1
|
Galstyan DS, Kolesnikova TO, Demin KA, Dubrovskii YA, Murashko E, Kessenikh E, Ilyin NP, Ikrin AN, Moskalenko AM, de Abreu MS, Yang L, Kalueff AV. Intranasal delivery of drugs to the central nervous system of adult zebrafish. Lab Anim (NY) 2025; 54:126-132. [PMID: 40307351 DOI: 10.1038/s41684-025-01545-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 03/18/2025] [Indexed: 05/02/2025]
Abstract
The small teleost zebrafish (Danio rerio) has become a critically important laboratory animal in biomedicine. One of their key practical advantages, the convenient method of small-molecule administration via water immersion, has certain problems with dosing precision and drug delivery. Here, we present a simple protocol for the intranasal delivery of neuroactive drugs in adult zebrafish using arecoline and nicotine, two well-studied reference neuroactive drugs chosen for the proof of concept. Adult fish received 1 μL water solution of arecoline (1 and 10 mg/mL) or nicotine tartrate (5 and 10 mg/mL) or the same volume of drug-free water (control) into both nostrils, followed by behavioral testing in the novel tank test 5 min later. Mass spectrometry analyses confirmed that both drugs rapidly reached the zebrafish brain following intranasal administration. Intranasally administered arecoline (10 mg/mL) and nicotine (5 and 10 mg/mL) demonstrated overt behavioral profiles, evoking characteristic anxiolytic-like effects in zebrafish similar to those observed here for a standard 20-min water immersion method (10 mg/L arecoline or 30 mg/L nicotine). Overall, we showed that neuroactive drugs can be delivered to adult zebrafish intranasally to exert central effects, which may (at least for some drugs) occur faster and can need smaller drug quantities than for the water immersion delivery.
Collapse
Affiliation(s)
- David S Galstyan
- World Class Research Center for Personalized Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Tatyana O Kolesnikova
- Neuroscience Department, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Yaroslav A Dubrovskii
- World Class Research Center for Personalized Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Ekaterina Murashko
- World Class Research Center for Personalized Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Elizaveta Kessenikh
- World Class Research Center for Personalized Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Nikita P Ilyin
- World Class Research Center for Personalized Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Aleksey N Ikrin
- Neuroscience Department, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | - Anastasia M Moskalenko
- Neuroscience Department, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | - Murilo S de Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil.
- Western Caspian University, Baku, Azerbaijan.
| | - Longen Yang
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Suzhou Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Allan V Kalueff
- World Class Research Center for Personalized Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.
- Neuroscience Department, Sirius University of Science and Technology, Sirius Federal Territory, Russia.
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
- Suzhou Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
| |
Collapse
|
2
|
Galstyan DS, Krotova NA, Lebedev AS, Kotova MM, Martynov DD, Golushko NI, Perederiy AS, Zhukov IS, Rosemberg DB, Lim LW, Yang L, de Abreu MS, Gainetdinov RR, Kalueff AV. Trace amine signaling in zebrafish models: CNS pharmacology, behavioral regulation and translational relevance. Eur J Pharmacol 2025; 991:177312. [PMID: 39870233 DOI: 10.1016/j.ejphar.2025.177312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/29/2024] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
Tyramine, β-phenylethylamine, octopamine and other trace amines are endogenous substances recently recognized as important novel neurotransmitters in the brain. Trace amines act via multiple selective trace amine-associated receptors (TAARs) of the G protein-coupled receptor family. TAARs are expressed in various brain regions and modulate neurotransmission, neuronal excitability, adult neurogenesis, cognition, mood, locomotor activity and olfaction. Disrupted trace amine circuits have been implicated in various clinical neuropsychiatric disorders, including schizophrenia, Parkinson's disease, addiction, depression and anxiety. Dysregulated TAAR signaling has been linked in rodents to altered dopamine and serotonin neurotransmission, known to be associated with these psychiatric conditions. Complementing rodent genetic and pharmacological evidence, zebrafish (Danio rerio) are rapidly becoming a novel powerful model system in translational neuropharmacology research. Here, we review trace amine/TAAR neurobiology in zebrafish and discuss their developing translational utility as pharmacological and genetic models for unraveling the role of trace amines in CNS processes and brain disorders.
Collapse
Affiliation(s)
- David S Galstyan
- Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Natalia A Krotova
- Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Andrey S Lebedev
- Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Maria M Kotova
- Neuroscience Program, Sirius University of Science and Technology, Sochi, Russia
| | - Daniil D Martynov
- Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Nikita I Golushko
- Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Alexander S Perederiy
- Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Ilya S Zhukov
- Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg, Russia
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), New Olreans, USA
| | - Lee Wei Lim
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - LongEn Yang
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Murilo S de Abreu
- Western Caspian University, Baku, Azerbaijan; Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), New Olreans, USA; Moscow Institute of Physics and Technology, Moscow, Russia.
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg, Russia
| | - Allan V Kalueff
- Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Neuroscience Program, Sirius University of Science and Technology, Sochi, Russia; Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Moscow Institute of Physics and Technology, Moscow, Russia.
| |
Collapse
|
3
|
van Staden C, Finger-Baier K, Weinshenker D, Botha TL, Brand L, Wolmarans DW. The number of conspecific alarm substance donors notably influences the behavioural responses of zebrafish subjected to a traumatic stress procedure. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:55. [PMID: 40009201 PMCID: PMC11865224 DOI: 10.1007/s10695-025-01468-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
Zebrafish (Danio rerio) represents a complementary pre-clinical model in stress and anxiety research. Conspecific alarm substance (CAS), an alarm pheromone secreted by injured fish, acts as a warning signal and modulates fear responses. Given their schooling nature and that injury precedes CAS release, varying fresh CAS concentrations extracted from different numbers of CAS-donating zebrafish may uniquely influence trauma-related behaviours. Thus, we investigated the behaviour of juvenile and adult zebrafish exposed to traumatic stress protocols, in the presence of CAS extracted from varying numbers of donating zebrafish. Juveniles were assessed for anxiety and boldness in the light-dark and open field tests (LDT and OFT), while adults were assessed in the novel tank test (NTT) and novel OFT (nOFT). We found that (1) trauma minimally impacted juvenile behaviour regardless of donor-derived CAS concentrations, (2) trauma-exposed adults displayed reduced exploration and heightened risk-taking behaviours in the NTT and nOFT compared to control-exposed fish, (3) NTT and nOFT freezing behaviours were distinctly emulated in adult fish and (4) post-trauma behaviour in adults was influenced by the number of donors. Therefore, CAS concentration as determined by donor number has age-related effects on anxiety- and risk-taking behaviours in trauma-exposed zebrafish, a valuable finding for studies utilising fresh CAS as a stress trigger. While we did not directly investigate CAS concentration through serial dilution, our data are of significant translational and ethological relevance, highlighting the importance of in-house method standardization in stress-related studies utilizing fresh CAS as an alarm cue.
Collapse
Affiliation(s)
- Cailin van Staden
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, 11 Hoffman Street, Potchefstroom, 2520, South Africa
| | - Karin Finger-Baier
- Department Genes - Circuits - Behavior, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Whitehead 301, Atlanta, GA, 30322, USA
| | - Tarryn L Botha
- Department of Zoology, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa
| | - Linda Brand
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, 11 Hoffman Street, Potchefstroom, 2520, South Africa
| | - De Wet Wolmarans
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, 11 Hoffman Street, Potchefstroom, 2520, South Africa.
| |
Collapse
|
4
|
van Staden C, Weinshenker D, Finger-Baier K, Botha TL, Brand L, Wolmarans DW. Posttraumatic anxiety-like behaviour in zebrafish is dose-dependently attenuated by the alpha-2A receptor agonist, guanfacine. Behav Pharmacol 2025; 36:47-59. [PMID: 39718044 DOI: 10.1097/fbp.0000000000000808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Traumatic stress exposure increases noradrenaline (NA) release, which contributes to anxiety and impaired risk-appraisal. Guanfacine, a selective alpha-2A adrenergic receptor agonist, has been used to treat stress-related disorders characterised by impaired prefrontal cortex function. By acting on both presynaptic inhibitory autoreceptors and postsynaptic heteroreceptors, guanfacine attenuates stress reactivity and enhances cognition. However, its effectiveness in treating trauma-related anxiety and risk-taking behaviour remains unclear. Leveraging the advantages of zebrafish (Danio rerio ) as a sensitive and efficient preclinical model which is ideal for stress research, we explored the impact of traumatic stress exposure combined with varying concentrations of guanfacine in adult zebrafish. Zebrafish were evaluated for trauma-related anxiety using both the novel tank test (NTT) and a novel version of the open-field test (nOFT), the latter which was also used to investigate risk-taking behaviour. We found that (1) traumatic stress exposure led to heightened risk-taking behaviour in the nOFT, and (2) low-to-moderate concentrations of guanfacine (3-20 µg/L) attenuated anxiety-like, but not risk-taking behaviour, with the highest concentration (40 µg/L), showing no effect. These results highlight the complex role of NA in modulating dysregulated behaviours during traumatic events and indicate the potential of guanfacine for improving trauma-related anxiety and risk-taking behaviour.
Collapse
Affiliation(s)
- Cailin van Staden
- Department of Pharmacology, Center of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Karin Finger-Baier
- Department Genes - Circuits - Behavior, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Tarryn L Botha
- Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| | - Linda Brand
- Department of Pharmacology, Center of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - De Wet Wolmarans
- Department of Pharmacology, Center of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
5
|
Rani N, Kumari K, Hooda V. The role of nanoparticles in transforming plant genetic engineering: advancements, challenges and future prospects. Funct Integr Genomics 2025; 25:23. [PMID: 39841261 DOI: 10.1007/s10142-025-01528-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/23/2025]
Abstract
Despite years of progress in biotechnology, altering the genetic makeup of many plant species, especially their plastids, remains challenging. The existence of a cell wall poses a significant obstacle to the effectual transportation of biomolecules. Developing efficient methods to introduce genes into plant cells and organelles without causing harm is an ongoing area of research. Traditional approaches like Agrobacterium-mediated transformation, biolistic particle delivery, electroporation and polyethylene glycol (PEG) transformation have shown some success but come with limitations like laborious, time-consuming and causing tissue damage. For instance, the Agrobacterium method can be applied only to the restricted host range, while PEG transformation and biolistic particle delivery are not very efficient. In contrast, nanotechnology made an appearance in the field of genetic engineering. Nanoparticles act as delivery vehicles for many cargos in animals. However, in plants, the application of nanocarriers for the delivery of biomolecules is still in its infant stage. Nonetheless, it holds immense potential for the future of plant biotechnology and genome editing.
Collapse
Affiliation(s)
- Neelam Rani
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, India
| | - Kusum Kumari
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, India
| | - Vinita Hooda
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, India.
| |
Collapse
|
6
|
Moreira ALP, Menezes FP, da Silva Junior FC, Luchiari AC. Duration of aversive memory in zebrafish after a single shock. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111182. [PMID: 39471884 DOI: 10.1016/j.pnpbp.2024.111182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
Studies on memory consolidation and reconsolidation, memory loss, and the associated biochemical mechanisms have garnered interest in the past decades due to knowledge of memory performance-affecting factors such as stress, emotions, sleep, age, several neurological diseases, drugs, and chemical pollutants. Memory research has been using animal models, with increased interest in the zebrafish model. This freshwater fish species shows a wide range of behaviors relevant to memory research such as social behavior, aggression, and predator avoidance; however, few studies have investigated the duration of long-term memory. Hence, we designed an experiment to test memory duration by exposing zebrafish to avoidance conditioning using electroshock as the aversive stimulus. Zebrafish were trained to avoid the black side of a black-and-white tank and subsequently tested for aversive memory at 24 h, 48 h, 72 h, 96 h, 168 h, and 240 h. At the 72 h-interval, another zebrafish group was trained and exposed to MK-801(NMDAr antagonist) and then tested. The fish retained memories of the task and avoided the black side of the tank for up to 7 days. At 10 days post-training, the animals could no longer retrieve the aversive memory. Zebrafish treated with MK-801 did not retrieve memory. Knowledge of memory and of long-term memory duration is crucial for optimizing the zebrafish model for use in research investigating cognitive impairments such as memory loss and its ramifications. Additionally, identifying a long-term aversive memory lasting up to 7 days in zebrafish enables further research into the neuronal changes underlying this persistence. Such in-depth investigation could bring valuable insights into memory mechanisms and facilitate targeted interventions for memory-related conditions.
Collapse
Affiliation(s)
- Ana Luisa Pires Moreira
- Pharmaceutical and Medicine Research Institute (IPeFarM), Psychopharmacology Laboratory, Federal University of Paraíba, Brazil
| | - Fabiano Peres Menezes
- Brazilian Institute of Environmental and Renewable natural Resources (IBAMA), Rio Grande, 96200-180, RS, Brazil
| | | | - Ana Carolina Luchiari
- Fish Lab, Department of Physiology and Behavior, Biosciences Center, Graduate Program in Psychobiology, Federal University of Rio Grande do Norte, Brazil.
| |
Collapse
|
7
|
Wang D, Wang J, Yan D, Wang M, Yang L, Demin KA, de Abreu MS, Kalueff AV. Minocycline reduces neurobehavioral deficits evoked by chronic unpredictable stress in adult zebrafish. Brain Res 2024; 1845:149209. [PMID: 39233136 DOI: 10.1016/j.brainres.2024.149209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/11/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Chronic stress-related brain disorders are widespread and debilitating, and often cause lasting neurobehavioral deficits. Minocycline, a common antibiotic and an established inhibitor of microglia, emerges as potential treatment of these disorders. The zebrafish (Danio rerio) is an important emerging model organism in translational neuroscience and stress research. Here, we evaluated the potential of minocycline to correct microglia-mediated behavioral, genomic and neuroimmune responses induced by chronic unpredictable stress (CUS) in adult zebrafish. We demonstrated that CUS evoked overt behavioral deficits in the novel tank, light-dark box and shoaling tests, paralleled by elevated stress hormones (CRH, ACTH and cortisol), and upregulated brain expression of the 'neurotoxic M1' microglia-specific biomarker gene (MHC-2) and pro-inflammatory cytokine genes (IL-1β, IL-6 and IFN-γ). CUS also elevated peripheral (whole-body) pro-inflammatory (IL-1β, IFN-γ) and lowered anti-inflammatory cytokines (IL-4 and IL-10), as well as reduced whole-brain serotonin, dopamine and norepinephrine levels, and increased brain dopamine and serotonin turnover. In contrast, minocycline attenuated most of these effects, also reducing CUS-elevated peripheral levels of IL-6 and IFN-γ. Collectively, this implicates microglia in zebrafish responses to chronic stress, and suggests glial pathways as potential evolutionarily conserved drug targets for treating stress-evoked neuropathogenesis. Our findings also support the growing translational value of zebrafish models for understanding complex molecular mechanisms of brain pathogenesis and its therapy.
Collapse
Affiliation(s)
- Dongmei Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Jingtao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Dongni Yan
- School of Pharmacy, Southwest University, Chongqing, China
| | - Mengyao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Longen Yang
- School of Pharmacy, Southwest University, Chongqing, China; Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China; Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China
| | - Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Murilo S de Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil; Western Caspian University, Baku, Azerbaijan; Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Center, St. Petersburg, Russia; Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China; Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China; Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| |
Collapse
|
8
|
Robles V, Balaguer F, Maicas M, Martínez-Vázquez JM, Martorell P, Tortajada M, Ramón D, Valcarce DG. The Effect of the Combination of Two Postbiotics on Anxiety-like Behavior in Animal Models. Cells 2024; 13:2006. [PMID: 39682754 PMCID: PMC11640140 DOI: 10.3390/cells13232006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
With increasing evidence showing the connections between the microbiome, neurophysiology, and behavior, our research endeavors to investigate whether the consumption of a combination of two postbiotics with antioxidant effects can affect behavior regulation in model species. Here, we worked with a combination (1:1 ratio) of heat-treated Bifidobacterium longum subsp. longum ES1 (CECT7347) and Lacticaseibacillus rhamnosus BPL15 (CECT8361) as a dietary supplement. To examine the potential benefit of using this formulation to alleviate anxiety-like behavior, we employed two model species, Caenorhabditis elegans and adult Danio rerio. In C. elegans, the postbiotic supplementation reduced the anxiety-related behavior analyzed by means of the octanol avoidance test. In zebrafish, the novel tank test indicated a different swimming pattern 2 and 4 months after the animals were fed with the postbiotic combination. While fish did not exhibit any variance in their locomotion parameters such as pace and speed, they showed a statistically significant preference to spend more time in the upper zone of the water tank, a behavior that is correlated with a lower anxiety-like behavior in these species. Our aim with this study is to present evidence that can be used to develop whole-cell postbiotic-based novel and innovative dietary supplements for anxiety-related conditions.
Collapse
Affiliation(s)
- Vanesa Robles
- Cell Biology Area, Molecular Biology Department, Campus de Vegazana s/n, Universidad de León, 24071 León, Spain;
| | - Ferran Balaguer
- Archer Daniels Midland, Nutrition, Health & Wellness, Biopolis S.L. Parc Científic Universitat de València, C/Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Spain; (F.B.); (M.M.); (M.T.); (D.R.)
| | - Miren Maicas
- Archer Daniels Midland, Nutrition, Health & Wellness, Biopolis S.L. Parc Científic Universitat de València, C/Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Spain; (F.B.); (M.M.); (M.T.); (D.R.)
| | - Juan Manuel Martínez-Vázquez
- Instituto Español de Oceanografía, Centro Oceanográfico de Santander (COST-IEO), CSIC, Calle Severiano Ballesteros 16, 39004 Santander, Spain;
| | - Patricia Martorell
- Archer Daniels Midland, Nutrition, Health & Wellness, Biopolis S.L. Parc Científic Universitat de València, C/Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Spain; (F.B.); (M.M.); (M.T.); (D.R.)
| | - Marta Tortajada
- Archer Daniels Midland, Nutrition, Health & Wellness, Biopolis S.L. Parc Científic Universitat de València, C/Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Spain; (F.B.); (M.M.); (M.T.); (D.R.)
| | - Daniel Ramón
- Archer Daniels Midland, Nutrition, Health & Wellness, Biopolis S.L. Parc Científic Universitat de València, C/Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Spain; (F.B.); (M.M.); (M.T.); (D.R.)
- Animal Health and Production, Veterinary Public Health and Food Science and Technology Department Faculty of Veterinary Medicine, University Cardenal Herrera CEU, C/Tirant lo Blanc 7, 46115 Alfara del Patriarca, Spain
| | - David G. Valcarce
- Cell Biology Area, Molecular Biology Department, Campus de Vegazana s/n, Universidad de León, 24071 León, Spain;
- Instituto Español de Oceanografía, Centro Oceanográfico de Santander (COST-IEO), CSIC, Calle Severiano Ballesteros 16, 39004 Santander, Spain;
| |
Collapse
|
9
|
Ciubotaru AD, Leferman CE, Ignat BE, Knieling A, Salaru DL, Turliuc DM, Foia LG, Dima L, Minea B, Hritcu LD, Cioroiu BI, Stoica L, Ciureanu IA, Ciobica AS, Stoica BA, Ghiciuc CM. Anti-Epileptic Activity of Mitocurcumin in a Zebrafish-Pentylenetetrazole (PTZ) Epilepsy Model. Pharmaceuticals (Basel) 2024; 17:1611. [PMID: 39770453 PMCID: PMC11678555 DOI: 10.3390/ph17121611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 01/03/2025] Open
Abstract
Background/Objectives: Ongoing challenges in epilepsy therapy warrant research on alternative treatments that offer improved efficacy and reduced side effects. Designed to enhance mitochondrial targeting and increase bioavailability, mitocurcumin (MitoCur) was evaluated for the first time as an antiepileptic agent, with curcumin (Cur) and sodium valproate (VPA), a standard antiepileptic drug, included for comparison. This study investigated the effects on seizure onset, severity, and progression in a zebrafish model of pentylenetetrazole (PTZ)-induced seizures and measured the concentrations of the compounds in brain tissue. Methods: Zebrafish were pre-treated with MitoCur and Cur (both at 0.25 and 0.5 µM doses) and VPA (0.25 and 0.5 mM) and observed for four minutes to establish baseline locomotor behavior. Subsequently, the animals were exposed to a 5 mM PTZ solution for 10 min, during which seizure progression was observed and scored as follows: 1-increased swimming; 2-burst swimming, left and right movements; 3-circular movements; 4-clonic seizure-like behavior; 5-loss of body posture. The studied compounds were quantified in brain tissue through HPLC and LC-MS. Results: Compared to the control group, all treatments reduced the distance moved and the average velocity, without significant differences between compounds or doses. During PTZ exposure, seizure latencies revealed that all treatments effectively delayed seizure onset up to score 4, demonstrating efficacy in managing moderate seizure activity. Notably, MitoCur also provided significant protection against the most severe seizure score (score 5). Brain tissue uptake analysis indicated that MitoCur achieved higher concentrations in the brain compared to Cur, at both doses. Conclusions: These results highlight the potential of MitoCur as a candidate for seizure management.
Collapse
Affiliation(s)
- Alin Dumitru Ciubotaru
- Discipline of Pharmacology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (C.-E.L.); (C.M.G.)
- Discipline of Biochemistry, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Neurology Department, Clinical Rehabilitation Hospital, 14 Pantelimon Halipa Street, 700661 Iasi, Romania;
| | - Carmen-Ecaterina Leferman
- Discipline of Pharmacology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (C.-E.L.); (C.M.G.)
| | - Bogdan-Emilian Ignat
- Neurology Department, Clinical Rehabilitation Hospital, 14 Pantelimon Halipa Street, 700661 Iasi, Romania;
- Discipline of Neurology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Anton Knieling
- Discipline of Forensic Medicine, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 16 Universitatii Street, 700115 Iasi, Romania;
- Institute of Forensic Medicine, 4 Buna Vestire Street, 700455 Iasi, Romania
| | - Delia Lidia Salaru
- Institute of Cardiovascular Diseases, 50 Carol I Avenue, 700503 Iasi, Romania;
| | - Dana Mihaela Turliuc
- Discipline of Neurosurgery, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
- “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 2 Ateneului Street, 700309 Iasi, Romania
| | - Liliana Georgeta Foia
- Discipline of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (L.G.F.); (B.M.)
| | - Lorena Dima
- Department of Fundamental Disciplines and Clinical Prevention, Faculty of Medicine, Transylvania University of Brasov, 59 Nicolae Balcescu Street, 500019 Brasov, Romania;
| | - Bogdan Minea
- Discipline of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (L.G.F.); (B.M.)
| | - Luminita Diana Hritcu
- Internal Medicine Clinic, “Ion Ionescu de la Brad” University of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania;
| | - Bogdan Ionel Cioroiu
- Research Center for Oenology, Romanian Academy, Iasi Branch, 9 Mihail Sadoveanu Alley, 700490 Iasi, Romania;
| | - Laura Stoica
- Discipline of Cell and Molecular Biology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Ioan-Adrian Ciureanu
- Department of Medical Informatics and Biostatistics, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Alin Stelian Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 20A Carol I Avenue, 700505 Iasi, Romania;
- Center of Biomedical Research, Romanian Academy, Iasi Branch, 2 Teodor Codrescu Street, 700481 Iasi, Romania
| | - Bogdan Alexandru Stoica
- Discipline of Biochemistry, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Cristina Mihaela Ghiciuc
- Discipline of Pharmacology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (C.-E.L.); (C.M.G.)
- St. Mary’s Emergency Children Hospital, 62 Vasile Lupu Street, 700309 Iasi, Romania
| |
Collapse
|
10
|
Alam MR, Dobhal V, Singh S. Neuroprotective potential of solanesol against tramadol induced zebrafish model of Parkinson's disease: insights from neurobehavioral, molecular, and neurochemical evidence. Drug Chem Toxicol 2024; 47:1241-1256. [PMID: 38938099 DOI: 10.1080/01480545.2024.2355542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 05/10/2024] [Indexed: 06/29/2024]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and subsequent depletion of dopamine in the striatum. Solanesol, an alcohol that acts as a precursor to coenzyme Q10, possesses potential applications in managing neurological disorders with antioxidant, anti-inflammatory, and neuromodulatory potential. In this study, a zebrafish model was employed to investigate the effects of solanesol in tramadol induced PD like symptoms. Zebrafish were administered tramadol injections (50 mg/kg) over a 20-day period. Solanesol was administered at doses of 25, 50, and 100 mg/kg, three hours prior to tramadol administration from day 11 to day 20. Behavioral tests assessing motor coordination were conducted on a weekly basis using open field and novel diving tank apparatus. On day 21, the zebrafish were euthanized, and brain tissues were examined for markers of oxidative stress, inflammation, and neurotransmitters level. Chronic tramadol treatment resulted in motor impairment, reduced antioxidant enzyme levels, enhanced release of proinflammatory cytokines in the striatum, and disrupted neurotransmitter balance. However, solanesol administration mitigated these effects and exhibited a neuroprotective effect against neurodegenerative alterations in the zebrafish model of PD. This was evident through improvements in behavior, modulation of biochemical markers, attenuation of neuroinflammation, restoration of neurotransmitters level, and enhancement of mitochondrial activity. The histopathological study also confirmed that solanesol dose dependently restored neuronal cell density which confirmed its neuroprotective potential. Further investigations are required to elucidate the underlying mechanisms of solanesol neuroprotective effects and evaluate its efficacy in human patients.
Collapse
Affiliation(s)
- Md Reyaz Alam
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga, India
| | - Vaishali Dobhal
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga, India
| | - Shamsher Singh
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga, India
| |
Collapse
|
11
|
Näslund J, Landin J, Hieronymus F, Banote RK, Kettunen P. Anxiolytic-like effects of acute serotonin-releasing agents in zebrafish models of anxiety: experimental study and systematic review. Acta Neuropsychiatr 2024; 37:e35. [PMID: 39463428 DOI: 10.1017/neu.2024.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Though commonly used to model affective disorders, zebrafish display notable differences in terms of the structure and function of the brain serotonin system, including responses to pharmacological interventions, as compared to mammals. For example, elevation of brain serotonin following acute administration of serotonin reuptake inhibitors (SRIs) generally has anxiogenic effects, both in the clinical situation and in rodent models of anxiety, but previous research has indicated the opposite in zebrafish. However, several issues remain unresolved. We conducted a systematic review of SRI effects in zebrafish models of anxiety and, on the basis of these results, performed a series of experiments further investigating the influence of serotonin-releasing agents on anxiety-like behaviour in zebrafish, with sex-segregated wild-type animals being administered either escitalopram, or the serotonin releaser fenfluramine, in the light-dark test. In the systematic review, we find that the available literature indicates an anxiolytic-like effect of SRIs in the novel-tank diving test. Regarding the light-dark test, most studies reported no behavioural effects of SRIs, although the few that did generally saw anxiolytic-like responses. In the experimental studies, consistent anxiolytic-like effects were observed with neither sex nor habituation influencing treatment response. We find that the general effect of acute SRI administration in zebrafish indeed appears to be anxiolytic-like, indicating, at least partly, differences in the functioning of the serotonin system as compared to mammals and that caution is advised when using zebrafish to model affective disorders.
Collapse
Affiliation(s)
- Jakob Näslund
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jenny Landin
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Hieronymus
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rakesh Kumar Banote
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hosp1ital, Gothenburg, Sweden
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Petronella Kettunen
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Johnson AL, Hurd PL, Hamilton TJ. Sex, drugs, and zebrafish: Acute exposure to anxiety-modulating compounds in a modified novel tank dive test. Pharmacol Biochem Behav 2024; 243:173841. [PMID: 39074564 DOI: 10.1016/j.pbb.2024.173841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
This study investigated the effects of anxiogenic and anxiolytic drugs on zebrafish (Danio rerio) behaviour using a modified novel tank dive test with higher walls and a narrower depth. Zebrafish were administered chondroitin sulfate, beta-carboline, delta-9-tetrahydrocannabinol (THC), ethanol, and beta-caryophyllene, and their behaviours were evaluated for geotaxis, swimming velocity, and immobility. Both anxiogenic and anxiolytic compounds generally increased bottom-dwelling behaviour, suggesting that the tank's modified dimensions significantly influence zebrafish responses. EC50 values for ethanol showed a lower threshold for velocity reduction compared to zone preference. Chondroitin sulfate uniquely caused a sex-specific increase in male swimming velocity, whereas no other sex-differences were observed with any compound. Interestingly, the presence of drug-treated fish did not alter the behaviour of observer fish, suggesting limited social buffering effects. The findings underscore the complexity of zebrafish behavioural phenotypes and highlight the need for considering tank dimensions and multiple behavioural parameters to accurately assess the effects of anxiety-modulating drugs. This study demonstrates the utility of the modified novel tank dive test in providing nuanced insights into the behavioural effects of different pharmacological agents in zebrafish.
Collapse
Affiliation(s)
- Andréa L Johnson
- Neuroscience and Mental Health Institute, University of Alberta, 2-132 Li Ka Shing Centre for Health Research, Edmonton, Alberta, Canada, T6G 2E1
| | - Peter L Hurd
- Neuroscience and Mental Health Institute, University of Alberta, 2-132 Li Ka Shing Centre for Health Research, Edmonton, Alberta, Canada, T6G 2E1; Department of Psychology, University of Alberta, P217 Biological Sciences Building, 11455 Saskatchewan Drive, Edmonton, Alberta, Canada, T6G 2E9
| | - Trevor J Hamilton
- Neuroscience and Mental Health Institute, University of Alberta, 2-132 Li Ka Shing Centre for Health Research, Edmonton, Alberta, Canada, T6G 2E1; Department of Psychology, MacEwan University, 6-329 City Centre Campus, 10700 - 104 Avenue, Edmonton, Alberta, Canada, T5J 4S2.
| |
Collapse
|
13
|
Luong CT, Audira G, Kurnia KA, Hung CH, Hsiao CD. Fish 3D Locomotion app: a user-friendly computer application package for automatic data calculation and endpoint extraction for novel tank behavior in fish. JOURNAL OF FISH BIOLOGY 2024; 105:1086-1108. [PMID: 39007187 DOI: 10.1111/jfb.15860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/11/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
This paper introduces the Fish 3D Locomotion app (F3LA), a Python-based, Graphical User Interface (GUI)-equipped tool designed to automate behavioral endpoint extraction in zebrafish locomotion assays. Building on our previous work, which utilized a specialized aquatic tank with a mirror and a single camera for fish movement tracking in three dimensions, F3LA significantly enhances data processing efficiency. Its accuracy was tested by reanalyzing and comprehensively comparing the calculated data with the previously published data from prior publications. From the comparison results, 90% of endpoints showed a similar statistical difference result. These minor differences were due to the different starting points for the dataset and updated calculation formulas that are implemented in F3LA. In addition, shoaling area or shoaling volume calculations are also included in F3LA as a new feature that can serve as sensitive indicators of social cohesion, group dynamics, or stress responses, offering insights into neuropsychological conditions or the effects of pharmacological interventions. Furthermore, F3LA offers a marked improvement over manual operations, being at least five times faster, while maintaining consistent accuracy as it reduces human-induced errors, ensuring a higher degree of reliability in the results. Finally, the potency of F3LA was tested to evaluate the toxicities of 14 rare earth elements (REEs) to the adult zebrafish behaviors. Based on the results, our findings suggested that each tested REE altered fish behaviors in different patterns and magnitudes to each other. However, among the tested light rare earth elements (LREEs), neodymium was demonstrated to cause more relatively severe behavior alterations than other LREEs, indicated by the statistically higher value of entropy (0.2695 ± 0.04977 (mean with a standard deviation)) than the control group (0.2352 ± 0.05896). Meanwhile, in terms of heavy rare earth elements (HREEs), erbium seemed to lead to more distinct behavior toxicities than other HREEs, which was shown by the statistically lower level of fractal dimension (2.022 ± 0.3412) than the untreated group (2.255 ± 0.1661). Taken together, F3LA's development marks a significant advance in high-throughput toxicological and pharmacological assessments in zebrafish, leveraging three-dimensional locomotion data for a more comprehensive analysis of fish behavior performance, providing a significant contribution to research in various fields.
Collapse
Affiliation(s)
- Cao Thang Luong
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Gilbert Audira
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taiwan
| | - Kevin Adi Kurnia
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taiwan
| | - Chih-Hsin Hung
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taiwan
- Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Chung-Li, Taiwan
| |
Collapse
|
14
|
Kaur K, Narang RK, Singh S. Neuroprotective potential of Betulinic acid against TIO 2NP induced neurotoxicity in zebrafish. Int Immunopharmacol 2024; 138:112604. [PMID: 38968863 DOI: 10.1016/j.intimp.2024.112604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/04/2024] [Accepted: 06/29/2024] [Indexed: 07/07/2024]
Abstract
Betulinic acid (BA) is a natural triterpenoid extracted from Bacopa monnieri. BA has been reported to be used as a neuroprotective agent, but their molecular mechanisms are still unknown. Therefore, in this study, we attempted to investigate the precise mechanism of BA for its protective effect against Titanium dioxide nanoparticles (TiO2NP) induced neurotoxicity in zebrafish. Hence, our study observation showed that 10 µg/ml dose of TiO2NP caused a rigorous behavioral deficit in zebrafish. Further, biochemical analysis revealed TiO2NP significantly decreased GSH, and SOD, and increased MDA, AChE, TNF-α, IL-1β, and IL-6 levels, suggesting it triggers oxidative stress and neuroinflammation. However, BA at doses of 2.5,5,10 mg/kg improved behavioral as well as biochemical changes in zebrafish brain. Moreover, BA also significantly raised the levels of DA, NE, 5-HT, and GABA and decreased glutamate levels in TiO2NP-treated zebrafish brain. Our histopathological analysis proved that TiO2NP causes morphological changes in the brain. These changes were expressed by increasing pyknotic neurons, which were dose-dependently reduced by Betulinic acid. Likewise, BA upregulated the levels of NRF-2 and HO-1, which can reduce oxidative stress and neuroinflammation. Thus, our study provides evidence for the molecular mechanism behind the neuroprotective effect of Betulinic acid. Rendering to the findings, we can consider BA as a suitable applicant for the treatment of AD-like symptoms.
Collapse
Affiliation(s)
- Karamjeet Kaur
- Research Scholar, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India, 142001; Research Scholar, I.K. Gujral Punjab Technical University, Jalandhar Punjab, India, 144603
| | - R K Narang
- Nanomedicine Research Centre, Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India, 142001
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India, 142001.
| |
Collapse
|
15
|
Wang H, Li X, Li J, Yu F, Li Q, Qin M, Gui L, Qian Y, Huang M. Long-term exposure to ionic liquid [C 8mim]Br induces the potential risk of anxiety and memory deterioration through disturbing neurotransmitter systems. Neurotoxicology 2024; 104:66-74. [PMID: 39084264 DOI: 10.1016/j.neuro.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/11/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
1-octyl-3-methylimidazolium bromide ([C8mim]Br), one of the ionic liquids (ILs), has been used in various fields as an alternative green solvent of conventional organic solvents. Increased application and stabilization of imidazole ring structure lead to its release into the aquatic environment and long-term retention. Structure-activity relationship consideration suggested that ILs may be acetylcholinesterase inhibitors; however, neurotoxicity in vivo, especially the underlying mechanisms is rarely studied. In this study, the zebrafish were exposed to 2.5-10 mg/L [C8mim]Br for 28 days to comprehensively evaluate the neurotoxicity of ILs on adult zebrafish from the behavioral profiles and neurotransmitter systems for the first time. The results indicate that zebrafish exhibit suppressed spatial working memory and anxious behaviors. To assess the potential neurotoxic mechanisms underlying the behavioral responses of zebrafish, we measured the levels of neurotransmitters and precursors, key enzyme activities, and expression levels of relevant genes. Nissl staining showed significant neural cell death in zebrafish after 28-day [C8mim]Br exposure, with corresponding decreases in the levels of neurotransmitters (acetylcholine, glutamate, 5-hydroxytryptophan, gamma-aminobutyric acid, dopamine, and norepinephrine). Furthermore, these results were associated with mRNA expression levels of the disrupted neurotransmitter key genes (th, tph2, mao, slc6a3, ache, gad67). Overall, our study determined that [C8mim]Br caused potential mental disorders like anxiety and memory deterioration in zebrafish by impairing neurotransmitter systems, providing recommendations for the industrial production and application of [C8mim]Br.
Collapse
Affiliation(s)
- Huangyingzi Wang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Xuhua Li
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Jun Li
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Fan Yu
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Qi Li
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Mijia Qin
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Lin Gui
- Shanghai American School, Pudong District, Shanghai 201201, China
| | - Yajie Qian
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Manhong Huang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
16
|
Schenk S, Horsfield JA, Dwoskin L, Johnson SL. Methamphetamine effects in zebrafish (Danio rerio) depend on behavioral endpoint, dose and test session duration. Pharmacol Biochem Behav 2024; 240:173777. [PMID: 38670467 DOI: 10.1016/j.pbb.2024.173777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Research using zebrafish (Danio rerio) has begun to provide novel information in many fields, including the behavioral pharmacology of drug use and misuse. There have been limited studies on the effects of methamphetamine in adult zebrafish and the parameters of exposure (dose, test session length) have not been well-documented. Behavior following drug exposure is generally measured during relatively short sessions (6-10 min is common) in a novel tank environment. Many procedural variables (isolation, netting, novel tank) elicit anxiety-like behavior that is most apparent during the initial portion of a test session. This anxiety-like behavior might mask the initial effects of methamphetamine. During longer test sessions, these anxiety-like responses would be expected to habituate and drug effects should become more apparent. To test this idea, we measured several locomotor activity responses for 50-min following a range of methamphetamine doses (0.1-3.0 mg/L via immersion in methamphetamine solution). Methamphetamine failed to alter swimming velocity, distance travelled, or freezing time. In contrast, methamphetamine produced a dose-dependent decrease in time spent in the bottom of the tank, an increase in the number of visits to the top of the tank, and an increase in the number of transitions along the sides of the tank. The effects of methamphetamine were apparent 10-20 min following exposure and generally persisted throughout the session. These findings indicate that longer test sessions are required to measure methamphetamine-induced changes in behavior in zebrafish, as has been shown in other laboratory animals. The results also suggest that anxiety-like responses associated with various procedural aspects (netting, isolation, novel test apparatus) likely interfere with the ability to observe many behavioral effects of methamphetamine in zebrafish. Based on the current results, habituation to testing procedures to reduce anxiety-like behaviors is recommended in determining the effects of methamphetamine in zebrafish.
Collapse
Affiliation(s)
- Susan Schenk
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | | - Linda Dwoskin
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Sheri L Johnson
- Department of Zoology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
17
|
Pinheiro J, Pinheiro E, de Deus GR, Saito G, Luz WL, Assad N, da Cunha Palheta MR, de Jesus Oliveira Batista E, Morais S, Passos A, Oliveira KRHM, Herculano AM. Brain oxidative stress mediates anxiety-like behavior induced by indomethacin in zebrafish: protective effect of alpha-tocopherol. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1715-1725. [PMID: 37721555 PMCID: PMC10858826 DOI: 10.1007/s00210-023-02661-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/01/2023] [Indexed: 09/19/2023]
Abstract
RATIONALE Indomethacin (INDO) is a widely utilized non-steroidal anti-inflammatory drug (NSAID) with recognized effect on the central nervous system. Although previous reports demonstrate that prolonged treatment with indomethacin can lead to behavioral alterations such as anxiety disorder, the biochemical effect exerted by this drug on the brain are not fully understood. OBJECTIVES The aim of present study was to evaluate if anxiety-like behavior elicited by indomethacin is mediated by brains oxidative stress as well as if alpha-tocopherol, a potent antioxidant, is able to prevent the behavioral and biochemical alterations induced by indomethacin treatment. METHODS Zebrafish were utilized as experimental model and subdivided into control, INDO 1 mg/Kg, INDO 2 mg/Kg, INDO 3 g/Kg, α-TP 2 mg/Kg, α-TP 2 mg/Kg + INDO 1 mg/Kg and α-TP + INDO 2 mg/Kg groups. Vertical distributions elicited by novelty and brain oxidative stress were utilized to determinate behavioral and biochemical alterations elicited by indomethacin treatment, respectively. RESULTS Our results showed that treatment with indomethacin 3 mg/kg induces animal death. No changes in animal survival were observed in animals treated with lower doses of indomethacin. Indomethacin induced significant anxiogenic-like behavior as well as intense oxidative stress in zebrafish brain. Treatment with alpha-tocopherol was able to prevent anxiety-like behavior and brain oxidative stress induced by indomethacin. CONCLUSIONS Data presented in current study demonstrated for the first time that indomethacin induces anxiety-like behavior mediated by brain oxidative stress in zebrafish as well as that pre-treatment with alpha-tocopherol is able to prevent these collateral effects.
Collapse
Affiliation(s)
- Jessica Pinheiro
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Emerson Pinheiro
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Gustavo Ramalho de Deus
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Geovanna Saito
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Waldo Lucas Luz
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Nadyme Assad
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Melk Roberto da Cunha Palheta
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Evander de Jesus Oliveira Batista
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Laboratory of Protozoology, Tropical Medicine Center, Federal University of Pará, Belém, Brazil
| | - Suellen Morais
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Adelaide Passos
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | - Anderson Manoel Herculano
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil.
| |
Collapse
|
18
|
Yao Y, Baronio D, Chen YC, Jin C, Panula P. The Roles of Histamine Receptor 1 (hrh1) in Neurotransmitter System Regulation, Behavior, and Neurogenesis in Zebrafish. Mol Neurobiol 2023; 60:6660-6675. [PMID: 37474883 PMCID: PMC10533647 DOI: 10.1007/s12035-023-03447-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023]
Abstract
Histamine receptors mediate important physiological processes and take part in the pathophysiology of different brain disorders. Histamine receptor 1 (HRH1) is involved in the development of neurotransmitter systems, and its role in neurogenesis has been proposed. Altered HRH1 binding and expression have been detected in the brains of patients with schizophrenia, depression, and autism. Our goal was to assess the role of hrh1 in zebrafish development and neurotransmitter system regulation through the characterization of hrh1-/- fish generated by the CRISPR/Cas9 system. Quantitative PCR, in situ hybridization, and immunocytochemistry were used to study neurotransmitter systems and genes essential for brain development. Additionally, we wanted to reveal the role of this histamine receptor in larval and adult fish behavior using several quantitative behavioral methods including locomotion, thigmotaxis, dark flash and startle response, novel tank diving, and shoaling behavior. Hrh1-/- larvae displayed normal behavior in comparison with hrh1+/+ siblings. Interestingly, a transient abnormal expression of important neurodevelopmental markers was evident in these larvae, as well as a reduction in the number of tyrosine hydroxylase 1 (Th1)-positive cells, th1 mRNA, and hypocretin (hcrt)-positive cells. These abnormalities were not detected in adulthood. In summary, we verified that zebrafish lacking hrh1 present deficits in the dopaminergic and hypocretin systems during early development, but those are compensated by the time fish reach adulthood. However, impaired sociability and anxious-like behavior, along with downregulation of choline O-acetyltransferase a and LIM homeodomain transcription factor Islet1, were displayed by adult fish.
Collapse
Affiliation(s)
- Yuxiao Yao
- Department of Anatomy, University of Helsinki, POB 63, 00014, Helsinki, Finland
| | - Diego Baronio
- Department of Anatomy, University of Helsinki, POB 63, 00014, Helsinki, Finland
| | - Yu-Chia Chen
- Department of Anatomy, University of Helsinki, POB 63, 00014, Helsinki, Finland
| | - Congyu Jin
- Department of Anatomy, University of Helsinki, POB 63, 00014, Helsinki, Finland
| | - Pertti Panula
- Department of Anatomy, University of Helsinki, POB 63, 00014, Helsinki, Finland.
| |
Collapse
|
19
|
Adongo DW, Benneh CK, Tandoh A, Biney RP, Kukuia KKE, Mante PK, Harley BK, Oteng D, Appiah EA, Anorbor EC, Woode E. Anxiolytic-like effects of Pseudospondias microcarpa hydroethanolic leaf extract in zebrafish: Possible involvement of GABAergic and serotonergic pathways. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:33. [PMID: 37789217 PMCID: PMC10547670 DOI: 10.1007/s13659-023-00399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/13/2023] [Indexed: 10/05/2023]
Abstract
Pseudospondias microcarpa is used in ethnomedicine to manage central nervous system diseases. The hydroethanolic extract (PME) from the leaves of the plant has shown anxiolytic-like properties in mice anxiety models. However, its effects in chronic anxiety models and possible mechanism(s) of action were not studied. Therefore, the current study evaluated the anxiolytic-like mechanisms of PME in zebrafish models of anxiety. The zebrafish light dark test (LDT) and novel tank test (NTT) were employed to assess the anxiolytic-like effects of PME (0.1, 0.3, 1.0 mg mL-1), fluoxetine (3 × 10-5 mg mL-1) and diazepam (1.5 × 10-7 mg mL-1). The chronic unpredictable stress (CUS) test was used to further evaluate the extract's anxiolytic-like properties. The potential mechanisms of anxiolytic action of the extract was evaluated after pre-treated with flumazenil, granisetron, methysergide, or pizotifen, all at 1 × 10-3 mg mL-1. The extract significantly decreased anxiety behaviours in the NT and LD tests. These observed effects of the extract were however counteracted by flumazenil, granisetron, methysergide and pizotifen pre-treatment. In addition, PME treatment significantly reversed CUS-induced anxiety behaviours in zebrafish. Results show that PME possesses anxiolytic-like effects possibly through interaction with serotonergic and gamma-aminobutyric acid mediated pathways.
Collapse
Affiliation(s)
- Donatus Wewura Adongo
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana.
| | - Charles Kwaku Benneh
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Augustine Tandoh
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Robert Peter Biney
- Department of Pharmacotherapeutics and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Kennedy Kwami Edem Kukuia
- Department of Medical Pharmacology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Korle Bu, Accra, Ghana
| | - Priscilla Kolibea Mante
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Benjamin Kingsley Harley
- Department of Pharmacognosy and Herbal Medicine, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - David Oteng
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Emmanuel Aduboffour Appiah
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Ernest Cudjoe Anorbor
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Eric Woode
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| |
Collapse
|
20
|
Kaur K, Narang RK, Singh S. Glabridin mitigates TiO 2NP induced cognitive deficit in adult zebrafish. Neurochem Int 2023; 169:105585. [PMID: 37499946 DOI: 10.1016/j.neuint.2023.105585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Glabridin is extracted from the roots of Glycyrrhiza glabra, which has anti-oxidative and anti-inflammatory properties. We investigated the neuroprotective potential of Glabridin against the learning and memory deficit by triggering NRF2/HO-1 signaling in Titanium dioxide nanoparticles (TiO2NP) treated zebrafish. Our study suggests that Glabridin at doses of 12.5, 25, and 50 mg/kg/day for 7 days improved memory and lowered anxiety in the novel object recognition test, T-maze, and novel diving tank respectively. Biochemical analysis showed that Glabridin treatment in TiO2NP-exposed zebrafish enhanced GSH, CAT, SOD, and GPx activity and reduced MDA levels; inhibited proinflammatory mediators, namely, TNF-α, IL-1β, and IL-6. In histopathological evaluation, Glabridin significantly reduced pycnotic neurons in TiO2NP-treated zebrafish brains. Furthermore, Glabridin upregulated NRF2 and HO-1 levels, which leads to a decline in oxidative stress and neuroinflammation and were reversed by ML385 treatment. ML385 as a probe molecule that specifically inhibit NRF2 and prevents its downstream gene expression. Thus, these considerable outcomes provide new insights into the neuroprotective effect of glabridin.
Collapse
Affiliation(s)
- Karamjeet Kaur
- Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga, Punjab, 142001, India; Affiliated to IKG- Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - R K Narang
- Nanomedicine Research Centre, Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
21
|
Syed OA, Tsang B, Gerlai R. The zebrafish for preclinical psilocybin research. Neurosci Biobehav Rev 2023; 153:105381. [PMID: 37689090 DOI: 10.1016/j.neubiorev.2023.105381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023]
Abstract
In this review, we discuss the possible utility of zebrafish in research on psilocybin, a psychedelic drug whose recreational use as well as possible clinical application are gaining increasing interest. First, we review behavioral tests with zebrafish, focussing on anxiety and social behavior, which have particular relevance in the context of psilocybin research. Next, we briefly consider methods of genetic manipulations with which psilocybin's phenotypical effects and underlying mechanisms may be investigated in zebrafish. We briefly review the known mechanisms of psilocybin, and also discuss what we know about its safety and toxicity profile. Last, we discuss examples of how psilocybin may be employed for testing treatment efficacy in preclinical research for affective disorders in zebrafish. We conclude that zebrafish has a promising future in preclinical research on psychedelic drugs.
Collapse
Affiliation(s)
- Omer A Syed
- Department of Biology, University of Toronto Mississauga, Canada.
| | - Benjamin Tsang
- Department of Cell & Systems Biology, University of Toronto, Canada.
| | - Robert Gerlai
- Department of Cell & Systems Biology, University of Toronto, Canada; Department of Psychology, University of Toronto Mississauga, Canada.
| |
Collapse
|
22
|
Theron V, Harvey BH, Botha T, Weinshenker D, Wolmarans DW. Life-threatening, high-intensity trauma- and context-dependent anxiety in zebrafish and its modulation by epinephrine. Horm Behav 2023; 153:105376. [PMID: 37244195 DOI: 10.1016/j.yhbeh.2023.105376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/28/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
Trauma-related psychopathology transpires in some individuals after exposure to a life-threatening event. While aberrant adrenergic processes may contribute to this, a clear understanding of how said processes influence trauma-related conditions, remain inadequate. Here, we aimed to develop and describe a novel zebrafish (Danio rerio) model of life-threatening trauma-induced anxiety that may be representative of trauma related anxiety, and to evaluate the impact of stress-paired epinephrine (EPI) exposure in the model system. Four groups of zebrafish were each exposed to different and unique stress-related paradigms, i.e., i) a sham (trauma free), ii) high-intensity trauma (triple hit; THIT), iii) high-intensity trauma in the presence of EPI exposure (EHIT), and iv) EPI exposure on its own, all applied in the presence of a color context. Novel tank anxiety was subsequently assessed at 1, 4, 7 and 14 days after the traumatic event. The present results demonstrate that 1) through day 14, THIT or EPI exposure alone induced persistent anxiety-like behavior, 2) EHIT blunted the delayed anxiety-like sequalae associated with severe trauma, 3) exposure to a trauma-paired color context prior to anxiety testing bolstered the subsequent anxiety-like behavior of THIT, but not EHIT -exposed fish, and 4) despite this, THIT- and EPI-exposed fish showed a lesser degree of contextual avoidance behavior compared to sham- or EHIT-exposed fish. These results indicate that the stressors induced long-lasting anxiety-like behavior reminiscent of post trauma anxiety, while EPI displays complex interactions with the stressor, including a buffering effect to subsequent exposure of a trauma-paired cue.
Collapse
Affiliation(s)
- Vasti Theron
- Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Brian H Harvey
- Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom 2520, South Africa; South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Rondebosch 7700, South Africa
| | - Tarryn Botha
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - De Wet Wolmarans
- Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom 2520, South Africa.
| |
Collapse
|
23
|
Dias M, Paula JR, Pousão-Ferreira P, Casal S, Cruz R, Cunha SC, Rosa R, Marques A, Anacleto P, Maulvault AL. Combined effects of climate change and BDE-209 dietary exposure on the behavioural response of the white seabream, Diplodus sargus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163400. [PMID: 37054799 DOI: 10.1016/j.scitotenv.2023.163400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023]
Abstract
Decabromodiphenyl-ether (BDE-209) is a persistent organic pollutant ubiquitously found in marine environments worldwide. Even though this emerging chemical contaminant is described as highly toxic, bioaccumulative and biomagnifiable, limited studies have addressed the ecotoxicological implications associated with its exposure in non-target marine organisms, particularly from a behavioural standpoint. Alongside, seawater acidification and warming have been intensifying their impacts on marine ecosystems over the years, compromising species welfare and survival. BDE-209 exposure as well as seawater acidification and warming are known to affect fish behaviour, but information regarding their interactive effects is not available. In this study, long-term effects of BDE-209 contamination, seawater acidification and warming were studied on different behavioural traits of Diplodus sargus juveniles. Our results showed that D. sargus exhibited a marked sensitivity in all the behaviour responses after dietary exposure to BDE-209. Fish exposed to BDE-209 alone revealed lower awareness of a risky situation, increased activity, less time spent within the shoal, and reversed lateralization when compared to fish from the Control treatment. However, when acidification and/or warming were added to the equation, behavioural patterns were overall altered. Fish exposed to acidification alone exhibited increased anxiety, being less active, spending more time within the shoal, while presenting a reversed lateralization. Finally, fish exposed to warming alone were more anxious and spent more time within the shoal compared to those of the Control treatment. These novel findings not only confirm the neurotoxicological attributes of brominated flame retardants (like BDE-209), but also highlight the relevance of accounting for the effects of abiotic variables (e.g. pH and seawater temperature) when investigating the impacts of environmental contaminants on marine life.
Collapse
Affiliation(s)
- Marta Dias
- UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal; MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - José Ricardo Paula
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Infrastructure Network Associated Laboratory, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939 2750-374 Cascais, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Pedro Pousão-Ferreira
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal
| | - Susana Casal
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Rebeca Cruz
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Rui Rosa
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Infrastructure Network Associated Laboratory, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939 2750-374 Cascais, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - António Marques
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Patrícia Anacleto
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Infrastructure Network Associated Laboratory, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939 2750-374 Cascais, Portugal; IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Ana Luísa Maulvault
- UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal; MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Infrastructure Network Associated Laboratory, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939 2750-374 Cascais, Portugal; IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal
| |
Collapse
|
24
|
Wang L, Mou L, Guan S, Wang C, Sik A, Stoika R, Liu K, Jin M. Isoliquiritigenin induces neurodevelopmental-toxicity and anxiety-like behavior in zebrafish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2023; 266:109555. [PMID: 36717046 DOI: 10.1016/j.cbpc.2023.109555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/14/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023]
Abstract
Isoliquiritigenin, a flavonoid compound, exhibits a variety of pharmacological properties, including anti-inflammatory, anti-oxidative, anti-microbial, anti-viral, and anti-tumor effects. In the past few years, the consumption of isoliquiritigenin-containing dietary supplements has increased due to their health benefits. Although the neuroprotective effects of isoliquiritigenin have been well-investigated, these studies were performed in cells and adult animals. The potential effects of isoliquiritigenin on the development, especially the neurodevelopment, of certain populations, such as zebrafish larvae, have not been investigated. In this study, zebrafish larvae were employed as a model to investigate the effects of isoliquiritigenin on development and neurodevelopment. Zebrafish embryos treated with high concentrations of isoliquiritigenin (10 and 15 μM) exhibited high rates of mortality, hatching, and malformation, indicating that isoliquiritigenin can affect zebrafish development. In addition, isoliquiritigenin impeded the development of central nervous system regions and the length of dopaminergic neurons located in midbrains and thalami of transgenic zebrafish larvae. The locomotor ability of zebrafish larvae exposed to high concentrations of isoliquiritigenin was negatively affected. The total distance and the average velocity significantly decreased, and anxiety-related behaviors were observed under light-dark challenge. Furthermore, the levels of gap43, tuba1b, mbp, hcrt, vmat2, and pomc, which mediate neurodevelopment, neurotoxicity, and anxiety were significantly decreased in zebrafish larvae exposed to isoliquiritigenin. These results indicate that isoliquiritigenin can disrupt the development of dopaminergic neurons and the function of the central nervous system in zebrafish, causing anxiety-like symptoms.
Collapse
Affiliation(s)
- Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China
| | - Lei Mou
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China
| | - Shibing Guan
- Department of Hand and Foot Surgery, Provincial Hospital Affiliated to Shandong First Medical University, 9677 Jingshi Road, Ji'nan 250098, Shandong Province, People's Republic of China
| | - Chuansen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China
| | - Attila Sik
- Institute of Transdisciplinary Discoveries, Medical School, University of Pecs, Pecs H-7624, Hungary; Institute of Clinical Sciences, Medical School, University of Birmingham, Birmingham B15 2TT, United Kingdom; Institute of Physiology, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China.
| |
Collapse
|
25
|
Salahinejad A, Meuthen D, Attaran A, Chivers DP, Ferrari MCO. Effects of common antiepileptic drugs on teleost fishes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161324. [PMID: 36608821 DOI: 10.1016/j.scitotenv.2022.161324] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Antiepileptic drugs (AEDs) are globally prescribed to treat epilepsy and many other psychiatric disorders in humans. Their high consumption, low metabolic rate in the human body and low efficiency of wastewater treatment plants (WWTPs) in eliminating these chemicals results in the frequent occurrence of these pharmaceutical drugs in aquatic systems. Therefore, aquatic organisms, including ecologically and economically important teleost fishes, may be inadvertently exposed to these chemicals. Due to their physiological similarity with humans, fishes may be particularly vulnerable to AEDs. Almost all AED drugs are detectable in natural aquatic ecosystems, but diazepam (DZP) and carbamazepine (CBZ) are among the most widely detected AEDs to date. Recent studies suggest that these drugs have a substantial capacity to induce neurotoxicity and behavioral abnormality in fishes. Here we review the current state of knowledge regarding the potential mode of action of DZP and CBZ as well as that of some other AEDs on teleosts and put observable behavioral effects into a mechanistic context. We find that following their intended mode of action in humans, AEDs also disrupt the GABAergic, glutamatergic and serotonergic systems as well as parasympathetic neurotransmitters in fishes. Moreover, AEDs have non-specific modes of action in teleosts ranging from estrogenic activity to oxidative stress. These physiological changes are often accompanied by dose-dependent disruptions of anxiety, locomotor activity, social behaviors, food uptake, and learning and memory, but DZP and CBZ consistently induced anxiolytic effects. Thereby, AED exposure severely compromises individual fitness across teleost fish species, which may lead to population and ecosystem impairment. We also showcase promising avenues for future research by highlighting where we lack data when it comes to effects of certain AEDs, AED concentrations and behavioral endpoints.
Collapse
Affiliation(s)
- Arash Salahinejad
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada.
| | - Denis Meuthen
- Evolutionary Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Anoosha Attaran
- Robart Research Institute, The University of Western Ontario, London, ON N6A5K8, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Maud C O Ferrari
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
26
|
de Farias Araujo G, Medeiros RJ, Maciel-Magalhães M, Correia FV, Saggioro EM. Zebrafish (Danio rerio) as a model to assess the effects of cocaine as a drug of abuse and its environmental implications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28459-28479. [PMID: 36689115 DOI: 10.1007/s11356-023-25402-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Cocaine (COC) use concerns are on the increase for both authorities and civil society. Despite this, it is important to investigate COC effects or those of its main metabolite, belzoylecgonine (BE), in consolidated aquatic model organisms, such as the zebrafish (Danio rerio). This (mini) review consists in an assessment regarding toxicological studies carried out employing zebrafish (embryos, larvae or adults) exposed to COC and/or BE indexed at the SCOPUS and Web of Science databases. Ten different endpoints were analyzed in both embryos and larvae, whereas only four were analyzed in adults. Of the 23 studies, only five investigated COC and/or BE effects following an environmental approach when exposing zebrafish, while most (18 studies) analyzed COC effects under a drug of abuse approach. Cocaine exposure was noted as altering the expression of several genes, such as those linked to COC transport proteins, dopamine receptors, SP substance production, the tachykinin system, and the tyrosine hydroxylase enzyme. BE exposure resulted in more oxidative and proteomic effects than COC in embryos. Cocaine abstinence resulted in hyperactivity associated with stereotypy in adult fish, in addition to reduced responses to visual stimuli to red light and neuronal development pattern alterations. Cocaine was noted as accumulating in zebrafish eyes, possibly due to melanin binding, and causing dose-response cardiac effects in both embryos and adults. Despite the different effects addressed by our survey, we emphasize the lack of COC and BE exposure assessments in zebrafish employing an environmental point of view.
Collapse
Affiliation(s)
- Gabriel de Farias Araujo
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
| | - Renata Jurema Medeiros
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Av. Brasil, 4365, Manguinhos, 21040-900, Rio de Janeiro, Brasil
| | - Magno Maciel-Magalhães
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Av. Brasil, 4365, Manguinhos, 21040-900, Rio de Janeiro, Brasil
| | - Fábio Veríssimo Correia
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
- Departamento de Ciências Naturais, Universidade Federal Do Estado Do Rio de Janeiro, Av. Pasteur, 458, Urca, 22290-250, Rio de Janeiro, Brasil
| | - Enrico Mendes Saggioro
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil.
- Laboratório de Avaliação E Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-360, Brazil.
| |
Collapse
|
27
|
Understanding the complex interplay of persistent and antipersistent regimes in animal movement trajectories as a prominent characteristic of their behavioral pattern profiles: Towards an automated and robust model based quantification of anxiety test data. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
28
|
Zebrafish, a biological model for pharmaceutical research for the management of anxiety. Mol Biol Rep 2023; 50:3863-3872. [PMID: 36757551 DOI: 10.1007/s11033-023-08263-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/10/2023] [Indexed: 02/10/2023]
Abstract
The zebrafish (Danio rerio) is a valuable animal model rapidly becoming more commonly used in pharmaceutical studies. Due to its low-cost maintenance and high breeding potential, the zebrafish is a suitable substitute for most adult rodents (mice and rats) in neuroscience research. It is widely used in various anxiety models. This species has been used to develop a conceptual framework for anxiety behavior studies with broad applications in the laboratory, including the study of herbal and chemical drugs. This review discusses the latest studies of anxiety-related behavior in the zebrafish model.
Collapse
|
29
|
Mendes FRS, da Silva AW, Ferreira MKA, Rebouças EDL, Moura Barbosa I, da Rocha MN, Henrique Ferreira Ribeiro W, Menezes RRPPBD, Magalhães EP, Marinho EM, Marinho MM, Bandeira PN, de Menezes JESA, Marinho ES, Dos Santos HS. GABA A and serotonergic receptors participation in anxiolytic effect of chalcones in adult zebrafish. J Biomol Struct Dyn 2023; 41:12426-12444. [PMID: 36644862 DOI: 10.1080/07391102.2023.2167116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/03/2023] [Indexed: 01/17/2023]
Abstract
The prevalence of anxiety is a significant public health problem, being the 24th leading cause of disability in individuals affected by this disorder. In this context, chalcones, a flavonoid subclass obtained from natural or synthetic sources, interact with central nervous system (CNS) receptors at the same binding site as benzodiazepines, the primary drugs used in the treatment of anxiety. Thus, our study investigates the anxiolytic effect of synthetic chalcones derived from the natural product 2-hydroxy-3,4,6-trimethoxyacetophenone isolated from Croton anisodontus Müll.Arg. in modulating anxiolytic activity via GABAergic and serotoninergic neurotransmission in an adult zebrafish model. Chalcones 1 and 2 were non-toxic to adult zebrafish and showed anxiolytic activity via GABAA receptors. Chalcone 2 also had its anxiolytic action reversed by the antagonist granisetron, indicating the participation of serotonergic receptors 5HTR3A/3B in the anxiolytic effect. In addition, molecular docking results showed that chalcones have a higher affinity for the GABAA receptor than DZP and binding in the same region of the DZP binding site, indicating a similar effect to the drug. Furthermore, the interaction of chalcones with GABAA and 5-HT3A receptors demonstrates the anxiolytic effect potential of these molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | | | | | - Italo Moura Barbosa
- Graduate Program in Natural Sciences, State University of Ceara, Fortaleza, Ceará, Brazil
| | - Matheus Nunes da Rocha
- Department of Chemistry, Limoeiro do Norte, State University of Ceara, Limoeiro do Norte, Ceará, Brazil
| | | | | | - Emanuel Paula Magalhães
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Emanuelle Machado Marinho
- Department of Analytical and Physical Chemistry, Federal University of Ceara, Fortaleza, Ceará, Brazil
| | | | | | | | - Emmanuel Silva Marinho
- Graduate Program in Natural Sciences, State University of Ceara, Fortaleza, Ceará, Brazil
- Department of Chemistry, Limoeiro do Norte, State University of Ceara, Limoeiro do Norte, Ceará, Brazil
| | - Hélcio Silva Dos Santos
- Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará, Brazil
- Graduate Program of Biotechnology, State University of Ceara, Fortaleza, Ceará, Brazil
- Graduate Program in Natural Sciences, State University of Ceara, Fortaleza, Ceará, Brazil
- Chemistry Course, State University of Vale do Acaraú, Sobral, Ceará, Brazil
| |
Collapse
|
30
|
Singh BJ, Zu L, Summers J, Asdjodi S, Glasgow E, Kanwal JS. NemoTrainer: Automated Conditioning for Stimulus-Directed Navigation and Decision Making in Free-Swimming Zebrafish. Animals (Basel) 2022; 13:ani13010116. [PMID: 36611725 PMCID: PMC9817937 DOI: 10.3390/ani13010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Current methods for associative conditioning in animals involve human intervention that is labor intensive, stressful to animals, and introduces experimenter bias in the data. Here, we describe a simple apparatus and a flexible, microcontroller-based conditioning paradigm that minimizes human intervention. Our methodology exploits directed movement towards a target that depends on spatial working memory, including processing of sensory inputs, motivational drive, and attentional mechanisms. Within a stimulus-driven conditioning paradigm designed to train zebrafish, we present a localized pulse of light via LEDs and/or sounds via an underwater transducer. A webcam placed below a glass tank records fish-swimming behavior. For classical conditioning, animals simply associate a sound or light with an unconditioned stimulus, such as a small food reward presented at a fixed location, and swim towards that location to obtain a few grains of food dispensed automatically via a sensor-triggered, stepper motor. During operant conditioning, a fish must first approach a proximity sensor at a remote location and then swim to the reward location. For both types of conditioning, a timing-gated interrupt activates stepper motors via custom software embedded within a microcontroller (Arduino). "Ardulink", a Java facility, implements Arduino-computer communication protocols. In this way, a Java-based user interface running on a host computer can provide full experimental control. Alternatively, a similar level of control is achieved via an Arduino script communicating with an event-driven application controller running on the host computer. Either approach can enable precise, multi-day scheduling of training, including timing, location, and intensity of stimulus parameters; and the feeder. Learning can be tracked by monitoring turning, location, response times, and directional swimming of individual fish. This facilitates the comparison of performance within and across a cohort of animals. Our scheduling and control software and apparatus ("NemoTrainer") can be used to study multiple aspects of species-specific behaviors as well as the effects on them of various interventions.
Collapse
Affiliation(s)
- Bishen J. Singh
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20057-1460, USA
| | - Luciano Zu
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20057-1460, USA
| | - Jacqueline Summers
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20057-1460, USA
| | - Saman Asdjodi
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20057-1460, USA
| | - Eric Glasgow
- Department of Oncology, Georgetown University Medical Center, Washington, DC 20057-1460, USA
| | - Jagmeet S. Kanwal
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20057-1460, USA
- Correspondence: ; Tel.: +1-(202)-687-1305
| |
Collapse
|
31
|
Kumar V, Singh C, Singh A. Neuroprotective Potential of Hydroalcoholic Extract of Centella asiatica Against 3-Nitropropionic Acid-Induced Huntington's Like Symptoms in Adult Zebrafish. Rejuvenation Res 2022; 25:260-274. [PMID: 36150031 DOI: 10.1089/rej.2022.0036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disease. 3-Nitropropionic acid (3-NP) causes increased reactive oxygen species production and neuroinflammation. Centella asiatica (CA) is a strong antioxidant. The aim of this study is to investigate the effect of hydroalcoholic extract of C. asiatica (HA-CA) on 3-NP-induced HD in adult zebrafish. Adult zebrafish (∼5-6 months old) weighing 470 to 530 mg was used and treated with 3-NP (5 mg/kg intraperitoneal [i.p.]). The animals received HA-CA (80 and 100 mg/L) daily for up to 28 days in water. Tetrabenazine (3 mg/kg i.p.) was used as a standard drug. We have done an open field test (for locomotor activity), a novel tank diving test (for anxiety), and a light and dark tank test (for memory), followed by biochemical analysis (acetyl-cholinesterase [AchEs], nitrite, lipid peroxidation [LPO], and glutathione [GSH]) and histopathology to further confirm memory dysfunctions. 3-NP-treated zebrafish exhibit reductions in body weight, progressive neuronal damage, cognition, and locomotor activity. The HA-CA group significantly reduced the 3-NP-induced increase in LPO, AchEs, and nitrite levels while decreasing GSH levels. Oral administration of HA-CA (80 or 100 mg/L) significantly reduces 3-NP-induced changes in body weight and behaviors, in addition to neuroinflammation in the brain by lowering tumor necrosis factor-α and interleukin-1β levels. Moreover, HA-CA significantly decreases the 3-NP-induced neuronal damage in the brain. HA-CA ameliorates neurotoxicity and neurobehavioral deficits in 3-NP-induced HD-like symptoms in adult zebrafish.
Collapse
Affiliation(s)
- Vishal Kumar
- Department of Pharmacology, ISF College of Pharmacy, Moga, Affiliated to IK Gujral Punjab Technical University, Jalandhar, India
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Affiliated to IK Gujral Punjab Technical University, Jalandhar, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Affiliated to IK Gujral Punjab Technical University, Jalandhar, India
| |
Collapse
|
32
|
Silveira V, Santos Rubio KT, Poleti Martucci ME. Anxiolytic effect of Anthemis nobilis L. (roman chamomile) and Citrus reticulata Blanco (tangerine) essential oils using the light-dark test in zebrafish (Danio rerio). JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115580. [PMID: 35926778 DOI: 10.1016/j.jep.2022.115580] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/12/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The anxiety disorders are the most prevalent mental health condition, and anxiety is considered the sixth cause of disability surpassing diabetes mellitus, chronic obstructive pulmonary disease, and osteoarthritis. Besides, the COVID-19 pandemic provided an increase in the number of psychiatric diseases diagnosis in all social layers around the world. About 55%-94% of patients diagnosed with anxiety disorders are treated with benzodiazepines, meanwhile benzodiazepines can promote several adverse effects. In this way, alternative therapies, such as essential oils may offer significant benefits in the treatment of patients with anxiety disorders. However, the anxiolytic effect of these essential oils must be proper evaluated appropriate as well as the suitable dosage and side effect need further research. AIM OF THE STUDY The aim was to evaluate the anxiolytic effect of Roman chamomile (Anthemis nobilis L.) and tangerine (Citrus reticulata Blanco) essential oils using the light-dark test in adult zebrafish (Danio rerio). MATERIAL AND METHODS Both essential oils were analyzed by GC-MS and the major compounds were identified. The anxiolytic effect was evaluated by light-dark test in adult zebrafish. RESULTS The results showed that roman chamomile essential oil has anxiolytic effect in adult zebrafish, whereas tangerine essential oil tends to reduce anxiety The major compounds of tangerine essential oil were limonene and γ-terpinene, and the major compounds of roman chamomile were pentadecyl-3-methyl-2-butenoate, hexadecyl-3-methyl-2-butenoate, 1-piperidinol and trans-1-ethyl-3-methyl-cyclopentane. CONCLUSIONS The present study demonstrated that this anxiolytic effect may be attributed to the synergistic effect of the compounds present in roman chamomile essential oil, particularly the major compounds. The roman chamomile essential oil at the highest concentration showed anxiolytic effect. The tangerine essential oil showed a tendency to reduce anxiety, but it was not statistically significative. In addition, roman chamomile and tangerine essential oils did not cause cause alteration in locomotion activity and exploratory ability of the fish.
Collapse
Affiliation(s)
- Virginia Silveira
- Department of Pharmacy - School of Pharmacy - Federal University of Ouro Preto, Ouro Preto, 35400-000, Minas Gerais, Brazil.
| | - Karina Taciana Santos Rubio
- Department of Pharmacy - School of Pharmacy - Federal University of Ouro Preto, Ouro Preto, 35400-000, Minas Gerais, Brazil.
| | - Maria Elvira Poleti Martucci
- Department of Pharmacy - School of Pharmacy - Federal University of Ouro Preto, Ouro Preto, 35400-000, Minas Gerais, Brazil; Postgraduate Program in Environmental Engineering - ProAmb, Federal University of Ouro Preto, Ouro Preto, 35400-000, Minas Gerais, Brazil.
| |
Collapse
|
33
|
Kolesnikova TO, Demin KA, Costa FV, Zabegalov KN, de Abreu MS, Gerasimova EV, Kalueff AV. Towards Zebrafish Models of CNS Channelopathies. Int J Mol Sci 2022; 23:ijms232213979. [PMID: 36430455 PMCID: PMC9693542 DOI: 10.3390/ijms232213979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Channelopathies are a large group of systemic disorders whose pathogenesis is associated with dysfunctional ion channels. Aberrant transmembrane transport of K+, Na+, Ca2+ and Cl- by these channels in the brain induces central nervous system (CNS) channelopathies, most commonly including epilepsy, but also migraine, as well as various movement and psychiatric disorders. Animal models are a useful tool for studying pathogenesis of a wide range of brain disorders, including channelopathies. Complementing multiple well-established rodent models, the zebrafish (Danio rerio) has become a popular translational model organism for neurobiology, psychopharmacology and toxicology research, and for probing mechanisms underlying CNS pathogenesis. Here, we discuss current prospects and challenges of developing genetic, pharmacological and other experimental models of major CNS channelopathies based on zebrafish.
Collapse
Affiliation(s)
| | - Konstantin A. Demin
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, 197341 St. Petersburg, Russia
| | - Fabiano V. Costa
- Neurobiology Program, Sirius University of Science and Technology, 354349 Sochi, Russia
| | | | - Murilo S. de Abreu
- Moscow Institute of Physics and Technology, 141701 Moscow, Russia
- Correspondence: (M.S.d.A.); (A.V.K.); Tel.: +55-54-99605-9807 (M.S.d.A.); +1-240-899-9571 (A.V.K.); Fax: +1-240-899-9571 (A.V.K.)
| | - Elena V. Gerasimova
- Neurobiology Program, Sirius University of Science and Technology, 354349 Sochi, Russia
| | - Allan V. Kalueff
- Neurobiology Program, Sirius University of Science and Technology, 354349 Sochi, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, 197341 St. Petersburg, Russia
- Moscow Institute of Physics and Technology, 141701 Moscow, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, 197758 St. Petersburg, Russia
- Ural Federal University, 620002 Yekaterinburg, Russia
- Scientific Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
- Correspondence: (M.S.d.A.); (A.V.K.); Tel.: +55-54-99605-9807 (M.S.d.A.); +1-240-899-9571 (A.V.K.); Fax: +1-240-899-9571 (A.V.K.)
| |
Collapse
|
34
|
Fortuna M, Soares SM, Pompermaier A, Freddo N, Nardi J, Mozzato MT, Varela ACC, Costa VC, Siqueira L, Menegasso AS, da Costa Maffi V, Barcellos LJG. Exposure to levonorgestrel-based birth control pill in early life and its persistent effects in zebrafish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:104006. [PMID: 36328330 DOI: 10.1016/j.etap.2022.104006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/01/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The consumption of progestins has increased considerably in recent decades, as has their disposal into the environment. These substances can negatively affect the reproduction, physiology, and behavior of non-target organisms, such as fish. We aimed to evaluate the effects of exposure to environmentally relevant concentrations of levonorgestrel-control birth based (1.3, 13.3, 133, and 1330 ng/L) on the development and behavior of zebrafish (Danio rerio) in terms of mortality, hatching, spontaneous movement, and larval and adult behavioral tests. Exposure caused anxiogenic-like behavior in larvae, which persisted in adults, as demonstrated by the light-dark test. In contrast, it caused anxiolytic-like behavior in the novel tank test. There was a high mortality rate at all tested concentrations and increases in the hormone cortisol at 13.3 ng/L that affected the sex ratio. These changes may lead to an ecological imbalance, emphasizing the risk of early exposure to progestins in the environment.
Collapse
Affiliation(s)
- Milena Fortuna
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Suelen Mendonça Soares
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Aline Pompermaier
- Programa de Pós-graduação em Bioexperimentação, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Natália Freddo
- Programa de Pós-graduação em Bioexperimentação, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Jéssica Nardi
- Programa de Pós-graduação em Bioexperimentação, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Mateus Timbola Mozzato
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Amanda Carolina Cole Varela
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Vitória Cadore Costa
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Lisiane Siqueira
- Programa de Pós-graduação em Bioexperimentação, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Aloma Santin Menegasso
- Programa de Pós-graduação em Bioexperimentação, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Victoria da Costa Maffi
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Leonardo José Gil Barcellos
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil; Programa de Pós-graduação em Bioexperimentação, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil; Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil.
| |
Collapse
|
35
|
Selvaraj LK, Jeyabalan S, Wong LS, Sekar M, Logeshwari B, Umamaheswari S, Premkumar S, Sekar RT, Begum MY, Gan SH, Izzati Mat Rani NN, Chidambaram K, Subramaniyan V, Al Fatease A, Alamri A, Sathasivam KV, Selvaraj S, Vijeepallam K, Fuloria S, Fuloria NK. Baicalein prevents stress-induced anxiety behaviors in zebrafish model. Front Pharmacol 2022; 13:990799. [PMID: 36386131 PMCID: PMC9659741 DOI: 10.3389/fphar.2022.990799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2023] Open
Abstract
Baicalein is a flavonoid mainly obtained from plants with wide range of biological activities, including neuroprotection. An acute and unexpected chronic stress (UCS) protocol has recently been adapted to zebrafish, a popular vertebrate model in brain research. The present study was aimed to evaluate baicalein's anti-anxiety potential in a zebrafish model by induction, which included neuropharmacological evaluation to determine behavioural parameters in the novel tank diving test (NTDT) and light-dark preference test (LDPT). The toxicity was also assessed using the brine shrimp lethality assay, and the 50% lethal concentration (LC50) was determined. The animals were then stressed for 7 days before being treated with different doses of baicalein (1 and 2 mg/L) for another 7 days in UCS condition. Due to acute stress and UCS, the frequency of entries and time spent in the 1) top region and 2) light area of the novel tank reduced significantly, indicating the existence of elevated anxiety levels. The biological activity of baicalein was demonstrated by its high LC50 values (1,000 μg/ml). Additionally, baicalein administration increased the frequency of entries and duration spent in the light region, indicating a significant decrease in anxiety levels. Overall, the present results showed that baicalein has a therapeutic advantage in reversing the detrimental consequences of UCS and acute stress, making it is a promising lead molecule for new drug design, development, and therapy for stress.
Collapse
Affiliation(s)
- Logesh Kumar Selvaraj
- Department of Pharmacology, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, Tamil Nadu, India
| | - Srikanth Jeyabalan
- Department of Pharmacology, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, Tamil Nadu, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, Malaysia
| | - B. Logeshwari
- Department of Pharmacology, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, Tamil Nadu, India
| | - S. Umamaheswari
- Department of Pharmacology, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, Tamil Nadu, India
| | - Sree Premkumar
- Department of Pharmacology, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, Tamil Nadu, India
| | - Roshan Tej Sekar
- Department of Pharmacology, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, Tamil Nadu, India
| | - M. Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, Malaysia
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | | | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ali Alamri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | | | | | | | | | - Neeraj Kumar Fuloria
- Faculty of Pharmacy, AIMST University, Bedong, Kedah, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical andTechnical Sciences, Saveetha Dental College and Hospital, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
36
|
Velkey AJ, Koon CH, Danstrom IA, Wiens KM. Female zebrafish (Danio rerio) demonstrate stronger preference for established shoals over newly-formed shoals in the three-tank open-swim preference test. PLoS One 2022; 17:e0265703. [PMID: 36129935 PMCID: PMC9491588 DOI: 10.1371/journal.pone.0265703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Zebrafish (Danio rerio) share a considerable amount of biological similarity with mammals, including identical or homologous gene expression pathways, neurotransmitters, hormones, and cellular receptors. Zebrafish also display complex social behaviors like shoaling and schooling, making them an attractive model for investigating normal social behavior as well as exploring impaired social function conditions such as autism spectrum disorders. Newly-formed and established shoals exhibit distinct behavior patterns and inter-member interactions that can convey the group's social stability. We used a three-chamber open-swim preference test to determine whether individual zebrafish show a preference for an established shoal over a newly-formed shoal. Results indicated that both sexes maintained greater proximity to arena zones nearest to the established shoal stimulus. In addition, we report the novel application of Shannon entropy to discover sex differences in systematicity of responses not revealed by unit-based measurements; male subjects spent more time investigating between the two shoals than female subjects. This novel technique using established versus newly-formed shoals can be used in future studies testing transgenics and pharmacological treatments that mimic autism spectrum disorder and other disorders that affect social interaction.
Collapse
Affiliation(s)
- Andrew J. Velkey
- Neuroscience Program, Christopher Newport University, Newport News, VA, United States of America
| | - Caroline H. Koon
- Neuroscience Program, Christopher Newport University, Newport News, VA, United States of America
| | - Isabel A. Danstrom
- Neuroscience Program, Christopher Newport University, Newport News, VA, United States of America
| | - Katie M. Wiens
- Science Department, Bay Path University, Longmeadow, MA, United States of America
| |
Collapse
|
37
|
Cardiotoxicity of Zebrafish Induced by 6-Benzylaminopurine Exposure and Its Mechanism. Int J Mol Sci 2022; 23:ijms23158438. [PMID: 35955574 PMCID: PMC9369308 DOI: 10.3390/ijms23158438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/15/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023] Open
Abstract
6-BA is a common plant growth regulator, but its safety has not been conclusive. The heart is one of the most important organs of living organisms, and the cardiogenesis process of zebrafish is similar to that of humans. Therefore, based on wild-type and transgenic zebrafish, we explored the development of zebrafish heart under 6-BA exposure and its mechanism. We found that 6-BA affected larval cardiogenesis, inducing defective expression of key genes for cardiac development (myl7, vmhc, and myh6) and AVC differentiation (bmp4, tbx2b, and notch1b), ultimately leading to weakened cardiac function (heart rate, diastolic speed, systolic speed). Acridine orange staining showed that the degree of apoptosis in zebrafish hearts was significantly increased under 6-BA, and the expression of cell-cycle-related genes was also changed. In addition, HPA axis assays revealed abnormally expressed mRNA levels of genes and significantly increased cortisol contents, which was also consistent with the observed anxiety behavior in zebrafish at 3 dpf. Transcriptional abnormalities of pro- and anti-inflammatory factors in immune signaling pathways were also detected in qPCR experiments. Collectively, we found that 6-BA induced cardiotoxicity in zebrafish, which may be related to altered HPA axis activity and the onset of inflammatory responses under 6-BA treatment.
Collapse
|
38
|
Pesavento S, Bilel S, Murari M, Gottardo R, Arfè R, Tirri M, Panato A, Tagliaro F, Marti M. Zebrafish larvae: A new model to study behavioural effects and metabolism of fentanyl, in comparison to a traditional mice model. MEDICINE, SCIENCE, AND THE LAW 2022; 62:188-198. [PMID: 35040690 DOI: 10.1177/00258024221074568] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In an effort to find alternatives to study in vivo the so-called New Psychoactive Substances (NPS), the present work was undertaken to investigate the use of zebrafish larvae as animal model in pharmaco-toxicology, providing behavioural and metabolism information. For this purpose, fentanyl, the progenitor of an extremely dangerous group of NPS, was administered at different doses to zebrafish larvae (1, 10, 50, 100 µM) in comparison to mice (0.1, 1, 6, 15 mg/kg), as a well-established animal model. A behavioural assay was performed at the time of the peak effect of fentanyl, showing that the results in larvae are consistent with those observed in mice. On the other hand, several morphological abnormalities (namely yolk sac edema, abnormal pericardial edema, jaw defect and spinal curvature) were found in larvae mostly at high fentanyl doses (50, 100 µM). Larva extract and mice urine were analyzed by using liquid chromatography coupled to high resolution mass spectrometry to identify the metabolic pathways of fentanyl. The main metabolites detected were norfentanyl and hydroxyfentanyl in both the tested models. In conclusion, the present study provides evidence that fentanyl effects on zebrafish larvae and metabolism are similar to rodents and consequently support the hypothesis of using zebrafish larvae as a suitable rapid screening tool to investigate new drugs, and particularly NPS.
Collapse
Affiliation(s)
- S Pesavento
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - S Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, 9299University of Ferrara, Italy
| | - M Murari
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - R Gottardo
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - R Arfè
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, 9299University of Ferrara, Italy
| | - M Tirri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, 9299University of Ferrara, Italy
| | - A Panato
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - F Tagliaro
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- "World-Class Research Center" Digital biodesign and personalized healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
| | - M Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, 9299University of Ferrara, Italy
- Collaborative Center of the National Early Warning System, Department for Anti-Drug Policies, Presidency of the Council of Ministers, Italy
| |
Collapse
|
39
|
Targowska-Duda KM, Maj M, Drączkowski P, Budzyńska B, Boguszewska-Czubara A, Wróbel TM, Laitinen T, Kaczmar P, Poso A, Kaczor AA. WaterMap guided structure-based virtual screening for acetylcholinesterase inhibitors. ChemMedChem 2022; 17:e202100721. [PMID: 35157366 DOI: 10.1002/cmdc.202100721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/11/2022] [Indexed: 11/11/2022]
Abstract
Structure-based virtual screening of the Enamine database of 1.7 million compounds followed by WaterMap calculations (a molecular dynamics simulation-based method) was applied to identify novel AChE inhibitors. The inhibitory potency of 29 selected compounds against electric eel (ee) AChE was determined using the Ellman's method. Three compounds were found active (success rate 10%). For the most potent compound (~40% of inhibition at 10 μM), 20 derivatives were discovered based on the Enamine similarity search. Finally, five compounds were found promising (IC 50 ranged from 6.3 µM to 17.5 µM) inhibitors of AChE. The performed similarity and fragment analysis confirmed significant structural novelty of novel AChE inhibitors. Toxicity/safety of selected compounds was determined in zebrafish model.
Collapse
Affiliation(s)
| | - Maciej Maj
- Medical University of Lublin: Uniwersytet Medyczny w Lublinie, Department of Biopharmacy, POLAND
| | - Piotr Drączkowski
- Medical University of Lublin: Uniwersytet Medyczny w Lublinie, Department of Synthesis and Chemical Technology of Pharmaceutical Substances, POLAND
| | - Barbara Budzyńska
- Medical University of Lublin: Uniwersytet Medyczny w Lublinie, Independent Laboratory of Behavioral Studies, POLAND
| | - Anna Boguszewska-Czubara
- Medical University of Lublin: Uniwersytet Medyczny w Lublinie, Department of Medical Chemistry, POLAND
| | - Tomasz M Wróbel
- Medical University of Lublin: Uniwersytet Medyczny w Lublinie, Department of Synthesis and Chemical Technology of Pharmaceutical Substances, POLAND
| | - Tuomo Laitinen
- University of Eastern Finland - Kuopio Campus: Ita-Suomen yliopisto - Kuopion kampus, School of Pharmacy, FINLAND
| | - Patrycja Kaczmar
- Medical University of Lublin: Uniwersytet Medyczny w Lublinie, Department of Biopharmacy, POLAND
| | - Antti Poso
- University of Eastern Finland - Kuopio Campus: Ita-Suomen yliopisto - Kuopion kampus, School of Pharmacy, FINLAND
| | - Agnieszka Anna Kaczor
- Medical University of Lublin, Department of Synthesis and Chemical Technology of Pharmaceutical Substances, 4A Chodzki St, 20093, Lublin, POLAND
| |
Collapse
|
40
|
Salahinejad A, Attaran A, Meuthen D, Chivers DP, Niyogi S. Proximate causes and ultimate effects of common antidepressants, fluoxetine and venlafaxine, on fish behavior. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150846. [PMID: 34626640 DOI: 10.1016/j.scitotenv.2021.150846] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/29/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Antidepressant (AD) drugs are widely prescribed for the treatment of psychiatric disorders, including depression and anxiety disorders. The continuous use of ADs causes significant quantities of these bioactive chemicals to enter the aquatic ecosystems mainly through wastewater effluent discharge. This may result in many aquatic organisms being inadvertently affected by these drugs. Fluoxetine (FLX) and venlafaxine (VEN) are currently among the most widely detected ADs in aquatic systems. A growing body of experimental evidence demonstrates that FLX and VEN have a substantial capacity to induce neurotoxicity and cause behavioral dysfunctions in a wide range of teleost species. At the same time, these studies often report seemingly contradictory results that are confounding in nature. Hence, we clearly require comprehensive reviews that attempt to find overarching patterns and establish possible causes for these variable results. This review aims to explore the current state of knowledge regarding the neurobehavioral effects of FLX and VEN on fishes. This study also discusses the potential mechanistic linkage between the neurotoxicity of ADs and behavioral dysfunction and identifies key knowledge gaps and areas for future research.
Collapse
Affiliation(s)
- Arash Salahinejad
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada.
| | - Anoosha Attaran
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Denis Meuthen
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Evolutionary Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| |
Collapse
|
41
|
Abstract
The use of multiple species to model complex human psychiatric disorders, such as ADHD, can give important insights into conserved evolutionary patterns underlying multidomain behaviors (e.g., locomotion, attention, and impulsivity). Here we discuss the advantages and challenges in modelling ADHD-like phenotypes in zebrafish (Danio rerio), a vertebrate species that has been widely used in neuroscience and behavior research. Moreover, multiple behavioral tasks can be used to model the core symptoms of ADHD and its comorbidities. We present a critical review of current ADHD studies in zebrafish, and how this species might be used to accelerate the discovery of new drug treatments for this disorder.
Collapse
Affiliation(s)
- Barbara D Fontana
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - William H J Norton
- Department of Neuroscience, Psychology and Behaviour, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, UK.
- Department of Genetics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.
| | - Matthew O Parker
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.
| |
Collapse
|
42
|
Tayanloo-Beik A, Hamidpour SK, Abedi M, Shojaei H, Tavirani MR, Namazi N, Larijani B, Arjmand B. Zebrafish Modeling of Autism Spectrum Disorders, Current Status and Future Prospective. Front Psychiatry 2022; 13:911770. [PMID: 35911241 PMCID: PMC9329562 DOI: 10.3389/fpsyt.2022.911770] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) refers to a complicated range of childhood neurodevelopmental disorders which can occur via genetic or non-genetic factors. Clinically, ASD is associated with problems in relationships, social interactions, and behaviors that pose many challenges for children with ASD and their families. Due to the complexity, heterogeneity, and association of symptoms with some neuropsychiatric disorders such as ADHD, anxiety, and sleep disorders, clinical trials have not yielded reliable results and there still remain challenges in drug discovery and development pipeline for ASD patients. One of the main steps in promoting lead compounds to the suitable drug for commercialization is preclinical animal testing, in which the efficacy and toxicity of candidate drugs are examined in vivo. In recent years, zebrafish have been able to attract the attention of many researchers in the field of neurological disorders such as ASD due to their outstanding features. The presence of orthologous genes for ASD modeling, the anatomical similarities of parts of the brain, and similar neurotransmitter systems between zebrafish and humans are some of the main reasons why scientists draw attention to zebrafish as a prominent animal model in preclinical studies to discover highly effective treatment approaches for the ASD through genetic and non-genetic modeling methods.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shayesteh Kokabi Hamidpour
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Abedi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamide Shojaei
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nazli Namazi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Fontana BD, Alnassar N, Parker MO. The zebrafish (Danio rerio) anxiety test battery: comparison of behavioral responses in the novel tank diving and light-dark tasks following exposure to anxiogenic and anxiolytic compounds. Psychopharmacology (Berl) 2022; 239:287-296. [PMID: 34651212 PMCID: PMC8770442 DOI: 10.1007/s00213-021-05990-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/20/2021] [Indexed: 11/25/2022]
Abstract
RATIONALE Triangulation of approaches (i.e., using several tests of the same construct) can be extremely useful for increasing the robustness of the findings being widely used when working with behavioral testing, especially when using rodents as a translational model. Although zebrafish are widely used in neuropharmacology research due to their high-throughput screening potential for new therapeutic drugs, behavioral test battery effects following pharmacological manipulations are still unknown. METHODS Here, we tested the effects of an anxiety test battery and test time following pharmacological manipulations in zebrafish by using two behavioral tasks: the novel tank diving task (NTT) and the light-dark test (LDT). Fluoxetine and conspecific alarm substance (CAS) were chosen to induce anxiolytic and anxiogenic-like behavior, respectively. RESULTS For non-drug-treated animals, no differences were observed for testing order (NTT → LDT or LDT → NTT) and there was a strong correlation between performances on the two behavioral tasks. However, we found that during drug treatment, NTT/LDT responses are affected by the tested order depending on the test time being fluoxetine effects higher at the second behavioral task (6 min later) and CAS effects lower across time. CONCLUSIONS Overall, our data supports the use of baseline behavior assessment using this anxiety test battery. However, when working with drug exposure, data analysis must carefully consider time-drug-response and data variability across behavioral tasks.
Collapse
Affiliation(s)
- Barbara D Fontana
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Old St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK.
| | - Nancy Alnassar
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Old St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Matthew O Parker
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Old St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK.
| |
Collapse
|
44
|
Romano D, Stefanini C. Robot-Fish Interaction Helps to Trigger Social Buffering in Neon Tetras: The Potential Role of Social Robotics in Treating Anxiety. Int J Soc Robot 2021. [DOI: 10.1007/s12369-021-00829-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AbstractThe emerging field of social robotics comprises several multidisciplinary applications. Anxiety and stress therapies can greatly benefit by socio-emotional support provided by robots, although the intervention of social robots as effective treatment needs to be fully understood. Herein, Paracheirodon innesi, a social fish species, was used to interact with a robotic fish to understand intrinsic and extrinsic mechanisms causing anxiety, and how social robots can be effectively used as anxiety treatments. In the first experiment we tested the effects of a conspecific-mimicking robot on the fish tendency to swim in the bottom when transferred in a new tank. Here, P. innesi spent a significantly longer time in the upper section of the test tank when the robotic fish was present, clearly indicating a reduction of their state of anxiety due to social stimuli. The second experiment was based on a modification of the dark/light preference test, since many teleost fish are scototactic, preferring dark environments. However, when the robotic fish was placed in the white half of the test tank, P. innesi individuals swam longer in this section otherwise aversive. Social support provided by the robotic fish in both experiments produced a better recovery from anxiety due to social buffering, a phenomenon regulated by specific neural mechanisms. This study provides new insights on the evolution and mechanisms of social buffering to reduce anxiety, as well as on the use of social robots as an alternative to traditional approaches in treating anxiety symptoms.
Collapse
|
45
|
Domingo-Echaburu S, Dávalos LM, Orive G, Lertxundi U. Drug pollution & Sustainable Development Goals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149412. [PMID: 34391154 DOI: 10.1016/j.scitotenv.2021.149412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
The United Nations set "The 2030 Agenda for Sustainable Development," which includes the Sustainable Development Goals (SDGs), a collection of 17 global goals designed to be a "blueprint to achieve a better and more sustainable future for all". Although only mentioned in one of the seventeen goals (goal 3), we argue that drugs in general, and growing drug pollution in particular, affects the SDGs in deeper, not readily apparent ways. So far, the emerging problem of drug pollution has not been sufficiently addressed. Here, we outline and discuss how drug pollution can affect SDGs and even threaten their achievement.
Collapse
Affiliation(s)
- S Domingo-Echaburu
- Pharmacy Service, Alto Deba-Integrated Health Care Organization, Arrasate, Gipuzkoa, Spain
| | - L M Dávalos
- Department of Ecology and Evolution, Stony Brook University, 626 Life Sciences Building, Stony Brook, NY 11794, USA; Consortium for Inter-Disciplinary Environmental Research, School of Marine and Atmospheric Sciences, Stony Brook University, 129 Dana Hall, Stony Brook, NY 11794, USA
| | - G Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - U Lertxundi
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba Mental Health Network, Araba Psychiatric Hospital, Pharmacy Service, c/Alava 43, 01006 Vitoria-Gasteiz, Alava, Spain.
| |
Collapse
|
46
|
Fernandes Silva BW, Leite-Ferreira ME, Menezes FP, Luchiari AC. Covariation among behavioral traits and hatching time in zebrafish. Behav Processes 2021; 194:104546. [PMID: 34800606 DOI: 10.1016/j.beproc.2021.104546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/20/2021] [Accepted: 11/11/2021] [Indexed: 11/02/2022]
Abstract
Individuals of the same population differ in several ways. For instance, in fish populations, individuals who hatch earlier show more active behavior and are more explorative than those that hatch later, which is a characteristic of the behavioral personality type. One of the aspects relevant to this theory is the consistency of behavioral differences between contexts and over time. Thus, the present study evaluated the relationship between hatching time and behavioral consistency in two ontogenetic stages: juvenile and adult, and different contexts in zebrafish (Danio rerio). For this, the animals were separated according to hatching time into early-hatching (EH) and late-hatching (LH) fish and tested in an anxiety-like context (black-white paradigm) at the 30th-day post fertilization (dpf) and the 120th dpf. The animals were also tested in a novel tank paradigm and novel object paradigm to access explorativeness and boldness, respectively. In the black-white test, EH animals presented shorter latency to enter the white area and stayed longer in the black area than LH animals. The EH individuals were more explorative and bold in the novel tank and novel object tests and showed less anxiety-like behavior than the LH. In general, the results obtained suggest that hatching time may indicate consistent differences for zebrafish behavioral profiles.
Collapse
Affiliation(s)
| | - Maria Elisa Leite-Ferreira
- Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Fabiano Peres Menezes
- Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Ana Carolina Luchiari
- Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil.
| |
Collapse
|
47
|
Naderi M, Puar P, JavadiEsfahani R, Kwong RWM. Early developmental exposure to bisphenol A and bisphenol S disrupts socio-cognitive function, isotocin equilibrium, and excitation-inhibition balance in developing zebrafish. Neurotoxicology 2021; 88:144-154. [PMID: 34808222 DOI: 10.1016/j.neuro.2021.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/26/2021] [Accepted: 11/16/2021] [Indexed: 12/01/2022]
Abstract
Dysregulation of the oxytocinergic system and excitation/inhibition (E/I) balance in synaptic transmission and neural circuits are common hallmarks of various neurodevelopmental disorders. Several experimental and epidemiological studies have shown that perinatal exposure to endocrine-disrupting chemicals bisphenol A (BPA) and bisphenol S (BPS) may contribute to a range of childhood neurodevelopmental disorders. However, the effects of BPA and BPS on social-cognitive development and the associated mechanisms remain largely unknown. In this study, we explored the impacts of early developmental exposure (2hpf-5dpf) to environmentally relevant concentrations of BPA, and its analog BPS (0.001, 0.01, and 0.1 μM), on anxiety, social behaviors, and memory performance in 21 dpf zebrafish larvae. Our results revealed that early-life exposure to low concentrations of BPA and BPS elevated anxiety-like behavior, while fish exposed to higher concentrations of these chemicals displayed social deficits and impaired object recognition memory. Additionally, we found that co-exposure with an aromatase inhibitor antagonized BPA- and BPS-induced effects on anxiety levels and social behaviors, while the co-exposure to an estrogen receptor antagonist restored recognition memory in zebrafish larvae. These results indicate that BPA and BPS may affect social-cognitive function through distinct mechanisms. On the other hand, exposure to low BPA/BPS concentrations increased both the mRNA and protein levels of isotocin (zebrafish oxytocin) in the zebrafish brain, whereas a reduction in its mRNA level was observed at higher concentrations. Further, alterations in the transcript abundance of chloride transporters, and molecular markers of gamma-aminobutyric acid (GABA) and glutamatergic systems, were observed in the zebrafish brain, suggesting possible E/I imbalance following BPA or BPS exposure. Collectively, the results of this study demonstrate that early-life exposure to low concentrations of the environmental contaminants BPA and BPS can interfere with the isotocinergic signaling pathway and disrupts the establishment of E/I balance in the developing brain, subsequently leading to the onset of a suite of behavioral deficits and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Mohammad Naderi
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada.
| | - Pankaj Puar
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | | | - Raymond W M Kwong
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| |
Collapse
|
48
|
Clayman CL, Connaughton VP. Neurochemical and Behavioral Consequences of Ethanol and/or Caffeine Exposure: Effects in Zebrafish and Rodents. Curr Neuropharmacol 2021; 20:560-578. [PMID: 34766897 DOI: 10.2174/1570159x19666211111142027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/31/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022] Open
Abstract
Zebrafish are increasingly being utilized to model the behavioral and neurochemical effects of pharmaceuticals and, more recently, pharmaceutical interactions. Zebrafish models of stress establish that both caffeine and ethanol influence anxiety, though few studies have implemented co-administration to assess the interaction of anxiety and reward-seeking. Caffeine exposure in zebrafish is teratogenic, causing developmental abnormalities in the cardiovascular, neuromuscular, and nervous systems of embryos and larvae. Ethanol is also a teratogen and, as an anxiolytic substance, may be able to offset the anxiogenic effects of caffeine. Co-exposure to caffeine and alcohol impacts neuroanatomy and behavior in adolescent animal models, suggesting stimulant substances may moderate the impact of alcohol on neural circuit development. Here, we review the literature describing neuropharmacological and behavioral consequences of caffeine and/or alcohol exposure in the zebrafish model, focusing on neurochemistry, locomotor effects, and behavioral assessments of stress/anxiety as reported in adolescent/juvenile and adult animals. The purpose of this review is twofold: (1) describe the work in zebrafish documenting the effects of ethanol and/or caffeine exposure and (2) compare these zebrafish studies with comparable experiments in rodents. We focus on specific neurochemical pathways (dopamine, serotonin, adenosine, GABA, adenosine), anxiety-type behaviors (assessed with novel tank, thigmotaxis, shoaling), and locomotor changes resulting from both individual and co-exposure. We compare findings in zebrafish with those in rodent models, revealing similarities across species and identifying conservation of mechanisms that potentially reinforce co-addiction.
Collapse
Affiliation(s)
- Carly L Clayman
- Department of Biology and Center for Neuroscience and Behavior American University, Washington, DC 20016, United States
| | - Victoria P Connaughton
- Department of Biology and Center for Neuroscience and Behavior American University, Washington, DC 20016, United States
| |
Collapse
|
49
|
Lee J, Kim DH, Park SJ, Jong HR, Jung JW, Jeon YJ, Park SR, Kim GY, Lee S. Involvement of the hypothalamic-pituitary-interrenal axis in the antistress activities of Tenebrio molitor Larvae in zebrafish. Appl Anim Behav Sci 2021. [DOI: 10.1016/j.applanim.2021.105487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
Argaluza J, Domingo-Echaburu S, Orive G, Medrano J, Hernandez R, Lertxundi U. Environmental pollution with psychiatric drugs. World J Psychiatry 2021; 11:791-804. [PMID: 34733642 PMCID: PMC8546762 DOI: 10.5498/wjp.v11.i10.791] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/25/2021] [Accepted: 08/31/2021] [Indexed: 02/06/2023] Open
Abstract
Among all contaminants of emerging interest, drugs are the ones that give rise to the greatest concern. Any of the multiple stages of the drug's life cycle (production, consumption and waste management) is a possible entry point to the different environmental matrices. Psychiatric drugs have received special attention because of two reasons. First, their use is increasing. Second, many of them act on phylogenetically highly conserved neuroendocrine systems, so they have the potential to affect many non-target organisms. Currently, wastewater is considered the most important source of drugs to the environment. Furthermore, the currently available wastewater treatment plants are not specifically prepared to remove drugs, so they reach practically all environmental matrices, even tap water. As drugs are designed to produce pharmacological effects at low concentrations, they are capable of producing ecotoxicological effects on microorganisms, flora and fauna, even on human health. It has also been observed that certain antidepressants and antipsychotics can bioaccumulate along the food chain. Drug pollution is a complicated and diffuse problem characterized by scientific uncertainties, a large number of stakeholders with different values and interests, and enormous complexity. Possible solutions consist on acting at source, using medicines more rationally, eco-prescribing or prescribing greener drugs, designing pharmaceuticals that are more readily biodegraded, educating both health professionals and citizens, and improving coordination and collaboration between environmental and healthcare sciences. Besides, end of pipe measures like improving or developing new purification systems (biological, physical, chemical, combination) that eliminate these residues efficiently and at a sustainable cost should be a priority. Here, we describe and discuss the main aspects of drug pollution, highlighting the specific issues of psychiatric drugs.
Collapse
Affiliation(s)
- Julene Argaluza
- Department of Epidemiology and Public Health, Bioaraba Health Research Institute, Vitoria-Gasteiz 01002, Spain
| | - Saioa Domingo-Echaburu
- Department of Pharmacy, Alto Deba Integrated Health Care Organization, Arrasate 20500, Spain
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz 01006, Spain
- Singapore Eye Research Institute, Discovery Tower, Singapore 168751, Singapore
| | - Juan Medrano
- Department of Psychiatry, Biocruces Bizkaia Health Research Institute, Mental Health Network Research Group, Osakidetza, Portugalete 48920, Spain
| | - Rafael Hernandez
- Department of Internal Medicine, Araba Mental Health Network, Vitoria-Gasteiz 01006, Spain
| | - Unax Lertxundi
- Bioaraba Health Research Institute; Osakidetza Basque Health Service, Araba Mental Health Network, Araba Psychiatric Hospital, Pharmacy Service, Vitoria-Gasteiz 01006, Alava, Spain
| |
Collapse
|