1
|
Grafakou ME, Pferschy-Wenzig EM, Aziz-Kalbhenn H, Kelber O, Moissl-Eichinger C, Bauer R. Bidirectional interactions between St. John´s wort and gut microbiome: Potential implications on gut-brain-axis. Biomed Pharmacother 2025; 187:118111. [PMID: 40327993 DOI: 10.1016/j.biopha.2025.118111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Accepted: 04/24/2025] [Indexed: 05/08/2025] Open
Abstract
Emerging evidence highlights the role of gut microbiome in mental health disorders, including depression, raising the question whether the action of antidepressants could be mediated, at least in part, via the microbiome-gut-brain axis. To explore this, we subjected a St. John's wort extract (STW 3-VI), clinically proven to be effective in mild to moderate depression, to a model of the upper and lower intestinal tract, including static in vitro predigestion followed by ex vivo incubation with human microbiota samples. To cover the interindividual diversity of gut microbiome composition, fecal samples from ten healthy volunteers were used. Although unchanged levels of most annotated compounds were observed during simulated upper intestinal tract digestion, incubation with fecal microbiota led to a significant change of the chemical profile of the extract. While hyperforins remained stable, flavonoids and hypericins were rapidly biotransformed, suggesting that they may act as prodrugs. Several metabolites were formed, many of which are known to be involved in gut-brain communication. Differential abundance analysis revealed significant changes in microbiome composition, particularly for taxa known to be potentially associated with depression. Among others, the Firmicutes/Bacteroidetes ratio, known to be lowered in depressive patients, was increased. Functional profiling revealed modulation of pathways involved in gut-brain communication, such as tyrosine and tryptophan metabolism. These bidirectional interactions suggest for the first time the gut microbiome as a potential mediator of the pharmacological effects of St. John's wort extracts via the microbiome-gut-brain axis.
Collapse
Affiliation(s)
- Maria-Eleni Grafakou
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Austria.
| | | | - Heba Aziz-Kalbhenn
- Phytomedicines Supply and Development Center, Bayer Consumer Health, Steigerwald Arzneimittelwerk GmbH, Darmstadt, Germany
| | - Olaf Kelber
- Phytomedicines Supply and Development Center, Bayer Consumer Health, Steigerwald Arzneimittelwerk GmbH, Darmstadt, Germany
| | - Christine Moissl-Eichinger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Austria
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Austria.
| |
Collapse
|
2
|
Lin J, Wei S, Peng Y, Liang C, Jiao W, Ji Y, Deng Y, Yan F, Jing X. Gastrointestinal adverse events associated with SNRIs: A FAERS-based pharmacovigilance study. J Affect Disord 2025; 387:119484. [PMID: 40441655 DOI: 10.1016/j.jad.2025.119484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 05/23/2025] [Accepted: 05/25/2025] [Indexed: 06/02/2025]
Abstract
Major depressive disorder is a prevalent mental illness, with SNRIs constituting a mainstay of the psychopharmacological approach to its clinical management. Despite their impact on adherence, efficacy, and relapse risk, gastrointestinal adverse events (AEs) linked to SNRIs remain under-explored. This study systematically evaluated gastrointestinal adverse events associated with SNRIs by leveraging the FDA Adverse Event Reporting System (FAERS) database. A retrospective analysis of FAERS data from 2004 to 2024 identified 114,148 reports involving five SNRI drugs (venlafaxine, desvenlafaxine, milnacipran, levomilnacipran, and duloxetine). Gastrointestinal adverse events ranked among the top ten System Organ Classes for all five drugs. At the pharmacovigilance level, we identified 18 positive signals, with significant risks for five specific adverse events: constipation, dry mouth, oral hypoaesthesia, nausea, and vomiting. Descriptive analyses revealed that middle-aged (45-64 years) and elderly (65-74 years) patients were more susceptible to gastrointestinal adverse events compared to younger age groups, although the specific effects varied across different drugs and age groups. These findings highlight the significant risks of gastrointestinal AEs associated with SNRIs, underscoring the need for individualized drug selection, close monitoring, and further research into underlying mechanisms and long-term impacts.
Collapse
Affiliation(s)
- Jiayi Lin
- School of Nursing, Jinan University, Guangzhou, China
| | - Sijia Wei
- School of Nursing, Jinan University, Guangzhou, China
| | - Ying Peng
- School of Nursing, Jinan University, Guangzhou, China
| | - Chuoyi Liang
- School of Nursing, Jinan University, Guangzhou, China
| | - Wenli Jiao
- School of Nursing, Jinan University, Guangzhou, China
| | - Yelin Ji
- School of Nursing, Jinan University, Guangzhou, China
| | - Yanfang Deng
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Fengxia Yan
- School of Nursing, Jinan University, Guangzhou, China.
| | - Xi Jing
- School of Nursing, Jinan University, Guangzhou, China; Guangdong-Hong Kong-Macau Great Bay Area Geoscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
3
|
Nikolova VL, Cleare AJ, Young AH, Stone JM. Exploring the mechanisms of action of probiotics in depression: Results from a randomized controlled pilot trial. J Affect Disord 2025; 376:241-250. [PMID: 39924003 DOI: 10.1016/j.jad.2025.01.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND We previously reported greater reductions in depression and anxiety following probiotic supplementation in people with major depressive disorder (MDD) in a randomised double-blind placebo-controlled pilot trial (Nikolova et al., 2023). Here, we investigate the mechanisms underlying these effects. METHODS 49 people with MDD received a multi-strain probiotic (n = 24) or placebo (n = 25) for 8 weeks in addition to their antidepressant. Stool and blood samples were collected to analyse gut microbiota composition and inflammatory cytokines. Stool samples from 25 matched healthy volunteers (HVs) were also obtained. RESULTS Within the probiotic group, there was a significant increase in richness according to Chao1(bias-corrected) (w4 p = 0.04) and a trend for increased Total count (w4 p = 0.06, w8 p = 0.09) compared to baseline, but not to placebo. When compared to HVs post-treatment, only the placebo group had a significant decrease in Shannon' entropy (p = 0.03) and a trend for decreased Total count (p = 0.08) and Simpson's index (p = 0.09). Between-group differences in beta diversity were observed at week 4 (p = 0.04), but not week 8. Consistent between-group differences were seen in family Bacilleceae post-treatment (FDR p < 0.05), which correlated with decreases in anxiety (FDR p < 0.05). There were no differences in inflammatory markers. LIMITATIONS This study was limited by data loss during the COVID-19 Pandemic. CONCLUSION Probiotics may positively impact the microbiota by normalising diversity and increasing levels of health-related taxa, which may partially account for their benefits in MDD. Understanding how these changes relate to symptom improvement can inform their targeted use in clinical practice. Larger trials incorporating functional multi-omics are needed. TRIAL REGISTRATION NCT03893162.
Collapse
Affiliation(s)
- Viktoriya L Nikolova
- Centre for Affective Disorders, Institute of Psychiatry, Psychology & Neuroscience, King's College London, SE5 8AF London, UK; ADM Health & Wellness, ADM Protexin Ltd., Somerset, UK.
| | - Anthony J Cleare
- Centre for Affective Disorders, Institute of Psychiatry, Psychology & Neuroscience, King's College London, SE5 8AF London, UK; National Institute for Health Research Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, UK; South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Beckenham, UK.
| | - Allan H Young
- Centre for Affective Disorders, Institute of Psychiatry, Psychology & Neuroscience, King's College London, SE5 8AF London, UK; National Institute for Health Research Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, UK; South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Beckenham, UK.
| | - James M Stone
- Centre for Affective Disorders, Institute of Psychiatry, Psychology & Neuroscience, King's College London, SE5 8AF London, UK; Brighton and Sussex Medical School, Brighton BN1 9PX, UK.
| |
Collapse
|
4
|
Jiang Y, Shi L, Qu Y, Ou M, Du Z, Zhou Z, Zhou H, Zhu H. Multi-omics analysis reveals mechanisms of FMT in Enhancing antidepressant effects of SSRIs. Brain Behav Immun 2025; 126:176-188. [PMID: 39978693 DOI: 10.1016/j.bbi.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025] Open
Abstract
OBJECTIVE This study explores the behavioral and molecular biological impacts of Fecal Microbiota Transplantation (FMT) on depressive mice unresponsive to treatment with Selective Serotonin Reuptake Inhibitors (SSRIs). METHODS Healthy male C57BL/6 mice were used to establish a depression model through chronic restraint stress, treated with fluoxetine, and categorized into Response and Non-response groups. An FMT treatment was added to the Non-response group. Behavioral tests were conducted to assess symptoms of depression. The gut microbiome, plasma metabolites, and hippocampal tissue gene expression and function changes were analyzed using 16S rRNA gene sequencing, LC-MS, and RNA sequencing. RESULTS FMT significantly improved the depressive symptoms in SSRIs-resistant mice. There was a partial restoration in the diversity and structure of the gut microbiota in the FMT group. Compared to the Non-response group, significant changes were noted in the metabolomic profiles of the FMT group, identifying various differential metabolites. Functional annotations indicated that these metabolites are involved in multiple metabolic pathways. In the Non-response group, certain gene expression levels were significantly restored. GO and KEGG enrichment analyses revealed that these differential genes mainly involve cytokine activity, receptor signaling regulation, and NOD-like receptor signaling pathways. Joint analysis suggested that FMT may exert its effects through an increase in the abundance of g__Paraprevotella, leading to decreased baicalin content and increased Tal2 expression. CONCLUSION FMT has potential in improving depressive symptoms unresponsive to SSRIs treatment. Its mechanism may be related to the modulation of the gut microbiota and its metabolites, subsequently affecting gene expression.
Collapse
Affiliation(s)
- Ying Jiang
- Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Lingyi Shi
- Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Yucai Qu
- Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Mengmeng Ou
- Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Zhiqiang Du
- Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Zhenhe Zhou
- Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Hongliang Zhou
- Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China; Department of Psychology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.
| | - Haohao Zhu
- Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
5
|
Mehta I, Juneja K, Nimmakayala T, Bansal L, Pulekar S, Duggineni D, Ghori HK, Modi N, Younas S. Gut Microbiota and Mental Health: A Comprehensive Review of Gut-Brain Interactions in Mood Disorders. Cureus 2025; 17:e81447. [PMID: 40303511 PMCID: PMC12038870 DOI: 10.7759/cureus.81447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2025] [Indexed: 05/02/2025] Open
Abstract
The human gut flora of trillions of bacteria is vital for general health and greatly influences digestion, immune system function, and brain development. Through neuronal, hormonal, and immunological channels, the gut-brain axis (GBA), a bidirectional communication network, links the gut microbiota to the central nervous system (CNS). This relationship has been linked to affective diseases, including depression and anxiety, as well as mental health issues. This review explores the intricate relationship between gut bacteria and mood disorders, focusing on how gut microbiota-host interactions, immune system modulation, and neurotransmitter control support mental health. The function of important microbial metabolites, including short-chain fatty acids (SCFAs), in preserving blood-brain barrier integrity and modulating neuroinflammation is covered in this review. It also examines the bidirectional impact between gut health and mental health, including how dysbiosis could aggravate mood disorders and how depressed states might change the composition of gut bacteria. Furthermore, we discuss how psychotropic drugs affect gut flora and consider other elements such as nutrition and lifestyle that affect gut microbiome composition. Potential paths for treating mood disorders through gut microbiota modification are presented as emerging treatment techniques, including probiotics, nutritional therapies, and precision medicine. The development of new therapeutic approaches for mood disorders depends on the awareness of the GBA. Gut bacteria significantly affect mental health through immune modulation, neurotransmitter generation, and other intricate processes. Future studies should concentrate on large, varied populations to better understand these interactions and to create customized treatments that combine gut microbiota modulation with conventional mental health therapies.
Collapse
Affiliation(s)
- Ishani Mehta
- Psychiatry and Behavioral Sciences, Maharaja Agrasen Institute of Medical Research and Education, Hisar, IND
| | | | - Tharun Nimmakayala
- Medicine and Surgery, Apollo Institute of Medical Sciences and Research, Chittoor, IND
| | - Lajpat Bansal
- Psychiatry and Behavioral Sciences, Maharaja Agrasen Institute of Medical Research and Education, Hisar, IND
| | - Shivani Pulekar
- General Practice, Davao Medical School Foundation, Davao, PHL
| | | | | | - Nishi Modi
- Medicine, Government Medical College, Surat, Surat, IND
| | - Salma Younas
- Pharmacy, Punjab University College of Pharmacy, Lahore, PAK
| |
Collapse
|
6
|
Duan J, Sun J, Ma X, Du P, Dong P, Xue J, Lu Y, Jiang T. Association of escitalopram-induced shifts in gut microbiota and sphingolipid metabolism with depression-like behavior in wistar-kyoto rats. Transl Psychiatry 2025; 15:54. [PMID: 39962083 PMCID: PMC11833111 DOI: 10.1038/s41398-025-03277-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 01/14/2025] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
The microbiota-gut-brain axis plays a pivotal role in neuropsychiatric disorders, particularly in depression. Escitalopram (ESC) is a first-line antidepressant, however, its regulatory mechanisms on the microbiota-gut-brain axis in the treatment of depression remain unclear. The antidepressant effects of ESC were evaluated using the forced swim test in Wistar-Kyoto (WKY) rats, while damage in the gut and brain regions was assessed through H&E staining and immunohistochemistry. The therapeutic mechanisms in WKY rats with depression-like behavior were investigated through 16S rRNA sequencing of the gut microbiota, serum untargeted metabolomics, and hippocampal proteomics. Results indicated that ESC intervention improved depressive-like behaviors, as evidenced by increased swimming times in WKY rats, and also restored intestinal permeability and brain tissue integrity. Significant changes in the gut microbiota composition, particularly an increase in Bacteroides barnesiae, as well as increases in serum sphingolipid metabolites (Sphinganine 1-phosphate, Sphingosine, and Sphingosine-1-phosphate) and hippocampal proteins (Sptlc1, Enpp5, Enpp2), were strongly correlated. These robust correlations suggest that ESC may exert its antidepressant effects by modulating sphingolipid metabolism through the influence of gut microbiota. Accordingly, this research elucidates novel mechanisms underlying the antidepressant efficacy of ESC and highlights the pivotal importance of the microbiota-gut-brain axis in mediating these effects.
Collapse
Affiliation(s)
- Jiajia Duan
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Jiaxing Sun
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Xiao Ma
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Peipei Du
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Pengfei Dong
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Juan Xue
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yanli Lu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Tao Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
7
|
Gamboa J, Le GH, Wong S, Alteza EAI, Zachos KA, Teopiz KM, McIntyre RS. Impact of antidepressants on the composition of the gut microbiome: A systematic review and meta-analysis of in vivo studies. J Affect Disord 2025; 369:819-833. [PMID: 39424151 DOI: 10.1016/j.jad.2024.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/12/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND There is a growing body of evidence suggesting that antidepressant drugs (ADs) alter the gut microbiome of persons with depressive disorders. Herein, we aim to investigate the gut microbial profile of AD-treated animal models of depression (MoD) and persons with major depressive disorder (MDD). METHODS We conducted a systematic review and meta-analysis investigating the gut microbiome community-level diversity and relative abundance of microbial taxa in AD-treated animal MoD and persons with MDD. RESULTS 24 human studies (898 participants) and 48 animal studies (849 subjects) were identified. Nonsignificant differences in gut microbial richness were observed between AD-treated and nonmedicated animals and humans. Beta diversity analysis in animals shows that AD intake is linked to a distinct gut microbial profile, a result not observed in humans. Consistent depletion of the genera Faecalibacterium and Parasutterella, along with enrichment of Bifidobacterium, was observed in AD-treated persons with MDD. In AD-treated animals, AD intake was associated with depletion of Flavobacterium and Adlercreutzia, and enrichment of Parabacteroides. LIMITATIONS The studies in our review were heterogeneous in their participant population, dietary intake, type of ADs used, length and dosing of AD treatment, and frequency and time of fecal sample collection. CONCLUSION ADs are associated with some changes to the gut microbiome. Future studies should evaluate the gut microbiome profiles between depressive disorder diagnoses that may reveal potential differences and predictors of AD response, as well as new combinatorial therapeutics with agents (e.g., specific-strain probiotic adjunctive treatment) that can ameliorate micro-composition gut dysbiosis.
Collapse
Affiliation(s)
- Jann Gamboa
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Gia Han Le
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Canada
| | - Sabrina Wong
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada; Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Canada
| | | | - Kassandra A Zachos
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Kayla M Teopiz
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada
| | - Roger S McIntyre
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Canada.
| |
Collapse
|
8
|
Gawlik-Kotelnicka O, Czarnecka-Chrebelska K, Margulska A, Pikus E, Wasiak J, Skowrońska A, Brzeziańska-Lasota E, Strzelecki D. Associations between intestinal fatty-acid binding protein and clinical and metabolic characteristics of depression. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111170. [PMID: 39393435 DOI: 10.1016/j.pnpbp.2024.111170] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
INTRODUCTION The topic of increased intestinal permeability is associated with disruption of the intestinal barrier, leading to the "leaky gut" syndrome. Depressive disorders often coexist with abdominal obesity, metabolic syndrome, or its components and complications. Intestinal permeability has been proven to relate to all of the above. METHODS In this cross-sectional study, we aimed to assess the "leaky gut" blood biomarker - intestinal fatty acid-binding protein (I-FABP) - in 114 adult patients diagnosed with depressive disorders depending on abdominal obesity comorbidity, depression, anxiety, and stress level, or antidepressant use. The corrected p-value was set at 0.02. We analyzed patients' mental state, diet, anthropometric parameters, metabolic laboratory markers and I-FABP. RESULTS There was no difference in circulating I-FABP levels between obese and non-obese patients with depressive disorders (p = 0.648). Similarly, I-FABP levels were not different in patients with different emotional symptoms severity (p = 0.829 for self-assessed depression, p = 0.164 for anxiety, and p = 0.543 for stress). But, I-FABP levels differed significantly between patients treated and not treated with antidepressants (p = 0.011). In general linear model analysis treatment with antidepressants, anxiety severity level, their interaction, along with smoking status, drinks intake, and using dietary supplements were shown to significantly explain I-FABP variance (p < 0.001, R2adj = 0.261). CONCLUSIONS Comorbid obesity did not increase intestinal permeability circulating marker, I-FABP, in the population of patients with depressive disorders. Treatment with antidepressants may be connected to higher I-FABP levels. Using dietary supplements, drinks intake, smoking status, or anxiety level may serve as explanatory factors.
Collapse
Affiliation(s)
- Oliwia Gawlik-Kotelnicka
- Department of Affective and Psychotic Disorders, Medical University of Lodz, Czechosłowacka 8/10, 92-216 Lodz, Poland.
| | | | - Aleksandra Margulska
- Department of Child and Adolescent Psychiatry, Medical University of Lodz, Czechosłowacka 8/10, 92-216 Lodz, Poland.
| | - Ewa Pikus
- Department of Biomedicine and Genetics, Medical University of Lodz, 92-213 Lodz, Poland.
| | - Jakub Wasiak
- Faculty of Medicine, Medical University of Lodz, Kościuszki 4, 90-419 Lodz, Poland.
| | - Anna Skowrońska
- Department of Affective and Psychotic Disorders, Medical University of Lodz, Czechosłowacka 8/10, 92-216 Lodz, Poland
| | - Ewa Brzeziańska-Lasota
- Department of Biomedicine and Genetics, Medical University of Lodz, 92-213 Lodz, Poland.
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, Czechosłowacka 8/10, 92-216 Lodz, Poland.
| |
Collapse
|
9
|
Borgiani G, Possidente C, Fabbri C, Oliva V, Bloemendaal M, Arias Vasquez A, Dinan TG, Vieta E, Menchetti M, De Ronchi D, Serretti A, Fanelli G. The bidirectional interaction between antidepressants and the gut microbiota: are there implications for treatment response? Int Clin Psychopharmacol 2025; 40:3-26. [PMID: 39621492 PMCID: PMC11594561 DOI: 10.1097/yic.0000000000000533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/13/2023] [Indexed: 07/13/2024]
Abstract
This review synthesizes the evidence on associations between antidepressant use and gut microbiota composition and function, exploring the microbiota's possible role in modulating antidepressant treatment outcomes. Antidepressants exert an influence on measures of gut microbial diversity. The most consistently reported differences were in β-diversity between those exposed to antidepressants and those not exposed, with longitudinal studies supporting a potential causal association. Compositional alterations in antidepressant users include an increase in the Bacteroidetes phylum, Christensenellaceae family, and Bacteroides and Clostridium genera, while a decrease was found in the Firmicutes phylum, Ruminococcaceae family, and Ruminococcus genus. In addition, antidepressants attenuate gut microbial differences between depressed and healthy individuals, modulate microbial serotonin transport, and influence microbiota's metabolic functions. These include lyxose degradation, peptidoglycan maturation, membrane transport, and methylerythritol phosphate pathways, alongside gamma-aminobutyric acid metabolism. Importantly, baseline increased α-diversity and abundance of the Roseburia and Faecalibacterium genera, in the Firmicutes phylum, are associated with antidepressant response, emerging as promising biomarkers. This review highlights the potential for gut microbiota as a predictor of treatment response and emphasizes the need for further research to elucidate the mechanisms underlying antidepressant-microbiota interactions. More homogeneous studies and standardized techniques are required to confirm these initial findings.
Collapse
Affiliation(s)
- Gianluca Borgiani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Chiara Possidente
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona (UB)
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Chiara Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Vincenzo Oliva
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona (UB)
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mirjam Bloemendaal
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department for Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt-Goethe University, Frankfurt, Germany
| | - Alejandro Arias Vasquez
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Ted G. Dinan
- APC Microbiome Ireland
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - Eduard Vieta
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona (UB)
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Marco Menchetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Diana De Ronchi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Department of Medicine and Surgery, Kore University of Enna, Italy
| | - Giuseppe Fanelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Dafinone ME, Lyle RE, Lee C, Mehta A, Dahle SE, Isseroff RR. Non-antibiotic approaches to mitigating wound infections: Potential for SSRIs and adrenergic antagonists as emerging therapeutics. Wound Repair Regen 2025; 33:e13240. [PMID: 39737521 DOI: 10.1111/wrr.13240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/16/2024] [Accepted: 11/15/2024] [Indexed: 01/01/2025]
Abstract
Bacterial biofilms represent a formidable challenge in the treatment of chronic wounds, largely because of their resistance to conventional antibiotics. The emergence of multidrug-resistant (MDR) bacterial strains exacerbates this issue, necessitating a shift towards exploring alternative therapeutic approaches. In response to this urgent need, there has been a surge in research efforts aimed at identifying effective non-antibiotic treatments. Recently noted among the non-antibiotic options are selective serotonin reuptake inhibitors (SSRIs) and beta-adrenergic (β-AR) antagonists. Both have demonstrated antimicrobial activities and wound-healing properties, which makes them particularly promising potential therapeutics for chronic wounds. This review seeks to comprehensively evaluate the landscape of non-antibiotic strategies for managing wound infections. By analysing the latest research findings and clinical developments, it aims to shed light on emerging therapeutic alternatives. Additionally, the review delves into the potential of repurposing systemic therapeutics for topical application, offering insights into the feasibility and challenges associated with current approaches. We also address the necessity of translating promising preclinical results into tangible clinical benefits.
Collapse
Affiliation(s)
- Mirabel E Dafinone
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California, USA
- School of Medicine, University of Nevada Reno, Reno, Nevada, USA
- Dermatology Section, VA Northern California Health Care System, McClellan Park, California, USA
| | - Rawlings E Lyle
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California, USA
- Dermatology Section, VA Northern California Health Care System, McClellan Park, California, USA
- School of Medicine, University of California Davis, Davis, California, USA
| | - Conan Lee
- School of Medicine, University of California Davis, Davis, California, USA
| | - Alisha Mehta
- Dermatology Section, VA Northern California Health Care System, McClellan Park, California, USA
- College of Medicine, California Northstate University, Elk Grove, California, USA
| | - Sara E Dahle
- School of Medicine, University of California Davis, Davis, California, USA
- Podiatry Section, VA Northern California Health Care System, McClellan Park, California, USA
| | - R Rivkah Isseroff
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California, USA
- Dermatology Section, VA Northern California Health Care System, McClellan Park, California, USA
| |
Collapse
|
11
|
Zhao S, Liang S, Tao J, Peng Y, Chen S, Wai HKF, Chung FY, Sin ZY, Wong MKL, Haqq AM, Chang WC, Ni MY, Chan FKL, Ng SC, Tun HM. Probiotics for adults with major depressive disorder compared with antidepressants: a systematic review and network meta-analysis. Nutr Rev 2025; 83:72-82. [PMID: 38219239 DOI: 10.1093/nutrit/nuad171] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
CONTEXT Despite recent advances in antidepressants in treating major depression (MDD), their usage is marred by adverse effects and social stigmas. Probiotics may be an efficacious adjunct or standalone treatment, potentially circumventing the aforementioned issues with antidepressants. However, there is a lack of head-to-head clinical trials between these 2 interventions. OBJECTIVE A systematic review and network meta-analysis was conducted to compare the efficacy and acceptability of these 2 interventions in treating MDD. DATA SOURCES Six databases and registry platforms for the clinical trial were systematically searched to identify the eligible double-blinded, randomized controlled trials published between 2015 and 2022. DATA EXACTION Two authors selected independently the placebo-controlled trials of antidepressants and microbiota-targeted interventions (prebiotics, probiotics, and synbiotics) used for the treatment of MDD in adults (≥18 years old). Standardized mean differences (SMDs) of depressive symptom scores from individual trials were pooled for network meta-analysis (PROSPERO no. CRD42020222305). RESULTS Forty-two eligible trials covering 22 interventions were identified, of which 16 were found to be effective in MDD treatment and the certainty of evidence was moderate to very low. When all trials were considered, compared with placebo, SMDs of interventions ranged from -0.16 (95% credible interval: -0.30, -0.04) for venlafaxine to -0.81 (-1.06, -0.52) for escitalopram. Probiotics were superior to brexpiprazole (SMD [95% credible interval]: -0.42 [-0.68, -0.17]), cariprazine (-0.44 [-0.69, -0.24]), citalopram (-0.37 [-0.66, -0.07]), duloxetine (-0.26, [-0.51, -0.04]), desvenlafaxine (-0.38 [-0.63, -0.14]), ketamine (-0.32 [-0.66, -0.01]), venlafaxine (-0.47 [-0.73, -0.23]), vilazodone (-0.37 [-0.61, -0.12]), vortioxetine (-0.39 [-0.63, -0.15]), and placebo (-0.62 [-0.86, -0.42]), and were noninferior to other antidepressants. In addition, probiotics ranked the second highest in the treatment hierarchy after escitalopram. Long-term treatment (≥8 weeks) using probiotics showed the same tolerability as antidepressants. CONCLUSION Probiotics, compared with antidepressants and placebo, may be efficacious as an adjunct or standalone therapy for treating MDD. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42020222305.
Collapse
Affiliation(s)
- Shilin Zhao
- Microbiota I-Center (MagIC), Hong Kong Special Administrative Region (SAR), China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- System Microbiology and Antimicrobial Resistance (SMART) Lab, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Suisha Liang
- Microbiota I-Center (MagIC), Hong Kong Special Administrative Region (SAR), China
- System Microbiology and Antimicrobial Resistance (SMART) Lab, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Tao
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ye Peng
- Microbiota I-Center (MagIC), Hong Kong Special Administrative Region (SAR), China
- System Microbiology and Antimicrobial Resistance (SMART) Lab, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Siqi Chen
- Maternal and Child Medicine Research Institute, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Hogan K F Wai
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Feng-Ying Chung
- Department of Internal Medicine, Taipei Municipal Wanfang Hospital, Taipei, Taiwan
| | - Zhen Y Sin
- System Microbiology and Antimicrobial Resistance (SMART) Lab, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Matthew K L Wong
- Microbiota I-Center (MagIC), Hong Kong Special Administrative Region (SAR), China
- System Microbiology and Antimicrobial Resistance (SMART) Lab, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Andrea M Haqq
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Wing C Chang
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Michael Y Ni
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Francis K L Chan
- Microbiota I-Center (MagIC), Hong Kong Special Administrative Region (SAR), China
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Siew C Ng
- Microbiota I-Center (MagIC), Hong Kong Special Administrative Region (SAR), China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hein M Tun
- Microbiota I-Center (MagIC), Hong Kong Special Administrative Region (SAR), China
- System Microbiology and Antimicrobial Resistance (SMART) Lab, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
12
|
Ortega MA, Fraile-Martinez O, García-Montero C, Diaz-Pedrero R, Lopez-Gonzalez L, Monserrat J, Barrena-Blázquez S, Alvarez-Mon MA, Lahera G, Alvarez-Mon M. Understanding immune system dysfunction and its context in mood disorders: psychoneuroimmunoendocrinology and clinical interventions. Mil Med Res 2024; 11:80. [PMID: 39681901 DOI: 10.1186/s40779-024-00577-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/01/2024] [Indexed: 12/18/2024] Open
Abstract
Mood disorders include a set of psychiatric manifestations of increasing prevalence in our society, being mainly represented by major depressive disorder (MDD) and bipolar disorder (BD). The etiopathogenesis of mood disorders is extremely complex, with a wide spectrum of biological, psychological, and sociocultural factors being responsible for their appearance and development. In this sense, immune system dysfunction represents a key mechanism in the onset and pathophysiology of mood disorders, worsening mainly the central nervous system (neuroinflammation) and the periphery of the body (systemic inflammation). However, these alterations cannot be understood separately, but as part of a complex picture in which different factors and systems interact with each other. Psychoneuroimmunoendocrinology (PNIE) is the area responsible for studying the relationship between these elements and the impact of mind-body integration, placing the immune system as part of a whole. Thus, the dysfunction of the immune system is capable of influencing and activating different mechanisms that promote disruption of the psyche, damage to the nervous system, alterations to the endocrine and metabolic systems, and disruption of the microbiota and intestinal ecosystem, as well as of other organs and, in turn, all these mechanisms are responsible for inducing and enhancing the immune dysfunction. Similarly, the clinical approach to these patients is usually multidisciplinary, and the therapeutic arsenal includes different pharmacological (for example, antidepressants, antipsychotics, and lithium) and non-pharmacological (i.e., psychotherapy, lifestyle, and electroconvulsive therapy) treatments. These interventions also modulate the immune system and other elements of the PNIE in these patients, which may be interesting to understand the therapeutic success or failure of these approaches. In this sense, this review aims to delve into the relationship between immune dysfunction and mood disorders and their integration in the complex context of PNIE. Likewise, an attempt will be made to explore the effects on the immune system of different strategies available in the clinical approach to these patients, in order to identify the mechanisms described and their possible uses as biomarkers.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain.
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain.
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain.
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain.
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
| | - Silvestra Barrena-Blázquez
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031, Madrid, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806, Alcalá de Henares, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Príncipe de Asturias, CIBEREHD, 28806, Alcalá de Henares, Spain
| |
Collapse
|
13
|
Davies JM, Teh JJ, Ewais T, Begun J. Does Improving Depression Symptoms in Young Adults With Inflammatory Bowel Disease Alter Their Microbiome? Inflamm Bowel Dis 2024; 30:2428-2439. [PMID: 38839073 PMCID: PMC11630472 DOI: 10.1093/ibd/izae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Indexed: 06/07/2024]
Abstract
BACKGROUND Patients with inflammatory bowel diseases (IBDs) are more likely to have depression and anxiety symptoms compared with healthy individuals and those with other chronic illnesses. Previous studies have shown a link between the microbiome composition and depression symptoms; however, many antidepressant medications have antibacterial activity confounding cross-sectional studies of these populations. Therefore, we aimed to determine whether we could detect longitudinal changes in the microbiome of a subset of patients who participated in a previously published mindfulness-based cognitive therapy (MBCT) study to improve depression symptoms in adolescents and young adults with IBD. METHODS Stool samples were collected at baseline and 8 weeks (n = 24 participants, 37 total samples, 13 paired samples). During this time, some participants achieved a 50% reduction in their depression symptoms either through MBCT or treatment as usual with their mental health team (responders). The microbiome composition and function of responders were compared with participants who did not improve their depression scores (nonresponders). Depression scores were determined using the depression, anxiety, and stress score (DASS-21), and metagenomic sequencing of stool samples was performed. RESULTS No difference in alpha diversity was found between responders and nonresponders. Beta diversity measures were similarly unchanged. Clinical features including fecal calprotectin, C-reactive protein, and serum IL-6 levels were unchanged. CONCLUSIONS In this small longitudinal study, we were not able to detect longitudinal changes in the microbiome associated with improvement in depression scores. Follow-up studies that are sufficiently powered to detect changes in the microbiome are required to confirm our results.
Collapse
Affiliation(s)
- Julie M Davies
- Mater Research-The University of Queensland, Woolloongabba, QLD, Australia
| | - Jing Jie Teh
- Frazer Institute, The University of Queensland, Woolloongabba QLD, Australia
| | - Tatjana Ewais
- Mater Adolescent and Young Adult Health Clinic, South Brisbane, QLD, Australia
- School of Medicine, The University of Queensland, St Lucia, QLD, Australia
- School of Medicine and Dentistry, Gold Coast Campus, Griffith University, Southport, QLD, Australia
| | - Jakob Begun
- Mater Research-The University of Queensland, Woolloongabba, QLD, Australia
- Department of Gastroenterology, Mater Hospital Brisbane, South Brisbane, Australia
| |
Collapse
|
14
|
Boustany A, Feuerstadt P, Tillotson G. The 3 Ds: Depression, Dysbiosis, and Clostridiodes difficile. Adv Ther 2024; 41:3982-3995. [PMID: 39276186 PMCID: PMC11480130 DOI: 10.1007/s12325-024-02972-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/12/2024] [Indexed: 09/16/2024]
Abstract
This paper explores the intricate relationship between depression, gut dysbiosis, and Clostridioides difficile infections, collectively termed "The 3 Ds". Depression is a widespread mental disorder increasing in prevalence. It is recognized for its societal burden and complex pathophysiology, encompassing genetic, environmental, and microbiome-related factors. The consequent increased use of antidepressants has led to growing concerns about their effects on the gut microbiome. Various classes of antidepressants and antipsychotics show antimicrobial activity, potentially leading to shifts in the gut microbiome and contributing to the development of dysbiosis. Dysbiosis, in turn, can predispose individuals to opportunistic infections like C. difficile, a significant healthcare concern due to its high recurrence rates and severe impact on patients' quality of life. Further, the link between antidepressant use and an increased risk of C. difficile infection (CDI) is explored and, finally, the emergence of live biotherapeutic products as novel treatment options for recurrent CDI is discussed.
Collapse
Affiliation(s)
- Antoine Boustany
- Department of Internal Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Paul Feuerstadt
- Yale University School of Medicine, New Haven, CT, USA
- PACT-Gastroenterology Center, Hamden, CT, USA
| | | |
Collapse
|
15
|
Dong Z, Han K, Xie Q, Lin C, Shen X, Hao Y, Li J, Xu H, He L, Yu T, Kuang W. Core antibiotic resistance genes mediate gut microbiota to intervene in the treatment of major depressive disorder. J Affect Disord 2024; 363:507-519. [PMID: 39033825 DOI: 10.1016/j.jad.2024.07.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/20/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
INTRODUCTION The relationship between depression and gut microbiota remains unclear, but an important role of gut microbiota has been verified. The relationship between gut microbiota and antibiotic resistance genes (ARGs) may be a potential new explanatory pathway. METHODS We collected samples from 63 depressed patients and 30 healthy controls for metagenomic sequencing. The two groups' microbiota characteristics, functional characteristics, and ARG differences were analyzed. RESULTS We obtained 30 differential KEGG orthologs (KOs) and their producers in 5 genera and 7 species by HUMAnN3. We found 6 KOs from Weissella_cibaria and Lactobacillus_plantaru are potentially coring functional mechanism of gut microbiota. Different metabolites including sphingolipids, pyrans, prenol lipids, and isoflavonoids also showed significance between MDD and HC. We detected 48 significantly different ARGs: 5 ARGs up-regulated and 43 ARGs down-regulated in MDD compared to HC. Based on Cox model results, Three ARGs significantly affected drug efficacy (ARG29, ARG105, and ARG111). Eggerthella, Weissella, and Lactobacillus were correlated with different core ARGs, which indicated different mechanisms in affecting MDD. LIMITATIONS The present study needs to be replicated in different ethnic groups. At the same time, a larger Chinese cohort study and detailed experimental verification are also the key to further discussion. CONCLUSION Our findings suggest that ARGs play a role in the interplay between major depressive disorder and gut microbiota. The role of ARGs should be taken into account when understanding the relationship between depression and gut microbiota.
Collapse
Affiliation(s)
- Zaiquan Dong
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, PR China; Department of Psychiatry, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Ke Han
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China; Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China
| | - Qinglian Xie
- Department of outpatient, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Chunting Lin
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, PR China
| | - Xiaoling Shen
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yanni Hao
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Jin Li
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Haizhen Xu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China; Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China
| | - Tao Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China; Shanghai Center for Women and Children's Health, 339 Luding Road, Shanghai 200062, PR China
| | - Weihong Kuang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, PR China; Department of Psychiatry, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
16
|
Kolobaric A, Andreescu C, Jašarević E, Hong CH, Roh HW, Cheong JY, Kim YK, Shin TS, Kang CS, Kwon CO, Yoon SY, Hong SW, Aizenstein HJ, Karim HT, Son SJ. Gut microbiome predicts cognitive function and depressive symptoms in late life. Mol Psychiatry 2024; 29:3064-3075. [PMID: 38664490 PMCID: PMC11449789 DOI: 10.1038/s41380-024-02551-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 10/05/2024]
Abstract
Depression in older adults with cognitive impairment increases progression to dementia. Microbiota is associated with current mood and cognition, but the extent to which it predicts future symptoms is unknown. In this work, we identified microbial features that reflect current and predict future cognitive and depressive symptoms. Clinical assessments and stool samples were collected from 268 participants with varying cognitive and depressive symptoms. Seventy participants underwent 2-year follow-up. Microbial community diversity, structure, and composition were assessed using high-resolution 16 S rRNA marker gene sequencing. We implemented linear regression to characterize the relationship between microbiome composition, current cognitive impairment, and depressive symptoms. We leveraged elastic net regression to discover features that reflect current or future cognitive function and depressive symptoms. Greater microbial community diversity associated with lower current cognition in the whole sample, and greater depression in participants not on antidepressants. Poor current cognitive function associated with lower relative abundance of Bifidobacterium, while greater GABA degradation associated with greater current depression severity. Future cognitive decline associated with lower cognitive function, lower relative abundance of Intestinibacter, lower glutamate degradation, and higher baseline histamine synthesis. Future increase in depressive symptoms associated with higher baseline depression and anxiety, lower cognitive function, diabetes, lower relative abundance of Bacteroidota, and lower glutamate degradation. Our results suggest cognitive dysfunction and depression are unique states with an overall biological effect detectable through gut microbiota. The microbiome may present a noninvasive readout and prognostic tool for cognitive and psychiatric states.
Collapse
Affiliation(s)
- A Kolobaric
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, USA
| | - C Andreescu
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - E Jašarević
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, USA
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, USA
- Magee-Womens Research Institute, Pittsburgh, USA
| | - C H Hong
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea
| | - H W Roh
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea
| | - J Y Cheong
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Y K Kim
- Institute of MD Healthcare Inc, Seoul, Republic of Korea
| | - T S Shin
- Institute of MD Healthcare Inc, Seoul, Republic of Korea
| | - C S Kang
- Institute of MD Healthcare Inc, Seoul, Republic of Korea
| | - C O Kwon
- Institute of MD Healthcare Inc, Seoul, Republic of Korea
| | - S Y Yoon
- Institute of MD Healthcare Inc, Seoul, Republic of Korea
| | - S W Hong
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea
| | - H J Aizenstein
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, USA
- Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - H T Karim
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, USA.
- Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, USA.
| | - S J Son
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, USA.
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
17
|
Xie Y, Zhu H, Yuan Y, Guan X, Xie Q, Dong Z. Baseline gut microbiota profiles affect treatment response in patients with depression. Front Microbiol 2024; 15:1429116. [PMID: 39021622 PMCID: PMC11251908 DOI: 10.3389/fmicb.2024.1429116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
The role of the gut microbiota in the pathophysiology of depression has been explored in numerous studies, which have confirmed that the baseline gut microbial profiles of patients with depression differ from those of healthy individuals. The gut microbiome affects metabolic activity in the immune and central nervous systems and regulates intestinal ecology through the neuroendocrine system. Additionally, baseline changes in the gut microbiota differed among patients with depression who demonstrated varying treatment response. Currently, probiotics are an emerging treatment for depression; however, the efficacy of modulating the gut microbiota in the treatment of depression remains uncertain. Additionally, the mechanisms by which changes in the gut microbiota affect treatment response in patients with depression remain unclear. In this review, we aimed to summarize the differences in the baseline gut microbiota between the remission and non-remission groups after antidepressant therapy. Additionally, we summarized the possible mechanisms that may contribute to antidepressant resistance through the effects of the gut microbiome on the immune and nervous systems, various enzymes, bioaccumulation, and blood-brain barrier, and provide a basis for treating depression by targeting the gut microbiota.
Collapse
Affiliation(s)
- Yingjing Xie
- West China Hospital, Sichuan University, Chengdu, China
| | - Hanwen Zhu
- West China Hospital, Sichuan University, Chengdu, China
| | - Yanling Yuan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xuan Guan
- Chengdu Medical College, Chengdu, China
| | - Qinglian Xie
- Department of Outpatient, West China Hospital, Sichuan University, Chengdu, China
| | - Zaiquan Dong
- Department of Psychiatry and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Desorcy-Scherer K, Zuniga-Chaves I, Reisner MA, Suen G, Hernandez LL. Investigating the influence of perinatal fluoxetine exposure on murine gut microbial communities during pregnancy and lactation. Sci Rep 2024; 14:13762. [PMID: 38877103 PMCID: PMC11178873 DOI: 10.1038/s41598-024-62224-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/15/2024] [Indexed: 06/16/2024] Open
Abstract
Selective Serotonin Reuptake Inhibitor (SSRI) therapy is common among perinatal populations for the treatment of mood disorders. Medications can affect diversity and composition of the gut microbiome, which plays a key role in modulating health. While previous studies have examined the effects of antidepressant exposure on the maternal gut microbiome, whether SSRI exposure affects the offspring gut microbiome is unknown. We investigated the effects of maternal fluoxetine exposure on the gut microbiome of maternal and offspring mice during pregnancy and lactation (embryonic day 10-lactation day 21; E10-L21). Stool samples collected on E17, L11, L15, and L21 were examined using 16S rRNA sequencing. Our results suggest that maternal fluoxetine exposure may result in decreased alpha diversity of the offspring gut microbiome in early life. Furthermore, we observed several genera-specific differences in the gut microbiome based on treatment, specifically of Turicibacter, Parasutterella, and Romboutsia. These findings support our understanding of gut health, as dysbiotic development of the gut microbiome has been associated with local and systemic health problems including gastrointestinal morbidities and interrupted growth patterns in infants. Future research should pursue study in human populations and those at high risk for gut microbial dysbiosis and intestinal injury.
Collapse
Affiliation(s)
- Katelyn Desorcy-Scherer
- School of Nursing, University of Wisconsin-Madison, 701 Highland Avenue, Madison, WI, 54705, USA.
| | - Ibrahim Zuniga-Chaves
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Maggie A Reisner
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Laura L Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
19
|
Aebi N, Meier CR, Jick SS, Lang U, Spoendlin J. The risk of acute infections in new users of antidepressants: An observational cohort study. J Affect Disord 2024; 354:152-159. [PMID: 38479501 DOI: 10.1016/j.jad.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 01/13/2024] [Accepted: 03/03/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Preclinical studies suggested that drugs that functionally inhibit acid sphingomyelinase (FIASMA)may enhance immune cell longevity and potentially offer protection against infections. Many antidepressants have shown FIASMA activity. METHODS We conducted a cohort study using primary-care data from the UK-based Clinical Practice Research Datalink (2000-2021). We assessed the association of composite diagnosed acute infections in new users of fluoxetine, sertraline, paroxetine, or venlafaxine aged 18-80 years compared to citalopram. We compared SARS-CoV-2 infections between groups in a secondary analysis. We estimated incidence rates (IR) and IR ratios (IRR) of acute infections in four pairwise comparisons using negative binomial regression. We applied propensity score (PS) fine stratification to control for confounding. RESULTS In the PS-weighted cohorts, we included 353,138 fluoxetine, 222,463 sertraline, 69,963 paroxetine, 32,608 venlafaxine, and between 515,996 and 516,583 new citalopram users. PS-weighted IRs ranged between 76.8 acute infections /1000 person-years (py) (sertraline) and 98.9 infections/1000 py (citalopram). We observed PS-weighted IRRs around unity for paroxetine (0.97, 95 % CI, 0.95-1.00), fluoxetine (0.94, 95 % CI, 0.92-0.95), and venlafaxine (0.90, 95 % CI, 0.87-0.94) vs citalopram. Reduced IRR for sertraline vs citalopram (0.84, 95 % CI, 0.82-0.85), became null within subgroups by cohort entry date. In the analysis of SARS-CoV-2 infection, no statistically relevant risk reduction was seen. LIMITATIONS Analysis not limited to patients with diagnosed depression, possible underestimation of infection incidence, and unclear FIASMA activity of citalopram. CONCLUSIONS Fluoxetine, sertraline, paroxetine, and venlafaxine were not associated with a reduced risk of acute infection when compared with the presumably weak FIASMA citalopram.
Collapse
Affiliation(s)
- N Aebi
- Basel Pharmacoepidemiology Unit, Division of Clinical Pharmacy and Epidemiology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Hospital Pharmacy, University Hospital Basel, Basel, Switzerland; University Psychiatric Clinics Basel, University Hospital Basel, Basel, Switzerland.
| | - C R Meier
- Basel Pharmacoepidemiology Unit, Division of Clinical Pharmacy and Epidemiology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Hospital Pharmacy, University Hospital Basel, Basel, Switzerland; Boston Collaborative Drug Surveillance Program, Lexington, MA, USA.
| | - S S Jick
- Boston Collaborative Drug Surveillance Program, Lexington, MA, USA; Boston University School of Public Health, Boston, MA, USA
| | - U Lang
- University Psychiatric Clinics Basel, University Hospital Basel, Basel, Switzerland
| | - J Spoendlin
- Basel Pharmacoepidemiology Unit, Division of Clinical Pharmacy and Epidemiology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Hospital Pharmacy, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
20
|
Wei JQ, Bai J, Zhou CH, Yu H, Zhang W, Xue F, He H. Electroacupuncture intervention alleviates depressive-like behaviors and regulates gut microbiome in a mouse model of depression. Heliyon 2024; 10:e30014. [PMID: 38699009 PMCID: PMC11064442 DOI: 10.1016/j.heliyon.2024.e30014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
Electroacupuncture (EA) is a neuroregulatory therapy for depression. Nonetheless, the effects of EA on the gut microbiome in mice models of depression are not well established. Here, using a chronic unpredictable mild stress (CUMS) model in mice, we evaluated the antidepressant effects of EA and changes in gut microbiota with behavioral tests and 16S rRNA gene sequencing. The results found that EA increased the time spent in the center area of the open-field test and the percentage of sucrose preference and reduced the immobility time in the tail suspension test in CUMS-treated mice. Furthermore, the genus Lachnoclostridium, Ruminococcaceae_UCG-002 and Rikenellaceae_RC9_gut_group were enriched in the CUMS group, which was positively correlated with depressive-like behaviors. Whereas phylum Actinobacteria and genus Allobaculum, Bifidobacterium, Dubosiella, Rikenella and Ileibacterium were enriched in the EA and CUMS + EA groups, all of which were negatively correlated with depressive-like behaviors. This study characterizes gut microbiota under EA treatment and provides new insights into the association of anti-depressive-like effects of EA and gut microbiota.
Collapse
Affiliation(s)
- Jia-quan Wei
- Department of Psychiatry, Xi'an Gaoxin Hospital, Xi'an, 710077, China
| | - Jie Bai
- Department of Psychiatry, Xi'an Gaoxin Hospital, Xi'an, 710077, China
| | - Cui-hong Zhou
- Department of Psychiatry, Xijing Hospital, Xi'an, 710032, China
| | - Huan Yu
- Department of Psychiatry, Xijing Hospital, Xi'an, 710032, China
| | - Wen Zhang
- Department of Psychiatry, Xi'an Gaoxin Hospital, Xi'an, 710077, China
| | - Fen Xue
- Department of Psychiatry, Xi'an Gaoxin Hospital, Xi'an, 710077, China
| | - Hong He
- Department of Psychiatry, Xi'an Gaoxin Hospital, Xi'an, 710077, China
| |
Collapse
|
21
|
Carrazco Ávila PY, Arias Moliz T, Rosales Leal JI, Baca P, Rodríguez Valverde MÁ, Morales Hernandez ME. Novel Ti surface coated with PVA hydrogel and chitosan nanoparticles with antibacterial drug release: An experimental in vitro study. Clin Implant Dent Relat Res 2024; 26:427-441. [PMID: 38419213 DOI: 10.1111/cid.13305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/04/2023] [Accepted: 01/13/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVES The aims of this study were to design a novel titanium surface coated with a PVA hydrogel matrix and chitosan-based nanoparticles and to investigate the antibiotic release and its ability to inhibit microbial activity. METHODS Two drug delivery systems were developed and mixed. Chitosan-based nanoparticles (NP) and a polyvinyl alcohol film (PVA). The size, ζ-potential, stability, adhesive properties, and encapsulation profile of NP, as well as the release kinetics of drug delivery systems and their antimicrobial ability of PVA and PVANP films, were studied on Ti surfaces. The systems were loaded with doxycycline, vancomycin, and doxepin hydrochloride. RESULTS Nanoparticles presented a ζ-potential greater than 30 mV for 45 days and the efficiency drug encapsulation was 26.88% ± 1.51% for doxycycline, 16.09% ± 10.24% for vancomycin and 17.57% ± 11.08% for doxepin. In addition, PVA films were loaded with 125 μg/mL of doxycycline, 125 μg/mL of vancomycin, and 100 μg/mL of doxepin. PVANP-doxycycline achieved the antibacterial effect at 4 h while PVA-doxycycline maintained its effect at 24 h.
Collapse
Affiliation(s)
- Pablo Yael Carrazco Ávila
- Department of Stomatology, School of Dentistry, Campus de Cartuja s/n, University of Granada, Granada, Spain
| | - Teresa Arias Moliz
- Department of Microbiology, School of Dentistry, University of Granada, Granada, Spain
| | - Juan Ignacio Rosales Leal
- Department of Stomatology, School of Dentistry, Campus de Cartuja s/n, University of Granada, Granada, Spain
| | - Pilar Baca
- Department of Stomatology, School of Dentistry, Campus de Cartuja s/n, University of Granada, Granada, Spain
| | | | | |
Collapse
|
22
|
Toader C, Dobrin N, Costea D, Glavan LA, Covache-Busuioc RA, Dumitrascu DI, Bratu BG, Costin HP, Ciurea AV. Mind, Mood and Microbiota-Gut-Brain Axis in Psychiatric Disorders. Int J Mol Sci 2024; 25:3340. [PMID: 38542314 PMCID: PMC10970241 DOI: 10.3390/ijms25063340] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 04/30/2025] Open
Abstract
Psychiatric disorders represent a primary source of disability worldwide, manifesting as disturbances in individuals' cognitive processes, emotional regulation, and behavioral patterns. In the quest to discover novel therapies and expand the boundaries of neuropharmacology, studies from the field have highlighted the gut microbiota's role in modulating these disorders. These alterations may influence the brain's processes through the brain-gut axis, a multifaceted bidirectional system that establishes a connection between the enteric and central nervous systems. Thus, probiotic and prebiotic supplements that are meant to influence overall gut health may play an insightful role in alleviating psychiatric symptoms, such as the cognitive templates of major depressive disorder, anxiety, or schizophrenia. Moreover, the administration of psychotropic drugs has been revealed to induce specific changes in a microbiome's diversity, suggesting their potential utility in combating bacterial infections. This review emphasizes the intricate correlations between psychiatric disorders and the gut microbiota, mentioning the promising approaches in regard to the modulation of probiotic and prebiotic treatments, as well as the antimicrobial effects of psychotropic medication.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (B.-G.B.); (H.-P.C.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Nicolaie Dobrin
- Neurosurgical Clinic, “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iași, Romania;
| | - Daniel Costea
- Department of Neurosurgery, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Luca-Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (B.-G.B.); (H.-P.C.); (A.V.C.)
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (B.-G.B.); (H.-P.C.); (A.V.C.)
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (B.-G.B.); (H.-P.C.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (B.-G.B.); (H.-P.C.); (A.V.C.)
| | - Horia-Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (B.-G.B.); (H.-P.C.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (B.-G.B.); (H.-P.C.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
23
|
Holzhausen EA, Peppard PE, Sethi AK, Safdar N, Malecki KC, Schultz AA, Deblois CL, Hagen EW. Associations of gut microbiome richness and diversity with objective and subjective sleep measures in a population sample. Sleep 2024; 47:zsad300. [PMID: 37988614 PMCID: PMC10926107 DOI: 10.1093/sleep/zsad300] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/20/2023] [Indexed: 11/23/2023] Open
Abstract
STUDY OBJECTIVES Alterations in gut microbiota composition have been associated with several conditions, and there is emerging evidence that sleep quantity and quality are associated with the composition of the gut microbiome. Therefore, this study aimed to assess the associations between several measures of sleep and the gut microbiome in a large, population-based sample. METHODS Data were collected from participants in the Survey of the Health of Wisconsin from 2016 to 2017 (N = 720). Alpha diversity was estimated using Chao1 richness, Shannon's diversity, and Inverse Simpson's diversity. Beta diversity was estimated using Bray-Curtis dissimilarity. Models for each of the alpha-diversity outcomes were calculated using linear mixed effects models. Permutational multivariate analysis of variance tests were performed to test whether gut microbiome composition differed by sleep measures. Negative binomial models were used to assess whether sleep measures were associated with individual taxa relative abundance. RESULTS Participants were a mean (SD) age of 55 (16) years and 58% were female. The sample was 83% non-Hispanic white, 10.6% non-Hispanic black, and 3.5% Hispanic. Greater actigraphy-measured night-to-night sleep duration variability, wake-after-sleep onset, lower sleep efficiency, and worse self-reported sleep quality were associated with lower microbiome richness and diversity. Sleep variables were associated with beta-diversity, including actigraphy-measured night-to-night sleep duration variability, sleep latency and efficiency, and self-reported sleep quality, sleep apnea, and napping. Relative abundance of several taxa was associated with night-to-night sleep duration variability, average sleep latency and sleep efficiency, and sleep quality. CONCLUSIONS This study suggests that sleep may be associated with the composition of the gut microbiome. These results contribute to the body of evidence that modifiable health habits can influence the human gut microbiome.
Collapse
Affiliation(s)
| | - Paul E Peppard
- Department of Population Health Sciences, University of Wisconsin, Madison, WI, USA
| | - Ajay K Sethi
- Department of Population Health Sciences, University of Wisconsin, Madison, WI, USA
| | - Nasia Safdar
- Department of Medicine and the William S. Middleton Memorial Veterans Hospital, University of Wisconsin, Madison, WI, USA
| | - Kristen C Malecki
- Division of Environmental and Occupational Health Sciences, School of Public Health, University of Illinois Chicago, Chicago, IL, USA
| | - Amy A Schultz
- Department of Population Health Sciences, University of Wisconsin, Madison, WI, USA
| | | | - Erika W Hagen
- Department of Population Health Sciences, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
24
|
Rajkumar RP. Resolving a paradox: antidepressants, neuroinflammation, and neurodegeneration. EXPLORATION OF NEUROPROTECTIVE THERAPY 2024:11-37. [DOI: 10.37349/ent.2024.00068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2025]
Abstract
Depression is a known risk factor for dementia. Antidepressants are the most commonly used treatment for this condition, and are effective in at least half to two-thirds of cases. Extensive evidence from in vitro and animal models suggests that antidepressants have anti-inflammatory and neuroprotective properties. These effects have been shown to reduce the oxidative damage, amyloid aggregation, and expression of pro-inflammatory genes associated with animal models of neurodegenerative disorders. However, longitudinal research in humans has shown that antidepressants do not protect against dementia, and may even be associated with a risk of cognitive deterioration over time in older adults. The contrast between two sets of findings represents a paradox of significant clinical and public health significance, particularly when treating depression in late life. This review paper attempts to resolve this paradox by critically reviewing the medium- and long-term effects of antidepressants on peripheral immune-inflammatory responses, infection risk, gut microbiota, and neuroendocrine responses to stress, and how these effects may influence the risk of neurodegeneration. Briefly stated, it is possible that the peripheral actions of antidepressant medications may antagonize their beneficial effects against neuroinflammation. The implications of these findings are then explored with a particular focus on the development and testing of multimodal neuroprotective and anti-inflammatory treatments that could reduce the risk of Alzheimer’s and related dementias in patients suffering from depression.
Collapse
Affiliation(s)
- Ravi Philip Rajkumar
- Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, Pondicherry, India
| |
Collapse
|
25
|
Michaelis L, Berg L, Maier L. Confounder or Confederate? The Interactions Between Drugs and the Gut Microbiome in Psychiatric and Neurological Diseases. Biol Psychiatry 2024; 95:361-369. [PMID: 37331548 DOI: 10.1016/j.biopsych.2023.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/20/2023]
Abstract
The gut microbiome is emerging as an important factor in signaling along the gut-brain axis. The intimate physiological connection between the gut and the brain allows perturbations in the microbiome to be directly transmitted to the central nervous system and thereby contribute to psychiatric and neurological diseases. Common microbiome perturbations result from the ingestion of xenobiotic compounds including pharmaceuticals such as psychotropic drugs. In recent years, a variety of interactions between these drug classes and the gut microbiome have been reported, ranging from direct inhibitory effects on gut bacteria to microbiome-mediated drug degradation or sequestration. Consequently, the microbiome may play a critical role in influencing the intensity, duration, and onset of therapeutic effects, as well as in influencing the side effects that patients may experience. Furthermore, because the composition of the microbiome varies from person to person, the microbiome may contribute to the frequently observed interpersonal differences in the response to these drugs. In this review, we first summarize the known interactions between xenobiotics and the gut microbiome. Then, for psychopharmaceuticals, we address the question of whether these interactions with gut bacteria are irrelevant for the host (i.e., merely confounding factors in metagenomic analyses) or whether they may even have therapeutic or adverse effects.
Collapse
Affiliation(s)
- Lena Michaelis
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; and the Cluster of Excellence EXC 2124 (Controlling Microbes to Fight Infections), University of Tübingen, Tübingen, Germany
| | - Lara Berg
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; and the Cluster of Excellence EXC 2124 (Controlling Microbes to Fight Infections), University of Tübingen, Tübingen, Germany
| | - Lisa Maier
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; and the Cluster of Excellence EXC 2124 (Controlling Microbes to Fight Infections), University of Tübingen, Tübingen, Germany.
| |
Collapse
|
26
|
Garg K, Mohajeri MH. Potential effects of the most prescribed drugs on the microbiota-gut-brain-axis: A review. Brain Res Bull 2024; 207:110883. [PMID: 38244807 DOI: 10.1016/j.brainresbull.2024.110883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/22/2024]
Abstract
The link between drug-induced dysbiosis and its influence on brain diseases through gut-residing bacteria and their metabolites, named the microbiota-gut-brain axis (MGBA), remains largely unexplored. This review investigates the effects of commonly prescribed drugs (metformin, statins, proton-pump-inhibitors, NSAIDs, and anti-depressants) on the gut microbiota, comparing the findings with altered bacterial populations in major brain diseases (depression, multiple sclerosis, Parkinson's and Alzheimer's). The report aims to explore whether drugs can influence the development and progression of brain diseases via the MGBA. Central findings indicate that all explored drugs induce dysbiosis. These dysbiosis patterns were associated with brain disorders. The influence on brain diseases varied across different bacterial taxa, possibly mediated by direct effects or through bacterial metabolites. Each drug induced both positive and negative changes in the abundance of bacteria, indicating a counterbalancing effect. Moreover, the above-mentioned drugs exhibited similar effects, suggesting that they may counteract or enhance each other's effects on brain diseases when taken together by comorbid patients. In conclusion, the interplay of bacterial species and their abundances may have a greater impact on brain diseases than individual drugs or bacterial strains. Future research is needed to better understand drug-induced dysbiosis and the implications for brain disease pathogenesis, with the potential to develop more effective therapeutic options for patients with brain-related diseases.
Collapse
Affiliation(s)
- Kirti Garg
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | - M Hasan Mohajeri
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland.
| |
Collapse
|
27
|
Kraimi N, Ross T, Pujo J, De Palma G. The gut microbiome in disorders of gut-brain interaction. Gut Microbes 2024; 16:2360233. [PMID: 38949979 PMCID: PMC11218806 DOI: 10.1080/19490976.2024.2360233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/21/2024] [Indexed: 07/03/2024] Open
Abstract
Functional gastrointestinal disorders (FGIDs), chronic disorders characterized by either abdominal pain, altered intestinal motility, or their combination, have a worldwide prevalence of more than 40% and impose a high socioeconomic burden with a significant decline in quality of life. Recently, FGIDs have been reclassified as disorders of gut-brain interaction (DGBI), reflecting the key role of the gut-brain bidirectional communication in these disorders and their impact on psychological comorbidities. Although, during the past decades, the field of DGBIs has advanced significantly, the molecular mechanisms underlying DGBIs pathogenesis and pathophysiology, and the role of the gut microbiome in these processes are not fully understood. This review aims to discuss the latest body of literature on the complex microbiota-gut-brain interactions and their implications in the pathogenesis of DGBIs. A better understanding of the existing communication pathways between the gut microbiome and the brain holds promise in developing effective therapeutic interventions for DGBIs.
Collapse
Affiliation(s)
- Narjis Kraimi
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Taylor Ross
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Julien Pujo
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Giada De Palma
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| |
Collapse
|
28
|
Lin SKK, Chen HC, Chen CH, Chen IM, Lu ML, Hsu CD, Chiu YH, Wang TY, Chen HM, Chung YCE, Kuo PH. Exploring the human gut microbiota targets in relation to the use of contemporary antidepressants. J Affect Disord 2024; 344:473-484. [PMID: 37820962 DOI: 10.1016/j.jad.2023.10.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/04/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Antidepressants, specifically selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs), are commonly prescribed for depression treatment. Animal studies have shown that antidepressants can influence gut microbiota composition and specific bacterial taxa. We aimed to investigate the association between antidepressant use and human gut microbiota composition and functional pathway. METHODS We collected information on antidepressant use, demographic, food patterns, and clinical characteristics through questionnaires and medical records. The gut microbiota profiles of 271 depressive patients were carried out through 16S rRNA gene sequencing. Patients were categorized based on different types of antidepressant use groups for gut microbiota comparisons. MaAsLin2 was performed to evaluate microbiota composition across groups. PICRUSt2 was used to predict microbiota functional pathways. RESULTS Patients taking SSRIs or SNRIs had a lower microbiota diversity. We found seven taxa abundances (Turicibacter, Barnesiella, Lachnospiraceae_ND3007_group, Romboutia, Akkermansia, Dialister, Romboutia and Fusicatenibacter) differed in patients with various types of antidepressants compared with those without antidepressant treatments (p < 0.05). Turicibacter inversely correlated with depression severity in SSRIs or SNRI users (r = -0.43, p < 0.05). Top identified pathways were related to compound fermentation and biosynthesis in microbiota function. CONCLUSION Antidepressant usage, especially SSRIs and SNRIs, associates with changes in gut microbiota composition and specific taxa. Given our study's preliminary cross-sectional nature, further research is warranted to comprehend the relationship between antidepressant use, treatment response, and gut microbiota, aiming to enhance therapeutic interventions in the future.
Collapse
Affiliation(s)
- Shih-Kai Kevin Lin
- Department of Public Health, Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hsi-Chung Chen
- Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan; Department of Psychiatry, Center of Sleep Disorders, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Hsin Chen
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Psychiatric Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - I-Ming Chen
- Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
| | - Mong-Liang Lu
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Psychiatric Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Dien Hsu
- Department of Psychiatry, Taiwan Adventist Hospital, Taipei, Taiwan
| | - Yi-Hang Chiu
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan; Psychiatric Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Yang Wang
- Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
| | - Hui-Mei Chen
- Department of Public Health, Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yu-Chu Ella Chung
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Po-Hsiu Kuo
- Department of Public Health, Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan; Psychiatric Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
29
|
Filho AMC, Gomes NS, Lós DB, Leite IB, Tremblay MÈ, Macêdo DS. Microglia and Microbiome-Gut-Brain Axis. ADVANCES IN NEUROBIOLOGY 2024; 37:303-331. [PMID: 39207699 DOI: 10.1007/978-3-031-55529-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The mammalian gut contains a community of microorganisms called gut microbiome. The gut microbiome is integrated into mammalian physiology, contributing to metabolism, production of metabolites, and promoting immunomodulatory actions. Microglia, the brain's resident innate immune cells, play an essential role in homeostatic neurogenesis, synaptic remodeling, and glial maturation. Microglial dysfunction has been implicated in the pathogenesis of several neuropsychiatric disorders. Recent findings indicate that microglia are influenced by the gut microbiome and their derived metabolites throughout life. The pathways by which microbiota regulate microglia have only started to be understood, but this discovery has the potential to provide valuable insights into the pathogenesis of brain disorders associated with an altered microbiome. Here, we discuss the recent literature on the role of the gut microbiome in modulating microglia during development and adulthood and summarize the key findings on this bidirectional crosstalk in selected examples of neuropsychiatric and neurodegenerative disorders. We also highlight some current caveats and perspectives for the field.
Collapse
Affiliation(s)
- Adriano Maia Chaves Filho
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Nayana Soares Gomes
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Deniele Bezerra Lós
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Isabel Bessa Leite
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Department of Molecular Medicine, Université de Laval, Québec City, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
| | - Danielle S Macêdo
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil.
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
30
|
Bahmani M, Mehrtabar S, Jafarizadeh A, Zoghi S, Heravi FS, Abbasi A, Sanaie S, Rahnemayan S, Leylabadlo HE. The Gut Microbiota and Major Depressive Disorder: Current Understanding and Novel Therapeutic Strategies. Curr Pharm Biotechnol 2024; 25:2089-2107. [PMID: 38288791 DOI: 10.2174/0113892010281892240116081031] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 09/10/2024]
Abstract
Major depressive disorder (MDD) is a common neuropsychiatric challenge that primarily targets young females. MDD as a global disorder has a multifactorial etiology related to the environment and genetic background. A balanced gut microbiota is one of the most important environmental factors involved in human physiological health. The interaction of gut microbiota components and metabolic products with the hypothalamic-pituitary-adrenal system and immune mediators can reverse depression phenotypes in vulnerable individuals. Therefore, abnormalities in the quantitative and qualitative structure of the gut microbiota may lead to the progression of MDD. In this review, we have presented an overview of the bidirectional relationship between gut microbiota and MDD, and the effect of pre-treatments and microbiomebased approaches, such as probiotics, prebiotics, synbiotics, fecal microbiota transplantation, and a new generation of microbial alternatives, on the improvement of unstable clinical conditions caused by MDD.
Collapse
Affiliation(s)
- Mohaddeseh Bahmani
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Mehrtabar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Jafarizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevda Zoghi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Amin Abbasi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaie
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sama Rahnemayan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
31
|
Kowalski K, Żebrowska-Różańska P, Karpiński P, Kujawa D, Łaczmański Ł, Samochowiec J, Chęć M, Piotrowski P, Misiak B. Profiling gut microbiota signatures associated with the deficit subtype of schizophrenia: Findings from a case-control study. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110834. [PMID: 37473955 DOI: 10.1016/j.pnpbp.2023.110834] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Previous studies have reported a variety of gut microbiota alterations in patients with schizophrenia. However, none of these studies has investigated gut microbiota in patients with the deficit subtype of schizophrenia (D-SCZ) that can be characterized by primary and enduring negative symptoms. Therefore, in this study we aimed to profile gut microbiota of individuals with D-SCZ, compared to those with non-deficit schizophrenia (ND-SCZ) and healthy controls (HCs). METHODS A total of 115 outpatients (44 individuals with D-SCZ and 71 individuals with ND-SCZ) during remission of positive and disorganization symptoms as well as 120 HCs were enrolled. Gut microbiota was analyzed using the 16 rRNA amplicon sequencing. Additionally, the levels of C-reactive protein (CRP), glucose and lipid metabolism markers were determined in the peripheral blood samples. RESULTS Altogether 14 genera showed differential abundance in patients with D-SCZ compared to ND-SCZ and HCs, including Candidatus Soleaferrea, Eubacterium, Fusobacterium, Lachnospiraceae UCG-002, Lachnospiraceae UCG-004, Lachnospiraceae UCG-010, Libanicoccus, Limosilactobacillus, Mogibacterium, Peptococcus, Prevotella, Prevotellaceae NK3B31 group, Rikenellaceae RC9 gut group, and Slackia after adjustment for potential confounding factors. Observed alterations were significantly associated with cognitive performance in both groups of patients. Moreover, several significant correlations of differentially abundant genera with the levels of CRP, lipid profile parameters, glucose and insulin were found across all subgroups of participants. CONCLUSION Findings from the present study indicate that individuals with D-SCZ show a distinct profile of gut microbiota alterations that is associated with cognitive performance, metabolic parameters and subclinical inflammation.
Collapse
Affiliation(s)
- Krzysztof Kowalski
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, Wroclaw, Poland
| | - Paulina Żebrowska-Różańska
- Laboratory of Genomics & Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Paweł Karpiński
- Laboratory of Genomics & Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland; Department of Genetics, Wroclaw Medical University, Wroclaw, Poland
| | - Dorota Kujawa
- Laboratory of Genomics & Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Łukasz Łaczmański
- Laboratory of Genomics & Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland
| | - Magdalena Chęć
- Department of Clinical Psychology, Institute of Psychology, University of Szczecin, Szczecin, Poland
| | - Patryk Piotrowski
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, Wroclaw, Poland
| | - Błażej Misiak
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland.
| |
Collapse
|
32
|
Torres-Carrillo N, Martínez-López E, Torres-Carrillo NM, López-Quintero A, Moreno-Ortiz JM, González-Mercado A, Gutiérrez-Hurtado IA. Pharmacomicrobiomics and Drug-Infection Interactions: The Impact of Commensal, Symbiotic and Pathogenic Microorganisms on a Host Response to Drug Therapy. Int J Mol Sci 2023; 24:17100. [PMID: 38069427 PMCID: PMC10707377 DOI: 10.3390/ijms242317100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Microorganisms have a close relationship with humans, whether it is commensal, symbiotic, or pathogenic. Recently, it has been documented that microorganisms may influence the response to drug therapy. Pharmacomicrobiomics is an emerging field that focuses on the study of how variations in the microbiome affect the disposition, action, and toxicity of drugs. Two additional sciences have been added to complement pharmacomicrobiomics, namely toxicomicrobiomics, which explores how the microbiome influences drug metabolism and toxicity, and pharmacoecology, which refers to modifications in the microbiome as a result of drug administration. In this context, we introduce the concept of "drug-infection interaction" to describe the influence of pathogenic microorganisms on drug response. This review analyzes the current state of knowledge regarding the relevance of microorganisms in the host's response to drugs. It also highlights promising areas for future research and proposes the term "drug-infection interaction" as an extension of pharmacomicrobiomics.
Collapse
Affiliation(s)
- Norma Torres-Carrillo
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (N.T.-C.); (N.M.T.-C.)
| | - Erika Martínez-López
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Nora Magdalena Torres-Carrillo
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (N.T.-C.); (N.M.T.-C.)
| | - Andres López-Quintero
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - José Miguel Moreno-Ortiz
- Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.M.M.-O.); (A.G.-M.)
| | - Anahí González-Mercado
- Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.M.M.-O.); (A.G.-M.)
| | - Itzae Adonai Gutiérrez-Hurtado
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| |
Collapse
|
33
|
Brushett S, Gacesa R, Vich Vila A, Brandao Gois M, Andreu-Sánchez S, Swarte J, Klaassen M, Collij V, Sinha T, Bolte L, Wu J, Swertz M, de Kroon M, Reijneveld S, Wijmenga C, Weersma R, Fu J, van Loo H, Kurilshikov A, Zhernakova A. Gut feelings: the relations between depression, anxiety, psychotropic drugs and the gut microbiome. Gut Microbes 2023; 15:2281360. [PMID: 38017662 PMCID: PMC10730195 DOI: 10.1080/19490976.2023.2281360] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023] Open
Abstract
The gut microbiome is involved in the bi-directional relationship of the gut - brain axis. As most studies of this relationship are small and do not account for use of psychotropic drugs (PTDs), we explored the relations of the gut microbiome with several internalizing disorders, while adjusting for PTDs and other relevant medications, in 7,656 Lifelines participants from the Northern Netherlands (5,522 controls and 491 participants with at least one internalizing disorder). Disorders included dysthymia, major depressive disorder (MDD), any depressive disorder (AnyDep: dysthymia or MDD), generalized anxiety disorder (GAD) and any anxiety disorder (AnyAnx: GAD, social phobia and panic disorder). Compared to controls, 17 species were associated with depressive disorders and 3 were associated with anxiety disorders. Around 90% of these associations remained significant (FDR <0.05) after adjustment for PTD use, suggesting that the disorders, not PTD use, drove these associations. Negative associations were observed for the butyrate-producing bacteria Ruminococcus bromii in participants with AnyDep and for Bifidobacterium bifidum in AnyAnx participants, along with many others. Tryptophan and glutamate synthesis modules and the 3,4-Dihydroxyphenylacetic acid synthesis module (related to dopamine metabolism) were negatively associated with MDD and/or dysthymia. After additional adjustment for functional gastrointestinal disorders and irritable bowel syndrome, these relations remained either statistically (FDR <0.05) or nominally (P < 0.05) significant. Overall, multiple bacterial species and functional modules were associated with internalizing disorders, including gut - brain relevant components, while associations to PTD use were moderate. These findings suggest that internalizing disorders rather than PTDs are associated with gut microbiome differences relative to controls.
Collapse
Affiliation(s)
- S. Brushett
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Health Sciences, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - R. Gacesa
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - A. Vich Vila
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - M.F. Brandao Gois
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - S. Andreu-Sánchez
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Pediatrics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - J.C. Swarte
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - M.A.Y. Klaassen
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - V. Collij
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - T. Sinha
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - L.A. Bolte
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - J. Wu
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - M. Swertz
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Genomics Coordination Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - M.L.A. de Kroon
- Department of Health Sciences, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - S.A. Reijneveld
- Department of Health Sciences, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - C. Wijmenga
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - R.K. Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - J. Fu
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Pediatrics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - H.M. van Loo
- Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion regulation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - A. Kurilshikov
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - A. Zhernakova
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
34
|
Kandsperger S, Brunner R, Rupprecht R, Baghai TC. [Depressive Disorders in Adolescence: Current State of Studies Concerning the Microbiota-Gut-Brain Axis]. ZEITSCHRIFT FUR KINDER- UND JUGENDPSYCHIATRIE UND PSYCHOTHERAPIE 2023; 51:419-428. [PMID: 36752092 DOI: 10.1024/1422-4917/a000917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Depressive Disorders in Adolescence: Current State of Studies Concerning the Microbiota-Gut-Brain Axis Abstract. Depressive disorders increase during adolescence and often lead to significant impairment in affected individuals - despite treatment. Current research efforts aim to further investigate the pathophysiology of depression, considering the influence of gut microbiota on the gut-brain axis. The present narrative review outlines the current state of studies of the microbiota-gut-brain axis in depressive disorders as well as the direct and indirect interactions in adolescence. Besides providing promising results from animal studies, studies on the microbiota-gut-brain axis in adults suffering from depressive disorders are growing steadily. In depressed adolescents, however, the study situation is still marginal, making a recommendation for the supplementation of probiotics and prebiotics in depressed children and adolescents impossible according to the current state of research. Against the background of a very limited number of studies involving adolescents with depressive disorders, the interactive role of the microbiota-gut-brain axis in adolescent development should receive special attention in future research projects.
Collapse
Affiliation(s)
- Stephanie Kandsperger
- Klinik und Poliklinik für Kinder- und Jugendpsychiatrie, Psychosomatik und Psychotherapie, Universität Regensburg, Regensburg, Deutschland
| | - Romuald Brunner
- Klinik und Poliklinik für Kinder- und Jugendpsychiatrie, Psychosomatik und Psychotherapie, Universität Regensburg, Regensburg, Deutschland
| | - Rainer Rupprecht
- Klinik und Poliklinik für Psychiatrie und Psychotherapie, Universität Regensburg, Regensburg, Deutschland
| | - Thomas C Baghai
- Klinik und Poliklinik für Psychiatrie und Psychotherapie, Universität Regensburg, Regensburg, Deutschland
| |
Collapse
|
35
|
Zhou C, Chen Y, Xue S, Shi Q, Guo L, Yu H, Xue F, Cai M, Wang H, Peng Z. rTMS ameliorates depressive-like behaviors and regulates the gut microbiome and medium- and long-chain fatty acids in mice exposed to chronic unpredictable mild stress. CNS Neurosci Ther 2023; 29:3549-3566. [PMID: 37269082 PMCID: PMC10580350 DOI: 10.1111/cns.14287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/18/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023] Open
Abstract
INTRODUCTION Repetitive transcranial magnetic stimulation (rTMS) is a clinically useful therapy for depression. However, the effects of rTMS on the metabolism of fatty acids (FAs) and the composition of gut microbiota in depression are not well established. METHODS Mice received rTMS (15 Hz, 1.26 T) for seven consecutive days after exposure to chronic unpredictable mild stress (CUMS). The subsequent depressive-like behaviors, the composition of gut microbiota of stool samples, as well as medium- and long-chain fatty acids (MLCFAs) in the plasma, prefrontal cortex (PFC), and hippocampus (HPC) were evaluated. RESULTS CUMS induced remarkable changes in gut microbiotas and fatty acids, specifically in community diversity of gut microbiotas and PUFAs in the brain. 15 Hz rTMS treatment alleviates depressive-like behaviors and partially normalized CUMS induced alterations of microbiotas and MLCFAs, especially the abundance of Cyanobacteria, Actinobacteriota, and levels of polyunsaturated fatty acids (PUFAs) in the hippocampus and PFC. CONCLUSION These findings revealed that the modulation of gut microbiotas and PUFAs metabolism might partly contribute to the antidepressant effect of rTMS.
Collapse
Affiliation(s)
- Cui‐Hong Zhou
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Yi‐Huan Chen
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Shan‐Shan Xue
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Qing‐Qing Shi
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Lin Guo
- Department of PsychiatryChang'an HospitalXi'anChina
| | - Huan Yu
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Fen Xue
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Min Cai
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Hua‐Ning Wang
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Zheng‐Wu Peng
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| |
Collapse
|
36
|
Kamath S, Stringer AM, Prestidge CA, Joyce P. Targeting the gut microbiome to control drug pharmacomicrobiomics: the next frontier in oral drug delivery. Expert Opin Drug Deliv 2023; 20:1315-1331. [PMID: 37405390 DOI: 10.1080/17425247.2023.2233900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/04/2023] [Indexed: 07/06/2023]
Abstract
INTRODUCTION The trillions of microorganisms that comprise the gut microbiome form dynamic bidirectional interactions with orally administered drugs and host health. These relationships can alter all aspects of drug pharmacokinetics and pharmacodynamics (PK/PD); thus, there is a desire to control these interactions to maximize therapeutic efficacy. Attempts to modulate drug-gut microbiome interactions have spurred advancements within the field of 'pharmacomicrobiomics' and are poised to become the next frontier of oral drug delivery. AREAS COVERED This review details the bidirectional interactions that exist between oral drugs and the gut microbiome, with clinically relevant case examples outlining a clear motive for controlling pharmacomicrobiomic interactions. Specific focus is attributed to novel and advanced strategies that have demonstrated success in mediating drug-gut microbiome interactions. EXPERT OPINION Co-administration of gut-active supplements (e.g. pro- and pre-biotics), innovative drug delivery vehicles, and strategic polypharmacy serve as the most promising and clinically viable approaches for controlling pharmacomicrobiomic interactions. Targeting the gut microbiome through these strategies presents new opportunities for improving therapeutic efficacy by precisely mediating PK/PD, while mitigating metabolic disturbances caused by drug-induced gut dysbiosis. However, successfully translating preclinical potential into clinical outcomes relies on overcoming key challenges related to interindividual variability in microbiome composition and study design parameters.
Collapse
Affiliation(s)
- Srinivas Kamath
- UniSa Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Andrea M Stringer
- UniSa Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Clive A Prestidge
- UniSa Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Paul Joyce
- UniSa Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
37
|
Ortega MA, Álvarez-Mon MA, García-Montero C, Fraile-Martínez Ó, Monserrat J, Martinez-Rozas L, Rodríguez-Jiménez R, Álvarez-Mon M, Lahera G. Microbiota-gut-brain axis mechanisms in the complex network of bipolar disorders: potential clinical implications and translational opportunities. Mol Psychiatry 2023; 28:2645-2673. [PMID: 36707651 PMCID: PMC10615769 DOI: 10.1038/s41380-023-01964-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/02/2023] [Accepted: 01/13/2023] [Indexed: 01/28/2023]
Abstract
Bipolar disorders (BD) represent a severe leading disabling mental condition worldwide characterized by episodic and often progressive mood fluctuations with manic and depressive stages. The biological mechanisms underlying the pathophysiology of BD remain incompletely understood, but it seems that there is a complex picture of genetic and environmental factors implicated. Nowadays, gut microbiota is in the spotlight of new research related to this kind of psychiatric disorder, as it can be consistently related to several pathophysiological events observed in BD. In the context of the so-called microbiota-gut-brain (MGB) axis, it is shown to have a strong influence on host neuromodulation and endocrine functions (i.e., controlling the synthesis of neurotransmitters like serotonin or mediating the activation of the hypothalamic-pituitary-adrenal axis), as well as in modulation of host immune responses, critically regulating intestinal, systemic and brain inflammation (neuroinflammation). The present review aims to elucidate pathophysiological mechanisms derived from the MGB axis disruption and possible therapeutic approaches mainly focusing on gut microbiota in the complex network of BD. Understanding the mechanisms of gut microbiota and its bidirectional communication with the immune and other systems can shed light on the discovery of new therapies for improving the clinical management of these patients. Besides, the effect of psychiatric drugs on gut microbiota currently used in BD patients, together with new therapeutical approaches targeting this ecosystem (dietary patterns, probiotics, prebiotics, and other novelties) will also be contemplated.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain.
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain.
| | - Miguel Angel Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Óscar Fraile-Martínez
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Lucia Martinez-Rozas
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Roberto Rodríguez-Jiménez
- Department of Legal Medicine and Psychiatry, Complutense University, Madrid, Spain
- Institute for Health Research 12 de Octubre Hospital, (Imas 12)/CIBERSAM (Biomedical Research Networking Centre in Mental Health), Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias (CIBEREHD), Alcalá de Henares, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, Alcalá de Henares, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, Alcalá de Henares, Spain
| |
Collapse
|
38
|
Brown LC, Bobo WV, Gall CA, Müller DJ, Bousman CA. Pharmacomicrobiomics of Antidepressants in Depression: A Systematic Review. J Pers Med 2023; 13:1086. [PMID: 37511699 PMCID: PMC10381387 DOI: 10.3390/jpm13071086] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
This systematic review evaluated the animal and human evidence for pharmacomicrobiomics (PMx) interactions of antidepressant medications. Studies of gut microbiota effects on functional and behavioral effects of antidepressants in human and animal models were identified from PubMed up to December 2022. Risk of bias was assessed, and results are presented as a systematic review following PRISMA guidelines. A total of 28 (21 animal, 7 human) studies were included in the review. The reviewed papers converged on three themes: (1) Antidepressants can alter the composition and metabolites of gut microbiota, (2) gut microbiota can alter the bioavailability of certain antidepressants, and (3) gut microbiota may modulate the clinical or modeled mood modifying effects of antidepressants. The majority (n = 22) of studies had at least moderate levels of bias present. While strong evidence is still lacking to understand the clinical role of antidepressant PMx in human health, there is evidence for interactions among antidepressants, microbiota changes, microbiota metabolite changes, and behavior. Well-controlled studies of the mediating and moderating effects of baseline and treatment-emergent changes in microbiota on therapeutic and adverse responses to antidepressants are needed to better establish a potential role of PMx in personalizing antidepressant treatment selection and response prediction.
Collapse
Affiliation(s)
- Lisa C Brown
- Great Scott! Consulting LLC, New York, NY 11222, USA
| | - William V Bobo
- Department of Psychiatry & Psychology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Cory A Gall
- Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort 0028, South Africa
| | - Daniel J Müller
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M6J 1H4, Canada
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Chad A Bousman
- The Mathison Centre for Mental Health Research and Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Departments of Medical Genetics, Psychiatry, Physiology and Pharmacology, and Community Health Sciences, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
39
|
Zhang Q, Chen B, Zhang J, Dong J, Ma J, Zhang Y, Jin K, Lu J. Effect of prebiotics, probiotics, synbiotics on depression: results from a meta-analysis. BMC Psychiatry 2023; 23:477. [PMID: 37386630 PMCID: PMC10308754 DOI: 10.1186/s12888-023-04963-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023] Open
Abstract
Accumulating studies have shown the effects of gut microbiota management tools in improving depression. We conducted a meta-analysis to evaluate the effects of prebiotics, probiotics, and synbiotics on patients with depression. We searched six databases up to July 2022. In total, 13 randomized controlled trials (RCTs) with 786 participants were included. The overall results demonstrated that patients who received prebiotics, probiotics or synbiotics had significantly improved symptoms of depression compared with those in the placebo group. However, subgroup analysis only confirmed the significant antidepressant effects of agents that contained probiotics. In addition, patients with mild or moderate depression could both benefit from the treatment. Studies with a lower proportion of females reported stronger effects for alleviating depressive symptoms. In conclusion, agents that manipulate gut microbiota might improve mild-to-moderate depression. It is necessary to further investigate the benefits of prebiotic, probiotic and synbiotic treatments relative to antidepressants and follow up with individuals over a longer time before these therapies are implemented in clinical practice.
Collapse
Affiliation(s)
- Qin Zhang
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bing Chen
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinghui Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingyi Dong
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianglin Ma
- Department of Pediatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuyan Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Kangyu Jin
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jing Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China.
| |
Collapse
|
40
|
Pesarico AP, Vieira AT, Rosa SG. Editorial: Gut-microbiota-brain axis in depression: mechanisms and possible therapies. Front Behav Neurosci 2023; 17:1221141. [PMID: 37346896 PMCID: PMC10280164 DOI: 10.3389/fnbeh.2023.1221141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/24/2023] [Indexed: 06/23/2023] Open
Affiliation(s)
| | - Angelica Thomaz Vieira
- Laboratory of Microbiota and Immunomodulation, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
41
|
Hategan A, Bourgeois JA. Proposed Antidepressant-Associated Antimicrobial Resistance: A Function of the Illness, Its Treatment, or Both? J Clin Psychopharmacol 2023; Publish Ahead of Print:00004714-990000000-00137. [PMID: 37216353 DOI: 10.1097/jcp.0000000000001701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|
42
|
Ait Chait Y, Mottawea W, Tompkins TA, Hammami R. Evidence of the Dysbiotic Effect of Psychotropics on Gut Microbiota and Capacity of Probiotics to Alleviate Related Dysbiosis in a Model of the Human Colon. Int J Mol Sci 2023; 24:ijms24087326. [PMID: 37108487 PMCID: PMC10138884 DOI: 10.3390/ijms24087326] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Growing evidence indicates that non-antibiotic therapeutics significantly impact human health by modulating gut microbiome composition and metabolism. In this study, we investigated the impact of two psychotropic drugs, aripiprazole and (S)-citalopram, on gut microbiome composition and its metabolic activity, as well as the potential of probiotics to attenuate related dysbiosis using an ex vivo model of the human colon. After 48 h of fermentation, the two psychotropics demonstrated distinct modulatory effects on the gut microbiome. Aripiprazole, at the phylum level, significantly decreased the relative abundances of Firmicutes and Actinobacteria, while increasing the proportion of Proteobacteria. Moreover, the families Lachnospiraceae, Lactobacillaceae, and Erysipelotrichaceae were also reduced by aripiprazole treatment compared to the control group. In addition, aripiprazole lowered the levels of butyrate, propionate, and acetate, as measured by gas chromatography (GC). On the other hand, (S)-citalopram increased the alpha diversity of microbial taxa, with no differences observed between groups at the family and genus level. Furthermore, a probiotic combination of Lacticaseibacillus rhamnosus HA-114 and Bifidobacterium longum R0175 alleviated gut microbiome alterations and increased the production of short-chain fatty acids to a similar level as the control. These findings provide compelling evidence that psychotropics modulate the composition and function of the gut microbiome, while the probiotic can mitigate related dysbiosis.
Collapse
Affiliation(s)
- Yasmina Ait Chait
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Walid Mottawea
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | | | - Riadh Hammami
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
43
|
Liu L, Wang H, Chen X, Zhang Y, Zhang H, Xie P. Gut microbiota and its metabolites in depression: from pathogenesis to treatment. EBioMedicine 2023; 90:104527. [PMID: 36963238 PMCID: PMC10051028 DOI: 10.1016/j.ebiom.2023.104527] [Citation(s) in RCA: 238] [Impact Index Per Article: 119.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/13/2023] [Accepted: 03/02/2023] [Indexed: 03/26/2023] Open
Abstract
Major depressive disorder is one of the most disabling mental disorders worldwide. Increasing preclinical and clinical studies have highlighted that compositional and functional (e.g., metabolite) changes in gut microbiota, known as dysbiosis, are associated with the onset and progression of depression via regulating the gut-brain axis. However, the gut microbiota and their metabolites present a double-edged sword in depression. Dysbiosis is involved in the pathogenesis of depression while, at the same time, offering a novel therapeutic target. In this review, we describe the association between dysbiosis and depression, drug-microbiota interactions in antidepressant treatment, and the potential health benefits of microbial-targeted therapeutics in depression, including dietary interventions, fecal microbiota transplantation, probiotics, prebiotics, synbiotics, and postbiotics. With the emergence of microbial research, we describe a new direction for future research and clinical treatment of depression.
Collapse
Affiliation(s)
- Lanxiang Liu
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, 401147, China
| | - Xueyi Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yangdong Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hanping Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Peng Xie
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, 401147, China.
| |
Collapse
|
44
|
Dong Y, Weir NM. Antidepressants: A content analysis of healthcare providers' tweets. EXPLORATORY RESEARCH IN CLINICAL AND SOCIAL PHARMACY 2023; 9:100232. [PMID: 36876146 PMCID: PMC9976573 DOI: 10.1016/j.rcsop.2023.100232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/12/2023] Open
Abstract
Background Antidepressants are the primary treatment for depression, and social support from social media may offer another support route. Whilst Twitter has become an interactive platform for healthcare providers and their patients, previous studies found low engagement of healthcare providers when discussing antidepressants on Twitter. This study aims to analyse the Twitter posts of healthcare providers related to antidepressants and to explore the healthcare providers' engagement and their areas of interest. Method Tweets within a 10-day period were collected through multiple searches with a list of keywords within Twitter. The results were filtered against several inclusion criteria, including a manual screening to identify healthcare providers. A content analysis was conducted on eligible tweets where correlative themes and subthemes were identified. Key findings Healthcare providers contributed 5.9% of the antidepressant-related tweets (n = 770/13,005). The major clinical topics referred to in the tweets were side effects, antidepressants for the treatment of COVID-19, and antidepressant studies of psychedelics. Nurses posted more tweets sharing personal experiences with commonly negative attitudes, in contrast to physicians. Links to external webpages were commonly used among healthcare providers, especially users representing healthcare organisations. Conclusions A relatively low proportion of healthcare providers' engagement on Twitter regarding antidepressants (5.9%) was identified, with a minimal increase throughout the COVID-19 pandemic when compared to previous studies. The major clinical topics referred to in the tweets were side effects, antidepressants for the treatment of COVID-19 and antidepressant studies of psychedelics, which have been made publicly available. In general, the findings confirmed that social media platforms are a mechanism by which healthcare providers, organisations and students support patients, share information about adverse drug effects, communicate personal experiences, and share research. It is plausible that this could impact the belief and behaviours of people with lived experience of depression who may see these tweets.
Collapse
Affiliation(s)
| | - Natalie M. Weir
- Corresponding author at: 161 Cathedral Street, Glasgow G4 0NR, United Kingdom.
| |
Collapse
|
45
|
Xu F, Xie Q, Kuang W, Dong Z. Interactions Between Antidepressants and Intestinal Microbiota. Neurotherapeutics 2023; 20:359-371. [PMID: 36881351 PMCID: PMC10121977 DOI: 10.1007/s13311-023-01362-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
The microbiota-gut-brain axis has been shown to influence human health and diseases, including depression. The interactions between drugs and intestinal microbiota are complex and highly relevant to treat diseases. Studies have shown an interaction between antidepressants and intestinal microbiota. Antidepressants may alter the abundance and composition of intestinal microbiota, which are closely related to the treatment outcomes of depression. Intestinal microbiota can influence the metabolism of antidepressants to change their availability (e.g., tryptophan can be metabolized to kynurenine by intestinal microbiota) and regulate their absorption by affecting intestinal permeability. In addition, the permeability of the blood-brain barrier can be altered by intestinal microbiota, influencing antidepressants to reach the central nervous system. Bioaccumulation is also a type of drug-microbiota interaction, which means bacteria accumulate drugs without biotransformation. These findings imply that it is important to consider intestinal microbiota when evaluating antidepressant therapy regimens and that intestinal microbiota can be a potential target for depression treatment.
Collapse
Affiliation(s)
- Feiyu Xu
- West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Qinglian Xie
- Department of Outpatient, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Weihong Kuang
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Psychiatry and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zaiquan Dong
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Psychiatry and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
46
|
Kverno K, Ramos-Marcuse F. Brain, Gut, and Immune Interconnections in Psychiatric Disorders: Implications for Treatment. J Psychosoc Nurs Ment Health Serv 2023; 61:7-11. [PMID: 36881806 DOI: 10.3928/02793695-20230215-02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Recent studies have linked the gut microbiota to psychiatric symptoms and disorders through complex bidirectional networks. The purpose of the current article is to describe the associations between the gut microbiota and brain in psychiatric disorders. Although there are no approved treatments, there are global efforts underway to find more accurate measures to guide treatment and research. In this brief review, we describe current conceptualizations regarding the complex interconnections between psychiatric disorders and the gut microbiota. [Journal of Psychosocial Nursing and Mental Health Services, 61(3), 7-11.].
Collapse
|
47
|
Mazur G, Pańczyk-Straszak K, Rapacz A, Kiszela J, Smolik M, Gawlik M, Walczak M, Czekajewska J, Poloczek C, Karczewska E, Żesławska E, Nitek W, Niedbał A, Leśniak J, Ciapala K, Pawlik K, Mika J, Waszkielewicz AM. Promising anticonvulsant and/or analgesic compounds among 5-chloro-2- or 5-chloro-4-methyl derivatives of xanthone coupled to aminoalkanol moieties-Design, synthesis and pharmacological evaluation. Chem Biol Drug Des 2023; 101:278-325. [PMID: 35713377 DOI: 10.1111/cbdd.14102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/26/2022] [Accepted: 06/12/2022] [Indexed: 01/14/2023]
Abstract
A series of 10 aminoalkanol derivatives of 5-chloro-2- or 5-chloro-4-methylxanthone was synthetized and evaluated for anticonvulsant properties (MES test, mice, intraperitoneal) and compared with neurotoxicity rotarod test (NT, mice, i.p.). The best results both in terms of anticonvulsant activity and protective index value were obtained for 3: 5-chloro-2-([4-hydroxypiperidin-1-yl]methyl)-9H-xanthen-9-one hydrochloride. Compounds: 1-3, 7 and 10 revealed ED50 values in MES test: 42.78, 31.64, 25.76, 46.19 and 52.50 mg/kg b.w., respectively. 3 showed 70% and 72% of inhibition control specific binding of sigma-1 (σ1) and sigma-2 (σ2) receptor, respectively. 3 exhibited also antinociceptive activity at dose 2 mg/kg b.w. after chronic constriction injury in mice. 1, 3, 7 and 10 were evaluated on gastrointestinal flora and proved safe. In genotoxicity test (UMU-Chromotest) compounds 1, 7 and 10 proved safe at dose 150-300 μg/ml. The pharmacokinetic analysis showed rapid absorption of all studied molecules from the digestive tract (tmax = 5-30 min). The bioavailability of the compounds ranged from 6.6% (1) to 16% (10). All studied compounds penetrate the blood-brain barrier with brain to plasma ratios varied from 4.15 (3) to 7.6 (compound 7), after i.v. administration, and from 1 (7) to 5.72 (3) after i.g. administration.
Collapse
Affiliation(s)
- Gabriela Mazur
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Pańczyk-Straszak
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Rapacz
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Jan Kiszela
- Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Magdalena Smolik
- Chair and Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Maciej Gawlik
- Chair and Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Maria Walczak
- Chair and Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Joanna Czekajewska
- Department of Microbiology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Celina Poloczek
- Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Elżbieta Karczewska
- Department of Microbiology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Ewa Żesławska
- Institute of Biology, Pedagogical University of Krakow, Kraków, Poland
| | - Wojciech Nitek
- Department of Crystallochemistry and Crystallophysics, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Anna Niedbał
- Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Joanna Leśniak
- Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Ciapala
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Kraków, Poland
| | - Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Kraków, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Kraków, Poland
| | - Anna M Waszkielewicz
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
48
|
Caleça T, Ribeiro P, Vitorino M, Menezes M, Sampaio-Alves M, Mendes AD, Vicente R, Negreiros I, Faria A, Costa DA. Breast Cancer Survivors and Healthy Women: Could Gut Microbiota Make a Difference?-"BiotaCancerSurvivors": A Case-Control Study. Cancers (Basel) 2023; 15:cancers15030594. [PMID: 36765550 PMCID: PMC9913170 DOI: 10.3390/cancers15030594] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
In this first analysis, samples from 23 BC survivors (group 1) and 291 healthy female controls (group 2) were characterised through the V3 and V4 regions that encode the "16S rRNA" gene of each bacteria. The samples were sequenced by next-generation sequencing (NGS), and the taxonomy was identified by resorting to Kraken2 and improved with Bracken, using a curated database called 'GutHealth_DB'. The α and β-diversity analyses were used to determine the richness and evenness of the gut microbiota. A non-parametric Mann-Whitney U test was applied to assess differential abundance between both groups. The Firmicutes/Bacteroidetes (F/B) ratio was calculated using a Kruskal-Wallis chi-squared test. The α-diversity was significantly higher in group 1 (p = 0.28 × 10-12 for the Chao index and p = 1.64 × 10-12 for the ACE index). The Shannon index, a marker of richness and evenness, was not statistically different between the two groups (p = 0.72). The microbiota composition was different between the two groups: a null hypothesis was rejected for PERMANOVA (p = 9.99 × 10-5) and Anosim (p = 0.04) and was not rejected for β-dispersion (p = 0.158), using Unifrac weighted distance. The relative abundance of 14 phyla, 29 classes, 25 orders, 64 families, 116 genera, and 74 species differed significantly between both groups. The F/B ratio was significantly lower in group 1 than in group 2, p < 0.001. Our study allowed us to observe significant taxonomic disparities in the two groups by testing the differences between BC survivors and healthy controls. Additional studies are needed to clarify the involved mechanisms and explore the relationship between microbiota and BC survivorship.
Collapse
Affiliation(s)
- Telma Caleça
- Medical Oncology Department, Hospital Professor Doutor Fernando Fonseca, 2720-276 Amadora, Portugal
- Correspondence: (T.C.); (D.A.C.)
| | - Pedro Ribeiro
- Laboratory Medicine Centre Germano de Sousa, 1600-513 Lisbon, Portugal
| | - Marina Vitorino
- Medical Oncology Department, Hospital Professor Doutor Fernando Fonseca, 2720-276 Amadora, Portugal
| | - Maria Menezes
- Medical Oncology Department, Hospital do Espírito Santo de Évora, 7000-811 Évora, Portugal
| | - Mafalda Sampaio-Alves
- PTSurg–Portuguese Surgical Research Collaborative, 1600 Lisbon, Portugal
- Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal
| | - Ana Duarte Mendes
- Medical Oncology Department, Hospital Professor Doutor Fernando Fonseca, 2720-276 Amadora, Portugal
| | - Rodrigo Vicente
- Medical Oncology Department, Hospital Professor Doutor Fernando Fonseca, 2720-276 Amadora, Portugal
| | - Ida Negreiros
- Hospital CUF, Breast Cancer Unit, 1998-018 Lisbon, Portugal
| | - Ana Faria
- Faculdade de Ciências Médicas, NOVA Medical School, 1169-056 Lisbon, Portugal
- Comprehensive Health Research Centre (CHRC), Faculdade de Ciências Médicas, NOVA Medical School, 1150-082 Lisbon, Portugal
- CINTESIS-Center for Health Technology Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Diogo Alpuim Costa
- Hospital CUF, Breast Cancer Unit, 1998-018 Lisbon, Portugal
- Faculdade de Ciências Médicas, NOVA Medical School, 1169-056 Lisbon, Portugal
- Medical Oncology Department, Hospital de Cascais Dr. José de Almeida, 2755-009 Cascais, Portugal
- Correspondence: (T.C.); (D.A.C.)
| |
Collapse
|
49
|
Wang R, Cai Y, Lu W, Zhang R, Shao R, Yau SY, Stubbs B, McIntyre RS, Su KP, Xu G, Qi L, So KF, Lin K. Exercise effect on the gut microbiota in young adolescents with subthreshold depression: A randomized psychoeducation-controlled Trial. Psychiatry Res 2023; 319:115005. [PMID: 36565548 DOI: 10.1016/j.psychres.2022.115005] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/28/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
This 3-month randomized psychoeducation-controlled trial (RCT) of exercise was undertaken in young adolescents with subthreshold depression to examine the impact on gut microbiota. Participants (aged 12-14 years) were randomly assigned to an exercise or a psychoeducation-controlled group. The exercise intervention arm took moderate-intensity exercise, comprised of 30 min of running per day, 4 days a week for 3 months. Psychoeducation intervention consisted of 6 sessions of group activity including gaming, reading, and singing. The gut microbiota was assessed by metagenomic sequencing. After 3-month moderate-intensity exercise, the intervention group increased the relative abundance of Coprococcus, Blautia, Dorea, Tyzzerella at the genus level, as well as Tyzzerella nexilis, Ruminococcus obeum at species level when compared to the psychoeducation-controlled group. Moreover, EggNOG analyses showed that the defense and signal transduction mechanism were highly enriched after the active intervention, and changes were correlated with improvements in depressive symptoms measured by Chinese Patient Depression Questionnaire 9. The KEGG pathway of neurodegenerative diseases was depleted in the microbiome in young adolescents with subthreshold depression after exercise intervention. This 3-month RCT suggests that at both the genus and species levels, aerobic group exercise intervention improved in depressive symptoms and revealed changes in gut microbiota suggesting beneficial effects.
Collapse
Affiliation(s)
- Runhua Wang
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuanyuan Cai
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Weicong Lu
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruoxi Zhang
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Robin Shao
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Brendon Stubbs
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Canada
| | - Kuan-Pin Su
- Department of Psychiatry and MBI-Lab, China Medical University Hospital, Taichung, China
| | - Guiyun Xu
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liangwen Qi
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kwok-Fai So
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China; Ministry of Education Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou, China
| | - Kangguang Lin
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China.
| |
Collapse
|
50
|
Evrensel A. Microbiome-Induced Autoimmunity and Novel Therapeutic Intervention. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:71-90. [PMID: 36949306 DOI: 10.1007/978-981-19-7376-5_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Microorganisms' flora, which colonize in many parts of our body, stand out as one of the most important components for a healthy life. This microbial organization called microbiome lives in integration with the body as a single and whole organ/system. Perhaps, the human first encounters the microbial activity it carries through the immune system. This encounter and interaction are vital for the development of immune system cells that protect the body against pathogenic organisms and infections throughout life. In recent years, it has been determined that some disruptions in the host-microbiome interaction play an important role in the physiopathology of autoimmune diseases. Although the details of this interaction have not been clarified yet, the focus is on leaky gut syndrome, dysbiosis, toll-like receptor ligands, and B cell dysfunction. Nutritional regulations, prebiotics, probiotics, fecal microbiota transplantation, bacterial engineering, and vaccination are being investigated as new therapeutic approaches in the treatment of problems in these areas. This article reviews recent research in this area.
Collapse
Affiliation(s)
- Alper Evrensel
- Department of Psychiatry, Uskudar University, Istanbul, Turkey
- NP Brain Hospital, Istanbul, Turkey
| |
Collapse
|