1
|
Kopalli SR, Behl T, Kyada A, Rekha MM, Kundlas M, Rani P, Nathiya D, Satyam Naidu K, Gulati M, Bhise M, Gupta P, Wal P, Fareed M, Ramniwas S, Koppula S, Gasmi A. Synaptic plasticity and neuroprotection: The molecular impact of flavonoids on neurodegenerative disease progression. Neuroscience 2025; 569:161-183. [PMID: 39922366 DOI: 10.1016/j.neuroscience.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/11/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Flavonoids are a broad family of polyphenolic chemicals that are present in a wide variety of fruits, vegetables, and medicinal plants. Because of their neuroprotective qualities, flavonoids have attracted a lot of interest. The potential of flavonoids to control synaptic plasticity-a crucial process underlying memory, learning, and cognitive function-is becoming more and more clear. Dysregulation of synaptic plasticity is a feature of neurodegenerative diseases such as amyotrophic lateral sclerosis (0.4 %), Parkinson's (1-2 %), Alzheimer's (5-7 %), and Huntington's ((0.2 %)). This review discusses the molecular mechanisms via which flavonoids influence synaptic plasticity as well as their therapeutic potential in neurodegenerative diseases. Flavonoids modulate key signaling pathways such as MAPK/ERK and PI3K/Akt/mTOR to support neuroprotection, synaptic plasticity, and neuronal health, while also influencing neurotrophic factors (BDNF, NGF) and their receptors (TrkB, TrkA). They regulate neurotransmitter receptors like GABA, AMPA, and NMDA to balance excitatory and inhibitory transmission, and exert antioxidant effects via the Nrf2-ARE pathway and anti-inflammatory actions by inhibiting NF-κB signaling, highlighting their potential for treating neurodegenerative diseases. These varied reactions support the preservation of synapse function and neuronal integrity in the face of neurodegenerative insults. Flavonoids can reduce the symptoms of neurodegeneration, prevent synaptic loss, and enhance cognitive function, according to experimental studies. However, there are still obstacles to using these findings in clinical settings, such as limited bioavailability and the need for consistent dose. The focus of future research should be on improving flavonoid delivery systems and combining them with conventional medications.
Collapse
Affiliation(s)
- Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006 Republic of Korea
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Punjab 140306, India
| | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot 360003 Gujarat, India
| | - M M Rekha
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mayank Kundlas
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401 Punjab, India
| | - Pooja Rani
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307 Punjab, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | | | | | - Pranay Wal
- PSIT- Pranveer Singh Institute of Technology, Pharmacy Kanpur UP, India
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 13713, Saudi Arabia
| | - Seema Ramniwas
- University Centre for Research and Development, Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413 Punjab, India
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| | - Amin Gasmi
- Societe Francophone de Nutritherapie et de Nutrigenetique Appliquee, Villeurbanne, France; International Institute of Nutrition and Micronutrient Sciences, Saint-Etienne, France
| |
Collapse
|
2
|
Tang Y, Zhang Y, Chen C, Cao Y, Wang Q, Tang C. Gut microbiota: A new window for the prevention and treatment of neuropsychiatric disease. J Cent Nerv Syst Dis 2025; 17:11795735251322450. [PMID: 39989718 PMCID: PMC11846125 DOI: 10.1177/11795735251322450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/11/2024] [Accepted: 01/27/2025] [Indexed: 02/25/2025] Open
Abstract
Under normal physiological conditions, gut microbiota and host mutually coexist. They play key roles in maintaining intestinal barrier integrity, absorption, and metabolism, as well as promoting the development of the central nervous system (CNS) and emotional regulation. The dysregulation of gut microbiota homeostasis has attracted significant research interest, specifically in its impact on neurological and psychiatric disorders. Recent studies have highlighted the important role of the gut- brain axis in conditions including Alzheimer's Disease (AD), Parkinson's Disease (PD), and depression. This review aims to elucidate the regulatory mechanisms by which gut microbiota affect the progression of CNS disorders via the gut-brain axis. Additionally, we discuss the current research landscape, identify gaps, and propose future directions for microbial interventions against these diseases. Finally, we provide a theoretical reference for clinical treatment strategies and drug development for AD, PD, and depression.
Collapse
Affiliation(s)
- Yali Tang
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yizhu Zhang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Chen Chen
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Ying Cao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People’s Republic of China
| | - Qiaona Wang
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, People’s Republic of China
| | - Chuanfeng Tang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
3
|
Catanese MC, Klingl YE, Gilbert TM, Strebl-Bantillo MG, Hartigan CR, Schenone M, Hooker JM. Chemoproteomics Sheds Light on Epigenetic Targets of [ 11C]Martinostat in the Human Brain. ACS Chem Neurosci 2025; 16:723-731. [PMID: 39912892 DOI: 10.1021/acschemneuro.4c00781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
Initiation of research programs to investigate binding specificity based on in vivo positron emission tomography (PET) imaging results can provide rich opportunities to improve data interpretation, gain biological insight, and inform hypothesis development. Here, we profile the binding specificity of the neuroepigenetic imaging probe, [11C]Martinostat. In vivo neuroimaging studies using [11C]Martinostat have uncovered differential regional uptake in relation to age and biological sex and in patients with schizophrenia, bipolar disorder, Alzheimer's disease, and low-back pain compared to healthy controls. Previous studies using recombinant proteins and thermal shift assays in postmortem tissue indicate that [11C]Martinostat engages class I and putatively class IIb histone deacetylases (HDACs). While HDACs serve multiple functions, including regulation of chromatin remodeling and gene transcription, it is not known how differences in HDAC expression may arise across brain regions. HDACs functionally interact with a diverse array of multisubunit complexes, and engagement with associated binding partners may contribute to these differences. To further assess target engagement of [11C]Martinostat, we designed a synthetic probe based on the inhibitor structural scaffold for use in competition experiments followed by proteomic analysis in postmortem tissue. The synthetic probe, called Compound 4, appears to interact with the class I HDAC paralog HDAC2 and the class IIb paralog HDAC6 in a robust manner. We also uncovered unique interacting partners, including synaptic proteins from the synaptotagmin (SYT) family of proteins and neuronal pentraxin 2 (NPTX2). Further work to investigate HDAC associations with interacting proteins across regions of the human brain is needed to better understand neuroepigenetic dysregulation in psychiatric and neurological conditions.
Collapse
Affiliation(s)
- Mary C Catanese
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Yvonne E Klingl
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Tonya M Gilbert
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Martin G Strebl-Bantillo
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Christina R Hartigan
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Monica Schenone
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
4
|
Dubey H, Dubey A, Gulati K, Ray A. S-nitrosoglutathione modulates HDAC2 and BDNF levels in the brain and improves cognitive deficits in experimental model of Alzheimer's disease in rats. Int J Neurosci 2024; 134:777-785. [PMID: 36408590 DOI: 10.1080/00207454.2022.2150190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022]
Abstract
AIM Alzheimer's disease (AD) is a neurodegenerative disorder which is characterized by cognitive deficits and abnormal memory formation. Histone acetylation is essential for hippocampal memory formation and improving the cognitive deficits, and histone deacetylase 2 (HDAC2) is increased in the hippocampus of AD patients. The present study evaluated the effects of the nitric oxide (NO) mimetics, L-arginine and the nitrosothiol NO donor, s-nitrosoglutathione (GSNO), on memory and brain HDAC2 levels in experimental animal model of sporadic Alzheimer's disease (sAD). METHODS AD was induced experimentally in rats by intracerebroventricular injection of streptozotocin (STZ, 3mg/kg). The effects of NO mimetics, GSNO and L-arginine, were assessed on STZ induced cognitive deficits in the Morris water maze (MWM) test, and, following this, the hippocampal homogenates were assayed for amyloid-β, brain derived neurotropic factor (BDNF) and HDAC2 levels. The neurobehavioral and biochemical data of the drug treated groups were compared with those of experimental control group. RESULTS The results showed that icv-STZ induced cognitive deficits were differentially attenuated by GSNO (50µg/kg) and, to a lesser extent, L-arginine (100mg/kg) with improvement in the spatial learning tasks in MWM test. These behavioral changes were associated with decreased levels of biochemical markers viz. amyloid β, BDNF and HDAC2 levels in hippocampus. CONCLUSIONS It is inferred that NO donors like GSNO could influence AD pathophysiology via epigenetic modification of HDAC2 inhibition.
Collapse
Affiliation(s)
- Harikesh Dubey
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA
| | - Anamika Dubey
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Kavita Gulati
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Arunabha Ray
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
- Department of Pharmacology, Hamdard Institute of Medical Sciences and Research, Hamdard University, New Delhi, India
| |
Collapse
|
5
|
Asgari R, Bazzazan MA, Karimi Jirandehi A, Yousefzadeh S, Alaei M, Keshavarz Shahbaz S. Peyer's Patch: Possible target for modulating the Gut-Brain-Axis through microbiota. Cell Immunol 2024; 401-402:104844. [PMID: 38901288 DOI: 10.1016/j.cellimm.2024.104844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/05/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
The gastrointestinal (GI) tract and the brain form bidirectional nervous, immune, and endocrine communications known as the gut-brain axis. Several factors can affect this axis; among them, various studies have focused on the microbiota and imply that alterations in microbiota combinations can influence both the brain and GI. Also, many studies have shown that the immune system has a vital role in varying gut microbiota combinations. In the current paper, we will review the multidirectional effects of gut microbiota, immune system, and nervous system on each other. Specifically, this review mainly focuses on the impact of Peyer's patches as a critical component of the gut immune system on the gut-brain axis through affecting the gut's microbial composition. In this way, some factors were discussed as proposed elements of missing gaps in this field.
Collapse
Affiliation(s)
- Reza Asgari
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical science, Qazvin, Iran
| | - Mohammad Amin Bazzazan
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical science, Qazvin, Iran
| | - Ashkan Karimi Jirandehi
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical science, Qazvin, Iran
| | - Salar Yousefzadeh
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical science, Qazvin, Iran
| | - Masood Alaei
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical science, Qazvin, Iran
| | - Sanaz Keshavarz Shahbaz
- USERN Office, Qazvin University of Medical science, Qazvin, Iran; Cellular and Molecular Research Center, Research Institute for prevention of Non- Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
6
|
Leclercq S, de Timary P. Role of the Microbiome and the Gut-Brain Axis in Alcohol Use Disorder: Potential Implication for Treatment Development. Curr Top Behav Neurosci 2024. [PMID: 38914878 DOI: 10.1007/7854_2024_478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The gut microbiota is constituted by trillions of microorganisms colonizing the human intestine. Studies conducted in patients with alcohol use disorder (AUD) have shown altered microbial composition related to bacteria, viruses, and fungi.This review describes the communication pathways between the gut and the brain, including the ones related to the bacterial metabolites, the inflammatory cytokines, and the vagus nerve. We described in more detail the gut-derived metabolites that have been shown to be implicated in AUD or that could potentially be involved in the development of AUD due to their immune and/or neuroactive properties, including tryptophan-derivatives, tyrosine-derivatives, short chain fatty acids.Finally, we discussed the potential beneficial effects of microbiome-based therapies for AUD such as probiotics, prebiotics, postbiotic, and phage therapy.
Collapse
Affiliation(s)
- Sophie Leclercq
- Laboratory of Nutritional Psychiatry, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Philippe de Timary
- Department of Adult Psychiatry, Cliniques Universitaires Saint-Luc, Brussels, Belgium.
| |
Collapse
|
7
|
Zarate-Lopez D, Torres-Chávez AL, Gálvez-Contreras AY, Gonzalez-Perez O. Three Decades of Valproate: A Current Model for Studying Autism Spectrum Disorder. Curr Neuropharmacol 2024; 22:260-289. [PMID: 37873949 PMCID: PMC10788883 DOI: 10.2174/1570159x22666231003121513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 10/25/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with increased prevalence and incidence in recent decades. Its etiology remains largely unclear, but it seems to involve a strong genetic component and environmental factors that, in turn, induce epigenetic changes during embryonic and postnatal brain development. In recent decades, clinical studies have shown that inutero exposure to valproic acid (VPA), a commonly prescribed antiepileptic drug, is an environmental factor associated with an increased risk of ASD. Subsequently, prenatal VPA exposure in rodents has been established as a reliable translational model to study the pathophysiology of ASD, which has helped demonstrate neurobiological changes in rodents, non-human primates, and brain organoids from human pluripotent stem cells. This evidence supports the notion that prenatal VPA exposure is a valid and current model to replicate an idiopathic ASD-like disorder in experimental animals. This review summarizes and describes the current features reported with this animal model of autism and the main neurobiological findings and correlates that help elucidate the pathophysiology of ASD. Finally, we discuss the general framework of the VPA model in comparison to other environmental and genetic ASD models.
Collapse
Affiliation(s)
- David Zarate-Lopez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
- Physiological Science Ph.D. Program, School of Medicine, University of Colima, Colima 28040, Mexico
| | - Ana Laura Torres-Chávez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
- Physiological Science Ph.D. Program, School of Medicine, University of Colima, Colima 28040, Mexico
| | - Alma Yadira Gálvez-Contreras
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, University of Guadalajara, Guadalajara 44340, México
| | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
| |
Collapse
|
8
|
Davies MR, Greenberg Z, van Vuurden DG, Cross CB, Zannettino ACW, Bardy C, Wardill HR. More than a small adult brain: Lessons from chemotherapy-induced cognitive impairment for modelling paediatric brain disorders. Brain Behav Immun 2024; 115:229-247. [PMID: 37858741 DOI: 10.1016/j.bbi.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023] Open
Abstract
Childhood is recognised as a period of immense physical and emotional development, and this, in part, is driven by underlying neurophysiological transformations. These neurodevelopmental processes are unique to the paediatric brain and are facilitated by augmented rates of neuroplasticity and expanded neural stem cell populations within neurogenic niches. However, given the immaturity of the developing central nervous system, innate protective mechanisms such as neuroimmune and antioxidant responses are functionally naïve which results in periods of heightened sensitivity to neurotoxic insult. This is highly relevant in the context of paediatric cancer, and in particular, the neurocognitive symptoms associated with treatment, such as surgery, radio- and chemotherapy. The vulnerability of the developing brain may increase susceptibility to damage and persistent symptomology, aligning with reports of more severe neurocognitive dysfunction in children compared to adults. It is therefore surprising, given this intensified neurocognitive burden, that most of the pre-clinical, mechanistic research focuses exclusively on adult populations and extrapolates findings to paediatric cohorts. Given this dearth of age-specific research, throughout this review we will draw comparisons with neurodevelopmental disorders which share comparable pathways to cancer treatment related side-effects. Furthermore, we will examine the unique nuances of the paediatric brain along with the somatic systems which influence neurological function. In doing so, we will highlight the importance of developing in vitro and in vivo paediatric disease models to produce age-specific discovery and clinically translatable research.
Collapse
Affiliation(s)
- Maya R Davies
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia; Supportive Oncology Research Group, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.
| | - Zarina Greenberg
- South Australian Health and Medical Research Institute (SAHMRI), Laboratory of Human Neurophysiology and Genetics, Adelaide, SA, Australia
| | - Dannis G van Vuurden
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the weNetherlands
| | - Courtney B Cross
- Supportive Oncology Research Group, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Andrew C W Zannettino
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Cedric Bardy
- South Australian Health and Medical Research Institute (SAHMRI), Laboratory of Human Neurophysiology and Genetics, Adelaide, SA, Australia; Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Hannah R Wardill
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia; Supportive Oncology Research Group, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| |
Collapse
|
9
|
Di Gesù CM, Buffington SA. The early life exposome and autism risk: a role for the maternal microbiome? Gut Microbes 2024; 16:2385117. [PMID: 39120056 PMCID: PMC11318715 DOI: 10.1080/19490976.2024.2385117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Autism spectrum disorders (ASD) are highly heritable, heterogeneous neurodevelopmental disorders characterized by clinical presentation of atypical social, communicative, and repetitive behaviors. Over the past 25 years, hundreds of ASD risk genes have been identified. Many converge on key molecular pathways, from translational control to those regulating synaptic structure and function. Despite these advances, therapeutic approaches remain elusive. Emerging data unearthing the relationship between genetics, microbes, and immunity in ASD suggest an integrative physiology approach could be paramount to delivering therapeutic breakthroughs. Indeed, the advent of large-scale multi-OMIC data acquisition, analysis, and interpretation is yielding an increasingly mechanistic understanding of ASD and underlying risk factors, revealing how genetic susceptibility interacts with microbial genetics, metabolism, epigenetic (re)programming, and immunity to influence neurodevelopment and behavioral outcomes. It is now possible to foresee exciting advancements in the treatment of some forms of ASD that could markedly improve quality of life and productivity for autistic individuals. Here, we highlight recent work revealing how gene X maternal exposome interactions influence risk for ASD, with emphasis on the intrauterine environment and fetal neurodevelopment, host-microbe interactions, and the evolving therapeutic landscape for ASD.
Collapse
Affiliation(s)
- Claudia M. Di Gesù
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Shelly A. Buffington
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
10
|
Uba AI, Zengin G. In the quest for histone deacetylase inhibitors: current trends in the application of multilayered computational methods. Amino Acids 2023; 55:1709-1726. [PMID: 37367966 DOI: 10.1007/s00726-023-03297-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Histone deacetylase (HDAC) inhibitors have gained attention over the past three decades because of their potential in the treatment of different diseases including various forms of cancers, neurodegenerative disorders, autoimmune, inflammatory diseases, and other metabolic disorders. To date, 5 HDAC inhibitor drugs are marketed for the treatment of hematological malignancies and several drug-candidate HDAC inhibitors are at different stages of clinical trials. However, due to the toxic side effects of these drugs resulting from the lack of target selectivity, active studies are ongoing to design and develop either class-selective or isoform-selective inhibitors. Computational methods have aided the discovery of HDAC inhibitors with the desired potency and/or selectivity. These methods include ligand-based approaches such as scaffold hopping, pharmacophore modeling, three-dimensional quantitative structure-activity relationships (3D-QSAR); and structure-based virtual screening (molecular docking). The current trends involve the application of the combination of these methods and incorporating molecular dynamics simulations coupled with Poisson-Boltzmann/molecular mechanics generalized Born surface area (MM-PBSA/MM-GBSA) to improve the prediction of ligand binding affinity. This review aimed at understanding the current trends in applying these multilayered strategies and their contribution to the design/identification of HDAC inhibitors.
Collapse
Affiliation(s)
- Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, 34537, Turkey.
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, 42130, Turkey.
| |
Collapse
|
11
|
Liang J, Liu B, Dong X, Wang Y, Cai W, Zhang N, Zhang H. Decoding the role of gut microbiota in Alzheimer's pathogenesis and envisioning future therapeutic avenues. Front Neurosci 2023; 17:1242254. [PMID: 37790586 PMCID: PMC10544353 DOI: 10.3389/fnins.2023.1242254] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023] Open
Abstract
Alzheimer's disease (AD) emerges as a perturbing neurodegenerative malady, with a profound comprehension of its underlying pathogenic mechanisms continuing to evade our intellectual grasp. Within the intricate tapestry of human health and affliction, the enteric microbial consortium, ensconced within the milieu of the human gastrointestinal tract, assumes a role of cardinal significance. Recent epochs have borne witness to investigations that posit marked divergences in the composition of the gut microbiota between individuals grappling with AD and those favored by robust health. The composite vicissitudes in the configuration of the enteric microbial assembly are posited to choreograph a participatory role in the inception and progression of AD, facilitated by the intricate conduit acknowledged as the gut-brain axis. Notwithstanding, the precise nature of this interlaced relationship remains enshrouded within the recesses of obscurity, poised for an exhaustive revelation. This review embarks upon the endeavor to focalize meticulously upon the mechanistic sway exerted by the enteric microbiota upon AD, plunging profoundly into the execution of interventions that govern the milieu of enteric microorganisms. In doing so, it bestows relevance upon the therapeutic stratagems that form the bedrock of AD's management, all whilst casting a prospective gaze into the horizon of medical advancements.
Collapse
Affiliation(s)
- Junyi Liang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Bin Liu
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiaohong Dong
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Yueyang Wang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Wenhui Cai
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Ning Zhang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Hong Zhang
- Heilongjiang Jiamusi Central Hospital, Jiamusi, Heilongjiang, China
| |
Collapse
|
12
|
Costa CIS, da Silva Campos G, da Silva Montenegro EM, Wang JYT, Scliar M, Monfardini F, Zachi EC, Lourenço NCV, Chan AJS, Pereira SL, Engchuan W, Thiruvahindrapuram B, Zarrei M, Scherer SW, Passos-Bueno MR. Three generation families: Analysis of de novo variants in autism. Eur J Hum Genet 2023; 31:1017-1022. [PMID: 37280359 PMCID: PMC10474020 DOI: 10.1038/s41431-023-01398-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 06/08/2023] Open
Abstract
De novo variants (DNVs) analysis has proven to be a powerful approach to gene discovery in Autism Spectrum Disorder (ASD), which has not yet been shown in a Brazilian ASD cohort. The relevance of inherited rare variants has also been suggested, particularly in oligogenic models. We hypothesized that three-generation analyses of DNVs could provide new insights into the relevance of de novo and inherited variants across generations. To accomplish this goal, we performed whole-exome sequencing of 33 septet families composed of probands, parents, and grandparents (n = 231 individuals) and compared DNV rates (DNVr) between generations and those from two control cohorts. The DNVr in the probands (DNVr = 1.16) was marginally higher than in parents (DNVr = 0.60; p = 0.054), and in controls (DNVr = 0.68; p = 0.035, congenital heart disorder and DNVr = 0.70; p = 0.047, unaffected ASD siblings from Simons Simplex Collection). Moreover, most of the DNVs were found to have paternal origin in both generations (84.6%). Finally, we observed that 40% (6/15) of the DNVs in parents transmitted for probands are in ASD or ASD candidate genes, representing recently emerged risk variants to ASD in their families and suggest ZNF536, MSL2 and HDAC9 as ASD candidate genes. We did not observe an enrichment of risk variants nor sex bias of transmitted variants in the three generations, that can be due to sample size. These results further reinforce the relevance of de novo variants in ASD.
Collapse
Affiliation(s)
- Claudia I Samogy Costa
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Gabriele da Silva Campos
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Eduarda Morgana da Silva Montenegro
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Jaqueline Yu Ting Wang
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Marília Scliar
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Frederico Monfardini
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Elaine Cristina Zachi
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Naila C V Lourenço
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Ada J S Chan
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sergio L Pereira
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Worrawat Engchuan
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Bhooma Thiruvahindrapuram
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mehdi Zarrei
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics and McLaughlin Centre, University of Toronto, Toronto, ON, Canada
| | - Maria Rita Passos-Bueno
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil.
| |
Collapse
|
13
|
Yuan M, Yang B, Rothschild G, Mann JJ, Sanford LD, Tang X, Huang C, Wang C, Zhang W. Epigenetic regulation in major depression and other stress-related disorders: molecular mechanisms, clinical relevance and therapeutic potential. Signal Transduct Target Ther 2023; 8:309. [PMID: 37644009 PMCID: PMC10465587 DOI: 10.1038/s41392-023-01519-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/14/2023] [Accepted: 05/31/2023] [Indexed: 08/31/2023] Open
Abstract
Major depressive disorder (MDD) is a chronic, generally episodic and debilitating disease that affects an estimated 300 million people worldwide, but its pathogenesis is poorly understood. The heritability estimate of MDD is 30-40%, suggesting that genetics alone do not account for most of the risk of major depression. Another factor known to associate with MDD involves environmental stressors such as childhood adversity and recent life stress. Recent studies have emerged to show that the biological impact of environmental factors in MDD and other stress-related disorders is mediated by a variety of epigenetic modifications. These epigenetic modification alterations contribute to abnormal neuroendocrine responses, neuroplasticity impairment, neurotransmission and neuroglia dysfunction, which are involved in the pathophysiology of MDD. Furthermore, epigenetic marks have been associated with the diagnosis and treatment of MDD. The evaluation of epigenetic modifications holds promise for further understanding of the heterogeneous etiology and complex phenotypes of MDD, and may identify new therapeutic targets. Here, we review preclinical and clinical epigenetic findings, including DNA methylation, histone modification, noncoding RNA, RNA modification, and chromatin remodeling factor in MDD. In addition, we elaborate on the contribution of these epigenetic mechanisms to the pathological trait variability in depression and discuss how such mechanisms can be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Biao Yang
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gerson Rothschild
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - J John Mann
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Radiology, Columbia University, New York, NY, 10032, USA
| | - Larry D Sanford
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Xiangdong Tang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Canhua Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuang Wang
- Department of Pharmacology, and Provincial Key Laboratory of Pathophysiology in School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Medical Big Data Center, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
14
|
Dennison J, Mendez A, Szeto A, Lohse I, Wahlestedt C, Volmar CH. Low-Dose Chidamide Treatment Displays Sex-Specific Differences in the 3xTg-AD Mouse. Biomolecules 2023; 13:1324. [PMID: 37759724 PMCID: PMC10526199 DOI: 10.3390/biom13091324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Epigenetic compounds have become attractive small molecules for targeting the multifaceted aspects of Alzheimer's disease (AD). Although AD disproportionately affects women, most of the current literature investigating epigenetic compounds for the treatment of AD do not report sex-specific results. This is remarkable because there is rising evidence that epigenetic compounds intrinsically affect males and females differently. This manuscript explores the sexual dimorphism observed after chronic, low-dose administration of a clinically relevant histone deacetylase inhibitor, chidamide (Tucidinostat), in the 3xTg-AD mouse model. We found that chidamide treatment significantly improves glucose tolerance and increases expression of glucose transporters in the brain of males. We also report a decrease in total tau in chidamide-treated mice. Differentially expressed genes in chidamide-treated mice were much greater in males than females. Genes involved in the neuroinflammatory pathway and amyloid processing pathway were mostly upregulated in chidamide-treated males while downregulated in chidamide-treated females. This work highlights the need for drug discovery projects to consider sex as a biological variable to facilitate translation.
Collapse
Affiliation(s)
- Jessica Dennison
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.D.)
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Armando Mendez
- Diabetes Research Institute, Division of Endocrinology, Diabetes, and Metabolism, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Angela Szeto
- Diabetes Research Institute, Division of Endocrinology, Diabetes, and Metabolism, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ines Lohse
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.D.)
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Claes Wahlestedt
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.D.)
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Claude-Henry Volmar
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.D.)
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
15
|
Ricciardi NR, Modarresi F, Lohse I, Andrade NS, Newman IR, Brown JM, Borja C, Marples B, Wahlestedt CR, Volmar CH. Investigating the Synergistic Potential of Low-Dose HDAC3 Inhibition and Radiotherapy in Alzheimer's Disease Models. Mol Neurobiol 2023; 60:4811-4827. [PMID: 37171575 PMCID: PMC10293392 DOI: 10.1007/s12035-023-03373-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
We have previously shown that histone deacetylase (HDAC) inhibition and cranial radiotherapy (RT) independently improve molecular and behavioral Alzheimer's disease (AD)-like phenotypes. In the present study, we investigate the synergistic potential of using both RT and HDACi as a low-dose combination therapy (LDCT) to maximize disease modification (reduce neuroinflammation and amyloidogenic APP processing, increase neurotrophic gene expression) while minimizing the potential for treatment-associated side effects.LDCT consisted of daily administration of the HDAC3 inhibitor RGFP966 and/or bi-weekly cranial x-irradiation. Amyloid-beta precursor protein (APP) processing and innate immune response to LDCT were assessed in vitro and in vivo using human and murine cell models and 3xTg-AD mice. After 2 months of LDCT in mice, behavioral analyses as well as expression and modification of key AD-related targets (Aβ, tau, Csf1r, Bdnf, etc.) were assessed in the hippocampus (HIP) and prefrontal cortex (PFC).LDCT induced a tolerant, anti-inflammatory innate immune response in microglia and increased non-amyloidogenic APP processing in vitro. Both RT and LDCT improved the rate of learning and spatial memory in the Barnes maze test. LDCT induced a unique anti-AD HIP gene expression profile that included upregulation of neurotrophic genes and downregulation of inflammation-related genes. RT lowered HIP Aβ42/40 ratio and Bace1 protein, while LDCT lowered PFC p-tau181 and HIP Bace1 levels.Our study supports the rationale for combining complementary therapeutic approaches at low doses to target multifactorial AD pathology synergistically. Namely, LDCT with RGFP966 and cranial RT shows disease-modifying potential against a wide range of AD-related hallmarks.
Collapse
Affiliation(s)
- Natalie R. Ricciardi
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL 33136 USA
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136 USA
- Center for Therapeutic Innovation, University of Miami, Miami, FL 33136 USA
| | - Farzaneh Modarresi
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136 USA
| | - Ines Lohse
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136 USA
- Center for Therapeutic Innovation, University of Miami, Miami, FL 33136 USA
| | - Nadja S. Andrade
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL 33136 USA
- Center for Therapeutic Innovation, University of Miami, Miami, FL 33136 USA
| | - Ian R. Newman
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL 33136 USA
| | - Jonathan M. Brown
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136 USA
- Center for Therapeutic Innovation, University of Miami, Miami, FL 33136 USA
| | - Caroline Borja
- Center for Therapeutic Innovation, University of Miami, Miami, FL 33136 USA
| | - Brian Marples
- Department of Radiation Oncology, University of Miami, Miami, FL 33136 USA
| | - Claes R. Wahlestedt
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL 33136 USA
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136 USA
- Center for Therapeutic Innovation, University of Miami, Miami, FL 33136 USA
| | - Claude-Henry Volmar
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136 USA
- Center for Therapeutic Innovation, University of Miami, Miami, FL 33136 USA
| |
Collapse
|
16
|
Gladkova MG, Leidmaa E, Anderzhanova EA. Epidrugs in the Therapy of Central Nervous System Disorders: A Way to Drive on? Cells 2023; 12:1464. [PMID: 37296584 PMCID: PMC10253154 DOI: 10.3390/cells12111464] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
The polygenic nature of neurological and psychiatric syndromes and the significant impact of environmental factors on the underlying developmental, homeostatic, and neuroplastic mechanisms suggest that an efficient therapy for these disorders should be a complex one. Pharmacological interventions with drugs selectively influencing the epigenetic landscape (epidrugs) allow one to hit multiple targets, therefore, assumably addressing a wide spectrum of genetic and environmental mechanisms of central nervous system (CNS) disorders. The aim of this review is to understand what fundamental pathological mechanisms would be optimal to target with epidrugs in the treatment of neurological or psychiatric complications. To date, the use of histone deacetylases and DNA methyltransferase inhibitors (HDACis and DNMTis) in the clinic is focused on the treatment of neoplasms (mainly of a glial origin) and is based on the cytostatic and cytotoxic actions of these compounds. Preclinical data show that besides this activity, inhibitors of histone deacetylases, DNA methyltransferases, bromodomains, and ten-eleven translocation (TET) proteins impact the expression of neuroimmune inflammation mediators (cytokines and pro-apoptotic factors), neurotrophins (brain-derived neurotropic factor (BDNF) and nerve growth factor (NGF)), ion channels, ionotropic receptors, as well as pathoproteins (β-amyloid, tau protein, and α-synuclein). Based on this profile of activities, epidrugs may be favorable as a treatment for neurodegenerative diseases. For the treatment of neurodevelopmental disorders, drug addiction, as well as anxiety disorders, depression, schizophrenia, and epilepsy, contemporary epidrugs still require further development concerning a tuning of pharmacological effects, reduction in toxicity, and development of efficient treatment protocols. A promising strategy to further clarify the potential targets of epidrugs as therapeutic means to cure neurological and psychiatric syndromes is the profiling of the epigenetic mechanisms, which have evolved upon actions of complex physiological lifestyle factors, such as diet and physical exercise, and which are effective in the management of neurodegenerative diseases and dementia.
Collapse
Affiliation(s)
- Marina G. Gladkova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Este Leidmaa
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53127 Bonn, Germany
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 50411 Tartu, Estonia
| | | |
Collapse
|
17
|
Martella N, Pensabene D, Varone M, Colardo M, Petraroia M, Sergio W, La Rosa P, Moreno S, Segatto M. Bromodomain and Extra-Terminal Proteins in Brain Physiology and Pathology: BET-ing on Epigenetic Regulation. Biomedicines 2023; 11:biomedicines11030750. [PMID: 36979729 PMCID: PMC10045827 DOI: 10.3390/biomedicines11030750] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
BET proteins function as histone code readers of acetylated lysins that determine the positive regulation in transcription of genes involved in cell cycle progression, differentiation, inflammation, and many other pathways. In recent years, thanks to the development of BET inhibitors, interest in this protein family has risen for its relevance in brain development and function. For example, experimental evidence has shown that BET modulation affects neuronal activity and the expression of genes involved in learning and memory. In addition, BET inhibition strongly suppresses molecular pathways related to neuroinflammation. These observations suggest that BET modulation may play a critical role in the onset and during the development of diverse neurodegenerative and neuropsychiatric disorders, such as Alzheimer’s disease, fragile X syndrome, and Rett syndrome. In this review article, we summarize the most recent evidence regarding the involvement of BET proteins in brain physiology and pathology, as well as their pharmacological potential as targets for therapeutic purposes.
Collapse
Affiliation(s)
- Noemi Martella
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Daniele Pensabene
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
- Department of Science, University Roma Tre, Viale Marconi 446, 00146 Rome, Italy
- Laboratory of Neurodevelopment, Neurogenetics and Neuromolecular Biology, IRCCS Santa Lucia Foundation, 64 via del Fosso di Fiorano, 00179 Rome, Italy
| | - Michela Varone
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Mayra Colardo
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Michele Petraroia
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - William Sergio
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, via dei Marsi 78, 00185 Rome, Italy
| | - Sandra Moreno
- Department of Science, University Roma Tre, Viale Marconi 446, 00146 Rome, Italy
- Laboratory of Neurodevelopment, Neurogenetics and Neuromolecular Biology, IRCCS Santa Lucia Foundation, 64 via del Fosso di Fiorano, 00179 Rome, Italy
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
- Correspondence:
| |
Collapse
|
18
|
Phenolic compounds as histone deacetylase inhibitors: binding propensity and interaction insights from molecular docking and dynamics simulations. Amino Acids 2023:10.1007/s00726-023-03249-6. [PMID: 36781452 DOI: 10.1007/s00726-023-03249-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/06/2023] [Indexed: 02/15/2023]
Abstract
Histone deacetylases are well-established target enzymes involved in the pathology of different diseases including cancer and neurodegenerative disorders. The approved HDAC inhibitor drugs are associated with cellular toxicities. Different phenolic compounds have been shown to possess inhibitory activities against HDACs and are, therefore, considered safer alternatives to synthetic compounds. Here, we elucidated the binding mode and calculated the binding propensity of some of the top phenolic compounds against different isoforms representing different classes of Zn2+ ion-containing HDACs using the molecular docking approach. Our data reaffirmed the activity of the studied phenolic compounds against HDACs. Binding interaction analysis suggested that these compounds can block the activity of HDACs with or without binding to the active site zinc metal ion. Furthermore, molecular dynamics (MD) simulations were carried out on the selected crystal and docking complexes of each selected HDAC isoform. Analysis of root-mean-square displacement (RMSD) showed that the phenolic compounds demonstrated a stable binding mode over 50 ns in a way that is comparable to the cocrystal ligands. Together, these findings can aid future efforts in the search for natural inhibitors of HDACs.
Collapse
|
19
|
Micale V, Di Bartolomeo M, Di Martino S, Stark T, Dell'Osso B, Drago F, D'Addario C. Are the epigenetic changes predictive of therapeutic efficacy for psychiatric disorders? A translational approach towards novel drug targets. Pharmacol Ther 2023; 241:108279. [PMID: 36103902 DOI: 10.1016/j.pharmthera.2022.108279] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023]
Abstract
The etiopathogenesis of mental disorders is not fully understood and accumulating evidence support that clinical symptomatology cannot be assigned to a single gene mutation, but it involves several genetic factors. More specifically, a tight association between genes and environmental risk factors, which could be mediated by epigenetic mechanisms, may play a role in the development of mental disorders. Several data suggest that epigenetic modifications such as DNA methylation, post-translational histone modification and interference of microRNA (miRNA) or long non-coding RNA (lncRNA) may modify the severity of the disease and the outcome of the therapy. Indeed, the study of these mechanisms may help to identify patients particularly vulnerable to mental disorders and may have potential utility as biomarkers to facilitate diagnosis and treatment of psychiatric disorders. This article summarizes the most relevant preclinical and human data showing how epigenetic modifications can be central to the therapeutic efficacy of antidepressant and/or antipsychotic agents, as possible predictor of drugs response.
Collapse
Affiliation(s)
- Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
| | - Martina Di Bartolomeo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Tibor Stark
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Scientific Core Unit Neuroimaging, Max Planck Institute of Psychiatry, Munich, Germany
| | - Bernardo Dell'Osso
- Department of Biomedical and Clinical Sciences 'Luigi Sacco', University of Milan, Milan, Italy, Department of Mental Health, ASST Fatebenefratelli-Sacco, Milan, Italy; "Aldo Ravelli" Research Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan Medical School, Milan, Italy; Department of Psychiatry and Behavioral Sciences, Stanford University, CA, USA
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Jadhav VV, Han J, Fasina Y, Harrison SH. Connecting gut microbiomes and short chain fatty acids with the serotonergic system and behavior in Gallus gallus and other avian species. Front Physiol 2022; 13:1035538. [PMID: 36406988 PMCID: PMC9667555 DOI: 10.3389/fphys.2022.1035538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/03/2022] [Indexed: 12/05/2022] Open
Abstract
The chicken gastrointestinal tract has a diverse microbial community. There is increasing evidence for how this gut microbiome affects specific molecular pathways and the overall physiology, nervous system and behavior of the chicken host organism due to a growing number of studies investigating conditions such as host diet, antibiotics, probiotics, and germ-free and germ-reduced models. Systems-level investigations have revealed a network of microbiome-related interactions between the gut and state of health and behavior in chickens and other animals. While some microbial symbionts are crucial for maintaining stability and normal host physiology, there can also be dysbiosis, disruptions to nutrient flow, and other outcomes of dysregulation and disease. Likewise, alteration of the gut microbiome is found for chickens exhibiting differences in feather pecking (FP) behavior and this alteration is suspected to be responsible for behavioral change. In chickens and other organisms, serotonin is a chief neuromodulator that links gut microbes to the host brain as microbes modulate the serotonin secreted by the host's own intestinal enterochromaffin cells which can stimulate the central nervous system via the vagus nerve. A substantial part of the serotonergic network is conserved across birds and mammals. Broader investigations of multiple species and subsequent cross-comparisons may help to explore general functionality of this ancient system and its increasingly apparent central role in the gut-brain axis of vertebrates. Dysfunctional behavioral phenotypes from the serotonergic system moreover occur in both birds and mammals with, for example, FP in chickens and depression in humans. Recent studies of the intestine as a major site of serotonin synthesis have been identifying routes by which gut microbial metabolites regulate the chicken serotonergic system. This review in particular highlights the influence of gut microbial metabolite short chain fatty acids (SCFAs) on the serotonergic system. The role of SCFAs in physiological and brain disorders may be considerable because of their ability to cross intestinal as well as the blood-brain barriers, leading to influences on the serotonergic system via binding to receptors and epigenetic modulations. Examinations of these mechanisms may translate into a more general understanding of serotonergic system development within chickens and other avians.
Collapse
Affiliation(s)
- Vidya V. Jadhav
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Jian Han
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Yewande Fasina
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC, United States,*Correspondence: Yewande Fasina, ; Scott H. Harrison,
| | - Scott H. Harrison
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, United States,*Correspondence: Yewande Fasina, ; Scott H. Harrison,
| |
Collapse
|
21
|
Šalamon Arčan I, Kouter K, Videtič Paska A. Depressive disorder and antidepressants from an epigenetic point of view. World J Psychiatry 2022; 12:1150-1168. [PMID: 36186508 PMCID: PMC9521527 DOI: 10.5498/wjp.v12.i9.1150] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/27/2022] [Accepted: 08/05/2022] [Indexed: 02/05/2023] Open
Abstract
Depressive disorder is a complex, heterogeneous disease that affects approximately 280 million people worldwide. Environmental, genetic, and neurobiological factors contribute to the depressive state. Since the nervous system is susceptible to shifts in activity of epigenetic modifiers, these allow for significant plasticity and response to rapid changes in the environment. Among the most studied epigenetic modifications in depressive disorder is DNA methylation, with findings centered on the brain-derived neurotrophic factor gene, the glucocorticoid receptor gene, and the serotonin transporter gene. In order to identify biomarkers that would be useful in clinical settings, for diagnosis and for treatment response, further research on antidepressants and alterations they cause in the epigenetic landscape throughout the genome is needed. Studies on cornerstone antidepressants, such as selective serotonin reuptake inhibitors, selective serotonin and norepinephrine reuptake inhibitors, norepinephrine, and dopamine reuptake inhibitors and their effects on depressive disorder are available, but systematic conclusions on their effects are still hard to draw due to the highly heterogeneous nature of the studies. In addition, two novel drugs, ketamine and esketamine, are being investigated particularly in association with treatment of resistant depression, which is one of the hot topics of contemporary research and the field of precision psychiatry.
Collapse
Affiliation(s)
- Iris Šalamon Arčan
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana SI-1000, Slovenia
| | - Katarina Kouter
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana SI-1000, Slovenia
| | - Alja Videtič Paska
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana SI-1000, Slovenia
| |
Collapse
|
22
|
Mumtaz I, Ayaz MO, Khan MS, Manzoor U, Ganayee MA, Bhat AQ, Dar GH, Alghamdi BS, Hashem AM, Dar MJ, Ashraf GM, Maqbool T. Clinical relevance of biomarkers, new therapeutic approaches, and role of post-translational modifications in the pathogenesis of Alzheimer's disease. Front Aging Neurosci 2022; 14:977411. [PMID: 36158539 PMCID: PMC9490081 DOI: 10.3389/fnagi.2022.977411] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that causes progressive loss of cognitive functions like thinking, memory, reasoning, behavioral abilities, and social skills thus affecting the ability of a person to perform normal daily functions independently. There is no definitive cure for this disease, and treatment options available for the management of the disease are not very effective as well. Based on histopathology, AD is characterized by the accumulation of insoluble deposits of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs). Although several molecular events contribute to the formation of these insoluble deposits, the aberrant post-translational modifications (PTMs) of AD-related proteins (like APP, Aβ, tau, and BACE1) are also known to be involved in the onset and progression of this disease. However, early diagnosis of the disease as well as the development of effective therapeutic approaches is impeded by lack of proper clinical biomarkers. In this review, we summarized the current status and clinical relevance of biomarkers from cerebrospinal fluid (CSF), blood and extracellular vesicles involved in onset and progression of AD. Moreover, we highlight the effects of several PTMs on the AD-related proteins, and provide an insight how these modifications impact the structure and function of proteins leading to AD pathology. Finally, for disease-modifying therapeutics, novel approaches, and targets are discussed for the successful treatment and management of AD.
Collapse
Affiliation(s)
- Ibtisam Mumtaz
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
| | - Mir Owais Ayaz
- Laboratory of Cell and Molecular Biology, Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Centre for Scientific and Innovative Research, Ghaziabad, Utter Pradesh, India
| | - Mohamad Sultan Khan
- Neurobiology and Molecular Chronobiology Laboratory, Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Umar Manzoor
- Laboratory of Immune and Inflammatory Disease, Jeju Research Institute of Pharmaceutical Sciences, Jeju National University, Jeju, South Korea
| | - Mohd Azhardin Ganayee
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, India
| | - Aadil Qadir Bhat
- Laboratory of Cell and Molecular Biology, Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Centre for Scientific and Innovative Research, Ghaziabad, Utter Pradesh, India
| | - Ghulam Hassan Dar
- Sri Pratap College, Cluster University Srinagar, Jammu and Kashmir, India
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar M. Hashem
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Jamal Dar
- Laboratory of Cell and Molecular Biology, Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Centre for Scientific and Innovative Research, Ghaziabad, Utter Pradesh, India
| | - Gulam Md. Ashraf
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tariq Maqbool
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
| |
Collapse
|
23
|
Ji Y, Chen Z, Cen Z, Ye Y, Li S, Lu X, Shao Q, Wang D, Ji J, Ji Q. A comprehensive mouse brain acetylome-the cellular-specific distribution of acetylated brain proteins. Front Cell Neurosci 2022; 16:980815. [PMID: 36111245 PMCID: PMC9468461 DOI: 10.3389/fncel.2022.980815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Nε-lysine acetylation is a reversible posttranslational modification (PTM) involved in multiple physiological functions. Genetic and animal studies have documented the critical roles of protein acetylation in brain development, functions, and various neurological disorders. However, the underlying cellular and molecular mechanism are still partially understood. Here, we profiled and characterized the mouse brain acetylome and investigated the cellular distribution of acetylated brain proteins. We identified 1,818 acetylated proteins, including 5,196 acetylation modification sites, using a modified workflow comprising filter-aided sample preparation (FSAP), acetylated peptides enrichment, and MS analysis without pre- or post-fraction. Bioinformatics analysis indicated these acetylated mouse brain proteins were mainly located in the myelin sheath, mitochondrial inner membrane, and synapse, as well as their involvement in multiple neurological disorders. Manual annotation revealed that a set of brain-specific proteins were acetylation-modified. The acetylation of three brain-specific proteins was verified, including neurofilament light polypeptide (NEFL), 2’,3’-cyclic-nucleotide 3’-phosphodiesterase (CNP), and neuromodulin (GAP43). Further immunofluorescence staining illustrated that acetylated proteins were mainly distributed in the nuclei of cortex neurons and axons of hippocampal neurons, sparsely distributed in the nuclei of microglia and astrocytes, and the lack of distribution in both cytoplasm and nuclei of cerebrovascular endothelial cells. Together, this study provided a comprehensive mouse brain acetylome and illustrated the cellular-specific distribution of acetylated proteins in the mouse brain. These data will contribute to understanding and deciphering the molecular and cellular mechanisms of protein acetylation in brain development and neurological disorders. Besides, we proposed some problems that need to be solved in future brain acetylome research.
Collapse
Affiliation(s)
- Yuhua Ji
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zixin Chen
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ziqi Cen
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yuting Ye
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Shuyuan Li
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiaoshuang Lu
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qian Shao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Donghao Wang
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Juling Ji
- Department of Pathology, College of Medicine, Nantong University, Nantong, China
- *Correspondence: Juling Ji,
| | - Qiuhong Ji
- Department of Pathology, College of Medicine, Nantong University, Nantong, China
- Qiuhong Ji,
| |
Collapse
|
24
|
Epigenetics of Autism Spectrum Disorder: Histone Deacetylases. Biol Psychiatry 2022; 91:922-933. [PMID: 35120709 DOI: 10.1016/j.biopsych.2021.11.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 01/08/2023]
Abstract
The etiology of autism spectrum disorder (ASD) remains unknown, but gene-environment interactions, mediated through epigenetic mechanisms, are thought to be a key contributing factor. Prenatal environmental factors have been shown to be associated with both increased risk of ASD and altered histone deacetylases (HDACs) or acetylation levels. The relationship between epigenetic changes and gene expression in ASD suggests that alterations in histone acetylation, which lead to changes in gene transcription, may play a key role in ASD. Alterations in the acetylome have been demonstrated for several genes in ASD, including genes involved in synaptic function, neuronal excitability, and immune responses, which are mechanisms previously implicated in ASD. We review preclinical and clinical studies that investigated HDACs and autism-associated behaviors and discuss risk genes for ASD that code for proteins associated with HDACs. HDACs are also implicated in neurodevelopmental disorders with a known genetic etiology, such as 15q11-q13 duplication and Phelan-McDermid syndrome, which share clinical features and diagnostic comorbidities (e.g., epilepsy, anxiety, and intellectual disability) with ASD. Furthermore, we highlight factors that affect the behavioral phenotype of acetylome changes, including sensitive developmental periods and brain region specificity in the context of epigenetic programming.
Collapse
|
25
|
Srivastava A, Banerjee J, Dubey V, Tripathi M, Chandra PS, Sharma MC, Lalwani S, Siraj F, Doddamani R, Dixit AB. Role of Altered Expression, Activity and Sub-cellular Distribution of Various Histone Deacetylases (HDACs) in Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis. Cell Mol Neurobiol 2022; 42:1049-1064. [PMID: 33258018 PMCID: PMC11441253 DOI: 10.1007/s10571-020-00994-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022]
Abstract
Histone deacetylases (HDACs) have been described to have both neurotoxic and neuroprotective roles, and partly, depend on its sub-cellular distribution. HDAC inhibitors have a long history of use in the treatment of various neurological disorders including epilepsy. Key role of HDACs in GABAergic neurotransmission, synaptogenesis, synaptic plasticity and memory formation was demonstrated whereas very less is known about their role in drug-resistant epilepsy pathologies. The present study was aimed to investigate the changes in the expression of HDACs, activity and its sub-cellular distribution in mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) patients. For this study, surgically resected hippocampal tissue specimens of 28 MTLE-HS patients and 20 hippocampus from post-mortem cases were obtained. Real-time PCR was done to analyse the mRNA expression. HDAC activity and the protein levels of HDACs in cytoplasm as well as nucleus were measured spectrophotometrically. Further, sub-cellular localization of HDACs was characterized by immunofluorescence. Significant upregulation of HDAC1, HDAC2, HDAC4, HDAC5, HDAC6, HDAC10 and HDAC11 mRNA were observed in MTLE-HS. Alterations in the mRNA expression of glutamate and gamma-aminobutyric acid (GABA) receptor subunits have been also demonstrated. We observed significant increase of HDAC activity and nuclear level of HDAC1, HDAC2, HDAC5 and HDAC11 in the hippocampal samples obtained from patients with MTLE-HS. Moreover, we found altered cytoplasmic level of HDAC4, HDAC6 and HDAC10 in the hippocampal sample obtained from patients with MTLE-HS. Alterations in the level of HDACs could potentially be part of a dynamic transcription regulation associated with MTLE-HS. Changes in cytoplasmic level of HDAC4, 6 and 10 suggest that cytoplasmic substrates may play a crucial role in the pathophysiology of MTLE-HS. Knowledge regarding expression pattern and sub-cellular distribution of HDACs may help to devise specific HDACi therapy for epilepsy.
Collapse
Affiliation(s)
- Arpna Srivastava
- Centre of Excellence for Epilepsy, AIIMS, New Delhi, India
- Department of Neurosurgery, AIIMS, New Delhi, India
| | - Jyotirmoy Banerjee
- Centre of Excellence for Epilepsy, AIIMS, New Delhi, India
- Department of Biophysics, AIIMS, New Delhi, India
| | - Vivek Dubey
- Department of Biophysics, AIIMS, New Delhi, India
| | - Manjari Tripathi
- Centre of Excellence for Epilepsy, AIIMS, New Delhi, India
- Department of Neurology, AIIMS, New Delhi, India
| | - P Sarat Chandra
- Centre of Excellence for Epilepsy, AIIMS, New Delhi, India
- Department of Neurosurgery, AIIMS, New Delhi, India
| | - M C Sharma
- Department of Pathology, AIIMS, New Delhi, India
| | - Sanjeev Lalwani
- Department of Forensic Medicine and Toxicology, AIIMS, New Delhi, India
| | - Fouzia Siraj
- National Institute of Pathology, New Delhi, India
| | | | - Aparna Banerjee Dixit
- Centre of Excellence for Epilepsy, AIIMS, New Delhi, India.
- Dr B R Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi, India.
| |
Collapse
|
26
|
Muñoz-Moreno JA, Carrillo-Molina S, Martínez-Zalacaín I, Miranda C, Manzardo C, Coll P, Meulbroek M, Hanke T, Garolera M, Miró JM, Brander C, Clotet B, Soriano-Mas C, Moltó J, Mothe B. Preserved central nervous system functioning after use of romidepsin as a latency-reversing agent in an HIV cure strategy. AIDS 2022; 36:363-372. [PMID: 34750296 DOI: 10.1097/qad.0000000000003121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To assess the central nervous system (CNS) impact of a kick&kill HIV cure strategy using therapeutic vaccine MVA.HIVconsv and the histone deacetylase inhibitor (HDACi) romidepsin (RMD) as latency-reversing agent. DESIGN Neurological observational substudy of the BCN02 trial (NCT02616874), a proof-of-concept, open-label, single-arm, phase I clinical trial testing the safety and immunogenicity of the MVA.HIVconsv vaccine and RMD in early-treated HIV-1-infected individuals. A monitored antiretroviral pause (MAP) was performed, with cART resumption after 2 pVL more than 2000 copies/ml. Reinitiated participants were followed for 24 weeks. METHODS Substudy participation was offered to all BCN02 participants (N = 15). Evaluations covered cognitive, functional, and brain imaging outcomes, performed before RMD administration (pre-RMD), after three RMD infusions (post-RMD), and at the end of the study (EoS). A group of early-treated HIV-1-infected individuals with matched clinical characteristics was additionally recruited (n = 10). Primary endpoint was change in a global cognitive score (NPZ-6). RESULTS Eleven participants from BCN02 trial were enrolled. No significant changes were observed in cognitive, functional, or brain imaging outcomes from pre-RMD to post-RMD. No relevant alterations were detected from pre-RMD to EoS either. Scores at EoS were similar in participants off cART for 32 weeks (n = 3) and those who resumed therapy for 24 weeks (n = 7). Controls showed comparable punctuations in NPZ-6 across all timepoints. CONCLUSION No detrimental effects on cognitive status, functional outcomes, or brain imaging parameters were observed after using the HDACi RMD as latency-reversing agent with the MVA.HIVconsv vaccine in early-treated HIV-1-infected individuals. CNS safety was also confirmed after completion of the MAP.
Collapse
Affiliation(s)
- Jose A Muñoz-Moreno
- Fundació Lluita contra la SIDA (FLS), Hospital Universitari Germans Trias i Pujol, Badalona
- Faculty of Psychology and Education Sciences, Universitat Oberta de Catalunya (UOC), Barcelona
| | - Sara Carrillo-Molina
- Fundació Lluita contra la SIDA (FLS), Hospital Universitari Germans Trias i Pujol, Badalona
| | - Ignacio Martínez-Zalacaín
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat
- Department of Clinical Sciences, Universitat de Barcelona (UB)
| | - Cristina Miranda
- Fundació Lluita contra la SIDA (FLS), Hospital Universitari Germans Trias i Pujol, Badalona
| | - Christian Manzardo
- Infectious Diseases Department, Hospital Clínic-IDIBAPS
- University of Barcelona (UB)
| | - Pep Coll
- Fundació Lluita contra la SIDA (FLS), Hospital Universitari Germans Trias i Pujol, Badalona
- Projecte dels NOMS - Hispanosida, BCN Checkpoint, Barcelona
- IrsiCaixa AIDS Research Institute - HIVACAT, Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain
| | | | - Tomáš Hanke
- The Jenner Institute, University of Oxford, Oxford, UK
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Maite Garolera
- Neuropsychology Unit, Consorci Sanitari Hospital de Terrassa (CSHT), Terrassa
- Grup de Recerca Consolidat en Neuropsicologia, Universitat de Barcelona (UB), Barcelona
| | - Josep M Miró
- Infectious Diseases Department, Hospital Clínic-IDIBAPS
- University of Barcelona (UB)
| | - Christian Brander
- IrsiCaixa AIDS Research Institute - HIVACAT, Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain
- Faculty of Medicine, Universitat de Vic - Universitat Central de Catalunya (UVic-UCC), Vic
- ICREA, Barcelona
| | - Bonaventura Clotet
- Fundació Lluita contra la SIDA (FLS), Hospital Universitari Germans Trias i Pujol, Badalona
- IrsiCaixa AIDS Research Institute - HIVACAT, Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain
- Faculty of Medicine, Universitat de Vic - Universitat Central de Catalunya (UVic-UCC), Vic
- Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Badalona
| | - Carles Soriano-Mas
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat
- CIBER Salud Mental (CIBERSAM), Carlos III Health Institute, Barcelona
- Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Catalonia, Spain
| | - José Moltó
- Fundació Lluita contra la SIDA (FLS), Hospital Universitari Germans Trias i Pujol, Badalona
- Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Badalona
| | - Beatriz Mothe
- Fundació Lluita contra la SIDA (FLS), Hospital Universitari Germans Trias i Pujol, Badalona
- IrsiCaixa AIDS Research Institute - HIVACAT, Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain
- Faculty of Medicine, Universitat de Vic - Universitat Central de Catalunya (UVic-UCC), Vic
- Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Badalona
| |
Collapse
|
27
|
Renzini A, D’Onghia M, Coletti D, Moresi V. Histone Deacetylases as Modulators of the Crosstalk Between Skeletal Muscle and Other Organs. Front Physiol 2022; 13:706003. [PMID: 35250605 PMCID: PMC8895239 DOI: 10.3389/fphys.2022.706003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle plays a major role in controlling body mass and metabolism: it is the most abundant tissue of the body and a major source of humoral factors; in addition, it is primarily responsible for glucose uptake and storage, as well as for protein metabolism. Muscle acts as a metabolic hub, in a crosstalk with other organs and tissues, such as the liver, the brain, and fat tissue. Cytokines, adipokines, and myokines are pivotal mediators of such crosstalk. Many of these circulating factors modulate histone deacetylase (HDAC) expression and/or activity. HDACs form a numerous family of enzymes, divided into four classes based on their homology to their orthologs in yeast. Eleven family members are considered classic HDACs, with a highly conserved deacetylase domain, and fall into Classes I, II, and IV, while class III members are named Sirtuins and are structurally and mechanistically distinct from the members of the other classes. HDACs are key regulators of skeletal muscle metabolism, both in physiological conditions and following metabolic stress, participating in the highly dynamic adaptative responses of the muscle to external stimuli. In turn, HDAC expression and activity are closely regulated by the metabolic demands of the skeletal muscle. For instance, NAD+ levels link Class III (Sirtuin) enzymatic activity to the energy status of the cell, and starvation or exercise affect Class II HDAC stability and intracellular localization. SUMOylation or phosphorylation of Class II HDACs are modulated by circulating factors, thus establishing a bidirectional link between HDAC activity and endocrine, paracrine, and autocrine factors. Indeed, besides being targets of adipo-myokines, HDACs affect the synthesis of myokines by skeletal muscle, altering the composition of the humoral milieu and ultimately contributing to the muscle functioning as an endocrine organ. In this review, we discuss recent findings on the interplay between HDACs and circulating factors, in relation to skeletal muscle metabolism and its adaptative response to energy demand. We believe that enhancing knowledge on the specific functions of HDACs may have clinical implications leading to the use of improved HDAC inhibitors for the treatment of metabolic syndromes or aging.
Collapse
Affiliation(s)
- Alessandra Renzini
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Marco D’Onghia
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Dario Coletti
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
- Biological Adaptation and Ageing, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Viviana Moresi
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
- Institute of Nanotechnology (Nanotec), National Research Council, Rome, Italy
| |
Collapse
|
28
|
Grabowska A, Sas-Nowosielska H, Wojtas B, Holm-Kaczmarek D, Januszewicz E, Yushkevich Y, Czaban I, Trzaskoma P, Krawczyk K, Gielniewski B, Martin-Gonzalez A, Filipkowski RK, Olszynski KH, Bernas T, Szczepankiewicz AA, Sliwinska MA, Kanhema T, Bramham CR, Bokota G, Plewczynski D, Wilczynski GM, Magalska A. Activation-induced chromatin reorganization in neurons depends on HDAC1 activity. Cell Rep 2022; 38:110352. [PMID: 35172152 DOI: 10.1016/j.celrep.2022.110352] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 11/09/2021] [Accepted: 01/19/2022] [Indexed: 11/23/2022] Open
Abstract
Spatial chromatin organization is crucial for transcriptional regulation and might be particularly important in neurons since they dramatically change their transcriptome in response to external stimuli. We show that stimulation of neurons causes condensation of large chromatin domains. This phenomenon can be observed in vitro in cultured rat hippocampal neurons as well as in vivo in the amygdala and hippocampal neurons. Activity-induced chromatin condensation is an active, rapid, energy-dependent, and reversible process. It involves calcium-dependent pathways but is independent of active transcription. It is accompanied by the redistribution of posttranslational histone modifications and rearrangements in the spatial organization of chromosome territories. Moreover, it leads to the reorganization of nuclear speckles and active domains located in their proximity. Finally, we find that the histone deacetylase HDAC1 is the key regulator of this process. Our results suggest that HDAC1-dependent chromatin reorganization constitutes an important level of transcriptional regulation in neurons.
Collapse
Affiliation(s)
- Agnieszka Grabowska
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Hanna Sas-Nowosielska
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Bartosz Wojtas
- Laboratory of Sequencing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Dagmara Holm-Kaczmarek
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Elzbieta Januszewicz
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Yana Yushkevich
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Iwona Czaban
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Pawel Trzaskoma
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Katarzyna Krawczyk
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Bartlomiej Gielniewski
- Laboratory of Sequencing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Ana Martin-Gonzalez
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, San Juan de Alicante, 03550 Alicante, Spain
| | - Robert Kuba Filipkowski
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Krzysztof Hubert Olszynski
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Tytus Bernas
- Laboratory of Imaging Tissue Structure and Function, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; Department of Anatomy and Neurology, VCU School of Medicine, Richmond, VA 23284, USA
| | - Andrzej Antoni Szczepankiewicz
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Malgorzata Alicja Sliwinska
- Laboratory of Imaging Tissue Structure and Function, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Tambudzai Kanhema
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway; KG Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, 5020 Bergen, Norway
| | - Clive R Bramham
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway; KG Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, 5020 Bergen, Norway
| | - Grzegorz Bokota
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland; Institute of Informatics, University of Warsaw, 02-097 Warsaw, Poland
| | - Dariusz Plewczynski
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland; Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland
| | - Grzegorz Marek Wilczynski
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Adriana Magalska
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland.
| |
Collapse
|
29
|
Zhang H, Chen Y, Wang Z, Xie G, Liu M, Yuan B, Chai H, Wang W, Cheng P. Implications of Gut Microbiota in Neurodegenerative Diseases. Front Immunol 2022; 13:785644. [PMID: 35237258 PMCID: PMC8882587 DOI: 10.3389/fimmu.2022.785644] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
The morbidity associated with neurodegenerative diseases (NDs) is increasing, posing a threat to the mental and physical quality of life of humans. The crucial effect of microbiota on brain physiological processes is mediated through a bidirectional interaction, termed as the gut–brain axis (GBA), which is being investigated in studies. Many clinical and laboratory trials have indicated the importance of microbiota in the development of NDs via various microbial molecules that transmit from the gut to the brain across the GBA or nervous system. In this review, we summarize the implications of gut microbiota in ND, which will be beneficial for understanding the etiology and progression of NDs that may in turn help in developing ND interventions and clinical treatments for these diseases.
Collapse
Affiliation(s)
- Haoming Zhang
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yijia Chen
- School of Life Science, Fudan University, Shanghai, China
| | - Zifan Wang
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Gaijie Xie
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Mingming Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Boyu Yuan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hongxia Chai
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wei Wang
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
- *Correspondence: Wei Wang, ; Ping Cheng,
| | - Ping Cheng
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- *Correspondence: Wei Wang, ; Ping Cheng,
| |
Collapse
|
30
|
Histone Modifications in Neurological Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1382:95-107. [DOI: 10.1007/978-3-031-05460-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Bhatia S, Yan Y, Ly M, Wells PG. Sex- and OGG1-dependent reversal of in utero ethanol-initiated changes in postnatal behaviour by neonatal treatment with the histone deacetylase inhibitor trichostatin A (TSA) in oxoguanine glycosylase 1 (Ogg1) knockout mice. Toxicol Lett 2021; 356:121-131. [PMID: 34923047 DOI: 10.1016/j.toxlet.2021.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022]
Abstract
Oxoguanine glycosylase 1 (OGG1) is both a DNA repair enzyme and an epigenetic modifier. We assessed behavioural abnormalities in OGG1-deficient progeny exposed once in utero to a low dose of ethanol (EtOH) and treated postnatally with a global histone deacetylase inhibitor, trichostatin A (TSA). The goal of this study was to determine if neurodevelopmental disorders initiated in the fetal brain by in utero exposure to EtOH could be mitigated by postnatal treatment with TSA. EtOH and TSA alone improved preference for novel location (short-term, 90 min) and novel object (long-term, 24 h) sex- and OGG1-dependently. Combined EtOH/TSA treatment reversed these effects in the short-term novel location test sex- and OGG1-dependently. In females but not males, the incidence of high shredders of nesting material was not altered by either TSA or EtOH alone, but was reduced by combined EtOH/TSA treatment in +/+ progeny. Similar but non-significant effects were observed in Ogg1 -/- females. Accelerated rotarod performance was enhanced by both EtOH and TSA alone in only male Ogg1 +/+ but not -/- progeny, and was not altered by combined EtOH/TSA exposure. The OGG1-dependent effects of EtOH and TSA particularly on novel location and the incidence of high shredders, and the reversal of EtOH effects on these parameters by combined EtOH/TSA treatment, suggests both xenobiotics may alter behaviour via a mechanism involving OGG1 acting as an epigenetic modifier, in addition to repairing DNA damage. These preliminary results suggest that the postnatal use of more selective epigenetic modifying agents may constitute a novel strategy for mitigating some components of ROS-initiated neurodevelopmental disorders.
Collapse
Affiliation(s)
- Shama Bhatia
- Dept. of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada; Centre for Pharmaceutical Oncology, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Yongran Yan
- Dept. of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mina Ly
- Dept. of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Peter G Wells
- Dept. of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada; Centre for Pharmaceutical Oncology, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada; Dept. of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
32
|
Milbocker KA, Campbell TS, Collins N, Kim S, Smith IF, Roth TL, Klintsova AY. Glia-Driven Brain Circuit Refinement Is Altered by Early-Life Adversity: Behavioral Outcomes. Front Behav Neurosci 2021; 15:786234. [PMID: 34924972 PMCID: PMC8678604 DOI: 10.3389/fnbeh.2021.786234] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
Early-life adversity (ELA), often clinically referred to as "adverse childhood experiences (ACE)," is the exposure to stress-inducing events in childhood that can result in poor health outcomes. ELA negatively affects neurodevelopment in children and adolescents resulting in several behavioral deficits and increasing the risk of developing a myriad of neuropsychiatric disorders later in life. The neurobiological mechanisms by which ELA alters neurodevelopment in childhood have been the focus of numerous reviews. However, a comprehensive review of the mechanisms affecting adolescent neurodevelopment (i.e., synaptic pruning and myelination) is lacking. Synaptic pruning and myelination are glia-driven processes that are imperative for brain circuit refinement during the transition from adolescence to adulthood. Failure to optimize brain circuitry between key brain structures involved in learning and memory, such as the hippocampus and prefrontal cortex, leads to the emergence of maladaptive behaviors including increased anxiety or reduced executive function. As such, we review preclinical and clinical literature to explore the immediate and lasting effects of ELA on brain circuit development and refinement. Finally, we describe a number of therapeutic interventions best-suited to support adolescent neurodevelopment in children with a history of ELA.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anna Y. Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
33
|
Agarwal D, Kumari R, Ilyas A, Tyagi S, Kumar R, Poddar NK. Crosstalk between epigenetics and mTOR as a gateway to new insights in pathophysiology and treatment of Alzheimer's disease. Int J Biol Macromol 2021; 192:895-903. [PMID: 34662652 DOI: 10.1016/j.ijbiomac.2021.10.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/19/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022]
Abstract
Epigenetics in the current times has become a gateway to acquire answers to questions that were left unanswered by classical and modern genetics, be it resolving the complex mystery behind neurodegenerative disorders or understanding the complexity behind life-threatening cancers. It has presented to the world an entirely new dimension and has added a dynamic angle to an otherwise static field of genetics. Alzheimer's disease is one of the most prevalent neurodegenerative disorders is largely found to be a result of alterations in epigenetic pathways. These changes majorly comprise an imbalance in DNA methylation levels and altered acetylation and methylation of histones. They are often seen to cross-link with metabolic regulatory pathways such as that of mTOR, contributing significantly to the pathophysiology of AD. This review focusses on the study of the interplay of the mTOR regulatory pathway with that of epigenetic machinery that may elevate the rate of early diagnosis and prove to be a gateway to the development of an efficient and novel therapeutic strategy for the treatment of Alzheimer's disease at an early stage.
Collapse
Affiliation(s)
- Disha Agarwal
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India
| | - Ruchika Kumari
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India
| | - Ashal Ilyas
- Department of Biotechnology, Invertis University, Bareilly 243 123, India
| | - Shweta Tyagi
- HNo-88, Ranjit Avenue, Bela Chowk, Kota Nihang, Punjab 140001, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Uttar Pradesh. India
| | - Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India.
| |
Collapse
|
34
|
Epigenetic Regulatory Dynamics in Models of Methamphetamine-Use Disorder. Genes (Basel) 2021; 12:genes12101614. [PMID: 34681009 PMCID: PMC8535492 DOI: 10.3390/genes12101614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023] Open
Abstract
Methamphetamine (METH)-use disorder (MUD) is a very serious, potentially lethal, biopsychosocial disease. Exposure to METH causes long-term changes to brain regions involved in reward processing and motivation, leading vulnerable individuals to engage in pathological drug-seeking and drug-taking behavior that can remain a lifelong struggle. It is crucial to elucidate underlying mechanisms by which exposure to METH leads to molecular neuroadaptive changes at transcriptional and translational levels. Changes in gene expression are controlled by post-translational modifications via chromatin remodeling. This review article focuses on the brain-region specific combinatorial or distinct epigenetic modifications that lead to METH-induced changes in gene expression.
Collapse
|
35
|
Restoration of HDAC1 Enzymatic Activity after Stroke Protects Neurons from Ischemia/Reperfusion Damage and Attenuates Behavioral Deficits in Rats. Int J Mol Sci 2021; 22:ijms221910654. [PMID: 34638996 PMCID: PMC8508747 DOI: 10.3390/ijms221910654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
A therapeutic approach for promoting neuroprotection and brain functional regeneration after strokes is still lacking. Histone deacetylase 1 (HDAC1), which belongs to the histone deacetylase family, is involved in the transcriptional repression of cell-cycle-modulated genes and DNA damage repair during neurodegeneration. Our previous data showed that the protein level and enzymatic activity of HDAC1 are deregulated in stroke pathogenesis. A novel compound named 5104434 exhibits efficacy to selectively activate HDAC1 enzymatic function in neurodegeneration, but its potential in stroke therapy is still unknown. In this study, we adopted an induced rat model with cerebral ischemia using the vessel dilator endothelin-1 to evaluate the potential of compound 5104434. Our results indicated compound 5104434 selectively restored HDAC1 enzymatic activity after oxygen and glucose deprivation, preserved neurite morphology, and protected neurons from ischemic damage in vitro. In addition, compound 5104434 attenuated the infarct volume, neuronal loss, apoptosis, DNA damage, and DNA breaks in cerebral ischemia rats. It further ameliorated the behavioral outcomes of neuromuscular response, balance, forepaw strength, and functional recovery. Collectively, our data support the efficacy of compound 5104434 in stroke therapy and contend that it can be considered for clinical trial evaluation.
Collapse
|
36
|
Berding K, Vlckova K, Marx W, Schellekens H, Stanton C, Clarke G, Jacka F, Dinan TG, Cryan JF. Diet and the Microbiota-Gut-Brain Axis: Sowing the Seeds of Good Mental Health. Adv Nutr 2021; 12:1239-1285. [PMID: 33693453 PMCID: PMC8321864 DOI: 10.1093/advances/nmaa181] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, the gut microbiota has emerged as a key component in regulating brain processes and behavior. Diet is one of the major factors involved in shaping the gut microbiota composition across the lifespan. However, whether and how diet can affect the brain via its effects on the microbiota is only now beginning to receive attention. Several mechanisms for gut-to-brain communication have been identified, including microbial metabolites, immune, neuronal, and metabolic pathways, some of which could be prone to dietary modulation. Animal studies investigating the potential of nutritional interventions on the microbiota-gut-brain axis have led to advancements in our understanding of the role of diet in this bidirectional communication. In this review, we summarize the current state of the literature triangulating diet, microbiota, and host behavior/brain processes and discuss potential underlying mechanisms. Additionally, determinants of the responsiveness to a dietary intervention and evidence for the microbiota as an underlying modulator of the effect of diet on brain health are outlined. In particular, we emphasize the understudied use of whole-dietary approaches in this endeavor and the need for greater evidence from clinical populations. While promising results are reported, additional data, specifically from clinical cohorts, are required to provide evidence-based recommendations for the development of microbiota-targeted, whole-dietary strategies to improve brain and mental health.
Collapse
Affiliation(s)
| | | | - Wolfgang Marx
- Deakin University, iMPACT – the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, VIC,Australia
| | - Harriet Schellekens
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - Felice Jacka
- Deakin University, iMPACT – the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, VIC,Australia
- Centre for Adolescent Health, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Black Dog Institute, Randwick, NSW, Australia
- College of Public Health, Medical & Veterinary Sciences, James Cook University, Douglas, QLD, Australia
| | - Timothy G Dinan
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
37
|
Novel treatments for autism spectrum disorder based on genomics and systems biology. Pharmacol Ther 2021; 230:107939. [PMID: 34174273 DOI: 10.1016/j.pharmthera.2021.107939] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder with a complex underlying genetic architecture. There are currently no known pharmacologic treatments for the core ASD symptoms of social deficits and restricted/ repetitive behavior. However, there are dozens of clinical trials currently underway that are testing the impact of novel and existing agents on core and associated symptoms in ASD. METHODS We present a narrative synthesis of the historical and contemporary challenges to drug discovery in ASD. We then provide an overview of novel treatments currently under investigation from a genomics and systems biology perspective. RESULTS Data driven network and cluster analyses suggest alterations in transcriptional regulation, chromatin remodelling, synaptic transmission, neuropeptide signalling, and/or immunological mechanisms may contribute to or underlie the development of ASD. Agents and upcoming trials targeting each of the above listed systems are reviewed. CONCLUSION Identifying effective pharmacologic treatments for the core and associated symptom domains in ASD will require further collaboration and innovation in the areas of outcome measurement, biomarker research, and genomics, as well as systematic efforts to identify and treat subgroups of individuals with ASD who may be differentially responsive to specific treatments.
Collapse
|
38
|
Diet-induced dysbiosis of the maternal gut microbiome in early life programming of neurodevelopmental disorders. Neurosci Res 2021; 168:3-19. [PMID: 33992660 DOI: 10.1016/j.neures.2021.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
The maternal gut microbiome plays a critical role in fetal and early postnatal development, shaping fundamental processes including immune maturation and brain development, among others. Consequently, it also contributes to fetal programming of health and disease. Over the last decade, epidemiological studies and work in preclinical animal models have begun to uncover a link between dysbiosis of the maternal gut microbiome and neurodevelopmental disorders in offspring. Neurodevelopmental disorders are caused by both genetic and environmental factors, and their interactions; however, clinical heterogeneity, phenotypic variability, and comorbidities make identification of underlying mechanisms difficult. Among environmental factors, exposure to maternal obesity in utero confers a significant increase in risk for neurodevelopmental disorders. Obesogenic diets in humans, non-human primates, and rodents induce functional modifications in maternal gut microbiome composition, which animal studies suggest are causally related to adverse mental health outcomes in offspring. Here, we review evidence linking maternal diet-induced gut dysbiosis to neurodevelopmental disorders and discuss how it could affect pre- and early postnatal brain development. We are hopeful that this burgeoning field of research will revolutionize antenatal care by leading to accessible prophylactic strategies, such as prenatal probiotics, to improve mental health outcomes in children affected by maternal diet-induced obesity.
Collapse
|
39
|
Xu S, Koo JW, Kang UG. Comparison of the sensitizing effects of cocaine and ethanol on histone deacetylase isoforms in the rat brain. Neuroreport 2021; 32:423-430. [PMID: 33788811 DOI: 10.1097/wnr.0000000000001587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Behavioral sensitization, an animal model of drug addiction, persists for a prolonged period after repeated exposure to drugs of abuse. The persistence of an addiction behavioral phenotype suggests long-lasting changes in gene regulation at the epigenetic level. We measured the expression of histone deacetylases (HDACs) isoforms in the prefrontal cortex and dorsal striatum following the development of sensitization to cocaine (15 mg/kg, administered five times) and ethanol (0.5 g/kg, administered 15 times) to investigate the epigenetic changes that mediate sensitization. Animals sensitized to ethanol exhibited augmented locomotor activity in response to the cocaine challenge. Similarly, those sensitized to cocaine exhibited increased locomotor activity in response to an ethanol challenge. These findings indicate cross-sensitization between ethanol and cocaine and suggest that a common molecular mechanism underlying the cross-sensitization. In animals sensitized to cocaine or ethanol, mRNA levels of class II HDACs (HDAC4 and HDAC5) were decreased in the prefrontal cortex and dorsal striatum, whereas acute treatments with either drug had no effect on the expression of class II HDACs. By contrast, class I HDACs (HDAC1 and HDAC2) responded to the acute cocaine challenge, whereas sensitization itself did not have a consistent effect on class I HDAC levels. These findings support the hypothesis of a common epigenetic mechanism underlying persistent behavioral sensitization induced by different drugs, which may be mediated by the altered expression of class II HDACs.
Collapse
Affiliation(s)
- Shijie Xu
- Medical Research Center, Hainan Cancer Hospital, Haikou, Hainan, China
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University
- Biomedical Research Institute, Seoul National University Hospital, Seoul
| | - Ja Wook Koo
- Emotion, Cognitive & Behavior Research Group, Korea Brain Research Institute, 61, Cheomdan-ro, Dong-gu
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu
| | - Ung Gu Kang
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University
- Department of Psychiatry and Behavioral Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
40
|
Ojeda J, Ávila A, Vidal PM. Gut Microbiota Interaction with the Central Nervous System throughout Life. J Clin Med 2021; 10:1299. [PMID: 33801153 PMCID: PMC8004117 DOI: 10.3390/jcm10061299] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 02/08/2023] Open
Abstract
During the last years, accumulating evidence has suggested that the gut microbiota plays a key role in the pathogenesis of neurodevelopmental and neurodegenerative diseases via the gut-brain axis. Moreover, current research has helped to elucidate different communication pathways between the gut microbiota and neural tissues (e.g., the vagus nerve, tryptophan production, extrinsic enteric-associated neurons, and short chain fatty acids). On the other hand, altering the composition of gut microbiota promotes a state known as dysbiosis, where the balance between helpful and pathogenic bacteria is disrupted, usually stimulating the last ones. Herein, we summarize selected findings of the recent literature concerning the gut microbiome on the onset and progression of neurodevelopmental and degenerative disorders, and the strategies to modulate its composition in the search for therapeutical approaches, focusing mainly on animal models studies. Readers are advised that this is a young field, based on early studies, that is rapidly growing and being updated as the field advances.
Collapse
Affiliation(s)
- Jorge Ojeda
- Neuroimmunology and Regeneration of the Central Nervous System Unit, Biomedical Science Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile;
| | - Ariel Ávila
- Developmental Neurobiology Unit, Biomedical Science Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile;
| | - Pía M. Vidal
- Neuroimmunology and Regeneration of the Central Nervous System Unit, Biomedical Science Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile;
| |
Collapse
|
41
|
Pulya S, Mahale A, Bobde Y, Routholla G, Patel T, Swati, Biswas S, Sharma V, Kulkarni OP, Ghosh B. PT3: A Novel Benzamide Class Histone Deacetylase 3 Inhibitor Improves Learning and Memory in Novel Object Recognition Mouse Model. ACS Chem Neurosci 2021; 12:883-892. [PMID: 33577290 DOI: 10.1021/acschemneuro.0c00721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The importance of HDAC3 in transcriptional regulation of genes associated with long-term memory is well established. Here, we report a novel HDAC3 inhibitor, PT3, with an excellent blood-brain barrier permeability and ability to enhance long-term memory in mouse model of novel object recognition (NOR). PT3 exhibited higher selectivity for HDAC3 over HDAC1, HDAC6, and HDAC8 compared to the reference compound CI994. PT3 has significant distribution into the brain tissue with Cmax at 0.5 h and t1/2 of 2.5 h. Treatment with PT3 significantly improved the discrimination index in C57/BL6 mice in the NOR model. Brain tissue analysis of mice treated with PT3 for NOR test showed significant increase in H3K9 acetylation in hippocampus. Gene expression analysis by RT-qPCR of the hippocampus tissue revealed upregulation of CREB 1, BDNF, TRKB, Nr4a2, c-fos, PKA, GAP 43, PSD 95 and MMP9 expression in mice treated with PT3. Similar to the phenotype observed in the in vivo experiment, we found upregulation of H3K9 acetylation, CREB 1, BDNF, TRKB, Nr4a2, c-fos, PKA, GAP 43 and MMP9 expression in mouse neuronal (N2A) cells treated with PT3. Thus, our preclinical studies identify PT3 as a potential HDAC3 selective inhibitor that crosses the blood-brain barrier and improves the long-term memory formation in C57/BL6 mice. We propose PT3 as a candidate with therapeutic potential to treat age-related memory loss as well as other disorders with declined memory function like Alzheimer's disease.
Collapse
Affiliation(s)
- Sravani Pulya
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Ashutosh Mahale
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Yamini Bobde
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Ganesh Routholla
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Tarun Patel
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Swati
- Department of Biological Science, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Swati Biswas
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Vivek Sharma
- Department of Biological Science, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Onkar P. Kulkarni
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
42
|
De Carvalho LM, Wiers CE, Sun H, Wang G, Volkow ND. Increased transcription of TSPO, HDAC2, and HDAC6 in the amygdala of males with alcohol use disorder. Brain Behav 2021; 11:e01961. [PMID: 33216461 PMCID: PMC7882159 DOI: 10.1002/brb3.1961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Repeated exposure to high doses of alcohol triggers neuroinflammatory processes that contribute to craving and mood dysfunction in alcohol use disorder (AUD). The upregulation of the translocator protein (TSPO) is considered a biomarker of neuroinflammation, and TSPO ligands have been used as neuroimaging biomarkers of neuroinflammation. Epigenetic mechanisms are also implicated in neuroinflammatory responses to alcohol, and elevated expression of HDAC2 and HDAC6 has been reported in the brain of animals exposed to chronic alcohol. METHODS The present study examined the transcriptional regulation of TSPO, HDAC2, and HDAC6 in human postmortem brain tissue from males previously diagnosed with AUD (n = 11) compared to age-matched nondependent males (n = 13) in four brain regions relevant to AUD: prefrontal cortex (PFC), nucleus accumbens (NAc), hippocampus (HPP), and amygdala (AMY). RESULTS Translocator protein mRNA levels in AMY and PFC and HDAC2 and HDAC6 mRNA levels in AMY were upregulated in AUD compared to controls. In AMY, TSPO mRNA levels were positively associated with HDAC2 and HDAC6 mRNA levels, suggesting a possible regulation of TSPO by HDAC2 and HDAC6 in this brain region. In contrast, there were no group differences for TSPO, HDAC2, and HDAC6 in NAc and HPP. CONCLUSION Our study is the first to find upregulated TSPO mRNA levels in AMY and PFC in postmortem brains from AUD consistent with neuroinflammation, and in the amygdala, they implicate epigenetic regulation of TSPO by HDAC2 and HDAC6.
Collapse
Affiliation(s)
- Luana Martins De Carvalho
- National Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthBethesdaMDUSA
- Center for Alcohol Research in Epigenetics, Department of PsychiatryUniversity of Illinois at ChicagoChicagoILUSA
| | - Corinde E. Wiers
- National Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthBethesdaMDUSA
- Department of PsychiatryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Hui Sun
- National Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthBethesdaMDUSA
| | - Gene‐Jack Wang
- National Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthBethesdaMDUSA
| | - Nora D. Volkow
- National Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthBethesdaMDUSA
- National Institute on Drug AbuseNational Institutes of HealthRockvilleMDUSA
| |
Collapse
|
43
|
Balasubramanian N, Sagarkar S, Jadhav M, Shahi N, Sirmaur R, Sakharkar AJ. Role for Histone Deacetylation in Traumatic Brain Injury-Induced Deficits in Neuropeptide Y in Arcuate Nucleus: Possible Implications in Feeding Behavior. Neuroendocrinology 2021; 111:1187-1200. [PMID: 33291119 DOI: 10.1159/000513638] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 12/07/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Repeated traumatic events result in long-lasting neuropsychiatric ailments, including neuroendocrine imbalances. Neuropeptide Y (NPY) in the arcuate nucleus (Arc) is an important orexigenic peptide. However, the molecular underpinnings of its dysregulation owing to traumatic brain injury remain unknown. METHODS Rats were subjected to repeated mild traumatic brain injury (rMTBI) using the closed head weight-drop model. Feeding behavior and the regulatory epigenetic parameters of NPY expression were measured at 48 h and 30 days post-rMTBI. Further, sodium butyrate (SB), a pan-histone deacetylase (HDAC) inhibitor, was administered to examine whether histone deacetylation is involved in NPY expression post-rMTBI. RESULTS The rMTBI attenuated food intake, which was coincident with a decrease in NPY mRNA and protein levels in the Arc post-rMTBI. Further, rMTBI also reduced the mRNA levels of the cAMP response element-binding protein (CREB) and CREB-binding protein (CBP) and altered the mRNA levels of the various isoforms of the HDACs. Concurrently, the acetylated histone 3-lysine 9 (H3-K9) levels and the binding of CBP at the NPY promoter in the Arc of the rMTBI-exposed rats were reduced. However, the treatment with SB corrected the rMTBI-induced deficits in the H3-K9 acetylation levels and CBP occupancy at the NPY promoter, restoring both NPY expression and food intake. CONCLUSIONS These findings suggest that histone deacetylation at the NPY promoter persistently controls NPY function in the Arc after rMTBI. This study also demonstrates the efficacy of HDAC inhibitors in mitigating trauma-induced neuroendocrine maladaptations in the hypothalamus.
Collapse
Affiliation(s)
| | - Sneha Sagarkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Meha Jadhav
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Navneet Shahi
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Richa Sirmaur
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Amul J Sakharkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India,
| |
Collapse
|
44
|
Dzreyan VA, Rodkin SV, Pitinova MA, Uzdensky AB. HDAC1 Expression, Histone Deacetylation, and Protective Role of Sodium Valproate in the Rat Dorsal Root Ganglia After Sciatic Nerve Transection. Mol Neurobiol 2021; 58:217-228. [PMID: 32914392 DOI: 10.1007/s12035-020-02126-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
Abstract
Nerve injury is an important reason of human disability and death. We studied the role of histone deacetylation in the response of the dorsal root ganglion (DRG) cells to sciatic nerve transection. Sciatic nerve transection in the rat thigh induced overexpression of histone deacetylase 1 (HDAC1) in the ipsilateral DRG at 1-4 h after axotomy. In the DRG neurons, HDAC1 initially upregulated at 1 h but then redistributed from the nuclei to the cytoplasm at 4 h after axotomy. Histone H3 was deacetylated at 24 h after axotomy. Deacetylation of histone H4, accumulation of amyloid precursor protein, a nerve injury marker, and GAP-43, an axon regeneration marker, were observed in the axotomized DRG on day 7. Neuronal injury occurred on day 7 after axotomy along with apoptosis of DRG cells, which were mostly the satellite glial cells remote from the site of sciatic nerve transection. Administration of sodium valproate significantly reduced apoptosis not only in the injured ipsilateral DRG but also in the contralateral ganglion. It also reduced the deacetylation of histones H3 and H4, prevented axotomy-induced accumulation of amyloid precursor protein, which indicated nerve injury, and overexpressed GAP-43, a nerve regeneration marker, in the axotomized DRG. Therefore, HDAC1 was involved in the axotomy-induced injury of DRG neurons and glial cells. HDAC inhibitor sodium valproate demonstrated the neuroprotective activity in the axotomized DRG.
Collapse
Affiliation(s)
- V A Dzreyan
- Laboratory of Molecular Neurobiology, Southern Federal University, 194/1 Stachky Ave, Rostov-on-Don, 344090, Russia
| | - S V Rodkin
- Laboratory of Molecular Neurobiology, Southern Federal University, 194/1 Stachky Ave, Rostov-on-Don, 344090, Russia
| | - M A Pitinova
- Laboratory of Molecular Neurobiology, Southern Federal University, 194/1 Stachky Ave, Rostov-on-Don, 344090, Russia
| | - Anatoly B Uzdensky
- Laboratory of Molecular Neurobiology, Southern Federal University, 194/1 Stachky Ave, Rostov-on-Don, 344090, Russia.
| |
Collapse
|
45
|
Wang H, Xu R, Zhang H, Su Y, Zhu W. Swine gut microbiota and its interaction with host nutrient metabolism. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2020; 6:410-420. [PMID: 33364457 PMCID: PMC7750828 DOI: 10.1016/j.aninu.2020.10.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/09/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Gut microbiota is generally recognized to play a crucial role in maintaining host health and metabolism. The correlation among gut microbiota, glycolipid metabolism, and metabolic diseases has been well reviewed in humans. However, the interplay between gut microbiota and host metabolism in swine remains incompletely understood. Given the limitation in conducting human experiments and the high similarity between swine and humans in terms of anatomy, physiology, polyphagy, habits, and metabolism and in terms of the composition of gut microbiota, there is a pressing need to summarize the knowledge gained regarding swine gut microbiota, its interplay with host metabolism, and the underlying mechanisms. This review aimed to outline the bidirectional regulation between gut microbiota and nutrient metabolism in swine and to emphasize the action mechanisms underlying the complex microbiome-host crosstalk via the gut microbiota-gut-brain axis. Moreover, it highlights the new advances in knowledge of the diurnal rhythmicity of gut microbiota. A better understanding of these aspects can not only shed light on healthy and efficient pork production but also promote our knowledge on the associations between gut microbiota and the microbiome-host crosstalk mechanism. More importantly, knowledge on microbiota, host health and metabolism facilitates the development of a precise intervention therapy targeting the gut microbiota.
Collapse
Affiliation(s)
- Hongyu Wang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rongying Xu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - He Zhang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
46
|
Zelli S, Brancato A, Mattioli F, Pepe M, Alleva E, Carbone C, Cannizzaro C, Adriani W. A new "sudden fright paradigm" to explore the role of (epi)genetic modulations of the DAT gene in fear-induced avoidance behavior. GENES BRAIN AND BEHAVIOR 2020; 20:e12709. [PMID: 33070435 DOI: 10.1111/gbb.12709] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/21/2022]
Abstract
Alterations in dopamine (DA) reuptake are involved in several psychiatric disorders whose symptoms can be investigated in knock out rats for the DA transporter (DAT-KO). Recent studies evidenced the role of epigenetic DAT modulation in depressive-like behavior. Accordingly, we used heterozygous (HET) rats born from both HET parents (termed MIX-HET), compared to HET rats born from WT-mother and KO-father (MAT-HET), implementing the role of maternal care on DAT modulation. We developed a "sudden fright" paradigm (based on dark-light test) to study reaction to fearful inputs in the DAT-KO, MAT-HET, MIX-HET, and WT groups. Rats could freely explore the whole 3-chambers apparatus; then, they were gently confined in one room where they experienced the fright; finally, they could freely move again. As expected, after the fearful stimulus only MAT-HET rats showed a different behavior consisting of avoidance towards the fear-associated chamber, compared to WT rats. Furthermore, ex-vivo immuno-fluorescence reveals higher prefrontal DAT levels in MAT-HET compared to MIX-HET and WT rats. Immuno-fluorescence shows also a different histone deacetylase (HDAC) enzymes concentration. Since HDAC concentration could modulate gene expression, within MAT-HET fore brain, the enhanced expression of DAT could well impair the corticostriatal-thalamic circuit, thus causing aberrant avoidance behavior (observed only in MAT-HET rats). DAT expression seems to be linked to a simply different breeding condition, which points to a reduced care by HET dams for epigenetic regulation. This could imply significant prefronto-cortical influences onto the emotional processes: hence an excessively frightful response, even to mild stressful agents, may draw developmental trajectories toward anxious and depressed-like behavior.
Collapse
Affiliation(s)
- Silvia Zelli
- Center Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.,Faculty of Psychology, Università Telematica Internazionale "Uninettuno", Rome, Italy
| | - Anna Brancato
- Department of Sciences for Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro," University of Palermo, Palermo, Italy
| | - Francesca Mattioli
- Faculty of Psychology, Università Telematica Internazionale "Uninettuno", Rome, Italy
| | - Martina Pepe
- Center Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Enrico Alleva
- Center Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Cristiana Carbone
- Center Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Carla Cannizzaro
- Department of Sciences for Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro," University of Palermo, Palermo, Italy
| | - Walter Adriani
- Center Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.,Faculty of Psychology, Università Telematica Internazionale "Uninettuno", Rome, Italy
| |
Collapse
|
47
|
Bistoletti M, Bosi A, Banfi D, Giaroni C, Baj A. The microbiota-gut-brain axis: Focus on the fundamental communication pathways. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 176:43-110. [PMID: 33814115 DOI: 10.1016/bs.pmbts.2020.08.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Michela Bistoletti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Annalisa Bosi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Davide Banfi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy.
| | - Andreina Baj
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
48
|
Lemos M, Stefanova N. Histone Deacetylase 6 and the Disease Mechanisms of α-Synucleinopathies. Front Synaptic Neurosci 2020; 12:586453. [PMID: 33041780 PMCID: PMC7518386 DOI: 10.3389/fnsyn.2020.586453] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/24/2020] [Indexed: 12/31/2022] Open
Abstract
The abnormal accumulation of α-Synuclein (α-Syn) is a prominent pathological feature in a group of diseases called α-Synucleinopathies, such as Parkinson’s disease, dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). The formation of Lewy bodies (LBs) and glial cytoplasmic inclusions (GCIs) in neurons and oligodendrocytes, respectively, is highly investigated. However, the molecular mechanisms behind α-Syn improper folding and aggregation remain unclear. Histone deacetylase 6 (HDAC6) is a Class II deacetylase, containing two active catalytic domains and a ubiquitin-binding domain. The properties of HDAC6 and its exclusive cytoplasmic localization allow HDAC6 to modulate the microtubule dynamics, acting as a specific α-tubulin deacetylase. Also, HDAC6 can bind ubiquitinated proteins, facilitating the formation of the aggresome, a cellular defense mechanism to cope with higher levels of misfolded proteins. Several studies report that the aggresome shares similarities in size and composition with LBs and GCIs. HDAC6 is found to co-localize with α-Syn in neurons and in oligodendrocytes, together with other aggresome-related proteins. The involvement of HDAC6 in several neurodegenerative diseases is already under discussion, however, the results obtained by modulating HDAC6 activity are not entirely conclusive. The main goal of this review is to summarize and critically discuss previous in vitro and in vivo data regarding the specific role of HDAC6 in the context of α-Syn accumulation and protein aggregation in α-Synucleinopathies.
Collapse
Affiliation(s)
- Miguel Lemos
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nadia Stefanova
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
49
|
Iwamoto M, Nakamura Y, Takemura M, Hisaoka-Nakashima K, Morioka N. TLR4-TAK1-p38 MAPK pathway and HDAC6 regulate the expression of sigma-1 receptors in rat primary cultured microglia. J Pharmacol Sci 2020; 144:23-29. [PMID: 32653342 DOI: 10.1016/j.jphs.2020.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/05/2020] [Accepted: 06/22/2020] [Indexed: 01/02/2023] Open
Abstract
Microglia maintain brain homeostasis as the main immune cells in the central nervous system. Activation of sigma-1 receptor (Sig1R) plays neuroprotective and anti-inflammatory roles in microglia. Recent studies showed that Sig1R expression level has been reduced in the brain of the patients with neurodegenerative diseases including Alzheimer's disease. However, the mechanisms underlying the down regulation of the Sig1R has not been clear. Treatment of rat primary cultured microglia with the inflammogen lipopolysaccharide (LPS) significantly decreased the expression of Sig1R mRNA in a concentration and time-dependent manner. The effects of LPS were blocked by pretreatment with TAK-242, a toll-like receptor 4 (TLR4) antagonist. Furthermore, inhibitors of transforming growth factor beta-activated kinase 1 (TAK1), p38 mitogen-activated protein kinase (MAPK) and histone deacetylase 6 (HDAC6) restored the LPS-induced downregulation of Sig1R. Thus, the current findings demonstrate that TLR4 activation leads to the downregulation of the Sig1R expression via TLR4-TAK1-p38 MAPK pathway and the inhibition of HDAC6 can increase Sig1R expression in microglia. The current findings suggest that downregulation of Sig1R may contribute to neuroinflammation-induced microglial dysfunction, regulation of microglial Sig1R may be novel therapeutic drug candidates for neurodegenerative and neuroinflammatory diseases.
Collapse
Affiliation(s)
- Momoka Iwamoto
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan.
| | - Masatoshi Takemura
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan.
| |
Collapse
|
50
|
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are, respectively, the most prevalent and fastest growing neurodegenerative diseases worldwide. The former is primarily characterized by memory loss and the latter by the motor symptoms of tremor and bradykinesia. Both AD and PD are progressive diseases that share several key underlying mitochondrial, inflammatory, and other metabolic pathologies. This review will detail how these pathologies intersect with ketone body metabolism and signaling, and how ketone bodies, particularly d-β-hydroxybutyrate (βHB), may serve as a potential adjunctive nutritional therapy for two of the world's most devastating conditions.
Collapse
|