved potency compared to pure variant-containing di-heteromers. We show that a single variant within a receptor complex does not impair the response of all receptor subtypes to the positive allosteric modulator pregnenolone-sulfate (PS), whereas spermine completely fails to potentiate tri-heteromers containing GluN2A and -2B-subunits. We examined PS on primary cultured hippocampal neurons transfected with the variants, and observed a positive impact over current amplitudes and synaptic activity. Together, our study supports previous observations showing that mixed di-heteromers exhibit improved glutamate potency and extend these findings towards the exploration of the effect of Loss-of-Function variants over tri-heteromers. Notably, we provide an initial and crucial demonstration of the beneficial effects of GRIN2B-relevant potentiators on tri-heteromers. Our results underscore the significance of studying how different variants affect distinct receptor subtypes, as these effects cannot be inferred solely from observations made on pure di-heteromers. Overall, this study contributes to ongoing efforts to understand the pathophysiology of GRINopathies and provides insights into potential treatment strategies.
Collapse
Affiliation(s)
- Shai Kellner
- Dept. of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 1 Efron Bat Galim, Haifa, 3525433, Israel
| | - Shai Berlin
- Dept. of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 1 Efron Bat Galim, Haifa, 3525433, Israel.
| |
Collapse
|
40
|
Kim AY, Al Jerdi S, MacDonald R, Triggle CR. Alzheimer's disease and its treatment-yesterday, today, and tomorrow. Front Pharmacol 2024; 15:1399121. [PMID: 38868666 PMCID: PMC11167451 DOI: 10.3389/fphar.2024.1399121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/25/2024] [Indexed: 06/14/2024] Open
Abstract
Alois Alzheimer described the first patient with Alzheimer's disease (AD) in 1907 and today AD is the most frequently diagnosed of dementias. AD is a multi-factorial neurodegenerative disorder with familial, life style and comorbidity influences impacting a global population of more than 47 million with a projected escalation by 2050 to exceed 130 million. In the USA the AD demographic encompasses approximately six million individuals, expected to increase to surpass 13 million by 2050, and the antecedent phase of AD, recognized as mild cognitive impairment (MCI), involves nearly 12 million individuals. The economic outlay for the management of AD and AD-related cognitive decline is estimated at approximately 355 billion USD. In addition, the intensifying prevalence of AD cases in countries with modest to intermediate income countries further enhances the urgency for more therapeutically and cost-effective treatments and for improving the quality of life for patients and their families. This narrative review evaluates the pathophysiological basis of AD with an initial focus on the therapeutic efficacy and limitations of the existing drugs that provide symptomatic relief: acetylcholinesterase inhibitors (AChEI) donepezil, galantamine, rivastigmine, and the N-methyl-D-aspartate receptor (NMDA) receptor allosteric modulator, memantine. The hypothesis that amyloid-β (Aβ) and tau are appropriate targets for drugs and have the potential to halt the progress of AD is critically analyzed with a particular focus on clinical trial data with anti-Aβ monoclonal antibodies (MABs), namely, aducanumab, lecanemab and donanemab. This review challenges the dogma that targeting Aβ will benefit the majority of subjects with AD that the anti-Aβ MABs are unlikely to be the "magic bullet". A comparison of the benefits and disadvantages of the different classes of drugs forms the basis for determining new directions for research and alternative drug targets that are undergoing pre-clinical and clinical assessments. In addition, we discuss and stress the importance of the treatment of the co-morbidities, including hypertension, diabetes, obesity and depression that are known to increase the risk of developing AD.
Collapse
Affiliation(s)
- A. Y. Kim
- Medical Education, Weill Cornell Medicine—Qatar, Doha, Qatar
| | | | - R. MacDonald
- Health Sciences Library, Weill Cornell Medicine—Qatar, Doha, Qatar
| | - C. R. Triggle
- Department of Pharmacology and Medical Education, Weill Cornell Medicine—Qatar, Doha, Qatar
| |
Collapse
|
41
|
Giusti SA, Pino NS, Pannunzio C, Ogando MB, Armando NG, Garrett L, Zimprich A, Becker L, Gimeno ML, Lukin J, Merino FL, Pardi MB, Pedroncini O, Di Mauro GC, Durner VG, Fuchs H, de Angelis MH, Patop IL, Turck CW, Deussing JM, Vogt Weisenhorn DM, Jahn O, Kadener S, Hölter SM, Brose N, Giesert F, Wurst W, Marin-Burgin A, Refojo D. A brain-enriched circular RNA controls excitatory neurotransmission and restricts sensitivity to aversive stimuli. SCIENCE ADVANCES 2024; 10:eadj8769. [PMID: 38787942 PMCID: PMC11122670 DOI: 10.1126/sciadv.adj8769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
Circular RNAs (circRNAs) are a large class of noncoding RNAs. Despite the identification of thousands of circular transcripts, the biological significance of most of them remains unexplored, partly because of the lack of effective methods for generating loss-of-function animal models. In this study, we focused on circTulp4, an abundant circRNA derived from the Tulp4 gene that is enriched in the brain and synaptic compartments. By creating a circTulp4-deficient mouse model, in which we mutated the splice acceptor site responsible for generating circTulp4 without affecting the linear mRNA or protein levels, we were able to conduct a comprehensive phenotypic analysis. Our results demonstrate that circTulp4 is critical in regulating neuronal and brain physiology, modulating the strength of excitatory neurotransmission and sensitivity to aversive stimuli. This study provides evidence that circRNAs can regulate biologically relevant functions in neurons, with modulatory effects at multiple levels of the phenotype, establishing a proof of principle for the regulatory role of circRNAs in neural processes.
Collapse
Affiliation(s)
- Sebastian A. Giusti
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Molecular Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Natalia S. Pino
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Camila Pannunzio
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Mora B. Ogando
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Natalia G. Armando
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Lillian Garrett
- German Mouse Clinic, Helmholtz Zentrum München, Munich, Germany
| | - Annemarie Zimprich
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Mouse Clinic, Helmholtz Zentrum München, Munich, Germany
- Chair of Developmental Genetics, Munich School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Lore Becker
- German Mouse Clinic, Helmholtz Zentrum München, Munich, Germany
| | - Maria L. Gimeno
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Jeronimo Lukin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Florencia L. Merino
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - M. Belen Pardi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Olivia Pedroncini
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Giuliana C. Di Mauro
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | | | - Helmut Fuchs
- German Mouse Clinic, Helmholtz Zentrum München, Munich, Germany
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Helmholtz Zentrum München, Munich, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | | | - Christoph W. Turck
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jan M. Deussing
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Daniela M. Vogt Weisenhorn
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- Chair of Developmental Genetics, Munich School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Olaf Jahn
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | | | - Sabine M. Hölter
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Florian Giesert
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- Chair of Developmental Genetics, Munich School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Site Munich, Munich, Germany
| | - Antonia Marin-Burgin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Damian Refojo
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Molecular Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
42
|
Deep SN, Seelig S, Paul S, Poddar R. Homocysteine-induced sustained GluN2A NMDA receptor stimulation leads to mitochondrial ROS generation and neurotoxicity. J Biol Chem 2024; 300:107253. [PMID: 38569938 PMCID: PMC11081806 DOI: 10.1016/j.jbc.2024.107253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/11/2024] [Accepted: 03/24/2024] [Indexed: 04/05/2024] Open
Abstract
Homocysteine, a sulfur-containing amino acid derived from methionine metabolism, is a known agonist of N-methyl-D-aspartate receptor (NMDAR) and is involved in neurotoxicity. Our previous findings showed that neuronal exposure to elevated homocysteine levels leads to sustained low-level increase in intracellular Ca2+, which is dependent on GluN2A subunit-containing NMDAR (GluN2A-NMDAR) stimulation. These studies further showed a role of ERK MAPK in homocysteine-GluN2A-NMDAR-mediated neuronal death. However, the intracellular mechanisms associated with such sustained GluN2A-NMDAR stimulation and subsequent Ca2+ influx have remained unexplored. Using live-cell imaging with Fluo3-AM and biochemical approaches, we show that homocysteine-GluN2A NMDAR-induced initial Ca2+ influx triggers sequential phosphorylation and subsequent activation of the proline rich tyrosine kinase 2 (Pyk2) and Src family kinases, which in turn phosphorylates GluN2A-Tyr1325 residue of GluN2A-NMDARs to maintain channel activity. The continuity of this cycle of events leads to sustained Ca2+ influx through GluN2A-NMDAR. Our findings also show that lack of activation of the regulatory tyrosine phosphatase STEP, which can limit Pyk2 and Src family kinase activity further contributes to the maintenance of this cycle. Additional studies using live-cell imaging of neurons expressing a redox-sensitive GFP targeted to the mitochondrial matrix show that treatment with homocysteine leads to a progressive increase in mitochondrial reactive oxygen species generation, which is dependent on GluN2A-NMDAR-mediated sustained ERK MAPK activation. This later finding demonstrates a novel role of GluN2A-NMDAR in homocysteine-induced mitochondrial ROS generation and highlights the role of ERK MAPK as the intermediary signaling pathway between GluN2A-NMDAR stimulation and mitochondrial reactive oxygen species generation.
Collapse
Affiliation(s)
- Satya Narayan Deep
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Sarah Seelig
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Surojit Paul
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Ranjana Poddar
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.
| |
Collapse
|
43
|
Lee P, Kim J, Choi IY, Pal R, Hui D, Marcario JK, Michaelis ML, Michaelis EK. Increases in anterograde axoplasmic transport in neurons of the hyper-glutamatergic, glutamate dehydrogenase 1 (Glud1) transgenic mouse: Effects of glutamate receptors on transport. J Neurochem 2024; 168:719-727. [PMID: 38124277 PMCID: PMC11102336 DOI: 10.1111/jnc.16035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
The excitatory neurotransmitter glutamate has a role in neuronal migration and process elongation in the central nervous system (CNS). The effects of chronic glutamate hyperactivity on vesicular and protein transport within CNS neurons, that is, processes necessary for neurite growth, have not been examined previously. In this study, we measured the effects of lifelong hyperactivity of glutamate neurotransmission on axoplasmic transport in CNS neurons. We compared wild-type (wt) to transgenic (Tg) mice over-expressing the glutamate dehydrogenase gene Glud1 in CNS neurons and exhibiting increases in glutamate transmitter formation, release, and synaptic activation in brain throughout the lifespan. We found that Glud1 Tg as compared with wt mice exhibited increases in the rate of anterograde axoplasmic transport in neurons of the hippocampus measured in brain slices ex vivo, and in olfactory neurons measured in vivo. We also showed that the in vitro pharmacologic activation of glutamate synapses in wt mice led to moderate increases in axoplasmic transport, while exposure to selective inhibitors of ion channel forming glutamate receptors very significantly suppressed anterograde transport, suggesting a link between synaptic glutamate receptor activation and axoplasmic transport. Finally, axoplasmic transport in olfactory neurons of Tg mice in vivo was partially inhibited following 14-day intake of ethanol, a known suppressor of axoplasmic transport and of glutamate neurotransmission. The same was true for transport in hippocampal neurons in slices from Glud1 Tg mice exposed to ethanol for 2 h ex vivo. In conclusion, endogenous activity at glutamate synapses regulates and glutamate synaptic hyperactivity increases intraneuronal transport rates in CNS neurons.
Collapse
Affiliation(s)
- Phil Lee
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, Kansas 66160 USA
- Department of Radiology, University of Kansas Medical Center, Kansas City, Kansas 66160 USA
| | - Jieun Kim
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, Kansas 66160 USA
| | - In-Young Choi
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, Kansas 66160 USA
- Department of Radiology, University of Kansas Medical Center, Kansas City, Kansas 66160 USA
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas 66160 USA
| | - Ranu Pal
- Higuchi Biosciences Center, University of Kansas, Lawrence, KS 66047, USA
| | - Dongwei Hui
- Higuchi Biosciences Center, University of Kansas, Lawrence, KS 66047, USA
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Joanne K. Marcario
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, Kansas 66160 USA
| | - Mary L. Michaelis
- Higuchi Biosciences Center, University of Kansas, Lawrence, KS 66047, USA
| | - Elias K. Michaelis
- Higuchi Biosciences Center, University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
44
|
Abstract
Regulated cell death mediated by dedicated molecular machines, known as programmed cell death, plays important roles in health and disease. Apoptosis, necroptosis and pyroptosis are three such programmed cell death modalities. The caspase family of cysteine proteases serve as key regulators of programmed cell death. During apoptosis, a cascade of caspase activation mediates signal transduction and cellular destruction, whereas pyroptosis occurs when activated caspases cleave gasdermins, which can then form pores in the plasma membrane. Necroptosis, a form of caspase-independent programmed necrosis mediated by RIPK3 and MLKL, is inhibited by caspase-8-mediated cleavage of RIPK1. Disruption of cellular homeostatic mechanisms that are essential for cell survival, such as normal ionic and redox balance and lysosomal flux, can also induce cell death without invoking programmed cell death mechanisms. Excitotoxicity, ferroptosis and lysosomal cell death are examples of such cell death modes. In this Review, we provide an overview of the major cell death mechanisms, highlighting the latest insights into their complex regulation and execution, and their relevance to human diseases.
Collapse
Affiliation(s)
- Junying Yuan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, China.
- Shanghai Key Laboratory of Aging Studies, Shanghai, China.
| | - Dimitry Ofengeim
- Sanofi, Rare and Neurological Diseases Research, Cambridge, MA, USA.
| |
Collapse
|
45
|
Estevez I, Buckley BD, Panzera N, Lindman M, Chou TW, McCourt M, Vaglio BJ, Atkins C, Firestein BL, Daniels BP. RIPK3 promotes neuronal survival by suppressing excitatory neurotransmission during CNS viral infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591333. [PMID: 38712188 PMCID: PMC11071512 DOI: 10.1101/2024.04.26.591333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
While recent work has identified roles for immune mediators in the regulation of neural activity, the capacity for cell intrinsic innate immune signaling within neurons to influence neurotransmission remains poorly understood. However, the existing evidence linking immune signaling with neuronal function suggests that modulation of neurotransmission may serve previously undefined roles in host protection during infection of the central nervous system. Here, we identify a specialized function for RIPK3, a kinase traditionally associated with necroptotic cell death, in preserving neuronal survival during neurotropic flavivirus infection through the suppression of excitatory neurotransmission. We show that RIPK3 coordinates transcriptomic changes in neurons that suppress neuronal glutamate signaling, thereby desensitizing neurons to excitotoxic cell death. These effects occur independently of the traditional functions of RIPK3 in promoting necroptosis and inflammatory transcription. Instead, RIPK3 promotes phosphorylation of the key neuronal regulatory kinase CaMKII, which in turn activates the transcription factor CREB to drive a neuroprotective transcriptional program and suppress deleterious glutamatergic signaling. These findings identify an unexpected function for a canonical cell death protein in promoting neuronal survival during viral infection through the modulation of neuronal activity, highlighting new mechanisms of neuroimmune crosstalk.
Collapse
Affiliation(s)
- Irving Estevez
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Benjamin D. Buckley
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Nicholas Panzera
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Marissa Lindman
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Tsui-Wen Chou
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Micheal McCourt
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Brandon J. Vaglio
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Colm Atkins
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Bonnie L. Firestein
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Brian P. Daniels
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- Lead Contact
| |
Collapse
|
46
|
Raïch I, Lillo J, Rebassa JB, Capó T, Cordomí A, Reyes-Resina I, Pallàs M, Navarro G. Dual Role of NMDAR Containing NR2A and NR2B Subunits in Alzheimer's Disease. Int J Mol Sci 2024; 25:4757. [PMID: 38731978 PMCID: PMC11084423 DOI: 10.3390/ijms25094757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 05/13/2024] Open
Abstract
Alzheimer's disease (AD) is the main cause of dementia worldwide. Given that learning and memory are impaired in this pathology, NMDA receptors (NMDARs) appear as key players in the onset and progression of the disease. NMDARs are glutamate receptors, mainly located at the post-synapse, which regulate voltage-dependent influx of calcium into the neurons. They are heterotetramers, and there are different subunits that can be part of the receptors, which are usually composed of two obligatory GluN1 subunits plus either two NR2A or two NR2B subunits. NR2A are mostly located at the synapse, and their activation is involved in the expression of pro-survival genes. Conversely, NR2B are mainly extrasynaptic, and their activation has been related to cell death and neurodegeneration. Thus, activation of NR2A and/or inactivation of NR2B-containing NMDARS has been proposed as a therapeutic strategy to treat AD. Here, we wanted to investigate the main differences between both subunits signalling in neuronal primary cultures of the cortex and hippocampus. It has been observed that Aβ induces a significant increase in calcium release and also in MAPK phosphorylation signalling in NR2B-containing NMDAR in cortical and hippocampal neurons. However, while NR2A-containing NMDAR decreases neuronal death and favours cell viability after Aβ treatment, NR2B-containing NMDAR shows higher levels of cytotoxicity and low levels of neuronal survival. Finally, it has been detected that NMDAR has no effect on pTau axonal transport. The present results demonstrate a different role between GluNA and GluNB subunits in neurodegenerative diseases such as Alzheimer's.
Collapse
Affiliation(s)
- Iu Raïch
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, 28029 Madrid, Spain; (I.R.); (J.L.); (J.B.R.); (I.R.-R.)
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain;
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain;
| | - Jaume Lillo
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, 28029 Madrid, Spain; (I.R.); (J.L.); (J.B.R.); (I.R.-R.)
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain;
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Joan Biel Rebassa
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, 28029 Madrid, Spain; (I.R.); (J.L.); (J.B.R.); (I.R.-R.)
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain;
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain;
| | - Toni Capó
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain;
| | - Arnau Cordomí
- Bioinformatics, Escola Superior de Comerç Internacional-University Pompeu Fabra (ESCI-UPF), 08003 Barcelona, Spain;
| | - Irene Reyes-Resina
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, 28029 Madrid, Spain; (I.R.); (J.L.); (J.B.R.); (I.R.-R.)
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain;
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain;
| | - Mercè Pallàs
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain;
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Av Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Gemma Navarro
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, 28029 Madrid, Spain; (I.R.); (J.L.); (J.B.R.); (I.R.-R.)
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain;
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain;
| |
Collapse
|
47
|
Zhu H, Chen X, Zhang L, Liu X, Chen J, Zhang HT, Dong M. Discovery of novel positive allosteric modulators targeting GluN1/2A NMDARs as anti-stroke therapeutic agents. RSC Med Chem 2024; 15:1307-1319. [PMID: 38665828 PMCID: PMC11042165 DOI: 10.1039/d3md00455d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/12/2023] [Indexed: 04/28/2024] Open
Abstract
Excitotoxicity due to excessive activation of NMDARs is one of the main mechanisms of neuronal death during ischemic stroke. Previous studies have suggested that activation of either synaptic or extrasynaptic GluN2B-containing NMDARs results in neuronal damage, whereas activation of GluN2A-containing NMDARs promotes neuronal survival against ischemic insults. This study applied a systematic in silico, in vitro, and in vivo approach to the discovery of novel and potential GluN1/2A NMDAR positive allosteric modulators (PAMs). Ten compounds were obtained and identified as potential GluN1/2A PAMs by structure-based virtual screening and calcium imaging. The neuroprotective activity of the candidate compounds was demonstrated in vitro. Subsequently, compound 15 (aegeline) was tested further in the model of transient middle cerebral artery occlusion (tMCAO) in vivo, which significantly decreased cerebral infarction. The mechanism by which aegeline exerts its effect on allosteric modulation was revealed using molecular dynamics simulations. Finally, we found that the neuroprotective effect of aegeline was significantly correlated with the enhanced phosphorylation of cAMP response element-binding protein (CREB). Our study discovered the neuroprotective effect of aegeline as a novel PAM targeting GluN1/2A NMDAR, which provides a potential opportunity for the development of therapeutic agents for ischemic stroke.
Collapse
Affiliation(s)
- Hongyu Zhu
- School of Pharmacy, Qingdao University Qingdao Shandong 266021 People's Republic of China
- Department of Anesthesiology, Affiliated Hospital, Qingdao University Qingdao Shandong 266021 People's Republic of China
| | - Xin Chen
- School of Pharmacy, Qingdao University Qingdao Shandong 266021 People's Republic of China
| | - Lu Zhang
- Department of Clinical Laboratory, Qingdao Women's and Children's Hospital Qingdao 266034 Shandong Province China
| | - Xuequan Liu
- School of Pharmacy, Qingdao University Qingdao Shandong 266021 People's Republic of China
- Department of Anesthesiology, Affiliated Hospital, Qingdao University Qingdao Shandong 266021 People's Republic of China
| | - Ji Chen
- School of Pharmacy, Qingdao University Qingdao Shandong 266021 People's Republic of China
| | - Han-Ting Zhang
- School of Pharmacy, Qingdao University Qingdao Shandong 266021 People's Republic of China
| | - Mingxin Dong
- School of Pharmacy, Qingdao University Qingdao Shandong 266021 People's Republic of China
| |
Collapse
|
48
|
Wu M, Xu S, Mi K, Yang S, Xu Y, Li J, Chen J, Zhang X. GluN2B-containing NMDA receptor attenuated neuronal apoptosis in the mouse model of HIBD through inhibiting endoplasmic reticulum stress-activated PERK/eIF2α signaling pathway. Front Mol Neurosci 2024; 17:1375843. [PMID: 38638600 PMCID: PMC11024425 DOI: 10.3389/fnmol.2024.1375843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Neonatal hypoxic-ischemic brain damage (HIBD) refers to brain damage in newborns caused by hypoxia and reduced or even stopped cerebral blood flow during the perinatal period. Currently, there are no targeted treatments for neonatal ischemic hypoxic brain damage, primarily due to the incomplete understanding of its pathophysiological mechanisms. Especially, the role of NMDA receptors is less studied in HIBD. Therefore, this study explored the molecular mechanism of endogenous protection mediated by GluN2B-NMDAR in HIBD. Method Hypoxic ischemia was induced in mice aged 9-11 days. The brain damage was examined by Nissl staining and HE staining, while neuronal apoptosis was examined by Hoechst staining and TTC staining. And cognitive deficiency of mice was examined by various behavior tests including Barnes Maze, Three Chamber Social Interaction Test and Elevated Plus Maze. The activation of ER stress signaling pathways were evaluated by Western blot. Results We found that after HIBD induction, the activation of GluN2B-NMDAR attenuated neuronal apoptosis and brain damage. Meanwhile, the ER stress PERK/eIF2α signaling pathway was activated in a time-dependent manner after HIBE. Furthermore, after selective inhibiting GluN2B-NMDAR in HIBD mice with ifenprodil, the PERK/eIF2α signaling pathway remains continuously activated, leading to neuronal apoptosis, morphological brain damage. and aggravating deficits in spatial memory, cognition, and social abilities in adult mice. Discussion The results of this study indicate that, unlike its role in adult brain damage, GluN2B in early development plays a neuroprotective role in HIBD by inhibiting excessive activation of the PERK/eIF2α signaling pathway. This study provides theoretical support for the clinical development of targeted drugs or treatment methods for HIBD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaomin Zhang
- Department of Physiology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
49
|
Beckley JT, Aman TK, Ackley MA, Kazdoba TM, Lewis MC, Smith AC, Farley BJ, Dai J, Deats W, Hoffmann E, Robichaud AJ, Doherty JJ, Quirk MC. Pharmacological characterization of SAGE-718, a novel positive allosteric modulator of N-methyl-d-aspartate receptors. Br J Pharmacol 2024; 181:1028-1050. [PMID: 37698384 DOI: 10.1111/bph.16235] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 07/25/2023] [Accepted: 08/22/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Select neuroactive steroids tune neural activity by modulating excitatory and inhibitory neurotransmission, including the endogenous cholesterol metabolite 24(S)-hydroxycholesterol (24(S)-HC), which is an N-methyl-d-aspartate (NMDA) receptor positive allosteric modulator (PAM). NMDA receptor PAMs are potentially an effective pharmacotherapeutic strategy to treat conditions associated with NMDA receptor hypofunction. EXPERIMENTAL APPROACH Using in vitro and in vivo electrophysiological recording experiments and behavioural approaches, we evaluated the effect of SAGE-718, a novel neuroactive steroid NMDA receptor PAM currently in clinical development for the treatment of cognitive impairment, on NMDA receptor function and endpoints that are altered by NMDA receptor hypoactivity and assessed its safety profile. KEY RESULTS SAGE-718 potentiated GluN1/GluN2A-D NMDA receptors with equipotency and increased NMDA receptor excitatory postsynaptic potential (EPSP) amplitude without affecting decay kinetics in striatal medium spiny neurons. SAGE-718 increased the rate of unblock of the NMDA receptor open channel blocker ketamine on GluN1/GluN2A in vitro and accelerated the rate of return on the ketamine-evoked increase in gamma frequency band power, as measured with electroencephalogram (EEG), suggesting that PAM activity is driven by increased channel open probability. SAGE-718 ameliorated deficits due to NMDA receptor hypofunction, including social deficits induced by subchronic administration of phencyclidine, and behavioural and electrophysiological deficits from cholesterol and 24(S)-HC depletion caused by 7-dehydrocholesterol reductase inhibition. Finally, SAGE-718 did not produce epileptiform activity in a seizure model or neurodegeneration following chronic dosing. CONCLUSIONS AND IMPLICATIONS These findings provide strong evidence that SAGE-718 is a neuroactive steroid NMDA receptor PAM with a mechanism that is well suited as a treatment for conditions associated with NMDA receptor hypofunction.
Collapse
Affiliation(s)
| | - Teresa K Aman
- Sage Therapeutics Inc, Cambridge, Massachusetts, USA
| | | | | | | | - Anne C Smith
- Sage Therapeutics Inc, Cambridge, Massachusetts, USA
| | | | - Jing Dai
- Sage Therapeutics Inc, Cambridge, Massachusetts, USA
| | - Wayne Deats
- Sage Therapeutics Inc, Cambridge, Massachusetts, USA
| | | | | | | | | |
Collapse
|
50
|
Carles A, Freyssin A, Perin-Dureau F, Rubinstenn G, Maurice T. Targeting N-Methyl-d-Aspartate Receptors in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:3733. [PMID: 38612544 PMCID: PMC11011887 DOI: 10.3390/ijms25073733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) are the main class of ionotropic receptors for the excitatory neurotransmitter glutamate. They play a crucial role in the permeability of Ca2+ ions and excitatory neurotransmission in the brain. Being heteromeric receptors, they are composed of several subunits, including two obligatory GluN1 subunits (eight splice variants) and regulatory GluN2 (GluN2A~D) or GluN3 (GluN3A~B) subunits. Widely distributed in the brain, they regulate other neurotransmission systems and are therefore involved in essential functions such as synaptic transmission, learning and memory, plasticity, and excitotoxicity. The present review will detail the structure, composition, and localization of NMDARs, their role and regulation at the glutamatergic synapse, and their impact on cognitive processes and in neurodegenerative diseases (Alzheimer's, Huntington's, and Parkinson's disease). The pharmacology of different NMDAR antagonists and their therapeutic potentialities will be presented. In particular, a focus will be given on fluoroethylnormemantine (FENM), an investigational drug with very promising development as a neuroprotective agent in Alzheimer's disease, in complement to its reported efficacy as a tomography radiotracer for NMDARs and an anxiolytic drug in post-traumatic stress disorder.
Collapse
Affiliation(s)
- Allison Carles
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France; (A.C.); (A.F.)
| | - Aline Freyssin
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France; (A.C.); (A.F.)
- ReST Therapeutics, 34095 Montpellier, France; (F.P.-D.); (G.R.)
| | | | | | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France; (A.C.); (A.F.)
| |
Collapse
|