1
|
Lim DXE, Yeo SY, Chia ZYA, Fernandis AZ, Lee J, Chua JJE. Schizophrenia: Genetics, neurological mechanisms, and therapeutic approaches. Neural Regen Res 2026; 21:1089-1103. [PMID: 40364647 DOI: 10.4103/nrr.nrr-d-24-01375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
Schizophrenia is a complex psychiatric disorder marked by positive and negative symptoms, leading to mood disturbances, cognitive impairments, and social withdrawal. While anti-psychotic medications remain the cornerstone of treatment, they often fail to fully address certain symptoms. Additionally, treatment-resistant schizophrenia, affecting 30%-40% of patients, remains a substantial clinical challenge. Positive, negative symptoms and cognitive impairments have been linked to disruptions in the glutamatergic, serotonin, GABAergic, and muscarinic pathways in the brain. Recent advances using genome-wide association study and other approaches have uncovered a significant number of new schizophrenia risk genes that uncovered new, and reinforced prior, concepts on the genetic and neurological underpinnings of schizophrenia, including abnormalities in synaptic function, immune processes, and lipid metabolism. Concurrently, new therapeutics targeting different modalities, which are expected to address some of the limitations of anti-psychotic drugs currently being offered to patients, are currently being evaluated. Collectively, these efforts provide new momentum for the next phase of schizophrenia research and treatment.
Collapse
Affiliation(s)
- Debbie Xiu En Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- LSI Neurobiology Programme, National University of Singapore, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Quantitative Biosciences, MSD International GmbH, Singapore Branch, Singapore
| | - Shi Yun Yeo
- Quantitative Biosciences, MSD International GmbH, Singapore Branch, Singapore
| | | | | | - Jimmy Lee
- North Region, Institute of Mental Health, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - John Jia En Chua
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- LSI Neurobiology Programme, National University of Singapore, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| |
Collapse
|
2
|
Berkovitch L, Fauvel B, Preller KH, Gaillard R. Neurocognitive effects of psilocybin: A systematic and comprehensive review of neuroimaging studies in humans. Neurosci Biobehav Rev 2025; 175:106239. [PMID: 40456393 DOI: 10.1016/j.neubiorev.2025.106239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 05/19/2025] [Accepted: 05/31/2025] [Indexed: 06/16/2025]
Abstract
Psilocybin is a psychedelic serotonergic compound that is renowned for its potent psychoactive effects. Over the past 15 years, an increasing number of controlled clinical trials showed that it has a fast-acting and sustainable efficacy in treating various psychiatric disorders. Neuroimaging studies have been conducted with the objective of elucidating the neurobiological mechanisms underlying the subjective and therapeutic effects of psilocybin. However, the diversity of neuroimaging techniques, tasks, and analytical approaches makes it difficult to gain a comprehensive overview of psilocybin's effects on the brain. To address this gap in the literature, we conducted a systematic review in the Medline, Psychinfo and Cochrane databases between January 1, 1990, and May 9, 2025, following PRISMA recommendations. A total of 81 articles met the inclusion criteria. A variety of neuroimaging techniques were employed in small samples of healthy volunteers and patients with medical conditions. The studies investigated the effects of psilocybin on brain activity and connectivity, both at rest and during cognitive tasks. They revealed that psilocybin reproducibly impacted neuronal networks such as the default mode network. However, other findings were more inconsistent. Psilocybin effects on the brain were associated with acute alterations in self-experience, sensory and emotional processing, and sustained effects on mood, personality, and social functioning. In patients with depression, clinical outcomes correlated with brain changes. This review indicates that psilocybin induces acute and long-lasting functional brain changes. While these neuroimaging data require confirmation and further expansion, they shed light on the mechanisms of psilocybin's acute subjective and therapeutic effects in humans.
Collapse
Affiliation(s)
- Lucie Berkovitch
- Université Paris Cité, Paris F-75006, France; Department of Psychiatry, Service Hospitalo-Universitaire, GHU Paris Psychiatry & Neurosciences, Paris F-75014, France; Institut de Neuromodulation, GHU Paris, Psychiatrie et Neurosciences, Centre Hospitalier Sainte-Anne, Pôle Hospitalo-universitaire 15, Université Paris Cité, Paris, France; Cognitive Neuroimaging Unit, NeuroSpin (INSERM-CEA), University of Paris-Saclay, Gif-sur-Yvette 91191, France.
| | - Baptiste Fauvel
- Université Paris Cité, Laboratoire Mémoire, Cerveau et Cognition, Boulogne-Billancourt F-92100, France
| | - Katrin H Preller
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
| | - Raphaël Gaillard
- Université Paris Cité, Paris F-75006, France; Department of Psychiatry, Service Hospitalo-Universitaire, GHU Paris Psychiatry & Neurosciences, Paris F-75014, France; Institut Pasteur, Experimental Neuropathology Unit, Global Health Department, Paris, France
| |
Collapse
|
3
|
Chen S, Lian J, Su Y, Deng C. Differential Effects of Prenatal Poly I:C Exposure and Antipsychotics on NMDA/GABA Receptors and GSK3β-Mediated Signaling in the Dorsal Raphe Nucleus of Female Rats. Fundam Clin Pharmacol 2025; 39:e70033. [PMID: 40562368 DOI: 10.1111/fcp.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 01/04/2025] [Accepted: 06/18/2025] [Indexed: 06/28/2025]
Abstract
BACKGROUND The dorsal raphe nucleus (DRN) is the origin of the 5-HT neurotransmission pathways. The 5-HT, dopamine D2, GABA, and NMDA receptors, as well as the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) and G protein-independent protein kinase B (PKB/Akt)-glycogen synthase kinase 3β (GSK3β) signaling, are involved in the pathophysiology of schizophrenia and are modulated by antipsychotics. However, their pathological changes and antipsychotic modulations in the DRN are not well understood in schizophrenia. OBJECTIVES This study explored effects of antipsychotics on NMDA and GABAA receptors, as well as PKA, AKT-GSK3β, cAMP-responsive element-binding protein 1 (CREB1), and disheveled (Dvl)-β-catenin signaling in the DRN using a maternal immune activation rat model. METHODS Prenatal polyriboinosinic-polyribocytidylic acid (Poly I:C) exposure was delivered at gestational Day 15. Female rats were treated with risperidone, olanzapine, or vehicle from postnatal day 70 for 35 days. RESULTS Prenatal Poly I:C exposure increased mRNA expression of NMDA receptor Grin2a/2b subunits, the GABAA receptor β3 subunit, glutamic acid decarboxylase 1 (GAD1), AKT1/3, and GSK3β in the DRN. Antipsychotics significantly increased the mRNA expression of PKA, CREB1, β-catenin, GSK3β, and Grin2d subunits in the DRN of Poly I:C rats. Prenatal Poly I:C exposure led to decreased expression of GAD2, which was partially reversed antipsychotics. CONCLUSION This study suggests that prenatal Poly I:C exposure and antipsychotics differentially modulate NMDA and GABAA receptors, as well as AKT-GSK3β, PKA-CREB1, and Dvl-β-catenin signaling in the DRN of rats. Poly I:C mainly influenced the AKT-GSK3β signaling, while antipsychotics modulated the AKT-GSK3β, PKA-CREB1, and Dvl-GSK3β-β-catenin signaling pathways in the DRN.
Collapse
Affiliation(s)
- Shiyan Chen
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, and The Binhai Campus of Fujian Medical University First Hospital, National Regional Medical Center, Fuzhou, China
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Jiamei Lian
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Yueqing Su
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynaecology and Paediatrics, Fujian Medical University, Fuzhou, China
| | - Chao Deng
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
4
|
Muszyński J, Bienert A, Elsorady RW, Rybakowski F. New pharmacological approaches in the treatment of schizophrenia. Pharmacol Rep 2025; 77:561-575. [PMID: 40198498 DOI: 10.1007/s43440-025-00722-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/10/2025]
Abstract
Schizophrenia is a primary health concern, imposing a significant burden on both patients and healthcare systems globally. It is a disease with a complex etiology in which both genetic and environmental factors are involved. Despite numerous studies, the mechanism of its origin is still not fully understood. The hypotheses are synaptic, serotonergic, muscarinic, dopaminergic, microRNA-related, and neurodegenerative theories. Treatment to date is mainly based on antipsychotic drugs that act on the dopaminergic system. Although they are effective in reducing positive symptoms, their effect on negative and cognitive symptoms is limited, and their use is often associated with numerous side effects. A breakthrough in the treatment of schizophrenia came with the approval of the first drug with a non-dopaminergic mechanism of action, which opens up new therapeutic possibilities. As a result, there is intensive research into innovative substances that could increase the effectiveness of treatment and improve the quality of life of patients. In this review, we present the current state of knowledge about schizophrenia, its prevalence, risk factors, and its impact on patients' functioning. We pay special attention to new therapeutic directions, including drugs that affect systems other than the dopaminergic one, which could open up new prospects for treating the condition.
Collapse
Affiliation(s)
- Józef Muszyński
- Dr. Jan Jonston Regional Multispecialty Hospital in Leszno, Leszno, Poland
| | - Agnieszka Bienert
- Department of Pharmacology, Poznan University of Medical Sciences, Rokietnicka 3, Poznań, 60-806, Poland.
| | - Rasha Wafaie Elsorady
- Head of Clinical Pharmacy Departments at Alexandria University Hospitals, Alexandria University, Alexandria, 21523, Egypt
| | - Filip Rybakowski
- Head of Adult Psychiatry Clinic, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
5
|
Ward C, Pejović Milovančević M, Kohegyi E, Hefting N, Aurang C, Chen D, Larsen KG, Hobart M, Correll CU. Efficacy and safety of brexpiprazole in adolescents with schizophrenia: a multicountry, randomised, double-blind, placebo-controlled, phase 3 trial with an active reference. Lancet Psychiatry 2025; 12:345-354. [PMID: 40209740 DOI: 10.1016/s2215-0366(25)00043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND New treatment options are needed for adolescent schizophrenia, partly due to an unfavourable risk-benefit profile of current options. This trial aimed to evaluate the short-term efficacy and safety of brexpiprazole in adolescents with schizophrenia. METHODS This multicountry, randomised, double-blind, parallel-arm, placebo-controlled, phase 3 trial with an active reference was done at 62 outpatient sites in ten countries. Eligible patients were aged 13-17 years with a primary DSM-5 diagnosis of schizophrenia and a Positive and Negative Syndrome Scale (PANSS) total score ≥80 at screening and baseline. Patients were randomly assigned (1:1:1) to oral brexpiprazole 2-4 mg/day, placebo, or aripiprazole 10-20 mg/day (active reference). Patients, investigators, and sponsor personnel were masked to treatment assignment. The primary efficacy endpoint was change from baseline to week 6 in PANSS total score (in randomly assigned patients who took at least one dose of study drug and had baseline and post-baseline PANSS evaluations). Safety was assessed in randomly assigned patients who took at least one dose of study drug. People with lived experience of schizophrenia were not involved in the research or writing process. The trial was registered with ClinicalTrials.gov, NCT03198078, and is complete. FINDINGS Between June 29, 2017, and Feb 23, 2023, 376 patients were screened, and 316 patients were randomly assigned to brexpiprazole (n=110), placebo (n=104), or aripiprazole (n=102). The mean age of patients was 15·3 years (SD 1·5). 166 (53%) of 316 patients were female and 150 (47%) were male. Of 316 patients, seven (2%) were American Indian or Alaskan Native, two (1%) were Asian, 21 (7%) were Black or African American, 204 (65%) were White, and 81 (26%) were other, as reported using US Census Bureau classifications. Mean doses of brexpiprazole and aripiprazole at last visit were 3·0 mg (SD 0·9) and 13·9 mg (4·7), respectively. Least squares mean change from baseline to week 6 in PANSS total score was -22·8 (SE 1·5) with brexpiprazole and -17·4 (1·6) with placebo (least squares mean difference -5·33 [95% CI -9·55 to -1·10]; p=0·014). The corresponding PANSS total score change at week 6 with aripiprazole was -24·0 (SE 1·6; least squares mean difference versus placebo -6·53 [95% CI -10·8 to -2·21]; pnominal=0·0032, not adjusted for multiple testing). Treatment-emergent adverse events were reported in 44 (40%) of 110 patients in the brexpiprazole group, 42 (40%) of 104 in the placebo group, and 53 (52%) of 102 in the aripiprazole group. The most common (incidence ≥5%) treatment-emergent adverse events were headache (n=7) and nausea (n=7) with brexpiprazole and somnolence (n=11), fatigue (n=8), and akathisia (n=7) with aripiprazole. Serious treatment-emergent adverse events were reported by one (1%) of 110 patients in the brexpiprazole group, three (3%) of 104 in the placebo group, and one (1%) of 102 in the aripiprazole group. No deaths were reported. INTERPRETATION In adolescents with schizophrenia, brexpiprazole 2-4 mg/day was associated with greater reduction in symptom severity than placebo over 6 weeks. The safety profile of brexpiprazole in adolescents was consistent with trials in adult patients. These results add to the body of evidence for brexpiprazole in adolescents with schizophrenia and might help to inform treatment selection in clinical practice. FUNDING Otsuka Pharmaceutical Development & Commercialization and H Lundbeck.
Collapse
Affiliation(s)
- Caroline Ward
- Otsuka Pharmaceutical Development & Commercialization, Princeton, NJ, USA
| | | | - Eva Kohegyi
- Otsuka Pharmaceutical Development & Commercialization, Princeton, NJ, USA
| | | | - Catherine Aurang
- Otsuka Pharmaceutical Development & Commercialization, Princeton, NJ, USA
| | - Dalei Chen
- Otsuka Pharmaceutical Development & Commercialization, Princeton, NJ, USA
| | | | - Mary Hobart
- Otsuka Pharmaceutical Development & Commercialization, Princeton, NJ, USA
| | - Christoph U Correll
- Department of Psychiatry, The Zucker Hillside Hospital, Glen Oaks, NY, USA; Department of Psychiatry and Molecular Medicine, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Department of Child and Adolescent Psychiatry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
6
|
Van der Walt E, Brink CB, Jansen van Vuren E. Changes in schizophrenia symptoms, tryptophan metabolism, neuroinflammation and the GABA-glutamate loop: A pilot study. S Afr J Psychiatr 2025; 31:2407. [PMID: 40357176 PMCID: PMC12067586 DOI: 10.4102/sajpsychiatry.v31i0.2407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/13/2025] [Indexed: 05/15/2025] Open
Affiliation(s)
- Estmia Van der Walt
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Christiaan B. Brink
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Esmé Jansen van Vuren
- Hypertension in Africa Research Team, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
- South African Medical Research Council: Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| |
Collapse
|
7
|
Meyer JM, Kramer K, Vuocolo S, Kaul I, Miller AC. From theory to therapy: unlocking the potential of muscarinic receptor activation in schizophrenia with the dual M1/M4 muscarinic receptor agonist xanomeline and trospium chloride and insights from clinical trials. Int J Neuropsychopharmacol 2025; 28:pyaf015. [PMID: 40056428 PMCID: PMC11997306 DOI: 10.1093/ijnp/pyaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/03/2025] [Indexed: 03/10/2025] Open
Abstract
Since the 1950s, understanding of antipsychotic activity in schizophrenia has been largely grounded in the dopamine (DA) hypothesis. Most antipsychotics approved for schizophrenia interact with D2 DA receptors as an important part of their mechanism of action. While antipsychotics blocking D2 DA receptors can be effective for positive symptoms of schizophrenia, none are approved by regulatory authorities for predominant negative or cognitive symptoms. Moreover, many of these agents induce a range of problematic side effects related to D2 DA receptor blockade (eg, drug-induced parkinsonism, akathisia, tardive dyskinesia, hyperprolactinemia and related sexual side effects, sedation). This has prompted the search for novel mechanisms with improved efficacy and tolerability based on evidence supporting involvement of other neurotransmitter systems in schizophrenia pathophysiology, including acetylcholine, gamma-aminobutyric acid, and glutamate. Among these options, targeting muscarinic receptors emerged as a promising treatment strategy. In September 2024, the U.S. Food and Drug Administration approved xanomeline and trospium chloride for treatment of adults with schizophrenia based on results from three 5-week, randomized, double-blind, placebo-controlled trials and two 52-week open-label trials. In the placebo-controlled trials, xanomeline/trospium reduced symptoms of schizophrenia, was generally well tolerated, and was not associated with clinically meaningful motor symptoms, hyperprolactinemia, sexual side effects, or weight gain compared with placebo. The long-term safety of xanomeline/trospium was also confirmed in two 52-week, open-label trials. This paper reviews the preclinical and clinical rationale for muscarinic receptor activation as a treatment for schizophrenia and the efficacy, safety, and tolerability profile of xanomeline/trospium.
Collapse
Affiliation(s)
- Jonathan M Meyer
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Ken Kramer
- Bristol Myers Squibb, Princeton, NJ, United States
| | | | - Inder Kaul
- Bristol Myers Squibb, Princeton, NJ, United States
| | | |
Collapse
|
8
|
Jiang Z, Zhou Y, Zhou Y, Yang D, Li J, Li Y, Fan Q, Lin J. Exploring the bidirectional causal relationship between Autism Spectrum Disorder and Schizophrenia using Mendelian randomization. Medicine (Baltimore) 2025; 104:e42119. [PMID: 40228250 PMCID: PMC11999464 DOI: 10.1097/md.0000000000042119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/25/2025] [Indexed: 04/16/2025] Open
Abstract
Autism Spectrum Disorder (ASD), characterized mainly by stereotyped behaviors and social impairments, affects about one in 100 children worldwide. Schizophrenia (SCZ), a chronic mental illness, affects 1% of the global population. The pathogenesis and specific treatment strategies for ASD and SCZ remain unclear. Previous research has suggested similarities in SCZ and ASD etiology and symptoms. However, no definitive correlation has been confirmed. Therefore, we conducted a Mendelian randomization study to assess the relationship between SCZ and ASD, providing new insights into their etiology and treatment. We used the two-sample Mendelian randomization (TSMR) approach to investigate the bidirectional causal association between SCZ and ASD, employing summary-level genome-wide association studies (GWAS) data. ASD summary data from the IEU GWAS database and SCZ summary data from the Psychiatric Genomics Consortium (PGC) were used as exposure and outcome variables, respectively. Statistical analysis was performed using the TwoSampleMR package in R version 4.3.2, with sensitivity analysis conducted to verify the result's reliability. Based on the results of the MR analysis, we retrieved and analyzed the relevant genetic information from the GWAS Catalog. TSMR analysis revealed higher ASD risk in SCZ (IVW: OR: 1.19, 95% CI: 1.12-1.26, P < .001). Bidirectional MR analysis confirmed a causal relationship between ASD and SCZ (IVW: scz2018clozuk (Clozapine UK), OR: 1.12, 95% CI: 1.04-1.21, P = .003; scz2019asi, OR: 1.14, 95% CI: 1.05-1.23, P = .002). Our study demonstrated a bidirectional relationship between SCZ and ASD in the European population, suggesting that each may induce the onset of the other.
Collapse
Affiliation(s)
- Ziqing Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yiying Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yingxin Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Dongmei Yang
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Jingjun Li
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongchun Li
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qin Fan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jintao Lin
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Isaacson SH, Nasrallah H, Pahwa R, Alva G, Kremens D, Stahl SM. Management of Parkinson's disease psychosis: first-line antipsychotic selection and rationale for continuing, combining, or switching. Expert Opin Pharmacother 2025; 26:707-717. [PMID: 40138188 DOI: 10.1080/14656566.2025.2481205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/14/2025] [Indexed: 03/29/2025]
Abstract
INTRODUCTION The past decade has seen a paradigm shift in the evaluation and management of Parkinson's disease psychosis (PDP), with the first approval of an antipsychotic in the US in 2016. An evidence-based review by the Movement Disorder Society found pimavanserin and clozapine to be clinically useful, (low-dose) quetiapine to be possibly useful, and all other antipsychotics to be avoided due to motor worsening. Clozapine and quetiapine use can be limited by provoking Parkinson's disease (PD) nonmotor symptoms of somnolence and hypotension. Quetiapine may also be limited by its risk in cognitive impairment. Pimavanserin is not associated with these symptoms. Despite advances in the understanding of PDP and the approval of pimavanserin in the US, clinical questions concerning patient selection, treatment timing, switch strategies, and combination therapy remain. AREAS COVERED To develop a consensus on first-line and subsequent treatment strategies for PDP, a panel of experts reviewed the clinical presentation and course of PDP, then discussed clinical trial evidence and experience. EXPERT OPINION PDP is a common but still undertreated sequela of PD progression. Pimavanserin is recommended as a first-line antipsychotic therapy based on its established safety and efficacy. While switching strategies are suggested, further study is needed to assess combination antipsychotic therapy.
Collapse
Affiliation(s)
- Stuart H Isaacson
- Parkinson's Disease and Movement Disorders Center of Boca Raton, Boca Raton, FL, USA
| | - Henry Nasrallah
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Rajesh Pahwa
- Parkinson's Disease and Movement Disorder Center, University of Kansas Medical Center, KS, USA
| | - Gustavo Alva
- Department of Neuroscience, University of California, Riverside, CA, USA
| | - Daniel Kremens
- Movement Disorders Program, Thomas Jefferson University, Philadelphia, PA, USA
| | - Stephen M Stahl
- University of California, San Diego, USA
- Neuroscience Education Institute, Carlsbad, CA, USA
| |
Collapse
|
10
|
De Pieri M, Sabe M, Rochas V, Poglia G, Bartolomei J, Kirschner M, Kaiser S. Resting-state EEG and MEG gamma frequencies in schizophrenia: a systematic review and exploratory power-spectrum metanalysis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2025; 11:48. [PMID: 40128239 PMCID: PMC11933325 DOI: 10.1038/s41537-025-00596-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/05/2025] [Indexed: 03/26/2025]
Abstract
The hypoactivity of parvalbumin-containing interneurons (PV-interneurons) is a pathogenetic mechanism of schizophrenia according to the glutamatergic theory, and PV-interneurons are necessary for the generation of EEG/MEG gamma-frequencies (30-100 Hz). The present study aims to a literature synthesis on resting-state gamma-frequency changes in patients with schizophrenia vs healthy controls, and to examine the relationship between these changes and severity of symptoms. A protocol was enregistered in PROSPERO and a systematic search was conducted in PubMed, PsycINFO and Cochrane Database of Systematic Reviews, following PRISMA guidelines. An exploratory metanalysis was realized. Out of 1391 records, 43 were included for a qualitative synthesis (N = 2133 [11-185], females 37.4%, age 33.9 ± 9.2). Results on power spectra were heterogeneous: in 12 studies gamma power was increased, involving the whole brain (N = 3), multiple regions (N = 6) or only frontal (N = 1), central (n = 1) and temporal (N = 1) areas; in 3 studies gamma power was reduced, involving multiple areas (N = 2) or the right temporal region (N = 1); one study revealed mixed results and 13 studies showed no differences. The meta-analysis on 4 studies (N = 211) showed non-significant differences between patients and controls and a large heterogeneity. The functional connectivity picture consists of sparse patterns of decreases and/or increases, widespread to multiple regions. Relationships emerged between gamma power and connectivity and severity of psychotic and cognitive symptoms. Theta-gamma coupling was increased in patients, with limited evidence for other changes in phase-amplitude coupling. Resting-state gamma-frequencies alterations in schizophrenia were inconsistent across studies; the heterogeneity of patients and methods could partially explain this outcome.
Collapse
Affiliation(s)
- Marco De Pieri
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Thonex, Switzerland.
| | - Michel Sabe
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Thonex, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Vincent Rochas
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Greta Poglia
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Thonex, Switzerland
| | - Javier Bartolomei
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Thonex, Switzerland
| | - Matthias Kirschner
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Thonex, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Stefan Kaiser
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Thonex, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
11
|
Ponce-Regalado MD, Becerril-Villanueva E, Maldonado-García JL, Moreno-Lafont MC, Martínez-Ramírez G, Jacinto-Gutiérrez S, Arreola R, Sánchez-Huerta K, Contis-Montes de Oca A, López-Martínez KM, Bautista-Rodríguez E, Chin-Chan JM, Pavón L, Pérez-Sánchez G. Comprehensive view of suicide: A neuro-immune-endocrine approach. World J Psychiatry 2025; 15:98484. [PMID: 39974471 PMCID: PMC11758041 DOI: 10.5498/wjp.v15.i2.98484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/26/2024] [Accepted: 12/23/2024] [Indexed: 01/14/2025] Open
Abstract
Suicide is defined as the act of a person attempting to take their own life by causing death. Suicide is a complex phenomenon that is influenced by a multitude of factors, including psychosocial, cultural, and religious aspects, as well as genetic, biochemical, and environmental factors. From a biochemical perspective, it is crucial to consider the communication between the endocrine, immune, and nervous systems when studying the etiology of suicide. Several pathologies involve the bidirectional communication between the peripheral activity and the central nervous system by the action of molecules such as cytokines, hormones, and neurotransmitters. These humoral signals, when present in optimal quantities, are responsible for maintaining physiological homeostasis, including mood states. Stress elevates the cortisol and proinflammatory cytokines levels and alter neurotransmitters balance, thereby increasing the risk of developing a psychiatric disorder and subsequently the risk of suicidal behavior. This review provides an integrative perspective about the neurochemical, immunological, and endocrinological disturbances associated with suicidal behavior, with a particular focus on those alterations that may serve as potential risk markers and/or indicators of the state preceding such a tragic act.
Collapse
Affiliation(s)
- María D Ponce-Regalado
- Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Jalisco, Mexico
| | - Enrique Becerril-Villanueva
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 11340, Mexico
| | - José Luis Maldonado-García
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 11340, Mexico
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11350, Mexico
| | - Martha C Moreno-Lafont
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11350, Mexico
| | - Gabriela Martínez-Ramírez
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 11340, Mexico
- Facultad de Medicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional autónoma de México, Tlalnepantla 54090, Mexico
| | - Salomón Jacinto-Gutiérrez
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 11340, Mexico
| | - Rodrigo Arreola
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 11340, Mexico
| | - Karla Sánchez-Huerta
- Laboratorio de Neurociencias, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico
| | - Arturo Contis-Montes de Oca
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | | | | | - José Miguel Chin-Chan
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Campeche, Campeche 24039, Mexico
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 11340, Mexico
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 11340, Mexico
| |
Collapse
|
12
|
Del Casale A, Gentile G, Lardani S, Modesti MN, Arena JF, Zocchi C, De Luca O, Parmigiani G, Angeletti G, Ferracuti S, Preissner R, Simmaco M, Borro M, Pompili M. Investigating DRD2 and HTR2A polymorphisms in treatment-resistant schizophrenia: a comparative analysis with other treatment-resistant mental disorders and the healthy state. Eur Arch Psychiatry Clin Neurosci 2025:10.1007/s00406-025-01970-9. [PMID: 39934320 DOI: 10.1007/s00406-025-01970-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/28/2025] [Indexed: 02/13/2025]
Abstract
This study investigates treatment-resistant schizophrenia (TRS) by analysing genetic markers in dopamine and serotonin receptors. Conducted on a cohort of 221 patients with treatment-resistant mental disorders, the research focused on DRD2 and HTR2A gene variants-specifically, rs1801028, rs6314, rs7997012, and rs6311. The findings suggest specific associations between certain genetic variants and TRS. Notably, the HTR2A rs6314 A|G genotype and rs7997012 G|G genotype were significantly more prevalent in TRS patients compared to healthy controls (HCs). Haplotype analyses revealed associations between specific haplotypes-such as A|G (rs6314-rs7997012)-and TRS, indicating their potential predictive value for TRS versus HCs. The study underscores the involvement of the serotonergic system in TRS. These findings offer valuable insights into the genetic factors contributing to TRS, paving the way for future research and the development of personalised prevention and treatment strategies in psychiatry.
Collapse
Affiliation(s)
- Antonio Del Casale
- Department of Dynamic and Clinical Psychology and Health Studies, Faculty of Medicine and Psychology, Sapienza University of Rome, Center for Precision Medicine, Sant'Andrea University Hospital, 00189, Rome, Italy.
| | - Giovanna Gentile
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Unit of Laboratory and Advanced Molecular Diagnostics, Center for Precision Medicine, 'Sant'Andrea' University Hospital, 00189, Rome, Italy
| | - Simone Lardani
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Unit of Psychiatry, 'Sant'Andrea' University Hospital, 00189, Rome, Italy
| | - Martina Nicole Modesti
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, 00185, Rome, Italy
- Local Health Authority Rome 6, Mental Health Department, Mental Health Center - CSM Frascati, 00044, Frascati (RM), Italy
| | - Jan Francesco Arena
- Department of Dynamic and Clinical Psychology and Health Studies, Faculty of Medicine and Psychology, Sapienza University of Rome, Center for Precision Medicine, Sant'Andrea University Hospital, 00189, Rome, Italy
| | - Clarissa Zocchi
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Unit of Psychiatry, 'Sant'Andrea' University Hospital, 00189, Rome, Italy
| | - Ottavia De Luca
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Unit of Laboratory and Advanced Molecular Diagnostics, Center for Precision Medicine, 'Sant'Andrea' University Hospital, 00189, Rome, Italy
| | - Giovanna Parmigiani
- Department of Human Neuroscience, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00185, Rome, Italy
| | - Gloria Angeletti
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Unit of Psychiatry, 'Sant'Andrea' University Hospital, 00189, Rome, Italy
| | - Stefano Ferracuti
- Department of Human Neuroscience, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00185, Rome, Italy
- Unit of Risk Management, Sant'Andrea University Hospital, 00189, Rome, Italy
| | - Robert Preissner
- Structural Bioinformatics Group, Institute for Physiology, Charité-University Medicine Berlin, 10115, Berlin, Germany
| | - Maurizio Simmaco
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Unit of Laboratory and Advanced Molecular Diagnostics, Center for Precision Medicine, 'Sant'Andrea' University Hospital, 00189, Rome, Italy
| | - Marina Borro
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Unit of Laboratory and Advanced Molecular Diagnostics, Center for Precision Medicine, 'Sant'Andrea' University Hospital, 00189, Rome, Italy
| | - Maurizio Pompili
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Unit of Psychiatry, 'Sant'Andrea' University Hospital, 00189, Rome, Italy
| |
Collapse
|
13
|
Rodrigues T, Bressan GN, Juliani PZ, da Silva MEB, Fachinetto R. Ketamine impairs the performance of male mice in novel recognition object test and reduces the immunoreactivity of GAD 67 in the hippocampus: Role of pioglitazone. Pharmacol Biochem Behav 2025; 247:173950. [PMID: 39725040 DOI: 10.1016/j.pbb.2024.173950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Schizophrenia is a mental disorder characterized by positive, negative, and cognitive symptoms which is treated with antipsychotics. However, these drugs present several side effects and, some schizophrenia symptoms, like cognitive, are difficult to treat. The peroxisome proliferator-activated receptors-gamma (PPAR-γ) are expressed in dopaminergic neurons of the midbrain participating in the modulation of dopamine-mediated behavior . We investigated the effects of pioglitazone, an agonist of PPAR-γ, on the behavioral alterations induced by ketamine and, whether alterations in monoamine oxidase (MAO) activity, glutamic acid decarboxylase (GAD67), PPAR-γ or tyrosine hydroxylase (TH) immunoreactivity in brain tissues are involved in these effects. Male mice received ketamine (30 mg/kg), intraperitoneally, for 14 consecutive days, and pioglitazone (3 or 9 mg/kg), by gavage (day 8 up to day 14). Ketamine decreased nail-biting increasing the time exploring the center of the open field on day 8 and the number of rearing evaluated 30 min after its administration on day 14. Furthermore, ketamine decreased the percentage of investigation in the NOR test and the immunoreactivity of GAD67 in the hippocampus. No significant changes were found in other behavioral and biochemical tests. Pioglitazone attenuated the effects of ketamine on rearing and GAD67 immunoreactivity in the hippocampus, recovering the ketamine effects on NOR test. At a dose of 9 mg/kg, pioglitazone alone reduced the immunoreactivity of GAD67 in the hippocampus. Pioglitazone at both doses recovered the cognitive symptoms induced by ketamine an effect that seems to involve the modulation of GAD67 immunoreactivity in the hippocampus. In conclusion, pioglitazone improved the effects of ketamine on the NOR test which was, at least in part, associated with the modulation of GAD67 immunoreactivity in the hippocampus suggesting its beneficial role in cognitive symptoms.
Collapse
Affiliation(s)
- Talita Rodrigues
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Getulio Nicola Bressan
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil
| | - Patrícia Zorzi Juliani
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | | | - Roselei Fachinetto
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil.
| |
Collapse
|
14
|
D'Addario C, Di Bartolomeo M. Epigenetic Control in Schizophrenia. Subcell Biochem 2025; 108:191-215. [PMID: 39820863 DOI: 10.1007/978-3-031-75980-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Schizophrenia is a severe and complex psychiatric condition ranking among the top 15 leading causes of disability worldwide. Despite the well-established heritability component, a complex interplay between genetic and environmental risk factors plays a key role in the development of schizophrenia and psychotic disorders in general. This chapter covers all the clinical evidence showing how the analysis of the epigenetic modulation in schizophrenia might be relevant to understand the pathogenesis of schizophrenia as well as potentially useful to develop new pharmacotherapies.
Collapse
Affiliation(s)
- Claudio D'Addario
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.
| | - Martina Di Bartolomeo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
15
|
Senko D, Efimova O, Osetrova M, Anikanov N, Boyko M, Sharaev M, Morozova A, Zorkina Y, Kislov M, Kostyuk G, Stekolshchikova E, Khaitovich P. White matter lipidome alterations in the schizophrenia brain. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:123. [PMID: 39725684 DOI: 10.1038/s41537-024-00542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
Numerous brain imaging studies have reported white matter alterations in schizophrenia, but the lipidome analysis of the corresponding tissue remains incomplete. In this study, we investigated the lipidome composition of six subcortical white matter regions corresponding to major axonal tracks in both control subjects and schizophrenia patients. All six regions exhibited a consistent pattern of quantitative lipidome alterations in schizophrenia, involving myelin-forming and mitochondria associated lipid classes. While alteration levels of myelin-forming lipids, particularly sphingolipids, aligned with the extent of the myelin changes reported in structural brain imaging studies, a significant decrease of mitochondria in the white matter, indicated by the lipidome alterations, was not previously investigated. To verify this effect, we performed lipidome analysis in a larger set of individuals and in the mitochondria-enriched membrane fraction, as well as directly quantified mitochondrial content. Our results suggest a substantial reduction of the mitochondrial quotient accompanied by the imbalance in myelin lipids in schizophrenia white matter.
Collapse
Affiliation(s)
- Dmitry Senko
- Skolkovo Institute of Science and Technology, Moscow, Russia.
| | - Olga Efimova
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Maria Osetrova
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Mental Health Clinic No.1 Named After N. A. Alexeev of Moscow Healthcare Department, Moscow, Russia
| | | | - Maria Boyko
- Skolkovo Institute of Science and Technology, Moscow, Russia
- BIMAI-lab, Sharjah, UAE
| | - Maksim Sharaev
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Mental Health Clinic No.1 Named After N. A. Alexeev of Moscow Healthcare Department, Moscow, Russia
- BIMAI-lab, Sharjah, UAE
| | - Anna Morozova
- Mental Health Clinic No.1 Named After N. A. Alexeev of Moscow Healthcare Department, Moscow, Russia
- Serbsky National Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | - Yana Zorkina
- Mental Health Clinic No.1 Named After N. A. Alexeev of Moscow Healthcare Department, Moscow, Russia
- Serbsky National Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | - Maksim Kislov
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Georgiy Kostyuk
- Mental Health Clinic No.1 Named After N. A. Alexeev of Moscow Healthcare Department, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | | | | |
Collapse
|
16
|
Rawani NS, Chan AW, Todd KG, Baker GB, Dursun SM. The Role of Neuroglia in the Development and Progression of Schizophrenia. Biomolecules 2024; 15:10. [PMID: 39858403 PMCID: PMC11761573 DOI: 10.3390/biom15010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/04/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
Schizophrenia is a complex heterogenous disorder thought to be caused by interactions between genetic and environmental factors. The theories developed to explain the etiology of schizophrenia have focused largely on the dysfunction of neurotransmitters such as dopamine, serotonin and glutamate with their receptors, although research in the past several decades has indicated strongly that other factors are also involved and that the role of neuroglial cells in psychotic disorders including schizophrenia should be given more attention. Although glia were originally thought to be present in the brain only to support neurons in a physical, metabolic and nutritional capacity, it has become apparent that these cells have a variety of important physiological roles and that abnormalities in their function may make significant contributions to the symptoms of schizophrenia. In the present paper, we review the interactions of brain microglia, astrocytes and oligodendroglia with aspects such as transmitter dysregulation, neuro-inflammation, oxidative stress, synaptic function, the gut microbiome, myelination and the blood-brain barrier that appear to affect the cause, development and treatment of schizophrenia. We also review crosstalk between microglia, astrocytes and oligodendrocytes and the effects of antipsychotics on neuroglia. Problems associated with studies on specific biomarkers for glia in schizophrenia are discussed.
Collapse
Affiliation(s)
| | | | | | - Glen B. Baker
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2G3, Canada; (N.S.R.); (A.W.C.); (K.G.T.); (S.M.D.)
| | | |
Collapse
|
17
|
Kunz Godói A, Canever L, Pacheco Rico E, Mastella G, Tonello M, Veadrigo N, de Bem Tomé B, da Silva Lemos I, Luiz Streck E, Zugno AL. The relationship between alcohol bingeing in the gestational period of wistar rats and the development of schizophrenia in the offspring adult life. Brain Res 2024; 1845:149270. [PMID: 39389527 DOI: 10.1016/j.brainres.2024.149270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
The incidence of schizophrenia in young adulthood may be associated with intrauterine factors, such as gestational alcohol consumption. This study investigated the relationship between a single high dose of alcohol during pregnancy in Wistar rats and the development of schizophrenia in the adult life of the offspring. On the 11th day of gestation, pregnant rats received either water or alcohol via intragastric gavage. Male and female offspring were subjected to behavioral tests at 30 days of age according to the maternal group. At 60 days of age, offspring received intraperitoneal injections of ketamine (ket) or saline (SAL). After the final ketamine administration, the adult offspring underwent behavioral tests, and their brain structures were removed for biochemical analysis. Alcohol binge drinking during pregnancy induces hyperlocomotion in both young female and male offspring, with males of alcohol-exposed mothers showing reduced social interactions. In adult offspring, ketamine induced hyperlocomotion; however, only females in the alcohol + ket group exhibited increased locomotor activity, and a decrease in the time to first contact was observed in the alcohol group. Cognitive impairment was exclusively observed in male animals in the alcohol group. Increased serotonin and dopamine levels were observed in male rats in the alcohol + ket group. Biochemical alterations indicate the effects of intrauterine alcohol exposure associated with ketamine in adult animals. These behavioral and biochemical changes suggest that the impact of prenatal stressors such as alcohol persists throughout the animals' lives and may be exacerbated by a second stressor in adulthood, such as ketamine.
Collapse
Affiliation(s)
- Amanda Kunz Godói
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Lara Canever
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Eduardo Pacheco Rico
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Gustavo Mastella
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Marina Tonello
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Natália Veadrigo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Beatriz de Bem Tomé
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Isabela da Silva Lemos
- Neurometabolic Diseases Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Brazil
| | - Emílio Luiz Streck
- Neurometabolic Diseases Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Brazil
| | - Alexandra L Zugno
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
18
|
Denecke S, Schönig SN, Bott A, Faße JL, Lincoln TM. Bridging perspectives - A review and synthesis of 53 theoretical models of delusions. Clin Psychol Rev 2024; 114:102510. [PMID: 39515077 DOI: 10.1016/j.cpr.2024.102510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/18/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
The degree to which numerous existing models of delusion formation disagree or propose common mechanisms remains unclear. To achieve a comprehensive understanding of delusion aetiology, we summarised 53 theoretical models of delusions extracted from a systematic literature search. We identified central aspects and unique or overarching features of five core perspectives: cognitive (n = 22), associative learning (n = 4), social (n = 6), neurobiological (n = 6), and Bayesian inference (n = 15). These perspectives differ in foci and mechanistic explanations. Whereas some postulate delusions to result from associative and operant learning, others assume a disbalance in the integration of prior beliefs and sensory input or emphasise the relevance of information processing biases. Postulated moderators range from maladaptive generalised beliefs over neurocognitive impairment to dopamine, stress, and affective dysregulation. The models also differ in whether they attempt to explain delusion formation in general or the delusional content (i.e., persecutory). Finally, some models postulate functional aspects of delusions, such as insight relief. Despite their differences, the perspectives converge on the idea that delusions form as an explanation for an experienced ambiguity. Building on this common ground, we propose an integrative framework incorporating essential mechanistic explanations from each perspective and discuss its implications for research and clinical practice.
Collapse
Affiliation(s)
- S Denecke
- Department of Clinical Psychology and Psychotherapy, University of Hamburg, Germany.
| | - S N Schönig
- Department of Clinical Psychology and Psychotherapy, University of Hamburg, Germany
| | - A Bott
- Department of Clinical Psychology and Psychotherapy, University of Hamburg, Germany
| | - J L Faße
- Department of Clinical Psychology and Psychotherapy, University of Hamburg, Germany
| | - T M Lincoln
- Department of Clinical Psychology and Psychotherapy, University of Hamburg, Germany
| |
Collapse
|
19
|
Uliana DL, Martinez A, Grace AA. THPP-1 PDE10A inhibitor reverses the cognitive deficits and hyperdopaminergic state in a neurodevelopment model of schizophrenia. Schizophr Res 2024; 274:315-326. [PMID: 39437478 DOI: 10.1016/j.schres.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/26/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Schizophrenia (SCZ) is a complex neuropsychiatric disorder characterized by positive, negative, and cognitive symptoms. The neurodevelopmental methylazoxy-methanol acetate (MAM) rodent model replicates key neurobiological features of SCZ which includes hyperdopaminergic states in the ventral tegmental area (VTA) and cognitive deficits. Typical and atypical antipsychotics are primarily effective in treating the positive symptoms of SCZ but often fall short of addressing cognitive deficits. A promising therapeutic approach for treating all symptoms of SCZ has emerged through the inhibition of phosphodiesterase 10 A (PDE10A). Our study aim was to investigate the impact of acute and chronic THPP-1 (PDE10A inhibitor) treatment, in MAM rats, focusing on cognitive deficits and VTA dopamine (DA) activity. Adult offspring of pregnant rats treated with Saline or MAM (20 mg/kg) on gestational day 17 were treated with THPP-1 acutely (male/female rats; 3 mg/kg) at postnatal day (PD) 70-80 or chronically (males; 3 weeks; 2-3 mg/kg) from PD 70-91 and tested in the novel object recognition test and electrophysiological recording of DA neurons in the VTA. Acute THPP-1 treatment reversed cognitive impairments and normalized the increased number of active DA neurons in the VTA of male and female MAM rats, without affecting control rats. Also, chronic THPP-1 treatment reversed cognitive deficits and normalized DA hyperactivity in the VTA of male MAM rats. The efficacy of THPP-1 in reversing MAM-induced impairments underscores its ability to target disease-specific circuitry without affecting normal regulated systems in control rats. Our findings highlight the therapeutic potential of THPP-1 for addressing cognitive deficits and DA dysregulation in SCZ.
Collapse
Affiliation(s)
- Daniela L Uliana
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Angela Martinez
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
20
|
Zhang L, Wang W, Ruan Y, Li Z, Yanjun, Ji GJ, Tian Y, Wang K. Hyperactivity and altered functional connectivity of the ventral striatum in schizophrenia compared with bipolar disorder: A resting state fMRI study. Psychiatry Res Neuroimaging 2024; 345:111881. [PMID: 39278197 DOI: 10.1016/j.pscychresns.2024.111881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Schizophrenia patients frequently present with structural and functional abnormalities of the ventral striatum (VS). METHODS we examined basal activation state and functional connectivity (FC) in four subregions of the bilateral ventral striatum: left inferior ventral striatum (VSi_L), left superior ventral striatum(VSs_L), right inferior ventral striatum(VSi_R), and right superior ventral striatum(VSs_R). Resting-state functional magnetic resonance images were obtained from 62 schizophrenia patients (SCH), 57 bipolar disorder (BD) patients, and 26 healthy controls (HCs). RESULTS The schizophrenia group exhibited greater fALFF in bilateral VS subregions compared to BD and HC groups as well as greater FC between the bilateral VSi and multiple brain regions, including the thalamus, putamen, posterior cingulate gyrus (PCC), frontal cortex and caudate. Moreover, the fALFF values of the bilateral ventral striatum were positively correlated with the severity of positive symptoms. We also found the functional connectivity between the bilateral inferior ventral striatum and some brain regions aforementioned were positively correlated with the severity of negative symptoms. CONCLUSION These findings confirm a crucial contribution of ventral striatum dysfunction, especially of the bilateral VSi in schizophrenia. Functionally dissociated regions of the ventral striatum are differentially disturbed in schizophrenia.
Collapse
Affiliation(s)
- Li Zhang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China; Anhui Mental Health Center, Hefei, Anhui Province, China; School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China; Laboratory of Neuromodulation, Anhui Mental Health Center, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China.
| | - Wenli Wang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China; Anhui Mental Health Center, Hefei, Anhui Province, China; School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yuan Ruan
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China; Anhui Mental Health Center, Hefei, Anhui Province, China; School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China
| | - Zhiyong Li
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China; Anhui Mental Health Center, Hefei, Anhui Province, China; School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yanjun
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China; Anhui Mental Health Center, Hefei, Anhui Province, China; School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China
| | - Gong-Jun Ji
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China
| | - Yanghua Tian
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China.
| | - Kai Wang
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China.
| |
Collapse
|
21
|
Padawer-Curry JA, Krentzman OJ, Kuo CC, Wang X, Bice AR, Nicol GE, Snyder AZ, Siegel JS, McCall JG, Bauer AQ. Psychedelic 5-HT2A receptor agonism: neuronal signatures and altered neurovascular coupling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.23.559145. [PMID: 39605498 PMCID: PMC11601243 DOI: 10.1101/2023.09.23.559145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Psychedelics hold therapeutic promise for mood disorders due to rapid, sustained results. Human neuroimaging studies have reported dramatic serotonin-2A receptor-(5-HT2AR)-dependent changes in functional brain reorganization that presumably reflect neuromodulation. However, the potent vasoactive effects of serotonin have been overlooked. We found psilocybin-mediated alterations to fMRI-HRFs in humans, suggesting potentially altered NVC. To assess the neuronal, hemodynamic, and neurovascular coupling (NVC) effects of the psychedelic 5-HT2AR agonist, 2,5-Dimethoxy-4-iodoamphetamine (DOI), wide-field optical imaging (WFOI) was used in awake Thy1-jRGECO1a mice during stimulus-evoked and resting-state conditions. While DOI partially altered tasked-based NVC, more pronounced NVC alterations occurred under resting-state conditions and were strongest in association regions. Further, calcium and hemodynamic activity reported different accounts of RSFC changes under DOI. Co-administration of DOI and the 5-HT2AR antagonist, MDL100907, reversed many of these effects. Dissociation between neuronal and hemodynamic signals emphasizes a need to consider neurovascular effects of psychedelics when interpreting blood-oxygenation-dependent neuroimaging measures.
Collapse
|
22
|
Zhang Y, Yu JG, Wen W. Recent Advances in representative small-molecule DRD2 inhibitors: Synthetic Routes and clinical applications. Eur J Med Chem 2024; 277:116731. [PMID: 39098130 DOI: 10.1016/j.ejmech.2024.116731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/06/2024]
Abstract
The dopamine D2 receptor (DRD2) represents a pivotal target for therapeutic intervention in the treatment of neuropsychiatric disorders, including schizophrenia, bipolar disorder, and Parkinson's disease. The successful discovery of numerous effective DRD2 inhibitors has led to their clinical application and ongoing evaluation in various clinical trials. This review explores the synthetic approaches and clinical applications of prototypical small-molecule DRD2 inhibitors that have received approval or are currently undergoing clinical trials, highlighting their therapeutic potential and challenges. The synthesis of these inhibitors employs various chemical strategies, including modifications of phenothiazine and butyrophenone structures, which have yielded significant antipsychotic agents like chlorpromazine and haloperidol. Additionally, newer classes of inhibitors, such as aripiprazole, exhibit partial agonist activity at DRD2, offering a unique therapeutic profile. Clinically, DRD2 inhibitors demonstrate efficacy in managing positive symptoms of schizophrenia, manic episodes in bipolar disorder, and dopaminergic imbalance in Parkinson's disease. However, the emergence of adverse effects, including tardive dyskinesia, extrapyramidal symptoms and metabolic syndrome, presents substantial challenges. Advances in the development of second-generation antipsychotics aim to balance efficacy with a better side effect profile by targeting additional neurotransmitter receptors. This review aims to deliver an overview of the synthesis and clinical applications of representative small-molecule DRD2 inhibitors across various clinical phases, thereby offering strategic insights for the advancement of DRD2 inhibitor development.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jian-Gang Yu
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Wen Wen
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China.
| |
Collapse
|
23
|
Skorobogatov K, De Picker L, Wu CL, Foiselle M, Richard JR, Boukouaci W, Bouassida J, Laukens K, Meysman P, le Corvoisier P, Barau C, Morrens M, Tamouza R, Leboyer M. Immune-based Machine learning Prediction of Diagnosis and Illness State in Schizophrenia and Bipolar Disorder. Brain Behav Immun 2024; 122:422-432. [PMID: 39151650 DOI: 10.1016/j.bbi.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Schizophrenia and bipolar disorder frequently face significant delay in diagnosis, leading to being missed or misdiagnosed in early stages. Both disorders have also been associated with trait and state immune abnormalities. Recent machine learning-based studies have shown encouraging results using diagnostic biomarkers in predictive models, but few have focused on immune-based markers. Our main objective was to develop supervised machine learning models to predict diagnosis and illness state in schizophrenia and bipolar disorder using only a panel of peripheral kynurenine metabolites and cytokines. METHODS The cross-sectional I-GIVE cohort included hospitalized acute bipolar patients (n = 205), stable bipolar outpatients (n = 116), hospitalized acute schizophrenia patients (n = 111), stable schizophrenia outpatients (n = 75) and healthy controls (n = 185). Serum kynurenine metabolites, namely tryptophan (TRP), kynurenine (KYN), kynurenic acid (KA), quinaldic acid (QUINA), xanthurenic acid (XA), quinolinic acid (QUINO) and picolinic acid (PICO) were quantified using liquid chromatography-tandem mass spectrometry (LC-MS/MS), while V-plex Human Cytokine Assays were used to measure cytokines (interleukin-6 (IL-6), IL-8, IL-17, IL-12/IL23-P40, tumor necrosis factor-alpha (TNF-ɑ), interferon-gamma (IFN-γ)). Supervised machine learning models were performed using JMP Pro 17.0.0. We compared a primary analysis using nested cross-validation to a split set as sensitivity analysis. Post-hoc, we re-ran the models using only the significant features to obtain the key markers. RESULTS The models yielded a good Area Under the Curve (AUC) (0.804, Positive Prediction Value (PPV) = 86.95; Negative Prediction Value (NPV) = 54.61) for distinguishing all patients from controls. This implies that a positive test is highly accurate in identifying the patients, but a negative test is inconclusive. Both schizophrenia patients and bipolar patients could each be separated from controls with a good accuracy (SCZ AUC 0.824; BD AUC 0.802). Overall, increased levels of IL-6, TNF-ɑ and PICO and decreased levels of IFN-γ and QUINO were predictive for an individual being classified as a patient. Classification of acute versus stable patients reached a fair AUC of 0.713. The differentiation between schizophrenia and bipolar disorder yielded a poor AUC of 0.627. CONCLUSIONS This study highlights the potential of using immune-based measures to build predictive classification models in schizophrenia and bipolar disorder, with IL-6, TNF-ɑ, IFN-γ, QUINO and PICO as key candidates. While machine learning models successfully distinguished schizophrenia and bipolar disorder from controls, the challenges in differentiating schizophrenic from bipolar patients likely reflect shared immunological pathways by the both disorders and confounding by a larger state-specific effect. Larger multi-centric studies and multi-domain models are needed to enhance reliability and translation into clinic.
Collapse
Affiliation(s)
- Katrien Skorobogatov
- Scientific Initiative for Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Hospital Campus Duffel (UPCD), Rooienberg 19, 2570 Duffel, Belgium; Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Campus Drie Eiken, S.003, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Livia De Picker
- Scientific Initiative for Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Hospital Campus Duffel (UPCD), Rooienberg 19, 2570 Duffel, Belgium; Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Campus Drie Eiken, S.003, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Ching-Lien Wu
- Université Paris Est Créteil (UPEC), Inserm U955, IMRB Translational Neuropsychiatry Laboratory, AP-HP, Hôpitaux Universitaires H Mondor, DMU IMPACT, FHU ADAPT, Fondation FondaMental, Créteil, France
| | - Marianne Foiselle
- Université Paris Est Créteil (UPEC), Inserm U955, IMRB Translational Neuropsychiatry Laboratory, AP-HP, Hôpitaux Universitaires H Mondor, DMU IMPACT, FHU ADAPT, Fondation FondaMental, Créteil, France
| | - Jean-Romain Richard
- Université Paris Est Créteil (UPEC), Inserm U955, IMRB Translational Neuropsychiatry Laboratory, AP-HP, Hôpitaux Universitaires H Mondor, DMU IMPACT, FHU ADAPT, Fondation FondaMental, Créteil, France
| | - Wahid Boukouaci
- Université Paris Est Créteil (UPEC), Inserm U955, IMRB Translational Neuropsychiatry Laboratory, AP-HP, Hôpitaux Universitaires H Mondor, DMU IMPACT, FHU ADAPT, Fondation FondaMental, Créteil, France
| | - Jihène Bouassida
- Université Paris Est Créteil (UPEC), Inserm U955, IMRB Translational Neuropsychiatry Laboratory, AP-HP, Hôpitaux Universitaires H Mondor, DMU IMPACT, FHU ADAPT, Fondation FondaMental, Créteil, France
| | - Kris Laukens
- Biomedical Informatics Research Center Antwerp (BIOMINA), University of Antwerp, Campus Middelheim, M.G.111, Middelheimlaan 1, 2020 Antwerp, Belgium; Department of Mathematics and Computer Science, University of Antwerp, Campus Middelheim, M.G.105, Antwerp, Belgium
| | - Pieter Meysman
- Biomedical Informatics Research Center Antwerp (BIOMINA), University of Antwerp, Campus Middelheim, M.G.111, Middelheimlaan 1, 2020 Antwerp, Belgium; Department of Mathematics and Computer Science, University of Antwerp, Campus Middelheim, M.G.105, Antwerp, Belgium
| | - Philippe le Corvoisier
- Inserm, Centre d'Investigation Clinique 1430, AP-HP, Hôpital Henri Mondor, Université Paris Est Créteil, Faculté de Médecine de Créteil 8, Rue Du Général Sarrail 94010, Créteil, France
| | - Caroline Barau
- Plateforme de Ressources Biologiques, Hôpital Henri Mondor, 51 Avenue due Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Manuel Morrens
- Scientific Initiative for Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Hospital Campus Duffel (UPCD), Rooienberg 19, 2570 Duffel, Belgium; Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Campus Drie Eiken, S.003, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Ryad Tamouza
- Université Paris Est Créteil (UPEC), Inserm U955, IMRB Translational Neuropsychiatry Laboratory, AP-HP, Hôpitaux Universitaires H Mondor, DMU IMPACT, FHU ADAPT, Fondation FondaMental, Créteil, France
| | - Marion Leboyer
- Université Paris Est Créteil (UPEC), Inserm U955, IMRB Translational Neuropsychiatry Laboratory, AP-HP, Hôpitaux Universitaires H Mondor, DMU IMPACT, FHU ADAPT, Fondation FondaMental, Créteil, France
| |
Collapse
|
24
|
Abstract
Schizophrenia spectrum disorders are brain diseases that are developmental dementias (dementia praecox). Their pathology begins in utero with psychosis most commonly becoming evident in adolescence and early adulthood. It is estimated they afflict the U.S. population at a prevalence rate of approximately 0.8%. Genetic studies indicate that these brain diseases are about 80% determined by genes and about 20% determined by environmental risk factors. Inheritance is polygenic with some 270 gene loci having been identified as contributing to the risk for schizophrenia. Interestingly, many of the identified gene loci and gene polymorphisms are involved in brain formation and maturation. The identified genetic and epigenetic risks give rise to a brain in which neuroblasts migrate abnormally, assume abnormal locations and orientations, and are vulnerable to excessive neuronal and synaptic loss, resulting in overt psychotic illness. The illness trajectory of schizophrenia then is one of loss of brain mass related to the number of active psychotic exacerbations and the duration of untreated illness. In this context, molecules such as dopamine, glutamate, and serotonin play critical roles with respect to positive, negative, and cognitive domains of illness. Acutely, antipsychotics ameliorate active psychotic illness, especially positive signs and symptoms. The long-term effects of antipsychotic medications have been debated; however, the bulk of imaging data suggest that antipsychotics slow but do not reverse the illness trajectory of schizophrenia. Long-acting injectable antipsychotics (LAI) appear superior in this regard. Clozapine remains the "gold standard" in managing treatment-resistant schizophrenia.
Collapse
Affiliation(s)
- Michael A Cummings
- University of California, Irvine, CA, USA
- University of California, Riverside, CA, USA
| | - Ai-Li W Arias
- University of California, Irvine, CA, USA
- University of California, Riverside, CA, USA
| | - Stephen M Stahl
- University of California, San Diego, CA, USA
- University of Cambridge, Cambridge, UK
| |
Collapse
|
25
|
Ortiz-Valladares M, Gonzalez-Perez O, Pedraza-Medina R. Bridging the gap: Prenatal nutrition, myelination, and schizophrenia etiopathogenesis. Neuroscience 2024; 558:58-69. [PMID: 39159841 DOI: 10.1016/j.neuroscience.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
Schizophrenia (SZ) is a complex mental illness characterized by disturbances in thinking, emotionality, and behavior, significantly impacting the quality of life for individuals affected and those around them. The etiology of SZ involves intricate interactions between genetic and environmental factors, although the precise mechanisms remain incompletely understood. Genetic predisposition, neurotransmitter dysregulation (particularly involving dopamine and serotonin), and structural brain abnormalities, including impaired prefrontal cortex function, have been implicated in SZ development. However, increasing evidence reveals the role of environmental factors, such as nutrition, during critical periods like pregnancy and lactation. Epidemiological studies suggest that early malnutrition significantly increases the risk of SZ symptoms manifesting in late adolescence, a crucial period coinciding with peak myelination and brain maturation. Prenatal undernutrition may disrupt myelin formation, rendering individuals more susceptible to SZ pathology. This review explores the potential relationship between prenatal undernutrition, myelin alterations, and susceptibility to SZ. By delineating the etiopathogenesis, examining genetic and environmental factors associated with SZ, and reviewing the relationship between SZ and myelination disorders, alongside the impact of malnutrition on myelination, we aim to examine how malnutrition might be linked to SZ by altering myelination processes, which contribute to increasing the understanding of SZ etiology and help identify targets for intervention and management.
Collapse
Affiliation(s)
| | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040. México
| | - Ricardo Pedraza-Medina
- Medical Science Postgraduate Program, School of Medicine, University of Colima, Colima 28040. México
| |
Collapse
|
26
|
Sánchez-Florentino ZA, Romero-Martínez BS, Flores-Soto E, Montaño LM, Sommer B, Valdés-Tovar M, Argueta J, Calixto E, Aquino-Gálvez A, Castillejos-López M, Serrano H, Gomez-Verjan JC, López-Riquelme GO, Benítez-King GA, Jaimez R, Solís-Chagoyán H. Altered PLCβ/IP 3/Ca 2+ Signaling Pathway Activated by GPRCs in Olfactory Neuronal Precursor Cells Derived from Patients Diagnosed with Schizophrenia. Biomedicines 2024; 12:2343. [PMID: 39457654 PMCID: PMC11504003 DOI: 10.3390/biomedicines12102343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Schizophrenia (SZ) is a multifactorial chronic psychiatric disorder with a worldwide prevalence of 1%. Altered expression of PLCβ occurs in SZ patients, suggesting alterations in the PLCβ/IP3/Ca2+ signaling pathway. This cascade regulates critical cellular processes in all cell types, including the neuronal lineage; however, there is scarce evidence regarding the functionality of this transduction signaling in neuronal cells derived from SZ patients. Objective: We evaluated the functionality of the PLCβ/IP3/Ca2+ pathway in olfactory neuronal precursor cells (hONPCs) obtained from SZ patients. Methods: Cryopreserved hONPCs isolated from SZ patients and healthy subjects (HS) were thawed. The cellular types in subcultures were corroborated by immunodetection of the multipotency and lineage markers SOX-2, Musashi-1, nestin, and β-III tubulin. The PLCβ/IP3/Ca2+ pathway was activated by GPCR (Gq) ligands (ATP, UTP, serotonin, and epinephrine). In addition, PLCβ and IP3R were directly stimulated by perfusing cells with the activators m-3M3FBS and ADA, respectively. Cytosolic Ca2+ was measured by microfluorometry and by Ca2+ imaging. The amount and subcellular distribution of the PLCβ1 and PLCβ3 isoforms were evaluated by confocal immunofluorescence. IP3 concentration was measured by ELISA. Results: The results show that the increase of cytosolic Ca2+ triggered by GPCR ligands or directly through either PLCβ or IP3R activation was significantly lower in SZ-derived hONPCs, regarding HS-derived cells. Moreover, the relative amount of the PLCβ1 and PLCβ3 isoforms and IP3 production stimulated with m-3M3FBS were reduced in SZ-derived cells. Conclusions: Our results suggest an overall functional impairment in the PLCβ/IP3/Ca2+ signaling pathway in SZ-derived hONPCs.
Collapse
Affiliation(s)
- Zuly A. Sánchez-Florentino
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, CP, Mexico;
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, CP, Mexico; (J.A.); (G.A.B.-K.)
| | - Bianca S. Romero-Martínez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, CP, Mexico; (B.S.R.-M.); (E.F.-S.); (L.M.M.)
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, CP, Mexico; (B.S.R.-M.); (E.F.-S.); (L.M.M.)
| | - Luis M. Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, CP, Mexico; (B.S.R.-M.); (E.F.-S.); (L.M.M.)
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, CP, Mexico;
| | - Marcela Valdés-Tovar
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, CP, Mexico;
| | - Jesús Argueta
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, CP, Mexico; (J.A.); (G.A.B.-K.)
| | - Eduardo Calixto
- Departamento de Neurobiología, Dirección de Investigación en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, CP, Mexico;
| | - Arnoldo Aquino-Gálvez
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, CP, Mexico;
| | - Manuel Castillejos-López
- Unidad de Epidemiología Hospitalaria e Infectología, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, CP, Mexico;
| | - Héctor Serrano
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, CP, Mexico;
| | - Juan C. Gomez-Verjan
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City 10200, CP, Mexico;
| | - Germán O. López-Riquelme
- Laboratorio de Socioneurobiologia, Centro de Investigación en Ciencias Cognitivas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, CP, Mexico;
| | - Gloria A. Benítez-King
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, CP, Mexico; (J.A.); (G.A.B.-K.)
| | - Ruth Jaimez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, CP, Mexico; (B.S.R.-M.); (E.F.-S.); (L.M.M.)
| | - Héctor Solís-Chagoyán
- Laboratorio de Neurobiología Cognitiva, Centro de Investigación en Ciencias Cognitivas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, CP, Mexico
| |
Collapse
|
27
|
Yue L, Huang H, Lin W. Development of a Fluorescent Probe with High Selectivity based on Thiol-ene Click Nucleophilic Cascade Reactions for Delving into the Action Mechanism of Serotonin in Depression. Angew Chem Int Ed Engl 2024; 63:e202407308. [PMID: 38995157 DOI: 10.1002/anie.202407308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/26/2024] [Accepted: 07/12/2024] [Indexed: 07/13/2024]
Abstract
The intrinsic correlation between depression and serotonin (5-HT) is a highly debated topic, with significant implications for the diagnosis, treatment, and advancement of drugs targeting neurological disorders. To address this important question, it is of utmost priority to understand the action mechanism of serotonin in depression through fluorescence imaging studies. However, the development of efficient molecular probes for serotonin is hindered by the lack of responsive sites with high selectivity for serotonin at the present time. Herein, we developed the first highly selective serotonin responsive site, 3-mercaptopropionate, utilizing thiol-ene click cascade nucleophilic reactions. The novel responsive site was then employed to construct the powerful molecular probe SJ-5-HT for imaging the serotonin level changes in the depression cells and brain tissues. Importantly, the imaging studies reveal that the level of serotonin in patients with depression may not be the primary factor, while the ability of neurons in patients with depression to release serotonin appears to be more critical. Additionally, this serotonin release capability correlates strongly with the levels of mTOR (intracellular mammalian target of rapamycin). These discoveries could offer valuable insights into the molecular mechanisms underpinning depression and furnish mTOR as a novel direction for the advancement of antidepressant therapies.
Collapse
Affiliation(s)
- Lizhou Yue
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| | - Huawei Huang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| |
Collapse
|
28
|
Uliana DL, Lisboa JRF, Gomes FV, Grace AA. The excitatory-inhibitory balance as a target for the development of novel drugs to treat schizophrenia. Biochem Pharmacol 2024; 228:116298. [PMID: 38782077 PMCID: PMC11410545 DOI: 10.1016/j.bcp.2024.116298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
The intricate balance between excitation and inhibition (E/I) in the brain plays a crucial role in normative information processing. Dysfunctions in the E/I balance have been implicated in various psychiatric disorders, including schizophrenia (SCZ). In particular, abnormalities in GABAergic signaling, specifically in parvalbumin (PV)-containing interneurons, have been consistently observed in SCZ pathophysiology. PV interneuron function is vital for maintaining an ideal E/I balance, and alterations in PV interneuron-mediated inhibition contribute to circuit deficits observed in SCZ, including hippocampus hyperactivity and midbrain dopamine system overdrive. While current antipsychotic medications primarily target D2 dopamine receptors and are effective primarily in treating positive symptoms, novel therapeutic strategies aiming to restore the E/I balance could potentially mitigate not only positive symptoms but also negative symptoms and cognitive deficits. This could involve, for instance, increasing the inhibitory drive onto excitatory neurons or decreasing the putative enhanced pyramidal neuron activity due to functional loss of PV interneurons. Compounds targeting the glycine site at glutamate NMDA receptors and muscarinic acetylcholine receptors on PV interneurons that can increase PV interneuron drive, as well as drugs that increase the postsynaptic action of GABA, such as positive allosteric modulators of α5-GABA-A receptors, and decrease glutamatergic output, such as mGluR2/3 agonists, represent promising approaches. Preventive strategies aiming at E/I balance also represent a path to reduce the risk of transitioning to SCZ in high-risk individuals. Therefore, compounds with novel mechanisms targeting E/I balance provide optimism for more effective and tailored interventions in the management of SCZ.
Collapse
Affiliation(s)
- Daniela L Uliana
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joao Roberto F Lisboa
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
29
|
Glinert A, Zlidennyy V, Turjeman S, Sharon E, Schweitzer R, Khatib S, Izackson L, Koren O. What's GABA got to do with it? A potential link between the microbiome, schizophrenia, and the endo-cannabinoid system. Psychiatry Res 2024; 342:116196. [PMID: 39341178 DOI: 10.1016/j.psychres.2024.116196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024]
Abstract
The microbiome has been linked to numerous neurological and psychiatric diseases, including schizophrenia. Nevertheless, correlating microbial perturbations to pathophysiological aspects of schizophrenia remains elusive, as study participants are typically medicated when sampled, complicating mechanistic investigation. Here we explored specific microbial and metabolic alterations in schizophrenia patients, while explicitly considering their medications. We recruited 30 patients and 14 healthy controls. Fecal and serum samples were collected for microbiota and (untargeted) metabolome characterization, respectively. While significant differences were detected between microbiome of controls and schizophrenia patients overall, patients not taking GABA-enhancing drugs had profiles similar to the control group. This pattern was preserved, but to a lesser extent, when comparing metabolomes. Several key metabolic pathways differed between patients and controls, even after filtering out those directly related to pharmaceuticals and their metabolism, and the citric acid cycle and amino acid biosynthesis pathways were enriched in the group prescribed antipsychotics without GABA-enhancers. Administration of exogenous GABA affected overall patient homeostasis, not just disease course, supporting our hypothesis that microbiota play a part in cognitive, emotional, and mental function, and that this role must be considered in the full context of an individual's state, including medication.
Collapse
Affiliation(s)
- Ayala Glinert
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | | | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Efrat Sharon
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ron Schweitzer
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; Analytical Chemistry Laboratory, Tel-Hai College, Upper Galilee, Israel; Department of Natural Compounds and Analytical Chemistry, Migal - Galilee Research Institute, Kiryat Shmona, Israel
| | - Soliman Khatib
- Analytical Chemistry Laboratory, Tel-Hai College, Upper Galilee, Israel; Department of Natural Compounds and Analytical Chemistry, Migal - Galilee Research Institute, Kiryat Shmona, Israel
| | | | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
30
|
Dwyer GE, Johnsen E, Hugdahl K. NMDAR dysfunction and the regulation of dopaminergic transmission in schizophrenia. Schizophr Res 2024; 271:19-27. [PMID: 39002526 DOI: 10.1016/j.schres.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/27/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
A substantial body of evidence implicates dysfunction in N-methyl-d-aspartate receptors (NMDARs) in the pathophysiology of schizophrenia. This article illustrates how NMDAR dysfunction may give rise to many of the neurobiological phenomena frequently associated with schizophrenia with a particular focus on how NMDAR dysfunction affects the thalamic reticular nucleus (nRT) and pedunculopontine tegmental nucleus (PPTg). Furthermore, this article presents a model for schizophrenia illustrating how dysfunction in the nRT may interrupt prefrontal regulation of midbrain dopaminergic neurons, and how dysfunction in the PPTg may drive increased, irregular burst firing.
Collapse
Affiliation(s)
- Gerard Eric Dwyer
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway; NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway.
| | - Erik Johnsen
- NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Kenneth Hugdahl
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Radiology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
31
|
Oguma T, Jino K, Nakahara K, Asada H, Fuchino K, Nagatani K, Kouki K, Okamoto R, Takai N, Koda K, Fujita S, Sekiguchi Y, Yasuo K, Mayumi K, Abe A, Imono M, Horiguchi N, Iwata S, Kusakabe KI. Dual 5-HT 2A and 5-HT 2C Receptor Inverse Agonist That Affords In Vivo Antipsychotic Efficacy with Minimal hERG Inhibition for the Treatment of Dementia-Related Psychosis. J Med Chem 2024; 67:14478-14492. [PMID: 39137033 DOI: 10.1021/acs.jmedchem.4c01244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Psychosis is a distressing symptom commonly occurring in people with dementia. To treat Parkinson's disease psychosis, pimavanserin (1), a 5-HT2A receptor inverse agonist having minimal 5-HT2C receptor affinity and no dopamine D2 receptor affinity, was approved in the United States, but not for dementia-related psychosis due to limited efficacy issues. Herein, we report on the identification of a potent and dual 5-HT2A and 5-HT2C receptor inverse agonist 8 having minimal hERG inhibition, after having demonstrated the involvement of both 5-HT2A and 5-HT2C receptors to deliver antipsychotic efficacy in an MK-801-induced locomotor model and having conducted 5-HT2A and 5-HT2C occupancy studies including a surrogate method. The introduction of a spirocyclopropyl group boosting 5-HT2C affinity in 1 followed by further optimization to control lipophilicity resulted in balanced dual potency and metabolic stability, and mitigating hERG inhibition led to 8 that showed significant antipsychotic efficacy due to the involvement of both receptors.
Collapse
Affiliation(s)
- Takuya Oguma
- Laboratory for Medicinal Chemistry Research, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Kohei Jino
- Laboratory for Drug Discovery & Disease Research, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Kenji Nakahara
- Laboratory for Medicinal Chemistry Research, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Hidetsugu Asada
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-yu, Kyoto 606-8501, Japan
| | - Kouki Fuchino
- Laboratory for Medicinal Chemistry Research, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Kotaro Nagatani
- Laboratory for Medicinal Chemistry Research, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Kensuke Kouki
- Laboratory for Medicinal Chemistry Research, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Ryuji Okamoto
- Laboratory for Medicinal Chemistry Research, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Nozomi Takai
- Laboratory for Drug Discovery & Disease Research, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Ken Koda
- Laboratory for Drug Discovery & Disease Research, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Sayaka Fujita
- Laboratory for Drug Discovery & Disease Research, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Yusuke Sekiguchi
- Laboratory for Bio-Modality Research, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Kazuya Yasuo
- Laboratory for Medicinal Chemistry Research, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Kei Mayumi
- Laboratory for Drug Discovery & Development, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Ayane Abe
- Laboratory for Drug Discovery & Development, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Masaaki Imono
- Laboratory for Medicinal Chemistry Research, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Naotaka Horiguchi
- Laboratory for Drug Discovery & Disease Research, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-yu, Kyoto 606-8501, Japan
| | - Ken-Ichi Kusakabe
- Laboratory for Medicinal Chemistry Research, Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| |
Collapse
|
32
|
Zahedi A, Jay Lynn S, Sommer W. How hypnotic suggestions work - A systematic review of prominent theories of hypnosis. Conscious Cogn 2024; 123:103730. [PMID: 39032268 DOI: 10.1016/j.concog.2024.103730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
In recent decades, hypnosis has increasingly moved into the mainstream of scientific inquiry. Hypnotic suggestions are frequently implemented in behavioral, neurocognitive, and clinical investigations and interventions. Despite abundant reports about the effectiveness of suggestions in altering behavior, perception, cognition, and agency, no consensus exists regarding the mechanisms driving these changes. This article reviews competing theoretical accounts that address the genesis of subjective, behavioral, and neurophysiological responses to hypnotic suggestions. We systematically analyze the broad landscape of hypnosis theories that best represent our estimation of the current status and future avenues of scientific thinking. We start with procedural descriptions of hypnosis, suggestions, and hypnotizability, followed by a comparative analysis of systematically selected theories. Considering that prominent theoretical perspectives emphasize different aspects of hypnosis, our review reveals that each perspective possesses salient strengths, limitations, and heuristic values. We highlight the necessity of revisiting extant theories and formulating novel evidence-based accounts of hypnosis.
Collapse
Affiliation(s)
- Anoushiravan Zahedi
- Department of Psychology, University of Muenster, Germany; Department of Psychology, Humboldt-Universitat zu Berlin, Germany; Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Germany.
| | - Steven Jay Lynn
- Psychology Department, Binghamton University, Binghamton, NY, USA
| | - Werner Sommer
- Department of Psychology, Humboldt-Universitat zu Berlin, Germany; Department of Psychology, Zhejiang Normal University, Jin Hua, China
| |
Collapse
|
33
|
Mograbi DC, Rodrigues R, Bienemann B, Huntley J. Brain Networks, Neurotransmitters and Psychedelics: Towards a Neurochemistry of Self-Awareness. Curr Neurol Neurosci Rep 2024; 24:323-340. [PMID: 38980658 PMCID: PMC11258181 DOI: 10.1007/s11910-024-01353-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 07/10/2024]
Abstract
PURPOSE OF REVIEW Self-awareness can be defined as the capacity of becoming the object of one's own awareness and, increasingly, it has been the target of scientific inquiry. Self-awareness has important clinical implications, and a better understanding of the neurochemical basis of self-awareness may help clarifying causes and developing interventions for different psychopathological conditions. The current article explores the relationship between neurochemistry and self-awareness, with special attention to the effects of psychedelics. RECENT FINDINGS The functioning of self-related networks, such as the default-mode network and the salience network, and how these are influenced by different neurotransmitters is discussed. The impact of psychedelics on self-awareness is reviewed in relation to specific processes, such as interoception, body ownership, agency, metacognition, emotional regulation and autobiographical memory, within a framework based on predictive coding. Improved outcomes in emotional regulation and autobiographical memory have been observed in association with the use of psychedelics, suggesting higher-order self-awareness changes, which can be modulated by relaxation of priors and improved coping mechanisms linked to cognitive flexibility. Alterations in bodily self-awareness are less consistent, being potentially impacted by doses employed, differences in acute/long-term effects and the presence of clinical conditions. Future studies investigating the effects of different molecules in rebalancing connectivity between resting-state networks may lead to novel therapeutic approaches and the refinement of existing treatments.
Collapse
Affiliation(s)
- Daniel C Mograbi
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Rafael Rodrigues
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bheatrix Bienemann
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jonathan Huntley
- Division of Psychiatry, University College London, London, UK
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| |
Collapse
|
34
|
Juliani PZ, Rodrigues T, Bressan GN, Camponogara C, Oliveira SM, Brucker N, Fachinetto R. Effects of association between resveratrol and ketamine on behavioral and biochemical analysis in mice. J Neural Transm (Vienna) 2024; 131:971-986. [PMID: 38874765 DOI: 10.1007/s00702-024-02793-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/01/2024] [Indexed: 06/15/2024]
Abstract
Resveratrol (3,5,4'-trihydroxy-trans-stilbene), a phenol commonly found in grapes and wine, has been associated as protective in experimental models involving alterations in different neurotransmitter systems. However, studies are reporting that resveratrol could have adverse effects. This study evaluated if the association of a low dose of ketamine and resveratrol could induce behavioral manifestations associated with biochemical alterations. Moreover, the effects of treatment with resveratrol and/or ketamine on monoamine oxidase (MAO) activity, oxidative stress markers, and IL-6 levels in the brain were also investigated. Male Swiss mice received a low dose of ketamine (20 mg/kg) for 14 consecutive days, and resveratrol (10, 30, or 100 mg/kg) from day 8 up to day 14 of the experimental period, intraperitoneally. Locomotor, stereotyped behavior, Y-maze, novel recognition object test (NORT), and social interaction were quantified as well as ex vivo analysis of MAO activity, IL-6 levels, and oxidative stress markers (TBARS and total thiol levels) in brain tissues. Ketamine per se reduced the number of bouts of stereotyped behavior on day 8 of the experimental period. Resveratrol per se reduced the locomotor and exploratory activity in the open field, the time of exploration of new objects in the NORT, MAO-A activity in the striatum and increased the IL-6 levels in the cortex. These effects were attenuated when the mice were co-treated with ketamine and resveratrol. There was a decrease in MAO-A activity in the cortex of mice treated with ketamine + resveratrol 100 mg/kg. No significant alterations were found in oxidative stress markers. Resveratrol does not appear to cause summative effects with ketamine on behavioral alterations. However, the effect of resveratrol per se, mainly on locomotor and exploratory activity, should be better investigated.
Collapse
Affiliation(s)
- Patrícia Zorzi Juliani
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Talita Rodrigues
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Getulio Nicola Bressan
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Camila Camponogara
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Natália Brucker
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Roselei Fachinetto
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
- Centro de Ciências da Saúde, Departamento de Fisiologia e Farmacologia, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
35
|
Perillo ML, Gupta B, Siegenthaler JR, Christensen IE, Kepros B, Mitul A, Han M, Rechenberg R, Becker MF, Li W, Purcell EK. Evaluation of In Vitro Serotonin-Induced Electrochemical Fouling Performance of Boron Doped Diamond Microelectrode Using Fast-Scan Cyclic Voltammetry. BIOSENSORS 2024; 14:352. [PMID: 39056628 PMCID: PMC11274679 DOI: 10.3390/bios14070352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Fast-scan cyclic voltammetry (FSCV) is an electrochemical sensing technique that can be used for neurochemical sensing with high spatiotemporal resolution. Carbon fiber microelectrodes (CFMEs) are traditionally used as FSCV sensors. However, CFMEs are prone to electrochemical fouling caused by oxidative byproducts of repeated serotonin (5-HT) exposure, which makes them less suitable as chronic 5-HT sensors. Our team is developing a boron-doped diamond microelectrode (BDDME) that has previously been shown to be relatively resistant to fouling caused by protein adsorption (biofouling). We sought to determine if this BDDME exhibits resistance to electrochemical fouling, which we explored on electrodes fabricated with either femtosecond laser cutting or physical cleaving. We recorded the oxidation current response after 25 repeated injections of 5-HT in a flow-injection cell and compared the current drop from the first with the last injection. The 5-HT responses were compared with dopamine (DA), a neurochemical that is known to produce minimal fouling oxidative byproducts and has a stable repeated response. Physical cleaving of the BDDME yielded a reduction in fouling due to 5-HT compared with the CFME and the femtosecond laser cut BDDME. However, the femtosecond laser cut BDDME exhibited a large increase in sensitivity over the cleaved BDDME. An extended stability analysis was conducted for all device types following 5-HT fouling tests. This analysis demonstrated an improvement in the long-term stability of boron-doped diamond over CFMEs, as well as a diminishing sensitivity of the laser-cut BDDME over time. This work reports the electrochemical fouling performance of the BDDME when it is repeatedly exposed to DA or 5-HT, which informs the development of a chronic, diamond-based electrochemical sensor for long-term neurotransmitter measurements in vivo.
Collapse
Affiliation(s)
- Mason L. Perillo
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, East Lansing, MI 48824, USA; (M.L.P.); (I.E.C.).; (W.L.)
| | - Bhavna Gupta
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA;
| | - James R. Siegenthaler
- Fraunhofer USA Center Midwest, Coatings and Diamond Technologies Division, East Lansing, MI 48824, USA; (J.R.S.); (B.K.); (R.R.); (M.F.B.)
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (A.M.); (M.H.)
| | - Isabelle E. Christensen
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, East Lansing, MI 48824, USA; (M.L.P.); (I.E.C.).; (W.L.)
| | - Brandon Kepros
- Fraunhofer USA Center Midwest, Coatings and Diamond Technologies Division, East Lansing, MI 48824, USA; (J.R.S.); (B.K.); (R.R.); (M.F.B.)
| | - Abu Mitul
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (A.M.); (M.H.)
| | - Ming Han
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (A.M.); (M.H.)
| | - Robert Rechenberg
- Fraunhofer USA Center Midwest, Coatings and Diamond Technologies Division, East Lansing, MI 48824, USA; (J.R.S.); (B.K.); (R.R.); (M.F.B.)
| | - Michael F. Becker
- Fraunhofer USA Center Midwest, Coatings and Diamond Technologies Division, East Lansing, MI 48824, USA; (J.R.S.); (B.K.); (R.R.); (M.F.B.)
| | - Wen Li
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, East Lansing, MI 48824, USA; (M.L.P.); (I.E.C.).; (W.L.)
- Fraunhofer USA Center Midwest, Coatings and Diamond Technologies Division, East Lansing, MI 48824, USA; (J.R.S.); (B.K.); (R.R.); (M.F.B.)
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (A.M.); (M.H.)
| | - Erin K. Purcell
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, East Lansing, MI 48824, USA; (M.L.P.); (I.E.C.).; (W.L.)
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA;
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (A.M.); (M.H.)
| |
Collapse
|
36
|
Uzun Uysal E, Tomruk NB, Çakır Şen C, Yıldızhan E. D-serine and D-amino acid oxidase levels in patients with schizophrenia spectrum disorders in the first episode and 6-month follow-up. J Psychiatr Res 2024; 175:123-130. [PMID: 38728915 DOI: 10.1016/j.jpsychires.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND D-serine and the D-amino acid oxidase (DAO) enzyme, which breaks down d-amino acids, may be involved in the pathophysiology of schizophrenia by affecting the N-methyl-D-aspartate (NMDA) receptor. The exact role of D-serine and DAO, as well as the consequences of increased DAO activity in patients with schizophrenia, remain unclear. We aimed to investigate D-serine and DAO levels in patients with first-episode schizophrenia spectrum disorders before treatment and after six months of treatment. METHOD Comparisons for the serum levels of D-serine and DAO were made between 81 healthy controls and 89 patients with first-episode schizophrenia spectrum disorders without a history of treatment. Further comparisons were made after 6 months for changes in these levels in the 41 patients in follow-up. The Positive and Negative Syndrome Scale (PANNS), Calgary Scale for Depression in Schizophrenia (CDSS), Montreal Cognitive Assessment Scale (MoCA), Global Assessment Scale (GAS), and Clinical Global Impression Scale (CGI) were used to evaluate the symptom severity and functionality. Secondary results included comparisons related to antipsychotic equivalent doses. RESULTS Before treatment, patients had significantly lower levels of D-serine, DAO, and D-serine/DAO ratio compared to healthy individuals (p < 0.001; p < 0.001; p = 0.004). DAO and D-serine levels of the patients were higher after six months of treatment (p = 0.025; p = 0.001). There was correlation of DAO levels with antipsychotic dosage and with PANSS negative and total subscale scores (rho = 0.421, p = 0.01; rho = 0.280, p = 0.008; rho = 0.371, p = 0.000). No correlation was found between serum D-serine level, DAO level, and the D-serine/DAO ratio with cognitive function. CONCLUSIONS The results suggest that D-serine and DAO may play a role that is sensitive to treatment effects in schizophrenia spectrum disorders. To gain a more comprehensive understanding of the impact antipsychotic drugs have on NMDA receptor dysfunction, there is a requirement for studies that directly evaluates the activity of the DAO enzyme.
Collapse
Affiliation(s)
- Eda Uzun Uysal
- Arnavutkoy State Hospital, Department of Psychiatry, Istanbul, Turkey.
| | - Nesrin Buket Tomruk
- Bakırköy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, Department of Psychiatry, Istanbul, Turkey
| | - Cansu Çakır Şen
- Bakırköy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, Department of Psychiatry, Istanbul, Turkey
| | - Eren Yıldızhan
- Bakırköy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, Department of Psychiatry, Istanbul, Turkey
| |
Collapse
|
37
|
Rawani NS, Chan AW, Dursun SM, Baker GB. The Underlying Neurobiological Mechanisms of Psychosis: Focus on Neurotransmission Dysregulation, Neuroinflammation, Oxidative Stress, and Mitochondrial Dysfunction. Antioxidants (Basel) 2024; 13:709. [PMID: 38929148 PMCID: PMC11200831 DOI: 10.3390/antiox13060709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Psychosis, defined as a set of symptoms that results in a distorted sense of reality, is observed in several psychiatric disorders in addition to schizophrenia. This paper reviews the literature relevant to the underlying neurobiology of psychosis. The dopamine hypothesis has been a major influence in the study of the neurochemistry of psychosis and in development of antipsychotic drugs. However, it became clear early on that other factors must be involved in the dysfunction involved in psychosis. In the current review, it is reported how several of these factors, namely dysregulation of neurotransmitters [dopamine, serotonin, glutamate, and γ-aminobutyric acid (GABA)], neuroinflammation, glia (microglia, astrocytes, and oligodendrocytes), the hypothalamic-pituitary-adrenal axis, the gut microbiome, oxidative stress, and mitochondrial dysfunction contribute to psychosis and interact with one another. Research on psychosis has increased knowledge of the complexity of psychotic disorders. Potential new pharmacotherapies, including combinations of drugs (with pre- and probiotics in some cases) affecting several of the factors mentioned above, have been suggested. Similarly, several putative biomarkers, particularly those related to the immune system, have been proposed. Future research on both pharmacotherapy and biomarkers will require better-designed studies conducted on an all stages of psychotic disorders and must consider confounders such as sex differences and comorbidity.
Collapse
Affiliation(s)
| | | | | | - Glen B. Baker
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2G3, Canada; (N.S.R.); (A.W.C.); (S.M.D.)
| |
Collapse
|
38
|
Maddaloni G, Barsotti N, Migliarini S, Giordano M, Nazzi S, Picchi M, Errico F, Usiello A, Pasqualetti M. Impact of Serotonin Deficiency on Circadian Dopaminergic Rhythms. Int J Mol Sci 2024; 25:6475. [PMID: 38928178 PMCID: PMC11203511 DOI: 10.3390/ijms25126475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Physiology and behavior are structured temporally to anticipate daily cycles of light and dark, ensuring fitness and survival. Neuromodulatory systems in the brain-including those involving serotonin and dopamine-exhibit daily oscillations in neural activity and help shape circadian rhythms. Disrupted neuromodulation can cause circadian abnormalities that are thought to underlie several neuropsychiatric disorders, including bipolar mania and schizophrenia, for which a mechanistic understanding is still lacking. Here, we show that genetically depleting serotonin in Tph2 knockout mice promotes manic-like behaviors and disrupts daily oscillations of the dopamine biosynthetic enzyme tyrosine hydroxylase (TH) in midbrain dopaminergic nuclei. Specifically, while TH mRNA and protein levels in the Substantia Nigra (SN) and Ventral Tegmental Area (VTA) of wild-type mice doubled between the light and dark phase, TH levels were high throughout the day in Tph2 knockout mice, suggesting a hyperdopaminergic state. Analysis of TH expression in striatal terminal fields also showed blunted rhythms. Additionally, we found low abundance and blunted rhythmicity of the neuropeptide cholecystokinin (Cck) in the VTA of knockout mice, a neuropeptide whose downregulation has been implicated in manic-like states in both rodents and humans. Altogether, our results point to a previously unappreciated serotonergic control of circadian dopamine signaling and propose serotonergic dysfunction as an upstream mechanism underlying dopaminergic deregulation and ultimately maladaptive behaviors.
Collapse
Affiliation(s)
- Giacomo Maddaloni
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy (M.P.)
- Harvard Medical School, Department of Genetics, Harvard University, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Noemi Barsotti
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy (M.P.)
- Centro per l’Integrazione della Strumentazione Scientifica dell’Università di Pisa (CISUP), 56126 Pisa, Italy
| | - Sara Migliarini
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy (M.P.)
| | - Martina Giordano
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy (M.P.)
| | - Serena Nazzi
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy (M.P.)
| | - Marta Picchi
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy (M.P.)
| | - Francesco Errico
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy
- Department of Agricultural Sciences, University of Naples “Federico II”, 80055 Portici, Italy
| | - Alessandro Usiello
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Massimo Pasqualetti
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy (M.P.)
- Centro per l’Integrazione della Strumentazione Scientifica dell’Università di Pisa (CISUP), 56126 Pisa, Italy
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| |
Collapse
|
39
|
Barabássy Á, Dombi ZB, Németh G. D3 Receptor-Targeted Cariprazine: Insights from Lab to Bedside. Int J Mol Sci 2024; 25:5682. [PMID: 38891871 PMCID: PMC11172134 DOI: 10.3390/ijms25115682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Until the late 1800s, drug development was a chance finding based on observations and repeated trials and errors. Today, drug development must go through many iterations and tests to ensure it is safe, potent, and effective. This process is a long and costly endeavor, with many pitfalls and hurdles. The aim of the present review article is to explore what is needed for a molecule to move from the researcher bench to the patients' bedside, presented from an industry perspective through the development program of cariprazine. Cariprazine is a relatively novel antipsychotic medication, approved for the treatment of schizophrenia, bipolar mania, bipolar depression, and major depression as an add-on. It is a D3-preferring D3-D2 partial agonist with the highest binding to the D3 receptors compared to all other antipsychotics. Based on the example of cariprazine, there are several key factors that are needed for a molecule to move from the researcher bench to the patients' bedside, such as targeting an unmet medical need, having a novel mechanism of action, and a smart implementation of development plans.
Collapse
Affiliation(s)
| | | | - György Németh
- Medical Division, Gedeon Richter Plc., 1103 Budapest, Hungary; (Á.B.)
| |
Collapse
|
40
|
Gou M, Li W, Tong J, Zhou Y, Xie T, Yu T, Feng W, Li Y, Chen S, Tian B, Tan S, Wang Z, Pan S, Luo X, Li CSR, Zhang P, Huang J, Tian L, Hong LE, Tan Y. Correlation of Immune-Inflammatory Response System (IRS)/Compensatory Immune-Regulatory Reflex System (CIRS) with White Matter Integrity in First-Episode Patients with Schizophrenia. Mol Neurobiol 2024; 61:2754-2763. [PMID: 37932545 DOI: 10.1007/s12035-023-03694-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/04/2023] [Indexed: 11/08/2023]
Abstract
Several studies have reported compromised white matter integrity, and that some inflammatory mediators may underlie this functional dysconnectivity in the brain of patients with schizophrenia. The immune-inflammatory response system and compensatory immune-regulatory reflex system (IRS/CIRS) are novel biomarkers for exploring the role of immune imbalance in the pathophysiological mechanism of schizophrenia. This study aimed to explore the little-known area regarding the composite score of peripheral cytokines, the IRS/CIRS, and its correlation with white matter integrity and the specific microstructures most affected in schizophrenia. First-episode patients with schizophrenia (FEPS, n = 94) and age- and sex-matched healthy controls (HCs, n = 50) were enrolled in this study. Plasma cytokine levels were measured using enzyme-linked immunosorbent assay (ELISA), and psychopathology was assessed using the Positive and Negative Syndrome Scale (PANSS). The whole brain white matter integrity was measured by fractional anisotropy (FA) from diffusion tensor imaging (DTI) using a 3-T Prisma MRI scanner. The IRS/CIRS in FEPS was significantly higher than that in HCs (p = 1.5 × 10-5) and Cohen's d effect size was d = 0.74. FEPS had a significantly lower whole-brain white matter average FA (p = 0.032), which was negatively associated with IRS/CIRS (p = 0.029, adjusting for age, sex, years of education, BMI, and total intracranial volume), but not in the HCs (p > 0.05). Among the white matter microstructures, only the cortico-spinal tract was significantly correlated with IRS/CIRS in FEPS (r = - 0.543, p = 0.0009). Therefore, elevated IRS/CIRS may affect the white matter in FEPS.
Collapse
Affiliation(s)
- Mengzhuang Gou
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Wei Li
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Jinghui Tong
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Yanfang Zhou
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Ting Xie
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Ting Yu
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Wei Feng
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Yanli Li
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Song Chen
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Baopeng Tian
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Shuping Tan
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Zhiren Wang
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Shujuan Pan
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Ping Zhang
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Junchao Huang
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Li Tian
- Department of Physiology, Faculty of Medicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.
| | - L Elliot Hong
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, USA
| | - Yunlong Tan
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China.
| |
Collapse
|
41
|
Daneshvar R, Naghib M, Fayyazi Bordbar MR, Faridhosseini F, Fotouhi M, Motamed Shariati M. Optic nerve head neurovascular assessments in patients with schizophrenia: A cross-sectional study. Health Sci Rep 2024; 7:e2100. [PMID: 38725558 PMCID: PMC11079145 DOI: 10.1002/hsr2.2100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/06/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Objective The retina is a protrusion of the brain, so researchers have recently proposed retinal changes as a new marker for studying central nervous system diseases. To investigate optic nerve head neurovascular structure assessed by optical coherence tomography angiography (OCTA) in schizophrenia compared to healthy subjects. Methods The study was conducted from 2019 to 2021 at the Ibn Sina Psychiatric Hospital in Mashhad, Iran. We enrolled 22 hospitalized known cases of schizophrenia, treated with risperidone as an antipsychotic drug, and 22 healthy subjects. The two groups were matched in age and gender. In the schizophrenic group, the positive and negative syndrome scale test was used to assess the illness severity. All subjects underwent complete ophthalmic evaluations and OCTA imaging. Results We found that the cup/disc area ratio, vertical cup/disc ratio, and horizontal cup/disc ratio are significantly higher in patients with schizophrenia than in healthy subjects (with p-values of 0.019, 0.015, and 0.022, respectively). No statistically significant difference in the peripapillary retinal nerve fiber layer and vascular parameters of the optic nerve head was observed between schizophrenia and healthy groups. Conclusion We found evidence regarding the difference in the optic nerve head tomographic properties in schizophrenia compared to healthy subjects. However, ONH vascular parameters showed no significant difference. More studies are needed for a definite conclusion.
Collapse
Affiliation(s)
- Ramin Daneshvar
- Eye Research CenterMashhad University of Medical SciencesMashhadIran
| | - Maryam Naghib
- Psychiatry and Behavioral Sciences Research CenterMashhad University of Medical SciencesMashhadIran
| | | | - Farhad Faridhosseini
- Psychiatry and Behavioral Sciences Research CenterMashhad University of Medical SciencesMashhadIran
| | - Marziyeh Fotouhi
- Eye Research CenterMashhad University of Medical SciencesMashhadIran
| | | |
Collapse
|
42
|
Ugwah-Oguejiofor CJ, Alkali YI, Inuwa AM, Pender GC, Chindo BA. Studies on neurobehavioural properties of Caralluma dalzielii N.E Br. aqueous aerial parts extract in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117774. [PMID: 38244951 DOI: 10.1016/j.jep.2024.117774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Caralluma dalzielii (Asclepiadiaceae) is a shrub used in folkloric medicine to treat epilepsy, pain and infertility in sub-Saharan Africa. Previous studies demonstrated its analgesic, antiulcer, anticonvulsant, and anti-inflammatory activities. AIM This study aimed to determine the neurobehavioural properties of Caralluma dalzielii aqueous aerial parts extract (CDAE) in mice using standard experimental models. MATERIALS AND METHODS Neurobehavioural activities of CDAE were evaluated (100, 200, and 400 mg/kg) in Swiss Albino mice using the beam walk, staircase, hole board, object recognition, open field assay, Y-maze and forced swimming tests. Phytochemical constituents were analysed using GC-MS. RESULTS CDAE significantly increased the mean number of head dips, recognition index and spontaneous alternation in hole board (14.03 at 400 mg/kg and 6.01 in distilled water group; p < 0.05), object recognition (68.16% at 400 mg/kg compared with 51.66% of distilled water group) and Y maze (9.16 at 400 mg/kg as against 4.66 of distilled water group; p < 0.05) tests respectively. It decreased the rearing counts as well as the peripheral and central square crossing in the staircase (4.2 at 400 mg/kg as against 7.87 of the distilled water group; p < 0.05) and open field tests (central, 0.81; peripheral, 1.66 at 400 mg/kg as against central, 5.23; peripheral 11.83 of the distilled water control group; p < 0.05), respectively. There were no significant effects on beam walk assays and forced swim tests. The GC-MS analysis identified a hundred compounds in CDAE. Some compounds which have been reported to possess neurobehavioural activity that were identified include 3,5-Dimethylpyrazole, 2-Amino-5-methylbenzoic acid, Acetophenone, and Tetrahydropyran. CONCLUSION CDAE demonstrated anxiolytic, anti-hyperactivity, and memory-improving effects in mice. The extract may possess GABAergic and glutamatergic properties. More studies are needed to confirm this. Isolation of the bioactive compounds is currently ongoing to unravel the bioactive constituents present in C. dalzielii extract.
Collapse
Affiliation(s)
- Chinenye Jane Ugwah-Oguejiofor
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria.
| | - Yusuf Ibrahim Alkali
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria.
| | - Abdulbaqee Muhammad Inuwa
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria.
| | - Gift Crucifix Pender
- Department of Pharmacology and Toxicology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P. O. Box 4285, Kigali, Rwanda.
| | - Ben A Chindo
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Kaduna State University, Kaduna, Nigeria.
| |
Collapse
|
43
|
De Pieri M, Ferrari M, Pistis G, Gamma F, Marino F, Von Gunten A, Conus P, Cosentino M, Eap CB. Prediction of antipsychotics efficacy based on a polygenic risk score: a real-world cohort study. Front Pharmacol 2024; 15:1274442. [PMID: 38523642 PMCID: PMC10958197 DOI: 10.3389/fphar.2024.1274442] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/26/2024] [Indexed: 03/26/2024] Open
Abstract
Background: Response to antipsychotics is subject to a wide interindividual variability, due to genetic and non-genetic factors. Several single nucleotide polymorphisms (SNPs) have been associated with response to antipsychotics in genome-wide association studies (GWAS). Polygenic risk scores (PRS) are a powerful tool to aggregate into a single measure the small effects of multiple risk alleles. Materials and methods: We studied the association between a PRS composed of SNPs associated with response to antipsychotics in GWAS studies (PRSresponse) in a real-world sample of patients (N = 460) with different diagnoses (schizophrenia spectrum, bipolar, depressive, neurocognitive, substance use disorders and miscellaneous). Two other PRSs composed of SNPs previously associated with risk of schizophrenia (PRSschizophrenia1 and PRSschizophrenia2) were also tested for their association with response to treatment. Results: PRSresponse was significantly associated with response to antipsychotics considering the whole cohort (OR = 1.14, CI = 1.03-1.26, p = 0.010), the subgroup of patients with schizophrenia, schizoaffective disorder or bipolar disorder (OR = 1.18, CI = 1.02-1.37, p = 0.022, N = 235), with schizophrenia or schizoaffective disorder (OR = 1.24, CI = 1.04-1.47, p = 0.01, N = 176) and with schizophrenia (OR = 1.27, CI = 1.04-1.55, p = 0.01, N = 149). Sensitivity and specificity were sub-optimal (schizophrenia 62%, 61%; schizophrenia spectrum 56%, 55%; schizophrenia spectrum plus bipolar disorder 60%, 56%; all patients 63%, 58%, respectively). PRSschizophrenia1 and PRSschizophrenia2 were not significantly associated with response to treatment. Conclusion: PRSresponse defined from GWAS studies is significantly associated with response to antipsychotics in a real-world cohort; however, the results of the sensitivity-specificity analysis preclude its use as a predictive tool in clinical practice.
Collapse
Affiliation(s)
- Marco De Pieri
- Center for Research in Medical Pharmacology, Varese, Italy
- PhD Program in Clinical and Experimental Medicine and Medical Humanities, University of Insubria, Varese, Italy
- General Psychiatry Service, Hopitaux Universitaires de Genève, Geneva, Switzerland
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Marco Ferrari
- Center for Research in Medical Pharmacology, Varese, Italy
| | - Giorgio Pistis
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Franziska Gamma
- Les Toises Psychiatry and Psychotherapy Center, Lausanne, Switzerland
| | - Franca Marino
- Center for Research in Medical Pharmacology, Varese, Italy
| | - Armin Von Gunten
- Service of Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | | | - Chin-Bin Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, University of Lausanne, Lausanne, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
44
|
Curpan AS, Savuca A, Hritcu LD, Solcan C, Nicoara MN, Luca AC, Ciobica AS. A new approach to explore the correlation between declarative memory and anxiety in animal models of schizophrenia and microplastic pollution. Behav Brain Res 2024; 458:114742. [PMID: 37939886 DOI: 10.1016/j.bbr.2023.114742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
The discovery of new detrimental effects associated with microplastic pollution is ever-growing and reaching alarming rates worldwide, as it is linked to numerous disorders such as lung diseases, gastrointestinal problems, and cancer. However, a less explored issue is their impact on mental health, more precisely schizophrenia, even though several studies have shown the presence of microplastics in air, water, soil, and even food, thus making them a significant part of our daily dietary intake. It is also well known that declarative memory and anxiety levels are impaired in schizophrenia. However, apart from the novel object recognition test, the possibilities for testing memory in zebrafish are quite limited. For these reasons, we designed a novel memory test based on rewards, a learning period, and zebrafish's natural preference for certain colors. Among the results, our fish preferred the color yellow over red, and we illustrated that ketamine and its combination with methionine provide a robust model that seems to better represent the aspects of schizophrenia in animal models. Moreover, surprisingly, we observed that microplastics (more precisely, polypropylene fibers) ingested by animals through the diet seem to act as a buffer against ketamine toxicity and as an enhancer for methionine exposure. Moreover, according to our results, groups with higher anxiety levels seem to perform better on the memory test.
Collapse
Affiliation(s)
- Alexandrina-Stefania Curpan
- Doctoral School of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Carol I Bd., 20A, 700505 Iasi, Romania
| | - Alexandra Savuca
- Doctoral School of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Carol I Bd., 20A, 700505 Iasi, Romania; Doctoral School of Geosciences, Faculty of Geography and Geology, "Alexandru Ioan Cuza" University of Iasi, Carol I Bd., 20A, 700505 Iasi, Romania.
| | - Luminita Diana Hritcu
- Internal Medicine Clinic, "Ion Ionescu de la Brad" University of Life Sciences, 3 Sadoveanu Alley, 700490 Iasi, Romania.
| | - Carmen Solcan
- Department of Molecular Biology, Histology and Embryology, Faculty of Veterinary Medicine, "Ion Ionescu de la Brad" University of Life Sciences, 3 Sadoveanu Alley, 700490 Iasi, Romania
| | - Mircea Nicusor Nicoara
- Doctoral School of Geosciences, Faculty of Geography and Geology, "Alexandru Ioan Cuza" University of Iasi, Carol I Bd., 20A, 700505 Iasi, Romania; Department of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Carol I Bd., 20A, 700505 Iasi, Romania
| | - Alina-Costina Luca
- Department of Pediatrics, Faculty of Medicine, Gr. T. Popa' University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Alin-Stelian Ciobica
- Doctoral School of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Carol I Bd., 20A, 700505 Iasi, Romania; Academy of Romanian Scientists, Splaiul Independentei no. 54, sector 5, 050094 Bucharest, Romania; Center of Biomedical Research, Romanian Academy, Carol I Bd., No 8, 010071 Iasi, Romania
| |
Collapse
|
45
|
Malén T, Santavirta S, De Maeyer S, Tuisku J, Kaasinen V, Kankare T, Isojärvi J, Rinne J, Hietala J, Nuutila P, Nummenmaa L. Alterations in type 2 dopamine receptors across neuropsychiatric conditions: A large-scale PET cohort. Neuroimage Clin 2024; 41:103578. [PMID: 38395027 PMCID: PMC10944176 DOI: 10.1016/j.nicl.2024.103578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
PURPOSE Aberrant dopaminergic function is linked with motor, psychotic, and affective symptoms, but studies have typically compared a single patient group with healthy controls. METHODS Here, we investigated the variation in striatal (caudate nucleus, nucleus accumbens, and putamen) and thalamic type 2 dopamine receptor (D2R) availability using [11C]raclopride positron emission tomography (PET) data from a large sample of 437 humans including healthy controls, and subjects with Parkinson's disease (PD), antipsychotic-naïve schizophrenia, severe violent behavior, pathological gambling, depression, and overweight. We analyzed regional group differences in D2R availability. We also analyzed the interregional correlation in D2R availability within each group. RESULTS Subjects with PD showed the clearest decline in D2R availability. Overall, the groups showed high interregional correlation in D2R availability, while this pattern was weaker in violent offenders. Subjects with schizophrenia, pathological gambling, depression, or overweight did not show clear changes in either the regional receptor availability or the interregional correlation. CONCLUSION We conclude that the dopaminergic changes in neuropsychiatric conditions might not only affect the overall receptor availability but also how coupled regions are across people. The region-specific receptor availability more profoundly links to the motor symptoms, while the between-region coupling might be disrupted in violence.
Collapse
Affiliation(s)
- Tuulia Malén
- Turku PET Centre, University of Turku, Turku, Finland; Turku University Hospital, Turku, Finland.
| | - Severi Santavirta
- Turku PET Centre, University of Turku, Turku, Finland; Turku University Hospital, Turku, Finland
| | | | | | - Valtteri Kaasinen
- Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland; Neurocenter, Turku University Hospital and University of Turku, Turku, Finland
| | | | - Janne Isojärvi
- Turku PET Centre, University of Turku, Turku, Finland; Turku University Hospital, Turku, Finland
| | - Juha Rinne
- Turku PET Centre, University of Turku, Turku, Finland; Turku University Hospital, Turku, Finland
| | - Jarmo Hietala
- Turku PET Centre, University of Turku, Turku, Finland; Turku University Hospital, Turku, Finland; Department of Psychiatry, Turku University Hospital and University of Turku, Turku, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland; Turku University Hospital, Turku, Finland; Department of Endocrinology, Turku University Hospital and University of Turku, Turku, Finland
| | - Lauri Nummenmaa
- Turku PET Centre, University of Turku, Turku, Finland; Turku University Hospital, Turku, Finland; Department of Psychology, University of Turku, Turku, Finland
| |
Collapse
|
46
|
Pentz AB, O'Connel KS, van Jole O, Timpe CMF, Slapø NB, Melle I, Lagerberg TV, Steen NE, Westlye LT, Haukvik UK, Moberget T, Jönsson EG, Andreassen OA, Elvsåshagen T. Mismatch negativity and polygenic risk scores for schizophrenia and bipolar disorder. Schizophr Res 2024; 264:314-326. [PMID: 38215567 DOI: 10.1016/j.schres.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/14/2024]
Abstract
OBJECTIVE Auditory mismatch negativity (MMN) impairment is a candidate endophenotype in psychotic disorders, yet the genetic underpinnings remain to be clarified. Here, we examined the relationships between auditory MMN and polygenic risk scores (PRS) for individuals with psychotic disorders, including schizophrenia spectrum disorders (SSD) and bipolar disorder (BD) and in healthy controls (HC). METHODS Genotyped and clinically well-characterized individuals with psychotic disorders (n = 102), including SSD (n = 43) and BD (n = 59), and HC (n = 397) underwent a roving MMN paradigm. In addition MMN, we measured the memory traces of the repetition positivity (RP) and the deviant negativity (DN), which is believed to reflect prediction encoding and prediction error signals, respectively. SCZ and BD PRS were computed using summary statistics from the latest genome-wide association studies. The relationships between the MMN, RP, and DN and the PRSs were assessed with linear regressions. RESULTS We found no significant association between the SCZ or BD PRS and grand average MMN in the psychotic disorders group or in the HCs group (all p > 0.05). SCZ PRS and BD PRS were negatively associated with RP in the psychotic disorders group (β = -0.46, t = -2.86, p = 0.005 and β = -0.29, t = -0.21, p = 0.034, respectively). No significant associations were found between DN and PRS. CONCLUSION These findings suggest that genetic variants associated with SCZ and BD may be associated with MMN subcomponents linked to predictive coding among patients with psychotic disorders. Larger studies are needed to confirm these findings and further elucidate the genetic underpinnings of MMN impairment in psychotic disorders.
Collapse
Affiliation(s)
- Atle Bråthen Pentz
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway.
| | - Kevin Sean O'Connel
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Oda van Jole
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Clara Maria Fides Timpe
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Nora Berz Slapø
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Ingrid Melle
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Trine Vik Lagerberg
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Nils Eiel Steen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Lars T Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Unn K Haukvik
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Adult Psychiatry, Institute of Clinical Medicine, University of Oslo, Norway; Department of Forensic Psychiatry Research, Oslo University Hospital, Norway
| | - Torgeir Moberget
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Behavioral Sciences, Faculty of Health - Sciences, Oslo Metropolitan University - OsloMet, Oslo, Norway
| | - Erik G Jönsson
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Centre for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Sciences, Stockholm Region, Stockholm, Sweden
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Torbjørn Elvsåshagen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Neurology, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
47
|
Alvarez-Herrera S, Rosel Vales M, Pérez-Sánchez G, Becerril-Villanueva E, Flores-Medina Y, Maldonado-García JL, Saracco-Alvarez R, Escamilla R, Pavón L. Risperidone Decreases Expression of Serotonin Receptor-2A (5-HT2A) and Serotonin Transporter (SERT) but Not Dopamine Receptors and Dopamine Transporter (DAT) in PBMCs from Patients with Schizophrenia. Pharmaceuticals (Basel) 2024; 17:167. [PMID: 38399382 PMCID: PMC10892557 DOI: 10.3390/ph17020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 02/25/2024] Open
Abstract
Dopamine and serotonin receptors and transporters play an essential role in the pathophysiology of schizophrenia; changes in their expression have been reported in neurons and leukocytes. Each antipsychotic induces a unique pattern in leukocyte function and phenotype. However, the use of polytherapy to treat schizophrenia makes it challenging to determine the specific effects of risperidone on peripheral blood mononuclear cells (PBMCs). The aim of this study was to evaluate the changes in the expression of D3, D5, DAT, 5-HT2A, and SERT in PBMCs from healthy volunteers (HV), drug-naive patients with schizophrenia (PWS), drug-free PWS, and PWS treated with risperidone for up to 40 weeks using quantitative PCR. Our study revealed elevated mRNA levels of D3, DAT, 5-HT2A, and SERT in unmedicated PWS. Treatment with risperidone led to a reduction only in the expression of 5-HT2A and SERT. Furthermore, we observed a moderate correlation between 5-HT2A expression and the positive and negative syndrome scale (PANSS), as well as SERT expression and PANSS scale. We also found a moderate correlation between 5-HT2A and SERT expression and the positive subscale. The duration of risperidone consumption had a significant negative correlation with the expression of 5-HT2A and SERT. Our study introduces the measurement of 5-HT2A and SERT expression in PBMCs as a useful parameter for assessing the response to risperidone in PWS.
Collapse
Affiliation(s)
- Samantha Alvarez-Herrera
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Mexico City 14370, Mexico; (S.A.-H.); (G.P.-S.); (E.B.-V.)
| | - Mauricio Rosel Vales
- Clínica de Esquizofrenia, Dirección de Servicios Clínicos, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Mexico City 14370, Mexico;
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Mexico City 14370, Mexico; (S.A.-H.); (G.P.-S.); (E.B.-V.)
| | - Enrique Becerril-Villanueva
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Mexico City 14370, Mexico; (S.A.-H.); (G.P.-S.); (E.B.-V.)
| | - Yvonne Flores-Medina
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Mexico City 14370, Mexico; (Y.F.-M.); (R.S.-A.)
| | - José Luis Maldonado-García
- Departamemto de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
- Departamemto de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Ricardo Saracco-Alvarez
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Mexico City 14370, Mexico; (Y.F.-M.); (R.S.-A.)
| | - Raúl Escamilla
- Subdirección de Consulta Externa, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Mexico City 14370, Mexico;
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Mexico City 14370, Mexico; (S.A.-H.); (G.P.-S.); (E.B.-V.)
| |
Collapse
|
48
|
Kalinovic R, Pascariu A, Vlad G, Nitusca D, Sălcudean A, Sirbu IO, Marian C, Enatescu VR. Involvement of the Expression of G Protein-Coupled Receptors in Schizophrenia. Pharmaceuticals (Basel) 2024; 17:85. [PMID: 38256919 PMCID: PMC10818502 DOI: 10.3390/ph17010085] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/13/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The expression of GPCRs has been associated with schizophrenia, and their expression may induce morphological changes in brain regions responsible for schizophrenia and disease-specific behavioral changes. The articles included in this review were selected using keywords and databases of scientific research websites. The expressions of GPRs have different involvements in schizophrenia, some increase the risk while others provide protection, and they may also be potential targets for new treatments. Proper evaluation of these factors is essential to have a better therapeutic response with a lower rate of chronicity and thus improve the long-term prognosis.
Collapse
Affiliation(s)
- Raluka Kalinovic
- Doctoral School, University of Medicine and Pharmacy Victor Babes Timisoara, 300041 Timisoara, Romania
- Eduard Pamfil Psychiatric Clinic, Timisoara County Emergency Clinical Hospital, 300425 Timisoara, Romania; (A.P.); (G.V.); (V.R.E.)
| | - Andrei Pascariu
- Eduard Pamfil Psychiatric Clinic, Timisoara County Emergency Clinical Hospital, 300425 Timisoara, Romania; (A.P.); (G.V.); (V.R.E.)
| | - Gabriela Vlad
- Eduard Pamfil Psychiatric Clinic, Timisoara County Emergency Clinical Hospital, 300425 Timisoara, Romania; (A.P.); (G.V.); (V.R.E.)
| | - Diana Nitusca
- Department of Biochemistry, University of Medicine and Pharmacy Victor Babes Timisoara, 300041 Timisoara, Romania; (D.N.); (I.O.S.); (C.M.)
- Center for Complex Networks Science, Victor Babes University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| | - Andreea Sălcudean
- Discipline of Sociobiology, Department of Ethics and Social Sciences, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540136 Targu Mures, Romania;
| | - Ioan Ovidiu Sirbu
- Department of Biochemistry, University of Medicine and Pharmacy Victor Babes Timisoara, 300041 Timisoara, Romania; (D.N.); (I.O.S.); (C.M.)
- Center for Complex Networks Science, Victor Babes University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| | - Catalin Marian
- Department of Biochemistry, University of Medicine and Pharmacy Victor Babes Timisoara, 300041 Timisoara, Romania; (D.N.); (I.O.S.); (C.M.)
- Center for Complex Networks Science, Victor Babes University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| | - Virgil Radu Enatescu
- Eduard Pamfil Psychiatric Clinic, Timisoara County Emergency Clinical Hospital, 300425 Timisoara, Romania; (A.P.); (G.V.); (V.R.E.)
- Discipline of Psychiatry, Department of Neurosciences, University of Medicine and Pharmacy Victor Babes Timisoara, 300041 Timisoara, Romania
| |
Collapse
|
49
|
Xie J, Wang Y, Ye C, Li XJ, Lin L. Distinctive Patterns of 5-Methylcytosine and 5-Hydroxymethylcytosine in Schizophrenia. Int J Mol Sci 2024; 25:636. [PMID: 38203806 PMCID: PMC10779130 DOI: 10.3390/ijms25010636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/25/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Schizophrenia is a highly heritable neuropsychiatric disorder characterized by cognitive and social dysfunction. Genetic, epigenetic, and environmental factors are together implicated in the pathogenesis and development of schizophrenia. DNA methylation, 5-methycytosine (5mC) and 5-hydroxylcytosine (5hmC) have been recognized as key epigenetic elements in neurodevelopment, ageing, and neurodegenerative diseases. Recently, distinctive 5mC and 5hmC pattern and expression changes of related genes have been discovered in schizophrenia. Antipsychotic drugs that affect 5mC status can alleviate symptoms in patients with schizophrenia, suggesting a critical role for DNA methylation in the pathogenesis of schizophrenia. Further exploring the signatures of 5mC and 5hmC in schizophrenia and developing precision-targeted epigenetic drugs based on this will provide new insights into the diagnosis and treatment of schizophrenia.
Collapse
Affiliation(s)
| | | | | | | | - Li Lin
- Guangdong Key Laboratory of Non-Human Primate Research, Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (J.X.); (Y.W.); (C.Y.); (X.-J.L.)
| |
Collapse
|
50
|
Pan TY, Pan YJ, Tsai SJ, Tsai CW, Yang FY. Focused Ultrasound Stimulates the Prefrontal Cortex and Prevents MK-801-Induced Psychiatric Symptoms of Schizophrenia in Rats. Schizophr Bull 2024; 50:120-131. [PMID: 37301986 PMCID: PMC10754174 DOI: 10.1093/schbul/sbad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND HYPOTHESIS Treatment of schizophrenia remains a major challenge. Recent studies have focused on glutamatergic signaling hypoactivity through N-methyl-D-aspartate (NMDA) receptors. Low-intensity pulsed ultrasound (LIPUS) improves behavioral deficits and ameliorates neuropathology in dizocilpine (MK-801)-treated rats. The aim of this study was to investigate the efficacy of LIPUS against psychiatric symptoms and anxiety-like behaviors. STUDY DESIGN Rats assigned to 4 groups were pretreated with or without LIPUS for 5 days. The open field and prepulse inhibition tests were performed after saline or MK-801 (0.3 mg/kg) administration. Then, the neuroprotective effects of LIPUS on the MK-801-treated rats were evaluated using western blotting and immunohistochemical staining. STUDY RESULTS LIPUS stimulation of the prefrontal cortex (PFC) prevented deficits in locomotor activity and sensorimotor gating and improved anxiety-like behavior. MK-801 downregulated the expression of NR1, the NMDA receptor, in rat medial PFC (mPFC). NR1 expression was significantly higher in animals receiving LIPUS pretreatment compared to those receiving only MK-801. In contrast, a significant increase in c-Fos-positive cells in the mPFC and ventral tegmental area was observed in the MK-801-treated rats compared to those receiving only saline; this change was suppressed by pretreatment with LIPUS. CONCLUSIONS This study provides new evidence for the role of LIPUS stimulation in regulating the NMDA receptor and modulating c-Fos activity, which makes it a potentially valuable antipsychotic treatment for schizophrenia.
Collapse
Affiliation(s)
- Tsung-Yu Pan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ju Pan
- Department of Psychiatry, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Institute of Public Health, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Che-Wen Tsai
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Feng-Yi Yang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|