1
|
Shu YP, Zhang Q, Li D, Liu JY, Wang XM, He Q, Hou YZ. Vulnerable brain regions in adolescent attention deficit hyperactivity disorder: An activation likelihood estimation meta-analysis. World J Psychiatry 2025; 15:102215. [DOI: 10.5498/wjp.v15.i4.102215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/20/2024] [Accepted: 02/05/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Attention deficit hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder in adolescents characterized by inattention, hyperactivity, and impulsivity, which impact cognitive, behavioral, and emotional functioning. Resting-state functional magnetic resonance imaging (rs-fMRI) provides critical insights into the functional architecture of the brain in ADHD. Despite extensive research, specific brain regions consistently affected in ADHD patients during these formative years have not been comprehensively delineated.
AIM To identify consistent vulnerable brain regions in adolescent ADHD patients using rs-fMRI and activation likelihood estimation (ALE) meta-analysis.
METHODS We conducted a comprehensive literature search up to August 31, 2024, to identify studies investigating functional brain alterations in adolescents with ADHD. We utilized regional homogeneity (ReHo), amplitude of low-frequency fluctuations (ALFF), dynamic ALFF (dALFF) and fractional ALFF (fALFF) analyses. We compared the regions of aberrant spontaneous neural activity in adolescents with ADHD with those in healthy controls (HCs) using ALE.
RESULTS Fifteen studies (468 adolescent ADHD patients and 466 HCs) were included. Combining the ReHo and ALFF/fALFF/dALFF data, the results revealed increased activity in the right lingual gyrus [LING, Brodmann Area (BA) 18], left LING (BA 18), and right cuneus (CUN, BA 23) in adolescent ADHD patients compared with HCs (voxel size: 592-32 mm³, P < 0.05). Decreased activity was observed in the left medial frontal gyrus (MFG, BA 9) and left precuneus (PCUN, BA 31) in adolescent ADHD patients compared with HCs (voxel size: 960-456 mm³, P < 0.05). Jackknife sensitivity analyses demonstrated robust reproducibility in 11 of the 13 tests for the right LING, left LING, and right CUN and in 11 of the 14 tests for the left MFG and left PCUN.
CONCLUSION We identified specific brain regions with both increased and decreased activity in adolescent ADHD patients, enhancing our understanding of the neural alterations that occur during this pivotal stage of development.
Collapse
Affiliation(s)
- Yan-Ping Shu
- Department of Psychiatry of Women and Children, The Second People's Hospital of Guizhou Province, Guiyang 550004, Guizhou Province, China
| | - Qin Zhang
- Department of Radiology, The Second People's Hospital of Guizhou Province, Guiyang 550004, Guizhou Province, China
| | - Da Li
- Department of Psychiatry of Women and Children, The Second People's Hospital of Guizhou Province, Guiyang 550004, Guizhou Province, China
| | - Jiao-Ying Liu
- Department of Psychiatry of Women and Children, The Second People's Hospital of Guizhou Province, Guiyang 550004, Guizhou Province, China
| | - Xiao-Ming Wang
- Department of Psychiatry of Women and Children, The Second People's Hospital of Guizhou Province, Guiyang 550004, Guizhou Province, China
| | - Qiang He
- Department of Psychiatry of Women and Children, The Second People's Hospital of Guizhou Province, Guiyang 550004, Guizhou Province, China
| | - Yong-Zhe Hou
- Department of Psychiatry of Women and Children, The Second People's Hospital of Guizhou Province, Guiyang 550004, Guizhou Province, China
| |
Collapse
|
2
|
Kim H, Kim J. Consistent neural representation of valence in encoding and recall. Brain Cogn 2025; 186:106296. [PMID: 40157046 DOI: 10.1016/j.bandc.2025.106296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/06/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
Recall is an act of elicitation of emotions similar to those emotions previously experienced. Unlike the past experiences where external sensory stimuli triggered emotions, recall does not require external sensory stimuli. This difference is pertinent to the key debate in affective representation, addressing whether the representation of valence is consistent across modalities (modality-general) or dependent on modalities (modality-specific). This study aimed to verify neural representations of valence between encoding and recall. Using neuroimaging data from movie watching and recall (Chen et al., 2017) and behavioral data for valence ratings (Kim et al., 2020), a searchlight analysis was conducted with cross-participant regression-based decoding between movie watching and recall. Multidimensional scaling was employed as a validation analysis of the results from searchlight analysis. The searchlight analysis revealed the right middle temporal and inferior temporal gyrus as well as the left fusiform gyrus. The validation analysis further exhibited significant consistent neural representations of valence in the inferior temporal gyrus and the left fusiform gyrus. This study identified the brain regions where valence is consistently represented between encoding and recall about real events. These findings contribute to debate in affective representations, by comparing conditions utilized little in prior, suggesting the inferior temporal gyrus relates to representations of valence during encoding and recalling natural events.
Collapse
Affiliation(s)
- Hyeonjung Kim
- Department of Psychology, Jeonbuk National University, Republic of Korea
| | - Jongwan Kim
- Department of Psychology, Jeonbuk National University, Republic of Korea.
| |
Collapse
|
3
|
Biondi M, Marino M, Mantini D, Spironelli C. Brain Structural Alterations Underlying Mood-Related Deficits in Schizophrenia. Biomedicines 2025; 13:736. [PMID: 40149712 PMCID: PMC11939877 DOI: 10.3390/biomedicines13030736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Schizophrenia (SZ) is a complex psychiatric disorder characterized by neurodegenerative processes, but the structural brain alterations associated with its progression remain poorly understood. This study investigated structural brain changes in SZ, particularly in the fronto-temporal and limbic regions, and explored their relationship with symptom severity, with a focus on mood- and emotion-related symptoms. Methods: We analyzed structural MRI data from 74 SZ patients and 91 healthy controls (HCs) using voxel-based morphometry (VBM) to compare whole-brain grey matter volumes (GMVs). The analysis focused on the fronto-temporal and limbic regions, and correlations between GMV and symptom severity were assessed using the Positive and Negative Syndrome Scale (PANSS) and the Generalized Psychopathology (GP) scale. Results: SZ patients exhibited significant reductions in GMV in the fronto-temporal and limbic regions, including the dorsolateral prefrontal cortex (dlPFC) and the temporal pole, compared to HCs. Notably, a significant positive association was found between GMV in the right inferior temporal gyrus (ITG) and the severity of generalized psychopathology, as well as with anxiety, depression, mannerisms, and unusual thought content. Further post hoc analysis identified a specific cluster of mood-related symptoms contributing to the GP scale, which correlated with GMV changes in the right ITG. Conclusions: Our findings provide new evidence of structural brain alterations in SZ, particularly in the fronto-temporal and limbic regions, suggesting a progressive neurodegenerative pattern. The role of the right ITG in mood- and emotion-related symptoms requires further exploration, as it could offer insights into SZ pathophysiology and aid in distinguishing SZ from other mood-related disorders.
Collapse
Affiliation(s)
- Margherita Biondi
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy;
| | - Marco Marino
- Department of General Psychology, University of Padova, 35131 Padova, Italy;
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001 Leuven, Belgium;
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001 Leuven, Belgium;
| | - Chiara Spironelli
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy;
- Department of General Psychology, University of Padova, 35131 Padova, Italy;
| |
Collapse
|
4
|
Bian B, Liu C, Zhang L, Tian P, Liu Z, Zhu X, Liu P, Li D. Brain morphometric analysis in patients with glutaric aciduria type 1. Mol Genet Metab 2025; 144:109047. [PMID: 39914293 DOI: 10.1016/j.ymgme.2025.109047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/15/2024] [Accepted: 01/29/2025] [Indexed: 03/04/2025]
Abstract
PURPOSE Cerebral structural changes in both cortical and subcortical regions were detected in the pathology of glutaric aciduria type 1 (GA-1) patients. Conventional magnetic resonance imaging was limited by radiologist-inter variability in evaluating its severity. This cross-sectional study aimed to identify the affected brain structures and their functional correlations within the cortical and subcortical regions of patients with GA-1. METHODS Seventeen patients with GA-1 and 17 healthy controls (HCs) were included (mean age, 38 ± 17 months; both groups contained 6 males). Three-dimensional T1-weighted imaging data were acquired, and voxel and surface-based morphometry were used to quantitatively investigate differences in gray matter volume (GMV) and cortical thickness (CT). Two-sample t-tests were performed. RESULTS Patients with GA-1 had lower GMV in the bilateral basal ganglia, thalamus, limbic system, default mode network, and right cerebellum, as well as lower CT in the bilateral insula, lateral occipital cortex, right inferior parietal cortex, inferior temporal gyrus, and posterior cingulate cortex than HCs. Patients with GA-1 had higher CT in the bilateral lingual gyrus, parahippocampal gyrus, superior frontal gyrus, left postcentral gyrus, right precuneus, precentral gyrus, middle temporal gyrus, and inferior temporal gyrus than HCs. In patients with GA-1, urinary glutaryl-carnitine levels were significantly negatively correlated with the GMV in the left inferior temporal gyrus. CONCLUSION Our brain morphological analyses revealed quantitative differences in the GMV and CT of GA-1 patients compared to HCs and provided useful information about normal and abnormal neuroanatomy.
Collapse
Affiliation(s)
- BingYang Bian
- The First Hospital of Jilin University Department of Radiology, Changchun, Jilin 130021, China; Jilin Provincial International Joint Research Center of Medical Artificial Intelligence, Changchun, Jilin 130021, China
| | - ChengXiang Liu
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xidian University, Xi'an, Shaanxi 710071, China
| | - Lei Zhang
- The First Hospital of Jilin University Department of Radiology, Changchun, Jilin 130021, China; Jilin Provincial International Joint Research Center of Medical Artificial Intelligence, Changchun, Jilin 130021, China
| | - Pu Tian
- The First Hospital of Jilin University Department of Radiology, Changchun, Jilin 130021, China; Jilin Provincial International Joint Research Center of Medical Artificial Intelligence, Changchun, Jilin 130021, China
| | - ZhuoHang Liu
- The First Hospital of Jilin University Department of Radiology, Changchun, Jilin 130021, China; Jilin Provincial International Joint Research Center of Medical Artificial Intelligence, Changchun, Jilin 130021, China
| | - XiaoNa Zhu
- The First Hospital of Jilin University Department of Radiology, Changchun, Jilin 130021, China; Jilin Provincial International Joint Research Center of Medical Artificial Intelligence, Changchun, Jilin 130021, China
| | - Peng Liu
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xidian University, Xi'an, Shaanxi 710071, China
| | - Dan Li
- The First Hospital of Jilin University Department of Radiology, Changchun, Jilin 130021, China; Jilin Provincial International Joint Research Center of Medical Artificial Intelligence, Changchun, Jilin 130021, China.
| |
Collapse
|
5
|
Zhang D, Lu L, Huang X, Zhao X, Zhang Y, Fu T, Li F, Wu X. Abnormal Functional Network Centrality and Causal Connectivity in Migraine Without Aura: A Resting-State fMRI Study. Brain Behav 2025; 15:e70414. [PMID: 40079637 PMCID: PMC11904957 DOI: 10.1002/brb3.70414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 02/18/2025] [Accepted: 02/22/2025] [Indexed: 03/15/2025] Open
Abstract
OBJECTIVE The pathophysiological mechanism of migraine is still not clear. Thus, this study aimed to evaluate the changes in effective connectivity (EC) in the brain functional network underlying migraine and its association with clinical measures of migraine. BACKGROUND Fifty patients with episodic migraine without aura (MwoA) and 48 healthy controls (HCs) were enrolled in this study. Spontaneous activity in the brain was evaluated using the degree centrality (DC) method, and the brain regions with obvious signal differences between the two groups were taken as seed points for whole brain Granger causality analysis (GCA) analysis. The values of the brain regions with differences in DC and GCA were extracted and correlated with clinical measures of migraine. RESULTS Compared to the HCs, the MwoA patients showed decreased DC in the left inferior temporal gyrus (ITG) and increased DC in the right precuneus and exhibited significantly decreased EC from the left ITG to the left inferior parietal gyrus and right inferior occipital gyrus (IOG) as well as significantly increased EC from the left postcentral gyrus and left cerebellum posterior lobe to the left ITG. Moreover, decreased EC from the left thalamus to the right precuneus was found in the MwoA patients compared to the HCs. The DC values in the right precuneus were significantly negatively correlated with the duration of headache. Additionally, we found a significantly positive correlation between the Migraine Disability Assessment questionnaire score and the EC from the left ITG to the right IOG, as well as between the intensity of headache and the EC from the left thalamus to the right precuneus. CONCLUSIONS This study found changes in the EC of the brain functional network underlying migraine and their associations with migraine-related parameters. These findings are helpful for understanding the pathophysiological mechanism in migraine patients.
Collapse
Affiliation(s)
- Di Zhang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Liyan Lu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaobin Huang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaojing Zhao
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yamei Zhang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Tong Fu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Fengfang Li
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xinying Wu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
6
|
Kim T, Li J, Tao L, Tao J, Wei X. Neuroimaging Characteristics of Pruritus Induced by Eczema: An fMRI Study. Brain Behav 2025; 15:e70415. [PMID: 40123167 PMCID: PMC11930857 DOI: 10.1002/brb3.70415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/17/2025] [Accepted: 02/22/2025] [Indexed: 03/25/2025] Open
Abstract
OBJECTIVE To explore the neuroimaging characteristics of eczema-induced pruritus with resting-state functional magnetic resonance imaging (rs-fMRI). METHODS A total of 42 patients with eczema were recruited in the PE group, and 42 healthy participants were included in the HC group. The Visual Analogue Score (VAS), 12-Item Pruritus Severity Scale (12-PSS), Pittsburgh Sleep Quality Index (PSQI), and Self-Rating Anxiety Scale (SAS) were recorded in the PE group. The different values of fraction amplitude of low-frequency fluctuation (fALFF) and functional connectivity (FC) were compared after rs-fMRI scanning. RESULTS Compared with the HC group, the fALFF values of the left precentral gyrus, left postcentral gyrus, left supplementary motor area (SMA), and left midcingulate cortex in the PE group were increased. The FC values between the left precentral gyrus, bilateral superior temporal gyrus, bilateral hippocampus, and left inferior occipital gyrus in the PE group were decreased. The FC values between left SMA and bilateral superior temporal gyrus in the PE group were decreased. The 12-PSS score was positively correlated with fALFF value of the left precentral gyrus and left postcentral gyrus. CONCLUSION Pruritus caused increased spontaneous activity in given cerebral regions, involving the perception of itch, control of scratching movements, and expression of itch-related emotions. Meanwhile, there is a correlation between fALFF values of given cerebral regions and clinical scales, which provided potential neurobiological markers for the future study of pruritus.
Collapse
Affiliation(s)
- Tae‐eun Kim
- Department of AcupunctureShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- International Education CollegeShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jin Li
- Department of Rehabilitation MedicineShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Larissa Tao
- Department of AcupunctureShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- International Education CollegeShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Ji‐ming Tao
- Department of Rehabilitation MedicineShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xiang‐yu Wei
- Department of AcupunctureShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
7
|
Kluge A, Zebarjadi N, Tassinari M, Lin FH, Jääskeläinen IP, Jasinskaja-Lahti I, Levy J. Supportive but biased: Perceptual neural intergroup bias is sensitive to minor reservations about supporting outgroup immigration. Neuropsychologia 2025; 208:109068. [PMID: 39788452 DOI: 10.1016/j.neuropsychologia.2025.109068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/20/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
While decreasing negative attitudes against outgroups are often reported by individuals themselves, biased behaviour prevails. This gap between words and actions may stem from unobtrusive mental processes that could be uncovered by using neuroimaging in addition to self-reports. In this study we investigated whether adding neuroimaging to a traditional intergroup bias measure could detect intersubject differences in intergroup bias processes in a societal context where opposing discrimination is normative. In a sample of 43 Finnish students, implicit behavioural measures failed to indicate intergroup bias against Middle Eastern and Muslim immigrants, and explicit measures reported rather positive attitudes and sentiments towards that targeted group. Yet, while implementing a repeatedly validated method for detecting intergroup bias, an implicit association paradigm presenting stereotypical ingroup and outgroup face stimuli while undergoing magnetoencephalography, we detected a clear neural difference between two experimental conditions. The neural effect is thought to reflect intergroup bias in the valence of the associations that faces evoke. The activity cluster of the neural bias peaked in BA37 and included significant activity in the fusiform gyrus, which has been repeatedly found to be active during face perception bias. Importantly, this neural pattern was driven by participants who were explicitly favourable of immigration - but to a lesser extent than others. These findings suggest that such variations in explicit support of immigration are associated with the differential neural sensitivity to the congruency of associations between intergroup faces and valence. This research showcases the potential of neuroimaging to unravel covert perceptual bias against outgroup members and its sensitivity to small variations in explicit attitudes.
Collapse
Affiliation(s)
- Annika Kluge
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo 00076, Finland
| | - Niloufar Zebarjadi
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo 00076, Finland
| | - Matilde Tassinari
- Unit of Social Psychology, University of Helsinki, Helsinki 00014, Finland
| | - Fa-Hsuan Lin
- Sunnybrook Research Institute, Toronto M4N 3M5, Canada; Department of Medical Biophysics, University of Toronto, Toronto M5G 1L7, Canada
| | - Iiro P Jääskeläinen
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo 00076, Finland
| | | | - Jonathan Levy
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo 00076, Finland; Department of Criminology & Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel.
| |
Collapse
|
8
|
Tan M, Guo Y, Liu S, Liu W, Cheng L, Gao Y, Ren Z. Abnormal network homogeneity in patients with bipolar disorder in attention network. Brain Imaging Behav 2025:10.1007/s11682-025-00974-2. [PMID: 39873860 DOI: 10.1007/s11682-025-00974-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2025] [Indexed: 01/30/2025]
Abstract
Bipolar disorder (BD) is a complex psychiatric condition marked by significant mood fluctuations that deeply affect quality of life. Understanding the neural mechanisms underlying BD is critical for improving diagnostic accuracy and developing more effective treatments. This study utilized resting-state functional magnetic resonance imaging (rs-fMRI) to investigate functional connectivity within the ventral and dorsal attention networks in 52 patients with BD and 51 healthy controls. Independent Component Analysis (ICA) was employed to establish network templates, while Network Homogeneity (NH) analysis facilitated the comparison of NH values across various brain regions. We examined the association of NH values with clinical measures, including the Hamilton Depression Scale, Perceptual Deficit Questionnaire, and Young Mania Scale. Results indicated that BD patients exhibited lower NH values in the right inferior temporal gyrus of the dorsal attention network and the right middle temporal gyrus of the ventral attention network compared to controls. Notably, NH values in the right superior marginal gyrus of the ventral network were higher in the BD group. Although no significant correlations were found between NH values and clinical symptoms, Support Vector Machine (SVM) analysis demonstrated over 60% accuracy in differentiating BD patients based on NH values. These findings highlight the potential of NH measures as biomarkers for BD, underscore the importance of advanced neuroimaging in uncovering the disorder's complex neural dynamics, and point to the challenges and need for further research to improve predictive accuracy.
Collapse
Affiliation(s)
- Mengling Tan
- Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), Wuhan, China
- Key Laboratory of Human Development and Mental Health of Hubei Province, National Intelligent Society Governance Experiment Base (Education), School of Psychology, Central China Normal University, Wuhan, China
| | - Yunxiao Guo
- Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), Wuhan, China
- Key Laboratory of Human Development and Mental Health of Hubei Province, National Intelligent Society Governance Experiment Base (Education), School of Psychology, Central China Normal University, Wuhan, China
| | - Sijun Liu
- Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), Wuhan, China
- Key Laboratory of Human Development and Mental Health of Hubei Province, National Intelligent Society Governance Experiment Base (Education), School of Psychology, Central China Normal University, Wuhan, China
| | - Wei Liu
- Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), Wuhan, China
- Key Laboratory of Human Development and Mental Health of Hubei Province, National Intelligent Society Governance Experiment Base (Education), School of Psychology, Central China Normal University, Wuhan, China
| | - Liang Cheng
- Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), Wuhan, China
- Key Laboratory of Human Development and Mental Health of Hubei Province, National Intelligent Society Governance Experiment Base (Education), School of Psychology, Central China Normal University, Wuhan, China
| | - Yujun Gao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
- Clinical and Translational Sciences Lab, The Douglas Research Centre, McGill University, Montreal, Canada
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health, Beijing, China
| | - Zhihong Ren
- Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), Wuhan, China.
- Key Laboratory of Human Development and Mental Health of Hubei Province, National Intelligent Society Governance Experiment Base (Education), School of Psychology, Central China Normal University, Wuhan, China.
- School of Psychology, Central China Normal University, No. 152 Luoyu Road, Wuhan, Hubei, 430079, P.R. China.
| |
Collapse
|
9
|
Fafrowicz M, Tutajewski M, Sieradzki I, Ochab JK, Ceglarek-Sroka A, Lewandowska K, Marek T, Sikora-Wachowicz B, Podolak IT, Oświęcimka P. Classification of ROI-based fMRI data in short-term memory tasks using discriminant analysis and neural networks. Front Neuroinform 2024; 18:1480366. [PMID: 39759761 PMCID: PMC11695337 DOI: 10.3389/fninf.2024.1480366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025] Open
Abstract
Understanding brain function relies on identifying spatiotemporal patterns in brain activity. In recent years, machine learning methods have been widely used to detect connections between regions of interest (ROIs) involved in cognitive functions, as measured by the fMRI technique. However, it's essential to match the type of learning method to the problem type, and extracting the information about the most important ROI connections might be challenging. In this contribution, we used machine learning techniques to classify tasks in a working memory experiment and identify the brain areas involved in processing information. We employed classical discriminators and neural networks (convolutional and residual) to differentiate between brain responses to distinct types of visual stimuli (visuospatial and verbal) and different phases of the experiment (information encoding and retrieval). The best performance was achieved by the LGBM classifier with 1-time point input data during memory retrieval and a convolutional neural network during the encoding phase. Additionally, we developed an algorithm that took into account feature correlations to estimate the most important brain regions for the model's accuracy. Our findings suggest that from the perspective of considered models, brain signals related to the resting state have a similar degree of complexity to those related to the encoding phase, which does not improve the model's accuracy. However, during the retrieval phase, the signals were easily distinguished from the resting state, indicating their different structure. The study identified brain regions that are crucial for processing information in working memory, as well as the differences in the dynamics of encoding and retrieval processes. Furthermore, our findings indicate spatiotemporal distinctions related to these processes. The analysis confirmed the importance of the basal ganglia in processing information during the retrieval phase. The presented results reveal the benefits of applying machine learning algorithms to investigate working memory dynamics.
Collapse
Affiliation(s)
- Magdalena Fafrowicz
- Department of Cognitive Neuroscience and Neuroergonomics, Jagiellonian University, Kraków, Poland
| | - Marcin Tutajewski
- Institute of Theoretical Physics, Jagiellonian University, Kraków, Poland
| | - Igor Sieradzki
- Group of Machine Learning Methods GMUM, Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków, Poland
| | - Jeremi K. Ochab
- Institute of Theoretical Physics, Jagiellonian University, Kraków, Poland
- Mark Kac Center for Complex Systems Research, Jagiellonian University, Kraków, Poland
| | - Anna Ceglarek-Sroka
- Department of Cognitive Neuroscience and Neuroergonomics, Jagiellonian University, Kraków, Poland
| | - Koryna Lewandowska
- Department of Cognitive Neuroscience and Neuroergonomics, Jagiellonian University, Kraków, Poland
| | - Tadeusz Marek
- Faculty of Psychology, SWPS University, Katowice, Poland
| | - Barbara Sikora-Wachowicz
- Department of Cognitive Neuroscience and Neuroergonomics, Jagiellonian University, Kraków, Poland
| | - Igor T. Podolak
- Group of Machine Learning Methods GMUM, Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków, Poland
| | - Paweł Oświęcimka
- Institute of Theoretical Physics, Jagiellonian University, Kraków, Poland
- Group of Machine Learning Methods GMUM, Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków, Poland
- Complex Systems Theory Department, Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
10
|
Attanasio M, Mazza M, Le Donne I, Nigri A, Valenti M. Salience Network in Autism: preliminary results on functional connectivity analysis in resting state. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01949-y. [PMID: 39673625 DOI: 10.1007/s00406-024-01949-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/20/2024] [Indexed: 12/16/2024]
Abstract
The literature suggests that alterations in functional connectivity (FC) of the Salience Network (SN) may contribute to the manifestation of some clinical features of Autism Spectrum Disorder (ASD). The SN plays a key role in integrating external sensory information with internal emotional and bodily information. An atypical FC of this network could explain some symptomatic features of ASD such as difficulties in self-awareness and emotion processing and provide new insights into the neurobiological basis of autism. Using the Autism Brain Imaging Data Exchange II we investigated the resting-state FC of core regions of SN and its association with autism symptomatology in 29 individuals with ASD compared with 29 typically developing (TD) individuals. In ASD compared to TD individuals, seed-based connectivity analysis showed a reduced FC between the rostral prefrontal cortex and left cerebellum and an increased FC between the right supramarginal gyrus and the regions of the middle temporal gyrus and angular gyrus. Finally, we found that the clinical features of ASD are mainly associated with an atypical FC of the anterior insula and the involvement of dysfunctional mechanisms for emotional and social information processing. These findings expand the knowledge about the differences in the FC of SN between ASD and TD, highlighting atypical FC between structures that play key roles in social cognition and complex cognitive processes. Such anomalies could explain difficulties in processing salient stimuli, especially those of a socio-affective nature, with an impact on emotional and behavioral regulation.
Collapse
Affiliation(s)
- Margherita Attanasio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Monica Mazza
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Reference Regional Centre for Autism, Abruzzo Region, Local Health Unit ASL 1, L'Aquila, Italy
| | - Ilenia Le Donne
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Anna Nigri
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marco Valenti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Reference Regional Centre for Autism, Abruzzo Region, Local Health Unit ASL 1, L'Aquila, Italy
| |
Collapse
|
11
|
Mas‐Cuesta L, Baltruschat S, Cándido A, Catena A. Brain signatures of catastrophic events: Emotion, salience, and cognitive control. Psychophysiology 2024; 61:e14674. [PMID: 39169571 PMCID: PMC11579218 DOI: 10.1111/psyp.14674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/10/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Anticipatory brain activity makes it possible to predict the occurrence of expected situations. However, events such as traffic accidents are statistically unpredictable and can generate catastrophic consequences. This study investigates the brain activity and effective connectivity associated with anticipating and processing such unexpected, unavoidable accidents. We asked 161 participants to ride a motorcycle simulator while recording their electroencephalographic activity. Of these, 90 participants experienced at least one accident while driving. We conducted both within-subjects and between-subjects comparisons. During the pre-accident period, the right inferior parietal lobe (IPL), left anterior cingulate cortex (ACC), and right insula showed higher activity in the accident condition. In the post-accident period, the bilateral orbitofrontal cortex, right IPL, bilateral ACC, and middle and superior frontal gyrus also showed increased activity in the accident condition. We observed greater effective connectivity within the nodes of the limbic network (LN) and between the nodes of the attentional networks in the pre-accident period. In the post-accident period, we also observed greater effective connectivity between networks, from the ventral attention network (VAN) to the somatomotor network and from nodes in the visual network, VAN, and default mode network to nodes in the frontoparietal network, LN, and attentional networks. This suggests that activating salience-related processes and emotional processing allows the anticipation of accidents. Once an accident has occurred, integration and valuation of the new information takes place, and control processes are initiated to adapt behavior to the new demands of the environment.
Collapse
Affiliation(s)
- Laura Mas‐Cuesta
- Mind, Brain and Behavior Research CenterUniversity of Granada, Campus de Cartuja s/nGranadaSpain
| | - Sabina Baltruschat
- Mind, Brain and Behavior Research CenterUniversity of Granada, Campus de Cartuja s/nGranadaSpain
| | - Antonio Cándido
- Mind, Brain and Behavior Research CenterUniversity of Granada, Campus de Cartuja s/nGranadaSpain
| | - Andrés Catena
- School of PsychologyUniversity of Granada, Campus de Cartuja s/nGranadaSpain
| |
Collapse
|
12
|
Wang Y, Jin Z, Huyang S, Lian Q, Wu D. Elevated Activity in Left Homologous Music Circuits Is Inhibitory for Music Perception but Mediated by Structure-Function Coupling. CNS Neurosci Ther 2024; 30:e70174. [PMID: 39725651 DOI: 10.1111/cns.70174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/17/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024] Open
Abstract
AIMS Previous studies suggested that structural and functional connectivity of right frontotemporal circuits associate with music perception. Emerging evidences demonstrated that structure-function coupling is important for cognition and may allow for a more sensitive investigation of brain-behavior association, while we know little about the relationship between structure-function coupling and music perception. METHODS We collected multimodal neuroimaging data from 106 participants and measured their music perception by Montreal Battery of Evaluation of Amusia (MBEA). Then we computed structure-function coupling, amplitude of low-frequency fluctuation (ALFF), gray matter volume (GMV), and structural/functional degree centrality (DC) and utilized support vector regression algorithm to build their relationship with MBEA score. RESULTS We found structure-function coupling, rather than GMV, ALFF, or DC, contributed to predict MBEA score. Left middle frontal gyrus (L.MFG), bilateral inferior temporal gyrus, and right insula were the most predictive ROIs for MBEA score. Mediation analysis revealed structure-function coupling of L.MFG, a region that is homologous to typical music circuits, fully mediated the negative link between ALFF of L.MFG and MBEA score. CONCLUSION Structure-function coupling is more effective when explaining variation in music perception. Our findings provide further understanding for the neural basis of music and have implications for cognitive causes of amusia.
Collapse
Affiliation(s)
- Yucheng Wang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhishuai Jin
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sizhu Huyang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiaoping Lian
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Daxing Wu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Medical Psychological Institute of Central South University, Changsha, Hunan, China
- National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, China
- National Center for Mental Disorders (Xiangya), Changsha, Hunan, China
| |
Collapse
|
13
|
Wang J, Li H, Cecil KM, Altaye M, Parikh NA, He L. DFC-Igloo: A dynamic functional connectome learning framework for identifying neurodevelopmental biomarkers in very preterm infants. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108479. [PMID: 39489076 PMCID: PMC11563839 DOI: 10.1016/j.cmpb.2024.108479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 10/04/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND AND OBJECTIVE Very preterm infants are susceptible to neurodevelopmental impairments, necessitating early detection of prognostic biomarkers for timely intervention. The study aims to explore possible functional biomarkers for very preterm infants at born that relate to their future cognitive and motor development using resting-state fMRI. Prior studies are limited by the sample size and suffer from efficient functional connectome (FC) construction algorithms that can handle the noisy data contained in neonatal time series, leading to equivocal findings. Therefore, we first propose an enhanced functional connectome construction algorithm as a prerequisite step. We then apply the new FC construction algorithm to our large prospective very preterm cohort to explore multi-level neurodevelopmental biomarkers. METHODS There exists an intrinsic relationship between the structural connectome (SC) and FC, with a notable coupling between the two. This observation implies a putative property of graph signal smoothness on the SC as well. Yet, this property has not been fully exploited for constructing intrinsic dFC. In this study, we proposed an advanced dynamic FC (dFC) learning model, dFC-Igloo, which leveraged SC information to iteratively refine dFC estimations by applying graph signal smoothness to both FC and SC. The model was evaluated on artificial small-world graphs and simulated graph signals. RESULTS The proposed model achieved the best and most robust recovery of the ground truth graph across different noise levels and simulated SC pairs from the simulation. The model was further applied to a cohort of very preterm infants from five Neonatal Intensive Care Units, where an enhanced dFC was obtained for each infant. Based on the improved dFC, we identified neurodevelopmental biomarkers for neonates across connectome-wide, regional, and subnetwork scales. CONCLUSION The identified markers correlate with cognitive and motor developmental outcomes, offering insights into early brain development and potential neurodevelopmental challenges.
Collapse
Affiliation(s)
- Junqi Wang
- Imaging research center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hailong Li
- Imaging research center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Artificial Intelligence Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kim M Cecil
- Imaging research center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mekibib Altaye
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nehal A Parikh
- Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lili He
- Imaging research center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Artificial Intelligence Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Computer Science, Biomedical Engineering, Biomedical Informatics, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
14
|
Zanetti AS, Saroka KS, Dotta BT. Electromagnetic field enhanced flow state: Insights from electrophysiological measures, self-reported experiences, and gameplay. Brain Res 2024; 1844:149158. [PMID: 39137825 DOI: 10.1016/j.brainres.2024.149158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
The intersection of neuroscience and technology hinges on the development of wearable devices and electrodes that can augment brain networks to improve cognitive capabilities such as learning and concentration. The capacity to enhance networks associated with these functions above baseline capabilities, holds the potential to benefit numerous individuals. The purpose of this study was to determine if electromagnetic field exposure modeled from physiological data would increase instances of flow in participants playing a computer game. The flow state refers to a subjective state of optimal performance experienced by individuals during a variety of tasks. For this study, participants (n = 39, 18-65 years, nfemale = 20) played the arcade game Snake for two ten-minute periods (each with a ten-minute rest period immediately following). For one of the trials, an electromagnetic field was applied bilaterally to the temporal lobes, with the other serving as the control. Brain activity was measured using quantitative electroencephalography, flow experience was measured using the Flow Short Scale and game play scores were also recorded. Results showed deceased beta 1 (12-16 Hz) activity in the left cuneus [t = 4.650, p < 0.01] and left precuneus [t = 4.603, p < 0.01], left posterior cingulate [t = 4.521, p < 0.05], insula [t = 4.234, p < 0.05], and parahippocampal gyrus [t = 4.113, p < 0.05] for trials when the field was active, compared to controls during rest periods. Results from the Flow Short Scale showed a statistically significant difference in mean "concentration ease" scores across electromagnetic field conditions, irrespective of difficulty [t = 2.131, p < 0.05]. In the EMF exposure trials, there was no discernible experience effect; participants with prior experience in the game Snake did not exhibit significantly better performance compared to those without prior experience. This anticipated effect was observed in control conditions. The comparable performance observed between novices and experienced players in the EMF condition indicate a noteworthy learning curve for novices. In all, these results provide evidence supporting the ability of EMF patterned from amygdaloid firing (6-20 Hz) to elicit neurological correlates of flow in brain regions previously reported in the literature, facilitate concentration, and subtly improve game scores. The possibility for wearable devices to support learning, concentration, and focus are discussed.
Collapse
Affiliation(s)
- Anthony S Zanetti
- Behavioural Neuroscience & Psychology Programs, School of Natural Science, Laurentian University, Sudbury, ON P3E2C6, Canada
| | - Kevin S Saroka
- Behavioural Neuroscience & Psychology Programs, School of Natural Science, Laurentian University, Sudbury, ON P3E2C6, Canada
| | - Blake T Dotta
- Behavioural Neuroscience & Psychology Programs, School of Natural Science, Laurentian University, Sudbury, ON P3E2C6, Canada.
| |
Collapse
|
15
|
Senem I, Foss MP, Lavigne-Moreira C, Dos Santos AC, de França Nunes RF, França Júnior MC, Tomaselli PJ, Axelsson J, Wixner J, Marques W. Exploring cognitive functions and brain structure in Hereditary Transthyretin amyloidosis using brain MRI and neuropsychological assessment. Neurol Sci 2024:10.1007/s10072-024-07846-5. [PMID: 39499456 DOI: 10.1007/s10072-024-07846-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/20/2024] [Indexed: 11/07/2024]
Abstract
BACKGROUND Central nervous system symptoms, such as cognitive dysfunction, have been reported in Hereditary Transthyretin Amyloidosis (ATTRv). However, there is a lack of neuroimaging studies investigating structural alterations in the brain related to cognition in ATTRv amyloidosis. This study aimed to investigate cognition and cortical morphology in a cohort of ATTRv patients. METHODS 29 ATTRv patients and 26 healthy controls completed neuropsychological assessment. 21 of these patients underwent 3T brain MRI, and 23 healthy subjects constituted the control group for MRI. Cortical measures of volume, thickness, fractional anisotropy (FA), and mean diffusivity (MD) were obtained for both groups. Correlation analyses between brain and cognitive measurements were performed. RESULTS Patients displayed worse performance than controls in executive functions, verbal and visual memory, visuospatial domains, and language tests. Our study indicated cortical thinning in ATTRv patients in the temporal, occipital, frontal, and parietal areas. The inferior temporal gyrus correlated with verbal memory. Insula and, pars opercularis correlated with both verbal memory and executive function. CONCLUSIONS Cortical thickness in the inferior temporal gyrus, pars opercularis, and insula were linked to memory and executive function. We observed no correlations between cortical volume measures and cognition. Further investigations are imperative to confirm these findings across different populations.
Collapse
Affiliation(s)
- Iara Senem
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Bandeirantes Street 3900, Ribeirão Preto, São Paulo, Brazil
| | - Maria Paula Foss
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Bandeirantes Street 3900, Ribeirão Preto, São Paulo, Brazil
| | - Carolina Lavigne-Moreira
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Bandeirantes Street 3900, Ribeirão Preto, São Paulo, Brazil
| | - Antonio Carlos Dos Santos
- Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirao Preto, 14040-900, SP, Brazil
| | - Renan Flávio de França Nunes
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | - Pedro Jose Tomaselli
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Bandeirantes Street 3900, Ribeirão Preto, São Paulo, Brazil
| | - Jan Axelsson
- Department of Diagnostics and Interventions, Radiation Physics, Umeå University, Umeå, Sweden
| | - Jonas Wixner
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Wilson Marques
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Bandeirantes Street 3900, Ribeirão Preto, São Paulo, Brazil.
- 7. National Institute of Sciences and Technology (INCT) -Translational Medicine , Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) e Fundo de Amparo à Pesquisa do Estado de São Paulo (FAPESP), , Ribeirao Preto, Brazil.
| |
Collapse
|
16
|
Ding J, Tang Z, Liu Y, Chen Q, Tong K, Yang M, Ding X. Altered Intrinsic Brain Activity in Ischemic Stroke Patients Assessed Using the Percent Amplitude of a Fluctuation Method. Brain Topogr 2024; 37:1195-1202. [PMID: 38896171 DOI: 10.1007/s10548-024-01063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Ischemic stroke is a vascular disease that may cause cognitive and behavioral abnormalities. This study aims to assess abnormal brain function in ischemic stroke patients using the percent amplitude of fluctuation (PerAF) method and further explore the feasibility of PerAF as an imaging biomarker for investigating ischemic stroke pathophysiology mechanisms. Sixteen ischemic stroke patients and 22 healthy controls (HCs) underwent resting state functional magnetic resonance imaging (rs-fMRI) scanning, and the resulting data were analyzed using PerAF. Then a correlation analysis was conducted between PerAF values and Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) scores. Finally, the abnormal PerAF values were extracted and defined as features for support vector machine (SVM) analysis. Compared with HCs, ischemic stroke patients showed decreased PerAF in the bilateral cuneus, left middle frontal gyrus, precuneus and right inferior temporal gyrus, and increased PerAF in the bilateral orbital part of middle frontal gyrus and right orbital part of superior frontal gyrus. Correlation analyses revealed that PerAF values in the left orbital part of middle frontal gyrus was negatively correlated with the MoCA scores. The SVM classification of the PerAF values achieved an area under the curve (AUC) of 0.98 and an accuracy of 94.74%. Abnormal brain function has been found among ischemic stroke patients, which may be correlated with visual impairment, attention deficits, and dysregulation of negative emotions following a stroke. Our findings may support the potential of PerAF as a sensitive biomarker for investigating the underlying mechanisms of ischemic stroke.
Collapse
Affiliation(s)
- Jurong Ding
- School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, PR China.
- Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Zigong, PR China.
| | - Zhiling Tang
- School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, PR China
- Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Zigong, PR China
| | - Yihong Liu
- School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, PR China
- Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Zigong, PR China
| | - Qiang Chen
- School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, PR China
- Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Zigong, PR China
| | - Ke Tong
- School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, PR China
- Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Zigong, PR China
| | - Mei Yang
- School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, PR China
- Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Zigong, PR China
| | - Xin Ding
- Department of Neurology, Chengdu Second People's Hospital, Chengdu, PR China
| |
Collapse
|
17
|
Zhang J, Feng Q, Qiu J. Frequent absent mindedness and the neural mechanism trapped by mobile phone addiction. Neuroscience 2024; 563:252-260. [PMID: 39454714 DOI: 10.1016/j.neuroscience.2024.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/07/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
With the increased availability and sophistication of digital devices in the last decade, young people have become mainstream mobile phone users. Heavy mobile phone dependence causes affective problems (depression, anxiety) and loss of attention on current activities, leading to more cluttered thoughts. Problematic mobile phone use has been found to increase the occurrence of mind wandering, but the neural mechanism underlying this relationship remains unclear. The current study aims to investigate the neural mechanism between mobile phone use and mind wandering. University students from datasets (ongoing research project named Gene-Brain-Behavior project, GBB) completed psychological assessments of mobile phone addiction and mind wandering and underwent resting-state functional connectivity (FC) scanning. FC matrix was constructed to further conduct correlation and mediation analyses. Students with high mobile phone addiction scores were more likely to have high mind wandering scores. FC among the default mode, motor, frontoparietal, basal ganglia, limbic, medial frontal, visual association, and cerebellar networks formed the neural basis of mind wandering. FC between the frontoparietal and motor networks, between the default mode network and cerebellar network, and within the cerebellar network mediated the relationship between mobile phone addiction and mind wandering. The findings confirm that mobile phone addiction is a risk factor for increased mind wandering and reveal that FC in several brain networks underlies this relationship. They contribute to research on behavioral addiction, education, and mental health among young adults.
Collapse
Affiliation(s)
| | - Qiuyang Feng
- Department of Psychology, Southwest University, China.
| | - Jiang Qiu
- Department of Psychology, Southwest University, Chongqing, China.
| |
Collapse
|
18
|
Luo Y, Bai Y, Wei K, Bi B. Toward a neurocircuit-based sequential transcranial magnetic stimulation treatment of pediatric bipolar II disorder. J Affect Disord 2024; 363:99-105. [PMID: 39009309 DOI: 10.1016/j.jad.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/03/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Abnormalities in large-scale neuronal networks-the frontoparietal central executive network (CEN)-are consistent findings in bipolar disorder and potential therapeutic targets for transcranial magnetic stimulation (TMS). OBJECTIVE The present study aimed to assess the effects of CEN neurocircuit-based sequential TMS on the clinical symptoms and cognitive functions of adolescents with bipolar II disorder. METHODS The study was a single-blinded, randomized, placebo-control trial. Participants with DSM-5-defined bipolar disorder II were recruited and randomized to receive either a sham treatment (n = 20) or an active TMS treatment (n = 22). The active group patients were taking medication, with intermittent theta burst stimulation (iTBS) treatment provided as adjunctive treatment targeting the left DLPFC, the left ITG, and the left PPC nodes consecutively. Patients completed the measurements of HAMD and the Das-Naglieri Cognition Assessment System at baseline and 3 weeks after the intervention. RESULTS A significant group-by-time interaction was observed in the HAMD, total cognition, and planning. Post-hoc analysis revealed that patients in the active group significantly improved HAMD scores following neurostimulation. Moreover, within-subject analysis indicated that the active group significantly improved in scores of total cognition and planning, while the sham group did not. No significant differences were seen in the other cognitive measures. CONCLUSION The neurocircuit-based sequential TMS protocol targeting three CEN nodes, in conjunction with medication, safely and effectively improved depressive symptoms and cognitive function in adolescents with bipolar II disorder.
Collapse
Affiliation(s)
- Yange Luo
- Department of Clinical Psychology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, China
| | - Yuyin Bai
- Department of Clinical Psychology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, China
| | - Kun Wei
- Department of Clinical Psychology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, China
| | - Bo Bi
- Department of Clinical Psychology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, China.
| |
Collapse
|
19
|
Pastrnak M, Klirova M, Bares M, Novak T. Distinct connectivity patterns in bipolar and unipolar depression: a functional connectivity multivariate pattern analysis study. BMC Neurosci 2024; 25:46. [PMID: 39333843 PMCID: PMC11428473 DOI: 10.1186/s12868-024-00895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Patients with bipolar disorder (BD) and major depressive disorder (MDD) exhibit depressive episodes with similar symptoms despite having different and poorly understood underlying neurobiology, often leading to misdiagnosis and improper treatment. This exploratory study examined whole-brain functional connectivity (FC) using FC multivariate pattern analysis (fc-MVPA) to identify the FC patterns with the greatest ability to distinguish between currently depressed patients with BD type I (BD I) and those with MDD. METHODOLOGY In a cross-sectional design, 41 BD I, 40 MDD patients and 63 control participants completed resting state functional magnetic resonance imaging scans. Data-driven fc-MVPA, as implemented in the CONN toolbox, was used to identify clusters with differential FC patterns between BD patients and MDD patients. The identified cluster was used as a seed in a post hoc seed-based analysis (SBA) to reveal associated connectivity patterns, followed by a secondary ROI-to-ROI analysis to characterize differences in connectivity between these patterns among BD I patients, MDD patients and controls. RESULTS FC-MVPA identified one cluster located in the right frontal pole (RFP). The subsequent SBA revealed greater FC between the RFP and posterior cingulate cortex (PCC) and between the RFP and the left inferior/middle temporal gyrus (LI/MTG) and lower FC between the RFP and the left precentral gyrus (LPCG), left lingual gyrus/occipital cortex (LLG/OCC) and right occipital cortex (ROCC) in MDD patients than in BD patients. Compared with the controls, ROI-to-ROI analysis revealed lower FC between the RFP and the PCC and greater FC between the RFP and the LPCG, LLG/OCC and ROCC in BD patients; in MDD patients, the analysis revealed lower FC between the RFP and the LLG/OCC and ROCC and greater FC between the RFP and the LI/MTG. CONCLUSIONS Differences in the RFP FC patterns between currently depressed patients with BD and those with MDD suggest potential neuroimaging markers that should be further examined. Specifically, BD patients exhibit increased FC between the RFP and the motor and visual networks, which is associated with psychomotor symptoms and heightened compensatory frontoparietal FC to counter distractibility. In contrast, MDD patients exhibit increased FC between the RFP and the default mode network, corresponding to sustained self-focus and rumination.
Collapse
Grants
- Cooperatio Program, Neuroscience 3rd Faculty of Medicine, Charles University, Czech Republic
- Cooperatio Program, Neuroscience 3rd Faculty of Medicine, Charles University, Czech Republic
- Cooperatio Program, Neuroscience 3rd Faculty of Medicine, Charles University, Czech Republic
- Cooperatio Program, Neuroscience 3rd Faculty of Medicine, Charles University, Czech Republic
- NU22-04-00192 Agentura Pro Zdravotnický Výzkum České Republiky
- NU22-04-00192 Agentura Pro Zdravotnický Výzkum České Republiky
- NU22-04-00192 Agentura Pro Zdravotnický Výzkum České Republiky
Collapse
Affiliation(s)
- Martin Pastrnak
- National Institute of Mental Health, Clinic, Klecany, 250 67, Czech Republic.
- 3rd Faculty of Medicine, Charles University, Prague, 100 00, Czech Republic.
| | - Monika Klirova
- National Institute of Mental Health, Clinic, Klecany, 250 67, Czech Republic
- 3rd Faculty of Medicine, Charles University, Prague, 100 00, Czech Republic
| | - Martin Bares
- National Institute of Mental Health, Clinic, Klecany, 250 67, Czech Republic
- 3rd Faculty of Medicine, Charles University, Prague, 100 00, Czech Republic
| | - Tomas Novak
- National Institute of Mental Health, Clinic, Klecany, 250 67, Czech Republic
- 3rd Faculty of Medicine, Charles University, Prague, 100 00, Czech Republic
| |
Collapse
|
20
|
Costa T, Premi E, Borroni B, Manuello J, Cauda F, Duca S, Liloia D. Local functional connectivity abnormalities in mild cognitive impairment and Alzheimer's disease: A meta-analytic investigation using minimum Bayes factor activation likelihood estimation. Neuroimage 2024; 298:120798. [PMID: 39153521 DOI: 10.1016/j.neuroimage.2024.120798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 08/19/2024] Open
Abstract
Functional magnetic resonance imaging research employing regional homogeneity (ReHo) analysis has uncovered aberrant local brain connectivity in individuals with mild cognitive impairment (MCI) and Alzheimer's disease (AD) in comparison with healthy controls. However, the precise localization, extent, and possible overlap of these aberrations are still not fully understood. To bridge this gap, we applied a novel meta-analytic and Bayesian method (minimum Bayes Factor Activation Likelihood Estimation, mBF-ALE) for a systematic exploration of local functional connectivity alterations in MCI and AD brains. We extracted ReHo data via a standardized MEDLINE database search, which included 35 peer-reviewed experiments, 1,256 individuals with AD or MCI, 1,118 healthy controls, and 205 x-y-z coordinates of ReHo variation. We then separated the data into two distinct datasets: one for MCI and the other for AD. Two mBF-ALE analyses were conducted, thresholded at "very strong evidence" (mBF ≥ 150), with a minimum cluster size of 200 mm³. We also assessed the spatial consistency and sensitivity of our Bayesian results using the canonical version of the ALE algorithm. For MCI, we observed two clusters of ReHo decrease and one of ReHo increase. Decreased local connectivity was notable in the left precuneus (Brodmann area - BA 7) and left inferior temporal gyrus (BA 20), while increased connectivity was evident in the right parahippocampal gyrus (BA 36). The canonical ALE confirmed these locations, except for the inferior temporal gyrus. In AD, one cluster each of ReHo decrease and increase were found, with decreased connectivity in the right posterior cingulate cortex (BA 30 extending to BA 23) and increased connectivity in the left posterior cingulate cortex (BA 31). These locations were confirmed by the canonical ALE. The identification of these distinct functional connectivity patterns sheds new light on the complex pathophysiology of MCI and AD, offering promising directions for future neuroimaging-based interventions. Additionally, the use of a Bayesian framework for statistical thresholding enhances the robustness of neuroimaging meta-analyses, broadening its applicability to small datasets.
Collapse
Affiliation(s)
- Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy.
| | - Enrico Premi
- Stroke Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| | - Barbara Borroni
- Cognitive and Behavioural Neurology, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Donato Liloia
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
21
|
Serrarens C, Ruiz-Fernandez J, Otter M, Campforts BCM, Stumpel CTRM, Linden DEJ, van Amelsvoort TAMJ, Kashyap S, Vingerhoets C. Intracortical myelin across laminae in adult individuals with 47,XXX: a 7 Tesla MRI study. Cereb Cortex 2024; 34:bhae343. [PMID: 39183364 PMCID: PMC11345119 DOI: 10.1093/cercor/bhae343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024] Open
Abstract
47,XXX (Triple X syndrome) is a sex chromosome aneuploidy characterized by the presence of a supernumerary X chromosome in affected females and is associated with a variable cognitive, behavioral, and psychiatric phenotype. The effect of a supernumerary X chromosome in affected females on intracortical microstructure is currently unknown. Therefore, we conducted 7 Tesla structural MRI and compared T1 (ms), as a proxy for intracortical myelin (ICM), across laminae of 21 adult women with 47,XXX and 22 age-matched typically developing females using laminar analyses. Relationships between phenotypic traits and T1 values in 47,XXX were also investigated. Adults with 47,XXX showed higher bilateral T1 across supragranular laminae in the banks of the superior temporal sulcus, and in the right inferior temporal gyrus, suggesting decreases of ICM primarily within the temporal cortex in 47,XXX. Higher social functioning in 47,XXX was related to larger inferior temporal gyrus ICM content. Our findings indicate an effect of a supernumerary X chromosome in adult-aged women on ICM across supragranular laminae within the temporal cortex. These findings provide insight into the role of X chromosome dosage on ICM across laminae. Future research is warranted to further explore the functional significance of altered ICM across laminae in 47,XXX.
Collapse
Affiliation(s)
- Chaira Serrarens
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNS), Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Julia Ruiz-Fernandez
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNS), Maastricht University, Maastricht, 6200 MD, The Netherlands
- INSERM U1299, Centre Borelli UMR 9010, ENS-Paris-Saclay, Université Paris Saclay, Paris, France
| | - Maarten Otter
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNS), Maastricht University, Maastricht, 6200 MD, The Netherlands
- Medical Department, SIZA, Arnhem, 6800 AM, The Netherlands
| | - Bea C M Campforts
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNS), Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Constance T R M Stumpel
- Department of Clinical Genetics and School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, 6229 ER, The Netherlands
| | - David E J Linden
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNS), Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Therese A M J van Amelsvoort
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNS), Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Sriranga Kashyap
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, 6229 EV, The Netherlands
- Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Claudia Vingerhoets
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Institute (MHeNS), Maastricht University, Maastricht, 6200 MD, The Netherlands
- ‘s Heeren Loo Zorggroep, Amersfoort, 3818 LA, The Netherlands
| |
Collapse
|
22
|
Yang T, Ou Y, Li H, Liu F, Li P, Xie G, Zhao J, Cui X, Guo W. Neural substrates of predicting anhedonia symptoms in major depressive disorder via connectome-based modeling. CNS Neurosci Ther 2024; 30:e14871. [PMID: 39037006 PMCID: PMC11261463 DOI: 10.1111/cns.14871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/23/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
MAIN PROBLEM Anhedonia is a critical diagnostic symptom of major depressive disorder (MDD), being associated with poor prognosis. Understanding the neural mechanisms underlying anhedonia is of great significance for individuals with MDD, and it encourages the search for objective indicators that can reliably identify anhedonia. METHODS A predictive model used connectome-based predictive modeling (CPM) for anhedonia symptoms was developed by utilizing pre-treatment functional connectivity (FC) data from 59 patients with MDD. Node-based FC analysis was employed to compare differences in FC patterns between melancholic and non-melancholic MDD patients. The support vector machines (SVM) method was then applied for classifying these two subtypes of MDD patients. RESULTS CPM could successfully predict anhedonia symptoms in MDD patients (positive network: r = 0.4719, p < 0.0020, mean squared error = 23.5125, 5000 iterations). Compared to non-melancholic MDD patients, melancholic MDD patients showed decreased FC between the left cingulate gyrus and the right parahippocampus gyrus (p_bonferroni = 0.0303). This distinct FC pattern effectively discriminated between melancholic and non-melancholic MDD patients, achieving a sensitivity of 93.54%, specificity of 67.86%, and an overall accuracy of 81.36% using the SVM method. CONCLUSIONS This study successfully established a network model for predicting anhedonia symptoms in MDD based on FC, as well as a classification model to differentiate between melancholic and non-melancholic MDD patients. These findings provide guidance for clinical treatment.
Collapse
Affiliation(s)
- Tingyu Yang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaChina
- Department of Child HealthcareHunan Children's HospitalChangshaChina
| | - Yangpan Ou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Huabing Li
- Department of RadiologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Feng Liu
- Department of RadiologyTianjin Medical University General HospitalTianjinChina
| | - Ping Li
- Department of PsychiatryQiqihar Medical UniversityQiqiharChina
| | - Guangrong Xie
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Jingping Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Xilong Cui
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
23
|
He G, Huang X, Sun H, Xing Y, Gu S, Ren J, Liu W, Lu M. Gray matter volume alterations in de novo Parkinson's disease: A mediational role in the interplay between sleep quality and anxiety. CNS Neurosci Ther 2024; 30:e14867. [PMID: 39031989 PMCID: PMC11259571 DOI: 10.1111/cns.14867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/24/2024] [Accepted: 07/07/2024] [Indexed: 07/22/2024] Open
Abstract
OBJECTIVE Parkinson's disease (PD) is increasingly recognized for its non-motor symptoms, among which emotional disturbances and sleep disorders frequently co-occur. The commonality of neuroanatomical underpinnings for these symptoms is not fully understood. This study is intended to investigate the differences in gray matter volume (GMV) between PD patients with anxiety (A-PD) and those without anxiety (NA-PD). Additionally, it seeks to uncover the interplay between GMV variations and the manifestations of anxiety and sleep quality. METHODS A total of 37 A-PD patients, 43 NA-PD patients, and 36 healthy controls (HCs) were recruited, all of whom underwent voxel-based morphometry (VBM) analysis. Group differences in GMV were assessed using analysis of covariance (ANCOVA). Partial correlation between GMV, anxiety symptom, and sleep quality were analyzed. Mediation analysis explored the mediating role of the volume of GMV-distinct brain regions on the relationship between sleep quality and anxiety within the PD patient cohort. RESULTS A-PD patients showed significantly lower GMV in the fusiform gyrus (FG) and right inferior temporal gyrus (ITG) compared to HCs and NA-PD patients. GMV in these regions correlated negatively with Hamilton Anxiety Rating Scale (HAMA) scores (right ITG: r = -0.690, p < 0.001; left FG: r = -0.509, p < 0.001; right FG: r = -0.576, p < 0.001) and positively with sleep quality in PD patients (right ITG: r = 0.592, p < 0.001; left FG: r = 0.356, p = 0.001; right FG: r = 0.470, p < 0.001). Mediation analysis revealed that GMV in the FG and right ITG mediated the relationship between sleep quality and anxiety symptoms, with substantial effect sizes accounted for by the right ITG (25.74%) and FG (left: 11.90%, right: 15.59%). CONCLUSION This study has shed further light on the relationship between sleep disturbances and anxiety symptoms in PD patients. Given the pivotal roles of the FG and the ITG in facial recognition and the recognition of emotion-related facial expressions, our findings indicate that compromised sleep quality, under the pathological conditions of PD, may exacerbate the reduction in GMV within these regions, impairing the recognition of emotional facial expressions and thereby intensifying anxiety symptoms.
Collapse
Affiliation(s)
- Guixiang He
- Department of NeurologyAffiliated Nanjing Brain Hospital, Nanjing Medical UniversityNanjingChina
- The Yancheng School of Clinical Medicine of Nanjing Medical UniversityYancheng Third People's HospitalYanchengChina
- Jiangsu Key Laboratory of Neurodegeneration, Department of PharmacologyNanjing Medical UniversityNanjingChina
| | - Xiaofang Huang
- Department of NeurologyAffiliated Nanjing Brain Hospital, Nanjing Medical UniversityNanjingChina
| | - Haihua Sun
- The Yancheng School of Clinical Medicine of Nanjing Medical UniversityYancheng Third People's HospitalYanchengChina
| | - Yi Xing
- Department of NeurologyAffiliated Nanjing Brain Hospital, Nanjing Medical UniversityNanjingChina
| | - Siyu Gu
- The Yancheng School of Clinical Medicine of Nanjing Medical UniversityYancheng Third People's HospitalYanchengChina
| | - Jingru Ren
- Department of NeurologyAffiliated Nanjing Brain Hospital, Nanjing Medical UniversityNanjingChina
| | - Weiguo Liu
- Department of NeurologyAffiliated Nanjing Brain Hospital, Nanjing Medical UniversityNanjingChina
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of PharmacologyNanjing Medical UniversityNanjingChina
| |
Collapse
|
24
|
Kang B, Ma J, Shen J, Zhao C, Hua X, Qiu G, A X, Xu H, Xu J, Xiao L. Hemisphere lateralization of graph theoretical network in end-stage knee osteoarthritis patients. Brain Res Bull 2024; 213:110976. [PMID: 38750971 DOI: 10.1016/j.brainresbull.2024.110976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/09/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Hemisphere functional lateralization is a prominent feature of the human brain. However, it is not known whether hemispheric lateralization features are altered in end-stage knee osteoarthritis (esKOA). In this study, we performed resting-state functional magnetic imaging on 46 esKOA patients and 31 healthy controls (HCs) and compared with the global and inter-hemisphere network to clarify the hemispheric functional network lateralization characteristics of patients. A correlation analysis was performed to explore the relationship between the inter-hemispheric network parameters and clinical features of patients. The node attributes were analyzed to explore the factors changing in the hemisphere network function lateralization in patients. We found that patients and HCs exhibited "small-world" brain network topology. Clustering coefficient increased in patients compared with that in HCs. The hemisphere difference in inter-hemispheric parameters including assortativity, global efficiency, local efficiency, clustering coefficients, small-worldness, and shortest path length. The pain course and intensity of esKOA were positively correlated with the right hemispheric lateralization in local efficiency, clustering coefficients, and the small-worldness, respectively. The significant alterations of several nodal properties were demonstrated within group in pain-cognition, pain-emotion, and pain regulation circuits. The abnormal lateralization inter-hemisphere network may be caused by the destruction of regional network properties.
Collapse
Affiliation(s)
- Bingxin Kang
- Rehabilitation Treatment Centre, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jie Ma
- Center of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai, China
| | - Jun Shen
- Shanghai Guanghua Hospital of Integrative Chinese and Western Medicine, Shanghai, China
| | - Chi Zhao
- Acupuncture Tuina Institute, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xuyun Hua
- Center of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai, China
| | - Guowei Qiu
- Shanghai Guanghua Hospital of Integrative Chinese and Western Medicine, Shanghai, China
| | - Xinyu A
- Shanghai Guanghua Hospital of Integrative Chinese and Western Medicine, Shanghai, China
| | - Hui Xu
- Acupuncture Tuina Institute, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jianguang Xu
- Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Lianbo Xiao
- Shanghai Guanghua Hospital of Integrative Chinese and Western Medicine, No. 540 Xinhua Road, Shanghai 200052, China.
| |
Collapse
|
25
|
Vinci-Booher S, McDonald DJ, Berquist E, Pestilli F. Associative white matter tracts selectively predict sensorimotor learning. Commun Biol 2024; 7:762. [PMID: 38909103 PMCID: PMC11193801 DOI: 10.1038/s42003-024-06420-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 06/06/2024] [Indexed: 06/24/2024] Open
Abstract
Human learning varies greatly among individuals and is related to the microstructure of major white matter tracts in several learning domains, yet the impact of the existing microstructure of white matter tracts on future learning outcomes remains unclear. We employed a machine-learning model selection framework to evaluate whether existing microstructure might predict individual differences in learning a sensorimotor task, and further, if the mapping between tract microstructure and learning was selective for learning outcomes. We used diffusion tractography to measure the mean fractional anisotropy (FA) of white matter tracts in 60 adult participants who then practiced drawing a set of 40 unfamiliar symbols repeatedly using a digital writing tablet. We measured drawing learning as the slope of draw duration over the practice session and measured visual recognition learning for the symbols using an old/new 2-AFC task. Results demonstrated that tract microstructure selectively predicted learning outcomes, with left hemisphere pArc and SLF3 tracts predicting drawing learning and the left hemisphere MDLFspl predicting visual recognition learning. These results were replicated using repeat, held-out data and supported with complementary analyses. Results suggest that individual differences in the microstructure of human white matter tracts may be selectively related to future learning outcomes.
Collapse
Affiliation(s)
- S Vinci-Booher
- Department of Psychological and Brain Sciences, Program for Neuroscience, Indiana University, Bloomington, IN, USA
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, USA
| | - D J McDonald
- Department of Statistics, University of British Columbia, Vancouver, BC, Canada
| | - E Berquist
- Department of Psychological and Brain Sciences, Program for Neuroscience, Indiana University, Bloomington, IN, USA
| | - F Pestilli
- Department of Psychological and Brain Sciences, Program for Neuroscience, Indiana University, Bloomington, IN, USA.
- Department of Psychology, Center for Perceptual Systems, Center for Theoretical and Computational Neuroscience, Center for Aging Populations Sciences, Center for Learning and Memory, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
26
|
Liu W, Ye S, Cao Y, Li Y, Gao Y, Zhao M, Wang Y, Yun B, Luo L, Zheng C, Jia X. Brain local stability and network flexibility of table tennis players: a 7T MRI study. Cereb Cortex 2024; 34:bhae264. [PMID: 38937078 DOI: 10.1093/cercor/bhae264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/03/2024] [Accepted: 06/08/2024] [Indexed: 06/29/2024] Open
Abstract
Table tennis players have adaptive visual and sensorimotor networks, which are the key brain regions to acquire environmental information and generate motor output. This study examined 20 table tennis players and 21 control subjects through ultrahigh field 7 Tesla magnetic resonance imaging. First, we measured percentage amplitude of fluctuation across five different frequency bands and found that table tennis players had significantly lower percentage amplitude of fluctuation values than control subjects in 18 brain regions, suggesting enhanced stability of spontaneous brain fluctuation amplitudes in visual and sensorimotor networks. Functional connectional analyses revealed increased static functional connectivity between two sensorimotor nodes and other frontal-parietal regions among table tennis players. Additionally, these players displayed enhanced dynamic functional connectivity coupled with reduced static connectivity between five nodes processing visual and sensory information input, and other large-scale cross-regional areas. These findings highlight that table tennis players undergo neural adaptability through a dual mechanism, characterized by global stability in spontaneous brain fluctuation amplitudes and heightened flexibility in visual sensory networks. Our study offers novel insights into the mechanisms of neural adaptability in athletes, providing a foundation for future efforts to enhance cognitive functions in diverse populations, such as athletes, older adults, and individuals with cognitive impairments.
Collapse
Affiliation(s)
- Wenming Liu
- Department of Sport Science, College of Education, Zhejiang University, 310029 Hangzhou, China
| | - Shuqin Ye
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, 310029 Hangzhou, China
- Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, School of Medicine, Zhejiang University, 310029 Hangzhou, China
| | - Yuting Cao
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, 310029 Hangzhou, China
- Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, School of Medicine, Zhejiang University, 310029 Hangzhou, China
| | - Yuyang Li
- Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, School of Medicine, Zhejiang University, 310029 Hangzhou, China
| | - Yanyan Gao
- School of Psychology, Zhejiang Normal University, 321000 Jinhua, China
| | - Mengqi Zhao
- School of Psychology, Zhejiang Normal University, 321000 Jinhua, China
- Key Laboratory of Intelligent, Education Technology and Application of Zhejiang Province, Zhejiang Normal University, 321000 Jinhua, China
| | - Yadan Wang
- School of Information and Electronics Technology, Jiamusi University, 154007 Jiamusi, China
| | - Bing Yun
- Department of Public Physical and Art Education, Zhejiang University, 310029 Hangzhou, China
| | - Le Luo
- Hangzhou Wuyunshan Hospital, 310018 Hangzhou, China
| | - Chanying Zheng
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, 310029 Hangzhou, China
- Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, School of Medicine, Zhejiang University, 310029 Hangzhou, China
| | - Xize Jia
- School of Psychology, Zhejiang Normal University, 321000 Jinhua, China
| |
Collapse
|
27
|
Li H, Wang J, Li Z, Cecil KM, Altaye M, Dillman JR, Parikh NA, He L. Supervised contrastive learning enhances graph convolutional networks for predicting neurodevelopmental deficits in very preterm infants using brain structural connectome. Neuroimage 2024; 291:120579. [PMID: 38537766 PMCID: PMC11059107 DOI: 10.1016/j.neuroimage.2024.120579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/15/2024] [Accepted: 03/15/2024] [Indexed: 04/13/2024] Open
Abstract
Very preterm (VPT) infants (born at less than 32 weeks gestational age) are at high risk for various adverse neurodevelopmental deficits. Unfortunately, most of these deficits cannot be accurately diagnosed until the age of 2-5 years old. Given the benefits of early interventions, accurate diagnosis and prediction soon after birth are urgently needed for VPT infants. Previous studies have applied deep learning models to learn the brain structural connectome (SC) to predict neurodevelopmental deficits in the preterm population. However, none of these models are specifically designed for graph-structured data, and thus may potentially miss certain topological information conveyed in the brain SC. In this study, we aim to develop deep learning models to learn the SC acquired at term-equivalent age for early prediction of neurodevelopmental deficits at 2 years corrected age in VPT infants. We directly treated the brain SC as a graph, and applied graph convolutional network (GCN) models to capture complex topological information of the SC. In addition, we applied the supervised contrastive learning (SCL) technique to mitigate the effects of the data scarcity problem, and enable robust training of GCN models. We hypothesize that SCL will enhance GCN models for early prediction of neurodevelopmental deficits in VPT infants using the SC. We used a regional prospective cohort of ∼280 VPT infants who underwent MRI examinations at term-equivalent age from the Cincinnati Infant Neurodevelopment Early Prediction Study (CINEPS). These VPT infants completed neurodevelopmental assessment at 2 years corrected age to evaluate cognition, language, and motor skills. Using the SCL technique, the GCN model achieved mean areas under the receiver operating characteristic curve (AUCs) in the range of 0.72∼0.75 for predicting three neurodevelopmental deficits, outperforming several competing models. Our results support our hypothesis that the SCL technique is able to enhance the GCN model in our prediction tasks.
Collapse
Affiliation(s)
- Hailong Li
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Artificial Intelligence Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Junqi Wang
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Zhiyuan Li
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Computer Science, University of Cincinnati, Cincinnati, OH, USA
| | - Kim M Cecil
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mekibib Altaye
- Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jonathan R Dillman
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Artificial Intelligence Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Nehal A Parikh
- Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lili He
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Artificial Intelligence Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Computer Science, University of Cincinnati, Cincinnati, OH, USA; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA; Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
28
|
Cai M, Ji Y, Zhao Q, Xue H, Sun Z, Wang H, Zhang Y, Chen Y, Zhao Y, Zhang Y, Lei M, Wang C, Zhuo C, Liu N, Liu H, Liu F. Homotopic functional connectivity disruptions in schizophrenia and their associated gene expression. Neuroimage 2024; 289:120551. [PMID: 38382862 DOI: 10.1016/j.neuroimage.2024.120551] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/23/2024] Open
Abstract
It has been revealed that abnormal voxel-mirrored homotopic connectivity (VMHC) is present in patients with schizophrenia, yet there are inconsistencies in the relevant findings. Moreover, little is known about their association with brain gene expression profiles. In this study, transcription-neuroimaging association analyses using gene expression data from Allen Human Brain Atlas and case-control VMHC differences from both the discovery (meta-analysis, including 9 studies with a total of 386 patients and 357 controls) and replication (separate group-level comparisons within two datasets, including a total of 258 patients and 287 controls) phases were performed to identify genes associated with VMHC alterations. Enrichment analyses were conducted to characterize the biological functions and specific expression of identified genes, and Neurosynth decoding analysis was performed to examine the correlation between cognitive-related processes and VMHC alterations in schizophrenia. In the discovery and replication phases, patients with schizophrenia exhibited consistent VMHC changes compared to controls, which were correlated with a series of cognitive-related processes; meta-regression analysis revealed that illness duration was negatively correlated with VMHC abnormalities in the cerebellum and postcentral/precentral gyrus. The abnormal VMHC patterns were stably correlated with 1287 genes enriched for fundamental biological processes like regulation of cell communication, nervous system development, and cell communication. In addition, these genes were overexpressed in astrocytes and immune cells, enriched in extensive cortical regions and wide developmental time windows. The present findings may contribute to a more comprehensive understanding of the molecular mechanisms underlying VMHC alterations in patients with schizophrenia.
Collapse
Affiliation(s)
- Mengjing Cai
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yuan Ji
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qiyu Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hui Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zuhao Sun
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - He Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yijing Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yayuan Chen
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yao Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yujie Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Minghuan Lei
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chunyang Wang
- Department of Scientific Research, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chuanjun Zhuo
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
| | - Nana Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Huaigui Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
29
|
Chen H, Zhan L, Li Q, Meng C, Quan X, Chen X, Hao Z, Li J, Gao Y, Li H, Jia X, Li M, Liang Z. Frequency specific alterations of the degree centrality in patients with acute basal ganglia ischemic stroke: a resting-state fMRI study. Brain Imaging Behav 2024; 18:19-33. [PMID: 37821673 PMCID: PMC10844151 DOI: 10.1007/s11682-023-00806-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 10/13/2023]
Abstract
This study intended to investigate the frequency specific brain oscillation activity in patients with acute basal ganglia ischemic stroke (BGIS) by using the degree centrality (DC) method. A total of 34 acute BGIS patients and 44 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging (rs-fMRI) scanning. The DC values in three frequency bands (conventional band: 0.01-0.08 Hz, slow‑4 band: 0.027-0.073 Hz, slow‑5 band: 0.01-0.027 Hz) were calculated. A two-sample t-test was used to explore the between-group differences in the conventional frequency band. A two-way repeated-measures analysis of variance (ANOVA) was used to analyze the DC differences between groups (BGIS patients, HCs) and bands (slow‑4, slow‑5). Moreover, correlations between DC values and clinical indicators were performed. In conventional band, the DC value in the right middle temporal gyrus was decreased in BGIS patients compared with HCs. Significant differences of DC were observed between the two bands mainly in the bilateral cortical brain regions. Compared with the HCs, the BGIS patients showed increased DC in the right superior temporal gyrus and the left precuneus, but decreased mainly in the right inferior temporal gyrus, right inferior occipital gyrus, right precentral, and right supplementary motor area. Furthermore, the decreased DC in the right rolandic operculum in slow-4 band and the right superior temporal gyrus in slow-5 band were found by post hoc two-sample t-test of main effect of group. There was no significant correlation between DC values and clinical scales after Bonferroni correction. Our findings showed that the DC changes in BGIS patients were frequency specific. Functional abnormalities in local brain regions may help us to understand the underlying pathogenesis mechanism of brain functional reorganization of BGIS patients.
Collapse
Affiliation(s)
- Hao Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Linlin Zhan
- Faculty of Western Languages, Heilongjiang University, Heilongjiang, China
| | - Qianqian Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chaoguo Meng
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xuemei Quan
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Neurology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiaoling Chen
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zeqi Hao
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Jing Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Yanyan Gao
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Huayun Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Xize Jia
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Mengting Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China.
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China.
| | - Zhijian Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
30
|
Yan H, Han Y, Shan X, Li H, Liu F, Zhao J, Li P, Guo W. Shared and distinctive dysconnectivity patterns underlying pure generalized anxiety disorder (GAD) and comorbid GAD and depressive symptoms. J Psychiatr Res 2024; 170:225-236. [PMID: 38159347 DOI: 10.1016/j.jpsychires.2023.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
The resting-state connectivity features underlying pure generalized anxiety disorder (GAD, G1) and comorbid GAD and depressive symptoms (G2) have not been directly compared. Furthermore, it is unclear whether these features might serve as potential prognostic biomarkers and change with treatment. Degree centrality (DC) in G1 (40 subjects), G2 (58 subjects), and healthy controls (HCs, 54 subjects) was compared before treatment, and the DC of G1 or G2 at baseline was compared with that after 4 weeks of paroxetine treatment. Using support vector regression (SVR), voxel-wise DC across the entire brain and abnormal DC at baseline were employed to predict treatment response. At baseline, G1 and G2 exhibited lower DC in the left mid-cingulate cortex and vermis IV/V compared to HCs. Additionally, compared to HCs, G1 had lower DC in the left middle temporal gyrus, while G2 showed higher DC in the right inferior temporal/fusiform gyrus. However, there was no significant difference in DC between G1 and G2. The SVR based on abnormal DC at baseline could successfully predict treatment response in responders in G2 or in G1 and G2. Notably, the predictive performance based on abnormal DC at baseline surpassed that based on DC across the entire brain. After treatment, G2 responders showed lower DC in the right medial orbital frontal gyrus, while no change in DC was identified in G1 responders. The G1 and G2 showed common and distinct dysconnectivity patterns and they could potentially serve as prognostic biomarkers. Furthermore, DC in patients with GAD could change with treatment.
Collapse
Affiliation(s)
- Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yiding Han
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xiaoxiao Shan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingping Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
31
|
Torres-Morales C, Cansino S. Brain representations of space and time in episodic memory: A systematic review and meta-analysis. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:1-18. [PMID: 38030912 PMCID: PMC10827973 DOI: 10.3758/s13415-023-01140-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
All experiences preserved within episodic memory contain information on the space and time of events. The hippocampus is the main brain region involved in processing spatial and temporal information for incorporation within episodic memory representations. However, the other brain regions involved in the encoding and retrieval of spatial and temporal information within episodic memory are unclear, because a systematic review of related studies is lacking and the findings are scattered. The present study was designed to integrate the results of functional magnetic resonance imaging and positron emission tomography studies by means of a systematic review and meta-analysis to provide converging evidence. In particular, we focused on identifying the brain regions involved in the retrieval of spatial and temporal information. We identified a spatial retrieval network consisting of the inferior temporal gyrus, parahippocampal gyrus, superior parietal lobule, angular gyrus, and precuneus. Temporal context retrieval was supported by the dorsolateral prefrontal cortex. Thus, the retrieval of spatial and temporal information is supported by different brain regions, highlighting their different natures within episodic memory.
Collapse
Affiliation(s)
- César Torres-Morales
- Laboratory of NeuroCognition, Faculty of Psychology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Selene Cansino
- Laboratory of NeuroCognition, Faculty of Psychology, National Autonomous University of Mexico, Mexico City, Mexico.
| |
Collapse
|
32
|
Zhang F, Shao Y, Zhang X, Zhang H, Tan Y, Yang G, Wang X, Jia Z, Gong Q, Zhang H. Neuropsychological insights into exercise addiction: the role of brain structure and self-efficacy in middle-older individuals. Cereb Cortex 2024; 34:bhad514. [PMID: 38186007 DOI: 10.1093/cercor/bhad514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
This study aimed to investigate the relationship between exercise addiction and brain structure in middle-older individuals, and to examine the role of self-efficacy in mediating physiological changes associated with exercise addiction. A total of 133 patients exhibiting symptoms of exercise addiction were recruited for this study (male = 43, age 52.86 ± 11.78 years). Structural magnetic resonance imaging and behavioral assessments were administered to assess the study population. Voxel-based morphological analysis was conducted using SPM12 software. Mediation analysis was employed to explore the potential neuropsychological mechanism of self-efficacy in relation to exercise addiction. The findings revealed a positive correlation between exercise addiction and gray matter volume in the right inferior temporal region and the right hippocampus. Conversely, there was a negative correlation with gray matter volume in the left Rolandic operculum. Self-efficacy was found to indirectly influence exercise addiction by affecting right inferior temporal region gray matter volume and acted as a mediating variable in the relationship between the gray matter volume of right inferior temporal region and exercise addiction. In summary, this study elucidates the link between exercise addiction and brain structure among middle-older individuals. It uncovers the intricate interplay among exercise addiction, brain structure, and psychological factors. These findings enhance our comprehension of exercise addiction and offer valuable insights for the development of interventions and treatments.
Collapse
Affiliation(s)
- Feifei Zhang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, P.R. China
- Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Yingbo Shao
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, P.R. China
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Xiaonan Zhang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, P.R. China
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Haoyu Zhang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, P.R. China
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Yan Tan
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, P.R. China
- Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Guoqiang Yang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, P.R. China
- Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Xiaochun Wang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, P.R. China
- Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Zhiyun Jia
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 361021, Fujian Province, China
| | - Hui Zhang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, P.R. China
- Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| |
Collapse
|
33
|
Drosos E, Komaitis S, Liouta E, Neromyliotis E, Charalampopoulou E, Anastasopoulos L, Kalamatianos T, Skandalakis GP, Troupis T, Stranjalis G, Kalyvas AV, Koutsarnakis C. Parcellating the vertical associative fiber network of the temporoparietal area: Evidence from focused anatomic fiber dissections. BRAIN & SPINE 2024; 4:102759. [PMID: 38510613 PMCID: PMC10951769 DOI: 10.1016/j.bas.2024.102759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 03/22/2024]
Abstract
Introduction The connectivity of the temporoparietal (TP) region has been the subject of multiple anatomical and functional studies. Its role in high cognitive functions has been primarily correlated with long association fiber connections. As a major sensory integration hub, coactivation of areas within the TP requires a stream of short association fibers running between its subregions. The latter have been the subject of a small number of recent in vivo and cadaveric studies. This has resulted in limited understanding of this network and, in certain occasions, terminology ambiguity. Research question To systematically study the vertical parietal and temporoparietal short association fibers. Material and methods Thirteen normal, adult cadaveric hemispheres, were treated with the Klinger's freeze-thaw process and their subcortical anatomy was studied using the microdissection technique. Results Two separate fiber layers were identified. Superficially, directly beneath the cortical u-fibers, the Stratum proprium intraparietalis (SP) was seen connecting Superior Parietal lobule and Precuneal cortical areas to inferior cortical regions of the Parietal lobe, running deep to the Intraparietal sulcus. At the same dissection level, the IPL-TP fibers were identified as a bundle connecting the Inferior Parietal lobule with posterior Temporal cortical areas. At a deeper level, parallel to the Arcuate fasciculus fibers, the SPL-TP fibers were seen connecting the Superior Parietal lobule to posterior Temporal cortical areas. Discussion and conclusion To our knowledge this is the first cadaveric dissection study to comprehensively study and describe of the vertical association fibers of the temporoparietal region while proposing a universal terminology.
Collapse
Affiliation(s)
- Evangelos Drosos
- Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS FT, Manchester, UK
- Athens Microneurosurgery Laboratory, National and Kapodistrian University of Athens, Athens, Greece
- Department of Anatomy, National and Kapodistrian University of Athens, Athens, Greece
| | - Spyridon Komaitis
- Athens Microneurosurgery Laboratory, National and Kapodistrian University of Athens, Athens, Greece
- Centre for Spinal Studies and Surgery, Queen's Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Evangelia Liouta
- Hellenic Center for Neurosurgical Research “Prof. Petros Kokkalis”, Athens, Greece
| | - Eleftherios Neromyliotis
- Athens Microneurosurgery Laboratory, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurosurgery, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
| | - Eirini Charalampopoulou
- Athens Microneurosurgery Laboratory, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurosurgery, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
| | - Lykourgos Anastasopoulos
- Athens Microneurosurgery Laboratory, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurosurgery, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
| | - Theodosis Kalamatianos
- Athens Microneurosurgery Laboratory, National and Kapodistrian University of Athens, Athens, Greece
- Hellenic Center for Neurosurgical Research “Prof. Petros Kokkalis”, Athens, Greece
| | - Georgios P. Skandalakis
- Athens Microneurosurgery Laboratory, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurosurgery, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
| | - Theodoros Troupis
- Department of Anatomy, National and Kapodistrian University of Athens, Athens, Greece
| | - George Stranjalis
- Athens Microneurosurgery Laboratory, National and Kapodistrian University of Athens, Athens, Greece
- Hellenic Center for Neurosurgical Research “Prof. Petros Kokkalis”, Athens, Greece
- Department of Neurosurgery, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
| | - Aristotelis V. Kalyvas
- Athens Microneurosurgery Laboratory, National and Kapodistrian University of Athens, Athens, Greece
- Division of Neurosurgery, Department of Surgery, University Health Network, University of Toronto, Toronto, Canada
| | - Christos Koutsarnakis
- Athens Microneurosurgery Laboratory, National and Kapodistrian University of Athens, Athens, Greece
- Hellenic Center for Neurosurgical Research “Prof. Petros Kokkalis”, Athens, Greece
- Department of Neurosurgery, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
| |
Collapse
|
34
|
Qin T, Wang L, Xu H, Liu C, Shao Y, Li F, Wang Y, Jiang J, Lin H. rTMS concurrent with cognitive training rewires AD brain by enhancing GM-WM functional connectivity: a preliminary study. Cereb Cortex 2024; 34:bhad460. [PMID: 38037857 DOI: 10.1093/cercor/bhad460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) and cognitive training for patients with Alzheimer's disease (AD) can change functional connectivity (FC) within gray matter (GM). However, the role of white matter (WM) and changes of GM-WM FC under these therapies are still unclear. To clarify this problem, we applied 40 Hz rTMS over angular gyrus (AG) concurrent with cognitive training to 15 mild-moderate AD patients and analyzed the resting-state functional magnetic resonance imaging before and after treatment. Through AG-based FC analysis, corona radiata and superior longitudinal fasciculus (SLF) were identified as activated WM tracts. Compared with the GM results with AG as seed, more GM regions were found with activated WM tracts as seeds. The averaged FC, fractional amplitude of low-frequency fluctuation (fALFF), and regional homogeneity (ReHo) of the above GM regions had stronger clinical correlations (r/P = 0.363/0.048 vs 0.299/0.108, 0.351/0.057 vs 0.267/0.153, 0.420/0.021 vs 0.408/0.025, for FC/fALFF/ReHo, respectively) and better classification performance to distinguish pre-/post-treatment groups (AUC = 0.91 vs 0.88, 0.65 vs 0.63, 0.87 vs 0.82, for FC/fALFF/ReHo, respectively). Our results indicated that rTMS concurrent with cognitive training could rewire brain network by enhancing GM-WM FC in AD, and corona radiata and SLF played an important role in this process.
Collapse
Affiliation(s)
- Tong Qin
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Luyao Wang
- School of Life Science, Shanghai University, No. 99 Shangda Road, Baoshan District, Shanghai 200444, China
| | - Huanyu Xu
- School of Communication and Information Engineering, Shanghai University, No. 99 Shangda Road, Baoshan District, Shanghai 200444, China
| | - Chunyan Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Yuxuan Shao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Fangjie Li
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Yuping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Jiehui Jiang
- School of Life Science, Shanghai University, No. 99 Shangda Road, Baoshan District, Shanghai 200444, China
| | - Hua Lin
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| |
Collapse
|
35
|
Lima Santos JP, Hayes R, Franzen PL, Goldstein TR, Hasler BP, Buysse DJ, Siegle GJ, Dahl RE, Forbes EE, Ladouceur CD, McMakin DL, Ryan ND, Silk JS, Jalbrzikowski M, Soehner AM. The association between cortical gyrification and sleep in adolescents and young adults. Sleep 2024; 47:zsad282. [PMID: 37935899 PMCID: PMC10782503 DOI: 10.1093/sleep/zsad282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/06/2023] [Indexed: 11/09/2023] Open
Abstract
STUDY OBJECTIVES Healthy sleep is important for adolescent neurodevelopment, and relationships between brain structure and sleep can vary in strength over this maturational window. Although cortical gyrification is increasingly considered a useful index for understanding cognitive and emotional outcomes in adolescence, and sleep is also a strong predictor of such outcomes, we know relatively little about associations between cortical gyrification and sleep. We aimed to identify developmentally invariant (stable across age) or developmentally specific (observed only during discrete age intervals) gyrification-sleep relationships in young people. METHODS A total of 252 Neuroimaging and Pediatric Sleep Databank participants (9-26 years; 58.3% female) completed wrist actigraphy and a structural MRI scan. Local gyrification index (lGI) was estimated for 34 bilateral brain regions. Naturalistic sleep characteristics (duration, timing, continuity, and regularity) were estimated from wrist actigraphy. Regularized regression for feature selection was used to examine gyrification-sleep relationships. RESULTS For most brain regions, greater lGI was associated with longer sleep duration, earlier sleep timing, lower variability in sleep regularity, and shorter time awake after sleep onset. lGI in frontoparietal network regions showed associations with sleep patterns that were stable across age. However, in default mode network regions, lGI was only associated with sleep patterns from late childhood through early-to-mid adolescence, a period of vulnerability for mental health disorders. CONCLUSIONS We detected both developmentally invariant and developmentally specific ties between local gyrification and naturalistic sleep patterns. Default mode network regions may be particularly susceptible to interventions promoting more optimal sleep during childhood and adolescence.
Collapse
Affiliation(s)
| | - Rebecca Hayes
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter L Franzen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tina R Goldstein
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brant P Hasler
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel J Buysse
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Greg J Siegle
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ronald E Dahl
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Erika E Forbes
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Dana L McMakin
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Neal D Ryan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jennifer S Silk
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maria Jalbrzikowski
- Department of Psychiatry and Behavioral Sciences, Boston Children’s Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Adriane M Soehner
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
36
|
Zhang C, Zhu DM, Zhang Y, Chen T, Liu S, Chen J, Cai H, Zhu J, Yu Y. Neural substrates underlying REM sleep duration in patients with major depressive disorder: A longitudinal study combining multimodal MRI data. J Affect Disord 2024; 344:546-553. [PMID: 37848093 DOI: 10.1016/j.jad.2023.10.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023]
Abstract
INTRODUCTION Prior studies have discussed rapid eye movement (REM) sleep disturbance as a potential endophenotype of major depressive disorder (MDD). However, the neural substrates underlying the percentage of REM sleep duration (REM%) and its association with disease progression in MDD remain unclear. METHODS One hundred and fourteen MDD patients and 74 healthy controls (HCs) underwent resting-state functional and perfusion magnetic resonance imaging (MRI) scans as well as overnight polysomnography examination to assess brain function and REM%, with 48 patients completing follow-up visits. Correlation and mediation analyses were conducted to investigate the associations among baseline REM%, multimodal brain imaging measures, and the improvement of depressive symptoms at follow-up in MDD. RESULTS We found voxel-wise correlations between baseline REM% and multimodal brain imaging metrics in many brain regions involved in sensorimotor, visual processing, emotion, and cognition in patients with MDD. Moreover, the baseline REM% was correlated with the improvement of depressive symptoms from acute to remitted status in patients through regulating brain activity in the left inferior temporal gyrus and cerebral blood flow in the bilateral paracentral lobule. CONCLUSION Our findings help to identify the neural underpinnings of REM% in depression and highlight REM% as a potential prognostic biomarker to predict disease progression. These may inform future novel interventions of MDD from the perspective of regulating REM sleep.
Collapse
Affiliation(s)
- Cun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Dao-Min Zhu
- Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei 230022, China; Hefei Fourth People's Hospital, Hefei 230022, China; Anhui Mental Health Center, Hefei 230022, China
| | - Yu Zhang
- Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei 230022, China; Hefei Fourth People's Hospital, Hefei 230022, China; Anhui Mental Health Center, Hefei 230022, China
| | - Tao Chen
- Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei 230022, China; Hefei Fourth People's Hospital, Hefei 230022, China; Anhui Mental Health Center, Hefei 230022, China
| | - Siyu Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Jingyao Chen
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China.
| |
Collapse
|
37
|
Paban V, Mheich A, Spieser L, Sacher M. A multidimensional model of memory complaints in older individuals and the associated hub regions. Front Aging Neurosci 2023; 15:1324309. [PMID: 38187362 PMCID: PMC10771290 DOI: 10.3389/fnagi.2023.1324309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Memory complaints are highly prevalent among middle-aged and older adults, and they are frequently reported in individuals experiencing subjective cognitive decline (SCD). SCD has received increasing attention due to its implications for the early detection of dementia. This study aims to advance our comprehension of individuals with SCD by elucidating potential cognitive/psychologic-contributing factors and characterizing cerebral hubs within the brain network. To identify these potential contributing factors, a structural equation modeling approach was employed to investigate the relationships between various factors, such as metacognitive beliefs, personality, anxiety, depression, self-esteem, and resilience, and memory complaints. Our findings revealed that self-esteem and conscientiousness significantly influenced memory complaints. At the cerebral level, analysis of delta and theta electroencephalographic frequency bands recorded during rest was conducted to identify hub regions using a local centrality metric known as betweenness centrality. Notably, our study demonstrated that certain brain regions undergo changes in their hub roles in response to the pathology of SCD. Specifically, the inferior temporal gyrus and the left orbitofrontal area transition into hubs, while the dorsolateral prefrontal cortex and the middle temporal gyrus lose their hub function in the presence of SCD. This rewiring of the neural network may be interpreted as a compensatory response employed by the brain in response to SCD, wherein functional connectivity is maintained or restored by reallocating resources to other regions.
Collapse
Affiliation(s)
- Véronique Paban
- Aix-Marseille Université, CNRS, LNC (Laboratoire de Neurosciences Cognitives–UMR 7291), Marseille, France
| | - A. Mheich
- CHUV-Centre Hospitalier Universitaire Vaudois, Service des Troubles du Spectre de l’Autisme et Apparentés, Lausanne University Hospital, Lausanne, Switzerland
| | - L. Spieser
- Aix-Marseille Université, CNRS, LNC (Laboratoire de Neurosciences Cognitives–UMR 7291), Marseille, France
| | - M. Sacher
- University of Toulouse Jean-Jaurès, CNRS, LCLLE (Laboratoire Cognition, Langues, Langage, Ergonomie–UMR 5263), Toulouse, France
| |
Collapse
|
38
|
Chaudhary S, Hu S, Hu K, Dominguez JC, Chao HH, Li CSR. Sex differences in the effects of trait anxiety and age on resting-state functional connectivities of the amygdala. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2023; 14:100646. [PMID: 38105798 PMCID: PMC10723810 DOI: 10.1016/j.jadr.2023.100646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
Background Numerous studies characterized how resting-state functional connectivities (rsFCs) of the amygdala were disrupted in emotional disorders and varied with emotional traits, including anxiety. With trait anxiety known to diminish with age, a critical issue concerns disambiguating the effects of age and anxiety on amygdala rsFCs in studying the neural bases of individual differences in anxiety. Methods Two-hundred adults (83 women) 19-85 years of age underwent fMRI and assessment for trait anxiety. Amygdala rsFC correlates were identified using multiple regression with age and anxiety in the same model for all and separately in men and women. The rsFC correlates were examined for age-anxiety interaction. Results Anxiety was negatively correlated with amygdala-temporooccipital gyri rsFC in all and in men alone. In women, amgydala rsFC with the thalamus/pallidum, angular/supramarginal gyri, inferior temporal gyrus, and posterior insula correlated positively and rsFC with calcarine cortex and caudate correlated negatively with anxiety. We also observed sex differences in age correlation of amgydala-posterior cingulate cortex/precuneus and -insula/temporoparietal rsFCs, with stronger associations in women. In women alone, anxiety and age interacted to determine amygdala rsFC with the thalamus/pallidum, calcarine cortex, and caudate, with older age associated with stronger correlation between anxiety and the rsFCs. Limitations The findings need to be validated in an independent sample and further explored using task-based data. Conclusion Highlighting anxiety- and age- specific as well as interacting correlates of amygdala rsFCs and sex differences in the correlates, the findings may shed light on the neural markers of anxiety.
Collapse
Affiliation(s)
- Shefali Chaudhary
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Sien Hu
- Department of Psychology, State University of New York at Oswego, Oswego, NY 13126, USA
| | - Kesong Hu
- Department of Psychology, University of Arkansas, Little Rock, AR 72204, USA
| | | | - Herta H. Chao
- VA Connecticut Healthcare System, West Haven, CT 06516, USA
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
39
|
Debs LH, Patel KK, Moore-Hill D, Vale FL. Non-dominant temporal lobe surgery: a case report of prosopagnosia following cavernous malformation resection. Acta Neurol Belg 2023; 123:2349-2351. [PMID: 36622525 DOI: 10.1007/s13760-023-02185-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/05/2023] [Indexed: 01/10/2023]
Affiliation(s)
- Luca H Debs
- Department of Neurosurgery, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| | - Kajol K Patel
- Department of Neurology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Debra Moore-Hill
- Department of Neurology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Fernando L Vale
- Department of Neurosurgery, Medical College of Georgia at Augusta University, Augusta, GA, USA
| |
Collapse
|
40
|
Jangraw DC, Finn ES, Bandettini PA, Landi N, Sun H, Hoeft F, Chen G, Pugh KR, Molfese PJ. Inter-subject correlation during long narratives reveals widespread neural correlates of reading ability. Neuroimage 2023; 282:120390. [PMID: 37751811 PMCID: PMC10783814 DOI: 10.1016/j.neuroimage.2023.120390] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 09/28/2023] Open
Abstract
Recent work using fMRI inter-subject correlation analysis has provided new information about the brain's response to video and audio narratives, particularly in frontal regions not typically activated by single words. This approach is very well suited to the study of reading, where narrative is central to natural experience. But since past reading paradigms have primarily presented single words or phrases, the influence of narrative on semantic processing in the brain - and how that influence might change with reading ability - remains largely unexplored. In this study, we presented coherent stories to adolescents and young adults with a wide range of reading abilities. The stories were presented in alternating visual and auditory blocks. We used a dimensional inter-subject correlation analysis to identify regions in which better and worse readers had varying levels of consistency with other readers. This analysis identified a widespread set of brain regions in which activity timecourses were more similar among better readers than among worse readers. These differences were not detected with standard block activation analyses. Worse readers had higher correlation with better readers than with other worse readers, suggesting that the worse readers had "idiosyncratic" responses rather than using a single compensatory mechanism. Close inspection confirmed that these differences were not explained by differences in IQ or motion. These results suggest an expansion of the current view of where and how reading ability is reflected in the brain, and in doing so, they establish inter-subject correlation as a sensitive tool for future studies of reading disorders.
Collapse
Affiliation(s)
- David C Jangraw
- Section on Functional Imaging Methods, NIMH, Bethesda, MD, United States; Emotion and Development Branch, NIMH, Bethesda, MD, United States; Department of Electrical and Biomedical Engineering, University of Vermont, Burlington, VT, United States.
| | - Emily S Finn
- Section on Functional Imaging Methods, NIMH, Bethesda, MD, United States; Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| | - Peter A Bandettini
- Section on Functional Imaging Methods, NIMH, Bethesda, MD, United States; Center for Multimodal Neuroimaging, NIMH, Bethesda, MD, United States
| | - Nicole Landi
- Haskins Laboratories, New Haven, CT, United States
| | - Haorui Sun
- Department of Electrical and Biomedical Engineering, University of Vermont, Burlington, VT, United States
| | - Fumiko Hoeft
- Haskins Laboratories, New Haven, CT, United States; Department of Psychological Sciences, University of Connecticut, Hartford, CT, United States
| | - Gang Chen
- Statistical Computing Core, NIMH, Bethesda, MD, United States
| | - Kenneth R Pugh
- Haskins Laboratories, New Haven, CT, United States; Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
| | - Peter J Molfese
- Center for Multimodal Neuroimaging, NIMH, Bethesda, MD, United States; Haskins Laboratories, New Haven, CT, United States
| |
Collapse
|
41
|
Sun F, Huang Y, Wang J, Hong W, Zhao Z. Research Progress in Diffusion Spectrum Imaging. Brain Sci 2023; 13:1497. [PMID: 37891866 PMCID: PMC10605731 DOI: 10.3390/brainsci13101497] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Studies have demonstrated that many regions in the human brain include multidirectional fiber tracts, in which the diffusion of water molecules within image voxels does not follow a Gaussian distribution. Therefore, the conventional diffusion tensor imaging (DTI) that hypothesizes a single fiber orientation within a voxel is intrinsically incapable of revealing the complex microstructures of brain tissues. Diffusion spectrum imaging (DSI) employs a pulse sequence with different b-values along multiple gradient directions to sample the diffusion information of water molecules in the entire q-space and then quantitatively estimates the diffusion profile using a probability density function with a high angular resolution. Studies have suggested that DSI can reliably observe the multidirectional fibers within each voxel and allow fiber tracking along different directions, which can improve fiber reconstruction reflecting the true but complicated brain structures that were not observed in the previous DTI studies. Moreover, with increasing angular resolution, DSI is able to reveal new neuroimaging biomarkers used for disease diagnosis and the prediction of disorder progression. However, so far, this method has not been used widely in clinical studies, due to its overly long scanning time and difficult post-processing. Within this context, the current paper aims to conduct a comprehensive review of DSI research, including the fundamental principles, methodology, and application progress of DSI tractography. By summarizing the DSI studies in recent years, we propose potential solutions towards the existing problem in the methodology and applications of DSI technology as follows: (1) using compressed sensing to undersample data and to reconstruct the diffusion signal may be an efficient and promising method for reducing scanning time; (2) the probability density function includes more information than the orientation distribution function, and it should be extended in application studies; and (3) large-sample study is encouraged to confirm the reliability and reproducibility of findings in clinical diseases. These findings may help deepen the understanding of the DSI method and promote its development in clinical applications.
Collapse
Affiliation(s)
- Fenfen Sun
- Center for Brain, Mind and Education, Shaoxing University, Shaoxing 312000, China; (F.S.); (Y.H.); (J.W.)
| | - Yingwen Huang
- Center for Brain, Mind and Education, Shaoxing University, Shaoxing 312000, China; (F.S.); (Y.H.); (J.W.)
| | - Jingru Wang
- Center for Brain, Mind and Education, Shaoxing University, Shaoxing 312000, China; (F.S.); (Y.H.); (J.W.)
| | - Wenjun Hong
- Department of Rehabilitation Medicine, Afiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China;
| | - Zhiyong Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
42
|
Ping L, Sun S, Zhou C, Que J, You Z, Xu X, Cheng Y. Altered topology of individual brain structural covariance networks in major depressive disorder. Psychol Med 2023; 53:6921-6932. [PMID: 37427670 DOI: 10.1017/s003329172300168x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
BACKGROUND The neurobiological pathogenesis of major depression disorder (MDD) remains largely controversial. Previous literatures with limited sample size utilizing group-level structural covariance networks (SCN) commonly generated mixed findings regarding the topology of brain networks. METHODS We analyzed T1 images from a high-powered multisite sample including 1173 patients with MDD and 1019 healthy controls (HCs). We used regional gray matter volume to construct individual SCN by utilizing a novel approach based on the interregional effect size difference. We further investigated MDD-related structural connectivity alterations using topological metrics. RESULTS Compared to HCs, the MDD patients showed a shift toward randomization characterized by increased integration. Further subgroup analysis of patients in different stages revealed this randomization pattern was also observed in patients with recurrent MDD, while the first-episode drug naïve patients exhibited decreased segregation. Altered nodal properties in several brain regions which have a key role in both emotion regulation and executive control were also found in MDD patients compared with HCs. The abnormalities in inferior temporal gyrus were not influenced by any specific site. Moreover, antidepressants increased nodal efficiency in the anterior ventromedial prefrontal cortex. CONCLUSIONS The MDD patients at different stages exhibit distinct patterns of randomization in their brain networks, with increased integration during illness progression. These findings provide valuable insights into the disruption in structural brain networks that occurs in patients with MDD and might be useful to guide future therapeutic interventions.
Collapse
Affiliation(s)
- Liangliang Ping
- Department of Psychiatry, Xiamen Xianyue Hospital, Xiamen, China
| | - Shan Sun
- Department of Psychiatry, Xiamen Xianyue Hospital, Xiamen, China
| | - Cong Zhou
- School of Mental Health, Jining Medical University, Jining, China
| | - Jianyu Que
- Department of Psychiatry, Xiamen Xianyue Hospital, Xiamen, China
| | - Zhiyi You
- Department of Psychiatry, Xiamen Xianyue Hospital, Xiamen, China
| | - Xiufeng Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuqi Cheng
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
43
|
Ramli NZ, Yahaya MF, Mohd Fahami NA, Abdul Manan H, Singh M, Damanhuri HA. Brain volumetric changes in menopausal women and its association with cognitive function: a structured review. Front Aging Neurosci 2023; 15:1158001. [PMID: 37818479 PMCID: PMC10561270 DOI: 10.3389/fnagi.2023.1158001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
The menopausal transition has been proposed to put women at risk for undesirable neurological symptoms, including cognitive decline. Previous studies suggest that alterations in the hormonal milieu modulate brain structures associated with cognitive function. This structured review provides an overview of the relevant studies that have utilized MRI to report volumetric differences in the brain following menopause, and its correlations with the evaluated cognitive functions. We performed an electronic literature search using Medline (Ovid) and Scopus to identify studies that assessed the influence of menopause on brain structure with MRI. Fourteen studies met the inclusion criteria. Brain volumetric differences have been reported most frequently in the frontal and temporal cortices as well as the hippocampus. These regions are important for higher cognitive tasks and memory. Additionally, the deficit in verbal and visuospatial memory in postmenopausal women has been associated with smaller regional brain volumes. Nevertheless, the limited number of eligible studies and cross-sectional study designs warrant further research to draw more robust conclusions.
Collapse
Affiliation(s)
- Nur Zuliani Ramli
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nur Azlina Mohd Fahami
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Hanani Abdul Manan
- Functional Image Processing Laboratory, Department of Radiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Meharvan Singh
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Hanafi Ahmad Damanhuri
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
44
|
Yang J, Jiang X, Gu L, Li J, Wu Y, Li L, Xiong J, Lv H, Kuang H, Jiang J. Decreased Functional Connectivity of the Core Pain Matrix in Herpes Zoster and Postherpetic Neuralgia Patients. Brain Sci 2023; 13:1357. [PMID: 37891726 PMCID: PMC10605464 DOI: 10.3390/brainsci13101357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
The purpose of this study was to explore the resting-state functional connectivity (FC) changes among the pain matrix and other brain regions in herpes zoster (HZ) and postherpetic neuralgia (PHN) patients. Fifty-four PHN patients, 52 HZ patients, and 54 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging (rs-fMRI) scans. We used a seed-based FC approach to investigate whether HZ and PHN patients exhibited abnormal FC between the pain matrix and other brain regions compared to HCs. A random forest (RF) model was constructed to explore the feasibility of potential neuroimaging indicators to distinguish the two groups of patients. We found that PHN patients exhibited decreased FCs between the pain matrix and the putamen, superior temporal gyrus, middle frontal gyrus, middle cingulate gyrus, amygdala, precuneus, and supplementary motor area compared with HCs. Similar results were observed in HZ patients. The disease durations of PHN patients were negatively correlated with those aforementioned impaired FCs. The results of machine learning experiments showed that the RF model combined with FC features achieved a classification accuracy of 75%. Disrupted FC among the pain matrix and other regions in HZ and PHN patients may affect multiple dimensions of pain processing.
Collapse
Affiliation(s)
- Jiaojiao Yang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang 330006, China; (J.Y.); (X.J.); (Y.W.); (L.L.); (J.X.); (H.L.); (H.K.)
- Neuroimaging Laboratory, Jiangxi Province Medical Imaging Research Institute, 17 Yongwaizheng Street, Nanchang 330006, China
| | - Xiaofeng Jiang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang 330006, China; (J.Y.); (X.J.); (Y.W.); (L.L.); (J.X.); (H.L.); (H.K.)
- Neuroimaging Laboratory, Jiangxi Province Medical Imaging Research Institute, 17 Yongwaizheng Street, Nanchang 330006, China
| | - Lili Gu
- Department of Pain, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang 330006, China;
| | - Jiahao Li
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta West Road, Xi’an 710061, China;
| | - Ying Wu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang 330006, China; (J.Y.); (X.J.); (Y.W.); (L.L.); (J.X.); (H.L.); (H.K.)
- Neuroimaging Laboratory, Jiangxi Province Medical Imaging Research Institute, 17 Yongwaizheng Street, Nanchang 330006, China
| | - Linghao Li
- Department of Radiology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang 330006, China; (J.Y.); (X.J.); (Y.W.); (L.L.); (J.X.); (H.L.); (H.K.)
- Neuroimaging Laboratory, Jiangxi Province Medical Imaging Research Institute, 17 Yongwaizheng Street, Nanchang 330006, China
| | - Jiaxin Xiong
- Department of Radiology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang 330006, China; (J.Y.); (X.J.); (Y.W.); (L.L.); (J.X.); (H.L.); (H.K.)
- Neuroimaging Laboratory, Jiangxi Province Medical Imaging Research Institute, 17 Yongwaizheng Street, Nanchang 330006, China
| | - Huiting Lv
- Department of Radiology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang 330006, China; (J.Y.); (X.J.); (Y.W.); (L.L.); (J.X.); (H.L.); (H.K.)
- Neuroimaging Laboratory, Jiangxi Province Medical Imaging Research Institute, 17 Yongwaizheng Street, Nanchang 330006, China
| | - Hongmei Kuang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang 330006, China; (J.Y.); (X.J.); (Y.W.); (L.L.); (J.X.); (H.L.); (H.K.)
- Neuroimaging Laboratory, Jiangxi Province Medical Imaging Research Institute, 17 Yongwaizheng Street, Nanchang 330006, China
| | - Jian Jiang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang 330006, China; (J.Y.); (X.J.); (Y.W.); (L.L.); (J.X.); (H.L.); (H.K.)
- Neuroimaging Laboratory, Jiangxi Province Medical Imaging Research Institute, 17 Yongwaizheng Street, Nanchang 330006, China
| |
Collapse
|
45
|
Santos JPL, Hayes R, Franzen PL, Goldstein TR, Hasler BP, Buysse DJ, Siegle GJ, Dahl RE, Forbes EE, Ladouceur CD, McMakin DL, Ryan ND, Silk JS, Jalbrzikowski M, Soehner AM. The association between cortical gyrification and sleep in adolescents and young adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.557966. [PMID: 37745609 PMCID: PMC10516006 DOI: 10.1101/2023.09.15.557966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Study objectives Healthy sleep is important for adolescent neurodevelopment, and relationships between brain structure and sleep can vary in strength over this maturational window. Although cortical gyrification is increasingly considered a useful index for understanding cognitive and emotional outcomes in adolescence, and sleep is also a strong predictor of such outcomes, we know relatively little about associations between cortical gyrification and sleep. Methods Using Local gyrification index (lGI) of 34 bilateral brain regions and regularized regression for feature selection, we examined gyrification-sleep relationships in the Neuroimaging and Pediatric Sleep databank (252 participants; 9-26 years; 58.3% female) and identified developmentally invariant (stable across age) or developmentally specific (observed only during discrete age intervals) brain-sleep associations. Naturalistic sleep characteristics (duration, timing, continuity, and regularity) were estimated from wrist actigraphy. Results For most brain regions, greater lGI was associated with longer sleep duration, earlier sleep timing, lower variability in sleep regularity, and shorter time awake after sleep onset. lGI in frontoparietal network regions showed associations with sleep patterns that were stable across age. However, in default mode network regions, lGI was only associated with sleep patterns from late childhood through early-to-mid adolescence, a period of vulnerability for mental health disorders. Conclusions We detected both developmentally invariant and developmentally specific ties between local gyrification and naturalistic sleep patterns. Default mode network regions may be particularly susceptible to interventions promoting more optimal sleep during childhood and adolescence.
Collapse
Affiliation(s)
| | - Rebecca Hayes
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter L Franzen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tina R Goldstein
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brant P Hasler
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel J Buysse
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Greg J Siegle
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ronald E Dahl
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Erika E Forbes
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Dana L McMakin
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Neal D Ryan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jennifer S Silk
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maria Jalbrzikowski
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Adriane M Soehner
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
46
|
Wu X, Guo Y, Xue J, Dong Y, Sun Y, Wang B, Xiang J, Liu Y. Abnormal and Changing Information Interaction in Adults with Attention-Deficit/Hyperactivity Disorder Based on Network Motifs. Brain Sci 2023; 13:1331. [PMID: 37759932 PMCID: PMC10526475 DOI: 10.3390/brainsci13091331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/27/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Network motif analysis approaches provide insights into the complexity of the brain's functional network. In recent years, attention-deficit/hyperactivity disorder (ADHD) has been reported to result in abnormal information interactions in macro- and micro-scale functional networks. However, most existing studies remain limited due to potentially ignoring meso-scale topology information. To address this gap, we aimed to investigate functional motif patterns in ADHD to unravel the underlying information flow and analyze motif-based node roles to characterize the different information interaction methods for identifying the abnormal and changing lesion sites of ADHD. The results showed that the interaction functions of the right hippocampus and the right amygdala were significantly increased, which could lead patients to develop mood disorders. The information interaction of the bilateral thalamus changed, influencing and modifying behavioral results. Notably, the capability of receiving information in the left inferior temporal and the right lingual gyrus decreased, which may cause difficulties for patients in processing visual information in a timely manner, resulting in inattention. This study revealed abnormal and changing information interactions based on network motifs, providing important evidence for understanding information interactions at the meso-scale level in ADHD patients.
Collapse
Affiliation(s)
- Xubin Wu
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (X.W.); (J.X.); (Y.D.); (Y.S.); (B.W.)
| | - Yuxiang Guo
- School of Software, Taiyuan University of Technology, Taiyuan 030024, China;
| | - Jiayue Xue
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (X.W.); (J.X.); (Y.D.); (Y.S.); (B.W.)
| | - Yanqing Dong
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (X.W.); (J.X.); (Y.D.); (Y.S.); (B.W.)
| | - Yumeng Sun
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (X.W.); (J.X.); (Y.D.); (Y.S.); (B.W.)
| | - Bin Wang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (X.W.); (J.X.); (Y.D.); (Y.S.); (B.W.)
| | - Jie Xiang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (X.W.); (J.X.); (Y.D.); (Y.S.); (B.W.)
| | - Yi Liu
- Department of Anesthesiology, Shanxi Province Cancer Hospital, Taiyuan 030013, China
| |
Collapse
|
47
|
Tolomeo S, Lau S, Ragunath BL, Setoh P, Esposito G. A voxel-based morphometry study on gray matter correlates of need for cognition and exploratory information seeking. Brain Behav 2023; 13:e3138. [PMID: 37491807 PMCID: PMC10498082 DOI: 10.1002/brb3.3138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Need for cognition (NFC) represents interindividual differences in tendencies to engage and enjoy cognitive endeavors. Exploratory information seeking (EIS) refers to individual tendencies to attain cognitive stimulation through acquiring information related to consumer products or services out of curiosity. METHODS The current study aims to provide an in-depth investigation of the relationship between NFC and EIS and extend this relation to determine neuroanatomical correlates of NFC and EIS. This study proposed two central hypotheses: (1) NFC and EIS scores are positively correlated and (2) the gray matter volume (GMV) of brain regions implicated in motivation, valuation, and reward systems are positively associated with both NFC and EIS. Self-report and structural MRI data of 91 Singaporean Chinese participants were utilized for the study. RESULTS No statistically significant correlation was revealed between NFC and EIS scores. Neuroanatomical associations of the GMV of brain regions implicated in visuospatial, attentional, and reward processing with individual constructs of interest were explored. When examining NFC and EIS scores, larger GMV in the right pallidum and left fusiform gyrus was found in participants that reported higher levels of NFC (vs. lower NFC levels), larger GMV in the left precuneus in those with greater tendencies to engage in EIS (vs. lower EIS levels), and larger GMV of the left fusiform gyrus associated with greater endorsement of both NFC and EIS. When investigating the exploratory factor analysis-generated factors of NFC and EIS, similar patterns of associations were found between self-reported levels of agreement against factors and GMV of brain regions implicated. CONCLUSIONS Correlational analysis and exploratory factor analysis indicated the absence of a relationship between NFC and EIS. Additionally, voxel-based morphometry whole-brain analysis revealed neuroanatomical correlates of the GMV of brain regions implicated in visuospatial, attentional, and reward processing with NFC and EIS.
Collapse
Affiliation(s)
- Serenella Tolomeo
- Institute of High Performance ComputingAgency for Science, Technology and ResearchSingaporeSingapore
| | - Shermine Lau
- Psychology Program, School of Social SciencesNanyang Technological UniversitySingapore
| | - Bindiya L. Ragunath
- Psychology Program, School of Social SciencesNanyang Technological UniversitySingapore
| | - Peipei Setoh
- Psychology Program, School of Social SciencesNanyang Technological UniversitySingapore
| | - Gianluca Esposito
- Department of Psychology and Cognitive ScienceUniversity of TrentoRoveretoItaly
| |
Collapse
|
48
|
Huang L, Cui L, Chen K, Han Z, Guo Q. Functional and structural network changes related with cognition in semantic dementia longitudinally. Hum Brain Mapp 2023; 44:4287-4298. [PMID: 37209400 PMCID: PMC10318263 DOI: 10.1002/hbm.26345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/06/2023] [Accepted: 05/01/2023] [Indexed: 05/22/2023] Open
Abstract
Longitudinal changes in the white matter/functional brain networks of semantic dementia (SD), as well as their relations with cognition remain unclear. Using a graph-theoretic method, we examined the neuroimaging (T1, diffusion tensor imaging, functional MRI) network properties and cognitive performance in processing semantic knowledge of general and six modalities (i.e., object form, color, motion, sound, manipulation and function) from 31 patients (at two time points with an interval of 2 years) and 20 controls (only at baseline). Partial correlation analyses were carried out to explore the relationships between the network changes and the declines of semantic performance. SD exhibited aberrant general and modality-specific semantic impairment, and gradually worsened over time. Overall, the brain networks showed a decreased global and local efficiency in the functional network organization but a preserved structural network organization with a 2-year follow-up. With disease progression, both structural and functional alterations were found to be extended to the temporal and frontal lobes. The regional topological alteration in the left inferior temporal gyrus (ITG.L) was significantly correlated with general semantic processing. Meanwhile, the right superior temporal gyrus and right supplementary motor area were identified to be associated with color and motor-related semantic attributes. SD manifested disrupted structural and functional network pattern longitudinally. We proposed a hub region (i.e., ITG.L) of semantic network and distributed modality-specific semantic-related regions. These findings support the hub-and-spoke semantic theory and provide targets for future therapy.
Collapse
Affiliation(s)
- Lin Huang
- Department of GerontologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Liang Cui
- Department of GerontologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Keliang Chen
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Zaizhu Han
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Qihao Guo
- Department of GerontologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
49
|
Cossette-Roberge H, Li J, Citherlet D, Nguyen DK. Localizing and lateralizing value of auditory phenomena in seizures. Epilepsy Behav 2023; 145:109327. [PMID: 37422934 DOI: 10.1016/j.yebeh.2023.109327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Auditory seizures (AS) are a rare type of focal seizures. AS are classically thought to involve a seizure onset zone (SOZ) in the temporal lobe, but there remain uncertainties about their localizing and lateralizing value. We conducted a narrative literature review with the aim of providing an up-to-date description of the lateralizing and localizing value of AS. METHODS The databases PubMed, Scopus, and Google Scholar were searched for literature on AS in December 2022. All cortical stimulation studies, case reports, and case series were analyzed to assess for auditory phenomena that were suggestive of AS and to evaluate if the lateralization and/or localization of the SOZ could be determined. We classified AS according to their semiology (e.g., simple hallucination versus complex hallucination) and the level of evidence with which the SOZ could be predicted. RESULTS A total of 174 cases comprising 200 AS were analyzed from 70 articles. Across all studies, the SOZ of AS were more often in the left (62%) than in the right (38%) hemisphere. AS heard bilaterally followed this trend. Unilaterally heard AS were more often due to a SOZ in the contralateral hemisphere (74%), although they could also be ipsilateral (26%). The SOZ for AS was not limited to the auditory cortex, nor to the temporal lobe. The areas more frequently involved in the temporal lobe were the superior temporal gyrus (STG) and mesiotemporal structures. Extratemporal locations included parietal, frontal, insular, and rarely occipital structures. CONCLUSION Our review highlighted the complexity of AS and their importance in the identification of the SOZ. Due to the limited data and heterogeneous presentation of AS in the literature, the patterns associated with different AS semiologies warrant further research.
Collapse
Affiliation(s)
- Hélène Cossette-Roberge
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Neurology Division, Centre Hospitalier de l'Université de Sherbrooke (CHUS), Sherbrooke, QC, Canada.
| | - Jimmy Li
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Neurology Division, Centre Hospitalier de l'Université de Sherbrooke (CHUS), Sherbrooke, QC, Canada
| | - Daphné Citherlet
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Dang Khoa Nguyen
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Department of Neurosciences, Université de Montréal, Montreal, QC, Canada; Neurology Division, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| |
Collapse
|
50
|
Tsai CL, Chou KH, Lee PL, Liang CS, Kuo CY, Lin GY, Lin YK, Hsu YC, Ko CA, Yang FC, Lin CP. Shared alterations in hippocampal structural covariance in subjective cognitive decline and migraine. Front Aging Neurosci 2023; 15:1191991. [PMID: 37409010 PMCID: PMC10318340 DOI: 10.3389/fnagi.2023.1191991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
Introduction Subjective cognitive decline (SCD) and migraine are often comorbid. Hippocampal structural abnormalities have been observed in individuals with both SCD and migraine. Given the known structural and functional heterogeneity along the long axis (anterior to posterior) of the hippocampus, we aimed to identify altered patterns of structural covariance within hippocampal subdivisions associated with SCD and migraine comorbidities. Methods A seed-based structural covariance network analysis was applied to examine large-scale anatomical network changes of the anterior and posterior hippocampus in individuals with SCD, migraine and healthy controls. Conjunction analyses were used to identify shared network-level alterations in the hippocampal subdivisions in individuals with both SCD and migraine. Results Altered structural covariance integrity of the anterior and posterior hippocampus was observed in the temporal, frontal, occipital, cingulate, precentral, and postcentral areas in individuals with SCD and migraine compared with healthy controls. Conjunction analysis revealed that, in both SCD and migraine, altered structural covariance integrity was shared between the anterior hippocampus and inferior temporal gyri and between the posterior hippocampus and precentral gyrus. Additionally, the structural covariance integrity of the posterior hippocampus-cerebellum axis was associated with the duration of SCD. Conclusion This study highlighted the specific role of hippocampal subdivisions and specific structural covariance alterations within these subdivisions in the pathophysiology of SCD and migraine. These network-level changes in structural covariance may serve as potential imaging signatures for individuals who have both SCD and migraine.
Collapse
Affiliation(s)
- Chia-Lin Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Kun-Hsien Chou
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Pei-Lin Lee
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Chen-Yuan Kuo
- Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Guan-Yu Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Yu-Kai Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City, Taiwan
| | - Yi-Chih Hsu
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Chien-An Ko
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Fu-Chi Yang
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City, Taiwan
| | - Ching-Po Lin
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| |
Collapse
|