1
|
Wang C, Yuan X, Fu Y. microRNA-34 family: A multifunctional miRNA family. Arch Biochem Biophys 2025; 768:110382. [PMID: 40074019 DOI: 10.1016/j.abb.2025.110382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/19/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
MicroRNAs are endogenous non-coding small RNAs composed of about 22 nucleotides, which are widely found in eukaryotic cells and regulate gene expression at the post-transcriptional level through complementary pairing with target genes, leading to mRNA degradation or translation inhibition. MiR-34 family is a highly conserved miRNA family during evolution. Recent studies have found that members of the miR-34 family are involved in regulating biological processes such as aging, ciliogenesis, and immunity. To have a more comprehensive understanding of miR-34 family, this paper reviewed the functional evolution of miR-34 family, and provided a reference for further research on the related functions of miR-34.
Collapse
Affiliation(s)
- Chen Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi Key Laboratory of Biotechnology, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, PR China.
| | - Ximei Yuan
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi Key Laboratory of Biotechnology, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, PR China.
| | - Yuejun Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi Key Laboratory of Biotechnology, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, PR China.
| |
Collapse
|
2
|
Çevik ÖS, Yıldırım DD, Uzun C, Horata E. Contribution of distinctive outcome measures to the assessment of anxiety in the open field: A meta-analysis of factors mediating open-field test variability in rodent models of anxiety. Behav Brain Res 2025; 490:115612. [PMID: 40311939 DOI: 10.1016/j.bbr.2025.115612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/26/2025] [Accepted: 04/26/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND Anxiety and stress-related disorders are severe psychiatric conditions that affect performance in daily tasks. The most common behavioral test to assess a rodent's level of anxiety is a non-invasive open-field test (OFT). To synthesize the many indications of anxiolysis and provide a thorough understanding and more trustworthy conclusions regarding the effects of interventions, a meta-analysis is essential. METHODS Search terms were developed and refined our strategy using MeSH and non-MeSH terms. Here, studies were systematically reviewed on PubMed, Science Direct, Web of Science, Scopus, CINAHL (Ebsco) from July 2023 to September 2024. According to that, 3860 studies were retrieved and after initial and full-text screening 56 studies were included (has stress hormone data) to support finding suitable animal models for future experimental studies on stress-related anxiety. RESULTS Analyses of the content of reviewed studies supported that stressed female animals present an overall higher time in the center, compared with male animals. The observed difference in time spent in the center between stressed female and male animals can be attributed to various underlying physiological and behavioral mechanisms. On the other hand, the overall effect of stress was not significant on locomotor activity (LA). Stratified subgroup analysis did not find significant effects of species, and meta-regression results showed no significant moderating effects for age and housing conditions. However, a general trend suggested higher LA in control than stressed animals. CONCLUSION Anxiety involves multiple interacting psychological drives, meaning no single test can capture all its facets. The OFT's specificity (e.g., showing effects only in stressed females or under certain conditions) should be considered while study is planning. Given the nuanced relationship between locomotion and anxiety, it is imperative to consider additional factors and methodologies when interpreting OFT results.
Collapse
Affiliation(s)
- Özge Selin Çevik
- Mersin University, Faculty of Medicine, Physiology Department, Mersin, Turkey.
| | - Didem Derici Yıldırım
- Mersin University, Faculty of Medicine, Biostatistics and Medical Informatics Department, Mersin, Turkey
| | - Coşar Uzun
- University of Georgia, Center for Neurological Disease Research, Department of Physiology and Pharmacology, GA, USA
| | - Erdal Horata
- Afyonkarahisar Health Sciences University, Atatürk Health Services Vocational School, Department of Orthopedic Prosthesis-Orthosis, Afyonkarahisar, TR, Turkey
| |
Collapse
|
3
|
Poljak L, Miše B, Čičin-Šain L, Tvrdeić A. Ceftriaxone Inhibits Conditioned Fear and Compulsive-like Repetitive Marble Digging without Central Nervous System Side Effects Typical of Diazepam-A Study on DBA2/J Mice and a High-5HT Subline of Wistar-Zagreb 5HT Rats. Biomedicines 2024; 12:1711. [PMID: 39200176 PMCID: PMC11351474 DOI: 10.3390/biomedicines12081711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 09/02/2024] Open
Abstract
Background: Ceftriaxone upregulates GLT1 glutamate transporter in the brain and may have anti-CFC and anti-OCD effects. Methods: Twenty WZ-5HT rats were used to investigate the effects of ceftriaxone on obsessive-compulsive (OCD)-like behaviour in the marble-burying (MB) test, freezing behaviour in contextual fear conditioning (CFC) and expression of GLT1 protein in the hippocampus or amygdala using immunoblots. Fifteen DBA/2J mice were used in the MB test. We also compared diazepam with ceftriaxone in open-field, beam-walking, and wire-hanging tests on 47 DBA/2J mice. Ceftriaxone (200 mg/kg) and saline were applied intraperitoneally, once daily for 7 (rats) or 5 (mice) consecutive days. A single dose of diazepam (1.5-3.0 mg/kg) or saline was injected 30 min before the behavioural tests. Results: Ceftriaxone significantly diminished OCD-like behaviour (↓ number of marbles buried) and freezing behaviour in CFC context session (↑ latencies, ↓ total duration, ↓ duration over four 2 min periods of the session) but increased GLT1 protein expression in the amygdala and hippocampus of rats. Diazepam induced sedation, ataxia and myorelaxation in mice. Ceftriaxone did not have these side effects. Conclusions: The results of this study confirm the anti-CFC and anti-OCD effects of ceftriaxone, which did not produce the unwanted effects typical of diazepam.
Collapse
Affiliation(s)
- Ljiljana Poljak
- Department of Physiology and Immunology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Branko Miše
- University Hospital for Infectious Diseases “Fran Mihaljević”, 10000 Zagreb, Croatia;
| | - Lipa Čičin-Šain
- Laboratory for Neurochemistry and Molecular Neurobiology, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Ante Tvrdeić
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Morgunova A, Teixeira M, Flores C. Perspective on adolescent psychiatric illness and emerging role of microRNAs as biomarkers of risk. J Psychiatry Neurosci 2024; 49:E282-E288. [PMID: 39209460 PMCID: PMC11374446 DOI: 10.1503/jpn.240072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Affiliation(s)
- Alice Morgunova
- From the Douglas Mental Health University Institute, Montreal, Que. (Morgunova, Flores); the Department of Psychiatry, McGill University, Montreal, Que. (Morgunova, Flores); the Integrated Program in Neuroscience, McGill University, Montreal, Que. (Teixeira); the Department of Neurology and Neurosurgery, McGill University, Montreal, Que. (Flores); the Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, Que. (Flores)
| | - Maxime Teixeira
- From the Douglas Mental Health University Institute, Montreal, Que. (Morgunova, Flores); the Department of Psychiatry, McGill University, Montreal, Que. (Morgunova, Flores); the Integrated Program in Neuroscience, McGill University, Montreal, Que. (Teixeira); the Department of Neurology and Neurosurgery, McGill University, Montreal, Que. (Flores); the Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, Que. (Flores)
| | - Cecilia Flores
- From the Douglas Mental Health University Institute, Montreal, Que. (Morgunova, Flores); the Department of Psychiatry, McGill University, Montreal, Que. (Morgunova, Flores); the Integrated Program in Neuroscience, McGill University, Montreal, Que. (Teixeira); the Department of Neurology and Neurosurgery, McGill University, Montreal, Que. (Flores); the Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, Que. (Flores)
| |
Collapse
|
5
|
Štefánik P, Morová M, Herichová I. Impact of Long-Lasting Environmental Factors on Regulation Mediated by the miR-34 Family. Biomedicines 2024; 12:424. [PMID: 38398026 PMCID: PMC10887245 DOI: 10.3390/biomedicines12020424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The present review focuses on the interactions of newly emerging environmental factors with miRNA-mediated regulation. In particular, we draw attention to the effects of phthalates, electromagnetic fields (EMFs) and a disrupted light/dark cycle. miRNAs are small non-coding RNA molecules with a tremendous regulatory impact, which is usually executed via gene expression inhibition. To address the capacity of environmental factors to influence miRNA-mediated regulation, the miR-34 family was selected for its well-described oncostatic and neuro-modulatory properties. The expression of miR-34 is in a tissue-dependent manner to some extent under the control of the circadian system. There is experimental evidence implicating that phthalates, EMFs and the circadian system interact with the miR-34 family, in both lines of its physiological functioning. The inhibition of miR-34 expression in response to phthalates, EMFs and light contamination has been described in cancer tissue and cell lines and was associated with a decline in oncostatic miR-34a signalling (decrease in p21 expression) and a promotion of tumorigenesis (increases in Noth1, cyclin D1 and cry1 expressions). The effects of miR-34 on neural functions have also been influenced by phthalates, EMFs and a disrupted light/dark cycle. Environmental factors shifted the effects of miR-34 from beneficial to the promotion of neurodegeneration and decreased cognition. Moreover, the apoptogenic capacity of miR-34 induced via phthalate administration in the testes has been shown to negatively influence germ cell proliferation. To conclude, as the oncostatic and positive neuromodulatory functions of the miR-34 family can be strongly influenced by environmental factors, their interactions should be taken into consideration in translational medicine.
Collapse
Affiliation(s)
- Peter Štefánik
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Martina Morová
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Iveta Herichová
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| |
Collapse
|
6
|
Musazzi L, Mingardi J, Ieraci A, Barbon A, Popoli M. Stress, microRNAs, and stress-related psychiatric disorders: an overview. Mol Psychiatry 2023; 28:4977-4994. [PMID: 37391530 DOI: 10.1038/s41380-023-02139-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/23/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023]
Abstract
Stress is a major risk factor for psychiatric disorders. During and after exposure to stressors, the stress response may have pro- or maladaptive consequences, depending on several factors related to the individual response and nature of the stressor. However, the mechanisms mediating the long-term effects of exposure to stress, which may ultimately lead to the development of stress-related disorders, are still largely unknown. Epigenetic mechanisms have been shown to mediate the effects of the environment on brain gene expression and behavior. MicroRNAs, small non-coding RNAs estimated to control the expression of about 60% of all genes by post-transcriptional regulation, are a fundamental epigenetic mechanism. Many microRNAs are expressed in the brain, where they work as fine-tuners of gene expression, with a key role in the regulation of homeostatic balance, and a likely influence on pro- or maladaptive brain changes. Here we have selected a number of microRNAs, which have been strongly implicated as mediators of the effects of stress in the brain and in the development of stress-related psychiatric disorders. For all of them recent evidence is reported, obtained from rodent stress models, manipulation of microRNAs levels with related behavioral changes, and clinical studies of stress-related psychiatric disorders. Moreover, we have performed a bioinformatic analysis of the predicted brain-expressed target genes of the microRNAs discussed, and found a central role for mechanisms involved in the regulation of synaptic function. The complex regulatory role of microRNAs has suggested their use as biomarkers for diagnosis and treatment response, as well as possible therapeutic drugs. While, microRNA-based diagnostics have registered advancements, particularly in oncology and other fields, and many biotech companies have launched miRNA therapeutics in their development pipeline, the development of microRNA-based tests and drugs for brain disorders is comparatively slower.
Collapse
Affiliation(s)
- Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Jessica Mingardi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alessandro Ieraci
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Italy
- Molecular Pharmacology, Cellular and Behavioral Physiology; Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy
| | - Alessandro Barbon
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy.
| |
Collapse
|
7
|
Azargoonjahromi A. The role of epigenetics in anxiety disorders. Mol Biol Rep 2023; 50:9625-9636. [PMID: 37804465 DOI: 10.1007/s11033-023-08787-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/30/2023] [Indexed: 10/09/2023]
Abstract
Anxiety disorders (ADs) are extremely common psychiatric conditions that frequently co-occur with other physical and mental disorders. The pathophysiology of ADs is multifaceted and involves intricate connections among biological elements, environmental stimuli, and psychological mechanisms. Recent discoveries have highlighted the significance of epigenetics in bridging the gap between multiple risk factors that contribute to ADs and expanding our understanding of the pathomechanisms underlying ADs. Epigenetics is the study of how changes in the environment and behavior can have an impact on gene function. Indeed, researchers have found that epigenetic mechanisms can affect how genes are activated or inactivated, as well as whether they are expressed. Such mechanisms may also affect how ADs form and are protected. That is, the bulk of pharmacological trials evaluating epigenetic treatments for the treatment of ADs have used histone deacetylase inhibitors (HDACi), yielding promising outcomes in both preclinical and clinical studies. This review will provide an outline of how epigenetic pathways can be used to treat ADs or lessen their risk. It will also present the findings from preclinical and clinical trials that are currently available on the use of epigenetic drugs to treat ADs.
Collapse
|
8
|
Ielpo D, Guzzo SM, Porcheddu GF, Viscomi MT, Catale C, Reverte I, Cabib S, Cifani C, Antonucci G, Ventura R, Lo Iacono L, Marchetti C, Andolina D. GABAergic miR-34a regulates Dorsal Raphè inhibitory transmission in response to aversive, but not rewarding, stimuli. Proc Natl Acad Sci U S A 2023; 120:e2301730120. [PMID: 37523544 PMCID: PMC10410731 DOI: 10.1073/pnas.2301730120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/26/2023] [Indexed: 08/02/2023] Open
Abstract
The brain employs distinct circuitries to encode positive and negative valence stimuli, and dysfunctions of these neuronal circuits have a key role in the etiopathogenesis of many psychiatric disorders. The Dorsal Raphè Nucleus (DRN) is involved in various behaviors and drives the emotional response to rewarding and aversive experiences. Whether specific subpopulations of neurons within the DRN encode these behaviors with different valence is still unknown. Notably, microRNA expression in the mammalian brain is characterized by tissue and neuronal specificity, suggesting that it might play a role in cell and circuit functionality. However, this specificity has not been fully exploited. Here, we demonstrate that microRNA-34a (miR-34a) is selectively expressed in a subpopulation of GABAergic neurons of the ventrolateral DRN. Moreover, we report that acute exposure to both aversive (restraint stress) and rewarding (chocolate) stimuli reduces GABA release in the DRN, an effect prevented by the inactivation of DRN miR-34a or its genetic deletion in GABAergic neurons in aversive but not rewarding conditions. Finally, miR-34a inhibition selectively reduced passive coping with severe stressors. These data support a role of miR-34a in regulating GABAergic neurotransmitter activity and behavior in a context-dependent manner and suggest that microRNAs could represent a functional signature of specific neuronal subpopulations with valence-specific activity in the brain.
Collapse
Affiliation(s)
- Donald Ielpo
- Department of Psychology, Sapienza University, Rome00184, Italy
- Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico, Roma00143, Italy
| | - Serafina M. Guzzo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino62032, Italy
| | - Giovanni F. Porcheddu
- Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico, Roma00143, Italy
- European Brain Research Institute-Fondazione Rita Levi-Montalcini, Rome00161, Italy
| | - Maria Teresa Viscomi
- Department of Life Science and Public Health Section of Histology and Embryology, Università Cattolica del Sacro Cuore, Rome00168, Italy
- Fondazione Policlinico Universitario “A. Gemelli”, Istituto di Ricovero e Cura a Carattere Scientifico, Rome00168, Italy
| | - Clarissa Catale
- Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico, Roma00143, Italy
| | - Ingrid Reverte
- Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico, Roma00143, Italy
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome00185, Italy
| | - Simona Cabib
- Department of Psychology, Sapienza University, Rome00184, Italy
- Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico, Roma00143, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino62032, Italy
| | - Gabriella Antonucci
- Department of Psychology, Sapienza University, Rome00184, Italy
- Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico, Roma00143, Italy
| | - Rossella Ventura
- Department of Psychology, Sapienza University, Rome00184, Italy
- Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico, Roma00143, Italy
- San Raffaele Istituto di Ricovero e Cura a Carattere Scientifico, Rome00166, Italy
| | - Luisa Lo Iacono
- Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico, Roma00143, Italy
| | - Cristina Marchetti
- European Brain Research Institute-Fondazione Rita Levi-Montalcini, Rome00161, Italy
- Institute of Molecular Biology and Pathology, National Research Council, Rome00185, Italy
| | - Diego Andolina
- Department of Psychology, Sapienza University, Rome00184, Italy
- Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico, Roma00143, Italy
| |
Collapse
|
9
|
Amini J, Beyer C, Zendedel A, Sanadgol N. MAPK Is a Mutual Pathway Targeted by Anxiety-Related miRNAs, and E2F5 Is a Putative Target for Anxiolytic miRNAs. Biomolecules 2023; 13:biom13030544. [PMID: 36979479 PMCID: PMC10046777 DOI: 10.3390/biom13030544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
Anxiety-related disorders (ARDs) are chronic neuropsychological diseases and the sixth leading cause of disability in the world. As dysregulation of microRNAs (miRs) are observed in the pathological course of neuropsychiatric disorders, the present study aimed to introduce miRs that underlie anxiety processing in the brain. First, we collected the experimentally confirmed anxiety-related miRNAs (ARmiRs), predicted their target transcripts, and introduced critical cellular pathways with key commune hub genes. As a result, we have found nine anxiolytic and ten anxiogenic ARmiRs. The anxiolytic miRs frequently target the mRNA of Acyl-CoA synthetase long-chain family member 4 (Acsl4), AFF4-AF4/FMR2 family member 4 (Aff4), and Krüppel like transcription factor 4 (Klf4) genes, where miR-34b-5p and miR-34c-5p interact with all of them. Moreover, the anxiogenic miRs frequently target the mRNA of nine genes; among them, only two miR (miR-142-5p and miR-218-5p) have no interaction with the mRNA of trinucleotide repeat-containing adaptor 6B (Tnrc6b), and miR-124-3p interacts with all of them where MAPK is the main signaling pathway affected by both anxiolytic and anxiogenic miR. In addition, the anxiolytic miR commonly target E2F transcription factor 5 (E2F5) in the TGF-β signaling pathway, and the anxiogenic miR commonly target Ataxin 1 (Atxn1), WASP-like actin nucleation promoting factor (Wasl), and Solute Carrier Family 17 Member 6 (Slc17a6) genes in the notch signaling, adherence junction, and synaptic vesicle cycle pathways, respectively. Taken together, we conclude that the most important anxiolytic (miR-34c, Let-7d, and miR-17) and anxiogenic (miR-19b, miR-92a, and 218) miR, as hub epigenetic modulators, potentially influence the pathophysiology of anxiety, primarily via interaction with the MAPK signaling pathway. Moreover, the role of E2F5 as a novel putative target for anxiolytic miRNAs in ARDs disorders deserves further exploration.
Collapse
Affiliation(s)
- Javad Amini
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Adib Zendedel
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Nima Sanadgol
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
- Correspondence:
| |
Collapse
|
10
|
Wisłowska-Stanek A, Lehner M, Tomczuk F, Kołosowska K, Krząśnik P, Turzyńska D, Skórzewska A. The role of the dorsal hippocampus in resistance to the development of posttraumatic stress disorder-like behaviours. Behav Brain Res 2023; 438:114185. [PMID: 36334781 DOI: 10.1016/j.bbr.2022.114185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/19/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
This study aimed to determine the activity of the dorsal hippocampus (dHIP) in resistance to the development of posttraumatic stress disorder (PTSD)-like behaviours. Rats were divided into resistant, PTSD(-), and susceptible, PTSD(+) groups based on the time spent in the central area in an open field test and freezing duration during exposure to an aversive context one week after stress experience (electric foot shock). The PTSD(-) rats, compared to the PTSD(+) group, had an increased concentration of corticosterone in plasma and changes in the activity of the dHIP, specifically, increased c-Fos expression in the dentate gyrus (DG) and increased Neuroligin-2 (marker of GABAergic neurotransmission) expression in the DG and CA3 area of the dHIP. Moreover, in the hippocampus, the PTSD(-) group showed decreased mRNA expression for corticotropin-releasing factor receptors type 1 and 2, increased mRNA expression for orexin receptor type 1, and decreased miR-9 and miR-34c levels compared with the PTSD(+) group. This study may suggest that the increase in GABA signalling in the hippocampus attenuates the activity of the CRF system and enhances the function of the orexin system. Moreover, decreased expression of miR-34c and miR-9 could facilitate fear extinction and diminishes the anxiety response. These effects may lead to an anxiolytic-like effect and improve resistance to developing PTSD-like behaviours.
Collapse
Affiliation(s)
- Aleksandra Wisłowska-Stanek
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology (CEPT), 1B Banacha Street, 02-097 Warsaw, Poland
| | - Małgorzata Lehner
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Filip Tomczuk
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Karolina Kołosowska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Paweł Krząśnik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology (CEPT), 1B Banacha Street, 02-097 Warsaw, Poland
| | - Danuta Turzyńska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Anna Skórzewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland.
| |
Collapse
|
11
|
D'Addario SL, Municchi D, Mancini C, Ielpo D, Babicola L, Di Segni M, Iacono LL, Ferlazzo F, Cifani C, Andolina D, Ventura R. The long-lasting effects of early life adversities are sex dependent: The signature of miR-34a. J Affect Disord 2023; 322:277-288. [PMID: 36414112 DOI: 10.1016/j.jad.2022.11.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/26/2022] [Accepted: 11/11/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Exposure to early life adversities (ELA) can influence a plethora of biological mechanisms leading to stress-related disorders later in life through epigenetic mechanisms, such as microRNAs (miRs). MiR-34 is a critical modulator of stress response and stress-induced pathologies and a link between ELA and miR-34a has been reported. METHODS Here using our well-established model of ELA (Repeated Cross Fostering) we investigate the behavioral long-term effects of ELA in male and female mice. We also assess basal and ELA-induced miR-34a expression in adult mice and investigate whether ELA affects the later miR-34a response to adult acute stress exposure across brain areas (medial preFrontal Cortex, Dorsal Raphe Nuclei) and peripheral organs (heart, plasma) in animals from both sexes. Finally, based on our previous data demonstrating the critical role of Dorsal Raphe Nuclei miR-34a expression in serotonin (5-HT) transmission, we also investigated prefrontal-accumbal 5-HT outflow induced by acute stress exposure in ELA and Control females by in vivo intracerebral microdialysis. RESULTS ELA not just induces a depressive-like state as well as enduring changes in miR-34a expression, but also alters miR-34a expression in response to adult acute stress exclusively in females. Finally, altered DRN miR-34a expression is associated with prefrontal-accumbal 5-HT release under acute stress exposure in females. LIMITATIONS Translational study on humans is necessary to verify the results obtained in our animal models of ELA-induced depression. CONCLUSIONS This is the first evidence showing long-lasting sex related effects of ELA on brain and peripheral miR-34a expression levels in an animal model of depression-like phenotype.
Collapse
Affiliation(s)
- Sebastian Luca D'Addario
- IRCCS Fondazione Santa Lucia, Roma, Italy; Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy.
| | - Diana Municchi
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy.
| | - Camilla Mancini
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy.
| | - Donald Ielpo
- IRCCS Fondazione Santa Lucia, Roma, Italy; Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy.
| | - Lucy Babicola
- IRCCS Fondazione Santa Lucia, Roma, Italy; Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy.
| | | | - Luisa Lo Iacono
- IRCCS Fondazione Santa Lucia, Roma, Italy; Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy.
| | - Fabio Ferlazzo
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy.
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy.
| | - Diego Andolina
- IRCCS Fondazione Santa Lucia, Roma, Italy; Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy.
| | - Rossella Ventura
- IRCCS Fondazione Santa Lucia, Roma, Italy; Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy.
| |
Collapse
|
12
|
Estévez-Cabrera MM, Sánchez-Muñoz F, Pérez-Sánchez G, Pavón L, Hernández-Díazcouder A, Córtes Altamirano JL, Soria-Fregoso C, Alfaro-Rodríguez A, Bonilla-Jaime H. Therapeutic treatment with fluoxetine using the chronic unpredictable stress model induces changes in neurotransmitters and circulating miRNAs in extracellular vesicles. Heliyon 2023; 9:e13442. [PMID: 36852042 PMCID: PMC9958461 DOI: 10.1016/j.heliyon.2023.e13442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/10/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
The most widely prescribed antidepressant, fluoxetine (FLX), is known for its antioxidant and anti-inflammatory effects when administered post-stress. Few studies have evaluated the effects of FLX treatment when chronic stress has induced deleterious effects in patients. Our objective was to evaluate FLX treatment (20 mg/kg/day, i.v.) once these effects are manifested, and the drug's relation to extracellular circulating microRNAs associated with inflammation, a hedonic response (sucrose intake), the forced swim test (FST), and corticosterone levels (CORT) and monoamine concentrations in limbic areas. A group of Wistar rats was divided into groups: Control; FLX; CUMS (for six weeks of exposure to chronic, unpredictable mild stress); and CUMS + FLX, a mixed group. After CUMS, the rats performed the FST, and serum levels of CORT and six microRNAs (miR-16, -21, -144, -155, -146a, -223) were analyzed, as were levels of dopamine, noradrenaline, and serotonin in the prefrontal cortex, hippocampus, and hypothalamus. CUMS reduced body weight, sucrose intake, and hippocampal noradrenaline levels, but increased CORT, immobility behavior on the FST, dopamine concentrations in the prefrontal cortex, and all miRNAs except miR-146a expression. Administering FLX during CUMS reduced CORT levels and immobility behavior on the FST and increased the expression of miR-16, -21, -146a, -223, and dopamine. FLX protects against the deleterious effects of stress by reducing CORT and has an antidepressant effect on the FST, with minimally-modified neurotransmitter levels. FLX increased the expression of miRNAs as part of the antidepressant effect. It also regulates both neuroinflammation and serotoninergic neurotransmission through miRNAs, such as the miR-16.
Collapse
Affiliation(s)
- M. Maetzi Estévez-Cabrera
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, UAM, Av. San Rafael Atlixco 186, Leyes de Reforma, C.P. 09340, Ciudad de México, Mexico
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1. Col. Belisario Domínguez - Sección XVI, Tlalpan, Ciudad de México, C.P. 14080, Mexico
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz. Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, Mexico
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz. Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, Mexico
| | - Adrian Hernández-Díazcouder
- Posgrado en Biologia Experimental, Universidad Autónoma Metropolitana-Iztapalapa, UAM-I, Av. San Rafael Atlixco 186, Leyes de Reforma, C.P. 09340, Ciudad de México, Mexico
| | - J. Luis Córtes Altamirano
- Departamento de Neurociencias Basicas, Instituto Nacional de Rehabilitación, “Luis Guillermo Ibarra”. Calzada México Xochimilco No. 289, Col. Arenal de Guadalupe, C.P.14389, Ciudad de México, Mexico
- Departamento de Quiropráctica, Universidad Estatal del Valle de Ecatepec, Ecatepec de Morelos, Estado de México, Mexico
| | - C. Soria-Fregoso
- Laboratorio de Ciencias Biomédicas/Área de Histología y Psicobiología, Departamento de Ciencias de la Tierra y de la Vida, Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno, 47460, Jalisco, Mexico
| | - Alfonso Alfaro-Rodríguez
- Departamento de Neurociencias Basicas, Instituto Nacional de Rehabilitación, “Luis Guillermo Ibarra”. Calzada México Xochimilco No. 289, Col. Arenal de Guadalupe, C.P.14389, Ciudad de México, Mexico
| | - Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, UAM-I, Av. San Rafael Atlixco 186, Leyes de Reforma, 09340, Ciudad de México, Mexico
| |
Collapse
|
13
|
Kang J, Oteiza PI, Milenkovic D. (-)-Epicatechin exerts positive effects on anxiety in high fat diet-induced obese mice through multi-genomic modifications in the hippocampus. Food Funct 2022; 13:10623-10641. [PMID: 36168829 DOI: 10.1039/d2fo01897g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Obesity is associated with increased occurrence of cognitive and mood disorders. While consumption of high-fat diets (HFD) and associated obesity could have a detrimental impact on the brain, dietary bioactives may mitigate these harmful effects. We previously observed that (-)-epicatechin (EC) can mitigate HFD-induced anxiety-associated behaviors in mice. The aim of our study is to investigate the molecular mechanisms of EC actions in the hippocampus which underlies its anti-anxiety effects in HFD-fed mice using a multi-genomic approach. Healthy eight-week old male C57BL/6J mice were fed for 24 weeks either: (A) a control diet containing 10% total calories from fat; (B) a HFD containing 45% total calories from fat; or (C) the HFD supplemented with 20 mg EC per kg body weight. Hippocampi were isolated for genomic analysis using Affymetrix arrays, followed by in-depth bioinformatic analyses. Genomic analysis demonstrated that EC induced significant changes in mouse hippocampal global gene expression. We observed changes in the expression of 1001 protein-coding genes, 241 miRNAs, and 167 long non-coding RNAs. Opposite gene expression profiles were observed when the gene expression profile obtained upon EC supplementation was compared to the profile obtained after consumption of the HFD. Functionality analysis revealed that the differentially expressed genes regulate processes involved in neurofunction, inflammation, endothelial function, cell-cell adhesion, and cell signaling. In summary, the capacity of EC to mitigate anxiety-related behaviors in HFD-induced obese mice can be in part explained by its capacity to exert complex genomic modifications in the hippocampus, counteracting changes driven by consumption of the HFD and/or associated obesity.
Collapse
Affiliation(s)
- Jiye Kang
- Department of Nutrition, University of California, Davis, One Shields Avenue, 95616 Davis, California, USA. .,Department of Environmental Toxicology, University of California, Davis, One Shields Avenue, 95616 Davis, California, USA
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, One Shields Avenue, 95616 Davis, California, USA. .,Department of Environmental Toxicology, University of California, Davis, One Shields Avenue, 95616 Davis, California, USA
| | - Dragan Milenkovic
- Department of Nutrition, University of California, Davis, One Shields Avenue, 95616 Davis, California, USA.
| |
Collapse
|
14
|
Coradduzza D, Garroni G, Congiargiu A, Balzano F, Cruciani S, Sedda S, Nivoli A, Maioli M. MicroRNAs, Stem Cells in Bipolar Disorder, and Lithium Therapeutic Approach. Int J Mol Sci 2022; 23:ijms231810489. [PMID: 36142403 PMCID: PMC9502703 DOI: 10.3390/ijms231810489] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Bipolar disorder (BD) is a severe, chronic, and disabling neuropsychiatric disorder characterized by recurrent mood disturbances (mania/hypomania and depression, with or without mixed features) and a constellation of cognitive, psychomotor, autonomic, and endocrine abnormalities. The etiology of BD is multifactorial, including both biological and epigenetic factors. Recently, microRNAs (miRNAs), a class of epigenetic regulators of gene expression playing a central role in brain development and plasticity, have been related to several neuropsychiatric disorders, including BD. Moreover, an alteration in the number/distribution and differentiation potential of neural stem cells has also been described, significantly affecting brain homeostasis and neuroplasticity. This review aimed to evaluate the most reliable scientific evidence on miRNAs as biomarkers for the diagnosis of BD and assess their implications in response to mood stabilizers, such as lithium. Neural stem cell distribution, regulation, and dysfunction in the etiology of BD are also dissected.
Collapse
Affiliation(s)
| | - Giuseppe Garroni
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | | | - Francesca Balzano
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Stefania Sedda
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Alessandra Nivoli
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
- Correspondence: (A.N.); (M.M.); Tel.: +39-079-228-277 (A.N.); +39-079-255-406-228350 (M.M.)
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Center for Developmental Biology and Reprogramming (CEDEBIOR), Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
- Correspondence: (A.N.); (M.M.); Tel.: +39-079-228-277 (A.N.); +39-079-255-406-228350 (M.M.)
| |
Collapse
|
15
|
Rosa JM, Formolo DA, Yu J, Lee TH, Yau SY. The Role of MicroRNA and Microbiota in Depression and Anxiety. Front Behav Neurosci 2022; 16:828258. [PMID: 35299696 PMCID: PMC8921933 DOI: 10.3389/fnbeh.2022.828258] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Depression and anxiety are devastating disorders. Understanding the mechanisms that underlie the development of depression and anxiety can provide new hints on novel treatments and preventive strategies. Here, we summarize the latest findings reporting the novel roles of gut microbiota and microRNAs (miRNAs) in the pathophysiology of depression and anxiety. The crosstalk between gut microbiota and the brain has been reported to contribute to these pathologies. It is currently known that some miRNAs can regulate bacterial growth and gene transcription while also modulate the gut microbiota composition, suggesting the importance of miRNAs in gut and brain health. Treatment and prevention strategies for neuropsychiatric diseases, such as physical exercise, diet, and probiotics, can modulate the gut microbiota composition and miRNAs expressions. Nonetheless, there are critical questions to be addressed to understand further the mechanisms involved in the interaction between the gut microbiota and miRNAs in the brain. This review summarizes the recent findings of the potential roles of microbiota and miRNA on the neuropathology of depression and anxiety, and its potential as treatment strategies.
Collapse
Affiliation(s)
- Julia M. Rosa
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Institute for Smart Aging (RISA), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Douglas A. Formolo
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Institute for Smart Aging (RISA), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Jiasui Yu
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Institute for Smart Aging (RISA), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Thomas H. Lee
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Neurocentre Magendie, INSERM U1215, University of Bordeaux, Bordeaux, France
| | - Suk-yu Yau
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Institute for Smart Aging (RISA), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| |
Collapse
|
16
|
Prelimbic cortex miR-34a contributes to (2R,6R)-hydroxynorketamine-mediated antidepressant-relevant actions. Neuropharmacology 2022; 208:108984. [DOI: 10.1016/j.neuropharm.2022.108984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 11/21/2022]
|
17
|
Wang C, Jia Q, Guo X, Li K, Chen W, Shen Q, Xu C, Fu Y. microRNA-34 Family: From Mechanism to Potential Applications. Int J Biochem Cell Biol 2022; 144:106168. [DOI: 10.1016/j.biocel.2022.106168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/04/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023]
|
18
|
Mingardi J, La Via L, Tornese P, Carini G, Trontti K, Seguini M, Tardito D, Bono F, Fiorentini C, Elia L, Hovatta I, Popoli M, Musazzi L, Barbon A. miR-9-5p is involved in the rescue of stress-dependent dendritic shortening of hippocampal pyramidal neurons induced by acute antidepressant treatment with ketamine. Neurobiol Stress 2021; 15:100381. [PMID: 34458512 PMCID: PMC8379501 DOI: 10.1016/j.ynstr.2021.100381] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022] Open
Abstract
Converging clinical and preclinical evidence demonstrates that depressive phenotypes are associated with synaptic dysfunction and dendritic simplification in cortico-limbic glutamatergic areas. On the other hand, the rapid antidepressant effect of acute ketamine is consistently reported to occur together with the rescue of dendritic atrophy and reduction of spine number induced by chronic stress in the hippocampus and prefrontal cortex of animal models of depression. Nevertheless, the molecular mechanisms underlying these morphological alterations remain largely unknown. Here, we found that miR-9-5p levels were selectively reduced in the hippocampus of rats vulnerable to Chronic Mild Stress (CMS), while acute subanesthetic ketamine restored its levels to basal condition in just 24h; miR-9-5p expression inversely correlated with the anhedonic phenotype. A decrease of miR-9-5p was reproduced in an in vitro model of stress, based on primary hippocampal neurons incubated with the stress hormone corticosterone. In both CMS animals and primary neurons, decreased miR-9-5p levels were associated with dendritic simplification, while treatment with ketamine completely rescued the changes. In vitro modulation of miR-9-5p expression showed a direct role of miR-9-5p in regulating dendritic length and spine density in mature primary hippocampal neurons. Among the putative target genes tested, Rest and Sirt1 were validated as biological targets in primary neuronal cultures. Moreover, in line with miR-9-5p changes, REST protein expression levels were remarkably increased in both CMS vulnerable animals and corticosterone-treated neurons, while ketamine completely abolished this alteration. Finally, the shortening of dendritic length in corticosterone-treated neurons was shown to be partly rescued by miR-9-5p overexpression and dependent on REST protein expression. Overall, our data unveiled the functional role of miR-9-5p in the remodeling of dendritic arbor induced by stress/corticosterone in vulnerable animals and its rescue by acute antidepressant treatment with ketamine.
Collapse
Affiliation(s)
- Jessica Mingardi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luca La Via
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Paolo Tornese
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Giulia Carini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Kalevi Trontti
- Sleep Well Research Program, Department of Psychology and Logopedics, and Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Mara Seguini
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Daniela Tardito
- Department of Technical and Applied Sciences, eCampus University, Novedrate, Italy
| | - Federica Bono
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Chiara Fiorentini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Leonardo Elia
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Humanitas Clinical and Research Center, IRCCS, Rozzano, MI, Italy
| | - Iiris Hovatta
- Sleep Well Research Program, Department of Psychology and Logopedics, and Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alessandro Barbon
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
19
|
The miRNome of Depression. Int J Mol Sci 2021; 22:ijms222111312. [PMID: 34768740 PMCID: PMC8582693 DOI: 10.3390/ijms222111312] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/10/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023] Open
Abstract
Depression is an effect of complex interactions between genetic, epigenetic and environmental factors. It is well established that stress responses are associated with multiple modest and often dynamic molecular changes in the homeostatic balance, rather than with a single genetic factor that has a strong phenotypic penetration. As depression is a multifaceted phenotype, it is important to study biochemical pathways that can regulate the overall allostasis of the brain. One such biological system that has the potential to fine-tune a multitude of diverse molecular processes is RNA interference (RNAi). RNAi is an epigenetic process showing a very low level of evolutionary diversity, and relies on the posttranscriptional regulation of gene expression using, in the case of mammals, primarily short (17–23 nucleotides) noncoding RNA transcripts called microRNAs (miRNA). In this review, our objective was to examine, summarize and discuss recent advances in the field of biomedical and clinical research on the role of miRNA-mediated regulation of gene expression in the development of depression. We focused on studies investigating post-mortem brain tissue of individuals with depression, as well as research aiming to elucidate the biomarker potential of miRNAs in depression and antidepressant response.
Collapse
|
20
|
Hime GR, Stonehouse SLA, Pang TY. Alternative models for transgenerational epigenetic inheritance: Molecular psychiatry beyond mice and man. World J Psychiatry 2021; 11:711-735. [PMID: 34733638 PMCID: PMC8546770 DOI: 10.5498/wjp.v11.i10.711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/19/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Mental illness remains the greatest chronic health burden globally with few in-roads having been made despite significant advances in genomic knowledge in recent decades. The field of psychiatry is constantly challenged to bring new approaches and tools to address and treat the needs of vulnerable individuals and subpopulations, and that has to be supported by a continuous growth in knowledge. The majority of neuropsychiatric symptoms reflect complex gene-environment interactions, with epigenetics bridging the gap between genetic susceptibility and environmental stressors that trigger disease onset and drive the advancement of symptoms. It has more recently been demonstrated in preclinical models that epigenetics underpins the transgenerational inheritance of stress-related behavioural phenotypes in both paternal and maternal lineages, providing further supporting evidence for heritability in humans. However, unbiased prospective studies of this nature are practically impossible to conduct in humans so preclinical models remain our best option for researching the molecular pathophysiologies underlying many neuropsychiatric conditions. While rodents will remain the dominant model system for preclinical studies (especially for addressing complex behavioural phenotypes), there is scope to expand current research of the molecular and epigenetic pathologies by using invertebrate models. Here, we will discuss the utility and advantages of two alternative model organisms-Caenorhabditis elegans and Drosophila melanogaster-and summarise the compelling insights of the epigenetic regulation of transgenerational inheritance that are potentially relevant to human psychiatry.
Collapse
Affiliation(s)
- Gary R Hime
- Department of Anatomy and Physiology, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Sophie LA Stonehouse
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville 3052, VIC, Australia
| | - Terence Y Pang
- Department of Anatomy and Physiology, The University of Melbourne, Parkville 3010, VIC, Australia
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville 3052, VIC, Australia
| |
Collapse
|
21
|
Andolina D, Savi M, Ielpo D, Barbetti M, Bocchi L, Stilli D, Ventura R, Lo Iacono L, Sgoifo A, Carnevali L. Elevated miR-34a expression and altered transcriptional profile are associated with adverse electromechanical remodeling in the heart of male rats exposed to social stress. Stress 2021; 24:621-634. [PMID: 34227918 DOI: 10.1080/10253890.2021.1942830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
This study investigated epigenetic risk factors that may contribute to stress-related cardiac disease in a rodent model. Experiment 1 was designed to evaluate the expression of microRNA-34a (miR-34a), a known modulator of both stress responses and cardiac pathophysiology, in the heart of male adult rats exposed to a single or repeated episodes of social defeat stress. Moreover, RNA sequencing was conducted to identify transcriptomic profile changes in the heart of repeatedly stressed rats. Experiment 2 was designed to assess cardiac electromechanical changes induced by repeated social defeat stress that may predispose rats to cardiac dysfunction. Results indicated a larger cardiac miR-34a expression after repeated social defeat stress compared to a control condition. This molecular modification was associated with increased vulnerability to pharmacologically induced arrhythmias and signs of systolic left ventricular dysfunction. Gene expression analysis identified clusters of differentially expressed genes in the heart of repeatedly stressed rats that are mainly associated with morphological and functional properties of the mitochondria and may be directly regulated by miR-34a. These results suggest the presence of an association between miR-34a overexpression and signs of adverse electromechanical remodeling in the heart of rats exposed to repeated social defeat stress, and point to compromised mitochondria efficiency as a potential mediator of this link. This rat model may provide a useful tool for investigating the causal relationship between miR-34a expression, mitochondrial (dys)function, and cardiac alterations under stressful conditions, which could have important implications in the context of stress-related cardiac disease.
Collapse
Affiliation(s)
- Diego Andolina
- Department of Psychology and Center "Daniel Bovet," Sapienza University, Rome, Italy
- IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Monia Savi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Donald Ielpo
- Department of Psychology and Center "Daniel Bovet," Sapienza University, Rome, Italy
| | - Margherita Barbetti
- Department of Chemistry, Life Sciences and Environmental Sustainability, Stress Physiology Lab, University of Parma, Parma, Italy
| | - Leonardo Bocchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Donatella Stilli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Rossella Ventura
- Department of Psychology and Center "Daniel Bovet," Sapienza University, Rome, Italy
- IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Luisa Lo Iacono
- Department of Psychology and Center "Daniel Bovet," Sapienza University, Rome, Italy
- IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Andrea Sgoifo
- Department of Chemistry, Life Sciences and Environmental Sustainability, Stress Physiology Lab, University of Parma, Parma, Italy
| | - Luca Carnevali
- Department of Chemistry, Life Sciences and Environmental Sustainability, Stress Physiology Lab, University of Parma, Parma, Italy
| |
Collapse
|
22
|
Martins HC, Schratt G. MicroRNA-dependent control of neuroplasticity in affective disorders. Transl Psychiatry 2021; 11:263. [PMID: 33941769 PMCID: PMC8093191 DOI: 10.1038/s41398-021-01379-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/17/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Affective disorders are a group of neuropsychiatric disorders characterized by severe mood dysregulations accompanied by sleep, eating, cognitive, and attention disturbances, as well as recurring thoughts of suicide. Clinical studies consistently show that affective disorders are associated with reduced size of brain regions critical for mood and cognition, neuronal atrophy, and synaptic loss in these regions. However, the molecular mechanisms that mediate these changes and thereby increase the susceptibility to develop affective disorders remain poorly understood. MicroRNAs (miRNAs or miRs) are small regulatory RNAs that repress gene expression by binding to the 3'UTR of mRNAs. They have the ability to bind to hundreds of target mRNAs and to regulate entire gene networks and cellular pathways implicated in brain function and plasticity, many of them conserved in humans and other animals. In rodents, miRNAs regulate synaptic plasticity by controlling the morphology of dendrites and spines and the expression of neurotransmitter receptors. Furthermore, dysregulated miRNA expression is frequently observed in patients suffering from affective disorders. Together, multiple lines of evidence suggest a link between miRNA dysfunction and affective disorder pathology, providing a rationale to consider miRNAs as therapeutic tools or molecular biomarkers. This review aims to highlight the most recent and functionally relevant studies that contributed to a better understanding of miRNA function in the development and pathogenesis of affective disorders. We focused on in vivo functional studies, which demonstrate that miRNAs control higher brain functions, including mood and cognition, in rodents, and that their dysregulation causes disease-related behaviors.
Collapse
Affiliation(s)
- Helena Caria Martins
- Lab of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology ETH, 8057, Zurich, Switzerland
| | - Gerhard Schratt
- Lab of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology ETH, 8057, Zurich, Switzerland.
| |
Collapse
|
23
|
MicroRNA-34a regulates 5-HT2C expression in dorsal raphe and contributes to the anti-depressant-like effect of fluoxetine. Neuropharmacology 2021; 190:108559. [PMID: 33845072 DOI: 10.1016/j.neuropharm.2021.108559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 11/24/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are designed to improve mood by raising extracellular serotonin levels through the blockade of the serotonin transporter. However, they exhibit a slow onset of action, suggesting the involvement of adaptive regulatory mechanisms. We hypothesized that the microRNA-34 family facilitates the therapeutic activity of SSRIs. We show that genetic deletion of these microRNAs in mice impairs the response to chronic, but not acute, fluoxetine treatment, with a specific effect on behavioral constructs that are related to depression, rather than anxiety. Moreover, using a pharmacological strategy, we found that an increased expression of the serotonin 2C (5-HT2C) receptor in the dorsal raphe region of the brain contributes to this phenotype. The onset of the therapeutic efficacy of SSRIs is paralleled by the desensitization of the 5-HT2C receptor in the dorsal raphe, and 5-HT2C is a putative target of microRNA-34. In this study, acute and chronic fluoxetine treatment differentially alters the expression of 5-HT2C and microRNA-34a in the dorsal raphe. Moreover, by in vitro luciferase assay, we demonstrated the repressive regulatory activity of microRNA-34a against 5-HT2C mRNA. Specific blockade of this interaction through local infusion of a target site blocker was sufficient to prevent the behavioral effects of chronic fluoxetine. Our results demonstrate a new miR-34a-mediated regulatory mechanism of 5-HT2C expression in the dorsal raphe and implicate it in eliciting the behavioral responses to chronic fluoxetine treatment.
Collapse
|
24
|
Chang SH, Su YC, Chang M, Chen JA. MicroRNAs mediate precise control of spinal interneuron populations to exert delicate sensory-to-motor outputs. eLife 2021; 10:63768. [PMID: 33787491 PMCID: PMC8075582 DOI: 10.7554/elife.63768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
Although the function of microRNAs (miRNAs) during embryonic development has been intensively studied in recent years, their postnatal physiological functions remain largely unexplored due to inherent difficulties with the presence of redundant paralogs of the same seed. Thus, it is particularly challenging to uncover miRNA functions at neural circuit level since animal behaviors would need to be assessed upon complete loss of miRNA family functions. Here, we focused on the neural functions of MiR34/449 that manifests a dynamic expression pattern in the spinal cord from embryonic to postnatal stages. Our behavioral assays reveal that the loss of MiR34/449 miRNAs perturb thermally induced pain response thresholds and compromised delicate motor output in mice. Mechanistically, MiR34/449 directly target Satb1 and Satb2 to fine-tune the precise number of a sub-population of motor synergy encoder (MSE) neurons. Thus, MiR34/449 fine-tunes optimal development of Satb1/2on interneurons in the spinal cord, thereby refining explicit sensory-to-motor circuit outputs. The spinal cord is an information superhighway that connects the body with the brain. There, circuits of neurons process information from the brain before sending commands to muscles to generate movement. Each spinal cord circuit contains many types of neurons, whose identity is defined by the set of genes that are active or ‘expressed’ in each cell. When a gene is turned on, its DNA sequence is copied to produce a messenger RNA (mRNA), a type of molecule that the cell then uses as a template to produce a protein. MicroRNAs (or miRNAs), on the other hand, are tiny RNA molecules that help to regulate gene expression by binding to and ‘deactivating’ specific mRNAs, stopping them from being used to make proteins. Mammalian cells contain thousands of types of microRNAs, many of which have unknown roles: this includes MiR34/449, a group of six microRNAs found mainly within the nervous system. By using genetic technology to delete this family from the mouse genome, Chang et al. now show that MiR34/449 has a key role in regulating spinal cord circuits. The first clue came from discovering that mice without the MiR34/449 family had unusual posture and a tendency to walk on tiptoe. The animals were also more sensitive to heat, flicking their tails away from a heat source more readily than control mice. At a finer level, the spinal cords of the mutants contained greater numbers of cells in which two genes, Satb1 and Satb2, were turned on. Compared to their counterparts in control mice, the Satb1/2-positive neurons also showed differences in the rest of the genes they expressed. In essence, these neurons had a different genetic profile in MiR34/449 mutant mice, therefore disrupting the neural circuit they belong to. Based on these findings, Chang et al. propose that in wild-type mice, the MiR34/449 family fine-tunes the expression of Satb1/2 in the spinal cord during development. In doing so, it regulates the formation of the spinal cord circuits that help to control movement. More generally, these results provide clues about how miRNAs help to determine cell identities; further studies could then examine whether other miRNAs contribute to the development and maintenance of neuronal circuits.
Collapse
Affiliation(s)
- Shih-Hsin Chang
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan
| | - Yi-Ching Su
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Mien Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Jun-An Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
25
|
Czéh B, Simon M. Benefits of animal models to understand the pathophysiology of depressive disorders. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110049. [PMID: 32735913 DOI: 10.1016/j.pnpbp.2020.110049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022]
Abstract
Major depressive disorder (MDD) is a potentially life-threatening mental disorder imposing severe social and economic burden worldwide. Despite the existence of effective antidepressant treatment strategies the exact pathophysiology of the disease is still unknown. Large number of animal models of MDD have been developed over the years, but all of them suffer from significant shortcomings. Despite their limitations these models have been extensively used in academic research and drug development. The aim of this review is to highlight the benefits of animal models of MDD. We focus here on recent experimental data where animal models were used to examine current theories of this complex disease. We argue, that despite their evident imperfections, these models provide invaluable help to understand cellular and molecular mechanisms contributing to the development of MDD. Furthermore, animal models are utilized in research to find clinically useful biomarkers. We discuss recent neuroimaging and microRNA studies since these investigations yielded promising candidates for biomarkers. Finally, we briefly summarize recent progresses in drug development, i.e. the FDA approval of two novel antidepressant drugs: S-ketamine and brexanolone (allopregnanolone). Deeper understanding of the exact molecular and cellular mechanisms of action responsible for the antidepressant efficacy of these rapid acting drugs could aid us to design further compounds with similar effectiveness, but less side effects. Animal studies are likely to provide valuable help in this endeavor.
Collapse
Affiliation(s)
- Boldizsár Czéh
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary; Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary.
| | - Maria Simon
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary; Department of Psychiatry and Psychotherapy, Medical School, University of Pécs, Hungary
| |
Collapse
|
26
|
Cannabidiol as a Potential Treatment for Anxiety and Mood Disorders: Molecular Targets and Epigenetic Insights from Preclinical Research. Int J Mol Sci 2021; 22:ijms22041863. [PMID: 33668469 PMCID: PMC7917759 DOI: 10.3390/ijms22041863] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/08/2023] Open
Abstract
Cannabidiol (CBD) is the most abundant non-psychoactive component of cannabis; it displays a very low affinity for cannabinoid receptors, facilitates endocannabinoid signaling by inhibiting the hydrolysis of anandamide, and stimulates both transient receptor potential vanilloid 1 and 2 and serotonin type 1A receptors. Since CBD interacts with a wide variety of molecular targets in the brain, its therapeutic potential has been investigated in a number of neuropsychiatric diseases, including anxiety and mood disorders. Specifically, CBD has received growing attention due to its anxiolytic and antidepressant properties. As a consequence, and given its safety profile, CBD is considered a promising new agent in the treatment of anxiety and mood disorders. However, the exact molecular mechanism of action of CBD still remains unknown. In the present preclinical review, we provide a summary of animal-based studies that support the use of CBD as an anxiolytic- and antidepressant-like compound. Next, we describe neuropharmacological evidence that links the molecular pharmacology of CBD to its behavioral effects. Finally, by taking into consideration the effects of CBD on DNA methylation, histone modifications, and microRNAs, we elaborate on the putative role of epigenetic mechanisms in mediating CBD’s therapeutic outcomes.
Collapse
|
27
|
Narayanan R, Schratt G. miRNA regulation of social and anxiety-related behaviour. Cell Mol Life Sci 2020; 77:4347-4364. [PMID: 32409861 PMCID: PMC11104968 DOI: 10.1007/s00018-020-03542-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/31/2020] [Accepted: 04/27/2020] [Indexed: 12/21/2022]
Abstract
Neuropsychiatric disorders, including autism spectrum disorders (ASD) and anxiety disorders are characterized by a complex range of symptoms, including social behaviour and cognitive deficits, depression and repetitive behaviours. Although the mechanisms driving pathophysiology are complex and remain largely unknown, advances in the understanding of gene association and gene networks are providing significant clues to their aetiology. In recent years, small noncoding RNA molecules known as microRNA (miRNA) have emerged as a new gene regulatory layer in the pathophysiology of mental illness. These small RNAs can bind to the 3'-UTR of mRNA thereby negatively regulating gene expression at the post-transcriptional level. Their ability to regulate hundreds of target mRNAs simultaneously predestines them to control the activity of entire cellular pathways, with obvious implications for the regulation of complex processes such as animal behaviour. There is growing evidence to suggest that numerous miRNAs are dysregulated in pathophysiology of neuropsychiatric disorders, and there is strong genetic support for the association of miRNA genes and their targets with several of these conditions. This review attempts to cover the most relevant microRNAs for which an important contribution to the control of social and anxiety-related behaviour has been demonstrated by functional studies in animal models. In addition, it provides an overview of recent expression profiling and genetic association studies in human patient-derived samples in an attempt to highlight the most promising candidates for biomarker discovery and therapeutic intervention.
Collapse
Affiliation(s)
- Ramanathan Narayanan
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| | - Gerhard Schratt
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience, Swiss Federal Institute of Technology ETH, Zurich, Switzerland.
| |
Collapse
|
28
|
Tavares GA, Torres A, de Souza JA. Early Life Stress and the Onset of Obesity: Proof of MicroRNAs' Involvement Through Modulation of Serotonin and Dopamine Systems' Homeostasis. Front Physiol 2020; 11:925. [PMID: 32848865 PMCID: PMC7399177 DOI: 10.3389/fphys.2020.00925] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/09/2020] [Indexed: 01/12/2023] Open
Abstract
Healthy persons hold a very complex system for controlling energy homeostasis. The system functions on the interconnected way between the nutritional, endocrine, neural, and epigenetic regulation, which includes the microRNAs (miRNAs). Currently, it is well accepted that experiences of early life stress (ELS) carry modification of the central control of feeding behavior, one of the factors controlling energy homeostasis. Recently, studies give us a clue on the modulation of eating behavior, which is one of the main factors associated with the development of obesity. This clue connected the neural control through the serotonin (5HT) and dopamine (DA) systems with the fine regulation of miRNAs. The first pieces of evidence highlight the presence of the miR-16 in the regulation of the serotonin transporter (SERT) as well as the receptors 1a (5HT1A) and 2a (5HT2A). On the other hand, miR-504 is related to the dopamine receptor D2 (DRD2). As our knowledge advance, we expected to discover other important pathways for the regulation of the energy homeostasis. As both neurotransmission systems and miRNAs seem to be sensible to ELS, the aim of this review is to bring new insight about the involvement of miRNAs with a central role in the control of eating behavior focusing on the influences of ELS and regulation of neurotransmission systems.
Collapse
Affiliation(s)
- Gabriel Araujo Tavares
- Nantes Université, INRAE, UMR 1280, PhAN, Nantes, France.,Laboratory of Neuroplasticity and Behavior, Graduate Program of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | - Amada Torres
- Nantes Université, INRAE, UMR 1280, PhAN, Nantes, France.,Developmental Genetics and Molecular Physiology, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico - Campus Morelos, Cuernavaca, Mexico
| | - Julliet Araujo de Souza
- Laboratory of Neuroplasticity and Behavior, Graduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
29
|
MicroRNAs as regulators of brain function and targets for treatment of epilepsy. Nat Rev Neurol 2020; 16:506-519. [DOI: 10.1038/s41582-020-0369-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2020] [Indexed: 02/07/2023]
|
30
|
Lunde CE, Sieberg CB. Walking the Tightrope: A Proposed Model of Chronic Pain and Stress. Front Neurosci 2020; 14:270. [PMID: 32273840 PMCID: PMC7113396 DOI: 10.3389/fnins.2020.00270] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/10/2020] [Indexed: 12/25/2022] Open
Abstract
Pain and stress are both phenomena that challenge an individual’s homeostasis and have significant overlap in conceptual and physiological processes. Allostasis is the ability to adapt to pain and stress and maintain homeostasis; however, if either process becomes chronic, it may result in negative long-term outcomes. The negative effects of stress on health outcomes on physiology and behavior, including pain, have been well documented; however, the specific mechanisms of how stress and what quantity of stress contributes to the maintenance and exacerbation of pain have not been identified, and thus pharmacological interventions are lacking. The objective of this brief review is to: 1. identify the gaps in the literature on the impact of acute and chronic stress on chronic pain, 2. highlight future directions for stress and chronic pain research; and 3. introduce the Pain-Stress Model in the context of the current literature on stress and chronic pain. A better understanding of the connection between stress and chronic pain could provide greater insight into the neurobiology of these processes and contribute to individualized treatment for pain rehabilitation and drug development for these often comorbid conditions.
Collapse
Affiliation(s)
- Claire E Lunde
- Department of Psychiatry, Boston Children's Hospital, Boston, MA, United States.,Biobehavioral Pediatric Pain Lab, Boston Children's Hospital, Boston, MA, United States.,Center for Pain and the Brain (P.A.I.N. Group), Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, United States.,Nuffield Department of Women's and Reproductive Health, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Christine B Sieberg
- Department of Psychiatry, Boston Children's Hospital, Boston, MA, United States.,Biobehavioral Pediatric Pain Lab, Boston Children's Hospital, Boston, MA, United States.,Center for Pain and the Brain (P.A.I.N. Group), Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
31
|
Roy B, Dunbar M, Agrawal J, Allen L, Dwivedi Y. Amygdala-Based Altered miRNome and Epigenetic Contribution of miR-128-3p in Conferring Susceptibility to Depression-Like Behavior via Wnt Signaling. Int J Neuropsychopharmacol 2020; 23:165-177. [PMID: 32173733 PMCID: PMC7171932 DOI: 10.1093/ijnp/pyz071] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/05/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Recent studies suggest that microRNAs (miRNAs) can participate in depression pathogenesis by altering a host of genes that are critical in corticolimbic functioning. The present study focuses on examining whether alterations in the miRNA network in the amygdala are associated with susceptibility or resiliency to develop depression-like behavior in rats. METHODS Amygdala-specific altered miRNA transcriptomics were determined in a rat depression model following next-generation sequencing method. Target prediction analyses (cis- and trans) and qPCR-based assays were performed to decipher the functional role of altered miRNAs. miRNA-specific target interaction was determined using in vitro transfection assay in neuroblastoma cell line. miRNA-specific findings from the rat in vivo model were further replicated in postmortem amygdala of major depressive disorder (MDD) subjects. RESULTS Changes in miRNome identified 17 significantly upregulated and 8 significantly downregulated miRNAs in amygdala of learned helpless (LH) compared with nonlearned helpless rats. Prediction analysis showed that the majority of the upregulated miRNAs had target genes enriched for the Wnt signaling pathway. Among altered miRNAs, upregulated miR-128-3p was identified as a top hit based on statistical significance and magnitude of change in LH rats. Target validation showed significant downregulation of Wnt signaling genes in amygdala of LH rats. A discernable increase in expression of amygdalar miR-128-3p along with significant downregulation of key target genes from Wnt signaling (WNT5B, DVL, and LEF1) was noted in MDD subjects. Overexpression of miR-128-3p in a cellular model lead to a marked decrease in the expression of Dvl1 and Lef1 genes, confirming them as validated targets of miR-128-3p. Additional evidence suggested that the amygdala-specific diminished expression of transcriptional repressor Snai1 could be potentially linked to induced miR-128-2 expression in LH rats. Furthermore, an amygdala-specific posttranscriptional switching mechanism could be active between miR-128-3p and RNA binding protein Arpp21 to gain control over their target genes such as Lef1. CONCLUSION Our study suggests that in amygdala a specific set of miRNAs may play an important role in depression susceptibility, which could potentially be mediated through Wnt signaling.
Collapse
Affiliation(s)
- Bhaskar Roy
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Michael Dunbar
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Juhee Agrawal
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lauren Allen
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama,Correspondence: Yogesh Dwivedi, PhD, Elesabeth Ridgely Shook Professor, Director of Translational Research, UAB Mood Disorder Program, Co-Director, UAB Depression and Suicide Center, Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC711 Sparks Center, 1720 7th Avenue South, Birmingham, AL ()
| |
Collapse
|
32
|
Xlr4 as a new candidate gene underlying vulnerability to cocaine effects. Neuropharmacology 2020; 168:108019. [PMID: 32113966 DOI: 10.1016/j.neuropharm.2020.108019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
Although several studies have been performed in rodents, non-human primates and humans, the biological basis of vulnerability to develop cocaine addiction remains largely unknown. Exposure to critical early events (as Repeated Cross Fostering (RCF)) has been reported to increase sensitivity to cocaine effects in adult C57BL/6J female mice. Using a microarray approach, here we report data showing a strong engagement of X-linked lymphocyte-regulated 4a and 4b (Xlr4) genes in cocaine effects. The expression of Xlr4, a gene involved in chromatin remodeling and dendritic spine morphology, was reduced into the Nucleus Accumbens (NAc) of adult RCF C57BL/6J female. We used virally mediated accumbal Xlr4 down-modulation (AAVXlr4-KD) to investigate the role of this gene in vulnerability to cocaine effects. AAVXlr4-KD animals show a potentiated behavioral and neurochemical response to cocaine, reinstatement following cocaine withdrawal and cocaine-induced spine density alterations in the Medium-Sized Spiny Neurons of NAc. We propose Xlr4 as a new candidate gene mediating the cocaine effects.
Collapse
|
33
|
Abstract
MicroRNAs as critical regulators of gene expression important for functions including neuronal development, synapse formation, and synaptic plasticity have been linked with the regulation of neurobiological systems that underlie anxiety processing in the brain. In this chapter, we give an update on associative evidence linking regulation of microRNAs with anxiety- and trauma-related disorders. Moving beyond correlative research, functional studies have emerged recently that explore causal relationships between microRNA expression and anxiety-like behavior. It has been demonstrated that experimental up- or downregulation of the candidate microRNAs in important nodes of the anxiety neurocircuitry can indeed modulate anxiety-related behavior in animal models. Improved methodologies for assessing microRNA-mediated modulation have aided such functional studies, revealing a number of anxiety-regulating microRNAs including miR-15a, miR-17-92, miR-34, miR-101, miR-124, miR-135, and miR-155. Important functional target genes of these identified microRNAs are associated with specific neurotransmitter/neuromodulator signaling, neurotrophin (e.g., BDNF) expression and other aspects of synaptic plasticity, as well as with stress-regulatory/hypothalamic-pituitary-axis function. Furthermore, microRNAs have been revealed that are regulated in distinct brain regions following various anxiety-attenuating strategies. These include pharmacological treatments such as antidepressants and other drugs, as well as non-pharmacological interventions such as fear extinction/exposure therapy or positive stimuli such as exposure to environmental enrichment. These are first indications for a role for microRNAs in the mechanism of action of anxiolytic treatments. As research continues, there is much hope that a deeper understanding of the microRNA-mediated mechanisms underlying anxiety-related disorders could open up possibilities for future novel biomarker and treatment strategies.
Collapse
|
34
|
Abstract
Background MicroRNAs (miRNAs) are a family of short, non-coding RNAs that have been linked to critical cellular activities, most notably regulation of gene expression. The identification of miRNA is a cross-disciplinary approach that requires both computational identification methods and wet-lab validation experiments, making it a resource-intensive procedure. While numerous machine learning methods have been developed to increase classification accuracy and thus reduce validation costs, most methods use supervised learning and thus require large labeled training data sets, often not feasible for less-sequenced species. On the other hand, there is now an abundance of unlabeled RNA sequence data due to the emergence of high-throughput wet-lab experimental procedures, such as next-generation sequencing. Results This paper explores the application of semi-supervised machine learning for miRNA classification in order to maximize the utility of both labeled and unlabeled data. We here present the novel combination of two semi-supervised approaches: active learning and multi-view co-training. Results across six diverse species show that this multi-stage semi-supervised approach is able to improve classification performance using very small numbers of labeled instances, effectively leveraging the available unlabeled data. Conclusions The proposed semi-supervised miRNA classification pipeline holds the potential to identify novel miRNA with high recall and precision while requiring very small numbers of previously known miRNA. Such a method could be highly beneficial when studying miRNA in newly sequenced genomes of niche species with few known examples of miRNA.
Collapse
|
35
|
Lo Iacono L, Ielpo D, Accoto A, Di Segni M, Babicola L, D’Addario SL, Ferlazzo F, Pascucci T, Ventura R, Andolina D. MicroRNA-34a Regulates the Depression-like Behavior in Mice by Modulating the Expression of Target Genes in the Dorsal Raphè. Mol Neurobiol 2019; 57:823-836. [DOI: 10.1007/s12035-019-01750-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/26/2019] [Indexed: 01/06/2023]
|
36
|
Keskin G. Approach to stress endocrine response: somatization in the context of gastroenterological symptoms: a systematic review. Afr Health Sci 2019; 19:2537-2545. [PMID: 32127826 PMCID: PMC7040288 DOI: 10.4314/ahs.v19i3.29] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Stress can be defined as an acute threat to the homeostasis of an organism, and in order to manage stress, and maintain stability, the allostatic systems activate an adaptive response. Stress has been shown to have both short - and long-term effects on the function of the gastrointestinal tract, but long-term exposure to stress is more likely to cause endocrine disorders. Objective The aim of this study was to investigate the endocrine response to stress, and evaluate the relationship between somatization and gastrointestinal symptoms. Methods A systematic literature search was conducted on several academic databases, which included, Pubmed, EBSCO and Science Direct. The search was performed using the keywords, “endocrine response to stress”, “somatization” and “gastrointestinal symptoms”. Results The hypothalamic-pituitary-adrenal (HPA) axis is essential in controlling physiological stress responses. Dysfunction is related to several mental disorders, including anxiety and depression, or somatization. Symptoms associated with genetic, or other traumatic experiences of individuals under stress, can lead to a maladaptive response to stress. These stressful life events were found to be associated with digestive system-related chronic diseases. Gastrointestinal disorders significantly affect millions of people worldwide. Conclusion This study examined how the endocrine system responds to stress, and the effect this has in causing stress-related gastrointestinal distresses. Our findings indicate that stress-related psychological disorders are strongly associated with the severity of gastrointestinal symptoms.
Collapse
Affiliation(s)
- Gülseren Keskin
- Ege University Atatürk Medical Technological Vocational Training School, İzmir, Turkey
| |
Collapse
|
37
|
Multi-view Co-training for microRNA Prediction. Sci Rep 2019; 9:10931. [PMID: 31358877 PMCID: PMC6662744 DOI: 10.1038/s41598-019-47399-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/05/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNA (miRNA) are short, non-coding RNAs involved in cell regulation at post-transcriptional and translational levels. Numerous computational predictors of miRNA been developed that generally classify miRNA based on either sequence- or expression-based features. While these methods are highly effective, they require large labelled training data sets, which are often not available for many species. Simultaneously, emerging high-throughput wet-lab experimental procedures are producing large unlabelled data sets of genomic sequence and RNA expression profiles. Existing methods use supervised machine learning and are therefore unable to leverage these unlabelled data. In this paper, we design and develop a multi-view co-training approach for the classification of miRNA to maximize the utility of unlabelled training data by taking advantage of multiple views of the problem. Starting with only 10 labelled training data, co-training is shown to significantly (p < 0.01) increase classification accuracy of both sequence- and expression-based classifiers, without requiring any new labelled training data. After 11 iterations of co-training, the expression-based view of miRNA classification experiences an average increase in AUPRC of 15.81% over six species, compared to 11.90% for self-training and 4.84% for passive learning. Similar results are observed for sequence-based classifiers with increases of 46.47%, 39.53% and 29.43%, for co-training, self-training, and passive learning, respectively. The final co-trained sequence and expression-based classifiers are integrated into a final confidence-based classifier which shows improved performance compared to both the expression (1.5%, p = 0.021) and sequence (3.7%, p = 0.006) views. This study represents the first application of multi-view co-training to miRNA prediction and shows great promise, particularly for understudied species with few available training data.
Collapse
|
38
|
Kołosowska K, Gawryluk A, Wisłowska-Stanek A, Liguz-Lęcznar M, Hetmańczyk K, Ługowska A, Sobolewska A, Skórzewska A, Gryz M, Lehner M. Stress changes amphetamine response, D2 receptor expression and epigenetic regulation in low-anxiety rats. Prog Neuropsychopharmacol Biol Psychiatry 2019; 93:256-268. [PMID: 31022425 DOI: 10.1016/j.pnpbp.2019.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 11/17/2022]
Abstract
The aim of this study was to assess the influence of chronic restraint stress on amphetamine (AMPH)-related appetitive 50-kHz ultrasonic vocalisations (USVs) in rats differing in freezing duration in a contextual fear test (CFT), i.e. HR (high-anxiety responsive) and LR (low-anxiety responsive) rats. The LR and the HR rats, previously exposed to an AMPH binge experience, differed in sensitivity to AMPH's rewarding effects, measured as appetitive vocalisations. Moreover, chronic restraint stress attenuated AMPH-related appetitive vocalisations in the LR rats but had no influence on the HR rats' behaviour. To specify, the restraint LR rats vocalised appetitively less in the AMPH-associated context and after an AMPH challenge than the control LR rats. This phenomenon was associated with a decrease in the mRNA level for D2 dopamine receptor in the amygdala and its protein expression in the basal amygdala (BA) and opposite changes in the nucleus accumbens (NAc) - an increase in the mRNA level for D2 dopamine receptor and its protein expression in the NAc shell, compared to control conditions. Moreover, we observed that chronic restraint stress influenced epigenetic regulation in the LR and the HR rats differently. The contrasting changes were observed in the dentate gyrus (DG) of the hippocampus - the LR rats presented a decrease, but the HR rats showed an increase in H3K9 trimethylation. The restraint LR rats also showed higher miR-494 and miR-34c levels in the NAc than the control LR group. Our study provides behavioural and biochemical data concerning the role of differences in fear-conditioned response in stress vulnerability and AMPH-associated appetitive behaviour. The LR rats were less sensitive to the rewarding effects of AMPH when previously exposed to chronic stress that was accompanied by changes in D2 dopamine receptor expression and epigenetic regulation in mesolimbic areas.
Collapse
Affiliation(s)
- Karolina Kołosowska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland.
| | - Aleksandra Gawryluk
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Aleksandra Wisłowska-Stanek
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre For Preclinical Research and Technology (CePT), 1B Banacha Street, 02-097 Warsaw, Poland
| | - Monika Liguz-Lęcznar
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Katarzyna Hetmańczyk
- Department of Genetics, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Agnieszka Ługowska
- Department of Genetics, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Alicja Sobolewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Anna Skórzewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Marek Gryz
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Małgorzata Lehner
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| |
Collapse
|
39
|
Association of miR-34a Expression with Quality of Life of Glioblastoma Patients: A Prospective Study. Cancers (Basel) 2019; 11:cancers11030300. [PMID: 30836600 PMCID: PMC6468714 DOI: 10.3390/cancers11030300] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/20/2019] [Accepted: 02/26/2019] [Indexed: 12/28/2022] Open
Abstract
MiR-34a acts as tumor-suppressor by targeting many oncogenes related to proliferation, apoptosis, and invasion of gliomas. We studied the relationships between health-related quality of life (HRQOL), depression, and miR-34a expression status in patients with newly diagnosed glioblastoma (GBM). A comprehensive HRQOL assessment was completed by 38 patients with glioblastoma prior to surgical resection and included the European Organization for Research and Treatment of Cancer (EORTC) questionnaire for cancer patients (QLQ-C30) and the Brain Cancer-Specific Quality of Life Questionnaire (QLQ-BN20), the Patient Health Questionnaire-9 (PHQ-9), the Karnofsky performance index (KPS), and The Glasgow Outcome Scale (GOS). The miR-34a expression in glioblastoma tissue was measured using quantitative reverse transcription PCR. Our findings show that lower miR-34a expression is significantly associated with higher tumor volume, worse physical functioning, lower KPS, and greater depressive symptom severity of GBM patients. Moreover, analysis reveals that miR-34a effects might be gender specific, as stronger relationships between miR-34a and patient functioning measures were observed in males when compared to females. Despite the fact that, due to small sample size, our results should be considered as preliminary, our study suggests that miR-34a is associated with tumor burden and can be important for health-related quality of life, functional status, and mood symptoms of glioblastoma patients.
Collapse
|
40
|
Aten S, Page CE, Kalidindi A, Wheaton K, Niraula A, Godbout JP, Hoyt KR, Obrietan K. miR-132/212 is induced by stress and its dysregulation triggers anxiety-related behavior. Neuropharmacology 2019; 144:256-270. [PMID: 30342060 PMCID: PMC6823933 DOI: 10.1016/j.neuropharm.2018.10.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/25/2018] [Accepted: 10/14/2018] [Indexed: 02/08/2023]
Abstract
miR-132 and miR-212 are structurally-related microRNAs that are expressed from the same non-coding transcript. Accumulating evidence has shown that the dysregulation of these microRNAs contributes to aberrant neuronal plasticity and gene expression in the mammalian brain. Consistent with this, altered expression of miR-132 is associated with a number of affect-related psychiatric disorders. Here, we tested the functional contribution of the miR-132/212 locus to the development of stress-related and anxiety-like behaviors. Initially, we tested whether expression from the miR-132/212 locus is altered by stress-inducing paradigms. Using a 5-h acute-stress model, we show that both miR-132 and miR-212 are increased more than two-fold in the WT murine hippocampus and amygdala, whereas after a 15 day chronic-stress paradigm, expression of both miR-132 and miR-212 are upregulated more than two-fold within the amygdala but not in the hippocampus. Next, we used a tetracycline-inducible miR-132 overexpression mouse model and a miR-132/212 conditional knockout (cKO) mouse model to examine whether dysregulation of miR-132/212 expression alters basal anxiety-like behaviors. Interestingly, in both the miR-132 overexpression and cKO lines, significant increases in anxiety-like behaviors were detected. Importantly, suppression of transgenic miR-132 expression (via doxycycline administration) mitigated the anxiety-related behaviors. Further, expression of Sirt1 and Pten-two miR-132 target genes that have been implicated in the regulation of anxiety-were differentially regulated in the hippocampus and amygdala of miR-132/212 conditional knockout and miR-132 transgenic mice. Collectively, these data raise the prospect that miR-132 and miR-212 may play a key role in the modulation of stress responsivity and anxiety.
Collapse
Affiliation(s)
- Sydney Aten
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Chloe E Page
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Anisha Kalidindi
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Kelin Wheaton
- Division of Pharmaceutics and Pharmaceutical Chemistry, Ohio State University, Columbus, OH, USA
| | - Anzela Niraula
- Department of Neuroscience, Ohio State University, Columbus, OH, USA; Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
| | - Jon P Godbout
- Department of Neuroscience, Ohio State University, Columbus, OH, USA; Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA; Center for Brain and Spinal Cord Repair, Ohio State University, Columbus, OH, USA
| | - Kari R Hoyt
- Division of Pharmaceutics and Pharmaceutical Chemistry, Ohio State University, Columbus, OH, USA
| | - Karl Obrietan
- Department of Neuroscience, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
41
|
Yamamoto M, Ben-Shlomo A, Kameda H, Fukuoka H, Deng N, Ding Y, Melmed S. Somatostatin receptor subtype 5 modifies hypothalamic-pituitary-adrenal axis stress function. JCI Insight 2018; 3:122932. [PMID: 30282821 PMCID: PMC6237446 DOI: 10.1172/jci.insight.122932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/29/2018] [Indexed: 11/17/2022] Open
Abstract
Pituitary corticotroph somatostatin receptor subtype 5 (SSTR5) signals to inhibit adrenocorticotrophin (ACTH) secretion. As ACTH deficiency results in attenuated adrenal cortisol production and an impaired stress response, we sought to clarify the role of SSTR5 in modifying the hypothalamic/pituitary/adrenal (HPA) axis. We generated Tg HP5 mice overexpressing SSTR5 in pituitary corticotrophs that produce the ACTH precursor proopiomelanocortin (POMC). Basal ACTH and corticosterone were similar in HP5 and WT mice, while HP5 mice showed attenuated ACTH and corticosterone responses to corticotrophin releasing hormone (CRH). HP5 mice exhibited attenuated corticosterone responses upon a restraint stress test and inflammatory stress following LPS injection, as well as increased anxiety-like and depressive-like behavior on open field and forced swim tests. Pituitary corticotroph CRH receptor subtype 1 (CRHR1) mRNA expression and ACTH responses to CRH were also attenuated in HP5 mice. In AtT20 cells stably overexpressing SSTR5, CRHR1 expression and cAMP response to CRH were reduced, whereas both were increased after SSTR5 KO. In elucidating mechanisms for these observations, we show that SSTR5-induced miR-449c suppresses both CRHR1 expression and function. We conclude that corticotroph SSTR5 attenuates HPA axis responses via CRHR1 downregulation, suggesting a role for SSTR5 in the pathogenesis of secondary adrenal insufficiency.
Collapse
Affiliation(s)
| | | | | | | | - Nan Deng
- Biostatistics and Bioinformatics Research Center, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Yan Ding
- Pituitary Center, Department of Medicine, and
| | | |
Collapse
|
42
|
Lacal I, Ventura R. Epigenetic Inheritance: Concepts, Mechanisms and Perspectives. Front Mol Neurosci 2018; 11:292. [PMID: 30323739 PMCID: PMC6172332 DOI: 10.3389/fnmol.2018.00292] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/02/2018] [Indexed: 01/07/2023] Open
Abstract
Parents’ stressful experiences can influence an offspring’s vulnerability to many pathological conditions, including psychopathologies, and their effects may even endure for several generations. Nevertheless, the cause of this phenomenon has not been determined, and only recently have scientists turned to epigenetics to answer this question. There is extensive literature on epigenetics, but no consensus exists with regard to how and what can (and must) be considered to study and define epigenetics processes and their inheritance. In this work, we aimed to clarify and systematize these concepts. To this end, we analyzed the dynamics of epigenetic changes over time in detail and defined three types of epigenetics: a direct form of epigenetics (DE) and two indirect epigenetic processes—within (WIE) and across (AIE). DE refers to changes that occur in the lifespan of an individual, due to direct experiences with his environment. WIE concerns changes that occur inside of the womb, due to events during gestation. Finally, AIE defines changes that affect the individual’s predecessors (parents, grandparents, etc.), due to events that occur even long before conception and that are somehow (e.g., through gametes, the intrauterine environment setting) transmitted across generations. This distinction allows us to organize the main body of epigenetic evidence according to these categories and then focus on the latter (AIE), referring to it as a faster route of informational transmission across generations—compared with genetic inheritance—that guides human evolution in a Lamarckian (i.e., experience-dependent) manner. Of the molecular processes that are implicated in this phenomenon, well-known (methylation) and novel (non-coding RNA, ncRNA) regulatory mechanisms are converging. Our discussion of the chief methods that are used to study epigenetic inheritance highlights the most compelling technical and theoretical problems of this discipline. Experimental suggestions to expand this field are provided, and their practical and ethical implications are discussed extensively.
Collapse
Affiliation(s)
- Irene Lacal
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Rossella Ventura
- Department of Psychology and "Daniel Bovet" Center, Sapienza University of Rome, Rome, Italy.,Fondazione Santa Lucia, IRCCS, Rome, Italy
| |
Collapse
|
43
|
Dickson DA, Paulus JK, Mensah V, Lem J, Saavedra-Rodriguez L, Gentry A, Pagidas K, Feig LA. Reduced levels of miRNAs 449 and 34 in sperm of mice and men exposed to early life stress. Transl Psychiatry 2018; 8:101. [PMID: 29795112 PMCID: PMC5966454 DOI: 10.1038/s41398-018-0146-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/04/2018] [Indexed: 01/07/2023] Open
Abstract
Exposure of male mice to early life stress alters the levels of specific sperm miRNAs that promote stress-associated behaviors in their offspring. To begin to evaluate whether similar phenomena occur in men, we searched for sperm miRNA changes that occur in both mice and men exposed to early life stressors that have long-lasting effects. For men, we used the Adverse Childhood Experience (ACE) questionnaire. It reveals the degree of abusive and/or dysfunctional family experiences when young, which increases risks of developing future psychological and physical disorders. For male mice, we used adolescent chronic social instability (CSI) stress, which not only enhances sociability defects for >1 year, but also anxiety and defective sociability in female offspring for multiple generations through the male lineage. Here we found a statistically significant inverse correlation between levels of multiple miRNAs of the miR-449/34 family and ACE scores of Caucasian males. Remarkably, we found members of the same sperm miRNA family are also reduced in mice exposed to CSI stress. Thus, future studies should be designed to directly test whether reduced levels of these miRNAs could be used as unbiased indicators of current and/or early life exposure to severe stress. Moreover, after mating stressed male mice, these sperm miRNA reductions persist in both early embryos through at least the morula stage and in sperm of males derived from them, suggesting these miRNA changes contribute to transmission of stress phenotypes across generations. Since offspring of men exposed to early life trauma have elevated risks for psychological disorders, these findings raise the possibility that a portion of this risk may be derived from epigenetic regulation of these sperm miRNAs.
Collapse
Affiliation(s)
- David A. Dickson
- 0000 0004 1936 7531grid.429997.8Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Boston, MA USA
| | - Jessica K. Paulus
- 0000 0004 0367 5222grid.475010.7Predictive Analytics and Comparative Effectiveness (PACE) Center, Institute for Clinical Research and Health Policy Studies (ICRHPS), Tufts Medical Center/Tufts University School of Medicine, Boston, MA USA
| | - Virginia Mensah
- 0000 0004 1936 9094grid.40263.33Division of Reproductive Endocrinology and Infertility, Women and Infants Hospital Fertility Center, Department of OB/GYN, Warren Alpert Medical School of Brown University, Providence, RI USA
| | - Janis Lem
- 0000 0000 8934 4045grid.67033.31The Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111 USA
| | - Lorena Saavedra-Rodriguez
- 0000 0000 8934 4045grid.67033.31Department of Developmental, Molecular and Chemical Biology and Department of Neuroscience, Tufts University School of Medicine, Boston, MA USA
| | - Adrienne Gentry
- 0000 0001 2113 1622grid.266623.5Department of Obstetrics, Gynecology and Women’s Health, University of Louisville School of Medicine, Louisville, KY USA
| | - Kelly Pagidas
- 0000 0001 2113 1622grid.266623.5Department of Obstetrics, Gynecology and Women’s Health, University of Louisville School of Medicine, Louisville, KY USA
| | - Larry A. Feig
- 0000 0004 1936 7531grid.429997.8Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Boston, MA USA ,0000 0000 8934 4045grid.67033.31Department of Developmental, Molecular and Chemical Biology and Department of Neuroscience, Tufts University School of Medicine, Boston, MA USA
| |
Collapse
|
44
|
Di Segni M, Andolina D, Ventura R. Long-term effects of early environment on the brain: Lesson from rodent models. Semin Cell Dev Biol 2018; 77:81-92. [DOI: 10.1016/j.semcdb.2017.09.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/20/2017] [Accepted: 09/29/2017] [Indexed: 12/21/2022]
|
45
|
The microbiome regulates amygdala-dependent fear recall. Mol Psychiatry 2018; 23:1134-1144. [PMID: 28507320 PMCID: PMC5984090 DOI: 10.1038/mp.2017.100] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/20/2017] [Accepted: 03/16/2017] [Indexed: 12/25/2022]
Abstract
The amygdala is a key brain region that is critically involved in the processing and expression of anxiety and fear-related signals. In parallel, a growing number of preclinical and human studies have implicated the microbiome-gut-brain in regulating anxiety and stress-related responses. However, the role of the microbiome in fear-related behaviours is unclear. To this end we investigated the importance of the host microbiome on amygdala-dependent behavioural readouts using the cued fear conditioning paradigm. We also assessed changes in neuronal transcription and post-transcriptional regulation in the amygdala of naive and stimulated germ-free (GF) mice, using a genome-wide transcriptome profiling approach. Our results reveal that GF mice display reduced freezing during the cued memory retention test. Moreover, we demonstrate that under baseline conditions, GF mice display altered transcriptional profile with a marked increase in immediate-early genes (for example, Fos, Egr2, Fosb, Arc) as well as genes implicated in neural activity, synaptic transmission and nervous system development. We also found a predicted interaction between mRNA and specific microRNAs that are differentially regulated in GF mice. Interestingly, colonized GF mice (ex-GF) were behaviourally comparable to conventionally raised (CON) mice. Together, our data demonstrates a unique transcriptional response in GF animals, likely because of already elevated levels of immediate-early gene expression and the potentially underlying neuronal hyperactivity that in turn primes the amygdala for a different transcriptional response. Thus, we demonstrate for what is to our knowledge the first time that the presence of the host microbiome is crucial for the appropriate behavioural response during amygdala-dependent memory retention.
Collapse
|
46
|
Abstract
MicroRNAs (miRNAs) are ∼22 nt RNAs that direct posttranscriptional repression of mRNA targets in diverse eukaryotic lineages. In humans and other mammals, these small RNAs help sculpt the expression of most mRNAs. This article reviews advances in our understanding of the defining features of metazoan miRNAs and their biogenesis, genomics, and evolution. It then reviews how metazoan miRNAs are regulated, how they recognize and cause repression of their targets, and the biological functions of this repression, with a compilation of knockout phenotypes that shows that important biological functions have been identified for most of the broadly conserved miRNAs of mammals.
Collapse
Affiliation(s)
- David P Bartel
- Howard Hughes Medical Institute and Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
47
|
MicroRNA-34 Contributes to the Stress-related Behavior and Affects 5-HT Prefrontal/GABA Amygdalar System through Regulation of Corticotropin-releasing Factor Receptor 1. Mol Neurobiol 2018; 55:7401-7412. [PMID: 29417477 DOI: 10.1007/s12035-018-0925-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 01/24/2018] [Indexed: 12/31/2022]
Abstract
Recent studies show that microRNA-34 (miR-34) family is critical in the regulation of stress response also suggesting that it may contribute to the individual responsiveness to stress. We have recently demonstrated that mice carrying a genetic deletion of all miR-34 isoforms (triple knockout, TKO) lack the stress-induced serotonin (5-HT) and GABA release in the medial prefrontal cortex (mpFC) and basolateral amygdala (BLA), respectively. Here, we evaluated if the absence of miR-34 was also able to modify the stress-coping strategy in the forced swimming test. We found that the blunted neurochemical response to stress was associated with lower levels of immobility (index of active coping behavior) in TKO compared to WT mice. Interestingly, among the brain regions mostly involved in the stress-related behaviors, the miR-34 displayed the strongest expression in the dorsal raphe nuclei (DRN) of wild-type (WT) mice. In the DRN, the corticotropin-releasing factor receptors (CRFR) 1 and 2, contribute to determine the stress-coping style and the CRFR1 is a target of miR-34. Thus, we hypothesized that the miR-34-dependent modulation of CRFR1 expression may be involved in the DRN regulation of stress-coping strategies. In line with this hypothesis, we found increased CRFR1 levels in the DNR of TKO compared to WT mice. Moreover, infusion of CRFR1 antagonist in the DRN of TKO mice reverted their behavioral and neurochemical phenotype. We propose that miR-34 modulate the mpFC 5-HT/BLA GABA response to stress acting on CRFR1 in the DRN and that this mechanism could contribute to determine individual stress-coping strategy.
Collapse
|
48
|
Ku T, Li B, Gao R, Zhang Y, Yan W, Ji X, Li G, Sang N. NF-κB-regulated microRNA-574-5p underlies synaptic and cognitive impairment in response to atmospheric PM 2.5 aspiration. Part Fibre Toxicol 2017; 14:34. [PMID: 28851397 PMCID: PMC5575838 DOI: 10.1186/s12989-017-0215-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/20/2017] [Indexed: 12/12/2022] Open
Abstract
Background PM2.5 (particulate matter ≤ 2.5 μm) is one of the leading environmental risk factors for the global burden of disease. Whereas increasing evidence has linked the adverse roles of PM2.5 with cardiovascular and respiratory diseases, limited but growing emerging evidence suggests that PM2.5 exposure can affect the nervous system, causing neuroinflammation, synaptic dysfunction and cognitive deterioration. However, the molecular mechanisms underlying the synaptic and cognitive deficits elicited by PM2.5 exposure are largely unknown. Methods C57BL/6 mice received oropharyngeal aspiration of PM2.5 (1 and 5 mg/kg bw) every other day for 4 weeks. The mice were also stereotaxically injected with β-site amyloid precursor protein cleaving enzyme 1 (β-secretase, BACE1) shRNA or LV-miR-574-5p lentiviral constructs in the absence or presence of PM2.5 aspiration at 5 mg/kg bw every other day for 4 weeks. Spatial learning and memory were assessed with the Morris water maze test, and synaptic function integrity was evaluated with electrophysiological recordings of long-term potentiation (LTP) and immunoblot analyses of glutamate receptor subunit expression. The expression of α-secretase (ADAM10), BACE1, and γ-secretase (nicastrin) and the synthesis and accumulation of amyloid β (Aβ) were measured by immunoblot and enzyme-linked immunosorbent assay (ELISA). MicroRNA (miRNA) expression was screened with a microRNA microarray analysis and confirmed by real-time quantitative reverse transcription PCR (qRT-PCR) analysis. Dual-luciferase reporter gene and chromatin immunoprecipitation (ChIP) analyses were used to detect the binding of miR-574-5p in the 3’UTR of BACE1 and NF-κB p65 in the promoter of miR-574-5p, respectively. Results PM2.5 aspiration caused neuroinflammation and deteriorated synaptic function integrity and spatial learning and memory, and the effects were associated with the induction of BACE1. The action was mediated by NF-κB p65-regulated downregulation of miR-574-5p, which targets BACE1. Overexpression of miR-574-5p in the hippocampal region decreased BACE1 expression, restored synaptic function, and improved spatial memory and learning following PM2.5 exposure. Conclusions Taken together, our findings reveal a novel molecular mechanism underlying impaired synaptic and cognitive function following exposure to PM2.5, suggesting that miR-574-5p is a potential intervention target for the prevention and treatment of PM2.5-induced neurological disorders. Electronic supplementary material The online version of this article (10.1186/s12989-017-0215-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tingting Ku
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Ben Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Rui Gao
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Yingying Zhang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Wei Yan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Xiaotong Ji
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, China.
| |
Collapse
|
49
|
Cohen JL, Jackson NL, Ballestas ME, Webb WM, Lubin FD, Clinton SM. Amygdalar expression of the microRNA miR-101a and its target Ezh2 contribute to rodent anxiety-like behaviour. Eur J Neurosci 2017; 46:2241-2252. [PMID: 28612962 DOI: 10.1111/ejn.13624] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/16/2017] [Accepted: 06/05/2017] [Indexed: 12/30/2022]
Abstract
A greater understanding of neural mechanisms contributing to anxiety is needed in order to develop better therapeutic interventions. This study interrogates a novel molecular mechanism that shapes anxiety-like behaviour, demonstrating that the microRNA miR-101a-3p and its target, enhancer of zeste homolog 2 (Ezh2) in the amygdala, contribute to rodent anxiety-like behaviour. We utilized rats that were selectively bred for differences in emotionality and stress reactivity, showing that high-novelty-responding (HR) rats, which display low trait anxiety, have lower miR-101a-3p levels in the amygdala compared to low-novelty-responding (LR) rats that characteristically display high trait anxiety. To determine whether there is a causal relationship between amygdalar miR-101a-3p and anxiety behaviour, we used a viral approach to overexpress miR-101a-3p in the amygdala of HR rats and test whether it would increase their typically low levels of anxiety-like behaviour. We found that increasing miR-101a-3p in the amygdala increased HRs' anxiety-like behaviour in the open-field test and elevated plus maze. Viral-mediated miR-101a-3p overexpression also reduced expression of the histone methyltransferase Ezh2, which mediates gene silencing via trimethylation of histone 3 at lysine 27 (H3K27me3). Knockdown of Ezh2 with short-interfering RNA (siRNA) also increased HRs' anxiety-like behaviour, but to a lesser degree than miR-101a-3p overexpression. Overall, our data demonstrate that increasing miR-101a-3p expression in the amygdala increases anxiety-like behaviour and that this effect is at least partially mediated via repression of Ezh2. This work adds to the growing body of evidence implicating miRNAs and epigenetic regulation as molecular mediators of anxiety behaviour.
Collapse
Affiliation(s)
- Joshua L Cohen
- MD/PhD Medical Scientist Training Program, University of Alabama-Birmingham, Birmingham, AL, USA
| | - Nateka L Jackson
- Department of Cell and Molecular Biology, University of Alabama-Birmingham, Birmingham, AL, USA
| | - Mary E Ballestas
- Department of Pediatric-Infectious Disease, University of Alabama-Birmingham, Birmingham, AL, USA
| | - William M Webb
- MD/PhD Medical Scientist Training Program, University of Alabama-Birmingham, Birmingham, AL, USA.,Department of Neurobiology, University of Alabama-Birmingham, Birmingham, AL, USA
| | - Farah D Lubin
- Department of Neurobiology, University of Alabama-Birmingham, Birmingham, AL, USA
| | - Sarah M Clinton
- School of Neuroscience, Virginia Tech University, 1981 Kraft Drive, Integrated Life Sciences Building room 2012, Blacksburg, VA, 20460, USA
| |
Collapse
|
50
|
Cohen JL, Ata AE, Jackson NL, Rahn EJ, Ramaker RC, Cooper S, Kerman IA, Clinton SM. Differential stress induced c-Fos expression and identification of region-specific miRNA-mRNA networks in the dorsal raphe and amygdala of high-responder/low-responder rats. Behav Brain Res 2017; 319:110-123. [PMID: 27865919 PMCID: PMC5183530 DOI: 10.1016/j.bbr.2016.11.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/19/2016] [Accepted: 11/08/2016] [Indexed: 01/03/2023]
Abstract
Chronic stress triggers a variety of physical and mental health problems, and how individuals cope with stress influences risk for emotional disorders. To investigate molecular mechanisms underlying distinct stress coping styles, we utilized rats that were selectively-bred for differences in emotionality and stress reactivity. We show that high novelty responding (HR) rats readily bury a shock probe in the defensive burying test, a measure of proactive stress coping behavior, while low novelty responding (LR) rats exhibit enhanced immobility, a measure of reactive coping. Shock exposure in the defensive burying test elicited greater activation of HR rats' caudal dorsal raphe serotonergic cells compared to LRs, but lead to more pronounced activation throughout LRs' amygdala (lateral, basolateral, central, and basomedial nuclei) compared to HRs. RNA-sequencing revealed 271 mRNA transcripts and 33 microRNA species that were differentially expressed in HR/LR raphe and amygdala. We mapped potential microRNA-mRNA networks by correlating and clustering mRNA and microRNA expression and identified networks that differed in either the HR/LR dorsal raphe or amygdala. A dorsal raphe network linked three microRNAs which were down-regulated in LRs (miR-206-3p, miR-3559-5p, and miR-378a-3p) to repression of genes related to microglia and immune response (Cd74, Cyth4, Nckap1l, and Rac2), the genes themselves were up-regulated in LR dorsal raphe. In the amygdala, another network linked miR-124-5p, miR-146a-5p, miR-3068-3p, miR-380-5p, miR-539-3p, and miR-7a-1-3p with repression of chromatin remodeling-related genes (Cenpk, Cenpq, Itgb3bp, and Mis18a). Overall this work highlights potential drivers of gene-networks and downstream molecular pathways within the raphe and amygdala that contribute to individual differences in stress coping styles and stress vulnerabilities.
Collapse
Affiliation(s)
- Joshua L Cohen
- Medical Scientist Training Program, University of Alabama-Birmingham, USA
| | - Anooshah E Ata
- University of Alabama-Birmingham School of Medicine, USA
| | - Nateka L Jackson
- Department of Neurobiology, University of Alabama-Birmingham, USA
| | - Elizabeth J Rahn
- Department of Neurobiology, University of Alabama-Birmingham, USA
| | - Ryne C Ramaker
- Medical Scientist Training Program, University of Alabama-Birmingham, USA; HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Sara Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Ilan A Kerman
- School of Neuroscience, Virginia Tech University, USA; Department of Psychiatry & Behavioral Medicine, Carilion Clinic, Virginia Tech Carilion School of Medicine, USA
| | | |
Collapse
|