1
|
Douglas FL, Cyril C, Marc W, Athena D, Torsten ST. Classification Schemes of Altered States of Consciousness. Neurosci Biobehav Rev 2025:106178. [PMID: 40294668 DOI: 10.1016/j.neubiorev.2025.106178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 04/30/2025]
Abstract
In recent years, there has been a renewed interest in the conceptual and empirical study of altered states of consciousness (ASCs) induced pharmacologically or otherwise, driven by their potential clinical applications. To draw attention to the rich history of research in this domain, we review prominent classification schemes that have been proposed to introduce systematicity in the scientific study of ASCs. The reviewed ASC classification schemes fall into three groups according to the criteria they use for categorization: (1) based on the nature, variety, and intensity of subjective experiences (state-based), including conceptual descriptions and psychometric assessments, (2) based on the technique of induction (method-based), and (3) descriptions of neurophysiological mechanisms of ASCs (neuro/physio-based). By comparing and extending existing classification schemes, we can enhance efforts to identify neural correlates of consciousness, particularly when examining mechanisms of ASC induction and the resulting subjective experience. Furthermore, an overview of what defining ASC characteristics different authors have proposed can inform future research in the conceptualization and quantification of ASC subjective effects, including the identification of those that might be relevant in clinical research. This review concludes by clustering the concepts from the state-based schemes, which are suggested for classifying ASC experiences. The resulting clusters can inspire future approaches to formulate and quantify the core phenomenology of ASC experiences to assist in basic and clinical research.
Collapse
Affiliation(s)
- Fort Larry Douglas
- Physiology of Cognition Lab, GIGA Research, CRC Human Imaging Research Unit, University of Liège, Liège, Belgium
| | - Costines Cyril
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Institute for Frontier Areas of Psychology and Mental Health (IGPP), Freiburg, Germany; CIRCE - Collaboration for Interdisciplinary Research on Conscious Experience, Teupitz, Germany
| | - Wittmann Marc
- Institute for Frontier Areas of Psychology and Mental Health (IGPP), Freiburg, Germany
| | - Demertzi Athena
- Physiology of Cognition Lab, GIGA Research, CRC Human Imaging Research Unit, University of Liège, Liège, Belgium; Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium
| | - Schmidt Timo Torsten
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany; CIRCE - Collaboration for Interdisciplinary Research on Conscious Experience, Teupitz, Germany.
| |
Collapse
|
2
|
Bradley ER, Sakai K, Fernandes-Osterhold G, Szigeti B, Ludwig C, Ostrem JL, Tanner CM, Bock MA, Llerena K, Finley PR, O'Donovan A, Zuzuarregui JRP, Busby Z, McKernan A, Penn AD, Wang ACC, Rosen RC, Woolley JD. Psilocybin therapy for mood dysfunction in Parkinson's disease: an open-label pilot trial. Neuropsychopharmacology 2025:10.1038/s41386-025-02097-0. [PMID: 40205013 DOI: 10.1038/s41386-025-02097-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/06/2025] [Accepted: 03/20/2025] [Indexed: 04/11/2025]
Abstract
Mood dysfunction is highly prevalent in Parkinson's disease (PD), a main predictor of functional decline, and difficult to treat-novel interventions are critically needed. Psilocybin shows early promise for treating depression and anxiety, but its potential in PD is unknown, as safety concerns have excluded people with neurodegenerative disease from previous trials. In this open-label pilot (NCT04932434), we examined the feasibility of psilocybin therapy among people with mild to moderate stage PD plus depression and/or anxiety. 12 participants (mean age 63.2 ± 8.2 years, 5 women) received psilocybin (one 10 mg followed by one 25 mg dose) with psychotherapy. There were no serious adverse events, no medical interventions required to manage effects of psilocybin, and no exacerbation of psychosis. Ten participants experienced treatment-emergent adverse events; the most frequent were anxiety, nausea, and increased blood pressure. We observed no worsening of PD symptomology measured by the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS). On the contrary, non-motor (MDS-UPDRS Part I: -13.8 ± 1.3, p < 0.001, Hedges' g = 3.0) and motor symptoms (Part II: -7.5 ± 0.9, p < 0.001, g = 1.2; Part III: -4.6 ± 1.3, p = 0.001; g = 0.3) as well as performance in select cognitive domains (Paired Associates Learning [-0.44 ± 0.14, p = .003, g = 0.4], Spatial Working Memory [-0.52 ± 0.17, p = 0.003, g = 0.7], and Probabilistic Reversal Learning [2.9 ± 0.9, p = 0.003, g = 1.3]) improved post-treatment, and improvements were sustained until the final safety assessment one month following drug exposure. Baseline Montgomery-Asberg Depression Rating Scale (MADRS) and Hamilton Anxiety Rating Scale (HAM-A) scores were 21.0 ± 8.7 and 17.0 ± 3.7, respectively. Both improved to a clinically meaningful degree post-treatment; these improvements persisted to the final assessment three months following drug exposure (MADRS: -9.3 ± 2.7, p = .001, g = 1.0; HAM-A: -3.8 ± 1.7; p = 0.031, g = 0.7). This study provides the first data on psilocybin's effects in any neurodegenerative disease. Results suggest that psilocybin therapy in PD warrants further investigation.
Collapse
Affiliation(s)
- Ellen R Bradley
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.
- Parkinson's Disease Research, Education, and Clinical Center, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA.
| | - Kimberly Sakai
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Gisele Fernandes-Osterhold
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- California Institute of Integral Studies, San Francisco, CA, USA
| | - Balázs Szigeti
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Centre for Psychedelic Research, Imperial College London, London, UK
| | - Connie Ludwig
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Jill L Ostrem
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Caroline M Tanner
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Meredith A Bock
- Department of Medicine, Division of Geriatrics, University of California, San Francisco, CA, USA
- Remo Health, Inc., San Francisco, CA, USA
| | - Katiah Llerena
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Patrick R Finley
- School of Pharmacy, University of California, San Francisco, CA, USA
- Women's Health Center, University of California, San Francisco, CA, USA
| | - Aoife O'Donovan
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Jose Rafael P Zuzuarregui
- California Institute of Integral Studies, San Francisco, CA, USA
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Zachary Busby
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Amber McKernan
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Andrew D Penn
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- School of Nursing, University of California, San Francisco, CA, USA
| | - Aliss C C Wang
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Raymond C Rosen
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Joshua D Woolley
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| |
Collapse
|
3
|
Dai S, Long Y, Xiao J, Wang Y, Wang X, Shao P, Huang M, Xu Y, Liu F, Tang Y, Xu X, Wu X, Zheng Y, Mo J, Yang J, Huang J, Wu R. A comprehensive metabolomic and lipidomic study of olanzapine in the treatment of first-episode schizophrenia. Asian J Psychiatr 2025; 105:104387. [PMID: 40015078 DOI: 10.1016/j.ajp.2025.104387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/21/2025] [Accepted: 02/02/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Despite advances in research, critical gaps remain in understanding the molecular mechanisms of antipsychotic medications such as olanzapine. This study investigated the molecular pathways by which olanzapine exerts its therapeutic effects and causes metabolic side effects by analyzing changes in the serum metabolic and lipid profiles of patients with first-episode schizophrenia. METHODS Clinical symptoms were assessed using the Positive and Negative Symptom Scale (PANSS) in 43 patients with first-episode schizophrenia. Body mass index (BMI) and fasting glucose (GLU) and tetraplex lipids levels were measured before and after treatment. Changes in patient serum metabolic and lipid profiles before and after treatment were examined. Correlation analysis was used to identify differential metabolites and lipid molecules that were significantly associated with changes in clinical symptoms and metabolic side-effect indicators. RESULTS After 8 weeks of olanzapine treatment, there was a significant decrease in all PANSS scores and a significant increase in BMI and GLU, total cholesterol, and low-density lipoprotein cholesterol levels in patients with first-episode schizophrenia. Metabolomic and lipidomic analyses identified 70 metabolites and 67 lipids in the serum that changed significantly after treatment. Correlation analysis revealed that the clinical symptom changes in the patients before and after treatment were significantly associated with 11 metabolites (most related to inflammation and oxidative stress), while the metabolic side-effect indicators were significantly associated with 14 lipid molecules. CONCLUSIONS Olanzapine may improve psychotic symptoms by modulating inflammation and oxidative stress-related metabolites; however, olanzapine may also cause metabolic disturbances by affecting lipid metabolic pathways.
Collapse
Affiliation(s)
- Si Dai
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yujun Long
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jingmei Xiao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Ying Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xiaoyi Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Ping Shao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Yifeng Xu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Fang Liu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China
| | - Yanqing Tang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning 110000, China
| | - Xijia Xu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, Jiangsu 210000, China
| | - Xiaoli Wu
- Department of Psychiatry, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510000, China
| | - Yingjun Zheng
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Jianzhong Mo
- Department of Psychiatry, Changsha County Third Hospital, Changsha, Hunan 410100, China
| | - Jin Yang
- Department of Psychiatry,The Second People's Hospital of Dali Bai Autonomous Prefecture, Dali, Yunnan 671000, China
| | - Jing Huang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Department of Psychiatry, The Third Peoples Hospital of Tongren, Tongren, Guizhou 554300, China.
| | - Rerong Wu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
4
|
Doss MK, Mallaroni P, Mason NL, Ramaekers JG. Psilocybin and 2C-B at Encoding Distort Episodic Familiarity. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:1048-1057. [PMID: 38942147 DOI: 10.1016/j.bpsc.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND As research on psychedelics (hallucinogenic serotonin receptor 2A agonists) progresses, it is important to delineate the reliability of supposedly unique effects across this drug class. One such effect is how psychedelics impair the formation (i.e., encoding) of hippocampal-dependent recollections (retrieval of specific details) while potentially enhancing the encoding of cortical-dependent familiarity (a feeling of knowing that a stimulus has been previously experienced). METHODS In a double-blind, placebo-controlled, within-participants study (N = 20), we tested the acute effects of 2 distinct psychedelics, psilocybin and 2C-B, on the encoding of emotional episodic memories. During acute drug effects, participants viewed negative, neutral, and positive pictures. The following day (while sober), participants completed 2 separate memory tests for these pictures. RESULTS Using computational models of memory confidence, we found trends for psilocybin and 2C-B at encoding to impair estimates of recollection that were supported by other measures/analyses. Surprisingly, psilocybin and 2C-B at encoding impaired estimates of familiarity, but these impairments were likely due to a misattribution of heightened familiarity, because both drugs at encoding selectively increased familiarity-based false alarms, especially for negative and positive stimuli. Psilocybin and 2C-B at encoding also tended to impair estimates of metamemory (understanding one's own memory) for negative and neutral memories but enhanced estimates of metamemory for positive memories, although these effects were less reliable in additional analyses. CONCLUSIONS Despite differences in their chemistry, pharmacology, and subjective effects, both psilocybin and 2C-B distorted episodic familiarity, suggesting a common neurocognitive mechanism across psychedelics that may drive other phenomena.
Collapse
Affiliation(s)
- Manoj K Doss
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic Research & Therapy, The University of Texas at Austin Dell Medical School, Austin, Texas; Department of Psychiatry and Behavioral Sciences, Center for Psychedelic & Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Pablo Mallaroni
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Natasha L Mason
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Johannes G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
5
|
Redinbaugh MJ, Saalmann YB. Contributions of Basal Ganglia Circuits to Perception, Attention, and Consciousness. J Cogn Neurosci 2024; 36:1620-1642. [PMID: 38695762 PMCID: PMC11223727 DOI: 10.1162/jocn_a_02177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Research into ascending sensory pathways and cortical networks has generated detailed models of perception. These same cortical regions are strongly connected to subcortical structures, such as the basal ganglia (BG), which have been conceptualized as playing key roles in reinforcement learning and action selection. However, because the BG amasses experiential evidence from higher and lower levels of cortical hierarchies, as well as higher-order thalamus, it is well positioned to dynamically influence perception. Here, we review anatomical, functional, and clinical evidence to demonstrate how the BG can influence perceptual processing and conscious states. This depends on the integrative relationship between cortex, BG, and thalamus, which allows contributions to sensory gating, predictive processing, selective attention, and representation of the temporal structure of events.
Collapse
Affiliation(s)
| | - Yuri B Saalmann
- University of Wisconsin-Madison
- Wisconsin National Primate Research Center
| |
Collapse
|
6
|
Szafoni S, Gręblowski P, Grabowska K, Więckiewicz G. Unlocking the healing power of psilocybin: an overview of the role of psilocybin therapy in major depressive disorder, obsessive-compulsive disorder and substance use disorder. Front Psychiatry 2024; 15:1406888. [PMID: 38919636 PMCID: PMC11196758 DOI: 10.3389/fpsyt.2024.1406888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Resistance to traditional treatment methods is still a major obstacle in modern psychiatry. As a result, several studies are currently being conducted to find effective alternatives to traditional therapies. One of these alternatives is psilocybin, a psychedelic substance that has been tested in clinical trials as an adjunct to psychotherapy. These studies focus on patients with major depressive disorder (MDD), obsessive-compulsive disorder (OCD) and substance use disorder (SUD), particularly alcohol and nicotine dependence. This article looks at the current understanding of psilocybin, including data from clinical trials conducted, psilocybin's mechanism of action, its safety and the level of risk associated with it.
Collapse
Affiliation(s)
- Sandra Szafoni
- Students’ Scientific Circle in Department of Psychiatry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Piotr Gręblowski
- Students’ Scientific Circle in Department of Psychiatry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Klaudia Grabowska
- Students’ Scientific Circle in Department of Psychiatry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Gniewko Więckiewicz
- Department of Psychiatry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
7
|
Lasch A, Schweikert T, Dora E, Kolb T, Schurig HL, Walther A. [Psilocybin-Assisted Treatment of Depression, Anxiety and Substance use Disorders: Neurobiological Basis and Clinical Application]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2024; 92:230-245. [PMID: 37207669 DOI: 10.1055/a-2046-5202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Successful therapy of mental disorders is very important in view of the high level of suffering of those affected. Since established pharmaceutical and psychotherapeutic approaches do not lead to the desired improvement in all cases, complementary or alternative treatment methods are intensively researched. Psilocybin-assisted psychotherapy seems particularly promising, and has been approved in the USA for larger clinical trials. Psilocybin belongs to the group of psychedelics and influences psychological experiences. In assisted therapy, psilocybin is administered in controlled doses under medical supervision to patients with different mental disorders. In the studies conducted so far, longer-term positive effects could be shown after just one or a few doses. In order to provide a better understanding of the potential therapeutic mechanisms, this article will first describe neurobiological and psychological effects of psilocybin. To better assess the potential of psilocybin-assisted psychotherapy for various disorders, clinical studies conducted so far with patients administered psilocybin are reviewed.
Collapse
Affiliation(s)
- Anna Lasch
- Biopsychologie, Technische Universität Dresden, Dresden, Germany
| | - Timo Schweikert
- Psychotherapie und Systemneurowissenschaften, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Eva Dora
- Biopsychologie, Technische Universität Dresden, Dresden, Germany
| | - Theresa Kolb
- Universitätsklinikum Carl Gustav Carus Dresden, Division Psychological and Social Medicine and Developmental Neuroscience, Dresden, Germany
| | - Hanne Lilian Schurig
- Universitätsklinikum Carl Gustav Carus Dresden, Division Psychological and Social Medicine and Developmental Neuroscience, Dresden, Germany
| | - Andreas Walther
- Klinische Psychologie und Psychotherapie, Universität Zürich Psychologisches Institut, Zurich, Switzerland
| |
Collapse
|
8
|
Geyer MA. A Brief Historical Overview of Psychedelic Research. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:464-471. [PMID: 38000715 DOI: 10.1016/j.bpsc.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Classical serotonergic psychedelics such as lysergic acid diethylamide or the naturally occurring compounds psilocybin and mescaline produce profound changes in mood, thought, intuition, sensory perception, the experience of time and space, and even the experience of self. Research examining psychedelic compounds has had a complex and turbulent evolution. Many cultures throughout the world have used psychedelic plants not only for mystical, ritualistic, or divinatory purposes but also for curing illnesses. Much of the genesis and progress of modern investigations into the effects and underlying mechanisms of action of psychedelics have been intertwined with studies of the neurotransmitter serotonin. Early hypotheses that serotonergic systems mediate psychedelic effects were supported initially by preclinical animal studies and subsequently confirmed by pharmacological studies in healthy humans. The use of psychedelic compounds as putative psychotomimetics that reproduce some features of naturally occurring psychotic disorders met with some limited success. More recent studies are exploring psychedelics as potential psychotherapeutic agents. Recent indications that even 1 or 2 psychedelic treatments produce robust and sustained reductions in clinical symptoms in a variety of psychiatric disorders have prompted an enormous resurgence of interest in the nature and mechanisms contributing to their effects.
Collapse
Affiliation(s)
- Mark A Geyer
- UC San Diego Center for Psychedelic Research, Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California.
| |
Collapse
|
9
|
Wang W, Zhu C, Jia T, Zu M, Tang Y, Zhou L, Tian Y, Si B, Zhou K. Reviving Bistable Perception in Patients With Depression by Decreasing the Overestimation of Prior Precision. Cogn Sci 2024; 48:e13452. [PMID: 38742272 DOI: 10.1111/cogs.13452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/01/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
Slower perceptual alternations, a notable perceptual effect observed in psychiatric disorders, can be alleviated by antidepressant therapies that affect serotonin levels in the brain. While these phenomena have been well documented, the underlying neurocognitive mechanisms remain to be elucidated. Our study bridges this gap by employing a computational cognitive approach within a Bayesian predictive coding framework to explore these mechanisms in depression. We fitted a prediction error (PE) model to behavioral data from a binocular rivalry task, uncovering that significantly higher initial prior precision and lower PE led to a slower switch rate in patients with depression. Furthermore, serotonin-targeting antidepressant treatments significantly decreased the prior precision and increased PE, both of which were predictive of improvements in the perceptual alternation rate of depression patients. These findings indicated that the substantially slower perception switch rate in patients with depression was caused by the greater reliance on top-down priors and that serotonin treatment's efficacy was in its recalibration of these priors and enhancement of PE. Our study not only elucidates the cognitive underpinnings of depression, but also suggests computational modeling as a potent tool for integrating cognitive science with clinical psychology, advancing our understanding and treatment of cognitive impairments in depression.
Collapse
Affiliation(s)
- Wenbo Wang
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University
| | - Changbo Zhu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences
- University of Chinese Academy of Sciences, Beijing
| | | | - Meidan Zu
- Department of Psychology and Sleep Medicine, The Second Hospital of Anhui Medical University
| | - Yandong Tang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences
- University of Chinese Academy of Sciences, Beijing
| | - Liqin Zhou
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University
| | - Yanghua Tian
- Department of Neurology, The Second Hospital of Anhui Medical University
- Department of Neurology, The First Hospital of Anhui Medical University
| | - Bailu Si
- School of Systems Science, Beijing Normal University
| | - Ke Zhou
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University
| |
Collapse
|
10
|
Hagen EV, Schalomon M, Zhang Y, Hamilton TJ. Repeated microdoses of LSD do not alter anxiety or boldness in zebrafish. Sci Rep 2024; 14:4389. [PMID: 38388550 PMCID: PMC10883969 DOI: 10.1038/s41598-024-54676-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/15/2024] [Indexed: 02/24/2024] Open
Abstract
The therapeutic use of lysergic acid diethylamide (LSD) has resurfaced in the last decade, prompting further scientific investigation into its effectiveness in many animal models. Zebrafish (Danio rerio) are a popular model organism in medical sciences and are used to examine the repeated administration of pharmacological compounds. Previous zebrafish research found acute LSD altered behaviour and cortisol levels at high (250 µg/L) but not low (5-100 µg/L) levels. In this study, we used a motion tracking system to record and analyze the movement patterns of zebrafish after acute and repeated 10-day LSD exposure (1.5 µg/L, 15 µg/L, 150 µg/L) and after seven days of withdrawal. The open-field and novel object approach tests were used to examine anxiety-like behaviour, boldness, and locomotion. In the acute experiments we observed a significant decrease in high mobility with 1.5 µg/L, 15 µg/L, and 150 µg/L of LSD compared to the control and a decrease in velocity with 1.5 and 15 µg/L. In repeated experiments, there were no significant differences in the levels of anxiety, boldness, or locomotion between all LSD groups and controls immediately after 10-day treatment or after withdrawal.
Collapse
Affiliation(s)
- Ethan V Hagen
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Psychology, MacEwan University, 10700 104 Ave NW, Edmonton, AB, T5J 4S2, Canada
| | - Melike Schalomon
- Department of Psychology, MacEwan University, 10700 104 Ave NW, Edmonton, AB, T5J 4S2, Canada
| | - Yanbo Zhang
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Trevor J Hamilton
- Department of Psychology, MacEwan University, 10700 104 Ave NW, Edmonton, AB, T5J 4S2, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
11
|
Ruffini G, Lopez-Sola E, Vohryzek J, Sanchez-Todo R. Neural Geometrodynamics, Complexity, and Plasticity: A Psychedelics Perspective. ENTROPY (BASEL, SWITZERLAND) 2024; 26:90. [PMID: 38275498 PMCID: PMC11154528 DOI: 10.3390/e26010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
We explore the intersection of neural dynamics and the effects of psychedelics in light of distinct timescales in a framework integrating concepts from dynamics, complexity, and plasticity. We call this framework neural geometrodynamics for its parallels with general relativity's description of the interplay of spacetime and matter. The geometry of trajectories within the dynamical landscape of "fast time" dynamics are shaped by the structure of a differential equation and its connectivity parameters, which themselves evolve over "slow time" driven by state-dependent and state-independent plasticity mechanisms. Finally, the adjustment of plasticity processes (metaplasticity) takes place in an "ultraslow" time scale. Psychedelics flatten the neural landscape, leading to heightened entropy and complexity of neural dynamics, as observed in neuroimaging and modeling studies linking increases in complexity with a disruption of functional integration. We highlight the relationship between criticality, the complexity of fast neural dynamics, and synaptic plasticity. Pathological, rigid, or "canalized" neural dynamics result in an ultrastable confined repertoire, allowing slower plastic changes to consolidate them further. However, under the influence of psychedelics, the destabilizing emergence of complex dynamics leads to a more fluid and adaptable neural state in a process that is amplified by the plasticity-enhancing effects of psychedelics. This shift manifests as an acute systemic increase of disorder and a possibly longer-lasting increase in complexity affecting both short-term dynamics and long-term plastic processes. Our framework offers a holistic perspective on the acute effects of these substances and their potential long-term impacts on neural structure and function.
Collapse
Affiliation(s)
- Giulio Ruffini
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
| | - Edmundo Lopez-Sola
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
- Computational Neuroscience Group, Universitat Pompeu Fabra, 08018 Barcelona, Spain;
| | - Jakub Vohryzek
- Computational Neuroscience Group, Universitat Pompeu Fabra, 08018 Barcelona, Spain;
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford OX3 9BX, UK
| | - Roser Sanchez-Todo
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
- Computational Neuroscience Group, Universitat Pompeu Fabra, 08018 Barcelona, Spain;
| |
Collapse
|
12
|
Wojtas A, Gołembiowska K. Molecular and Medical Aspects of Psychedelics. Int J Mol Sci 2023; 25:241. [PMID: 38203411 PMCID: PMC10778977 DOI: 10.3390/ijms25010241] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Psychedelics belong to the oldest psychoactive drugs. They arouse recent interest due to their therapeutic applications in the treatment of major depressive disorder, substance use disorder, end-of-life anxiety,= and anxiety symptoms, and obsessive-compulsive disorder. In this review, the current state of preclinical research on the mechanism of action, neurotoxicity, and behavioral impact of psychedelics is summarized. The effect of selective 5-HT2A receptor agonists, 25I- and 25B-NBOMe, after acute and repeated administration is characterized and compared with the effects of a less selective drug, psilocybin. The data show a significant effect of NBOMes on glutamatergic, dopaminergic, serotonergic, and cholinergic neurotransmission in the frontal cortex, striatum, and nucleus accumbens. The increases in extracellular levels of neurotransmitters were not dose-dependent, which most likely resulted from the stimulation of the 5-HT2A receptor and subsequent activation of the 5-HT2C receptors. This effect was also observed in the wet dog shake test and locomotor activity. Chronic administration of NBOMes elicited rapid development of tolerance, genotoxicity, and activation of microglia. Acute treatment with psilocybin affected monoaminergic and aminoacidic neurotransmitters in the frontal cortex, nucleus accumbens, and hippocampus but not in the amygdala. Psilocybin exhibited anxiolytic properties resulting from intensification of GABAergic neurotransmission. The data indicate that NBOMes as selective 5-HT2A agonists exert a significant effect on neurotransmission and behavior of rats while also inducing oxidative DNA damage. In contrast to NBOMes, the effects induced by psilocybin suggest a broader therapeutic index of this drug.
Collapse
Affiliation(s)
| | - Krystyna Gołembiowska
- Unit II, Department of Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland;
| |
Collapse
|
13
|
George AB, Beniwal RP, Singh S, Bhatia T, Khushu S, Deshpande SN. Association between thyroid functions, cognition, and functional connectivity of the brain in early-course schizophrenia: A preliminary study. Ind Psychiatry J 2023; 32:S76-S82. [PMID: 38370920 PMCID: PMC10871410 DOI: 10.4103/ipj.ipj_198_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/28/2023] [Accepted: 07/16/2023] [Indexed: 02/20/2024] Open
Abstract
Background The functional outcome of the debilitating mental illness schizophrenia (SZ) has an integral role in cognition. The thyroid hormone has a vital role in the developmental stages and functioning of the human brain. Aim This study aimed to evaluate the relationship between thyroid functions, cognition, and functional imaging of the brain in persons with SZ. Materials and Methods Sixty SZ (Diagnostic and Statistical Manual (DSM-5)) persons, aged 18-50 years of both genders, were recruited in this cross-sectional observational study. Positive and Negative Syndrome Scale (PANSS) and Trail Making Tests (TMTs) A and B were administered to all patients. To assess the level of thyroid hormone, a test was conducted. Functional connectivity of the brain was assessed using resting-state functional magnetic resonance imaging (rs-fMRI). Data analysis was performed by descriptive and analytical statistical methods. FSL version 5.9 (FMRIB's) software was used for analyses of fMRI neuroimages. Results There were no significant differences between the two populations on sociodemographic factors. The average value for thyroid-stimulating hormone (TSH) in the hypothyroid group (n = 12) and the euthyroid group (n = 47) was 8.38 mIU/l and 2.44 mIU/l, respectively. The average time in seconds for TMT-A and TMT-B was 87.27 and 218.27 in the hypothyroid group and 97.07 and 293.27 in the euthyroid group, respectively. Similarly, in the sample matched on age, gender, and age at onset of illness, there were no significant differences in demographic and clinical factors and resting-state network (RSN) between the hypothyroid (N = 10) and euthyroid (N = 10) groups. Conclusion No differences were found in the functional brain network between the hypothyroid and euthyroid groups as the study sample did not include clinically hypothyroid persons with SZ.
Collapse
Affiliation(s)
- Aishwariya B George
- Department of Psychiatry, Malabar Medical College Hospital and Research Centre, Kozhikode, Kerala, India
| | - Ram P Beniwal
- Department of Psychiatry, Centre of Excellence in Mental Health, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Sadhana Singh
- Centre for Brain Research, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Triptish Bhatia
- Department of Psychiatry, Centre of Excellence in Mental Health, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Subhash Khushu
- Division of Radiological Imaging, and Bio-Medical Imaging, The University of Trans-Disciplinary Health Sciences and Technology, Bengaluru, Karnataka, India
| | - Smita N Deshpande
- Department of Psychiatry, St John's Medical College Hospital, Bengaluru, Karnataka, India
| |
Collapse
|
14
|
Custodio RJP, Ortiz DM, Lee HJ, Sayson LV, Kim M, Lee YS, Kim KM, Cheong JH, Kim HJ. Serotonin 2C receptors are also important in head-twitch responses in male mice. Psychopharmacology (Berl) 2023:10.1007/s00213-023-06482-9. [PMID: 37882810 DOI: 10.1007/s00213-023-06482-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023]
Abstract
RATIONALE Serotonergic psychedelics exert their effects via their high affinity for serotonin (5-HT) receptors, particularly through activating 5-HT2A receptors (5-HT2AR), employing the frontal cortex-dependent head-twitch response (HTR). Although universally believed to be so, studies have not yet fully ascertained whether 5-HT2AR activation is the sole initiator of these psychedelic effects. This is because not all 5-HT2AR agonists exhibit similar pharmacologic properties. OBJECTIVE This study aims to identify and discriminate the roles of 5-HT2AR and 5-HT2CR in the HTR induced by Methallylescaline (MAL) and 4-Methyl-2,5,β-trimethoxyphenethylamine (BOD) in male mice. Also, an analysis of their potential neurotoxic properties was evaluated. METHODS Male mice treated with MAL and BOD were evaluated in different behavioral paradigms targeting HTR and neurotoxicity effects. Drug affinity, pharmacological blocking, and molecular analysis were also conducted to support the behavioral findings. The HTR induced by DOI has been extensively characterized in male mice, making it a good positive control for this study, specifically for comparing the pharmacological effects of our test compounds. RESULTS The activation of 5-HT2CR, alone or in concert with 5-HT2AR, produces a comparable degree of HTRs (at a dose of 1 mg·kg-1), with divergent 5-HT2CR- and 5-HT2AR-Gqα11-mediated signaling and enhanced neurotoxic properties (at a dose of 30 mg·kg-1) coupled with activated pro-inflammatory cytokines. These findings show these compounds' potential psychedelic and neurotoxic effects in male mice. CONCLUSION These findings showed that while 5-HT2AR is the main initiator of HTR, the 5-HT2CR also has a distinct property that renders it effective in inducing HTR in male mice.
Collapse
Affiliation(s)
- Raly James Perez Custodio
- Networking Group Aging, Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors - IfADo, Ardeystrasse 67, Dortmund, 44139, Germany.
| | - Darlene Mae Ortiz
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Hyun Jun Lee
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Leandro Val Sayson
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Mikyung Kim
- Department of Chemistry & Life Science, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy & Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Kyeong-Man Kim
- Department of Pharmacology, College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Jae Hoon Cheong
- Institute for New Drug Development, College of Pharmacy, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic of Korea.
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea.
| |
Collapse
|
15
|
Pogorelov VM, Rodriguiz RM, Roth BL, Wetsel WC. The G protein biased serotonin 5-HT2A receptor agonist lisuride exerts anti-depressant drug-like activities in mice. Front Mol Biosci 2023; 10:1233743. [PMID: 37900918 PMCID: PMC10603247 DOI: 10.3389/fmolb.2023.1233743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023] Open
Abstract
There is now evidence from multiple Phase II clinical trials that psychedelic drugs can exert long-lasting anxiolytic, anti-depressant, and anti-drug abuse (nicotine and ethanol) effects in patients. Despite these benefits, the hallucinogenic actions of these drugs at the serotonin 2A receptor (5-HT2AR) limit their clinical use in diverse settings. Activation of the 5-HT2AR can stimulate both G protein and β-arrestin (βArr) -mediated signaling. Lisuride is a G protein biased agonist at the 5-HT2AR and, unlike the structurally-related lysergic acid diethylamide (LSD), the drug does not typically produce hallucinations in normal subjects at routine doses. Here, we examined behavioral responses to lisuride, in wild-type (WT), βArr1-knockout (KO), and βArr2-KO mice. In the open field, lisuride reduced locomotor and rearing activities, but produced a U-shaped function for stereotypies in both βArr lines of mice. Locomotion was decreased overall in βArr1-KOs and βArr2-KOs relative to wild-type controls. Incidences of head twitches and retrograde walking to lisuride were low in all genotypes. Grooming was decreased in βArr1 mice, but was increased then decreased in βArr2 animals with lisuride. Serotonin syndrome-associated responses were present at all lisuride doses in WTs, but they were reduced especially in βArr2-KO mice. Prepulse inhibition (PPI) was unaffected in βArr2 mice, whereas 0.5 mg/kg lisuride disrupted PPI in βArr1 animals. The 5-HT2AR antagonist MDL100907 failed to restore PPI in βArr1 mice, whereas the dopamine D2/D3 antagonist raclopride normalized PPI in WTs but not in βArr1-KOs. Clozapine, SCH23390, and GR127935 restored PPI in both βArr1 genotypes. Using vesicular monoamine transporter 2 mice, lisuride reduced immobility times in tail suspension and promoted a preference for sucrose that lasted up to 2 days. Together, it appears βArr1 and βArr2 play minor roles in lisuride's actions on many behaviors, while this drug exerts anti-depressant drug-like responses without hallucinogenic-like activities.
Collapse
Affiliation(s)
- Vladimir M. Pogorelov
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
| | - Ramona M. Rodriguiz
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC, United States
| | - Bryan L. Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - William C. Wetsel
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC, United States
- Departments of Cell Biology and Neurobiology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
16
|
Buchborn T, Kettner HS, Kärtner L, Meinhardt MW. The ego in psychedelic drug action - ego defenses, ego boundaries, and the therapeutic role of regression. Front Neurosci 2023; 17:1232459. [PMID: 37869510 PMCID: PMC10587586 DOI: 10.3389/fnins.2023.1232459] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/18/2023] [Indexed: 10/24/2023] Open
Abstract
The ego is one of the most central psychological constructs in psychedelic research and a key factor in psychotherapy, including psychedelic-assisted forms of psychotherapy. Despite its centrality, the ego-construct remains ambiguous in the psychedelic literature. Therefore, we here review the theoretical background of the ego-construct with focus on its psychodynamic conceptualization. We discuss major functions of the ego including ego boundaries, defenses, and synthesis, and evaluate the role of the ego in psychedelic drug action. According to the psycholytic paradigm, psychedelics are capable of inducing regressed states of the ego that are less protected by the ego's usual defensive apparatus. In such states, core early life conflicts may emerge that have led to maladaptive ego patterns. We use the psychodynamic term character in this paper as a potential site of change and rearrangement; character being the chronic and habitual patterns the ego utilizes to adapt to the everyday challenges of life, including a preferred set of defenses. We argue that in order for psychedelic-assisted therapy to successfully induce lasting changes to the ego's habitual patterns, it must psycholytically permeate the characterological core of the habits. The primary working principle of psycholytic therapy therefore is not the state of transient ego regression alone, but rather the regressively favored emotional integration of those early life events that have shaped the foundation, development, and/or rigidification of a person's character - including his or her defense apparatus. Aiming for increased flexibility of habitual ego patterns, the psycholytic approach is generally compatible with other forms of psychedelic-assisted therapy, such as third wave cognitive behavioral approaches.
Collapse
Affiliation(s)
- Tobias Buchborn
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Hannes S. Kettner
- Centre for Psychedelic Research, Department of Medicine, Imperial College London, London, United Kingdom
- Psychedelics Division, Neuroscape, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Laura Kärtner
- Centre for Psychedelic Research, Department of Medicine, Imperial College London, London, United Kingdom
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Marcus W. Meinhardt
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
17
|
Egger K, Gudmundsen F, Jessen NS, Baun C, Poetzsch SN, Shalgunov V, Herth MM, Quednow BB, Martin-Soelch C, Dornbierer D, Scheidegger M, Cumming P, Palner M. A pilot study of cerebral metabolism and serotonin 5-HT 2A receptor occupancy in rats treated with the psychedelic tryptamine DMT in conjunction with the MAO inhibitor harmine. Front Pharmacol 2023; 14:1140656. [PMID: 37841918 PMCID: PMC10568461 DOI: 10.3389/fphar.2023.1140656] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Rationale: The psychedelic effects of the traditional Amazonian botanical decoction known as ayahuasca are often attributed to agonism at brain serotonin 5-HT2A receptors by N,N-dimethyltryptamine (DMT). To reduce first pass metabolism of oral DMT, ayahuasca preparations additionally contain reversible monoamine oxidase A (MAO-A) inhibitors, namely β-carboline alkaloids such as harmine. However, there is lacking biochemical evidence to substantiate this pharmacokinetic potentiation of DMT in brain via systemic MAO-A inhibition. Objectives: We measured the pharmacokinetic profile of harmine and/or DMT in rat brain, and tested for pharmacodynamic effects on brain glucose metabolism and DMT occupancy at brain serotonin 5-HT2A receptors. Methods: We first measured brain concentrations of harmine and DMT after treatment with harmine and/or DMT at low sub-cutaneous doses (1 mg/kg each) or harmine plus DMT at moderate doses (3 mg/kg each). In the same groups of rats, we also measured ex vivo the effects of these treatments on the availability of serotonin 5-HT2A receptors in frontal cortex. Finally, we explored effects of DMT and/or harmine (1 mg/kg each) on brain glucose metabolism with [18F]FDG-PET. Results: Results confirmed that co-administration of harmine inhibited the formation of the DMT metabolite indole-3-acetic acid (3-IAA) in brain, while correspondingly increasing the cerebral availability of DMT. However, we were unable to detect any significant occupancy by DMT at 5-HT2A receptors measured ex vivo, despite brain DMT concentrations as high as 11.3 µM. We did not observe significant effects of low dose DMT and/or harmine on cerebral [18F]FDG-PET uptake. Conclusion: These preliminary results call for further experiments to establish the dose-dependent effects of harmine/DMT on serotonin receptor occupancy and cerebral metabolism.
Collapse
Affiliation(s)
- Klemens Egger
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland
| | - Frederik Gudmundsen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Naja Støckel Jessen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Christina Baun
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Sandra N. Poetzsch
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Copenhagen, Denmark
| | - Matthias M. Herth
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Copenhagen, Denmark
| | - Boris B. Quednow
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | | | - Dario Dornbierer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Milan Scheidegger
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia
| | - Mikael Palner
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
18
|
Wall MB, Harding R, Zafar R, Rabiner EA, Nutt DJ, Erritzoe D. Neuroimaging in psychedelic drug development: past, present, and future. Mol Psychiatry 2023; 28:3573-3580. [PMID: 37759038 PMCID: PMC10730398 DOI: 10.1038/s41380-023-02271-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
Psychedelic therapy (PT) is an emerging paradigm with great transdiagnostic potential for treating psychiatric disorders, including depression, addiction, post-traumatic stress disorder, and potentially others. 'Classic' serotonergic psychedelics, such as psilocybin and lysergic acid diethylamide (LSD), which have a key locus of action at the 5-HT2A receptor, form the main focus of this movement, but substances including ketamine, 3,4-Methylenedioxymethamphetamine (MDMA) and ibogaine also hold promise. The modern phase of development of these treatment modalities in the early 21st century has occurred concurrently with the wider use of advanced human neuroscientific research methods; principally neuroimaging. This can potentially enable assessment of drug and therapy brain effects with greater precision and quantification than any previous novel development in psychiatric pharmacology. We outline the major trends in existing data and suggest the modern development of PT has benefitted greatly from the use of neuroimaging. Important gaps in existing knowledge are identified, namely: the relationship between acute drug effects and longer-term (clinically-relevant) effects, the precise characterisation of effects at the 5-HT2A receptor and relationships with functional/clinical effects, and the possible impact of these compounds on neuroplasticity. A road-map for future research is laid out, outlining clinical studies which will directly address these three questions, principally using combined Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) methods, plus other adjunct techniques. Multimodal (PET/MRI) studies using modern PET techniques such as the 5-HT2A-selective ligand [11 C]Cimbi-36 (and other ligands sensitive to neuroplasticity changes) alongside MRI measures of brain function would provide a 'molecular-functional-clinical bridge' in understanding. Such results would help to resolve some of these questions and provide a firmer foundation for the ongoing development of PT.
Collapse
Affiliation(s)
- Matthew B Wall
- Invicro, London, UK.
- Faculty of Medicine, Imperial College London, London, UK.
- Centre for Psychedelic research and Neuropsychopharmacology, Imperial College London, London, UK.
| | - Rebecca Harding
- Clinical Psychopharmacology Unit, Faculty of Brain Sciences, University College London, London, UK
| | - Rayyan Zafar
- Faculty of Medicine, Imperial College London, London, UK
- Centre for Psychedelic research and Neuropsychopharmacology, Imperial College London, London, UK
| | | | - David J Nutt
- Faculty of Medicine, Imperial College London, London, UK
- Centre for Psychedelic research and Neuropsychopharmacology, Imperial College London, London, UK
| | - David Erritzoe
- Faculty of Medicine, Imperial College London, London, UK
- Centre for Psychedelic research and Neuropsychopharmacology, Imperial College London, London, UK
| |
Collapse
|
19
|
Jaster AM, González-Maeso J. Mechanisms and molecular targets surrounding the potential therapeutic effects of psychedelics. Mol Psychiatry 2023; 28:3595-3612. [PMID: 37759040 DOI: 10.1038/s41380-023-02274-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
Psychedelics, also known as classical hallucinogens, have been investigated for decades due to their potential therapeutic effects in the treatment of neuropsychiatric and substance use disorders. The results from clinical trials have shown promise for the use of psychedelics to alleviate symptoms of depression and anxiety, as well as to promote substantial decreases in the use of nicotine and alcohol. While these studies provide compelling evidence for the powerful subjective experience and prolonged therapeutic adaptations, the underlying molecular reasons for these robust and clinically meaningful improvements are still poorly understood. Preclinical studies assessing the targets and circuitry of the post-acute effects of classical psychedelics are ongoing. Current literature is split between a serotonin 5-HT2A receptor (5-HT2AR)-dependent or -independent signaling pathway, as researchers are attempting to harness the mechanisms behind the sustained post-acute therapeutically relevant effects. A combination of molecular, behavioral, and genetic techniques in neuropharmacology has begun to show promise for elucidating these mechanisms. As the field progresses, increasing evidence points towards the importance of the subjective experience induced by psychedelic-assisted therapy, but without further cross validation between clinical and preclinical research, the why behind the experience and its translational validity may be lost.
Collapse
Affiliation(s)
- Alaina M Jaster
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
| |
Collapse
|
20
|
Schoeller F. Primary states of consciousness: A review of historical and contemporary developments. Conscious Cogn 2023; 113:103536. [PMID: 37321024 DOI: 10.1016/j.concog.2023.103536] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
Primary states of consciousness are conceived as phylogenetically older states of consciousness as compared to secondary states governed by sociocultural inhibition. The historical development of the concept in psychiatry and neurobiology is reviewed, along with its relationship to theories of consciousness. We suggest that primary states of consciousness are characterized by a temporary breakdown of self-control accompanied by a merging of action, communication, and emotion (ACE fusion), ordinarily segregated in human adults. We examine the neurobiologic basis of this model, including its relation to the phenomenon of neural dedifferentiation, the loss of modularity during altered states of consciousness, and increased corticostriatal connectivity. By shedding light on the importance of primary states of consciousness, this article provides a novel perspective on the role of consciousness as a mechanism of differentiation and control. We discuss potential differentiators underlying a gradient from primary to secondary state of consciousness, suggesting changes in thalamocortical interactions and arousal function. We also propose a set of testable, neurobiologically plausible working hypotheses to account for their distinct phenomenological and neural signatures.
Collapse
Affiliation(s)
- Felix Schoeller
- Institute for Advanced Consciousness Studies, Santa Monica, CA, United States; Massachusetts Institute of Technology, Cambridge, MA, United States.
| |
Collapse
|
21
|
Pogorelov VM, Rodriguiz RM, Roth BL, Wetsel WC. The G protein biased serotonin 5-HT 2A receptor agonist lisuride exerts anti-depressant drug-like activities in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543310. [PMID: 37333376 PMCID: PMC10274653 DOI: 10.1101/2023.06.01.543310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
There is now evidence from multiple Phase II clinical trials that psychedelic drugs can exert longlasting anxiolytic, anti-depressant, and anti-drug abuse (nicotine and ethanol) effects in patients. Despite these benefits, the hallucinogenic actions of these drugs at the serotonin 2A receptor (5-HT2AR) limit their clinical use in diverse settings. Activation of the 5-HT2AR can stimulate both G protein and β-arrestin (βArr) -mediated signaling. Lisuride is a G protein biased agonist at the 5-HT2AR and, unlike the structurally-related LSD, the drug does not typically produce hallucinations in normal subjects at routine doses. Here, we examined behavioral responses to lisuride, in wild-type (WT), βArr1-KO, and βArr2-KO mice. In the open field, lisuride reduced locomotor and rearing activities, but produced a U-shaped function for stereotypies in both βArr lines of mice. Locomotion was decreased overall in βArr1-KOs and βArr2-KOs, relative to WT controls. Incidences of head twitches and retrograde walking to lisuride were low in all genotypes. Grooming was depressed in βArr1 mice, but was increased then decreased in βArr2 animals with lisuride. Prepulse inhibition (PPI) was unaffected in βArr2 mice, whereas 0.5 mg/kg lisuride disrupted PPI in βArr1 animals. The 5-HT2AR antagonist MDL100907 failed to restore PPI in βArr1 mice, whereas the dopamine D2/D3 antagonist raclopride normalized PPI in WTs but not in βArr1-KOs. Using vesicular monoamine transporter 2 mice, lisuride reduced immobility times in tail suspension and promoted a preference for sucrose that lasted up to 2 days. Together, it appears βArr1 and βArr2 play minor roles in lisuride's actions on many behaviors, while this drug exerts anti-depressant drug-like responses without hallucinogenic-like activities.
Collapse
Affiliation(s)
- Vladimir M. Pogorelov
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Ramona M. Rodriguiz
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC, 27710, USA
| | - Bryan L. Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- National Institute of Mental Health Psychoactive Drug Screening Program, Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - William C. Wetsel
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC, 27710, USA
- Departments of Cell Biology and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
22
|
Saha S, González-Maeso J. The crosstalk between 5-HT 2AR and mGluR2 in schizophrenia. Neuropharmacology 2023; 230:109489. [PMID: 36889432 PMCID: PMC10103009 DOI: 10.1016/j.neuropharm.2023.109489] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/26/2023] [Accepted: 03/05/2023] [Indexed: 03/08/2023]
Abstract
Schizophrenia is a severe brain disorder that usually produces a lifetime of disability. First generation or typical antipsychotics such as haloperidol and second generation or atypical antipsychotics such as clozapine and risperidone remain the current standard for schizophrenia treatment. In some patients with schizophrenia, antipsychotics produce complete remission of positive symptoms, such as hallucinations and delusions. However, antipsychotic drugs are ineffective against cognitive deficits and indeed treated schizophrenia patients have small improvements or even deterioration in several cognitive domains. This underlines the need for novel and more efficient therapeutic targets for schizophrenia treatment. Serotonin and glutamate have been identified as key parts of two neurotransmitter systems involved in fundamental brain processes. Serotonin (or 5-hydroxytryptamine) 5-HT2A receptor (5-HT2AR) and metabotropic glutamate 2 receptor (mGluR2) are G protein-coupled receptors (GPCRs) that interact at epigenetic and functional levels. These two receptors can form GPCR heteromeric complexes through which their pharmacology, function and trafficking becomes affected. Here we review past and current research on the 5-HT2AR-mGluR2 heterocomplex and its potential implication in schizophrenia and antipsychotic drug action. This article is part of the Special Issue on "The receptor-receptor interaction as a new target for therapy".
Collapse
Affiliation(s)
- Somdatta Saha
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
| |
Collapse
|
23
|
Kim JH, Kim HK, Lee SW, Son YD, Kim JH. The Relationship between Character Traits and In Vivo Cerebral Serotonin Transporter Availability in Healthy Subjects: A High-Resolution PET Study with C-11 DASB. Pharmaceuticals (Basel) 2023; 16:ph16050759. [PMID: 37242542 DOI: 10.3390/ph16050759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
To elucidate the potential roles of serotonergic activity in human character traits (i.e., self-directedness, cooperativeness, and self-transcendence), we investigated the relationship between these character traits and serotonin transporter (5-HTT) in healthy subjects. Twenty-four participants underwent High-Resolution Research Tomograph-positron emission tomography scans with [11C]DASB. To quantify 5-HTT availability, binding potential (BPND) of [11C]DASB was obtained using the simplified reference tissue model. The Temperament and Character Inventory was used to assess subjects' levels of three character traits. There were no significant correlations between the three character traits. Self-directedness was significantly positively correlated with [11C]DASB BPND in the left hippocampus, left middle occipital gyrus, bilateral superior parietal gyrus, left inferior parietal gyrus, left middle temporal gyrus (MTG), and left inferior temporal gyrus (ITG). Cooperativeness was significantly negatively correlated with [11C]DASB BPND in the median raphe nucleus. Self-transcendence was significantly negatively correlated with [11C]DASB BPND in the right MTG and right ITG. Our results show significant correlations between the three character traits and 5-HTT availability in specific brain regions. In particular, self-directedness was significantly positively correlated with 5-HTT availability, suggesting that a goal-oriented, self-confident, and resourceful character may be related to higher serotonergic neurotransmission.
Collapse
Affiliation(s)
- Jeong-Hee Kim
- Biomedical Engineering Research Center, Gachon University, Incheon 21936, Republic of Korea
- Department of Biomedical Engineering, College of IT Convergence, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Hang-Keun Kim
- Biomedical Engineering Research Center, Gachon University, Incheon 21936, Republic of Korea
- Department of Biomedical Engineering, College of IT Convergence, Gachon University, Seongnam-si 13120, Republic of Korea
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| | - Sang-Wha Lee
- Department of Chemical and Biological Engineering, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Young-Don Son
- Biomedical Engineering Research Center, Gachon University, Incheon 21936, Republic of Korea
- Department of Biomedical Engineering, College of IT Convergence, Gachon University, Seongnam-si 13120, Republic of Korea
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| | - Jong-Hoon Kim
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
- Department of Psychiatry, Gachon University College of Medicine, Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| |
Collapse
|
24
|
Amaya IA, Behrens N, Schwartzman DJ, Hewitt T, Schmidt TT. Effect of frequency and rhythmicity on flicker light-induced hallucinatory phenomena. PLoS One 2023; 18:e0284271. [PMID: 37040392 PMCID: PMC10089352 DOI: 10.1371/journal.pone.0284271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/28/2023] [Indexed: 04/12/2023] Open
Abstract
Flicker light stimulation (FLS) uses stroboscopic light on closed eyes to induce transient visual hallucinatory phenomena, such as the perception of geometric patterns, motion, and colours. It remains an open question where the neural correlates of these hallucinatory experiences emerge along the visual pathway. To allow future testing of suggested underlying mechanisms (e.g., changes in functional connectivity, neural entrainment), we sought to systematically characterise the effects of frequency (3 Hz, 8 Hz, 10 Hz and 18 Hz) and rhythmicity (rhythmic and arrhythmic conditions) on flicker-induced subjective experiences. Using a novel questionnaire, we found that flicker frequency and rhythmicity significantly influenced the degree to which participants experienced simple visual hallucinations, particularly the perception of Klüver forms and dynamics (e.g., motion). Participants reported their experience of geometric patterns and dynamics was at highest intensity during 10 Hz rhythmic stimulation. Further, we found that frequency-matched arrhythmic FLS strongly reduced these subjective effects compared to equivalent rhythmic stimulation. Together, these results provide evidence that flicker rhythmicity critically contributes to the effects of FLS beyond the effects of frequency alone, indicating that neural entrainment may drive the induced phenomenal experience.
Collapse
Affiliation(s)
- Ioanna Alicia Amaya
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
- Charité –Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nele Behrens
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
- Department of Psychology, Sigmund Freud University Berlin, Berlin, Germany
| | - David John Schwartzman
- Sackler Centre for Consciousness Science and Department of Informatics, University of Sussex, Brighton, United Kingdom
| | - Trevor Hewitt
- Sackler Centre for Consciousness Science and Department of Informatics, University of Sussex, Brighton, United Kingdom
| | - Timo Torsten Schmidt
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
25
|
Shinya S, Nishibe F, Yohannes YB, Ishizuka M, Nakayama SM, Ikenaka Y. Characteristics of tissue distribution, metabolism, effects on brain catecholamines, and environmental exposure of frogs to neonicotinoid insecticides. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106437. [PMID: 36827829 DOI: 10.1016/j.aquatox.2023.106437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 12/16/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Pesticide exposure is considered to be one important factor responsible for declining amphibian populations worldwide. The usage of neonicotinoid insecticides (NNIs) has markedly increased in recent years, and there are concerns regarding the effects of NNI-induced toxicity on the development and behavior of amphibians. However, there have been few reports on the metabolism, distribution, and neurotoxicity of NNIs in amphibians. In this study, we exposed the Western clawed frog (Silurana tropicalis) to clothianidin (CLT) in water. After 24 h of exposure, the highest concentrations were detected in the skin, indicating that frogs are at a high risk of absorbing CLT through their skin along with water. Excretion of CLT was estimated based on the concentrations of CLT metabolites in the water until 48 h of exposure. The findings showed that frogs had higher CLT metabolic ability than zebrafish. Serotonin levels in the brain were lower in the high-concentration CLT exposure group than in the control group, although the difference was not statistically significant. This suggested that catecholamine-related effects of CLT on the brain cannot be disregarded. In addition, quantitative analyses of NNI residue in wild frogs, soil, and water in agricultural areas in Hokkaido, Japan, were performed and four NNIs were detected. These results indicated the possible risk of NNI-induced toxicity in frogs. This is the first report of the characteristics of tissue distribution and metabolism of NNIs in frogs, which may facilitate the design of appropriate conservation programs for amphibians.
Collapse
Affiliation(s)
- So Shinya
- Laboratory of Toxicology, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Fumiya Nishibe
- Laboratory of Toxicology, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Yared Beyene Yohannes
- Laboratory of Toxicology, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Shouta M Nakayama
- Laboratory of Toxicology, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan; Biomedical Science Department, School of Veterinary Medicine, The University of Zambia, P. O. Box, Lusaka 32379, Zambia
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman Street, Potchefstroom 2531, South Africa; Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan; One Health Research Center, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan.
| |
Collapse
|
26
|
The high frequency oscillation in orbitofrontal cortex is susceptible to phenethylamine psychedelic 25C-NBOMe in male rats. Neuropharmacology 2023; 227:109452. [PMID: 36724866 DOI: 10.1016/j.neuropharm.2023.109452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 01/30/2023]
Abstract
Serotoninergic psychedelics induced extensive alterations in perception and cognition, which has been attributable to its disruptive effect on oscillatory rhythms of prefrontal cortex. However, there is a lack of information how serotoninergic psychedelics affect the intra-prefrontal network, which intrinsically interact to accomplish perceptual processing. Uncovering the altered neural network caused by psychedelics helps to understand the mechanisms of their psychoactive effects and contribute to develop biological markers of psychedelic effects. In present study, we investigated the effects of substituted phenethylamine psychedelic 25C-NBOMe on neural oscillations in the intra-prefrontal and hippocampal-prefrontal network. The effective dose of 25C-NBOMe (0.1 mg/kg) disrupting sensorimotor gating in male Sprague-Dawley rats was used to observe its effects on neural oscillations in the prelimbic cortex, anterior cingulate cortex, orbitofrontal cortex (OFC) and hippocampus CA1. The power of high frequency oscillation (HFO, 120-150 Hz) was potentiated by 25C-NBOMe selectively in the OFC, with peaking at 20-30 min after treatment. 25C-NBOMe strengthened HFO coherence within the intra-prefrontal, rather than hippocampal-prefrontal network. Potentiated HFO in the OFC had a strong positive correlation with the strengthened inter-prefrontal HFO coherence by 25C-NBOMe. The 25C-NBOMe-induced alterations of rhythmic patterns were prevented by pre-treatment with selective serotonin 2A receptor antagonist MDL100,907. These results demonstrate that OFC rhythmic activity in HFO is relatively susceptible to substituted phenethylamine and potentially drives drug-induced rhythmic coherence within intra-prefrontal regions. Our findings provide additional insight into the neuropathophysiology of the psychoactive effects of psychedelics and indicate that the altered HFO might be applied as a potential biological marker of psychedelic effect.
Collapse
|
27
|
Wießner I, Falchi M, Palhano-Fontes F, Feilding A, Ribeiro S, Tófoli LF. LSD, madness and healing: Mystical experiences as possible link between psychosis model and therapy model. Psychol Med 2023; 53:1151-1165. [PMID: 34253268 DOI: 10.1017/s0033291721002531] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND For a century, psychedelics have been investigated as models of psychosis for demonstrating phenomenological similarities with psychotic experiences and as therapeutic models for treating depression, anxiety, and substance use disorders. This study sought to explore this paradoxical relationship connecting key parameters of the psychotic experience, psychotherapy, and psychedelic experience. METHODS In a randomized, double-blind, placebo-controlled, crossover design, 24 healthy volunteers received 50 μg d-lysergic acid diethylamide (LSD) or inactive placebo. Psychotic experience was assessed by aberrant salience (Aberrant Salience Inventory, ASI), therapeutic potential by suggestibility (Creative Imagination Scale, CIS) and mindfulness (Five Facet Mindfulness Questionnaire, FFMQ; Mindful Attention Awareness Scale, MAAS; Experiences Questionnaire, EQ), and psychedelic experience by four questionnaires (Altered State of Consciousness Questionnaire, ASC; Mystical Experiences Questionnaire, MEQ; Challenging Experiences Questionnaire, CEQ; Ego-Dissolution Inventory, EDI). Relationships between LSD-induced effects were examined. RESULTS LSD induced psychedelic experiences, including alteration of consciousness, mystical experiences, ego-dissolution, and mildly challenging experiences, increased aberrant salience and suggestibility, but not mindfulness. LSD-induced aberrant salience correlated highly with complex imagery, mystical experiences, and ego-dissolution. LSD-induced suggestibility correlated with no other effects. Individual mindfulness changes correlated with aspects of aberrant salience and psychedelic experience. CONCLUSIONS The LSD state resembles a psychotic experience and offers a tool for healing. The link between psychosis model and therapeutic model seems to lie in mystical experiences. The results point to the importance of meaning attribution for the LSD psychosis model and indicate that psychedelic-assisted therapy might benefit from therapeutic suggestions fostering mystical experiences.
Collapse
Affiliation(s)
- Isabel Wießner
- Department of Medical Psychology and Psychiatry, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
- Interdisciplinary Cooperation for Ayahuasca Research and Outreach (ICARO), School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Marcelo Falchi
- Department of Medical Psychology and Psychiatry, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
- Interdisciplinary Cooperation for Ayahuasca Research and Outreach (ICARO), School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Fernanda Palhano-Fontes
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | - Sidarta Ribeiro
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Luís Fernando Tófoli
- Department of Medical Psychology and Psychiatry, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
- Interdisciplinary Cooperation for Ayahuasca Research and Outreach (ICARO), School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
28
|
Dahan O. Navigating intensive altered states of consciousness: How can the set and setting key parameters promote the science of human birth? Front Psychiatry 2023; 14:1072047. [PMID: 36846223 PMCID: PMC9947299 DOI: 10.3389/fpsyt.2023.1072047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
The subjective childbirth experience is crucial from a public health standpoint. There is a correlation between a negative childbirth experience and a poor mental state after birth, with effects that go far beyond the postpartum (PP) period. This paper offers a new approach as to how birthing experiences, and birth in general, can be navigated. The theory of set and setting proves that psychedelic experiences are shaped, first and foremost, by the mindset of an individual entering a psychedelic experience (set) and by the surroundings in which the experience happens (setting). In research on altered states of consciousness during psychedelic experiences, this theory explains how the same substance can lead to a positive and life-changing experience or to a traumatic and frightening experience. Because recent studies suggest that birthing women enter an altered state of consciousness during physiological birth ("birthing consciousness"), I suggest analyzing the typical modern birthing experience in terms of set and setting theory. I argue that the set and setting key parameters can help design, navigate, and explain many psychological and physiological elements of the human birth process. Thus, an operative conclusion that emerges from the theoretical analysis presented in this paper is that framing and characterizing the birth environment and birth preparations in terms of set and setting is a central tool that could be used to promote physiological births as well as subjective positive birthing experiences, which is currently a primary, yet unreached goal, in modern obstetrics and public health.
Collapse
Affiliation(s)
- Orli Dahan
- Department of Multidisciplinary Studies, Faculty of Social Sciences and Humanities, Tel-Hai College, Tel-Hai, Israel
| |
Collapse
|
29
|
Ruffini G, Damiani G, Lozano-Soldevilla D, Deco N, Rosas FE, Kiani NA, Ponce-Alvarez A, Kringelbach ML, Carhart-Harris R, Deco G. LSD-induced increase of Ising temperature and algorithmic complexity of brain dynamics. PLoS Comput Biol 2023; 19:e1010811. [PMID: 36735751 PMCID: PMC9943020 DOI: 10.1371/journal.pcbi.1010811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/21/2023] [Accepted: 12/11/2022] [Indexed: 02/04/2023] Open
Abstract
A topic of growing interest in computational neuroscience is the discovery of fundamental principles underlying global dynamics and the self-organization of the brain. In particular, the notion that the brain operates near criticality has gained considerable support, and recent work has shown that the dynamics of different brain states may be modeled by pairwise maximum entropy Ising models at various distances from a phase transition, i.e., from criticality. Here we aim to characterize two brain states (psychedelics-induced and placebo) as captured by functional magnetic resonance imaging (fMRI), with features derived from the Ising spin model formalism (system temperature, critical point, susceptibility) and from algorithmic complexity. We hypothesized, along the lines of the entropic brain hypothesis, that psychedelics drive brain dynamics into a more disordered state at a higher Ising temperature and increased complexity. We analyze resting state blood-oxygen-level-dependent (BOLD) fMRI data collected in an earlier study from fifteen subjects in a control condition (placebo) and during ingestion of lysergic acid diethylamide (LSD). Working with the automated anatomical labeling (AAL) brain parcellation, we first create "archetype" Ising models representative of the entire dataset (global) and of the data in each condition. Remarkably, we find that such archetypes exhibit a strong correlation with an average structural connectome template obtained from dMRI (r = 0.6). We compare the archetypes from the two conditions and find that the Ising connectivity in the LSD condition is lower than in the placebo one, especially in homotopic links (interhemispheric connectivity), reflecting a significant decrease of homotopic functional connectivity in the LSD condition. The global archetype is then personalized for each individual and condition by adjusting the system temperature. The resulting temperatures are all near but above the critical point of the model in the paramagnetic (disordered) phase. The individualized Ising temperatures are higher in the LSD condition than in the placebo condition (p = 9 × 10-5). Next, we estimate the Lempel-Ziv-Welch (LZW) complexity of the binarized BOLD data and the synthetic data generated with the individualized model using the Metropolis algorithm for each participant and condition. The LZW complexity computed from experimental data reveals a weak statistical relationship with condition (p = 0.04 one-tailed Wilcoxon test) and none with Ising temperature (r(13) = 0.13, p = 0.65), presumably because of the limited length of the BOLD time series. Similarly, we explore complexity using the block decomposition method (BDM), a more advanced method for estimating algorithmic complexity. The BDM complexity of the experimental data displays a significant correlation with Ising temperature (r(13) = 0.56, p = 0.03) and a weak but significant correlation with condition (p = 0.04, one-tailed Wilcoxon test). This study suggests that the effects of LSD increase the complexity of brain dynamics by loosening interhemispheric connectivity-especially homotopic links. In agreement with earlier work using the Ising formalism with BOLD data, we find the brain state in the placebo condition is already above the critical point, with LSD resulting in a shift further away from criticality into a more disordered state.
Collapse
Affiliation(s)
- Giulio Ruffini
- Neuroelectrics Barcelona, Barcelona, Spain
- Starlab Barcelona, Barcelona, Spain
- Haskins Laboratories, New Haven, Connecticut, United States of America
- * E-mail:
| | | | | | | | - Fernando E. Rosas
- Department of Informatics, University of Sussex, Brighton, United Kingdom
- Centre For Psychedelic Research (Department of Brain Science), Imperial College London, London, United Kingdom
- Centre for Complexity Science, Imperial College London, London, United Kingdom
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, United Kingdom
| | - Narsis A. Kiani
- Algorithmic Dynamics Lab, Center of Molecular Medicine, Karolinksa Institutet, Stockholm, Sweden
- Oncology and Pathology Department, Karolinksa Institutet, Stockholm, Sweden
| | - Adrián Ponce-Alvarez
- Computational Neuroscience Group, Center for Brain and Cognition (Department of Information and Communication Technologies), Universitat Pompeu Fabra, Barcelona, Spain
| | - Morten L. Kringelbach
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Robin Carhart-Harris
- Centre For Psychedelic Research (Department of Brain Science), Imperial College London, London, United Kingdom
- Psychedelics Division - Neuroscape, University of California San Francisco, San Francisco, California, United States of America
| | - Gustavo Deco
- The Catalan Institution for Research and Advanced Studies (ICREA), Universitat Pompeu Fabra, Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- School of Psychological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
30
|
A neurophenomenological approach to non-ordinary states of consciousness: hypnosis, meditation, and psychedelics. Trends Cogn Sci 2023; 27:139-159. [PMID: 36566091 DOI: 10.1016/j.tics.2022.11.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 12/24/2022]
Abstract
No contemporary unifying framework has been provided for the study of non-ordinary states of consciousness (NSCs) despite increased interest in hypnosis, meditation, and psychedelics. NSCs induce shifts in experiential contents (what appears to the experiencer) and/or structure (how it appears). This can allow the investigation of the plastic and dynamic nature of experience from a multiscale perspective that includes mind, brain, body, and context. We propose a neurophenomenological (NP) approach to the study of NSCs which highlights their role as catalysts of transformation in clinical practice by refining our understanding of the relationships between experiential (subjective) and neural dynamics. We outline the ethical implications of the NP approach for standard conceptions of health and pathology as well as the crucial role of experience-based know-how in NSC-related research and application.
Collapse
|
31
|
Aqil M, Roseman L. More than meets the eye: The role of sensory dimensions in psychedelic brain dynamics, experience, and therapeutics. Neuropharmacology 2023; 223:109300. [PMID: 36334767 DOI: 10.1016/j.neuropharm.2022.109300] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/08/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
Abstract
Psychedelics are undergoing a major resurgence of scientific and clinical interest. While multiple theories and frameworks have been proposed, there is yet no universal agreement on the mechanisms underlying the complex effects of psychedelics on subjective experience and brain dynamics, nor their therapeutic benefits. Despite being prominent in psychedelic phenomenology and distinct from those elicited by other classes of hallucinogens, the effects of psychedelics on low-level sensory - particularly visual - dimensions of experience, and corresponding brain dynamics, have often been disregarded by contemporary research as 'epiphenomenal byproducts'. Here, we review available evidence from neuroimaging, pharmacology, questionnaires, and clinical studies; we propose extensions to existing models, provide testable hypotheses for the potential therapeutic roles of psychedelic-induced visual hallucinations, and simulations of visual phenomena relying on low-level cortical dynamics. In sum, we show that psychedelic-induced alterations in low-level sensory dimensions 1) are unlikely to be entirely causally reconducible to high-level alterations, but rather co-occur with them in a dialogical interplay, and 2) are likely to play a causally relevant role in determining high-level alterations and therapeutic outcomes. We conclude that reevaluating the currently underappreciated role of sensory dimensions in psychedelic states will be highly valuable for neuroscience and clinical practice, and that integrating low-level and domain-specific aspects of psychedelic effects into existing nonspecific models is a necessary step to further understand how these substances effect both acute and long-term change in the human brain.
Collapse
Affiliation(s)
- Marco Aqil
- Spinoza Centre for Neuroimaging, the Netherlands; Computational Cognitive Neuroscience and Neuroimaging, Institute for Neuroscience, the Netherlands; Experimental and Applied Psychology, Vrije University Amsterdam, the Netherlands.
| | - Leor Roseman
- Centre for Psychedelic Research, Imperial College London, London, United Kingdom
| |
Collapse
|
32
|
Could psychedelic drugs have a role in the treatment of schizophrenia? Rationale and strategy for safe implementation. Mol Psychiatry 2023; 28:44-58. [PMID: 36280752 DOI: 10.1038/s41380-022-01832-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/02/2022] [Accepted: 10/07/2022] [Indexed: 01/07/2023]
Abstract
Schizophrenia is a widespread psychiatric disorder that affects 0.5-1.0% of the world's population and induces significant, long-term disability that exacts high personal and societal cost. Negative symptoms, which respond poorly to available antipsychotic drugs, are the primary cause of this disability. Association of negative symptoms with cortical atrophy and cell loss is widely reported. Psychedelic drugs are undergoing a significant renaissance in psychiatric disorders with efficacy reported in several conditions including depression, in individuals facing terminal cancer, posttraumatic stress disorder, and addiction. There is considerable evidence from preclinical studies and some support from human studies that psychedelics enhance neuroplasticity. In this Perspective, we consider the possibility that psychedelic drugs could have a role in treating cortical atrophy and cell loss in schizophrenia, and ameliorating the negative symptoms associated with these pathological manifestations. The foremost concern in treating schizophrenia patients with psychedelic drugs is induction or exacerbation of psychosis. We consider several strategies that could be implemented to mitigate the danger of psychotogenic effects and allow treatment of schizophrenia patients with psychedelics to be implemented. These include use of non-hallucinogenic derivatives, which are currently the focus of intense study, implementation of sub-psychedelic or microdosing, harnessing of entourage effects in extracts of psychedelic mushrooms, and blocking 5-HT2A receptor-mediated hallucinogenic effects. Preclinical studies that employ appropriate animal models are a prerequisite and clinical studies will need to be carefully designed on the basis of preclinical and translational data. Careful research in this area could significantly impact the treatment of one of the most severe and socially debilitating psychiatric disorders and open an exciting new frontier in psychopharmacology.
Collapse
|
33
|
Moujaes F, Preller KH, Ji JL, Murray JD, Berkovitch L, Vollenweider FX, Anticevic A. Towards mapping neuro-behavioral heterogeneity of psychedelic neurobiology in humans. Biol Psychiatry 2022:S0006-3223(22)01805-4. [PMID: 36715317 DOI: 10.1016/j.biopsych.2022.10.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/10/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022]
Abstract
Precision psychiatry aims to identify markers of inter-individual variability that allow predicting the right treatment for each patient. However, bridging the gap between molecular-level manipulations and neural systems-level functional alterations remains an unsolved problem in psychiatry. After decades of low success rates in pharmaceutical R&D for psychiatric drugs, multiple studies now point to the potential of psychedelics as a promising fast-acting and long-lasting treatment for some psychiatric symptoms. Yet, given the highly psychoactive nature of these substances, a precision medicine approach is essential to map the neural signals related to clinical efficacy in order to identify patients who can maximally benefit from this treatment. Recent studies have shown that bridging the gap between pharmacology, systems-level neural response in humans and individual experience is possible for psychedelic substances, therefore paving the way for a precision neuropsychiatric therapeutic development. Specifically, it has been shown that the integration of brain-wide PET or transcriptomic data, i.e. receptor distribution for the serotonin 2A receptor, with computational neuroimaging methods can simulate the effect of psychedelics on the human brain. These novel 'computational psychiatry' approaches allow for modeling inter-individual differences in neural as well as subjective effects of psychedelic substances. Collectively, this review provides a deep dive into psychedelic pharmaco-neuroimaging studies with a core focus on how recent computational psychiatry advances in biophysically based circuit modeling can be leveraged to predict individual responses. Finally, we emphasize the importance of human pharmacological neuroimaging for the continued precision therapeutic development of psychedelics.
Collapse
Affiliation(s)
- Flora Moujaes
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry Zurich, Lenggstr. 31, 8032 Zurich, Switzerland; Department of Psychiatry, Yale University School of Medicine, 40 Temple Street, New Haven, CT, 06511, United States
| | - Katrin H Preller
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry Zurich, Lenggstr. 31, 8032 Zurich, Switzerland; Department of Psychiatry, Yale University School of Medicine, 40 Temple Street, New Haven, CT, 06511, United States
| | - Jie Lisa Ji
- Department of Psychiatry, Yale University School of Medicine, 40 Temple Street, New Haven, CT, 06511, United States
| | - John D Murray
- Department of Psychiatry, Yale University School of Medicine, 40 Temple Street, New Haven, CT, 06511, United States; Department of Physics, Yale University, New Haven, CT, 06511, United States; Interdepartmental Neuroscience Program, Yale University, New Haven, CT, 06511, United States
| | - Lucie Berkovitch
- Department of Psychiatry, Yale University School of Medicine, 40 Temple Street, New Haven, CT, 06511, United States; Université de Paris, 15 Rue de l'École de Médecine, F-75006 Paris, France; Department of Psychiatry, Service Hospitalo-Universitaire, GHU Paris Psychiatrie & Neurosciences, 1 rue Cabanis, F-75014, Paris, France
| | - Franz X Vollenweider
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry Zurich, Lenggstr. 31, 8032 Zurich, Switzerland
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, 40 Temple Street, New Haven, CT, 06511, United States; Interdepartmental Neuroscience Program, Yale University, New Haven, CT, 06511, United States.
| |
Collapse
|
34
|
Thal SB, Wieberneit M, Sharbanee JM, Skeffington PM, Baker P, Bruno R, Wenge T, Bright SJ. Therapeutic (Sub)stance: Current practice and therapeutic conduct in preparatory sessions in substance-assisted psychotherapy-A systematized review. J Psychopharmacol 2022; 36:1191-1207. [PMID: 36263882 DOI: 10.1177/02698811221127954] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Clinical trials are currently investigating the potential of substance-assisted psychotherapy (SAPT) as treatment for several psychiatric conditions. The potential therapeutic effects of SAPT may be influenced by contextual factors including preparation prior to and integration after the substance-assisted therapy sessions. AIMS This systematized review outlines recommendations for current practice in preparatory sessions in SAPT including safety measures and screening procedures, preparation of set and setting, session contents, methods, and roles, prerequisites, and appropriate conduct of therapists. METHODS A systematized review of the literature was conducted based on PRISMA guidelines. MEDLINE (OVID), PsycINFO (OVID), and Cochrane Library were searched and clinical trials, treatment manuals, study protocols, case studies, qualitative studies, descriptive studies, theoretical papers, reviews, book chapters, and conference proceedings published until February 1, 2022 were retrieved. RESULTS The final synthesis included k = 83 sources. Information about safety measures including screening of participants, set and setting, contextual-, physiological-, and psychological preparation, roles, competencies, prerequisites, and characteristics of the therapists, and the establishment of a therapeutic relationship were summarized and discussed. CONCLUSION It is concluded that there is a consensus in the literature about the importance of adequate preparation before the administration of psychoactive substances in SAPT. However, the extent and approaches for these sessions vary across different models and there is a need for timelier and more rigorous qualitative and quantitative investigations assessing different approaches and techniques for the optimal preparation of clients in SAPT.
Collapse
Affiliation(s)
- Sascha B Thal
- Discipline of Psychology, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia.,Physical Activity and Well-Being Group, Curtin University, Perth, WA, Australia.,Curtin School of Population Health, Curtin University, Perth, WA, Australia
| | - Michelle Wieberneit
- Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn, Bonn, Germany.,Law School, University of Western Australia, Perth, WA, Australia
| | - Jason M Sharbanee
- Enable Institute, Discipline of Psychology, Curtin School of Population Health, Curtin University, Perth, WA, Australia.,Psychology and Criminology, School of Arts and Humanities, Edith Cowan University, Perth, WA, Australia
| | - Petra M Skeffington
- Discipline of Psychology, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Paris Baker
- School of Medicine (Psychology), University of Tasmania, Hobart, TAS, Australia
| | - Raimondo Bruno
- School of Medicine (Psychology), University of Tasmania, Hobart, TAS, Australia
| | - Tobias Wenge
- International Society for Bonding Psychotherapy, Friedrichshafen, Germany
| | - Stephen J Bright
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia.,Psychedelic Research in Science and Medicine, Balwyn North, VIC, Australia
| |
Collapse
|
35
|
Gaddis A, Lidstone DE, Nebel MB, Griffiths RR, Mostofsky SH, Mejia AF, Barrett FS. Psilocybin induces spatially constrained alterations in thalamic functional organizaton and connectivity. Neuroimage 2022; 260:119434. [PMID: 35792293 DOI: 10.1016/j.neuroimage.2022.119434] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 10/17/2022] Open
Abstract
BACKGROUND Classic psychedelics, such as psilocybin and LSD, and other serotonin 2A receptor (5-HT2AR) agonists evoke acute alterations in perception and cognition. Altered thalamocortical connectivity has been hypothesized to underlie these effects, which is supported by some functional MRI (fMRI) studies. These studies have treated the thalamus as a unitary structure, despite known differential 5-HT2AR expression and functional specificity of different intrathalamic nuclei. Independent Component Analysis (ICA) has been previously used to identify reliable group-level functional subdivisions of the thalamus from resting-state fMRI (rsfMRI) data. We build on these efforts with a novel data-maximizing ICA-based approach to examine psilocybin-induced changes in intrathalamic functional organization and thalamocortical connectivity in individual participants. METHODS Baseline rsfMRI data (n=38) from healthy individuals with a long-term meditation practice was utilized to generate a statistical template of thalamic functional subdivisions. This template was then applied in a novel ICA-based analysis of the acute effects of psilocybin on intra- and extra-thalamic functional organization and connectivity in follow-up scans from a subset of the same individuals (n=18). We examined correlations with subjective reports of drug effect and compared with a previously reported analytic approach (treating the thalamus as a single functional unit). RESULTS Several intrathalamic components showed significant psilocybin-induced alterations in spatial organization, with effects of psilocybin largely localized to the mediodorsal and pulvinar nuclei. The magnitude of changes in individual participants correlated with reported subjective effects. These components demonstrated predominant decreases in thalamocortical connectivity, largely with visual and default mode networks. Analysis in which the thalamus is treated as a singular unitary structure showed an overall numerical increase in thalamocortical connectivity, consistent with previous literature using this approach, but this increase did not reach statistical significance. CONCLUSIONS We utilized a novel analytic approach to discover psilocybin-induced changes in intra- and extra-thalamic functional organization and connectivity of intrathalamic nuclei and cortical networks known to express the 5-HT2AR. These changes were not observed using whole-thalamus analyses, suggesting that psilocybin may cause widespread but modest increases in thalamocortical connectivity that are offset by strong focal decreases in functionally relevant intrathalamic nuclei.
Collapse
Affiliation(s)
- Andrew Gaddis
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Daniel E Lidstone
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mary Beth Nebel
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Roland R Griffiths
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stewart H Mostofsky
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amanda F Mejia
- Department of Statistics, Indiana University Bloomington, Bloomington, IN 47408, USA
| | - Frederick S Barrett
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
36
|
Martins JE, Simões J, Barros M, Simões M. Pre-Molecular Assessment of Self-Processes in Neurotypical Subjects Using a Single Cognitive Behavioral Intervention Evoking Autobiographical Memory. Behav Sci (Basel) 2022; 12:381. [PMID: 36285950 PMCID: PMC9598325 DOI: 10.3390/bs12100381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 11/21/2022] Open
Abstract
In the last 20 years, several contributions have been published on what concerns the conceptual and empirical connections between self-processes. However, only a limited number of publications addressed the viability of those processes to characterize mental health in neurotypical subjects with a normative pattern of neurodevelopment. Furthermore, even fewer experiments focused explicitly on the complexity of studying neurotypical phenomenal data. On the one hand, this normative pattern is commonly associated with mental health and a multifaceted self-concept and well-being. On the other hand, well-being is often related to a healthy cognitive life. However, how such intricate and complex relation between self-processes is established in neurotypical subjects requires further evidence. The novelty of this work is thus studying the first-person experience, which is correlated with the mental events aroused by a cognitive behavioral intervention. The prior methodology that led to the complete characterization of a neurotypical sample was already published by the authors, although the materials, the methods, the sample screening, and the sample size study required further explanation and exploration. This paper's innovation is hence the phenomenological assessment of subjects' self-regulation, which is used for mental health profiling, providing the basis for subsequent molecular typing. For that matter, a convenience sample of 128 (19-25-year-old) neurotypical young adults, healthy university students at the University of Lisbon, non-medicated and with no serious, uncontrolled, or chronic diseases, are characterized according to their cognitive functioning and self-concept. The procedure comprised (i) a mental status examination (psychological assessment) and (ii) a psychological intervention, i.e., a single cognitive behavioral intervention (intervention protocol). The psychological assessment was a standardized and structured clinical interview, which comprised the use of 4 psychological scales complementary to the classical Mental Status Examination (MSE). The intervention protocol applied a combined exercise of psychophysical training and autobiographical-self memory-recalling. The results permitted identifying and isolating four different subgroups (self awareness, self consciousness, reflective self, and pre-reflective self) in neurotypical subjects with discrete self-processes. The outcome of this study is screening four different aspects of self-reflection and the isolation between various forms of self-directed attention and their interconnections in these four mental health strata. The practical implication of this study is to fulfill an a priori pre-molecular assessment of self-regulation with separate cognitive characteristics. The reliability of these mental strata, their distinct neurophysiology, and discrete molecular fingerprint will be tested in a future publication by in silico characterization, total protein profiling, and simultaneous immunodetection of the neuropeptide and neuroimmune response of the same participants.
Collapse
Affiliation(s)
- Jorge Emanuel Martins
- Laboratory of Mind-Matter Interaction with Therapeutic Intention (LIMMIT), Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
- Center for Interdisciplinary Research in Health (CIIS), Faculty of Dental Medicine (FMD), Universidade Católica Portuguesa, 3504-505 Viseu, Portugal
| | - Joana Simões
- Laboratory of Mind-Matter Interaction with Therapeutic Intention (LIMMIT), Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| | - Marlene Barros
- Center for Interdisciplinary Research in Health (CIIS), Faculty of Dental Medicine (FMD), Universidade Católica Portuguesa, 3504-505 Viseu, Portugal
| | - Mário Simões
- Laboratory of Mind-Matter Interaction with Therapeutic Intention (LIMMIT), Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| |
Collapse
|
37
|
Stoliker D, Egan GF, Friston KJ, Razi A. Neural Mechanisms and Psychology of Psychedelic Ego Dissolution. Pharmacol Rev 2022; 74:876-917. [PMID: 36786290 DOI: 10.1124/pharmrev.121.000508] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022] Open
Abstract
Neuroimaging studies of psychedelics have advanced our understanding of hierarchical brain organization and the mechanisms underlying their subjective and therapeutic effects. The primary mechanism of action of classic psychedelics is binding to serotonergic 5-HT2A receptors. Agonist activity at these receptors leads to neuromodulatory changes in synaptic efficacy that can have a profound effect on hierarchical message-passing in the brain. Here, we review the cognitive and neuroimaging evidence for the effects of psychedelics: in particular, their influence on selfhood and subject-object boundaries-known as ego dissolution-surmised to underwrite their subjective and therapeutic effects. Agonism of 5-HT2A receptors, located at the apex of the cortical hierarchy, may have a particularly powerful effect on sentience and consciousness. These effects can endure well after the pharmacological half-life, suggesting that psychedelics may have effects on neural plasticity that may play a role in their therapeutic efficacy. Psychologically, this may be accompanied by a disarming of ego resistance that increases the repertoire of perceptual hypotheses and affords alternate pathways for thought and behavior, including those that undergird selfhood. We consider the interaction between serotonergic neuromodulation and sentience through the lens of hierarchical predictive coding, which speaks to the value of psychedelics in understanding how we make sense of the world and specific predictions about effective connectivity in cortical hierarchies that can be tested using functional neuroimaging. SIGNIFICANCE STATEMENT: Classic psychedelics bind to serotonergic 5-HT2A receptors. Their agonist activity at these receptors leads to neuromodulatory changes in synaptic efficacy, resulting in a profound effect on information processing in the brain. Here, we synthesize an abundance of brain imaging research with pharmacological and psychological interpretations informed by the framework of predictive coding. Moreover, predictive coding is suggested to offer more sophisticated interpretations of neuroimaging findings by bridging the role between the 5-HT2A receptors and large-scale brain networks.
Collapse
Affiliation(s)
- Devon Stoliker
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| | - Gary F Egan
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| | - Karl J Friston
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| | - Adeel Razi
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| |
Collapse
|
38
|
Dourron HM, Strauss C, Hendricks PS. Self-Entropic Broadening Theory: Toward a New Understanding of Self and Behavior Change Informed by Psychedelics and Psychosis. Pharmacol Rev 2022; 74:982-1027. [PMID: 36113878 DOI: 10.1124/pharmrev.121.000514] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 03/21/2025] Open
Abstract
The extremes of human experiences, such as those occasioned by classic psychedelics and psychosis, provide a rich contrast for understanding how components of these experiences impact well-being. In recent years, research has suggested that classic psychedelics display the potential to promote positive enduring psychologic and behavioral changes in clinical and nonclinical populations. Paradoxically, classic psychedelics have been described as psychotomimetics. This review offers a putative solution to this paradox by providing a theory of how classic psychedelics often facilitate persistent increases in well-being, whereas psychosis leads down a "darker" path. This will be done by providing an overview of the overlap between the states (i.e., entropic processing) and their core differences (i.e., self-focus). In brief, entropic processing can be defined as an enhanced overall attentional scope and decreased predictability in processing stimuli facilitating a hyperassociative style of thinking. However, the outcomes of entropic states vary depending on level of self-focus, or the degree to which the associations and information being processed are evaluated in a self-referential manner. We also describe potential points of overlap with less extreme experiences, such as creative thinking and positive emotion-induction. Self-entropic broadening theory offers a heuristically valuable perspective on classic psychedelics and their lasting effects and relation to other states by creating a novel synthesis of contemporary theories in psychology. SIGNIFICANCE STATEMENT: Self-entropic broadening theory provides a novel theory examining the psychedelic-psychotomimetic paradox, or how classic psychedelics can be therapeutic, yet mimic symptoms of psychosis. It also posits a framework for understanding the transdiagnostic applicability of classic psychedelics. We hope this model invigorates the field to provide more rigorous comparisons between classic psychedelic-induced states and psychosis and further examinations of how classic psychedelics facilitate long-term change. As a more psychedelic future of psychiatry appears imminent, a model that addresses these long-standing questions is crucial.
Collapse
Affiliation(s)
- Haley Maria Dourron
- Drug Use & Behavior Laboratory, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama (H.M.D., P.S.H.) and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey (C.S.)
| | - Camilla Strauss
- Drug Use & Behavior Laboratory, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama (H.M.D., P.S.H.) and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey (C.S.)
| | - Peter S Hendricks
- Drug Use & Behavior Laboratory, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama (H.M.D., P.S.H.) and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey (C.S.)
| |
Collapse
|
39
|
Abstract
Experiences of psychedelics and psychosis were deeply entangled in scientific practices in the mid-20th century, from uses of psychedelic drugs that could model psychosis, to detailed phenomenological comparisons of endogenous and drug-induced madness. After the moral panic of the 1960s shut down psychedelic research, however, these two phenomena became disentangled. In the decades following, the science of psychosis transformed, shedding the language of psychoanalysis, and adopting the new scientific veneer of psychiatry. Today, as psychedelic science re-emerges, the research programs surrounding psychosis and psychedelics now stand in stark contrast. Here, I look closely at how these research programs respond to questions related to what is worth measuring, what is worth investigating, and how we ought to respond to these experiences. This comparison reveals radically different assumptions and values that guide each research paradigm and shape clinical practice. While psychedelic research often includes scales that seek to capture experiences of mysticism, meaningfulness, and ego dissolution, research related to psychosis focuses on the measurement of pathological symptoms and functioning. Research into psychosis primarily seeks universal and reductionist causal explanations and interventions, while psychedelic research embraces the importance of set and setting in shaping unique experiences. Responses to psychedelic crisis involve warmth, compassion, and support, while responses to psychotic experiences often involve restraint, seclusion, and weapons. I argue that these differences contain important lessons for psychiatry. However, as psychedelic research struggles to meet regulatory requirements and fit within the paradigm of evidence-based medicine, these differences may quickly dissolve.
Collapse
Affiliation(s)
- Phoebe Friesen
- Biomedical Ethics Unit, Department of Social Studies of Medicine, 5620McGill University, Montreal, QC, Canada
| |
Collapse
|
40
|
Pouyan N, Halvaei Khankahdani Z, Younesi Sisi F, Lee Y, Rosenblat JD, Teopiz KM, Lui LMW, Subramaniapillai M, Lin K, Nasri F, Rodrigues N, Gill H, Lipsitz O, Cao B, Ho R, Castle D, McIntyre RS. A Research Domain Criteria (RDoC)-Guided Dashboard to Review Psilocybin Target Domains: A Systematic Review. CNS Drugs 2022; 36:1031-1047. [PMID: 36097251 PMCID: PMC9550777 DOI: 10.1007/s40263-022-00944-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/17/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Preliminary results from randomized controlled studies as well as identified molecular, cellular, and circuit targets of select psychedelics (e.g., psilocybin) suggest that their effects are transdiagnostic. In this review, we exploit the Research Domain Criteria (RDoC) transdiagnostic framework, to synthesize extant literature on psilocybin. OBJECTIVE We aimed to identify RDoC-based effects of psilocybin and vistas for future mechanistic and interventional research. METHODS A systematic search in electronic databases (i.e., PubMed, Scopus, PsycINFO, and Web of Science) performed in January and February 2021 identified English articles published between 1990 and 2020 reporting the effects of psilocybin on mental health measures. Data from included articles were retrieved and organized according to the RDoC bio-behavioral matrix and its constituent six main domains, namely: positive valence systems, negative valence systems, cognitive systems, social processes, sensorimotor systems, and arousal and regulatory systems. RESULTS The preponderance of research with psilocybin has differentially reported beneficial effects on positive valence systems, negative valence system, and social process domains. The data from the included studies support both short-term (23 assessments) and long-term (15 assessments) beneficial effects of psilocybin on the positive valence systems. While 12 of the extracted outcome measures suggest that psilocybin use is associated with increases in the "fear" construct of the negative valence systems domain, 19 findings show no significant effects on this construct, and seven parameters show lowered levels of the "sustained threat" construct in the long term. Thirty-four outcome measures revealed short-term alterations in the social systems' construct namely, "perception and understanding of self," and "social communications" as well as enhancements in "perception and understanding of others" and "affiliation and attachment". The majority of findings related to the cognitive systems' domain reported dyscognitive effects. There have been relatively few studies reporting outcomes of psilocybin on the remaining RDoC domains. Moreover, seven of the included studies suggest the transdiagnostic effects of psilocybin. The dashboard characterization of RDoC outcomes with psilocybin suggests beneficial effects in the measures of reward, threat, and arousal, as well as general social systems. CONCLUSIONS Psilocybin possesses a multi-domain effectiveness. The field would benefit from highly rigorous proof-of-mechanism research to assess the effects of psilocybin using the RDoC framework. The combined effect of psilocybin with psychosocial interventions with RDoC-based outcomes is a priority therapeutic vista.
Collapse
Affiliation(s)
- Niloufar Pouyan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital, Zurich, Switzerland.
- Program in Biomedical Sciences (PIBS), University of Michigan, 1135 Catherine Street, Box 5619, 2960 Taubman Health Science Library, Ann Arbor, MI, 48109-5619, USA.
- Aracell Zist Darou Pharmaceutical, Tehran, Iran.
| | - Zahra Halvaei Khankahdani
- Faculty of Pharmacy, Islamic Azad University of Medical Sciences, Tehran, Iran
- Bayer Pharmaceuticals, Tehran, Iran
| | - Farnaz Younesi Sisi
- Faculty of Pharmacy, Islamic Azad University of Medical Sciences, Tehran, Iran
- Yaadmaan Institute for Brain, Cognition and Memory Studies, Tehran, Iran
| | - Yena Lee
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, Toronto, ON, Canada
| | - Joshua D Rosenblat
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Kayla M Teopiz
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, Toronto, ON, Canada
| | - Leanna M W Lui
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | | | - Kangguang Lin
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Flora Nasri
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, Toronto, ON, Canada
| | - Nelson Rodrigues
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, Toronto, ON, Canada
| | - Hartej Gill
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Orly Lipsitz
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, Toronto, ON, Canada
| | - Bing Cao
- School of Psychology and Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing, People's Republic of China
| | - Roger Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David Castle
- Department of Psychiatry, Centre for Complex Interventions, Centre for Addictions and Mental Health, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, Toronto, ON, Canada
| |
Collapse
|
41
|
New Atypical Antipsychotics in the Treatment of Schizophrenia and Depression. Int J Mol Sci 2022; 23:ijms231810624. [PMID: 36142523 PMCID: PMC9500595 DOI: 10.3390/ijms231810624] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
Schizophrenia and depression are heterogeneous disorders. The complex pathomechanism of the diseases imply that medication responses vary across patients. Many psychotropic drugs are available but achieving optimal therapeutic effect can be challenging. The evidence correlates well with clinical observations, suggesting that new atypical antipsychotic drugs are effective against negative and cognitive symptoms of schizophrenia, as well as against affective symptoms observed in depression. The purpose of this review presents the background and evidence for the use of the new second/third-generation antipsychotics (aripiprazole, cariprazine, lurasidone, asenapine, brexpiprazole, lumateperone, pimavanserin) in treatment of schizophrenia and depression. We have first provided a brief overview of the major neurobiological underpinnings of schizophrenia and depression. We then shortly discuss efficacy, safety and limitations of ongoing pharmacotherapy used in depression and schizophrenia. Mainly, we have focused this review on the therapeutic potential of new atypical antipsychotic drugs—currently existing—to be effective in psychotic, as well as in affective disorders.
Collapse
|
42
|
Zarkali A, Luppi AI, Stamatakis EA, Reeves S, McColgan P, Leyland LA, Lees AJ, Weil RS. Changes in dynamic transitions between integrated and segregated states underlie visual hallucinations in Parkinson's disease. Commun Biol 2022; 5:928. [PMID: 36075964 PMCID: PMC9458713 DOI: 10.1038/s42003-022-03903-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
Hallucinations are a core feature of psychosis and common in Parkinson's. Their transient, unexpected nature suggests a change in dynamic brain states, but underlying causes are unknown. Here, we examine temporal dynamics and underlying structural connectivity in Parkinson's-hallucinations using a combination of functional and structural MRI, network control theory, neurotransmitter density and genetic analyses. We show that Parkinson's-hallucinators spent more time in a predominantly Segregated functional state with fewer between-state transitions. The transition from integrated-to-segregated state had lower energy cost in Parkinson's-hallucinators; and was therefore potentially preferable. The regional energy needed for this transition was correlated with regional neurotransmitter density and gene expression for serotoninergic, GABAergic, noradrenergic and cholinergic, but not dopaminergic, receptors. We show how the combination of neurochemistry and brain structure jointly shape functional brain dynamics leading to hallucinations and highlight potential therapeutic targets by linking these changes to neurotransmitter systems involved in early sensory and complex visual processing.
Collapse
Affiliation(s)
- Angeliki Zarkali
- Dementia Research Centre, University College London, 8-11 Queen Square, London, WC1N 3AR, UK.
| | - Andrea I Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Suzanne Reeves
- Division of Psychiatry, University College London, 149 Tottenham Court Rd, London, W1T 7BN, UK
| | - Peter McColgan
- Huntington's Disease Centre, University College London, Russell Square House, London, WC1B 5EH, UK
| | - Louise-Ann Leyland
- Dementia Research Centre, University College London, 8-11 Queen Square, London, WC1N 3AR, UK
| | - Andrew J Lees
- Reta Lila Weston Institute of Neurological Studies, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
| | - Rimona S Weil
- Dementia Research Centre, University College London, 8-11 Queen Square, London, WC1N 3AR, UK
- Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London, WC1N 3AR, UK
- Movement Disorders Consortium, University College London, London, WC1N 3BG, UK
| |
Collapse
|
43
|
Barrett FS. Comparative Pharmacology and Circuit-Level Models of the Effects of Psychedelic Drugs on the Human Brain. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:849-851. [PMID: 36084963 DOI: 10.1016/j.bpsc.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Frederick S Barrett
- Center for Psychedelic and Consciousness Research, Department of Psychiatry and Behavioral Sciences, Department of Neuroscience, Johns Hopkins University School of Medicine, and the Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
44
|
van Elk M, Yaden DB. Pharmacological, neural, and psychological mechanisms underlying psychedelics: A critical review. Neurosci Biobehav Rev 2022; 140:104793. [PMID: 35878791 DOI: 10.1016/j.neubiorev.2022.104793] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/08/2022] [Accepted: 07/20/2022] [Indexed: 10/17/2022]
Abstract
This paper provides a critical review of several possible mechanisms at different levels of analysis underlying the effects and therapeutic potential of psychedelics. At the (1) biochemical level, psychedelics primarily affect the 5-HT2A receptor, increase neuroplasticity, offer a critical period for social reward learning, and have anti-inflammatory properties. At the (2) neural level, psychedelics have been associated with reduced efficacy of thalamo-cortical filtering, the loosening of top-down predictive signaling and an increased sensitivity to bottom-up prediction errors, and activation of the claustro-cortical-circuit. At the (3) psychological level, psychedelics have been shown to induce altered and affective states, they affect cognition, induce belief change, exert social effects, and can result in lasting changes in behavior. We outline the potential for a unifying account of the mechanisms underlying psychedelics and contrast this with a model of pluralistic causation. Ultimately, a better understanding of the specific mechanisms underlying the effects of psychedelics could allow for a more targeted therapeutic approach. We highlight current challenges for psychedelic research and provide a research agenda to foster insight in the causal-mechanistic pathways underlying the efficacy of psychedelic research and therapy.
Collapse
Affiliation(s)
- Michiel van Elk
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, the Netherlands.
| | - David Bryce Yaden
- The Center for Psychedelic and Consciousness Research, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA
| |
Collapse
|
45
|
Wang X, Xiu M, Wang K, Su X, Li X, Wu F. Plasma linoelaidyl carnitine levels positively correlated with symptom improvement in olanzapine-treated first-episode drug-naïve schizophrenia. Metabolomics 2022; 18:50. [PMID: 35819637 DOI: 10.1007/s11306-022-01909-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/15/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Olanzapine (OLA) is one of the most commonly used second-generation antipsychotics for the treatment of schizophrenia. However, the heterogeneity of therapeutic response to OLA among schizophrenia patients deserves further exploration. The role of carnitine in the clinical response to OLA monotherapy remains unclear. OBJECTIVES The current study was designed to investigate whether carnitine and its derivatives are linked to the response to OLA treatment. Drug-naïve first-episode patients with schizophrenia were recruited and treated with OLA for 4 weeks. Psychiatric symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS) in pre and post treatment. RESULTS After treatment, we found a significant decrease in 2-Octenoylcarnitine levels and a significant increase in linoelaidyl carnitine, 11Z-Octadecenylcarnitine and 9-Decenoylcarnitine levels. Furthermore, baseline linoelaidyl carnitine levels were correlated with the reduction of PANSS positive symptom subscore. Linear regression and logistic regression analyses found that the baseline linoelaidyl carnitine level was a predictive marker for the therapeutic response to OLA monotherapy for 4 weeks. CONCLUSION Our pilot study suggests that linoelaidyl carnitine levels at baseline may have a predictive role for the improvement of positive symptoms after OLA monotherapy in the patients with schizophrenia.
Collapse
Affiliation(s)
- Xuan Wang
- Hebei Province Veterans Hospital, Baoding, China
| | - Meihong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Keqiang Wang
- Hebei Province Veterans Hospital, Baoding, China
| | - Xiuru Su
- Hebei Province Veterans Hospital, Baoding, China
| | - Xirong Li
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Liwan District, Guangzhou, 510370, China.
- Department of Biomedical Engineering, Guangzhou Medical University, Liwan District, Guangzhou, 510370, China.
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Liwan District, Guangzhou, 510370, China.
| |
Collapse
|
46
|
Sheldon AD, Kafadar E, Fisher V, Greenwald MS, Aitken F, Negreira AM, Woods SW, Powers AR. Perceptual pathways to hallucinogenesis. Schizophr Res 2022; 245:77-89. [PMID: 35216865 PMCID: PMC9232894 DOI: 10.1016/j.schres.2022.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 12/22/2022]
Abstract
Recent advances in computational psychiatry have provided unique insights into the neural and cognitive underpinnings of psychotic symptoms. In particular, a host of new data has demonstrated the utility of computational frameworks for understanding how hallucinations might arise from alterations in typical perceptual processing. Of particular promise are models based in Bayesian inference that link hallucinatory perceptual experiences to latent states that may drive them. In this piece, we move beyond these findings to ask: how and why do these latent states arise, and how might we take advantage of heterogeneity in that process to develop precision approaches to the treatment of hallucinations? We leverage specific models of Bayesian inference to discuss components that might lead to the development of hallucinations. Using the unifying power of our model, we attempt to place disparate findings in the study of psychotic symptoms within a common framework. Finally, we suggest directions for future elaboration of these models in the service of a more refined psychiatric nosology based on predictable, testable, and ultimately treatable information processing derangements.
Collapse
Affiliation(s)
- Andrew D Sheldon
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States of America
| | - Eren Kafadar
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States of America
| | - Victoria Fisher
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States of America
| | - Maximillian S Greenwald
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States of America
| | - Fraser Aitken
- School of Biomedical and Imaging Sciences, Kings College, London, UK
| | | | - Scott W Woods
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States of America
| | - Albert R Powers
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States of America.
| |
Collapse
|
47
|
He MQ, Wang MQ, Chen ZH, Deng WQ, Li TH, Vizzini A, Jeewon R, Hyde KD, Zhao RL. Potential benefits and harms: a review of poisonous mushrooms in the world. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Viktorin V, Griškova-Bulanova I, Voicikas A, Dojčánová D, Zach P, Bravermanová A, Andrashko V, Tylš F, Korčák J, Viktorinová M, Koudelka V, Hájková K, Kuchař M, Horáček J, Brunovský M, Páleníček T. Psilocybin—Mediated Attenuation of Gamma Band Auditory Steady-State Responses (ASSR) Is Driven by the Intensity of Cognitive and Emotional Domains of Psychedelic Experience. J Pers Med 2022; 12:jpm12061004. [PMID: 35743788 PMCID: PMC9225116 DOI: 10.3390/jpm12061004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Psilocybin is a classical serotoninergic psychedelic that induces cognitive disruptions similar to psychosis. Gamma activity is affected in psychosis and is tightly related to cognitive processing. The 40 Hz auditory steady-state responses (ASSR) are frequently used as indicators to test the ability to generate gamma activity. Based on previous literature, we studied the impact of psilocybin on 40 Hz ASSR in healthy volunteers. The study was double blind and placebo controlled with a crossover design. A sample of 20 healthy subjects (10M/10F) received psilocybin orally 0.26 mg/kg or placebo. Participants were measured four times in total, one time before ingestion of psilocybin/placebo and one time after ingestion, during the peak of intoxication. A series of 500 ms click trains were used for stimulation. Psilocybin induced a psychedelic effect and decreased 40 Hz ASSR phase-locking index compared to placebo. The extent of the attenuation was related to Cognition and Affect on the Hallucinogen Rating Scale. The current study shows that psilocybin lowers the synchronization level and the amplitude of 40 Hz auditory steady-state responses, which yields further support for the role of gamma oscillations in cognitive processing and its disturbance.
Collapse
Affiliation(s)
- Vojtěch Viktorin
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; (V.V.); (D.D.); (P.Z.); (A.B.); (V.A.); (F.T.); (J.K.); (M.V.); (V.K.); (J.H.); (M.B.)
- Third Faculty of Medicine, Charles University, Ruská 2411, 100 00 Prague, Czech Republic
| | - Inga Griškova-Bulanova
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; (V.V.); (D.D.); (P.Z.); (A.B.); (V.A.); (F.T.); (J.K.); (M.V.); (V.K.); (J.H.); (M.B.)
- Institute of Biosciences, Vilnius University, 7 Saulėtekio Ave, 10257 Vilnius, Lithuania;
- Correspondence: (I.G.-B.); (T.P.)
| | - Aleksandras Voicikas
- Institute of Biosciences, Vilnius University, 7 Saulėtekio Ave, 10257 Vilnius, Lithuania;
| | - Dominika Dojčánová
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; (V.V.); (D.D.); (P.Z.); (A.B.); (V.A.); (F.T.); (J.K.); (M.V.); (V.K.); (J.H.); (M.B.)
- Third Faculty of Medicine, Charles University, Ruská 2411, 100 00 Prague, Czech Republic
| | - Peter Zach
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; (V.V.); (D.D.); (P.Z.); (A.B.); (V.A.); (F.T.); (J.K.); (M.V.); (V.K.); (J.H.); (M.B.)
| | - Anna Bravermanová
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; (V.V.); (D.D.); (P.Z.); (A.B.); (V.A.); (F.T.); (J.K.); (M.V.); (V.K.); (J.H.); (M.B.)
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague, Czech Republic
| | - Veronika Andrashko
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; (V.V.); (D.D.); (P.Z.); (A.B.); (V.A.); (F.T.); (J.K.); (M.V.); (V.K.); (J.H.); (M.B.)
- Third Faculty of Medicine, Charles University, Ruská 2411, 100 00 Prague, Czech Republic
| | - Filip Tylš
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; (V.V.); (D.D.); (P.Z.); (A.B.); (V.A.); (F.T.); (J.K.); (M.V.); (V.K.); (J.H.); (M.B.)
- Third Faculty of Medicine, Charles University, Ruská 2411, 100 00 Prague, Czech Republic
| | - Jakub Korčák
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; (V.V.); (D.D.); (P.Z.); (A.B.); (V.A.); (F.T.); (J.K.); (M.V.); (V.K.); (J.H.); (M.B.)
| | - Michaela Viktorinová
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; (V.V.); (D.D.); (P.Z.); (A.B.); (V.A.); (F.T.); (J.K.); (M.V.); (V.K.); (J.H.); (M.B.)
- Third Faculty of Medicine, Charles University, Ruská 2411, 100 00 Prague, Czech Republic
| | - Vlastimil Koudelka
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; (V.V.); (D.D.); (P.Z.); (A.B.); (V.A.); (F.T.); (J.K.); (M.V.); (V.K.); (J.H.); (M.B.)
| | - Kateřina Hájková
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (K.H.); (M.K.)
| | - Martin Kuchař
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (K.H.); (M.K.)
| | - Jiří Horáček
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; (V.V.); (D.D.); (P.Z.); (A.B.); (V.A.); (F.T.); (J.K.); (M.V.); (V.K.); (J.H.); (M.B.)
- Third Faculty of Medicine, Charles University, Ruská 2411, 100 00 Prague, Czech Republic
| | - Martin Brunovský
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; (V.V.); (D.D.); (P.Z.); (A.B.); (V.A.); (F.T.); (J.K.); (M.V.); (V.K.); (J.H.); (M.B.)
- Third Faculty of Medicine, Charles University, Ruská 2411, 100 00 Prague, Czech Republic
| | - Tomáš Páleníček
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; (V.V.); (D.D.); (P.Z.); (A.B.); (V.A.); (F.T.); (J.K.); (M.V.); (V.K.); (J.H.); (M.B.)
- Third Faculty of Medicine, Charles University, Ruská 2411, 100 00 Prague, Czech Republic
- Correspondence: (I.G.-B.); (T.P.)
| |
Collapse
|
49
|
Müller CP. Serotonin and Consciousness-A Reappraisal. Behav Brain Res 2022; 432:113970. [PMID: 35716774 DOI: 10.1016/j.bbr.2022.113970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/02/2022]
Abstract
The serotonergic system of the brain is a major modulator of behaviour. Here we describe a re-appraisal of its function for consciousness based on anatomical, functional and pharmacological data. For a better understanding, the current model of consciousness is expanded. Two parallel streams of conscious flow are distinguished. A flow of conscious content and an affective consciousness flow. While conscious content flow has its functional equivalent in the activity of higher cortico-cortical and cortico-thalamic networks, affective conscious flow originates in segregated deeper brain structures for single emotions. It is hypothesized that single emotional networks converge on serotonergic and other modulatory transmitter neurons in the brainstem where a bound percept of an affective conscious flow is formed. This is then dispersed to cortical and thalamic networks, where it is time locked with conscious content flow at the level of these networks. Serotonin acts in concert with other modulatory systems of the brain stem with some possible specialization on single emotions. Together, these systems signal a bound percept of affective conscious flow. Dysfunctions in the serotonergic system may not only give rise to behavioural and somatic symptoms, but also essentially affect the coupling of conscious affective flow with conscious content flow, leading to the affect-stained subjective side of mental disorders like anxiety, depression, or schizophrenia. The present model is an attempt to integrate the growing insights into serotonergic system function. However, it is acknowledged, that several key claims are still at a heuristic level that need further empirical support.
Collapse
Affiliation(s)
- Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany; Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
50
|
Avram M, Müller F, Rogg H, Korda A, Andreou C, Holze F, Vizeli P, Ley L, Liechti ME, Borgwardt S. Characterizing thalamocortical (dys)connectivity following d-amphetamine, LSD, and MDMA administration. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:885-894. [PMID: 35500840 DOI: 10.1016/j.bpsc.2022.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/28/2022] [Accepted: 04/13/2022] [Indexed: 12/19/2022]
Abstract
BACKGROUND Patients with psychotic disorders present alterations in thalamocortical intrinsic functional connectivity (iFC) as measured by resting-state functional magnetic resonance imaging (rs-fMRI). Specifically, thalamic iFC is increased with sensorimotor cortices (hyperconnectivity) and decreased with prefrontal-limbic cortices (hypoconnectivity). Intriguingly, psychedelics such as lysergic acid diethylamide (LSD) elicit similar thalamocortical-hyperconnectivity with sensorimotor areas in healthy volunteers. It is unclear whether LSD also induces thalamocortical-hypoconnectivity with prefrontal-limbic cortices as current findings are equivocal. Notably, thalamocortical-hyperconnectivity was associated with psychotic symptoms in patients and substance-induced altered states of consciousness in healthy volunteers. Thalamocortical dysconnectivity is likely evoked by altered neurotransmission, e.g., via dopaminergic excess in psychotic disorders and serotonergic agonism in psychedelic-induced states. It is unclear whether thalamocortical dysconnectivity is also elicited by amphetamine-type substances, broadly releasing monoamines (i.e., dopamine, norepinephrine) but producing fewer perceptual effects than psychedelics. METHODS We administrated LSD, d-amphetamine, and 3,4-methylenedioxymethamphetamine (MDMA) in 28 healthy volunteers and investigated their effects on thalamic iFC with two brain networks (auditory-sensorimotor (ASM) and salience (SAL) - corresponding to sensorimotor and prefrontal-limbic cortices, respectively), using a double-blind, placebo-controlled, cross-over design. RESULTS All active substances elicited ASM-thalamic-hyperconnectivity compared to placebo, despite predominantly distinct pharmacological actions and subjective effects. LSD-induced effects correlated with subjective changes in perception, indicating a link between hyperconnectivity and psychedelic-type perceptual alterations. Unlike d-amphetamine and MDMA, which induced hypoconnectivity with SAL, LSD elicited hyperconnectivity. D-amphetamine and MDMA evoked similar thalamocortical dysconnectivity patterns. CONCLUSIONS Psychedelics, empathogens, and psychostimulants evoke thalamocortical-hyperconnectivity with sensorimotor areas, akin to findings in patients with psychotic disorders.
Collapse
Affiliation(s)
- Mihai Avram
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, 23538, Germany.
| | - Felix Müller
- Department of Psychiatry (UPK), University of Basel, Basel, 4012, Switzerland
| | - Helena Rogg
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, 23538, Germany
| | - Alexandra Korda
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, 23538, Germany
| | - Christina Andreou
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, 23538, Germany
| | - Friederike Holze
- Division of Clinical Pharmacology and Toxicology, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Patrick Vizeli
- Division of Clinical Pharmacology and Toxicology, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Laura Ley
- Division of Clinical Pharmacology and Toxicology, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Stefan Borgwardt
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, 23538, Germany
| |
Collapse
|