1
|
Smith KR, Schreyer CC, Bello NT, Goodman E, Tamashiro KLK, Moran TH, Guarda AS. Blunted cold pressor test-induced cortisol but not total ghrelin response in women with bulimia nervosa following a standardized sweet-fat liquid meal. Appetite 2025; 213:108020. [PMID: 40268247 DOI: 10.1016/j.appet.2025.108020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/11/2025] [Accepted: 04/19/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND Bulimia nervosa (BN) involves recurrent episodes of uncontrolled eating followed by compensatory behaviors. Stress is implicated in BN, affecting the hypothalamic-pituitary-adrenal (HPA) axis and ghrelin, a key appetite-regulating hormone. Studies report conflicting HPA axis findings in BN, necessitating further investigation. OBJECTIVE To examine the impact of acute stress on cortisol and serum ghrelin and eating disorder symptoms in women with BN and healthy controls (HC). METHODS Participants underwent a socially evaluated cold pressor test (CPT) and control condition (quiet rest) before consuming a sweet-fat liquid meal (530 Kcal milkshake). Hormonal responses and subjective measures of stress, interoception, and appetite were assessed. RESULTS In BN but not HC, desire to binge remained consistently high in both conditions and correlated with perceived hunger. There were no group differences in total ghrelin levels and levels were not influenced by the CPT. Baseline cortisol levels were similar for HC and BN groups, however BN subjects did not demonstrate a CPT-induced elevation in cortisol as observed in HC. CONCLUSION Results confirm HPA axis dysregulation in BN in response to a passive stressor and liquid meal challenge. Meal-related total ghrelin however does not appear to be involved in the stress response in women with or without BN. Desire to binge is persistent in BN, irrespective of the presence or absence of an acute stressor with a sweet-fat liquid meal and may be associated with heightened emotional states in general.
Collapse
Affiliation(s)
- Kimberly R Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Colleen C Schreyer
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Nicholas T Bello
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Ethan Goodman
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kellie L K Tamashiro
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Timothy H Moran
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Angela S Guarda
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Zhang M, Yang L, Mi X, Hu G, Lu Y, Wang C, Yang J, Sun X, Niu M, Li X, Wang S, Zhang J, Yu H, Wang Y, Yu M, Li N, Zhou Y. GHS-R1a signaling drives anxiety-related behavior by shaping excitability of ventromedial hypothalamic neurons. Nat Commun 2025; 16:3858. [PMID: 40274845 PMCID: PMC12022087 DOI: 10.1038/s41467-025-59116-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
The neural substrates of anxiety are poorly understood, which hinders treatment of anxiety disorders. Here we found, αCaMKII+ neurons in the ventral medial hypothalamic nucleus (VMH) responded to stressors with increased activity in male mice, both under physiological conditions and after repeated restraint stress. Activation of VMH αCaMKII+ neurons were necessary and sufficient to ameliorate stress-induced anxiety. The peripheral metabolic hormone ghrelin and receptor GHS-R1a play a complex role in emotion regulation; however, the mechanism is uncertain. A delayed increase in GHS-R1a expression in VMH αCaMKII+ neurons coincided with the development of stress-induced enhancement of anxiety-related behavior. GHS-R1a expression in VMH αCaMKII+ neurons promoted anxiety-related behavior, whereas GHS-R1a knockdown had the opposite effect. GHS-R1a upregulation inhibited the excitability of VMH αCaMKII+ neurons. We conclude that GHSR1a signaling drives stress-induced anxiety by shaping the activity of VMH αCaMKII+ neurons. GHS-R1a may be a therapeutic target for treating anxiety disorders such as post-traumatic stress disorder.
Collapse
Affiliation(s)
- Meng Zhang
- School of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266113, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, 274000, China
| | - Liu Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Xue Mi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Gonghui Hu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Yingchang Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Chen Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Jie Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
- Dongying No.1 Middle School, Dongying, Shandong, 257000, China
| | - Xiaomin Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
- Qingdao West Coast New Area No. 9 Senior High School, Qingdao, Shandong, 266500, China
| | - Minglu Niu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
- Qingdao Endocrine diabetes Hospital, Qingdao, Shandong, 266000, China
| | - Xianchao Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Sihan Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Jingsai Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Hanbing Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Yuyang Wang
- Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Ming Yu
- School of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266113, China
| | - Nan Li
- School of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266113, China
| | - Yu Zhou
- School of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266113, China.
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China.
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China.
- Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China.
| |
Collapse
|
3
|
Budin AJ, Brown WA, MacCormick AD, Caterson I, Sumithran P. Depressive symptoms at short-, medium-, and long-term follow-up after bariatric surgical procedures: A systematic review and meta-analysis. Obes Rev 2025:e13927. [PMID: 40222815 DOI: 10.1111/obr.13927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025]
Abstract
IMPORTANCE Patients experience both positive and negative changes in mood following bariatric surgery and mental health outcomes have been reported to differ between procedure types. Understanding changes in symptoms over time and between surgical procedures is vital to providing meaningful, long-term, patient-centered care. OBJECTIVE To examine the nature and time course of changes in depressive symptoms after different bariatric procedures. EVIDENCE REVIEW Medline, Embase, Emcare, PsycINFO, CINAHL, and CENTRAL databases were systematically searched from inception to January 18, 2024. Ninety publications describing patient-reported depressive symptoms in 13,146 individuals undergoing bariatric procedures were included. FINDINGS Qualitative analysis indicated a reduction of depressive symptoms at all time points following all bariatric procedure types. However, a subset of patients experienced worsening symptoms post-surgery. Meta-analyses indicated depressive symptoms improve following bariatric surgery by an SMD of -0.6 (95% CI: -0.8, -0.4) in the short term (0-4 months post-surgery), -0.9 (95% CI: -1.0, -0.8) in the medium term (5-12 months), and -0.7 (95% CI: -0.9, -0.5) in the long term (> 12 months). There was no evidence that surgery type was associated with the change in depressive symptoms at any time point post-surgery. CONCLUSIONS AND RELEVANCE Patient-reported depressive symptoms improve following bariatric surgery with improvements peaking in the medium term and diminishing over time. Significant heterogeneity in the results cannot be explained by surgery type, baseline depression, or depression instrument used across studies. Long-term management of post-bariatric surgery patients must consider the potential for adverse psychological effects of surgery.
Collapse
Affiliation(s)
- Alyssa J Budin
- Department of Surgery, School of Translational Medicine, Monash University, The Alfred Centre, Melbourne, Victoria, Australia
| | - Wendy A Brown
- Department of Surgery, School of Translational Medicine, Monash University, The Alfred Centre, Melbourne, Victoria, Australia
- Alfred Health, The Alfred Centre, Melbourne, Victoria, Australia
| | - Andrew D MacCormick
- Department of Surgery, The University of Auckland, Auckland, New Zealand
- Middlemore Hospital, Te Whatu Ora Counties Manukau Otahuhu, Auckland, New Zealand
| | - Ian Caterson
- The Boden Initiative, Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Priya Sumithran
- Department of Surgery, School of Translational Medicine, Monash University, The Alfred Centre, Melbourne, Victoria, Australia
- Department of Endocrinology and Diabetes, Alfred Health Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Richardson RS, Kryszak LA, Vendruscolo JCM, Koob GF, Leggio L, Vendruscolo LF. Evidence for independent actions of the CRF and ghrelin systems in binge-like alcohol drinking in mice. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111341. [PMID: 40139339 PMCID: PMC12043401 DOI: 10.1016/j.pnpbp.2025.111341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/16/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Alcohol use disorder (AUD) and binge drinking are highly prevalent public health issues. Both ghrelin and corticotrophin-releasing factor (CRF) drive stress responses and alcohol drinking. Despite evidence of a relationship between the ghrelin and CRF systems, their potential interaction in modulating alcohol drinking is unclear. We tested the effect of a brain-penetrant CRF1 receptor antagonist (R121919) and a peripherally restricted nonselective CRF receptor antagonist (astressin) on plasma ghrelin levels. We also tested effects of R121919 and astressin alone and combined with the growth hormone secretagogue receptor (GHSR; the ghrelin receptor) antagonist JMV2959 and GHSR antagonist/inverse agonist PF-5190457 in a model of binge-like alcohol drinking in male and female C57BL/6 J mice. The intraperitoneal administration of R121919 but not astressin increased plasma ghrelin levels. R121919 but not astressin reduced binge-like alcohol drinking. CRF receptor antagonism had no effect on the ability of GHSR blockers to reduce alcohol drinking. No sex × drug treatment interactions were observed. These findings suggest that while both CRF receptor antagonism and GHSR antagonism reduce alcohol drinking, these two pharmacological approaches may not interact to mediate binge-like alcohol drinking in mice. Additionally, these results provide evidence that GHSR but not peripheral endogenous ghrelin may be key in driving binge-like alcohol drinking.
Collapse
Affiliation(s)
- Rani S Richardson
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse, Intramural Research Program, and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA; Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA; Stress and Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA; University of North Carolina School of Medicine MD/PhD Program, University of North Carolina, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Lindsay A Kryszak
- Translational Analytical Core, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Janaina C M Vendruscolo
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - George F Koob
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse, Intramural Research Program, and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA; Translational Analytical Core, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA; Department of Behavioral and Social Sciences, Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA; Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA..
| | - Leandro F Vendruscolo
- Stress and Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
5
|
Kore MS, Mamsa R, Patil D, Bhatt LK. Ghrelin in Depression: A Promising Therapeutic Target. Mol Neurobiol 2025; 62:4237-4249. [PMID: 39424690 DOI: 10.1007/s12035-024-04554-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Depression is a widespread disease affecting over 300 million individuals of various ethnicities and socioeconomic backgrounds globally. It frequently strikes early in life and becomes a chronic or recurring lifelong illness. Out of the various hypotheses for the pathophysiology of depression, the gut-brain axis and stress hypothesis are the ones that need to be researched, as psychological stress impairs one or more pathways of the brain-gut axis and is likely to cause brain-gut axis dysfunction and depression. A dysfunctional reciprocal gut-brain relationship may contribute to many diseases, including inflammatory disorders, abnormal stress responses, impaired behavior, and metabolic changes. The hormone ghrelin is a topic of interest concerning the gut-brain axis as it interacts with the gut-brain axis indirectly via the central nervous system or via crossing the blood-brain barrier. Ghrelin release is also affected by the gut microbes, which has also been discussed in the review. This review elaborates on Ghrelin's role in depression and its effect on various aspects like neurogenesis, HPA axis, and neuroinflammation. Furthermore, this review focuses on ghrelin as a potential target for alleviation of depressive symptoms.
Collapse
Affiliation(s)
- Mikhil Santosh Kore
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Rumaiza Mamsa
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Dipti Patil
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India.
| |
Collapse
|
6
|
Galasso L, De Amicis R, Castelli L, Ciorciari A, Mulè A, Battezzati A, Bertoli S, Foppiani A, Leone A, Esposito F, Montaruli A, Roveda E. The moderating effect of physical activity in the relationship between sleep quality and BMI in adults with overweight and obesity. Front Sports Act Living 2025; 7:1455731. [PMID: 40181934 PMCID: PMC11966443 DOI: 10.3389/fspor.2025.1455731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 02/17/2025] [Indexed: 04/05/2025] Open
Abstract
Inadequate sleep quality is a significant risk factor for overweight and obesity, which in turn may predispose individuals to adverse health outcomes. The aim of the present study was to evaluate the moderating effect of physical activity on the relationship between sleep quality and BMI in adults with overweight and obesity. In the current cross-sectional study, 589 white European participants (mean age 50 ± 12.2 years; 65% women; mean BMI 31.4 ± 5.5 kg/m2) were recruited from the International Center for the Assessment of Nutritional Status in Italy between October 2021 and July 2022. They completed the Godin-Shephard Leisure Time Physical Activity Questionnaire and the Pittsburgh Sleep Quality Index. The significant moderation model analysis performed on the entire sample [F(3, 585) = 4.4, p = 0.0045, r = 0.15, r 2 = 0.02] found a statistically significant association between sleep quality and BMI (β = -0.16, p = 0.05), between physical activity and BMI (β = -0.08, p = 0.0018), and between the interaction of sleep quality and physical activity and BMI (β = 0.01, p = 0.01), particularly for physical activity values equal or higher than 49 Leisure Score Index (p = 0.004). The moderation analysis revealed a significant effect of physical activity on the relationship between sleep quality and BMI; better sleep quality was associated with lower BMI in individuals with higher levels of physical activity. The present findings suggest new aspects relating to the effect of physical activity in the relationship between sleep quality and overweight/obesity. Therefore, focusing on maintaining adequate levels of physical activity may represent an effective complementary strategy.
Collapse
Affiliation(s)
- Letizia Galasso
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Ramona De Amicis
- International Center for the Assessment of Nutritional Status and the Development of Dietary Intervention Strategies (ICANS-DIS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Obesity Unit and Laboratory of Nutrition and Obesity Research, Milan, Italy
| | - Lucia Castelli
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Andrea Ciorciari
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Faculty of Education, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Antonino Mulè
- Faculty of Education, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Alberto Battezzati
- International Center for the Assessment of Nutritional Status and the Development of Dietary Intervention Strategies (ICANS-DIS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
- Clinical Nutrition Unit, Department of Endocrine and Metabolic Medicine, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Simona Bertoli
- International Center for the Assessment of Nutritional Status and the Development of Dietary Intervention Strategies (ICANS-DIS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Obesity Unit and Laboratory of Nutrition and Obesity Research, Milan, Italy
| | - Andrea Foppiani
- International Center for the Assessment of Nutritional Status and the Development of Dietary Intervention Strategies (ICANS-DIS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
- Clinical Nutrition Unit, Department of Endocrine and Metabolic Medicine, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Alessandro Leone
- International Center for the Assessment of Nutritional Status and the Development of Dietary Intervention Strategies (ICANS-DIS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
- Clinical Nutrition Unit, Department of Endocrine and Metabolic Medicine, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Fabio Esposito
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Angela Montaruli
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Eliana Roveda
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Yang L, Zhang M, Sun X, Du A, Jia J, Li N, Hu G, Lu Y, Wang S, Zhang J, Chen W, Yu H, Zhou Y. Stress-induced GHS-R1a expression in medial prefrontal cortical neurons promotes vulnerability to anxiety in mice. Commun Biol 2025; 8:430. [PMID: 40082560 PMCID: PMC11906648 DOI: 10.1038/s42003-025-07802-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 02/24/2025] [Indexed: 03/16/2025] Open
Abstract
The neural basis of anxiety is unclear, which hinders the treatment of anxiety disorders. Here, we found that αCaMKII+ neurons in the medial prefrontal cortex (mPFCαCaMKII+) responded to stressors with increased activity both under physiological conditions and after repeated restraint stress (RRS) in mice. Chemogenetic activation of mPFCαCaMKII+ neurons ameliorated stress-induced anxiety. A delayed increase in the expression of growth hormone secretagogue receptor 1a (GHS-R1a), the receptor of the peripheral metabolic hormone ghrelin, in mPFCαCaMKII+ neurons coincided with reduced excitatory synaptic transmission and the development of RRS-induced enhancement of anxiety-related behavior. Virus-mediated GHS-R1a upregulation in mPFCαCaMKII+ neurons exaggerated the excitation/inhibition (E/I) imbalance and promoted anxiety-related behavior, whereas GHS-R1a knockdown had the opposite effect. We conclude that GHS-R1a signaling contributes to the development of stress-induced anxiety by shaping synaptic activity of mPFCαCaMKII+ neurons. GHS-R1a may be a new therapeutic target for treating anxiety disorders.
Collapse
Affiliation(s)
- Liu Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Meng Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, 274000, China
| | - Xiaomin Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
- Juxian Wenxin Senior High School, Rizhao, Shandong, 276826, China
| | - Anqi Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
- Air Force Medical Center, PLA, Air Force Medical University, Beijing, 100142, China
| | - Jiajia Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Nan Li
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Gonghui Hu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Yingchang Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Sihan Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Jingsai Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Wenjie Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Hanbing Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Yu Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China.
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China.
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China.
| |
Collapse
|
8
|
Ford AL, Taft CW, Sprague-Getsy AM, Carlson GC, Mate NA, Sieburg MA, Chisholm JD, Hougland JL. A Modular Customizable Ligand-Conjugate (LC) System Targeting Ghrelin O-Acyltransferase. Biomolecules 2025; 15:204. [PMID: 40001510 PMCID: PMC11852496 DOI: 10.3390/biom15020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/05/2025] [Accepted: 01/08/2025] [Indexed: 02/27/2025] Open
Abstract
Ghrelin is a 28 amino acid peptide hormone that impacts a wide range of biological processes, including appetite regulation, glucose metabolism, growth hormone regulation, and cognitive function. To bind and activate its cognate receptor, ghrelin must be acylated on a serine residue in a post-translational modification performed by ghrelin O-acyltransferase (GOAT). GOAT is a membrane-bound O-acyltransferase (MBOAT) responsible for the catalysis of the addition of an octanoyl fatty acid to the third serine of desacyl ghrelin. Beyond its canonical role for ghrelin maturation in endocrine cells within the stomach, GOAT was recently reported to be overexpressed in prostate cancer (PCa) cells and detected at increased levels in the serum and urine of PCa patients. This suggests GOAT can serve as a potential route for the detection and therapeutic targeting of PCa and other diseases that exhibit GOAT overexpression. Building upon a ghrelin mimetic peptide with nanomolar affinity for GOAT, we developed an antibody-conjugate-inspired system for customizable ligand-conjugate (LC) synthesis allowing for the attachment of a wide range of cargoes. The developed synthetic scheme allows for the easy synthesis of the desired LCs and demonstrates that our ligand system tolerates an extensive palette of cargoes while maintaining nanomolar affinity against GOAT.
Collapse
Affiliation(s)
- Amber L. Ford
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; (A.L.F.); (C.W.T.); (A.M.S.-G.); (G.C.C.); (N.A.M.); (M.A.S.); (J.D.C.)
| | - Caine W. Taft
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; (A.L.F.); (C.W.T.); (A.M.S.-G.); (G.C.C.); (N.A.M.); (M.A.S.); (J.D.C.)
| | - Andrea M. Sprague-Getsy
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; (A.L.F.); (C.W.T.); (A.M.S.-G.); (G.C.C.); (N.A.M.); (M.A.S.); (J.D.C.)
| | - Gracie C. Carlson
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; (A.L.F.); (C.W.T.); (A.M.S.-G.); (G.C.C.); (N.A.M.); (M.A.S.); (J.D.C.)
| | - Nilamber A. Mate
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; (A.L.F.); (C.W.T.); (A.M.S.-G.); (G.C.C.); (N.A.M.); (M.A.S.); (J.D.C.)
| | - Michelle A. Sieburg
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; (A.L.F.); (C.W.T.); (A.M.S.-G.); (G.C.C.); (N.A.M.); (M.A.S.); (J.D.C.)
| | - John D. Chisholm
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; (A.L.F.); (C.W.T.); (A.M.S.-G.); (G.C.C.); (N.A.M.); (M.A.S.); (J.D.C.)
- BioInspired Syracuse, Syracuse University, Syracuse, NY 13244, USA
| | - James L. Hougland
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; (A.L.F.); (C.W.T.); (A.M.S.-G.); (G.C.C.); (N.A.M.); (M.A.S.); (J.D.C.)
- BioInspired Syracuse, Syracuse University, Syracuse, NY 13244, USA
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
9
|
Zhang Y, Chen Y, Li K, Chen C, Hu Y, Li X. Ghrelin promotes chronic diabetic wound healing by regulating keratinocyte proliferation and migration through the ERK1/2 pathway. Peptides 2025; 184:171350. [PMID: 39824309 DOI: 10.1016/j.peptides.2025.171350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/05/2025] [Accepted: 01/05/2025] [Indexed: 01/20/2025]
Abstract
Delayed wound healing is a complication of diabetes mellitus and can lead to infection, sepsis, and amputation. Despite the currently available treatments, the global burden of diabetes-related wounds is growing; thus, more effective therapy for diabetic wounds is urgently needed. Ghrelin, an endogenous ligand for the growth hormone secretagogue receptor, is a 28-amino acid peptide hormone. Some reports have confirmed the therapeutic effects of ghrelin on diabetes mellitus and its complications. However, the effects and corresponding mechanisms of ghrelin on chronic diabetic wounds remain unknown. In this study, we explored the effect of ghrelin on diabetic wound healing and investigated the associated mechanisms. We showed that ghrelin accelerated wound healing in diabetic rats by promoting the proliferation and migration of keratinocytes. Re-epithelialization was accelerated in ghrelin-treated wounds, thicker and longer newly formed epidermis and more dividing keratinocytes were observed. We further confirmed that ghrelin regulated keratinocytes by activating the ERK1/2 pathway through its receptor growth hormone secretagogue receptor 1a (GHSR1a). Ghrelin also significantly reduced the levels of pro-inflammatory cytokines and increased the deposition of collagen in diabetic wounds. Our data provides preclinical evidence for the potential application of ghrelin as a compound to promote diabetic wound healing and clarifies the molecular mechanism.
Collapse
Affiliation(s)
- Yukang Zhang
- Department of Hand and Foot Surgery, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Yuan Chen
- Department of Central Research Lab, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Kailin Li
- Department of Central Research Lab, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Cong Chen
- Department of Hand and Foot Surgery, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Yong Hu
- Department of Hand and Foot Surgery, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Xian Li
- Department of Hand and Foot Surgery, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250033, China.
| |
Collapse
|
10
|
Maranesi M, Dall’Aglio C, Moscatelli S, Palmioli E, Coliolo P, Marini D, Guelfi G, Scocco P, Mercati F. Diet Supplementation Influences Ghrelin System Expression in the Skin Appendages of the Sheep. Vet Sci 2025; 12:41. [PMID: 39852916 PMCID: PMC11769205 DOI: 10.3390/vetsci12010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/17/2024] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
Ghrelin (GhRL) is an orexigenic hormone influenced by nutritional state. It plays a role in skin repair and diseases, though little information exists regarding its function in this organ. GhRL and its receptor were investigated in the skin of sheep under different feeding conditions to explore GhRL system presence and possible modifications due to diet. Three-year-old female sheep were free to graze from June to the pasture maximum flowering (MxF group) and from this period to maximum dryness addicted (Exp group) or not (MxD group) with 600 gr/die/head of barley and corn. Skin samples were processed for immunohistochemistry and real-time PCR. The immunostaining showed the presence of the GhRL system in skin appendages. Indeed, the ligand was localized in the hair follicles whereas the receptor was also observed in sweat glands and smooth muscle cells. The expression of both genes was significantly higher in the Exp group (3.6 and 2.9 folds respectively, p < 0.05) compared with the MxF group. These results suggest that the GhRL system is involved in the regulation of hair follicles and sweat glands. In addition, diet supplementation may positively modulate the expression of GhRL and its receptor in the skin.
Collapse
Affiliation(s)
- Margherita Maranesi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (M.M.); (E.P.); (P.C.); (D.M.); (G.G.); (F.M.)
| | - Cecilia Dall’Aglio
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (M.M.); (E.P.); (P.C.); (D.M.); (G.G.); (F.M.)
| | - Sara Moscatelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, Italy; (S.M.); (P.S.)
- International School of Advanced Studies, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Elisa Palmioli
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (M.M.); (E.P.); (P.C.); (D.M.); (G.G.); (F.M.)
- Department of Philosophy, Social Sciences, and Education, University of Perugia, Piazza G. Ermini, 1, 06123 Perugia, Italy
| | - Paola Coliolo
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (M.M.); (E.P.); (P.C.); (D.M.); (G.G.); (F.M.)
| | - Daniele Marini
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (M.M.); (E.P.); (P.C.); (D.M.); (G.G.); (F.M.)
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, 75236 Uppsala, Sweden
| | - Gabriella Guelfi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (M.M.); (E.P.); (P.C.); (D.M.); (G.G.); (F.M.)
| | - Paola Scocco
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, Italy; (S.M.); (P.S.)
| | - Francesca Mercati
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (M.M.); (E.P.); (P.C.); (D.M.); (G.G.); (F.M.)
| |
Collapse
|
11
|
Luo PX, Trainor BC. Hypocretin modulation of behavioral coping strategies for social stress. Neuroscience 2025; 564:126-134. [PMID: 39547335 DOI: 10.1016/j.neuroscience.2024.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Best known for promoting wakefulness and arousal, the neuropeptide hypocretin (Hcrt) also plays an important role in mediating stress responses, including social stress. However, central and systemic manipulation of the Hcrt system has produced diverse behavioral outcomes in animal models. In this review, we first focus on studies where similar manipulations of the Hcrt system led to divergent coping behaviors. We hypothesize that Hcrt differentially facilitates active and passive coping behaviors in response to social stress by acting in different brain regions and on different cell types. We then focus on region and cell type-specific effects of Hcrt in the ventral pallidum, lateral habenula, ventral tegmental area, nucleus accumbens, amygdala, and bed nucleus of the stria terminalis. Overall, the evidence suggests that rather than enhancing or inhibiting behavioral responses to social stress, Hcrt may signal the heightened arousal associated with stressful contexts. The resulting behavioral effects depend on which circuits Hcrt release occurs in and which receptor types are activated. Further study is needed to determine how and why circuit specific activation of Hcrt neurons occurs.
Collapse
Affiliation(s)
- Pei X Luo
- Department of Psychology, University of California - Davis, Davis, CA 95616, USA
| | - Brian C Trainor
- Department of Psychology, University of California - Davis, Davis, CA 95616, USA.
| |
Collapse
|
12
|
Chen H, Ouyang W, Cui X, Ma X, Hu S, Qing W, Tong J. miR-124 mediates the effects of gut microbial dysbiosis on brain function in chronic stressed mice. Behav Brain Res 2025; 476:115262. [PMID: 39306097 DOI: 10.1016/j.bbr.2024.115262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024]
Abstract
The gut microbiota plays a key role in the brain function impairment caused by chronic stress, yet its exact mechanism remains unclear. Many studies have revealed the important role of miR-124 in the central nervous system. Meanwhile, previous studies have indicated that miR-124 may be regulated by chronic stress and gut microbiota. Here, we aimed to explore whether miR-124 serves as a mediator for the impacts of gut microbial dysbiosis on brain function in mice subjected to chronic stress. Repeated daily restraint stress for 4 weeks was used to induce chronic stress in mice. Chronic stress resulted in gut microbial dysbiosis, abnormal behaviors, and a decrease in hippocampal miR-124 levels. Treatment with different probiotic mixtures significantly alleviated the effects of chronic stress on hippocampal miR-124 levels and mouse behaviors. Suppression of hippocampal miR-124 expression reversed the beneficial effects of probiotics on cognitive function, neurogenesis, and related molecular markers in chronically stressed mice. Bioinformatics analysis and qPCR suggested that Ptpn11 might be a target gene for miR-124 in mediating the effects of gut microbial dysbiosis on brain function in these mice. These findings suggest that miR-124 is a pivotal regulator that mediates the detrimental effects of gut microbial dysbiosis on brain function and the subsequent cognitive impairment during chronic stress.
Collapse
Affiliation(s)
- Hui Chen
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha 410013, China; Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wen Ouyang
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Xiaoyu Cui
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Xin Ma
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Shanshan Hu
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wenxiang Qing
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Jianbin Tong
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha 410013, China; Center for Experimental Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, China; Brain Research Center, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
13
|
Mingardi J, Meanti R, Paoli C, Cifani C, Torsello A, Popoli M, Musazzi L. Ghrelin, Neuroinflammation, Oxidative Stress, and Mood Disorders: What Are the Connections? Curr Neuropharmacol 2025; 23:172-186. [PMID: 39041263 PMCID: PMC11793048 DOI: 10.2174/1570159x22999240722095039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 07/24/2024] Open
Abstract
Ghrelin is a gut peptide hormone associated with feeding behavior and energy homeostasis. Acylated ghrelin binds to the growth hormone secretagogue receptor 1a subtype (GHS-R1a) in the hippocampus, leading to GH release from the anterior pituitary. However, in recent years, ghrelin and its receptor have also been implicated in other processes, including the regulation of cardiomyocyte function, muscle trophism, and bone metabolism. Moreover, GHS-R1a is distributed throughout the brain and is expressed in brain areas that regulate the stress response and emotional behavior. Consistently, a growing body of evidence supports the role of ghrelin in regulating stress response and mood. Stress has consistently been shown to increase ghrelin levels, and despite some inconsistencies, both human and rodent studies suggested antidepressant effects of ghrelin. Nevertheless, the precise mechanism by which ghrelin influences stress response and mood remains largely unknown. Intriguingly, ghrelin and GHS-R1a were consistently reported to exert anti-inflammatory, antioxidant, and neurotrophic effects both in vivo and in vitro, although this has never been directly assessed in relation to psychopathology. In the present review we will discuss available literature linking ghrelin with the stress response and depressive-like behavior in animal models as well as evidence describing the interplay between ghrelin and neuroinflammation/oxidative stress. Although further studies are required to understand the mechanisms involved in the action of ghrelin on mood, we hypothesize that the antiinflammatory and anti-oxidative properties of ghrelin may give a key contribution.
Collapse
Affiliation(s)
- Jessica Mingardi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Ramona Meanti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Caterina Paoli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Carlo Cifani
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Antonio Torsello
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Maurizio Popoli
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milano, Italy
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
14
|
Rauw WM, Baumgard LH, Dekkers JCM. Review: Feed efficiency and metabolic flexibility in livestock. Animal 2025; 19:101376. [PMID: 39673819 DOI: 10.1016/j.animal.2024.101376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 12/16/2024] Open
Abstract
Improving the conversion of feed into product has been a key focus of genetic improvement in all livestock species. Livestock feed efficiency is the amount of product produced per unit of feed intake. Feed efficiency also depends on processes that are not directly related to economically important phenotypes, which can be considered 'waste' from a production point of view but are vital maintenance-related functions that are closely associated with environmental flexibility and adaptation. Resource allocation theory suggests that an animal's resource budget is narrowed when production efficiency is improved through an increase in productive output, along with a decrease in feed intake (capacity) and body reserves (improved leanness). The resulting trade-offs between productivity and vital functions may render the animal less capable of responding to unexpected challenges, potentially leading to negative side effects that are not directly related to economically important phenotypes. However, selection for feed efficiency may not narrow the metabolic space and result in trade-offs if the increase in feed efficiency is the result of increased metabolic flexibility in fuel substrate choice (carbohydrates, lipids, and/or proteins) and other energy-saving strategies. This review evaluates the relationship between metabolic flexibility and feed efficiency during anabolism (growth), fasting, immune activation, general stress, and heat stress, with a focus on pig production. We start with a brief overview of energy processes and substrate metabolism of carbohydrates, lipids, and protein. During muscle metabolism, the type of fuel used depends on fibre type characteristics of the muscle. Selection for improved meat production has resulted in pigs with a greater abundance of fast-twitch fibres with lower energy expenditure and higher metabolic efficiency. Metabolic flexibility for adaptation to disease, and response to regular stress implies that a more reactive immune response and reduced fear response results in higher feed efficiency. The examples presented in this review show that selection for improved feed efficiency does not necessarily narrow the metabolic space and result in trade-offs between productivity and vital functions because of energy-sparing mechanisms.
Collapse
Affiliation(s)
- W M Rauw
- INIA-CSIC, Department of Animal Breeding and Genetics, Ctra. de la Coruña km 7.5, 28040 Madrid, Spain.
| | - L H Baumgard
- Iowa State University, Department of Animal Science, Ames, IA 50011, USA
| | - J C M Dekkers
- Iowa State University, Department of Animal Science, Ames, IA 50011, USA
| |
Collapse
|
15
|
Han X, Fu X, Guo W, Liu Y, Sun J, Wang T, Yang W. Ghrelin Inhibits Inflammasomes Activation in Astrocytes, Alleviates Pyroptosis, and Prevents Lipopolysaccharide-induced Depression-like Behavior in Mice. Inflammation 2024:10.1007/s10753-024-02190-4. [PMID: 39702621 DOI: 10.1007/s10753-024-02190-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 12/21/2024]
Abstract
Depression is the leading cause of disability worldwide and places a significant burden on society. Neuroinflammation is closely associated with the pathophysiology of depression. Increasing evidence suggests that astrocytes, as the most abundant glial cells in the brain, are involved in the occurrence and development of depression due to morphological abnormalities and dysfunction. Astrocytes express the NOD-like receptor protein 2 (NLRP2) and NLRP3 inflammasomes, and the activation of inflammasomes induces pyroptosis. Ghrelin, a gastrointestinal peptide, plays vital role in regulating inflammation and alleviating stress. Therefore, we proposed a hypothesis that ghrelin inhibits the activation of inflammasomes on astrocytes, reduces pyroptosis, and consequently prevents depression. We used lipopolysaccharide (LPS)-induced mouse depression model and cultured primary astrocytes in vitro to explore the mechanism of the antidepressant effect of ghrelin. Our results showed that ghrelin effectively inhibited acute inflammatory responses and damage in the hippocampus and prefrontal cortex. The activation of NLRP2 and NLRP3 in astrocytes induced by LPS was significantly inhibited by ghrelin. Pretreatment with ghrelin effectively suppressed LPS-induced upregulation of pyroptosis-related proteins and mRNA. Ghrelin alleviated cell membrane pore formation and cell swelling, ultimately improved LPS-induced depression-like behavior. In vitro, ghrelin prevented the LPS-induced upregulation of pyroptosis-related proteins and mRNA expression in astrocytes, and inhibited the initiation and assembly of NLRP2 and NLRP3. Ghrelin exhibits antidepressant effects, inhibits inflammasomes activation in astrocytes, and prevents pyroptosis, suggesting a novel strategy for treating depression. This groundbreaking study reveals new avenues for targeting potential therapeutic interventions to alleviate depression.
Collapse
Affiliation(s)
- Xiaoou Han
- The Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China.
| | - Xiying Fu
- The Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Wanxu Guo
- The Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Yaqi Liu
- The Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Jiangjin Sun
- The Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Tian Wang
- The Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Wei Yang
- The Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China.
| |
Collapse
|
16
|
Mao Q, Wang J, Yang Z, Ding R, Lv S, Ji X. The Pathologic Roles and Therapeutic Implications of Ghrelin/GHSR System in Mental Disorders. Depress Anxiety 2024; 2024:5537319. [PMID: 40226675 PMCID: PMC11919235 DOI: 10.1155/2024/5537319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 04/15/2025] Open
Abstract
Ghrelin is a hormone consisting of 28 amino acids. Growth hormone secretagogue receptor (GHSR) is a receptor for ghrelin, which is expressed in the brain, pituitary gland, and adrenal glands, especially in the hypothalamus. The binding of ghrelin to the receptor 1a subtype mediates most of the biological effects of ghrelin. Ghrelin has a close relationship with the onset of psychosis. Ghrelin can affect the onset of psychosis by regulating neurotransmitters such as dopamine, γ-aminobutyric acid (GABA), and 5-hydroxytryptamine (5-HT) through the hypothalamus-pituitary-adrenal (HPA) axis, brain-gut axis, the mesolimbic dopamine system, and other ways. Ghrelin activates neuropeptide Y (NPY) in the hypothalamic arcuate nucleus (ARC) through the GHSR. Ghrelin binds to neurons in the ventral tegmental area (VTA), where it promotes the activity of dopamine neurons in the nucleus accumbens (NAcs) in a GHSR-dependent way, increasing dopamine levels and the reward system. This article summarized the recent research progress of ghrelin in depression, anxiety, schizophrenia, anorexia nervosa (AN), and bulimia nervosa (BN), and emphasized its potential application for psychiatric disorders treatment.
Collapse
Affiliation(s)
- Qianshuo Mao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Jinjia Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Zihan Yang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Ruidong Ding
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Shuangyu Lv
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, Henan, China
- Department of Neurosurgery, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475001, Henan, China
| | - Xinying Ji
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, 6 Gong-Ming Road, Mazhai Town, Erqi District, Zhengzhou 450064, Henan, China
- Department of Medicine, Huaxian County People's Hospital, Huaxian 456400, Henan, China
| |
Collapse
|
17
|
Stark R, Dempsey H, Kleeman E, Sassi M, Osborne-Lawrence S, Sheybani-Deloui S, Rushby HJ, Mirth CK, Austin-Muttitt K, Mullins J, Zigman JM, Davies JS, Andrews ZB. Hunger signalling in the olfactory bulb primes exploration, food-seeking and peripheral metabolism. Mol Metab 2024; 89:102025. [PMID: 39236785 PMCID: PMC11471258 DOI: 10.1016/j.molmet.2024.102025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024] Open
Abstract
OBJECTIVE Although the metabolic state of an organism affects olfactory function, the precise mechanisms and their impact on behavior and metabolism remain unknown. Here, we assess whether ghrelin receptors (GHSRs) in the olfactory bulb (OB) increase olfactory function and influence foraging behaviors and metabolism. METHODS We performed a detailed behavioural and metabolic analysis in mice lacking GHSRs in the OB (OBGHSR deletion). We also analsyed OB scRNA-seq and spatial transcriptomic datasets to assess GHSR+ cells in the main and accessory olfactory bulbs, as well as the anterior olfactory nucleus. RESULTS OBGHSR deletion affected olfactory discrimination and habituation to both food and non-food odors. Anxiety-like and depression-like behaviors were significantly greater after OBGHSR deletion, whereas exploratory behavior was reduced, with the greatest effect under fasted conditions. OBGHSR deletion impacted feeding behavior as evidenced by altered bout number and duration, as well as buried food-seeking. OBGHSR deletion increased body weight and fat mass, spared fat utilisation on a chow diet and impaired glucose metabolism indicating metabolic dysfunction. Cross referenced analysis of OB scRNA-seq and spatial transcriptomic datasets revealed GHSR+ glutamate neurons in the main and accessory olfactory bulbs, as well as the anterior olfactory nucleus. Ablation of glutamate neurons in the OB reduced ghrelin-induced food finding and phenocopied results seen after OBGHSR deletion. CONCLUSIONS OBGHSRs help to maintain olfactory function, particularly during hunger, and facilitate behavioral adaptations that optimise food-seeking in anxiogenic environments, priming metabolic pathways in preparation for food consumption.
Collapse
Affiliation(s)
- Romana Stark
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia.
| | - Harry Dempsey
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Elizabeth Kleeman
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, Australia
| | - Martina Sassi
- Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | - Sherri Osborne-Lawrence
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sepideh Sheybani-Deloui
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Helen J Rushby
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Christen K Mirth
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Karl Austin-Muttitt
- Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | - Jonathan Mullins
- Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | - Jeffrey M Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey S Davies
- Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | - Zane B Andrews
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
18
|
Sturaro C, Ruzza C, Ferrari F, Pola P, Argentieri M, Frezza A, Marzola E, Bettegazzi B, Cattaneo S, Pietra C, Malfacini D, Calò G. In vitro pharmacological characterization of growth hormone secretagogue receptor ligands using the dynamic mass redistribution and calcium mobilization assays. Eur J Pharmacol 2024; 981:176880. [PMID: 39128804 DOI: 10.1016/j.ejphar.2024.176880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Ghrelin modulates several biological functions via selective activation of the growth hormone secretagogue receptor (GHSR). GHSR agonists may be useful for the treatment of anorexia and cachexia, while antagonists and inverse agonists may represent new drugs for the treatment of metabolic and substance use disorders. Thus, the identification and pharmacodynamic characterization of new GHSR ligands is of high interest. In the present work the label-free dynamic mass redistribution (DMR) assay has been used to evaluate the pharmacological activity of a panel of GHSR ligands. This includes the endogenous peptides ghrelin, desacyl-ghrelin and LEAP2(1-14). Among synthetic compounds, the agonists anamorelin and HM01, the antagonists HM04 and YIL-781, and the inverse agonist PF-05190457 have been tested, together with HM03, R011, and H1498 from patent literature. The DMR results have been compared to those obtained in parallel experiments with the calcium mobilization assay. Ghrelin, anamorelin, HM01, and HM03 behaved as potent full GHSR agonists. YIL-781 behaved as a partial GHSR agonist and R011 as antagonist in both the assays. LEAP2(1-14) resulted a GHSR inverse agonist in DMR but not in calcium mobilization assay. PF-05190457, HM04, and H1498 behaved as GHSR inverse agonists in DMR experiments, while they acted as antagonists in calcium mobilization studies. In conclusion, this study provided a systematic pharmacodynamic characterization of several GHSR ligands in two different pharmacological assays. It demonstrated that the DMR assay can be successfully used particularly to discriminate between antagonists and inverse agonists. This study may be useful for the selection of the most appropriate compounds to be used in future studies.
Collapse
Affiliation(s)
- Chiara Sturaro
- U.O. Neurological Clinic of the University Hospital of Ferrara, Italy
| | - Chiara Ruzza
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; LTTA Laboratory for Advanced Therapies, Technopole of Ferrara, Ferrara, Italy.
| | - Federica Ferrari
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Pietro Pola
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Michela Argentieri
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Alessia Frezza
- U.O. Neurological Clinic of the University Hospital of Ferrara, Italy
| | - Erika Marzola
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | | | | | | | - Davide Malfacini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| | - Girolamo Calò
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| |
Collapse
|
19
|
Zhang Z, Su D, Lai M, Song Y, Li H, Yang M, Zhu G, Liu H, Ai Z. New antidepressant mechanism of Yueju Pill: Increasing ghrelin level by inhibiting gastric mTOR/S6K signaling pathway and sensitizing hippocampal GHS-R. Heliyon 2024; 10:e37038. [PMID: 39296021 PMCID: PMC11407933 DOI: 10.1016/j.heliyon.2024.e37038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024] Open
Abstract
Background and aim Yueju Pill (YJ) not only has good antidepressant effect but also can effectively treat digestive system diseases. However,it remains unclear whether the mechanism of antidepressant action of YJ is related to the peripheral digestive system. The purpose of this study was to elucidate the antidepressant mechanism of YJ on ghrelin level based on gastric mTOR/S6K signal pathway and sensitized hippocampal Ghrelin/GHS-R system in CUMS mice. Experimental procedure The depression model was induced by chronic unpredictable mild stress (CUMS) and social isolation. The antidepressant effect of YJ was observed by behavioral experiment and hemodynamic experiments. Ghrelin levels in in hippocampus and blood were measured by Elisa kit, and the mRNA of ghrelin in mice stomach was measured by Real-time Quantitative PCR (RT-qPCR). The activation level of gastric mTOR/S6K signal pathway was detected by Western Blot (WB). Rapamycin (Rapa) and L-Leucine (L-Leu) were used to verify the effects of YJ on the synthesis and release of ghrelin. The activity of GHS-R in hippocampus was observed by immunofluorescence. Hippocampal neuronal damage was evaluated by HE staining and Nissl staining. The level of central neurotransmitter was measured by liquid chromatograph mass spectrometer (LC-MS). Results and conclusion YJ ameliorates CUMS-induced depressive-like behavior by inhibiting the gastric mTOR/S6K signaling pathway and increasing GHR expression in the mouse stomach. However, these effects of YJ could be resisted by L-Leu (a mTOR receptor agonist). Further studies have shown that YJ can sensitize the Ghrelin/GHS-R system in the hippocampus, with significant neuroprotective effects, and is also involved in regulating the levels of key neurotransmitters (5-hydroxytryptamine, Dopamine and γ-aminobutyric acid) in depressive-like states.
Collapse
Affiliation(s)
- Zhentao Zhang
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Dan Su
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Meixizi Lai
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Yonggui Song
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Huizhen Li
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Ming Yang
- Jiangxi Guxiang Jinyun Comprehensive Health Industry Co., Ltd., Nanchang, China
| | - Genhua Zhu
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Hong Liu
- Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Zhifu Ai
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| |
Collapse
|
20
|
Sempach L, Doll JPK, Limbach V, Marzetta F, Schaub AC, Schneider E, Kettelhack C, Mählmann L, Schweinfurth-Keck N, Ibberson M, Lang UE, Schmidt A. Examining immune-inflammatory mechanisms of probiotic supplementation in depression: secondary findings from a randomized clinical trial. Transl Psychiatry 2024; 14:305. [PMID: 39048549 PMCID: PMC11269721 DOI: 10.1038/s41398-024-03030-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
We recently indicated that four-week probiotic supplementation significantly reduced depression along with microbial and neural changes in people with depression. Here we further elucidated the biological modes of action underlying the beneficial clinical effects of probiotics by focusing on immune-inflammatory processes. The analysis included a total of N = 43 participants with depression, from which N = 19 received the probiotic supplement and N = 24 received a placebo over four weeks, in addition to treatment as usual. Blood and saliva were collected at baseline, at post-intervention (week 4) and follow-up (week 8) to assess immune-inflammatory markers (IL-1β, IL-6, CRP, MIF), gut-related hormones (ghrelin, leptin), and a stress marker (cortisol). Furthermore, transcriptomic analyses were conducted to identify differentially expressed genes. Finally, we analyzed the associations between probiotic-induced clinical and immune-inflammatory changes. We observed a significant group x time interaction for the gut hormone ghrelin, indicative of an increase in the probiotics group. Additionally, the increase in ghrelin was correlated with the decrease in depressive symptoms in the probiotics group. Transcriptomic analyses identified 51 up- and 57 down-regulated genes, which were involved in functional pathways related to enhanced immune activity. We identified a probiotic-dependent upregulation of the genes ELANE, DEFA4 and OLFM4 associated to immune activation and ghrelin concentration. These results underscore the potential of probiotic supplementation to produce biological meaningful changes in immune activation in patients with depression. Further large-scale mechanistic trials are warranted to validate and extend our understanding of immune-inflammatory measures as potential biomarkers for stratification and treatment response in depression. Trial Registration: www.clinicaltrials.gov , identifier: NCT02957591.
Collapse
Affiliation(s)
- Lukas Sempach
- Translational Neuroscience, Department of Clinical Research (DKF), University of Basel, Basel, Switzerland.
- University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland.
| | - Jessica P K Doll
- Translational Neuroscience, Department of Clinical Research (DKF), University of Basel, Basel, Switzerland
- University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
| | - Verena Limbach
- Translational Neuroscience, Department of Clinical Research (DKF), University of Basel, Basel, Switzerland
- University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
| | - Flavia Marzetta
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Anna-Chiara Schaub
- University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
- Translational Psychiatry, Department of Clinical Research (DKF), University of Basel, Basel, Switzerland
| | - Else Schneider
- University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
- Experimental Cognitive and Clinical Affective Neuroscience (ECAN) Laboratory, Department of Clinical Research (DKF), University of Basel, Basel, Switzerland
| | - Cedric Kettelhack
- University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
| | - Laura Mählmann
- University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
| | | | - Mark Ibberson
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Undine E Lang
- University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
| | - André Schmidt
- Translational Neuroscience, Department of Clinical Research (DKF), University of Basel, Basel, Switzerland
- University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
| |
Collapse
|
21
|
Pan X, Gao Y, Guan K, Chen J, Ji B. Ghrelin/GHSR System in Depressive Disorder: Pathologic Roles and Therapeutic Implications. Curr Issues Mol Biol 2024; 46:7324-7338. [PMID: 39057075 PMCID: PMC11275499 DOI: 10.3390/cimb46070434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Depression is the most common chronic mental illness and is characterized by low mood, insomnia, and affective disorders. However, its pathologic mechanisms remain unclear. Numerous studies have suggested that the ghrelin/GHSR system may be involved in the pathophysiologic process of depression. Ghrelin plays a dual role in experimental animals, increasing depressed behavior and decreasing anxiety. By combining several neuropeptides and traditional neurotransmitter systems to construct neural networks, this hormone modifies signals connected to depression. The present review focuses on the role of ghrelin in neuritogenesis, astrocyte protection, inflammatory factor production, and endocrine disruption in depression. Furthermore, ghrelin/GHSR can activate multiple signaling pathways, including cAMP/CREB/BDNF, PI3K/Akt, Jak2/STAT3, and p38-MAPK, to produce antidepressant effects, given which it is expected to become a potential therapeutic target for the treatment of depression.
Collapse
Affiliation(s)
- Xingli Pan
- School of Biological Sciences, Jining Medical University, Jining 272067, China;
| | - Yuxin Gao
- School of Clinical Medicine, Jining Medical University, Jining 272067, China; (Y.G.); (K.G.)
| | - Kaifu Guan
- School of Clinical Medicine, Jining Medical University, Jining 272067, China; (Y.G.); (K.G.)
| | - Jing Chen
- Neurobiology Institute, Jining Medical University, Jining 272067, China
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Bingyuan Ji
- Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| |
Collapse
|
22
|
Chang L, He Y, Tian T, Li B. Nucleus accumbens ghrelin signaling controls anxiety-like behavioral response to acute stress. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:18. [PMID: 38965529 PMCID: PMC11225390 DOI: 10.1186/s12993-024-00244-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Anxiety disorders are one of the most common mental disorders. Ghrelin is a critical orexigenic brain-gut peptide that regulates food intake and metabolism. Recently, the ghrelin system has attracted more attention for its crucial roles in psychiatric disorders, including depression and anxiety. However, the underlying neural mechanisms involved have not been fully investigated. METHODS In the present study, the effect and underlying mechanism of ghrelin signaling in the nucleus accumbens (NAc) core on anxiety-like behaviors were examined in normal and acute stress rats, by using immunofluorescence, qRT-PCR, neuropharmacology, molecular manipulation and behavioral tests. RESULTS We reported that injection of ghrelin into the NAc core caused significant anxiolytic effects. Ghrelin receptor growth hormone secretagogue receptor (GHSR) is highly localized and expressed in the NAc core neurons. Antagonism of GHSR blocked the ghrelin-induced anxiolytic effects. Moreover, molecular knockdown of GHSR induced anxiogenic effects. Furthermore, injection of ghrelin or overexpression of GHSR in the NAc core reduced acute restraint stress-induced anxiogenic effects. CONCLUSIONS This study demonstrates that ghrelin and its receptor GHSR in the NAc core are actively involved in modulating anxiety induced by acute stress, and raises an opportunity to treat anxiety disorders by targeting ghrelin signaling system.
Collapse
Affiliation(s)
- Leilei Chang
- Women and Children's Medical Research Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yecheng He
- Department of Preclinical Medicine, Suzhou Vocational Health College, Suzhou, 215009, China
| | - Tian Tian
- Department of Child Health Care, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Bin Li
- Women and Children's Medical Research Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
23
|
Kucukdereli H, Amsalem O, Pottala T, Lim M, Potgieter L, Hasbrouck A, Lutas A, Andermann ML. Repeated stress triggers seeking of a starvation-like state in anxiety-prone female mice. Neuron 2024; 112:2130-2141.e7. [PMID: 38642553 PMCID: PMC11287784 DOI: 10.1016/j.neuron.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/28/2024] [Accepted: 03/27/2024] [Indexed: 04/22/2024]
Abstract
Elevated anxiety often precedes anorexia nervosa and persists after weight restoration. Patients with anorexia nervosa often describe self-starvation as pleasant, potentially because food restriction can be anxiolytic. Here, we tested whether repeated stress can cause animals to prefer a starvation-like state. We developed a virtual reality place preference paradigm in which head-fixed mice can voluntarily seek a starvation-like state induced by optogenetic stimulation of hypothalamic agouti-related peptide (AgRP) neurons. Prior to stress exposure, males but not females showed a mild aversion to AgRP stimulation. Strikingly, following multiple days of stress, a subset of females developed a strong preference for AgRP stimulation that was predicted by high baseline anxiety. Such stress-induced changes in preference were reflected in changes in facial expressions during AgRP stimulation. Our study suggests that stress may cause females predisposed to anxiety to seek a starvation state and provides a powerful experimental framework for investigating the underlying neural mechanisms.
Collapse
Affiliation(s)
- Hakan Kucukdereli
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Oren Amsalem
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Trent Pottala
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Michelle Lim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Leilani Potgieter
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Amanda Hasbrouck
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Andrew Lutas
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Mark L Andermann
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
24
|
Fahed R, Schulz C, Klaus J, Ellinger S, Walter M, Kroemer NB. Ghrelin is associated with an elevated mood after an overnight fast in depression. J Psychiatr Res 2024; 175:271-279. [PMID: 38759494 DOI: 10.1016/j.jpsychires.2024.04.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/26/2024] [Accepted: 04/28/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) comprises subtypes with distinct symptom profiles. For example, patients with melancholic and atypical MDD differ in the direction of appetite and body weight changes as well as mood reactivity. Despite reported links to altered energy metabolism, the role of circulating neuropeptides from the gut in modulating such symptoms remains largely elusive. METHODS We collected data from 103 participants, including 52 patients with MDD and 51 healthy control participants (HCP). After an overnight fast, we measured plasma levels of (acyl and des-acyl) ghrelin and participants reported their current metabolic and mood states using visual analog scales (VAS). Furthermore, they completed symptom-related questionnaires (i.e., STAI-T). RESULTS Patients with atypical versus melancholic MDD reported less negative affect (p = 0.025). Higher levels of acyl ghrelin (corrected for BMI) were associated with improved mood (p = 0.012), specifically in patients with MDD. These associations of ghrelin were not mood-item specific and exceeded correlations with trait markers of negative affectivity. In contrast to associations with mood state, higher levels of ghrelin were not associated with increased hunger per se or changes in appetite in patients with MDD. LIMITATIONS The study is limited by the cross-sectional design without an intervention. CONCLUSIONS Our results reveal potentially mood-enhancing effects of ghrelin in fasting individuals that exceed associations with metabolic state ratings. These associations with circulating neuropeptides might help explain anti-depressive effects of fasting interventions and could complement conventional treatments in patients with melancholic MDD.
Collapse
Affiliation(s)
- Rauda Fahed
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
| | - Corinna Schulz
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
| | - Johannes Klaus
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany; German Center for Mental Health (DZPG), partner site Tübingen, Germany
| | - Sabine Ellinger
- Institute of Nutritional and Food Sciences, Human Nutrition, University of Bonn, Bonn, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany; Department of Psychiatry and Psychotherapy, University Hospital Jena, Jena, Germany; Department of Psychiatry and Psychotherapy, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Germany
| | - Nils B Kroemer
- Section of Medical Psychology, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Bonn, Bonn, Germany; Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany; German Center for Mental Health (DZPG), partner site Tübingen, Germany.
| |
Collapse
|
25
|
Smith A, MacAulay B, Scheufen J, Hudak A, Abizaid A. Chronic Social Defeat Stress Increases Brain Permeability to Ghrelin in Male Mice. eNeuro 2024; 11:ENEURO.0093-24.2024. [PMID: 38937108 PMCID: PMC11253241 DOI: 10.1523/eneuro.0093-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/05/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024] Open
Abstract
Ghrelin is a stomach-derived hormone that increases feeding and is elevated in response to chronic psychosocial stressors. The effects of ghrelin on feeding are mediated by the binding of ghrelin to the growth hormone secretagogue receptor (GHSR), a receptor located in hypothalamic and extrahypothalamic regions important for regulating food intake and metabolic rate. The ability of ghrelin to enter the brain, however, seems to be restricted to circumventricular organs like the median eminence and the brainstem area postrema, whereas ghrelin does not readily enter other GHSR-expressing regions like the ventral tegmental area (VTA). Interestingly, social stressors result in increased blood-brain barrier permeability, and this could therefore facilitate the entry of ghrelin into the brain. To investigate this, we exposed mice to social defeat stress for 21 d and then peripherally injected a Cy5-labelled biologically active ghrelin analog. The results demonstrate that chronically stressed mice exhibit higher Cy5-ghrelin fluorescence in several hypothalamic regions in addition to the ARC, including the hippocampus and midbrain. Furthermore, Cy5-ghrelin injections resulted in increased FOS expression in regions associated with the reward system in chronically stressed mice. Further histologic analyses identified a reduction in the branching of hypothalamic astrocytes in the ARC-median eminence junction, suggesting increased blood-brain barrier permeability. These data support the hypothesis that during metabolically challenging conditions like chronic stress, ghrelin may be more able to cross the blood-brain barrier and diffuse throughout the brain to target GHSR-expressing brain regions away from circumventricular organs.
Collapse
Affiliation(s)
- Andrea Smith
- Department of Neuroscience, Carleton University, Ottawa, Ontario K1S5B6, Canada
| | - Brenna MacAulay
- Department of Neuroscience, Carleton University, Ottawa, Ontario K1S5B6, Canada
| | - Jessica Scheufen
- Department of Neuroscience, Carleton University, Ottawa, Ontario K1S5B6, Canada
| | - Abagael Hudak
- Department of Neuroscience, Carleton University, Ottawa, Ontario K1S5B6, Canada
| | - Alfonso Abizaid
- Department of Neuroscience, Carleton University, Ottawa, Ontario K1S5B6, Canada
| |
Collapse
|
26
|
Nestler EJ, Russo SJ. Neurobiological basis of stress resilience. Neuron 2024; 112:1911-1929. [PMID: 38795707 PMCID: PMC11189737 DOI: 10.1016/j.neuron.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/21/2024] [Accepted: 05/01/2024] [Indexed: 05/28/2024]
Abstract
A majority of humans faced with severe stress maintain normal physiological and behavioral function, a process referred to as resilience. Such stress resilience has been modeled in laboratory animals and, over the past 15 years, has transformed our understanding of stress responses and how to approach the treatment of human stress disorders such as depression, post-traumatic stress disorder (PTSD), and anxiety disorders. Work in rodents has demonstrated that resilience to chronic stress is an active process that involves much more than simply avoiding the deleterious effects of the stress. Rather, resilience is mediated largely by the induction of adaptations that are associated uniquely with resilience. Such mechanisms of natural resilience in rodents are being characterized at the molecular, cellular, and circuit levels, with an increasing number being validated in human investigations. Such discoveries raise the novel possibility that treatments for human stress disorders, in addition to being geared toward reversing the damaging effects of stress, can also be based on inducing mechanisms of natural resilience in individuals who are inherently more susceptible. This review provides a progress report on this evolving field.
Collapse
Affiliation(s)
- Eric J Nestler
- Nash Family Department of Neuroscience and Department of Psychiatry, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Scott J Russo
- Nash Family Department of Neuroscience and Department of Psychiatry, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
27
|
Liu X, Luo M, Wang Z, Yang SJ, Su M, Wang Y, Wang W, Sun Z, Cai Y, Wu L, Zhou R, Xu M, Zhao Q, Chen L, Zuo W, Huang Y, Ren P, Huang X. Mind shift I: Fructus Aurantii - Rhizoma Chuanxiong synergistically anchors stress-induced depression-like behaviours and gastrointestinal dysmotility cluster by regulating psycho-immune-neuroendocrine network. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155324. [PMID: 38552437 DOI: 10.1016/j.phymed.2023.155324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 12/14/2023] [Accepted: 12/26/2023] [Indexed: 05/01/2024]
Abstract
BACKGROUND Researchers have not studied the integrity, orderly correlation, and dynamic openness of complex organisms and explored the laws of systems from a global perspective. In the context of reductionism, antidepressant development formerly focused on advanced technology and molecular details, clear targets and mechanisms, but the clinical results were often unsatisfactory. PURPOSE MDD represents an aggregate of different and highly diverse disease subtypes. The co-occurrence of stress-induced nonrandom multimorbidity is widespread, whereas only a fraction of the potential clusters are well known, such as the MDD-FGID cluster. Mapping these clusters, and determining which are nonrandom, is vital for discovering new mechanisms, developing treatments, and reconfiguring services to better meet patient needs. STUDY DESIGN Acute stress 15-minute forced swimming (AFS) or CUMS protocols can induce the nonrandom MDD-FGID cluster. Multiple biological processes of rats with depression-like behaviours and gastrointestinal dysmobility will be captured under conditions of stress, and the Fructus Aurantii-Rhizoma Chuanxiong (ZQCX) decoction will be utilized to dock the MDD-FGID cluster. METHODS/RESULTS Here, Rhizoma Chuanxiong, one of the seven components of Chaihu-shugan-San, elicited the best antidepressant effect on CUMS rats, followed by Fructus Aurantii. ZQCX reversed AFS-induced depression-like behaviours and gastrointestinal dysmobility by regulating the glutamatergic system, AMPAR/BDNF/mTOR/synapsin I pathway, ghrelin signalling and gastrointestinal nitric oxide synthase. Based on the bioethnopharmacological analysis strategy, the determined meranzin hydrate (MH) and senkyunolide I (SI) by UPLC-PDA, simultaneously absorbed by the jejunum and hippocampus of rats, have been considered major absorbed bioactive compounds acting on behalf of ZQCX. Cotreatment with MH and SI at an equivalent dose in ZQCX synergistically replicated over 50.33 % efficacy of the parent formula in terms of antidepressant and prokinetic actions by modulating neuroinflammation and ghrelin signalling. CONCLUSION Brain-centric mind shifts require the integration of multiple central and peripheral systems and the elucidation of the underlying neurobiological mechanisms that ultimately contribute to novel therapeutic options. Ghrelin signalling and the immune system may partially underlie multimorbidity vulnerability, and ZQCX anchors stress-induced MDD-FGID clusters by docking them. Combining the results of micro details with the laws of the macro world may be more effective in finding treatments for MDD.
Collapse
Affiliation(s)
- XiangFei Liu
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China
| | - Min Luo
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China; Laboratory of Ethnopharmacology, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Zheng Wang
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China
| | - Shu Jie Yang
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China
| | - Mengqing Su
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China
| | - Yang Wang
- Laboratory of Ethnopharmacology, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Wenzhu Wang
- Laboratory of Ethnopharmacology, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - ZhongHua Sun
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China
| | - YaWen Cai
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China
| | - Lei Wu
- Department of Pharmacy, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - RunZe Zhou
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China
| | - Min Xu
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China
| | - QiuLong Zhao
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China
| | - Li Chen
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China
| | - WenTing Zuo
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - YunKe Huang
- Women's Hospital, Zhejiang University School of Medicine, China
| | - Ping Ren
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China; Department of Geriatrics, Jiangsu Province Hospital of TCM, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xi Huang
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China.
| |
Collapse
|
28
|
Chang L, Niu F, Li B. Ghrelin/GHSR signaling in the lateral septum ameliorates chronic stress-induced depressive-like behaviors. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110953. [PMID: 38278286 DOI: 10.1016/j.pnpbp.2024.110953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Ghrelin is a gastrointestinal hormone on feeding and metabolism regulation, and acts through its receptor-growth hormone secretagogue receptor (GHSR), which is widely distributed throughout the central nervous system. Recent studies have suggested that ghrelin plays an important role in the regulation of depression, but the underlying mechanisms remain uncertain. Lateral septum (LS) is a critical brain region in modulating depression. Therefore, we investigated the role of ghrelin/GHSR signaling in the LS on the depressive-like behaviors of mice under conditions of chronic stress by using behavioral tests, neuropharmacology, and molecular biology techniques. We found that infusion of ghrelin into the LS produced antidepressant-like responses in mice. Activation of LS GABAergic neurons was involved in the antidepressant effect of ghrelin. Importantly, GHSR was highly expressed and distributed in the LS neurons. Blockade of GHSR in the LS reversed the ghrelin-induced antidepressant-like effects. Molecular knockdown of GHSR in the LS induced depressive-like symptoms in mice. Furthermore, administration of ghrelin into the LS alleviated depressive-like behaviors induced by chronic social defeat stress (CSDS). Consistent with the neuropharmacological results, overexpression of GHSR in the LS reversed CSDS-induced depressive-like behaviors. Our findings clarify a key role for ghrelin/GHSR signaling in the regulation of chronic stress-induced depressive-like behaviors, which could provide new strategies for the treatment of depression.
Collapse
Affiliation(s)
- Leilei Chang
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Fengnan Niu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Bin Li
- Women and Children's Medical Research Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
29
|
Moran KM, Delville Y. A hamster model for stress-induced weight gain. Horm Behav 2024; 160:105488. [PMID: 38306877 DOI: 10.1016/j.yhbeh.2024.105488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/18/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
This review addresses the translational relevance of animal models of stress and their effects on body weight. In humans, stress, whether chronic or acute, has often been associated with increased food intake and weight gain. In view of the current obesity epidemic, this phenomenon is especially relevant. Such observations contrast with reports with commonly used laboratory animals, especially rats and mice. In these species, it is common to find individuals gaining less weight under stress, even with potent social stressors. However, there are laboratory species that present increased appetite and weight gain under stress, such as golden hamsters. Furthermore, these animals also include metabolic and behavioral similarities with humans, including hoarding behavior which is also enhanced under stress. Consequently, we propose that our comparative perspective provides useful insights for future research on the development of obesity in humans as a consequence of chronic stress exposure.
Collapse
Affiliation(s)
- Kevin M Moran
- Psychology Department, The University of Texas at Austin, USA.
| | - Yvon Delville
- Psychology Department, The University of Texas at Austin, USA
| |
Collapse
|
30
|
AlGhamdi S, Alsulami N, Khoja S, Alsufiani H, Tayeb HO, Alshaibi H, Tarazi FI. Serum Ghrelin and Leptin Concentrations in Patients with Major Depressive Disorder before and after Supplementation with Vitamin D3. Depress Anxiety 2024; 2024:2057881. [PMID: 40226697 PMCID: PMC11918899 DOI: 10.1155/2024/2057881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/15/2025] Open
Abstract
Aim To determine serum concentrations of leptin and ghrelin in patients with major depressive disorder (MDD) before and after vitamin D3 supplementation. Methods A total of 72 participants were recruited in this study (40 MDD patients and 32 healthy controls). MDD was diagnosed by using Beck's Depression Inventory (BDI) scale. Blood samples were collected from all participants at the beginning of the study to determine baseline serum 25(OH)D3, leptin, and ghrelin concentrations. Patients were then treated weekly with vitamin D3 (50,000 IU) for 3 months, and blood samples were collected again by the end of the study. Results At baseline, serum leptin concentrations were significantly higher in MDD patients than in healthy controls. In contrast, serum ghrelin concentrations were significantly lower compared to those in healthy controls. After supplementation with vitamin D3 for three months, MDD patients showed improvements characterized by a decrease in their BDI's scores and an increase in their serum vitamin D and ghrelin concentrations. No effects of vitamin D3 supplementation were seen on serum leptin concentration. Conclusions The antidepressant effects of vitamin D3 supplementation could be mediated by ghrelin but not leptin.
Collapse
Affiliation(s)
- Shareefa AlGhamdi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Vitamin D Pharmacogenomics Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabilah Alsulami
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sawsan Khoja
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Vitamin D Pharmacogenomics Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hadeil Alsufiani
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Vitamin D Pharmacogenomics Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haythum O. Tayeb
- The Mind and Brain Studies Initiative, The Neuroscience Research Unit, Division of Neurology, Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huda Alshaibi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Embryonic Stem Cell Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Frank I. Tarazi
- Department of Psychiatry and Neuroscience Program, Harvard Medical School and McLean Hospital, Boston, MA, USA
| |
Collapse
|
31
|
Zhang C, Dong Y, Li S, Li M, Gao Y, Liu Y, Liu X, Zhou C, Li J. Ghrelin and depressive symptoms in patients with first-episode drug-naïve major depressive disorder: The mediating role of hypothalamic-pituitary-adrenal axis. Asia Pac Psychiatry 2024; 16:e12552. [PMID: 38348641 DOI: 10.1111/appy.12552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/13/2023] [Accepted: 01/19/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) is one of the global burdens of disease, and its pathogenesis remains unclear. An increasing amount of research indicates that ghrelin regulates mood in patients with MDD. Still, current results are inconsistent, and the mechanisms underlying how ghrelin modulates depressive symptoms are inconclusive, especially in first-episode drug-naïve MDD patients. Therefore, this study aims to investigate the relationship and potential mechanism between ghrelin and first-episode drug-naïve MDD. METHODS Ninety first-episode drug-naïve MDD patients and 65 healthy controls (HCs) were included. Hamilton Depression Scale (HAMD-17) as a measure of depressive symptoms. Plasma levels of ghrelin and hypothalamic-pituitary-adrenal axis (HPA-axis) hormones were measured in all participants. RESULTS Compared to HCs, the ghrelin levels were higher in the MDD (p < .001) and still showed significance after covarying for sex, age, and Body Mass Index (BMI). Ghrelin was positively related to corticotropin-releasing-hormone (CRH) levels (r = .867, p < .001), adrenocorticotropic hormone (ACTH) levels (r = .830, p < .001), and cortisol levels (r = .902, p < .001) in partial correlation analysis. In addition, there was a positive correlation between HAMD total score and ghrelin levels (r = .240, p = .026). Other than that, the HAMD total score also had a positive correlation with the CRH (r = .333, p = .002) and cortisol (r = .307, p = .004) levels. Further mediation analysis demonstrated that the relationship between ghrelin and HAMD total score was mediated by CRH (ab-path; β = .4457, 95% CI = 0.0780-1.0253, c-path; β = .2447, p = .0260, c'-path; β = -.2009, p = .3427). CONCLUSIONS These findings revealed that plasma ghrelin provides a pivotal link to depressive symptoms in first-episode drug-naive MDD patients. CRH mediated the relationship between ghrelin and HAMD total score. It might provide new insights into understanding the pathogenesis of MDD, contributing to intervention and treatment from this approach.
Collapse
Affiliation(s)
- Chuhao Zhang
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Yeqing Dong
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - ShuHua Li
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
- Department of Clinical Psychology, Tianjin TEDA Hospital, Tianjin, China
| | - Meijuan Li
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Ying Gao
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Yuan Liu
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Xueying Liu
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Chi Zhou
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Jie Li
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| |
Collapse
|
32
|
Tu K, Zhou M, Tan JJ, Markos L, Cloud C, Zhou M, Hayashi N, Rawson NE, Margolskee RF, Wang H. Chronic social defeat stress broadly inhibits gene expression in the peripheral taste system and alters taste responses in mice. Physiol Behav 2024; 275:114446. [PMID: 38128683 PMCID: PMC10843841 DOI: 10.1016/j.physbeh.2023.114446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Human studies have linked stress exposure to unhealthy eating behavior. However, the mechanisms that drive stress-associated changes in eating behavior remain incompletely understood. The sense of taste plays important roles in food preference and intake. In this study, we use a chronic social defeat stress (CSDS) model in mice to address whether chronic stress impacts taste sensation and gene expression in taste buds and the gut. Our results showed that CSDS significantly elevated circulating levels of corticosterone and acylated ghrelin while lowering levels of leptin, suggesting a change in metabolic hormones that promotes food consumption. Stressed mice substantially increased their intake of food and water 3-5 days after the stress onset and gradually gained more body weight than that of controls. Moreover, CSDS significantly decreased the expression of multiple taste receptors and signaling molecules in taste buds and reduced mRNA levels of several taste progenitor/stem cell markers and regulators. Stressed mice showed significantly reduced sensitivity and response to umami and sweet taste compounds in behavioral tests. In the small intestine, the mRNA levels of Gnat3 and Tas1r2 were elevated in CSDS mice. The increased Gnat3 was mostly localized in a type of Gnat3+ and CD45+ immune cells, suggesting changes of immune cell distribution in the gut of stressed mice. Together, our study revealed broad effects of CSDS on the peripheral taste system and the gut, which may contribute to stress-associated changes in eating behavior.
Collapse
Affiliation(s)
- Katelyn Tu
- The Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA; Haverford College, 370 Lancaster Ave., Haverford, PA 19041, USA
| | - Mary Zhou
- The Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA; Haverford College, 370 Lancaster Ave., Haverford, PA 19041, USA
| | - Jidong J Tan
- The Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA; Department of Chemistry, the University of Pennsylvania, 231 S. 34 St., Philadelphia, PA 19104, USA
| | - Loza Markos
- The Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA
| | - Cameron Cloud
- The Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA; Lafayette College, 730 High St., Easton, PA 18042, USA
| | - Minliang Zhou
- The Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA
| | - Naoki Hayashi
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Nancy E Rawson
- The Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA
| | - Robert F Margolskee
- The Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA
| | - Hong Wang
- The Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA.
| |
Collapse
|
33
|
Iyer SH, Yeh MY, Netzel L, Lindsey MG, Wallace M, Simeone KA, Simeone TA. Dietary and Metabolic Approaches for Treating Autism Spectrum Disorders, Affective Disorders and Cognitive Impairment Comorbid with Epilepsy: A Review of Clinical and Preclinical Evidence. Nutrients 2024; 16:553. [PMID: 38398876 PMCID: PMC10893388 DOI: 10.3390/nu16040553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Epilepsy often occurs with other neurological disorders, such as autism, affective disorders, and cognitive impairment. Research indicates that many neurological disorders share a common pathophysiology of dysfunctional energy metabolism, neuroinflammation, oxidative stress, and gut dysbiosis. The past decade has witnessed a growing interest in the use of metabolic therapies for these disorders with or without the context of epilepsy. Over one hundred years ago, the high-fat, low-carbohydrate ketogenic diet (KD) was formulated as a treatment for epilepsy. For those who cannot tolerate the KD, other diets have been developed to provide similar seizure control, presumably through similar mechanisms. These include, but are not limited to, the medium-chain triglyceride diet, low glycemic index diet, and calorie restriction. In addition, dietary supplementation with ketone bodies, polyunsaturated fatty acids, or triheptanoin may also be beneficial. The proposed mechanisms through which these diets and supplements work to reduce neuronal hyperexcitability involve normalization of aberrant energy metabolism, dampening of inflammation, promotion of endogenous antioxidants, and reduction of gut dysbiosis. This raises the possibility that these dietary and metabolic therapies may not only exert anti-seizure effects, but also reduce comorbid disorders in people with epilepsy. Here, we explore this possibility and review the clinical and preclinical evidence where available.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Timothy A. Simeone
- Department of Pharmacology & Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA; (S.H.I.); (K.A.S.)
| |
Collapse
|
34
|
Örüm D, Korkmaz S, İlhan N, Örüm MH, Atmaca M. Leptin, Nesfatin-1, Orexin-A, and Total Ghrelin Levels in Drug-Naive Panic Disorder. Psychiatry Investig 2024; 21:142-150. [PMID: 38433413 PMCID: PMC10910167 DOI: 10.30773/pi.2023.0309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/06/2023] [Accepted: 11/09/2023] [Indexed: 03/05/2024] Open
Abstract
OBJECTIVE This study aimed to examine the changes in serum nesfatin-1, leptin, orexin-A, and total ghrelin levels of patients diagnosed with drug-naive panic disorder (PD) before and after six weeks of the treatment and to compare the findings with the healthy subjects. METHODS The neuropeptides were measured in venous blood samples taken from 32 patients and 32 healthy subjects. The blood samples of the patients who used paroxetine 20 mg/day plus alprazolam 0.5 mg/day were retaken again after six weeks. Measurements were performed with the Enzyme-Linked Immunosorbent Assay (ELISA) method. RESULTS Serum nesfatin-1, leptin, orexin-A and total ghrelin levels of the patient group were found to be significantly lower than the control group (p<0.001, p<0.001, p<0.001, and p<0.001, respectively). When the serum nesfatin-1, leptin, orexin-A and total ghrelin levels of the patient group were compared before and after treatment, significant differences were found in terms of orexin-A and total ghrelin levels (p=0.046, p<0.001, respectively). However, no significant differences were found in terms of nesfatin-1and leptin levels (p=0.205, p=0.988, respectively). CONCLUSION This study reports that PD, like other anxiety disorders, may affect serum nesfatin-1, leptin, orexin-A, and total ghrelin levels, and there may be a relationship between PD treatment and the levels of these neuropeptides. The variability of this relationship among the neuropeptides examined indicates that various factors other than treatment play a role in this process.
Collapse
Affiliation(s)
- Dilek Örüm
- Psychiatry, Elazığ Fethi Sekin City Hospital, Elazığ, Turkey
| | - Sevda Korkmaz
- Department of Psychiatry, Firat University, Faculty of Medicine, Elazığ, Turkey
| | - Nevin İlhan
- Department of Medical Biochemistry, Firat University, Faculty of Medicine, Elazığ, Turkey
| | - Mehmet Hamdi Örüm
- Psychiatry, Elazığ Mental Health and Diseases Hospital, Elazığ, Turkey
| | - Murad Atmaca
- Department of Psychiatry, Firat University, Faculty of Medicine, Elazığ, Turkey
| |
Collapse
|
35
|
So WL, Hu J, Jeffs L, Dempsey H, Lockie SH, Zigman JM, Stark R, Reichenbach A, Andrews ZB. Ghrelin signalling in AgRP neurons links metabolic state to the sensory regulation of AgRP neural activity. Mol Metab 2023; 78:101826. [PMID: 37898450 PMCID: PMC10643323 DOI: 10.1016/j.molmet.2023.101826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/30/2023] Open
Abstract
OBJECTIVE The sensory detection of food and food cues suppresses Agouti related peptide (AgRP) neuronal activity prior to consumption with greatest suppression occurring in response to highly caloric food or interoceptive energy need. However, the interoceptive mechanisms priming an appropriate AgRP neural response to external sensory information of food availability remain unexplored. Since hunger increases plasma ghrelin, we hypothesized that ghrelin receptor (GHSR) signalling on AgRP neurons is a key interoceptive mechanism integrating energy need with external sensory cues predicting caloric availability. METHODS We used in vivo photometry to measure the effects of ghrelin administration or fasting on AgRP neural activity with GCaMP6s and dopamine release in the nucleus accumbens with GRAB-DA in mice lacking ghrelin receptors in AgRP neurons. RESULTS The deletion of GHSR on AgRP neurons prevented ghrelin-induced food intake, motivation and AgRP activity. The presentation of food (peanut butter pellet) or a wooden dowel suppressed AgRP activity in fasted WT but not mice lacking GHSRs in AgRP neurons. Similarly, peanut butter and a wooden dowel increased dopamine release in the nucleus accumbens after ip ghrelin injection in WT but not mice lacking GHSRs in AgRP neurons. No difference in dopamine release was observed in fasted mice. Finally, ip ghrelin administration did not directly increase dopamine neural activity in the ventral tegmental area. CONCLUSIONS Our results suggest that AgRP GHSRs integrate an interoceptive state of energy need with external sensory information to produce an optimal change in AgRP neural activity. Thus, ghrelin signalling on AgRP neurons is more than just a feedback signal to increase AgRP activity during hunger.
Collapse
Affiliation(s)
- Wang Lok So
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton 3800, Victoria, Australia
| | - Jiachen Hu
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton 3800, Victoria, Australia
| | - Lotus Jeffs
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton 3800, Victoria, Australia
| | - Harry Dempsey
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, Australia
| | - Sarah H Lockie
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton 3800, Victoria, Australia
| | - Jeffrey M Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Romana Stark
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton 3800, Victoria, Australia
| | - Alex Reichenbach
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton 3800, Victoria, Australia
| | - Zane B Andrews
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton 3800, Victoria, Australia.
| |
Collapse
|
36
|
Moazzami K, Pearce BD, Gurel NZ, Wittbrodt MT, Levantsevych OM, Huang M, Shandhi MMH, Herring I, Murrah N, Driggers E, Alkhalaf ML, Soudan M, Shallenberger L, Hankus AN, Nye JA, Vaccarino V, Shah AJ, Inan OT, Bremner JD. Transcutaneous vagal nerve stimulation modulates stress-induced plasma ghrelin levels: A double-blind, randomized, sham-controlled trial. J Affect Disord 2023; 342:85-90. [PMID: 37714385 PMCID: PMC10698687 DOI: 10.1016/j.jad.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/22/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND Transcutaneous cervical vagus nerve stimulation (tcVNS) has emerged as a potential treatment strategy for patients with stress-related psychiatric disorders. Ghrelin is a hormone that has been postulated to be a biomarker of stress. While the mechanisms of action of tcVNS are unclear, we hypothesized that tcVNS reduces the levels of ghrelin in response to stress. METHODS Using a randomized double-blind approach, we studied the effects of tcVNS on ghrelin levels in individuals with a history of exposure to traumatic stress. Participants received either sham (n = 29) or active tcVNS (n = 26) after exposure to acute personalized traumatic script stress and mental stress challenges (public speech, mental arithmetic) over a three day period. RESULTS There were no significant differences in the levels of ghrelin between the tcVNS and sham stimulation groups at either baseline or in the absence of trauma scripts. However, tcVNS in conjunction with personalized traumatic scripts resulted in lower ghrelin levels compared to the sham stimulation group (265.2 ± 143.6 pg/ml vs 478.7 ± 349.2 pg/ml, P = 0.01). Additionally, after completing the public speaking and mental arithmetic tests, ghrelin levels were found to be lower in the group receiving tcVNS compared to the sham group (293.3 ± 102.4 pg/ml vs 540.3 ± 203.9 pg/ml, P = 0.009). LIMITATIONS Timing of ghrelin measurements, and stimulation of only left vagus nerve. CONCLUSION tcVNS decreases ghrelin levels in response to various stressful stimuli. These findings are consistent with a growing literature that tcVNS modulates hormonal and autonomic responses to stress.
Collapse
Affiliation(s)
- Kasra Moazzami
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA, United States of America; Emory Clinical Cardiovascular Research Institute, Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, United States of America.
| | - Bradley D Pearce
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA, United States of America
| | - Nil Z Gurel
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Matthew T Wittbrodt
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Oleksiy M Levantsevych
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA, United States of America
| | - Minxuan Huang
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA, United States of America
| | - Md Mobashir H Shandhi
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA, United States of America
| | - Isaias Herring
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Nancy Murrah
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA, United States of America
| | - Emily Driggers
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA, United States of America; Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States of America
| | - MhmtJamil L Alkhalaf
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA, United States of America
| | - Majd Soudan
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA, United States of America
| | - Lucy Shallenberger
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA, United States of America
| | - Allison N Hankus
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA, United States of America
| | - Jonathon A Nye
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA, United States of America; Emory Clinical Cardiovascular Research Institute, Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Amit J Shah
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA, United States of America; Emory Clinical Cardiovascular Research Institute, Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, United States of America; Atlanta VA Medical Center, Decatur, GA, United States of America
| | - Omer T Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America; Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - J Douglas Bremner
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States of America; Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States of America; Atlanta VA Medical Center, Decatur, GA, United States of America
| |
Collapse
|
37
|
Maric I, López-Ferreras L, Bhat Y, Asker M, Börchers S, Bellfy L, Byun S, Kwapis JL, Skibicka KP. From the stomach to locus coeruleus: new neural substrate for ghrelin's effects on ingestive, motivated and anxiety-like behaviors. Front Pharmacol 2023; 14:1286805. [PMID: 38026980 PMCID: PMC10679437 DOI: 10.3389/fphar.2023.1286805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Ghrelin, a stomach-derived orexigenic hormone, has a well-established role in energy homeostasis, food reward, and emotionality. Noradrenergic neurons of the locus coeruleus (LC) are known to play an important role in arousal, emotion, cognition, but recently have also been implicated in control of feeding behavior. Ghrelin receptors (the growth hormone secretagogue receptor, GHSR) may be found in the LC, but the behavioral effects of ghrelin signaling in this area are still unexplored. Here, we first determined whether GHSR are present in the rat LC, and demonstrate that GHSR are expressed on noradrenergic neurons in both sexes. We next investigated whether ghrelin controls ingestive and motivated behaviors as well as anxiety-like behavior by acting in the LC. To pursue this idea, we examined the effects of LC GHSR stimulation and blockade on food intake, operant responding for a palatable food reward and, anxiety-like behavior in the open field (OF) and acoustic startle response (ASR) tests in male and female rats. Our results demonstrate that intra-LC ghrelin administration increases chow intake and motivated behavior for sucrose in both sexes. Additionally, females, but not males, exhibited a potent anxiolytic response in the ASR. In order to determine whether activation of GHSR in the LC was necessary for feeding and anxiety behavior control, we utilized liver-expressed antimicrobial peptide 2 (LEAP2), a newly identified endogenous GHSR antagonist. LEAP2 delivered specifically into the LC was sufficient to reduce fasting-induced chow hyperphagia in both sexes, but food reward only in females. Moreover, blockade of GHSR in the LC increased anxiety-like behavior measured in the ASR test in both sexes. Taken together, these results indicate that ghrelin acts in the LC to alter ingestive, motivated and anxiety-like behaviors, with a degree of sex divergence.
Collapse
Affiliation(s)
- Ivana Maric
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA, United States
| | - Lorena López-Ferreras
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Yashaswini Bhat
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA, United States
| | - Mohammed Asker
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Stina Börchers
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA, United States
| | - Lauren Bellfy
- Department of Biology, Pennsylvania State University, State College, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, State College, PA, United States
| | - Suyeun Byun
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA, United States
| | - Janine L. Kwapis
- Department of Biology, Pennsylvania State University, State College, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, State College, PA, United States
| | - Karolina P. Skibicka
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, State College, PA, United States
| |
Collapse
|
38
|
Azargoonjahromi A. The role of epigenetics in anxiety disorders. Mol Biol Rep 2023; 50:9625-9636. [PMID: 37804465 DOI: 10.1007/s11033-023-08787-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/30/2023] [Indexed: 10/09/2023]
Abstract
Anxiety disorders (ADs) are extremely common psychiatric conditions that frequently co-occur with other physical and mental disorders. The pathophysiology of ADs is multifaceted and involves intricate connections among biological elements, environmental stimuli, and psychological mechanisms. Recent discoveries have highlighted the significance of epigenetics in bridging the gap between multiple risk factors that contribute to ADs and expanding our understanding of the pathomechanisms underlying ADs. Epigenetics is the study of how changes in the environment and behavior can have an impact on gene function. Indeed, researchers have found that epigenetic mechanisms can affect how genes are activated or inactivated, as well as whether they are expressed. Such mechanisms may also affect how ADs form and are protected. That is, the bulk of pharmacological trials evaluating epigenetic treatments for the treatment of ADs have used histone deacetylase inhibitors (HDACi), yielding promising outcomes in both preclinical and clinical studies. This review will provide an outline of how epigenetic pathways can be used to treat ADs or lessen their risk. It will also present the findings from preclinical and clinical trials that are currently available on the use of epigenetic drugs to treat ADs.
Collapse
|
39
|
Heberden C, Maximin E, Rabot S, Naudon L. Male mice engaging differently in emotional eating present distinct plasmatic and neurological profiles. Nutr Neurosci 2023; 26:1034-1044. [PMID: 36154930 DOI: 10.1080/1028415x.2022.2122137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Objective: Stressed individuals tend to turn to calorie-rich food, also known as 'comfort food' for the temporary relief it provides. The emotional eating drive is highly variable among subjects. Using a rodent model, we explored the plasmatic and neurobiological differences between 'high and low emotional eaters' (HEE and LEE).Methods: 40 male mice were exposed for 5 weeks to a protocol of unpredictable chronic mild stress. Every 3 or 4 days, they were submitted to a 1-h restraint stress, immediately followed by a 3-h period during which a choice between chow and chocolate sweet cereals was proposed. The dietary intake was measured by weighing. Plasmatic and neurobiological characteristics were compared in mice displaying high vs low intakes.Results: Out of 40 mice, 8 were considered as HEE because of their high post-stress eating score, and 8 as LEE because of their consistent low intake. LEE displayed higher plasma corticosterone and lower levels of NPY than HEE, but acylated and total ghrelin were similar in both groups. In the brain, the abundance of NPY neurons in the arcuate nucleus of the hypothalamus was similar in both groups, but was higher in the ventral hippocampus and the basal lateral amygdala of LEE. The lateral hypothalamus LEE had also more orexin (OX) positive neurons. Both NPY and OX are orexigenic peptides and mood regulators.Discussion: Emotional eating difference was reflected in plasma and brain structures implicated in emotion and eating regulation. These results concur with the psychological side of food consumption.
Collapse
Affiliation(s)
- Christine Heberden
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay Jouy-en-Josas, France
| | - Elise Maximin
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay Jouy-en-Josas, France
| | - Sylvie Rabot
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay Jouy-en-Josas, France
| | - Laurent Naudon
- INRAE, AgroParisTech, CNRS, Micalis Institute, Université Paris-Saclay Jouy-en-Josas, France
| |
Collapse
|
40
|
Gajewska A, Strzelecki D, Gawlik-Kotelnicka O. Ghrelin as a Biomarker of "Immunometabolic Depression" and Its Connection with Dysbiosis. Nutrients 2023; 15:3960. [PMID: 37764744 PMCID: PMC10537261 DOI: 10.3390/nu15183960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Ghrelin, a gastrointestinal peptide, is an endogenous ligand of growth hormone secretagogue receptor 1a (GHSR1a), which is mainly produced by X/A-like cells in the intestinal mucosa. Beyond its initial description as a growth hormone (GH) secretagogue stimulator of appetite, ghrelin has been revealed to have a wide range of physiological effects, for example, the modulation of inflammation; the improvement of cardiac performance; the modulation of stress, anxiety, taste sensation, and reward-seeking behavior; and the regulation of glucose metabolism and thermogenesis. Ghrelin secretion is altered in depressive disorders and metabolic syndrome, which frequently co-occur, but it is still unknown how these modifications relate to the physiopathology of these disorders. This review highlights the increasing amount of research establishing the close relationship between ghrelin, nutrition, microbiota, and disorders such as depression and metabolic syndrome, and it evaluates the ghrelinergic system as a potential target for the development of effective pharmacotherapies.
Collapse
Affiliation(s)
- Agata Gajewska
- Faculty of Medicine, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Oliwia Gawlik-Kotelnicka
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland;
| |
Collapse
|
41
|
Lushchak O, Orru M, Strilbytska O, Berezovskyi V, Cherkas A, Storey KB, Bayliak M. Metabolic and immune dysfunctions in post-traumatic stress disorder: what can we learn from animal models? EXCLI JOURNAL 2023; 22:928-945. [PMID: 38023568 PMCID: PMC10630527 DOI: 10.17179/excli2023-6391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/29/2023] [Indexed: 12/01/2023]
Abstract
Highly stressful experiences such as terrorist attacks, domestic and sexual violence may lead to persistent pathological symptoms such as those seen in posttraumatic stress disorder (PTSD). There is growing evidence of multiple metabolic and immune disorders underlying the etiology and maintenance of PTSD. However, changes in the functioning of various systems and organs associated with PTSD are not well understood. Studies of reliable animal models is one of the effective scientific tools that can be used to gain insight into the role of metabolism and immunity in the comorbidity associated with PTSD. Since much progress has been made using animal models to understand mechanisms of PTSD, we summarized metabolic and immune dysfunction in mice and humans to compare certain outcomes associated with PTSD. The systemic effects of PTSD include chronic activation of the sympathetic nervous system (psycho-emotional stress), that leads to impairment of the function of the immune system, increased release of stress hormones, and metabolic changes. We discuss PTSD as a multisystem disease with its neurological, immunological, and metabolic components.
Collapse
Affiliation(s)
- Oleh Lushchak
- Precarpathian National University, Ivano-Frankivsk, Ukraine
- Research and Development University, Ivano-Frankivsk, Ukraine
| | - Marco Orru
- Precarpathian National University, Ivano-Frankivsk, Ukraine
| | | | | | - Andriy Cherkas
- Research and Development University, Ivano-Frankivsk, Ukraine
| | | | - Maria Bayliak
- Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
42
|
Smith A, Hyland L, Al-Ansari H, Watts B, Silver Z, Wang L, Dahir M, Akgun A, Telfer A, Abizaid A. Metabolic, neuroendocrine and behavioral effects of social defeat in male and female mice using the chronic non-discriminatory social defeat stress model. Horm Behav 2023; 155:105412. [PMID: 37633226 DOI: 10.1016/j.yhbeh.2023.105412] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/28/2023]
Abstract
Stress-related disorders predominately affect females, yet preclinical models of chronic stress exclusively use males especially in models where social stressors are studied. Here, we implemented a 21-day novel social defeat paradigm in which a female and male C57 intruder are simultaneously placed in the cage of a territorial, resident CD-1 male mouse, and the resident proceeds to attack both intruders. Mice were given access to a regular laboratory diet, high in carbohydrates, and a palatable diet, high in fat. Chronic social defeat stress using this paradigm resulted in increased caloric intake in male and female mice, with the effects being more pronounced in females. We observed sex differences in high fat diet intake in response to stress, which was correlated with higher levels of plasma ghrelin observed in female mice but not male mice. Furthermore, females exposed to chronic stress displayed changes in growth hormone secretatogue receptor (ghsr) and neuropeptide-y (npy) expression in the arcuate nucleus of the hypothalamus, potentially increasing ghrelin sensitivity and inducing changes in diet choice and caloric intake. Behavioral results show that females tended to spend more time interacting during the social interaction test, compared to males who displayed higher vigilance towards the stranger mouse. Overall, our results highlight unique neurometabolic alterations in female mice in response to stress that is not present in male mice and may be important for coping with chronic stress and sustaining reproductive function.
Collapse
Affiliation(s)
- Andrea Smith
- Department of Neuroscience and Stress, Trauma and Resilience Work Group (STAR), Carleton University, Ottawa, Ontario, Canada
| | - Lindsay Hyland
- Department of Neuroscience and Stress, Trauma and Resilience Work Group (STAR), Carleton University, Ottawa, Ontario, Canada
| | - Hiyam Al-Ansari
- Department of Neuroscience and Stress, Trauma and Resilience Work Group (STAR), Carleton University, Ottawa, Ontario, Canada
| | - Bethany Watts
- Department of Neuroscience and Stress, Trauma and Resilience Work Group (STAR), Carleton University, Ottawa, Ontario, Canada
| | - Zachary Silver
- Department of Neuroscience and Stress, Trauma and Resilience Work Group (STAR), Carleton University, Ottawa, Ontario, Canada
| | - Longfei Wang
- Department of Neuroscience and Stress, Trauma and Resilience Work Group (STAR), Carleton University, Ottawa, Ontario, Canada
| | - Miski Dahir
- Department of Neuroscience and Stress, Trauma and Resilience Work Group (STAR), Carleton University, Ottawa, Ontario, Canada
| | - Aleyna Akgun
- Department of Neuroscience and Stress, Trauma and Resilience Work Group (STAR), Carleton University, Ottawa, Ontario, Canada
| | - Andre Telfer
- Department of Neuroscience and Stress, Trauma and Resilience Work Group (STAR), Carleton University, Ottawa, Ontario, Canada
| | - Alfonso Abizaid
- Department of Neuroscience and Stress, Trauma and Resilience Work Group (STAR), Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
43
|
Markopoulos M, Barber TM, Bargiota A, Skevaki C, Papassotiriou I, Kumar S, Vlahos NF, Mastorakos G, Valsamakis G. Acute iv CRH administration significantly increases serum active ghrelin in postmenopausal PCOS women compared to postmenopausal controls. Endocrine 2023; 81:613-620. [PMID: 37249728 DOI: 10.1007/s12020-023-03406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
PURPOSE In women with Polycystic Ovarian Syndrome (PCOS), an increased risk of disordered eating has been described. There is growing interest regarding a possible interconnection between psychological states and increased appetite in women with PCOS. Acute stress is characterized by increased Corticotropin Releasing Hormone (CRH) secretion. The aim was to estimate the ghrelin concentrations during CRH test. METHODS Twenty postmenopausal women with PCOS and twenty age- and BMI- matched postmenopausal control women were recruited at Aretaieion University Hospital. In the morning (9 am) all subjects had anthropometric measurements (weight, height, waist circumference) and a fasting sample for hormonal measurements. An intravenous (iv) CRH stimulation test conducted over 1 min. Serum active ghrelin levels were measured at 0, 15, 30, 60, 90, 120 min after iv CRH administration. RESULTS The postmenopausal PCOS group had a higher waist circumference compared to postmenopausal controls. Active ghrelin concentrations increased significantly from 0 to 15 min, to 30 min, to 60 min, to 90 min and then decreased to 120 min. However, within the postmenopausal control group there were no significant changes in serum active ghrelin levels. Serum active ghrelin concentrations were significantly greater in the postmenopausal control group at 0, 15 and 120 min compared to the postmenopausal PCOS group. At 90 min active ghrelin concentrations were significantly greater in the postmenopausal PCOS group. Delta Area Under the Curve of active ghrelin (ΔAUCghr) was significantly greater in the postmenopausal PCOS group compared to controls. CONCLUSIONS In postmenopausal PCOS, but not in postmenopausal controls, iv CRH administration induces increased serum active ghrelin secretion, suggesting a possible anti-stress adaptive mechanism. An increase in serum active ghrelin may induce hunger as a side-effect of this presumed adaptive mechanism.
Collapse
Affiliation(s)
- Marios Markopoulos
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, Second Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, School of Medicine, "Aretaieion" University Hospital, Athens, Greece
| | | | - Alexandra Bargiota
- Department of Endocrinology and Metabolic Disorders, University Hospital of Larissa, Medical School of Larissa, University of Thessaly, Larissa, Greece
| | - Chrysanthi Skevaki
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center, Phillips Universitat Marburg, German Center of Lung Research, Marburg, Germany
| | - Ioannis Papassotiriou
- First Department of Pediatrics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | | | - Nikos F Vlahos
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, Second Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, School of Medicine, "Aretaieion" University Hospital, Athens, Greece
| | - George Mastorakos
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, Second Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, School of Medicine, "Aretaieion" University Hospital, Athens, Greece
| | - Georgios Valsamakis
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, Second Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, School of Medicine, "Aretaieion" University Hospital, Athens, Greece.
- Warwick Medical School, Warwick, UK.
- Department of Endocrinology and Metabolic Disorders, University Hospital of Larissa, Medical School of Larissa, University of Thessaly, Larissa, Greece.
| |
Collapse
|
44
|
Campaña M, Davis TR, Novak SX, Cleverdon ER, Bates M, Krishnan N, Curtis ER, Childs MD, Pierce MR, Morales-Rodriguez Y, Sieburg MA, Hehnly H, Luyt LG, Hougland JL. Cellular Uptake of a Fluorescent Ligand Reveals Ghrelin O-Acyltransferase Interacts with Extracellular Peptides and Exhibits Unexpected Localization for a Secretory Pathway Enzyme. ACS Chem Biol 2023; 18:1880-1890. [PMID: 37494676 PMCID: PMC10442857 DOI: 10.1021/acschembio.3c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Ghrelin O-acyltransferase (GOAT) plays a central role in the maturation and activation of the peptide hormone ghrelin, which performs a wide range of endocrinological signaling roles. Using a tight-binding fluorescent ghrelin-derived peptide designed for high selectivity for GOAT over the ghrelin receptor GHSR, we demonstrate that GOAT interacts with extracellular ghrelin and facilitates ligand cell internalization in both transfected cells and prostate cancer cells endogenously expressing GOAT. Coupled with enzyme mutagenesis, ligand uptake studies support the interaction of the putative histidine general base within GOAT with the ghrelin peptide acylation site. Our work provides a new understanding of GOAT's catalytic mechanism, establishes that GOAT can interact with ghrelin and other peptides located outside the cell, and raises the possibility that other peptide hormones may exhibit similar complexity in their intercellular and organismal-level signaling pathways.
Collapse
Affiliation(s)
- Maria
B. Campaña
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Tasha R. Davis
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Sadie X. Novak
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | | | - Michael Bates
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
| | - Nikhila Krishnan
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
| | - Erin R. Curtis
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
| | - Marina D. Childs
- Department
of Chemistry, University of Western Ontario, London, Ontario N6A 2K7, Canada
| | - Mariah R. Pierce
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | | | - Michelle A. Sieburg
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Heidi Hehnly
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse, Syracuse University, Syracuse, New York 13244, United States
| | - Leonard G. Luyt
- Department
of Chemistry, University of Western Ontario, London, Ontario N6A 2K7, Canada
- Department
of Oncology and Department of Medical Imaging, London Regional Cancer
Program, Lawson Health Research Institute, 800 Commissioners Road East, London, Ontario N6A 5W9, Canada
| | - James L. Hougland
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
45
|
Rees D, Beynon AL, Lelos MJ, Smith GA, Roberts LD, Phelps L, Dunnett SB, Morgan AH, Brown RM, Wells T, Davies JS. Acyl-Ghrelin Attenuates Neurochemical and Motor Deficits in the 6-OHDA Model of Parkinson's Disease. Cell Mol Neurobiol 2023; 43:2377-2384. [PMID: 36107359 PMCID: PMC10287784 DOI: 10.1007/s10571-022-01282-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022]
Abstract
The feeding-related hormone, acyl-ghrelin, protects dopamine neurones in murine 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-based models of experimental Parkinson's disease (PD). However, the potential protective effect of acyl-ghrelin on substantia nigra pars compacta (SNpc) dopaminergic neurones and consequent behavioural correlates in the more widely used 6-hydroxydopamine (6-OHDA) rat medial forebrain bundle (MFB) lesion model of PD are unknown. To address this question, acyl-ghrelin levels were raised directly by mini-pump infusion for 7 days prior to unilateral injection of 6-OHDA into the MFB with assessment of amphetamine-induced rotations on days 27 and 35, and immunohistochemical analysis of dopaminergic neurone survival. Whilst acyl-ghrelin treatment was insufficient to elevate food intake or body weight, it attenuated amphetamine-induced circling behaviour and SNpc dopamine neurone loss induced by 6-OHDA. These data support the notion that elevating circulating acyl-ghrelin may be a valuable approach to slow or impair progression of neurone loss in PD.
Collapse
Affiliation(s)
- Daniel Rees
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, SA28PP, UK
| | - Amy L Beynon
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, SA28PP, UK
| | - Mariah J Lelos
- School of Biosciences, Cardiff University, Cardiff, CF103AT, UK
| | - Gaynor A Smith
- School of Biosciences, Cardiff University, Cardiff, CF103AT, UK
| | - Luke D Roberts
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, SA28PP, UK
| | - Lyndsey Phelps
- School of Biosciences, Cardiff University, Cardiff, CF103AT, UK
| | | | - Alwena H Morgan
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, SA28PP, UK
| | - Rowan M Brown
- College of Engineering, Swansea University, Swansea, SA28PP, UK
| | - Timothy Wells
- School of Biosciences, Cardiff University, Cardiff, CF103AT, UK
| | - Jeffrey S Davies
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, SA28PP, UK.
| |
Collapse
|
46
|
Becetti I, Bwenyi EL, de Araujo IE, Ard J, Cryan JF, Farooqi IS, Ferrario CR, Gluck ME, Holsen LM, Kenny PJ, Lawson EA, Lowell BB, Schur EA, Stanley TL, Tavakkoli A, Grinspoon SK, Singhal V. The Neurobiology of Eating Behavior in Obesity: Mechanisms and Therapeutic Targets: A Report from the 23rd Annual Harvard Nutrition Obesity Symposium. Am J Clin Nutr 2023; 118:314-328. [PMID: 37149092 PMCID: PMC10375463 DOI: 10.1016/j.ajcnut.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/03/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023] Open
Abstract
Obesity is increasing at an alarming rate. The effectiveness of currently available strategies for the treatment of obesity (including pharmacologic, surgical, and behavioral interventions) is limited. Understanding the neurobiology of appetite and the important drivers of energy intake (EI) can lead to the development of more effective strategies for the prevention and treatment of obesity. Appetite regulation is complex and is influenced by genetic, social, and environmental factors. It is intricately regulated by a complex interplay of endocrine, gastrointestinal, and neural systems. Hormonal and neural signals generated in response to the energy state of the organism and the quality of food eaten are communicated by paracrine, endocrine, and gastrointestinal signals to the nervous system. The central nervous system integrates homeostatic and hedonic signals to regulate appetite. Although there has been an enormous amount of research over many decades regarding the regulation of EI and body weight, research is only now yielding potentially effective treatment strategies for obesity. The purpose of this article is to summarize the key findings presented in June 2022 at the 23rd annual Harvard Nutrition Obesity Symposium entitled "The Neurobiology of Eating Behavior in Obesity: Mechanisms and Therapeutic Targets." Findings presented at the symposium, sponsored by NIH P30 Nutrition Obesity Research Center at Harvard, enhance our current understanding of appetite biology, including innovative techniques used to assess and systematically manipulate critical hedonic processes, which will shape future research and the development of therapeutics for obesity prevention and treatment.
Collapse
Affiliation(s)
- Imen Becetti
- Division of Pediatric Endocrinology, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, United States.
| | - Esther L Bwenyi
- Metabolism Unit, Massachusetts General Hospital, Boston, MA, United States; Nutrition Obesity Research Center at Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Ivan E de Araujo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Jamy Ard
- Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Bariatric and Weight Management Center, Wake Forest Baptist Health, Winston-Salem, NC, United States; Center on Diabetes, Obesity, and Metabolism, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Hypertension and Vascular Research Center, Cardiovascular Sciences Center, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Maya Angelou Center for Healthy Equity, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ismaa Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and National Institute for Health and Care Research (NIHR) Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom; Wellcome-Medical Research Council (MRC) Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom; Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Carrie R Ferrario
- Department of Pharmacology, Psychology Department (Biopsychology Area), University of Michigan, Ann Arbor, MI, United States
| | - Marci E Gluck
- National Institutes of Health, Phoenix, AZ, United States; National Institute of Diabetes and Digestive and Kidney Disease, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, Phoenix, AZ, United States
| | - Laura M Holsen
- Harvard Medical School, Boston, MA, United States; Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States; Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Elizabeth A Lawson
- Nutrition Obesity Research Center at Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States; Department of Medicine, Harvard Medical School, Boston, MA, United States; Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, United States
| | - Bradford B Lowell
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Ellen A Schur
- Division of General Internal Medicine, University of Washington, Seattle, WA, United States; Univeristy of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA, United States; Univeristy of Washington Nutrition and Obesity Research Center, University of Washington, Seattle, WA, United States; Clinical and Translational Research Services Core, University of Washington, Seattle, WA, United States
| | - Takara L Stanley
- Division of Pediatric Endocrinology, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, United States; Metabolism Unit, Massachusetts General Hospital, Boston, MA, United States; Nutrition Obesity Research Center at Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Ali Tavakkoli
- Division of General and Gastrointestinal (GI) Surgery, Center for Weight Management and Wellness, Advanced Minimally Invasive Fellowship, Harvard Medical School, Boston, MA, United States
| | - Steven K Grinspoon
- Metabolism Unit, Massachusetts General Hospital, Boston, MA, United States; Nutrition Obesity Research Center at Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Vibha Singhal
- Division of Pediatric Endocrinology, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Pediatric Endocrinology and Obesity Medicine, Massachusetts General Hospital, Boston, MA, United States; Pediatric Program MGH Weight Center, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
47
|
Raise-Abdullahi P, Meamar M, Vafaei AA, Alizadeh M, Dadkhah M, Shafia S, Ghalandari-Shamami M, Naderian R, Afshin Samaei S, Rashidy-Pour A. Hypothalamus and Post-Traumatic Stress Disorder: A Review. Brain Sci 2023; 13:1010. [PMID: 37508942 PMCID: PMC10377115 DOI: 10.3390/brainsci13071010] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Humans have lived in a dynamic environment fraught with potential dangers for thousands of years. While fear and stress were crucial for the survival of our ancestors, today, they are mostly considered harmful factors, threatening both our physical and mental health. Trauma is a highly stressful, often life-threatening event or a series of events, such as sexual assault, war, natural disasters, burns, and car accidents. Trauma can cause pathological metaplasticity, leading to long-lasting behavioral changes and impairing an individual's ability to cope with future challenges. If an individual is vulnerable, a tremendously traumatic event may result in post-traumatic stress disorder (PTSD). The hypothalamus is critical in initiating hormonal responses to stressful stimuli via the hypothalamic-pituitary-adrenal (HPA) axis. Linked to the prefrontal cortex and limbic structures, especially the amygdala and hippocampus, the hypothalamus acts as a central hub, integrating physiological aspects of the stress response. Consequently, the hypothalamic functions have been attributed to the pathophysiology of PTSD. However, apart from the well-known role of the HPA axis, the hypothalamus may also play different roles in the development of PTSD through other pathways, including the hypothalamic-pituitary-thyroid (HPT) and hypothalamic-pituitary-gonadal (HPG) axes, as well as by secreting growth hormone, prolactin, dopamine, and oxytocin. This review aims to summarize the current evidence regarding the neuroendocrine functions of the hypothalamus, which are correlated with the development of PTSD. A better understanding of the role of the hypothalamus in PTSD could help develop better treatments for this debilitating condition.
Collapse
Affiliation(s)
| | - Morvarid Meamar
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Abbas Ali Vafaei
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
- Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Maryam Alizadeh
- Department of Basic Medical Sciences, Faculty of Medicine, Qom Medical Sciences, Islamic Azad University, Qom, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sakineh Shafia
- Immunogenetics Research Center, Department of Physiology, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Ramtin Naderian
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Seyed Afshin Samaei
- Department of Neurology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
- Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
48
|
Wittekind DA, Kratzsch J, Mergl R, Wirkner K, Baber R, Sander C, Witte AV, Villringer A, Kluge M. Childhood sexual abuse is associated with higher total ghrelin serum levels in adulthood: results from a large, population-based study. Transl Psychiatry 2023; 13:219. [PMID: 37349303 DOI: 10.1038/s41398-023-02517-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023] Open
Abstract
Ghrelin is an orexigenic peptide hormone synthesized in times of stress and hunger and alterations of the ghrelin system following acute stressors could be repeatedly shown in humans. However, little data exists on long-term effects of trauma on the ghrelin system. We aimed to investigate the influence of childhood trauma on total ghrelin serum levels in a large, population-based study. Total serum ghrelin was measured in 1666 participants of a population-based cross-sectional study ('LIFE study'). The Childhood Trauma Screener (CTS) was used for the assessment of childhood trauma in the final sample (n = 1086; mean age: 57.10 ± 16.23 years; 632 males, 454 females). Multiple linear regression analyses and generalized linear models were chosen to examine the association between childhood trauma and total serum ghrelin concentrations. Childhood sexual abuse went along with significantly higher ghrelin serum levels in the total sample (β = 0.114, t = 3.958; p = 0.00008) and in women (β = 0.142, t = 3.115; p = 0.002), but not in men (β = 0.055; t = 1.388; p = 0.166). Women with severe emotional neglect in the childhood had higher ghrelin levels than those without (odds ratio = 1.204; p = 0.018). For the CTS Sum Score and other CTS sub-scale scores, no significant association with ghrelin serum levels was found. Our study is the first to show associations between childhood sexual trauma and total ghrelin levels in adults in a large, community-based sample. Our results should initiate further research of the role of ghrelin in human stress response in prospective study designs.
Collapse
Affiliation(s)
- Dirk Alexander Wittekind
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany.
| | - Jürgen Kratzsch
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany
| | - Roland Mergl
- Institute of Psychology, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Kerstin Wirkner
- Leipzig Research Center for Civilization Diseases (LIFE), University of Leipzig, Leipzig, Germany
- Institute for Medical Informatics, Statistics and Epidemiology, Leipzig University, Leipzig, Germany
| | - Ronny Baber
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany
- Leipzig Research Center for Civilization Diseases (LIFE), University of Leipzig, Leipzig, Germany
| | - Christian Sander
- Department of Psychiatry and Psychotherapy, University of Leipzig, Leipzig, Germany
| | - A Veronica Witte
- Clinic of Cognitive Neurology, University of Leipzig, and Department of Neurology, Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany
| | - Arno Villringer
- Clinic of Cognitive Neurology, University of Leipzig, and Department of Neurology, Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany
| | - Michael Kluge
- Department of Psychiatry and Psychotherapy, University of Leipzig, Leipzig, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Rudolf-Virchow-Hospital, Glauchau, Germany
| |
Collapse
|
49
|
Kucukdereli H, Amsalem O, Pottala T, Lim M, Potgieter L, Hasbrouck A, Lutas A, Andermann ML. Chronic stress triggers seeking of a starvation-like state in anxiety-prone female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.541013. [PMID: 37292650 PMCID: PMC10245771 DOI: 10.1101/2023.05.16.541013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Elevated anxiety often precedes anorexia nervosa and persists after weight restoration. Patients with anorexia nervosa often describe hunger as pleasant, potentially because food restriction can be anxiolytic. Here, we tested whether chronic stress can cause animals to prefer a starvation-like state. We developed a virtual reality place preference paradigm in which head-fixed mice can voluntarily seek a starvation-like state induced by optogenetic stimulation of hypothalamic agouti-related peptide (AgRP) neurons. Prior to stress induction, male but not female mice showed mild aversion to AgRP stimulation. Strikingly, following chronic stress, a subset of females developed a strong preference for AgRP stimulation that was predicted by high baseline anxiety. Such stress-induced changes in preference were reflected in changes in facial expressions during AgRP stimulation. Our study suggests that stress may cause females predisposed to anxiety to seek a starvation state, and provides a powerful experimental framework for investigating the underlying neural mechanisms.
Collapse
|
50
|
Refisch A, Sen ZD, Klassert TE, Busch A, Besteher B, Danyeli LV, Helbing D, Schulze-Späte U, Stallmach A, Bauer M, Panagiotou G, Jacobsen ID, Slevogt H, Opel N, Walter M. Microbiome and immuno-metabolic dysregulation in patients with major depressive disorder with atypical clinical presentation. Neuropharmacology 2023; 235:109568. [PMID: 37182790 DOI: 10.1016/j.neuropharm.2023.109568] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/24/2023] [Accepted: 04/30/2023] [Indexed: 05/16/2023]
Abstract
Depression is highly prevalent (6% 1-year prevalence) and is the second leading cause of disability worldwide. Available treatment options for depression are far from optimal, with response rates only around 50%. This is most likely related to a heterogeneous clinical presentation of major depression disorder (MDD), suggesting different manifestations of underlying pathophysiological mechanisms. Poorer treatment outcomes to first-line antidepressants were reported in MDD patients endorsing an "atypical" symptom profile that is characterized by preserved reactivity in mood, increased appetite, hypersomnia, a heavy sensation in the limbs, and interpersonal rejection sensitivity. In recent years, evidence has emerged that immunometabolic biological dysregulation is an important underlying pathophysiological mechanism in depression, which maps more consistently to atypical features. In the last few years human microbial residents have emerged as a key influencing variable associated with immunometabolic dysregulations in depression. The microbiome plays a critical role in the training and development of key components of the host's innate and adaptive immune systems, while the immune system orchestrates the maintenance of key features of the host-microbe symbiosis. Moreover, by being a metabolically active ecosystem commensal microbes may have a huge impact on signaling pathways, involved in underlying mechanisms leading to atypical depressive symptoms. In this review, we discuss the interplay between the microbiome and immunometabolic imbalance in the context of atypical depressive symptoms. Although research in this field is in its infancy, targeting biological determinants in more homogeneous clinical presentations of MDD may offer new avenues for the development of novel therapeutic strategies for treatment-resistant depression.
Collapse
Affiliation(s)
- Alexander Refisch
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany.
| | - Zümrüt Duygu Sen
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Tilman E Klassert
- Host Septomics Group, Centre for Innovation Competence (ZIK) Septomics, University Hospital Jena, 07745, Jena, Germany; Respiratory Infection Dynamics, Helmholtz Centre for Infection Research (HZI), Inhoffenstr, Braunschweig, Germany
| | - Anne Busch
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Center for Sepsis Control and Care, Jena, Germany
| | - Bianca Besteher
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Lena Vera Danyeli
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Dario Helbing
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany; Leibniz Institute on Aging-Fritz Lipmann Institute, 07745, Jena, Germany; Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Ulrike Schulze-Späte
- Section of Geriodontics, Department of Conservative Dentistry and Periodontology, Jena University Hospital, Jena, Germany
| | - Andreas Stallmach
- Department of Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), Jena University Hospital, Germany
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Center for Sepsis Control and Care, Jena, Germany; Theoretical Microbial Ecology, Friedrich Schiller University Jena, Jena, Germany
| | - Gianni Panagiotou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Ilse D Jacobsen
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany, and Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Hortense Slevogt
- Host Septomics Group, Centre for Innovation Competence (ZIK) Septomics, University Hospital Jena, 07745, Jena, Germany; Respiratory Infection Dynamics, Helmholtz Centre for Infection Research (HZI), Inhoffenstr, Braunschweig, Germany; Department of Pulmonary Medicine, Hannover Medical School, 30625, Hannover, Germany
| | - Nils Opel
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany; German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany; German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|