1
|
Gao YJ, Meng LL, Lu ZY, Li XY, Luo RQ, Lin H, Pan ZM, Xu BH, Huang QK, Xiao ZG, Li TT, Yin E, Wei N, Liu C, Lin H. Degree centrality values in the left calcarine as a potential imaging biomarker for anxious major depressive disorder. World J Psychiatry 2025; 15:100289. [DOI: 10.5498/wjp.v15.i4.100289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/23/2024] [Accepted: 01/23/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Major depressive disorder (MDD) with comorbid anxiety is an intricate psychiatric condition, but limited research is available on the degree centrality (DC) between anxious MDD and nonanxious MDD patients.
AIM To examine changes in DC values and their use as neuroimaging biomarkers in anxious and non-anxious MDD patients.
METHODS We examined 23 anxious MDD patients, 30 nonanxious MDD patients, and 28 healthy controls (HCs) using the DC for data analysis.
RESULTS Compared with HCs, the anxious MDD group reported markedly reduced DC values in the right fusiform gyrus (FFG) and inferior occipital gyrus, whereas elevated DC values in the left middle frontal gyrus and left inferior parietal angular gyrus. The nonanxious MDD group exhibited surged DC values in the bilateral cerebellum IX, right precuneus, and opercular part of the inferior frontal gyrus. Unlike the nonanxious MDD group, the anxious MDD group exhibited declined DC values in the right FFG and bilateral calcarine (CAL). Besides, declined DC values in the right FFG and bilateral CAL negatively correlated with anxiety scores in the MDD group.
CONCLUSION This study shows that abnormal DC patterns in MDD, especially in the left CAL, can distinguish MDD from its anxiety subtype, indicating a potential neuroimaging biomarker.
Collapse
Affiliation(s)
- Yu-Jun Gao
- Department of Psychiatry, Wuhan Wuchang Hospital, Wuhan 430064, Hubei Province, China
- Department of Psychiatry, Yichang Mental Health Center, Yichang 443000, Hubei Province, China
- Institute of Mental Health, Three Gorges University, Yichang 443000, Hubei Province, China
- Department of Psychiatry, Yichang City Clinical Research Center for Mental Disorders, Yichang 443000, Hubei Province, China
| | - Li-Li Meng
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan Hospital of Psychotherapy, Wuhan 430030, Hubei Province, China
| | - Zhao-Yuan Lu
- Department of Psychiatry, Wuhan Wuchang Hospital, Wuhan 430064, Hubei Province, China
| | - Xiang-You Li
- Department of Nephrology, Wuhan Wuchang Hospital, Wuhan University of Science and Technology, Wuhan 430064, Hubei Province, China
| | - Ru-Qin Luo
- Department of Psychiatry, Wuhan Wuchang Hospital, Wuhan 430064, Hubei Province, China
| | - Hang Lin
- Department of Nephrology, Xiaogan Central Hospital, Xiaogan 432000, Hubei Province, China
| | - Zhi-Ming Pan
- Department of Psychiatry, Yichang Mental Health Center, Yichang 443000, Hubei Province, China
- Institute of Mental Health, Three Gorges University, Yichang 443000, Hubei Province, China
- Department of Psychiatry, Yichang City Clinical Research Center for Mental Disorders, Yichang 443000, Hubei Province, China
| | - Bao-Hua Xu
- Department of Psychiatry, Yichang Mental Health Center, Yichang 443000, Hubei Province, China
- Institute of Mental Health, Three Gorges University, Yichang 443000, Hubei Province, China
- Department of Psychiatry, Yichang City Clinical Research Center for Mental Disorders, Yichang 443000, Hubei Province, China
| | - Qian-Kun Huang
- Department of Psychiatry, Yichang Mental Health Center, Yichang 443000, Hubei Province, China
- Institute of Mental Health, Three Gorges University, Yichang 443000, Hubei Province, China
- Department of Psychiatry, Yichang City Clinical Research Center for Mental Disorders, Yichang 443000, Hubei Province, China
| | - Zhi-Gang Xiao
- Department of Psychiatry, Yichang Mental Health Center, Yichang 443000, Hubei Province, China
- Institute of Mental Health, Three Gorges University, Yichang 443000, Hubei Province, China
- Department of Psychiatry, Yichang City Clinical Research Center for Mental Disorders, Yichang 443000, Hubei Province, China
| | - Ting-Ting Li
- Department of Psychiatry, Yichang Mental Health Center, Yichang 443000, Hubei Province, China
- Institute of Mental Health, Three Gorges University, Yichang 443000, Hubei Province, China
- Department of Psychiatry, Yichang City Clinical Research Center for Mental Disorders, Yichang 443000, Hubei Province, China
| | - E Yin
- Department of Psychiatry, Yichang Mental Health Center, Yichang 443000, Hubei Province, China
- Institute of Mental Health, Three Gorges University, Yichang 443000, Hubei Province, China
- Department of Psychiatry, Yichang City Clinical Research Center for Mental Disorders, Yichang 443000, Hubei Province, China
| | - Nian Wei
- Department of Psychiatry, Yichang Mental Health Center, Yichang 443000, Hubei Province, China
- Institute of Mental Health, Three Gorges University, Yichang 443000, Hubei Province, China
- Department of Psychiatry, Yichang City Clinical Research Center for Mental Disorders, Yichang 443000, Hubei Province, China
| | - Chen Liu
- Department of Psychiatry, Yichang Mental Health Center, Yichang 443000, Hubei Province, China
- Institute of Mental Health, Three Gorges University, Yichang 443000, Hubei Province, China
- Department of Psychiatry, Yichang City Clinical Research Center for Mental Disorders, Yichang 443000, Hubei Province, China
| | - Hong Lin
- Department of Psychiatry, Yichang Mental Health Center, Yichang 443000, Hubei Province, China
- Institute of Mental Health, Three Gorges University, Yichang 443000, Hubei Province, China
- Department of Psychiatry, Yichang City Clinical Research Center for Mental Disorders, Yichang 443000, Hubei Province, China
| |
Collapse
|
2
|
Lee SW, Kim S, Chang Y, Cha H, Noeske R, Choi C, Lee SJ. Quantification of Glutathione and Its Associated Spontaneous Neuronal Activity in Major Depressive Disorder and Obsessive-Compulsive Disorder. Biol Psychiatry 2025; 97:279-289. [PMID: 39218137 DOI: 10.1016/j.biopsych.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Glutathione (GSH) is a crucial antioxidant in the human brain. Although proton magnetic resonance spectroscopy using the Mescher-Garwood point-resolved spectroscopy sequence is highly recommended, limited literature has measured cortical GSH using this method in major psychiatric disorders. METHODS By combining magnetic resonance spectroscopy and resting-state functional magnetic resonance imaging, we quantified brain GSH and glutamate in the medial prefrontal cortex and precuneus and explored relationships between GSH levels and intrinsic neuronal activity as well as clinical symptoms among healthy control (HC) participants (n = 30), people with major depressive disorder (MDD) (n = 28), and people with obsessive-compulsive disorder (OCD) (n = 28). RESULTS GSH concentrations were lower in the medial prefrontal cortex and precuneus in both the MDD and OCD groups than in the HC group. In the HC group, positive correlations were noted between GSH and glutamate levels and between GSH and fractional amplitude of low-frequency fluctuations in both regions. However, while these correlations were absent in both patient groups, there was a weak positive correlation between glutamate and fractional amplitude of low-frequency fluctuations. Moreover, GSH levels were negatively correlated with depressive and compulsive symptoms in MDD and OCD, respectively. CONCLUSIONS These findings suggest that reduced GSH levels and an imbalance between GSH and glutamate could increase oxidative stress and alter neurotransmitter signaling, thereby leading to disruptions in GSH-related neurochemical-neuronal coupling and psychopathologies across MDD and OCD. Understanding these mechanisms could provide valuable insights into the processes that underlie these disorders and potentially become a springboard for future directions and advancing our knowledge of their neurobiological foundations.
Collapse
Affiliation(s)
- Sang Won Lee
- Department of Psychiatry, School of Medicine, Kyungpook National University, Daegu, Korea; Department of Psychiatry, Kyungpook National University Chilgok Hospital, Daegu, Korea
| | - Seungho Kim
- Department of Medical & Biological Engineering, Kyungpook National University, Daegu, Korea
| | - Yongmin Chang
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, Korea; Department of Radiology, Kyungpook National University Hospital, Daegu, Korea
| | - Hyunsil Cha
- Department of Medical & Biological Engineering, Kyungpook National University, Daegu, Korea
| | - Ralph Noeske
- Applied Science Laboratory Europe, GE HealthCare, Munich, Germany
| | - Changho Choi
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Seung Jae Lee
- Department of Psychiatry, School of Medicine, Kyungpook National University, Daegu, Korea; Department of Psychiatry, Kyungpook National University Hospital, Daegu, Korea.
| |
Collapse
|
3
|
Mo D, Zheng H, Li WZ, Chen L, Tao R, Zhong H, Liu H. A study of somatization symptoms and low-frequency amplitude fluctuations of emotional memory in adolescent depression. Psychiatry Res Neuroimaging 2024; 344:111867. [PMID: 39153231 DOI: 10.1016/j.pscychresns.2024.111867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Studies have revealed that somatization symptoms are associated with emotional memory in adolescents with depressive disorders. This study investigated somatization symptoms and emotional memory among adolescents with depressive disorders using low-frequency amplitude fluctuations (ALFF). Participants were categorized into the somatization symptoms (FSS) group, non-FSS group and healthy control group (HC). The correctness of negative picture re-recognition was higher in the FFS and HC group than in the non-FSS group. The right superior occipital gyrus and right inferior temporal gyrus were significantly larger in the FSS group than those in the non-FSS and HC groups. Additionally, the ALFF in the superior occipital and inferior temporal gyrus were positively correlated with CSI score. Furthermore, the ALFF values in the temporal region positively correlated with correct negative image re-recognition. The negative image re-recognition rate was positively correlated with the ALFF in the left and right middle occipital gyri. These findings indicated that somatization symptoms in adolescent depression are associated with the superior occipital gyrus and inferior temporal gyrus. Notably, somatization symptoms play a role in memory bias within depressive disorders, with middle occipital and inferior temporal gyri potentially serving as significant brain regions.
Collapse
Affiliation(s)
- Daming Mo
- Department of Child and Adolescent Mental Disorder, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China; Department of Psychiatry, Anhui Mental Health Center, Hefei, China
| | - Hongyu Zheng
- Department of Child and Adolescent Mental Disorder, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China; Department of Psychiatry, Anhui Mental Health Center, Hefei, China
| | - Wen Zheng Li
- Department of Child and Adolescent Mental Disorder, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China; Department of Psychiatry, Anhui Mental Health Center, Hefei, China
| | - Long Chen
- Department of Child and Adolescent Mental Disorder, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China; Department of Psychiatry, Anhui Mental Health Center, Hefei, China
| | - Rui Tao
- Department of Psychiatry, Chao Hu Hospital of Anhui Medical University, Hefei, China
| | - Hui Zhong
- Department of Child and Adolescent Mental Disorder, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China; Department of Psychiatry, Anhui Mental Health Center, Hefei, China
| | - Huanzhong Liu
- Department of Psychiatry, Chao Hu Hospital of Anhui Medical University, Hefei, China; Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
4
|
Zhao F, Song L, Chen Y, Wang S, Wang X, Zhai Y, Xu J, Zhang Z, Lei M, Cai W, An Q, Zhu D, Li F, Wang C, Liu F. Neuroplastic changes induced by long-term Pingju training: insights from dynamic brain activity and connectivity. Front Neurosci 2024; 18:1477181. [PMID: 39399381 PMCID: PMC11466935 DOI: 10.3389/fnins.2024.1477181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Background Traditional Chinese opera, such as Pingju, requires actors to master sophisticated performance skills and cultural knowledge, potentially influencing brain function. This study aimed to explore the effects of long-term opera training on the dynamic amplitude of low-frequency fluctuation (dALFF) and dynamic functional connectivity (dFC). Methods Twenty professional well-trained Pingju actors and twenty demographically matched untrained subjects were recruited. Resting-state functional magnetic resonance imaging (fMRI) data were collected to assess dALFF differences in spontaneous regional brain activity between the actors and untrained participants. Brain regions with altered dALFF were selected as the seeds for the subsequent dFC analysis. Statistical comparisons examined differences between groups, while correlation analyses explored the relationships between dALFF and dFC, as well as the associations between these neural measures and the duration of Pingju training. Results Compared with untrained subjects, professional Pingju actors exhibited significantly lower dALFF in the right lingual gyrus. Additionally, actors showed increased dFC between the right lingual gyrus and the bilateral cerebellum, as well as between the right lingual gyrus and the bilateral midbrain/red nucleus/thalamus, compared with untrained subjects. Furthermore, a negative correlation was found between the dALFF in the right lingual gyrus and its dFC, and a significant association was found between dFC in the bilateral midbrain/red nucleus/thalamus and the duration of Pingju training. Conclusion Long-term engagement in Pingju training induces neuroplastic changes, reflected in altered dALFF and dFC. These findings provide evidence for the interaction between artistic training and brain function, highlighting the need for further research into the impact of professional training on cognitive functions.
Collapse
Affiliation(s)
- Fangshi Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Linlin Song
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
- Department of Ultrasound, Tianjin Medical University General Hospital, Tianjin, China
| | - Yule Chen
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shaoying Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoyi Wang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Ying Zhai
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinglei Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhihui Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Minghuan Lei
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenjie Cai
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qi An
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Dan Zhu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
- Department of Radiology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, China
| | - Fengtan Li
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunyang Wang
- Department of Scientific Research, Tianjin Medical University General Hospital, Tianjin, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
5
|
Hu L, Chen J, Li X, Zhang H, Zhang J, Lu Y, Lian J, Yu H, Yang N, Wang J, Lyu H, Xu J. Disruptive and complementary effects of depression symptoms on spontaneous brain activity in the subcortical vascular mild cognitive impairment. Front Aging Neurosci 2024; 16:1338179. [PMID: 39355540 PMCID: PMC11442267 DOI: 10.3389/fnagi.2024.1338179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/26/2024] [Indexed: 10/03/2024] Open
Abstract
Background Although depression symptoms are commonly reported in patients with subcortical vascular mild cognitive impairment (svMCI), their impact on brain functions remains largely unknown, with diagnoses mainly dependent on behavioral assessments. Methods In this study, we analyzed resting-state fMRI data from a cohort of 34 svMCI patients, comprising 18 patients with depression symptoms (svMCI+D) and 16 patients without (svMCI-D), along with 34 normal controls (NC). The study used the fraction of the amplitude of low-frequency fluctuations (fALFF), resting-state functional connectivity, correlation analyses, and support vector machine (SVM) techniques. Results The fALFF of the right cerebellum (CERE.R) differed among the svMCI+D, svMCI-D, and NC groups. Specifically, the regional mean fALFF of CERE. R was lower in svMCI-D patients compared to NC but higher in svMCI+D patients compared to svMCI-D patients. Moreover, the adjusted fALFF of CERE. R showed a significant correlation with Montreal Cognitive Assessment (MOCA) scores in svMCI-D patients. The fALFF of the right orbital part of the superior frontal gyrus was significantly correlated with Hamilton Depression Scale scores in svMCI+D patients, whereas the fALFF of the right postcingulate cortex (PCC.R) showed a significant correlation with MOCA scores in svMCI-D patients. Furthermore, RSFC between PCC. R and right precuneus, as well as between CERE. R and the right lingual gyrus (LING.R), was significantly reduced in svMCI-D patients compared to NC. In regional analyses, the adjusted RSFC between PCC. R and PreCUN. R, as well as between CERE. R and LING. R, was decreased in svMCI-D patients compared to NC but increased in svMCI+D patients compared to svMCI-D. Further SVM analyses achieved good performances, with an area under the curve (AUC) of 0.82 for classifying svMCI+D, svMCI-D, and NC; 0.96 for classifying svMCI+D and svMCI-D; 0.82 for classifying svMCI+D and NC; and 0.92 for classifying svMCI-D and NC. Conclusion The study revealed disruptive effects of cognitive impairment, along with both disruptive and complementary effects of depression symptoms on spontaneous brain activity in svMCI. Moreover, these findings suggest that the identified features might serve as potential biomarkers for distinguishing between svMCI+D, svMCI-D, and NC, thereby guiding clinical treatments such as transcranial magnetic stimulation for svMCI.
Collapse
Affiliation(s)
- Liyu Hu
- Department of Acupuncture and Moxibustion, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jianxiang Chen
- Department of Radiology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xinbei Li
- Department of Radiology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Haoran Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jinhuan Zhang
- Department of Acupuncture and Moxibustion, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yingqi Lu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jie Lian
- Department of Neurology and Psychiatry, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China, 5Hospital of Traditional Chinese Medicine of Zhongshan, Shenzhen, China
| | - Haibo Yu
- Department of Acupuncture and Moxibustion, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Nan Yang
- Hospital of Traditional Chinese Medicine of Zhongshan, Zhongshan, China
| | - Jianjun Wang
- Department of Neurology and Psychiatry, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China, 5Hospital of Traditional Chinese Medicine of Zhongshan, Shenzhen, China
| | - Hanqing Lyu
- Department of Radiology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
6
|
Hu J, Wu J, Jiang Q, Wang Y, Yuan Y, Cheng X, Li K, Shen Y, Zhang J, Wang F, Liu J, Liu C, Dai Y, Mao C. Changes in slow-wave sleep characteristics in Parkinson's disease patients with mild-moderate depression. Sleep Med 2024; 121:219-225. [PMID: 39004012 DOI: 10.1016/j.sleep.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/08/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
INTRODUCTION Depression and sleep disturbances are commonly seen non-motor symptoms in patients with Parkinson's disease (PD). This study used polysomnography to examine the relationship between mild-moderate depression in PD and sleep characteristics, particularly slow wave activities (SWA). METHODS 59 PD patients were split into two groups: nd-PD (n = 27) (patients with PD without depression) and d-PD (n = 32) (patients with PD with mild-moderate depression). Their clinical features, polysomnography parameters, and demographics were evaluated. Early and late sleep SWA spectrum densities and overnight SWA decline in different brain regions were particularly analyzed. RESULTS Non-rapid eye movement 3 (N3) sleep duration and percentage were greater in the d-PD group. N3 percentage was linked to depression (p = 0.014). During late sleep, higher SWA (0.5-4Hz) in the frontal and central regions, higher low-SWA (0.5-2Hz) in the whole brain, central and occipital regions, and higher high-SWA (2-4Hz) in the frontal region was observed in the d-PD group. During early sleep, there was also higher low-SWA (0.5-2Hz) in the occipital region. Patients in d-PD group exhibited reduced overnight high-SWA (2-4Hz) decline (Δhigh-SWA) in the whole brain and occipital regions. Δhigh-SWA(2-4Hz) in the occipital region were associated with depression (p = 0.049). CONCLUSION PD patients with mild-moderate depression have impaired slow wave sleep, exhibiting as increased N3 sleep, SWA, and reduced overnight SWA decline. This implies that synaptic strength reduction during sleep and impaired synaptic homeostasis regulation may be associated with depression in PD. Reduced overnight high-SWA decline in the occipital region may serve as a novel electrophysiological biomarker for indicating depression in PD.
Collapse
Affiliation(s)
- Jingzhe Hu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiayu Wu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qiming Jiang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yiming Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuan Yuan
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoyu Cheng
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Kai Li
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yun Shen
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinru Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Fen Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Junyi Liu
- Department of Neurology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Chunfeng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yongping Dai
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Chengjie Mao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
7
|
Lu F, Zhang J, Zhong Y, Hong L, Wang J, Du H, Fang J, Fan Y, Wang X, Yang Y, He Z, Jia C, Wang W, Lv X. Neural signatures of default mode network subsystems in first-episode, drug-naive patients with major depressive disorder after 6-week thought induction psychotherapy treatment. Brain Commun 2024; 6:fcae263. [PMID: 39171204 PMCID: PMC11337011 DOI: 10.1093/braincomms/fcae263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/20/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
Evidence indicates that the default mode network (DMN) plays a crucial role in the neuropathology of major depressive disorder (MDD). However, the neural signatures of DMN subsystems in MDD after low resistance Thought Induction Psychotherapy (TIP) remain incompletely understood. We collected functional magnetic resonance imaging data from 20 first-episode, drug-naive MDD and 20 healthy controls (HCs). The DMN was segmented into three subsystems and seed-based functional connectivity (FC) was computed. After 6-week treatment, the significantly reduced FCs with the medial temporal lobe memory subsystem in MDD at baseline were enhanced and were comparable to that in HCs. Changed Hamilton Depression Rating Scale scores were significantly related with changed FC between the posterior cingulate cortex (PCC) and the right precuneus (PCUN). Further, changed serotonin 5-hydroxytryptamine levels were significantly correlated with changed FCs between the PCC and the left PCUN, between the posterior inferior parietal lobule and the left inferior temporal gyrus, and between the retrosplenial cortex and the right inferior frontal gyrus, opercular part. Finally, the support vector machine obtained an accuracy of 67.5% to distinguish between MDD at baseline and HCs. These findings may deepen our understanding of the neural basis of the effects of TIP on DMN subsystems in MDD.
Collapse
Affiliation(s)
- Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jinhua Zhang
- Psychology Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yihua Zhong
- Teaching Department, The Open University of Chengdu, Chengdu 610213, China
| | - Lan Hong
- Psychology Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jian Wang
- Psychology Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Hui Du
- Psychology Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jiliang Fang
- Psychology Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yangyang Fan
- Psychology Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xiaoling Wang
- Psychology Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yang Yang
- Psychology Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Zongling He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chen Jia
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Weidong Wang
- Psychology Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xueyu Lv
- Psychology Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
8
|
Fu L, Cai M, Zhao Y, Zhang Z, Qian Q, Xue H, Chen Y, Sun Z, Zhao Q, Wang S, Wang C, Wang W, Jiang Y, Tian Y, Ma J, Guo W, Liu F. Twenty-five years of research on resting-state fMRI of major depressive disorder: A bibliometric analysis of hotspots, nodes, bursts, and trends. Heliyon 2024; 10:e33833. [PMID: 39050435 PMCID: PMC11266997 DOI: 10.1016/j.heliyon.2024.e33833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/15/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Major depressive disorder (MDD) is a debilitating mental health condition that poses significant risks and burdens. Resting-state functional magnetic resonance imaging (fMRI) has emerged as a promising tool in investigating the neural mechanisms underlying MDD. However, a comprehensive bibliometric analysis of resting-state fMRI in MDD is currently lacking. Here, we aimed to thoroughly explore the trends and frontiers of resting-state fMRI in MDD research. The relevant publications were retrieved from the Web of Science database for the period between 1998 and 2022, and the CiteSpace software was employed to identify the influence of authors, institutions, countries/regions, and the latest research trends. A total of 1501 publications met the search criteria, revealing a gradual increase in the number of annual publications over the years. China contributed the largest publication output, accounting for the highest percentage among all countries. Particularly, the University of Electronic Science and Technology of China, Capital Medical University, and Harvard Medical School were identified as key institutions that have made substantial contributions to this growth. Neuroimage, Biological Psychiatry, Journal of Affective Disorders, and Proceedings of the National Academy of Sciences of the United States of America are among the influential journals in the field of resting-state fMRI research in MDD. Burst keywords analysis suggest the emerging research frontiers in this field are characterized by prominent keywords such as dynamic functional connectivity, cognitive control network, transcranial brain stimulation, and childhood trauma. Overall, our study provides a systematic overview into the historical development, current status, and future trends of resting-state fMRI in MDD, thus offering a useful guide for researchers to plan their future research.
Collapse
Affiliation(s)
- Linhan Fu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300070, China
| | - Mengjing Cai
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yao Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zhihui Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Qian Qian
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Hui Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yayuan Chen
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zuhao Sun
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Qiyu Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Shaoying Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chunyang Wang
- Department of Scientific Research, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Wenqin Wang
- School of Mathematical Sciences, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Yifan Jiang
- School of Nursing, Tianjin Medical University, Tianjin, 300070, China
| | - Yuxuan Tian
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300070, China
| | - Juanwei Ma
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| |
Collapse
|
9
|
Deng X, Yang X, Bu M, Tang A, Zhang H, Long L, Zeng Z, Wang Y, Chen P, Jiang M, Chen BT. Nomogram for prediction of hearing rehabilitation outcome in children with congenital sensorineural hearing loss after cochlear implantation. Heliyon 2024; 10:e29529. [PMID: 38699755 PMCID: PMC11063407 DOI: 10.1016/j.heliyon.2024.e29529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024] Open
Abstract
Background Reliable predictors for rehabilitation outcomes in patients with congenital sensorineural hearing loss (CSNHL) after cochlear implantation (CI) are lacking. The purchase of this study was to develop a nomogram based on clinical characteristics and neuroimaging features to predict the outcome in children with CSNHL after CI. Methods Children with CSNHL prior to CI surgery and children with normal hearing were enrolled into the study. Clinical data, high resolution computed tomography (HRCT) for ototemporal bone, conventional brain MRI for structural analysis and brain resting-state fMRI (rs-fMRI) for the power spectrum assessment were assessed. A nomogram combining both clinical and imaging data was constructed using multivariate logistic regression analysis. Model performance was evaluated and validated using bootstrap resampling. Results The final cohort consisted of 72 children with CSNHL (41 children with poor outcome and 31 children with good outcome) and 32 healthy controls. The white matter lesion from structural assessment and six power spectrum parameters from rs-fMRI, including Power4, Power13, Power14, Power19, Power23 and Power25 were used to build the nomogram. The area under the receiver operating characteristic (ROC) curve of the nomogram obtained using the bootstrapping method was 0.812 (95 % CI = 0.772-0.836). The calibration curve showed no statistical difference between the predicted value and the actual value, indicating a robust performance of the nomogram. The clinical decision analysis curve showed a high clinical value of this model. Conclusions The nomogram constructed with clinical data, and neuroimaging features encompassing ototemporal bone measurements, white matter lesion values from structural brain MRI and power spectrum data from rs-fMRI showed a robust performance in predicting outcome of hearing rehabilitation in children with CSNHL after CI.
Collapse
Affiliation(s)
- Xi Deng
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, PR China
| | - Xueqing Yang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, PR China
| | - Meiru Bu
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, PR China
| | - Anzhou Tang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, PR China
| | - Huiting Zhang
- MR Research Collaboration, Siemens Healthineers Ltd., 430000, Wuhan, PR China
| | - Liling Long
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, PR China
| | - Zisan Zeng
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, PR China
| | - Yifeng Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, No. 5, Jing'an Road, Chengdu, 610066, Sichuan, PR China
| | - Ping Chen
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, PR China
| | - Muliang Jiang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, PR China
| | - Bihong T. Chen
- Department of Diagnostic Radiology, City of Hope National Medical Center, 1500 E, Duarte, CA, 91010, USA
| |
Collapse
|
10
|
Shi X, Shen G, Zhao Z, Yu J, Chen M, Cai H, Gao J, Zhao L, Yao Z, Hu B. Decreased structural pathways mediating functional connectivity in obstructive sleep apnea. Sleep Med 2024; 116:96-104. [PMID: 38437782 DOI: 10.1016/j.sleep.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is a common sleep breathing disorder that is often accompanied by changes in structural connectivity (SC) and functional connectivity (FC). However, the current understanding of the interaction between SC and FC in OSA is still limited. METHODS The aim of this study is to integrate complementary neuroimaging modalities into a unified framework using multi-layer network analysis methods and to reveal their complex interrelationships. We introduce a new graph metric called SC-FC bandwidth, which measures the throughput of SC mediating FC in a multi-layer network. The bandwidth differences between two groups are evaluated using the network-based statistics (NBS) method. Additionally, we traced and analyzed the SC pathways corresponding to the abnormal bandwidth. RESULTS In both the healthy control and patients with OSA, the majority offunctionally synchronized nodes were connected via SC paths of length 2. With the NBS method, we observed significantly lower bandwidth between the right Posterior cingulate gyrus and right Cuneus, bilateral Middle frontal gyrus, bilateral Gyrus rectus in OSA patients. By tracing the high-proportion SC pathways, it was found that OSA patients typically exhibit a decrease in direct SC-FC, SC-FC triangles, and SC-FC quads intra- and inter-networks. CONCLUSION Complex interrelationship changes have been observed between the SC and FC in patients with OSA, which might leads to abnormal information transmission and communication in the brain network.
Collapse
Affiliation(s)
- Xuerong Shi
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Guo Shen
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750000, China
| | - Ziyang Zhao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Jiandong Yu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Miao Chen
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hongmin Cai
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, 510000, China
| | - Jing Gao
- Department of Function, The Second Hospital of Yinchuan, Yinchuan, 750000, China
| | - Lianping Zhao
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, 730000, China.
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, China.
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, China; School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China; Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University & Institute of Semiconductors, Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
11
|
Shan X, Yan H, Li H, Liu F, Li P, Zhao J, Guo W. Abnormal regional activity in the prefrontal-limbic circuit at rest: Potential imaging markers and treatment predictors in drug-naive anxiety disorders. CNS Neurosci Ther 2024; 30:e14523. [PMID: 37990350 PMCID: PMC11017453 DOI: 10.1111/cns.14523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/07/2023] [Accepted: 10/29/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Previous research has identified functional impairments within the prefrontal-limbic circuit in individuals with anxiety disorders. However, the link between these deficiencies, clinical symptoms, and responses to antipsychotic treatment is still not fully understood. This study aimed to investigate abnormal regional activity within the prefrontal-limbic circuit among drug-naive individuals diagnosed with generalized anxiety disorder (GAD) and panic disorder (PD) and to analyze changes following treatment. METHODS Resting-state magnetic resonance imaging was performed on a cohort of 118 anxiety disorder patients (64 GAD, 54 PD) and 61 healthy controls (HCs) at baseline. Among them, 52 patients with GAD and 44 patients with PD underwent a 4-week treatment regimen of paroxetine. Fractional amplitude of low-frequency fluctuation (fALFF) measurements and pattern classification techniques were employed to analyze the data in accordance with the human Brainnetome atlas. RESULTS Both patients with GAD and PD demonstrated decreased fALFF in the right cHipp subregion of the hippocampus and increased fALFF in specified subregions of the cingulate and orbitofrontal lobe. Notably, patients with PD exhibited significantly higher fALFF in the left A24cd subregion compared to patients with GAD, while other ROI subregions showed no significant variations between the two patient groups. Whole-brain analysis revealed abnormal fALFF in both patient groups, primarily in specific areas of the cingulate and parasingulate gyrus, as well as the inferior and medial orbitofrontal gyrus (OFG). Following a 4-week treatment period, specific subregions in the GAD and PD groups showed a significant decrease in fALFF. Further analysis using support vector regression indicated that fALFF measurements in the right A13 and right A24cd subregions may be predictive of treatment response among anxiety disorder patients. CONCLUSIONS Aberrant functional activity in certain subregions of the prefrontal-limbic circuit appears to be linked to the manifestation of anxiety disorders. These findings suggest potential imaging indicators for individual responses to antipsychotic treatment.
Collapse
Affiliation(s)
- Xiaoxiao Shan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Department of Psychiatry, Shandong Mental Health CenterShandong UniversityJinanShandongChina
| | - Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Huabing Li
- Department of RadiologyThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Feng Liu
- Department of RadiologyTianjin Medical University General HospitalTianjinChina
| | - Ping Li
- Department of PsychiatryQiqihar Medical UniversityQiqiharHeilongjiangChina
| | - Jingping Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| |
Collapse
|
12
|
Fan C, Xu D, Mei H, Zhong X, Ren J, Ma J, Ruan Z, Lv J, Liu X, Wang H, Gao L, Xu H. Hemispheric coupling between structural and functional asymmetries in clinically asymptomatic carotid stenosis with cognitive impairment. Brain Imaging Behav 2024; 18:192-206. [PMID: 37985612 DOI: 10.1007/s11682-023-00823-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
Advanced carotid stenosis is a known risk factor for ischemic stroke and vascular dementia, and it is associated with multidomain cognitive impairment as well as asymmetric alterations in hemispheric structure and function. Here we introduced a novel measure-the asymmetry index of amplitude of low-frequency fluctuations (ALFF_AI)-derived from resting-state functional magnetic resonance imaging. This measure captures the hemispheric asymmetry of intrinsic brain activity using high-dimensional registration. We aimed to investigate functional brain asymmetric alterations in patients with severe asymptomatic carotid stenosis (SACS). Furthermore, we extended the analyses of ALFF_AI to different frequencies to detect frequency-specific alterations. Finally, we examined the coupling between hemispheric asymmetric structure and function and the relationship between these results and cognitive tests, as well as the white matter hyperintensity burden. SACS patients presented significantly decreased ALFF_AI in several clusters, including the visual, auditory, parahippocampal, Rolandic, and superior parietal regions. At low frequencies (0.01-0.25 Hz), the ALFF_AI exhibited prominent group differences as frequency increased. Further structure-function coupling analysis indicated that SACS patients had lower coupling in the lateral prefrontal, superior medial frontal, middle temporal, superior parietal, and striatum regions but higher coupling in the lateral occipital regions. These findings suggest that, under potential hemodynamic burden, SACS patients demonstrate asymmetric hemispheric configurations of intrinsic activity patterns and a decoupling between structural and functional asymmetries.
Collapse
Affiliation(s)
- Chenhong Fan
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, 430071, Wuhan City, Hubei Province, China
- The Interventional Diagnostic and Therapeutic Center, Zhongnan Hospital of Wuhan University, Wuchang District, 430071, Wuhan City, Hubei Province, China
| | - Dan Xu
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuchang District, 430071, Wuhan City, Hubei Province, China
| | - Hao Mei
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, 430071, Wuhan City, Hubei Province, China
| | - Xiaoli Zhong
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, 430071, Wuhan City, Hubei Province, China
| | - Jinxia Ren
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, 430071, Wuhan City, Hubei Province, China
| | - Jiaojiao Ma
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, 430071, Wuhan City, Hubei Province, China
| | - Zhao Ruan
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, 430071, Wuhan City, Hubei Province, China
| | - Jinfeng Lv
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, 430071, Wuhan City, Hubei Province, China
| | - Xitong Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, 430071, Wuhan City, Hubei Province, China
| | - Huan Wang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, 430071, Wuhan City, Hubei Province, China
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, 430071, Wuhan City, Hubei Province, China.
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, 430071, Wuhan City, Hubei Province, China.
| |
Collapse
|
13
|
Xu L, Xue R, Ai Z, Huang Y, Liu X, Wang L, Liang D, Wang Z. Resting-State Functional Magnetic Resonance Imaging as an Indicator of Neuropsychological Changes in Type 1 Narcolepsy. Acad Radiol 2024; 31:69-81. [PMID: 37821344 DOI: 10.1016/j.acra.2023.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 10/13/2023]
Abstract
RATIONALE AND OBJECTIVES To explore indicators of neuropsychological changes in patients with type 1 narcolepsy (NT1) using resting-state functional magnetic resonance imaging (rs-fMRI). MATERIALS AND METHODS Thirty-four NT1 patients and 34 age- and sex-matched healthy volunteers were recruited for neuropsychiatric assessments and rs-fMRI data acquisition. Fractional amplitude of low-frequency fluctuations (fALFF), regional homogeneity (ReHo), and related brain functional connectivity (FC) were calculated for the two groups and compared using a two-sample t test with cluster-level FDR correction. Moreover, partial correlation analysis was performed between these functional values of changed brain regions and clinical scales. RESULTS Compared to those of healthy controls, spontaneous functional activities were significantly weakened in patients with NT1 in regions such as the left/right posterior cerebellum lobe, left inferior temporal gyrus, and left dorsolateral superior frontal gyrus, whereas those in regions such as the left middle occipital gyrus, right inferior occipital gyrus, and left/right lingual gyrus were significantly strengthened. Furthermore, NT1 patients displayed significantly changed FCs between the left/right anterior cingulate gyrus (ACG) and regions such as the left/right cerebellum, left middle occipital gyrus, and left inferior frontal gyrus in the operculum. In partial correlation analysis, the functions in the left dorsolateral superior frontal gyrus were significantly related to the Trail Making Tests (TMT) score. Moreover, the FC between the left ACG and left inferior frontal gyrus in the operculum was highly correlated with anxiety and depression features, including the Hamilton Anxiety Scale (HAMA) score and Hamilton Depression Rating Scale (HAMD-17) score. CONCLUSION Patients with NT1 exhibited abnormalities in the anterior cingulate cortex, frontal-parietal cortex, hippocampus, and left/right posterior cerebellum lobe. The deactivation of the left frontal-temporal cortex is stronger, which is involved in the cognitive decline and mental disorders in these patients. Damage to the ACG may affect its FC with other regions and cause cognition and emotion dysregulation, perhaps by impairing patients' visual pathways and frontal-temporal-parietal networks. Hence, these could be important biomarkers for their neuropsychological changes.
Collapse
Affiliation(s)
- Lin Xu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China (L.X., R.X., Y.H., D.L.)
| | - Rong Xue
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China (L.X., R.X., Y.H., D.L.)
| | - Zhu Ai
- Department of Neurology, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China (Z.A.)
| | - Yaqin Huang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China (L.X., R.X., Y.H., D.L.)
| | - Xuan Liu
- Department of Neurology, Airport Hospital, General Hospital of Tianjin Medical University, Tianjin, China (X.L.)
| | - Linlin Wang
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China (L.W.)
| | - Danqi Liang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China (L.X., R.X., Y.H., D.L.)
| | - Zuojun Wang
- Department of Diagnostic Radiology, University of Hong Kong, Hong Kong, China (Z.W.).
| |
Collapse
|
14
|
Dai P, Zhou Y, Shi Y, Lu D, Chen Z, Zou B, Liu K, Liao S. Classification of MDD using a Transformer classifier with large-scale multisite resting-state fMRI data. Hum Brain Mapp 2024; 45:e26542. [PMID: 38088473 PMCID: PMC10789197 DOI: 10.1002/hbm.26542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 01/16/2024] Open
Abstract
Major depressive disorder (MDD) is one of the most common psychiatric disorders worldwide with high recurrence rate. Identifying MDD patients, particularly those with recurrent episodes with resting-state fMRI, may reveal the relationship between MDD and brain function. We proposed a Transformer-Encoder model, which utilized functional connectivity extracted from large-scale multisite rs-fMRI datasets to classify MDD and HC. The model discarded the Transformer's Decoder part, reducing the model's complexity and decreasing the number of parameters to adapt to the limited sample size and it does not require a complex feature selection process and achieves end-to-end classification. Additionally, our model is suitable for classifying data combined from multiple brain atlases and has an optional unsupervised pre-training module to acquire optimal initial parameters and speed up the training process. The model's performance was tested on a large-scale multisite dataset and identified brain regions affected by MDD using the Grad-CAM method. After conducting five-fold cross-validation, our model achieved an average classification accuracy of 68.61% on a dataset consisting of 1611 samples. For the selected recurrent MDD dataset, the model reached an average classification accuracy of 78.11%. Abnormalities were detected in the frontal gyri and cerebral cortex of MDD patients in both datasets. Furthermore, the identified brain regions in the recurrent MDD dataset generally exhibited a higher contribution to the model's performance.
Collapse
Affiliation(s)
- Peishan Dai
- School of Computer Science and EngineeringCentral South UniversityChangshaChina
| | - Ying Zhou
- School of Computer Science and EngineeringCentral South UniversityChangshaChina
| | - Yun Shi
- School of Computer Science and EngineeringCentral South UniversityChangshaChina
| | - Da Lu
- School of Computer Science and EngineeringCentral South UniversityChangshaChina
| | - Zailiang Chen
- School of Computer Science and EngineeringCentral South UniversityChangshaChina
| | - Beiji Zou
- School of Computer Science and EngineeringCentral South UniversityChangshaChina
| | - Kun Liu
- Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaChina
| | - Shenghui Liao
- School of Computer Science and EngineeringCentral South UniversityChangshaChina
| | | |
Collapse
|
15
|
Xue S, Kong F, Song Y, Liu J. Neural correlates of social interaction anxiety and their relation to emotional intelligence: A resting-state fMRI study. Neurosci Lett 2024; 818:137475. [PMID: 37717816 DOI: 10.1016/j.neulet.2023.137475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023]
Abstract
Social interaction anxiety refers to a state of anxiety resulting from the prospect or presence of interpersonal evaluation in real or imagined social settings. Previous neuroimaging studies have revealed neural basis of social anxiety disorder. However, little is known about the neural correlates of individual differences in social interaction anxiety in nonclinical population. In the present study, we used resting-state functional magnetic resonance imaging to explore the relationship between individual's spontaneous neural activity and social interaction anxiety, and the role that emotional intelligence played in the relationship. To this end, the correlation between the regional fractional amplitude of low-frequency fluctuations (fALFF) of the brain and individuals' social interaction anxiety scores was examined. We found that social interaction anxiety was correlated with the fALFF in the insula, parahippocampal gyrus, bilateral superior temporal gyrus, and superior parietal lobule. Furthermore, we also found that emotional intelligence partially mediated the association between the fALFF in these regions and social interaction anxiety. Taken together, our study provided the first evidence for the spontaneous neural basis of social interaction anxiety in normal population, and highlighted the neural substrates through which emotional intelligence might play an important role in social interaction anxiety.
Collapse
Affiliation(s)
- Song Xue
- School of Psychology, Nanjing Normal University, Nanjing, China.
| | - Feng Kong
- School of Psychology, Shaanxi Normal University, Xi'an, China
| | - Yiying Song
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jia Liu
- School of Psychology, Beijing Normal University, Beijing, China
| |
Collapse
|
16
|
Lu F, Cui Q, Zou Y, Guo Y, Luo W, Yu Y, Gao J, Cai X, Fu L, Yuan S, Huang J, Zhang Y, Xie J, Sheng W, Tang Q, Gao Q, He Z, Chen H. Effects of rTMS Intervention on Functional Neuroimaging Activities in Adolescents with Major Depressive Disorder Measured Using Resting-State fMRI. Bioengineering (Basel) 2023; 10:1374. [PMID: 38135965 PMCID: PMC10740826 DOI: 10.3390/bioengineering10121374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) to the left dorsolateral prefrontal cortex (L-DLPFC) is commonly used for the clinical treatment of major depressive disorder (MDD). The neuroimaging biomarkers and mechanisms of rTMS are still not completely understood. This study aimed to explore the functional neuroimaging changes induced by rTMS in adolescents with MDD. A total of ten sessions of rTMS were administrated to the L-DLPFC in thirteen adolescents with MDD once a day for two weeks. All of them were scanned using resting-state functional magnetic resonance imaging at baseline and after rTMS treatment. The regional homogeneity (ReHo), amplitude of low-frequency fluctuation (ALFF), and the subgenual anterior cingulate cortex (sgACC)-based functional connectivity (FC) were computed as neuroimaging indicators. The correlation between changes in the sgACC-based FC and the improvement in depressive symptoms was also analyzed. After rTMS treatment, ReHo and ALFF were significantly increased in the L-DLPFC, the left medial prefrontal cortex, bilateral medial orbital frontal cortex, and the left ACC. ReHo and ALFF decreased mainly in the left middle occipital gyrus, the right middle cingulate cortex (MCC), bilateral calcarine, the left cuneus, and the left superior occipital gyrus. Furthermore, the FCs between the left sgACC and the L-DLPFC, the right IFGoper, the left MCC, the left precuneus, bilateral post-central gyrus, the left supplementary motor area, and the left superior marginal gyrus were enhanced after rTMS treatment. Moreover, the changes in the left sgACC-left MCC FC were associated with an improvement in depressive symptoms in early improvers. This study showed that rTMS treatment in adolescents with MDD causes changes in brain activities and sgACC-based FC, which may provide basic neural biomarkers for rTMS clinical trials.
Collapse
Affiliation(s)
- Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; (F.L.); (Y.Z.); (Y.G.); (W.L.); (Y.Y.); (X.C.); (L.F.); (S.Y.); (J.H.); (Y.Z.); (J.X.); (W.S.); (Q.T.)
| | - Qian Cui
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yang Zou
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; (F.L.); (Y.Z.); (Y.G.); (W.L.); (Y.Y.); (X.C.); (L.F.); (S.Y.); (J.H.); (Y.Z.); (J.X.); (W.S.); (Q.T.)
| | - Yuanhong Guo
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; (F.L.); (Y.Z.); (Y.G.); (W.L.); (Y.Y.); (X.C.); (L.F.); (S.Y.); (J.H.); (Y.Z.); (J.X.); (W.S.); (Q.T.)
| | - Wei Luo
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; (F.L.); (Y.Z.); (Y.G.); (W.L.); (Y.Y.); (X.C.); (L.F.); (S.Y.); (J.H.); (Y.Z.); (J.X.); (W.S.); (Q.T.)
| | - Yue Yu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; (F.L.); (Y.Z.); (Y.G.); (W.L.); (Y.Y.); (X.C.); (L.F.); (S.Y.); (J.H.); (Y.Z.); (J.X.); (W.S.); (Q.T.)
| | - Jingjing Gao
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China;
| | - Xiao Cai
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; (F.L.); (Y.Z.); (Y.G.); (W.L.); (Y.Y.); (X.C.); (L.F.); (S.Y.); (J.H.); (Y.Z.); (J.X.); (W.S.); (Q.T.)
| | - Linna Fu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; (F.L.); (Y.Z.); (Y.G.); (W.L.); (Y.Y.); (X.C.); (L.F.); (S.Y.); (J.H.); (Y.Z.); (J.X.); (W.S.); (Q.T.)
| | - Shuai Yuan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; (F.L.); (Y.Z.); (Y.G.); (W.L.); (Y.Y.); (X.C.); (L.F.); (S.Y.); (J.H.); (Y.Z.); (J.X.); (W.S.); (Q.T.)
| | - Juan Huang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; (F.L.); (Y.Z.); (Y.G.); (W.L.); (Y.Y.); (X.C.); (L.F.); (S.Y.); (J.H.); (Y.Z.); (J.X.); (W.S.); (Q.T.)
| | - Yajun Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; (F.L.); (Y.Z.); (Y.G.); (W.L.); (Y.Y.); (X.C.); (L.F.); (S.Y.); (J.H.); (Y.Z.); (J.X.); (W.S.); (Q.T.)
| | - Jing Xie
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; (F.L.); (Y.Z.); (Y.G.); (W.L.); (Y.Y.); (X.C.); (L.F.); (S.Y.); (J.H.); (Y.Z.); (J.X.); (W.S.); (Q.T.)
| | - Wei Sheng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; (F.L.); (Y.Z.); (Y.G.); (W.L.); (Y.Y.); (X.C.); (L.F.); (S.Y.); (J.H.); (Y.Z.); (J.X.); (W.S.); (Q.T.)
| | - Qin Tang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; (F.L.); (Y.Z.); (Y.G.); (W.L.); (Y.Y.); (X.C.); (L.F.); (S.Y.); (J.H.); (Y.Z.); (J.X.); (W.S.); (Q.T.)
| | - Qing Gao
- School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zongling He
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; (F.L.); (Y.Z.); (Y.G.); (W.L.); (Y.Y.); (X.C.); (L.F.); (S.Y.); (J.H.); (Y.Z.); (J.X.); (W.S.); (Q.T.)
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; (F.L.); (Y.Z.); (Y.G.); (W.L.); (Y.Y.); (X.C.); (L.F.); (S.Y.); (J.H.); (Y.Z.); (J.X.); (W.S.); (Q.T.)
- MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
17
|
Liang X, Wang L, Zhu Y, Wang Y, He T, Wu L, Huang M, Zhou F. Altered neural intrinsic oscillations in patients with multiple sclerosis: effects of cortical thickness. Front Neurol 2023; 14:1143646. [PMID: 37818221 PMCID: PMC10560735 DOI: 10.3389/fneur.2023.1143646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
Objective To investigate the effects of cortical thickness on the identification accuracy of fractional amplitude of low-frequency fluctuation (fALFF) in patients with multiple sclerosis (MS). Methods Resting-state functional magnetic resonance imaging data were collected from 31 remitting MS, 20 acute MS, and 42 healthy controls (HCs). After preprocessing, we first calculated two-dimensional fALFF (2d-fALFF) maps using the DPABISurf toolkit, and 2d-fALFF per unit thickness was obtained by dividing 2d-fALFF by cortical thickness. Then, between-group comparison, clinical correlation, and classification analyses were performed in 2d-fALFF and 2d-fALFF per unit thickness maps. Finally, we also examined whether the effect of cortical thickness on 2d-fALFF maps was affected by the subfrequency band. Results In contrast with 2d-fALFF, more changed regions in 2d-fALFF per unit thickness maps were detected in MS patients, such as increased region of the right inferior frontal cortex and faded regions of the right paracentral lobule, middle cingulate cortex, and right medial temporal cortex. There was a significant positive correlation between the disease duration and the 2d-fALFF values in the left early visual cortex in remitting MS patients (r = 0.517, Bonferroni-corrected, p = 0.008 × 4 < 0.05). In contrast with 2d-fALFF, we detected a positive correlation between the 2d-fALFF per unit thickness of the right ventral stream visual cortex and the modified Fatigue Impact Scale (MFIS) scores (r = 0.555, Bonferroni-corrected, p = 0.017 × 4 > 0.05). For detecting MS patients, 2d-fALFF and 2d- fALFF per unit thickness both performed remarkably well in support vector machine (SVM) analysis, especially in the remitting phase (AUC = 86, 83%). Compared with 2d-fALFF, the SVM model of 2d-fALFF per unit thickness had significantly higher classification performance in distinguishing between remitting and acute MS. More changed regions and more clinically relevant 2d-fALFF per unit thickness maps in the subfrequency band were also detected in MS patients. Conclusion By dividing the functional value by the cortical thickness, the identification accuracy of fALFF in MS patients was detected to be potentially influenced by cortical thickness. Additionally, 2d-fALFF per unit thickness is a potential diagnostic marker that can be utilized to distinguish between acute and remitting MS patients. Notably, we observed similar variations in the subfrequency band.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lei Wang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yanyan Zhu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yao Wang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ting He
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lin Wu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Muhua Huang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Institute of Medical Imaging, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
18
|
Chen J, Li J, Qiao F, Shi Z, Lu W. Effects of home-based telerehabilitation on dynamic alterations in regional intrinsic neural activity and degree centrality in stroke patients. PeerJ 2023; 11:e15903. [PMID: 37671362 PMCID: PMC10476610 DOI: 10.7717/peerj.15903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/25/2023] [Indexed: 09/07/2023] Open
Abstract
Objective To explore the effects of home-based telerehabilitation (TR) on dynamic alterations in regional intrinsic neural activity and degree centrality in stroke patients by resting-state functional MRI (fMRI) methods. Methods The neuroimaging data of 52 stroke patients were analyzed. Dynamic regional spontaneous neural activity (dynamic amplitude of low-frequency fluctuations, dALFF; and dynamic regional homogeneity, dReHo) and dynamic degree centrality (dDC) were compared between the TR and conventional rehabilitation (CR) groups. A flexible factorial model was employed to investigate the expected effects. Results The patients in the TR group showed increased dALFF in the right precuneus and bilateral precentral gyrus (PreCG) and reduced dALFF in the right inferior parietal lobule by the analysis of main effects. Significant differences between groups were detected in the right precuneus, right fusiform gyrus and left middle frontal gyrus for dReHo and in the left cingulate gyrus, right middle temporal gyrus and left precuneus for dDC. A significant correlation was found in the TR group between the changed dALFF in the left PreCG and the changed Fugl-Meyer assessment (FMA) scores from baseline to postrehabilitation. Conclusions This study implied that home-based TR training can alter the patterns of dynamic spontaneous brain activity and functional connectivity in certain brain regions. The identification of key brain regions by neuroimaging indicators such as dynamic regional brain activity and degree centrality in the recovery process would provide a theoretical basis for noninvasive brain stimulation technology and strategies for formulating targeted rehabilitation programs for stroke patients with motor dysfunction.
Collapse
Affiliation(s)
- Jing Chen
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Li
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fenglei Qiao
- Department of Rehabilitation, The Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Zhang Shi
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weiwei Lu
- Department of Rehabilitation, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Yi L, Xie G, Li Z, Li X, Zhang Y, Wu K, Shao G, Lv B, Jing H, Zhang C, Liang W, Sun J, Hao Z, Liang J. Automatic depression diagnosis through hybrid EEG and near-infrared spectroscopy features using support vector machine. Front Neurosci 2023; 17:1205931. [PMID: 37694121 PMCID: PMC10483285 DOI: 10.3389/fnins.2023.1205931] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Depression is a common mental disorder that seriously affects patients' social function and daily life. Its accurate diagnosis remains a big challenge in depression treatment. In this study, we used electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) and measured the whole brain EEG signals and forehead hemodynamic signals from 25 depression patients and 30 healthy subjects during the resting state. On one hand, we explored the EEG brain functional network properties, and found that the clustering coefficient and local efficiency of the delta and theta bands in patients were significantly higher than those in normal subjects. On the other hand, we extracted brain network properties, asymmetry, and brain oxygen entropy as alternative features, used a data-driven automated method to select features, and established a support vector machine model for automatic depression classification. The results showed the classification accuracy was 81.8% when using EEG features alone and increased to 92.7% when using hybrid EEG and fNIRS features. The brain network local efficiency in the delta band, hemispheric asymmetry in the theta band and brain oxygen sample entropy features differed significantly between the two groups (p < 0.05) and showed high depression distinguishing ability indicating that they may be effective biological markers for identifying depression. EEG, fNIRS and machine learning constitute an effective method for classifying depression at the individual level.
Collapse
Affiliation(s)
- Li Yi
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, China
| | - Guojun Xie
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, China
- Department of Psychiatry, The Third Affiliated Hospital of Foshan University, Foshan, China
| | - Zhihao Li
- School of Medicine, Foshan University, Foshan, China
| | - Xiaoling Li
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, China
- Department of Psychiatry, The Third Affiliated Hospital of Foshan University, Foshan, China
| | - Yizheng Zhang
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, China
| | - Kai Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Guangjian Shao
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, China
| | - Biliang Lv
- School of Medicine, Foshan University, Foshan, China
| | - Huan Jing
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, China
- Department of Psychiatry, The Third Affiliated Hospital of Foshan University, Foshan, China
| | - Chunguo Zhang
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, China
- Department of Psychiatry, The Third Affiliated Hospital of Foshan University, Foshan, China
| | - Wenting Liang
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, China
- Department of Psychiatry, The Third Affiliated Hospital of Foshan University, Foshan, China
| | - Jinyan Sun
- School of Medicine, Foshan University, Foshan, China
| | - Zhifeng Hao
- College of Science, Shantou University, Shantou, China
| | - Jiaquan Liang
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, China
- Department of Psychiatry, The Third Affiliated Hospital of Foshan University, Foshan, China
| |
Collapse
|
20
|
Zhao W, Zhu DM, Li Q, Xu X, Zhang Y, Zhang C, Zhu J, Yu Y. Brain function mediates the association between low vitamin D and neurocognitive status in female patients with major depressive disorder. Psychol Med 2023; 53:4032-4045. [PMID: 35362398 DOI: 10.1017/s0033291722000708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Vitamin D is engaged in various neural processes, with low vitamin D linked to depression and cognitive dysfunction. There are gender differences in depression and vitamin D level. However, the relationship between depression, gender, vitamin D, cognition, and brain function has yet to be determined. METHODS One hundred and twenty-two patients with major depressive disorder (MDD) and 119 healthy controls underwent resting-state functional MRI and fractional amplitude of low-frequency fluctuations (fALFF) was calculated to assess brain function. Serum concentration of vitamin D (SCVD) and cognition (i.e. prospective memory and sustained attention) were also measured. RESULTS We found a significant group-by-gender interaction effect on SCVD whereby MDD patients showed a reduction in SCVD relative to controls in females but not males. Concurrently, there was a female-specific association of SCVD with cognition and MDD-related fALFF alterations in widespread brain regions. Remarkably, MDD- and SCVD-related fALFF changes mediated the relation between SCVD and cognition in females. CONCLUSION Apart from providing insights into the neural mechanisms by which low vitamin D contributes to cognitive impairment in MDD in a gender-dependent manner, these findings might have clinical implications for assignment of female patients with MDD and cognitive dysfunction to adjuvant vitamin D supplementation therapy, which may ultimately advance a precision approach to personalized antidepressant choice.
Collapse
Affiliation(s)
- Wenming Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Dao-Min Zhu
- Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei 230022, China
- Hefei Fourth People's Hospital, Hefei 230022, China
- Anhui Mental Health Center, Hefei 230022, China
| | - Qian Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Xiaotao Xu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Yu Zhang
- Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei 230022, China
- Hefei Fourth People's Hospital, Hefei 230022, China
- Anhui Mental Health Center, Hefei 230022, China
| | - Cun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| |
Collapse
|
21
|
Lu F, Guo Y, Luo W, Yu Y, Zhao Y, Chen J, Cai X, Shen C, Wang X, He J, Yang G, Gao Q, He Z, Zhou J. Disrupted functional networks within white-matter served as neural features in adolescent patients with conduct disorder. Behav Brain Res 2023; 447:114422. [PMID: 37030546 DOI: 10.1016/j.bbr.2023.114422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/17/2023] [Accepted: 04/05/2023] [Indexed: 04/09/2023]
Abstract
BACKGROUND Conduct disorder (CD) has been conceptualized as a psychiatric disorder associated with white-matter (WM) structural abnormalities. Although diffusion tensor imaging could identify WM structural architecture changes, it cannot characterize functional connectivity (FC) within WM. Few studies have focused on disentangling the WM dysfunctions in CD patients by using functional magnetic resonance imaging (fMRI). METHODS The resting-state fMRI data were first obtained from both adolescent CD and typically developing (TD) controls. A voxel-based clustering analysis was utilized to identify the large-scale WM FC networks. Then, we examined the disrupted WM network features in CD, and further investigated whether these features could predict the impulsive symptoms in CD using support vector regression prediction model. RESULTS We identified 11 WM functional networks. Compared with TDs, CD patients showed increased FCs between occipital network (ON) and superior temporal network (STN), between orbitofrontal network (OFN) and corona radiate network (CRN), as well as between deep network and CRN. Further, the disrupted FCs between ON and STN and between OFN and CRN were significantly negatively associated with non-planning impulsivity scores in CD. Moreover, the disrupted WM networks could be served as features to predict the motor impulsivity scores in CD. CONCLUSIONS Our results provided further support on the existence of WM functional networks and could extended our knowledge about the WM functional abnormalities related with emotional and perception processing in CD patients from the view of WM dysfunction.
Collapse
|
22
|
Lu F, Chen Y, Cui Q, Guo Y, Pang Y, Luo W, Yu Y, Chen J, Gao J, Sheng W, Tang Q, Zeng Y, Jiang K, Gao Q, He Z, Chen H. Shared and distinct patterns of dynamic functional connectivity variability of thalamo-cortical circuit in bipolar depression and major depressive disorder. Cereb Cortex 2023:6987621. [PMID: 36642500 DOI: 10.1093/cercor/bhac534] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/17/2023] Open
Abstract
Evidence has indicated abnormalities of thalamo-cortical functional connectivity (FC) in bipolar disorder during a depressive episode (BDD) and major depressive disorder (MDD). However, the dynamic FC (dFC) within this system is poorly understood. We explored the thalamo-cortical dFC pattern by dividing thalamus into 16 subregions and combining with a sliding-window approach. Correlation analysis was performed between altered dFC variability and clinical data. Classification analysis with a linear support vector machine model was conducted. Compared with healthy controls (HCs), both patients revealed increased dFC variability between thalamus subregions with hippocampus (HIP), angular gyrus and caudate, and only BDD showed increased dFC variability of the thalamus with superior frontal gyrus (SFG), HIP, insula, middle cingulate gyrus, and postcentral gyrus. Compared with MDD and HCs, only BDD exhibited enhanced dFC variability of the thalamus with SFG and superior temporal gyrus. Furthermore, the number of depressive episodes in MDD was significantly positively associated with altered dFC variability. Finally, the disrupted dFC variability could distinguish BDD from MDD with 83.44% classification accuracy. BDD and MDD shared common disrupted dFC variability in the thalamo-limbic and striatal-thalamic circuitries, whereas BDD exhibited more extensive and broader aberrant dFC variability, which may facilitate distinguish between these 2 mood disorders.
Collapse
Affiliation(s)
- Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Yingmenkou Road, Jinniu District, 611731, PR China
| | - Yanchi Chen
- Glasgow College, University of Electronic Science and Technology of China, Chengdu, No. 2006, Xiyuan Ave, West Hi-Tech Zone, 611731, PR China
| | - Qian Cui
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, No. 2006, Xiyuan Ave, West Hi-Tech Zone, 611731, PR China
| | - Yuanhong Guo
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Yingmenkou Road, Jinniu District, 611731, PR China
| | - Yajing Pang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, No. 100 Science Avenue, High-tech Zone, 450001, PR China
| | - Wei Luo
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Yingmenkou Road, Jinniu District, 611731, PR China
| | - Yue Yu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Yingmenkou Road, Jinniu District, 611731, PR China
| | - Jiajia Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Yingmenkou Road, Jinniu District, 611731, PR China
| | - Jingjing Gao
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, No. 2006, Xiyuan Ave, West Hi-Tech Zone, 611731, China
| | - Wei Sheng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Yingmenkou Road, Jinniu District, 611731, PR China
| | - Qin Tang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Yingmenkou Road, Jinniu District, 611731, PR China
| | - Yuhong Zeng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Yingmenkou Road, Jinniu District, 611731, PR China
| | - Kexing Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Yingmenkou Road, Jinniu District, 611731, PR China
| | - Qing Gao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Yingmenkou Road, Jinniu District, 611731, PR China.,School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, No. 2006, Xiyuan Ave, West Hi-Tech Zone, 611731, PR China
| | - Zongling He
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Yingmenkou Road, Jinniu District, 611731, PR China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Yingmenkou Road, Jinniu District, 611731, PR China.,MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, No. 2006, Xiyuan Ave, West Hi-Tech Zone, 611731, PR China
| |
Collapse
|
23
|
Zhang Q, Li X, Yan H, Wang Y, Ou Y, Yu Y, Liang J, Liao H, Wu W, Mai X, Xie G, Guo W. Associations between abnormal spontaneous neural activity and clinical variables, eye movements, and event-related potential indicators in major depressive disorder. Front Neurosci 2023; 16:1056868. [PMID: 36711124 PMCID: PMC9875062 DOI: 10.3389/fnins.2022.1056868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/26/2022] [Indexed: 01/13/2023] Open
Abstract
Background This study aimed to investigate the correlations between abnormal spontaneous neural activity measured with fractional amplitude of low-frequency fluctuations (fALFF) and clinical variables, eye movements, and event-related potential indicators in patients with major depressive disorder (MDD). Methods We recruited 42 patients with MDD and 42 healthy controls (HCs) and collected their clinical variables, eye movement, event-related potential, and resting-state functional magnetic resonance imaging (rs-fMRI) data. The fALFF, support vector machine (SVM), and correlation analysis were used to analyze the data. Results The results of the study showed that the fALFF values of the sensorimotor network, including the right middle temporal gyrus, right cerebellar Crus2, left occipital gyrus, and left middle temporal gyrus, were significantly higher compared to HCs. Correlation analysis showed that the abnormal fALFF value of the right cerebellar Crus2 was inversely correlated with the active coping scores of the Simplified Coping Style Questionnaire in the patients (r = -0.307, p = 0.048). No correlation was observed between abnormal fALFF values and other clinical symptoms, neuropsychological tests, eye movements, and event-related potential-related indicators in patients with MDD. fALFF values in the left middle temporal gyrus could be used to distinguish patients with MDD from HCs with an accuracy of 78.57%. Conclusions Patients with MDD exhibited enhanced spontaneous neural activity in the sensorimotor network. No associations were found between abnormal spontaneous neural activity and clinical variables, eye movements, and event-related potential related indicators in MDD.
Collapse
Affiliation(s)
- Qinqin Zhang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Xiaoling Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yun Wang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Yangpan Ou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yang Yu
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Jiaquan Liang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Hairong Liao
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Wanting Wu
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Xiancong Mai
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China,*Correspondence: Guojun Xie ✉
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,Wenbin Guo ✉
| |
Collapse
|
24
|
Zhang G, Liu T, Wei W, Zhang R, Wang H, Wang M. Evaluation of altered brain activity in type 2 diabetes using various indices of brain function: A resting-state functional magnetic resonance imaging study. Front Hum Neurosci 2023; 16:1032264. [PMID: 36699964 PMCID: PMC9870028 DOI: 10.3389/fnhum.2022.1032264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/05/2022] [Indexed: 01/11/2023] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) has been identified as a risk factor that increases the rate of cognitive decline. Previous studies showed that patients with T2DM had brain function alterations based on a single index of resting-state functional magnetic resonance imaging (rs-fMRI). The present study aimed to explore spontaneous brain activity in patients with T2DM by comparing various rs-fMRI indices, and to determine the relationship between these changes and cognitive dysfunction. Methods A total of 52 patients with T2DM and age- and sex-matched control participants were included in this study. The amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), and voxel-mirrored homotopic connectivity (VMHC) values were calculated to represent the status of spontaneous neural activity. The Montreal Cognitive Assessment (MoCA) was used for the rapid evaluation of cognition in all subjects. Pearson correlation and mediation analyses were conducted to investigate the relationship between rs-fMRI indices and clinical parameters such as fasting glucose, disease duration, and MoCA. Results Patients with T2DM had alterations of concordant spontaneous brain activity in brain areas including the bilateral cerebellum posterior lobe, the left inferior temporal gyrus (ITG.L), the parahippocampal gyrus, and the left supplementary motor area (SMA.L). The indices were significantly correlated to each other in most of the detected brain areas. Positive correlations were observed between fasting glucose and neural activity in the surrounding areas of the left insula and the inferior frontal gyrus. MoCA scores were negatively correlated with the ReHo values extracted from the left anterior occipital lobe and the superior cerebellar cortex and were positively correlated with VMHC values extracted from the left caudate and the precentral gyrus (PreCG). No significant mediation effect of abnormal brain activity was found in the relationship between clinical parameters and MoCA scores. Conclusion The current study demonstrated the functional concordance of abnormal brain activities in patients with T2DM by comparing ALFF, ReHo, and VMHC measurements. Widespread abnormalities mainly involved in motor and sensory processing functions may provide insight into examining T2DM-related neurological pathophysiology.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China,Department of Radiology, Bethune International Peace Hospital, Shijiazhuang, China
| | - Taiyuan Liu
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Wei Wei
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Rui Zhang
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Huilin Wang
- Department of Radiology, Bethune International Peace Hospital, Shijiazhuang, China,*Correspondence: Huilin Wang ✉
| | - Meiyun Wang
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China,Laboratory of Brian Science and Brain-Like Intelligence Technology, Institute for Integrated Medical Science and Engineering, Henan Academy of Sciences, Zhengzhou, China,Meiyun Wang ✉
| |
Collapse
|
25
|
Lu F, Cui Q, Chen Y, He Z, Sheng W, Tang Q, Yang Y, Luo W, Yu Y, Chen J, Li D, Deng J, Zeng Y, Chen H. Insular-associated causal network of structural covariance evaluating progressive gray matter changes in major depressive disorder. Cereb Cortex 2023; 33:831-843. [PMID: 35357431 DOI: 10.1093/cercor/bhac105] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/17/2022] [Accepted: 02/15/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Morphometric studies demonstrated wide-ranging distribution of brain structural abnormalities in major depressive disorder (MDD). OBJECTIVE This study explored the progressive gray matter volume (GMV) changes pattern of structural network in 108 MDD patients throughout the illness duration by using voxel-based morphometric analysis. METHODS The causal structural covariance network method was applied to map the causal effects of GMV alterations between the original source of structural changes and other brain regions as the illness duration prolonged in MDD. This was carried out by utilizing the Granger causality analysis to T1-weighted data ranked based on the disease progression information. RESULTS With greater illness duration, the GMV reduction was originated from the right insula and progressed to the frontal lobe, and then expanded to the occipital lobe, temporal lobe, dorsal striatum (putamen and caudate) and the cerebellum. Importantly, results revealed that the right insula was the prominent node projecting positive causal influences (i.e., GMV decrease) to frontal lobe, temporal lobe, postcentral gyrus, putamen, and precuneus. While opposite causal effects were detected from the right insula to the angular, parahippocampus, supramarginal gyrus and cerebellum. CONCLUSIONS This work may provide further information and vital evidence showing that MDD is associated with progressive brain structural alterations.
Collapse
Affiliation(s)
- Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Qian Cui
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Yuyan Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Zongling He
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Wei Sheng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Qin Tang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Yang Yang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Wei Luo
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Yue Yu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Jiajia Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Di Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Jiaxin Deng
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Yuhong Zeng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China.,MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| |
Collapse
|
26
|
Yang C, Xiao K, Ao Y, Cui Q, Jing X, Wang Y. The thalamus is the causal hub of intervention in patients with major depressive disorder: Evidence from the Granger causality analysis. Neuroimage Clin 2023; 37:103295. [PMID: 36549233 PMCID: PMC9795532 DOI: 10.1016/j.nicl.2022.103295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Major depressive disorder (MDD) is the leading mental disorder and afflicts more than 350 million people worldwide. The underlying neural mechanisms of MDD remain unclear, hindering the accurate treatment. Recent brain imaging studies have observed functional abnormalities in multiple brain regions in patients with MDD, identifying core brain regions is the key to locating potential therapeutic targets for MDD. The Granger causality analysis (GCA) measures directional effects between brain regions and, therefore, can track causal hubs as potential intervention targets for MDD. We reviewed literature employing GCA to investigate abnormal brain connections in patients with MDD. The total degree of effective connections in the thalamus (THA) is more than twice that in traditional targets such as the superior frontal gyrus and anterior cingulate cortex. Altered causal connections in patients with MDD mainly included enhanced bottom-up connections from the thalamus to various cortical and subcortical regions and reduced top-down connections from these regions to the THA, indicating excessive uplink sensory information and insufficient downlink suppression information for negative emotions. We suggest that the thalamus is the most crucial causal hub for MDD, which may serve as the downstream target for non-invasive brain stimulation and medication approaches in MDD treatment.
Collapse
Affiliation(s)
- Chengxiao Yang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Kunchen Xiao
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Yujia Ao
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Qian Cui
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xiujuan Jing
- Tianfu College of Southwestern University of Finance and Economics, Chengdu 610052, China
| | - Yifeng Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China.
| |
Collapse
|
27
|
Luo Q, Chen J, Li Y, Wu Z, Lin X, Yao J, Yu H, Wu H, Peng H. Aberrant static and dynamic functional connectivity of amygdala subregions in patients with major depressive disorder and childhood maltreatment. Neuroimage Clin 2022; 36:103270. [PMID: 36451372 PMCID: PMC9668673 DOI: 10.1016/j.nicl.2022.103270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022]
Abstract
Major depressive disorder (MDD) with childhood maltreatment is a heterogeneous clinical phenotype of depression with prominent features of brain disconnectivity in areas linked to maltreatment-related emotion processing (e.g., the amygdala). However, static and dynamic alterations of functional connectivity in amygdala subregions have not been investigated in MDD with childhood maltreatment. Here, we explored whether amygdala subregions (i.e., medial amygdala [MeA] and lateral amygdala [LA]) exhibited static functional connectivity (sFC) and dynamic functional connectivity (dFC) disruption, and whether these disruptions were related to childhood maltreatment. We compared sFC and dFC patterns in MDD with childhood maltreatment (n = 48), MDD without childhood maltreatment (n = 30), healthy controls with childhood maltreatment (n = 57), and healthy controls without childhood maltreatment (n = 46). The bilateral MeA and LA were selected as the seeds in the FC analysis. The results revealed a functional connectivity disruption pattern in maltreated MDD patients, characterized by sFC and dFC abnormalities involving the MeA, LA, and theory of mind-related brain areas including the middle occipital area, middle frontal gyrus, superior medial frontal gyrus, angular gyrus, supplementary motor areas, middle temporal gyrus, middle cingulate gyrus, and calcarine gyrus. Significant correlations were detected between impaired dFC patterns and childhood maltreatment. Furthermore, the dFC disruption pattern served as a moderator in the relationship between sexual abuse and depression severity. Our findings revealed neurobiological features of childhood maltreatment, providing new evidence regarding vulnerability to psychiatric disorders.
Collapse
Affiliation(s)
- Qianyi Luo
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Juran Chen
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Yuhong Li
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Zhiyao Wu
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Xinyi Lin
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Jiazheng Yao
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Huiwen Yu
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Huawang Wu
- Department of Radiology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China,Corresponding authors at: Department of Radiology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China (H. Wu); Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China (H. Peng).
| | - Hongjun Peng
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China,Corresponding authors at: Department of Radiology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China (H. Wu); Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China (H. Peng).
| |
Collapse
|
28
|
Ma J, Liu F, Wang Y, Ma L, Niu Y, Wang J, Ye Z, Zhang J. Frequency-dependent white-matter functional network changes associated with cognitive deficits in subcortical vascular cognitive impairment. Neuroimage Clin 2022; 36:103245. [PMID: 36451351 PMCID: PMC9668649 DOI: 10.1016/j.nicl.2022.103245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Abstract
Vascular cognitive impairment (VCI) refers to all forms of cognitive decline associated with cerebrovascular diseases, in which white matter (WM) is highly vulnerable. Although previous studies have shown that blood oxygen level-dependent (BOLD) signals inside WM can effectively reflect neural activities, whether WM BOLD signal alterations are present and their roles underlying cognitive impairment in VCI remain largely unknown. In this study, 36 subcortical VCI (SVCI) patients and 36 healthy controls were enrolled to evaluate WM dysfunction. Specifically, fourteen distinct WM networks were identified from resting-state functional MRI using K-means clustering analysis. Subsequently, between-network functional connectivity (FC) and within-network BOLD signal amplitude of WM networks were calculated in three frequency bands (band A: 0.01-0.15 Hz, band B: 0.08-0.15 Hz, and band C: 0.01-0.08 Hz). Patients with SVCI manifested decreased FC mainly in bilateral parietal WM regions, forceps major, superior and inferior longitudinal fasciculi. These connections extensively linked with distinct WM networks and with gray-matter networks such as frontoparietal control, dorsal and ventral attention networks, which exhibited frequency-specific alterations in SVCI. Additionally, extensive amplitude reductions were found in SVCI, showing frequency-dependent properties in parietal, anterior corona radiate, pre/post central, superior and inferior longitudinal fasciculus networks. Furthermore, these decreased FC and amplitudes showed significant positive correlations with cognitive performances in SVCI, and high diagnostic performances for SVCI especially combining all bands. Our study indicated that VCI-related cognitive deficits were characterized by frequency-dependent WM functional abnormalities, which offered novel applicable neuromarkers for VCI.
Collapse
Affiliation(s)
- Juanwei Ma
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; National Clinical Research Center for Cancer, Tianjin, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, China; Tianjin's Clinical Research Center for Cancer, Tianjin, China; Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Lin Ma
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Yali Niu
- Department of Rehabilitation, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jing Wang
- Department of Rehabilitation, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; National Clinical Research Center for Cancer, Tianjin, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, China; Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Jing Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
29
|
Xue K, Liang S, Yang B, Zhu D, Xie Y, Qin W, Liu F, Zhang Y, Yu C. Local dynamic spontaneous brain activity changes in first-episode, treatment-naïve patients with major depressive disorder and their associated gene expression profiles. Psychol Med 2022; 52:2052-2061. [PMID: 33121546 DOI: 10.1017/s0033291720003876] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a common debilitating disorder characterized by impaired spontaneous brain activity, yet little is known about its alterations in dynamic properties and the molecular mechanisms associated with these changes. METHODS Based on the resting-state functional MRI data of 65 first-episode, treatment-naïve patients with MDD and 66 healthy controls, we compared dynamic regional homogeneity (dReHo) of spontaneous brain activity between the two groups, and we investigated gene expression profiles associated with dReHo alterations in MDD by leveraging transcriptional data from the Allen Human Brain Atlas and weighted gene co-expression network analysis. RESULTS Compared with healthy controls, patients with MDD consistently showed reduced dReHo in both fusiform gyri and in the right temporal pole and hippocampus. The expression profiles of 16 gene modules were correlated with dReHo alterations in MDD. These gene modules were enriched for various biological process terms, including immune, synaptic signalling, ion channels, mitochondrial function and protein metabolism, and were preferentially expressed in different cell types. CONCLUSIONS Patients with MDD have reduced dReHo in brain areas associated with emotional and cognitive regulation, and these changes may be related to complex polygenetic and polypathway mechanisms.
Collapse
Affiliation(s)
- Kaizhong Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Sixiang Liang
- Tianjin Anding Hospital, Tianjin 300222, China
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China
| | - Bingbing Yang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Dan Zhu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yingying Xie
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yong Zhang
- Tianjin Anding Hospital, Tianjin 300222, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
30
|
Zhang W, Zou Y, Zhao F, Yang Y, Mao N, Li Y, Huang G, Yao Z, Hu B. Brain Network Alterations in Rectal Cancer Survivors With Depression Tendency: Evaluation With Multimodal Magnetic Resonance Imaging. Front Neurol 2022; 13:791298. [PMID: 35847225 PMCID: PMC9277124 DOI: 10.3389/fneur.2022.791298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/09/2022] [Indexed: 11/15/2022] Open
Abstract
Surgery and chemotherapy may increase depression tendency in patients with rectal cancer (RC). Nevertheless, few comprehensive studies are conducted on alterations of brain network induced by depression tendency in patients with RC. Resting-state functional magnetic resonance imaging (rs-fMRI) and diffusion tensor imaging (DTI) data were collected from 42 patients with RC with surgery and chemotherapy and 38 healthy controls (HCs). Functional network (FN) was constructed from extracting average time courses in brain regions, and structural network (SN) was established by deterministic tractography. Graph theoretical analysis was used to calculate network properties. Networks resilient of two networks were assessed. Clinical correlation analysis was explored between altered network parameters and Hamilton depression scale (HAMD) score. This study revealed impaired FN and SN at both local and global levels and changed nodal efficiency and abnormal small-worldness property in patients with RC. On the whole, all FNs are more robust than SN. Moreover, compared with HC, patients with RC show less robustness in both networks. Regions with decreased nodal efficiency were associated with HAMD score. These cognitive dysfunctions are mainly attributable to depression-related brain functional and structural network alterations. Brain network reorganization is to prevent patients with RC from more serious depression after surgery and chemotherapy.
Collapse
Affiliation(s)
- Wenwen Zhang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, China
| | - Ying Zou
- Department of Information Engineering, Yantai Vocational College, Yantai, China
| | - Feng Zhao
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Yongqing Yang
- School of Management Science and Engineering, Shandong Technology and Business University, Yantai, China
| | - Ning Mao
- Department of Radiology, Yantai Yuhuangding Hospital, Yantai, China
- Big data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yuan Li
- School of Management Science and Engineering, Shandong Technology and Business University, Yantai, China
- *Correspondence: Yuan Li
| | - Gang Huang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, China
- Gang Huang
| | - Zhijun Yao
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China
- Zhijun Yao
| | - Bin Hu
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
- Bin Hu
| |
Collapse
|
31
|
Zhou Y, Shi J. Brain Structural and Functional Dissociated Patterns in Degenerative Cervical Myelopathy: A Case-Controlled Retrospective Resting-State fMRI Study. Front Neurol 2022; 13:895348. [PMID: 35785340 PMCID: PMC9240811 DOI: 10.3389/fneur.2022.895348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/03/2022] [Indexed: 11/23/2022] Open
Abstract
Background Previous studies have shown the whole-brain global functional connectivity density (gFCD) and gray matter volume (GMV) alterations in patients with degenerative cervical myelopathy (DCM). However, no study aimed to investigate the associations between the spatial patterns of GMV and gFCD alterations in patients with DCM. Methods Structural data and resting-state functional MRI data of 35 DCM patients and 35 matched healthy controls were collected to assess their gFCD and GMV and investigate gFCD and GMV alterations in patients with DCM and their spatial pattern associations. Results In our current study, significant gFCD and GMV differences were observed in some regions of the visual system, sensorimotor cortices, and cerebellum between patients with DCM and healthy controls. In our findings, decreased gFCD was found in areas primarily located at the sensorimotor cortices, while increased gFCD was observed primarily within areas located at the visual system and cerebellum. Decreased GMV was seen in the left thalamus, bilateral supplementary motor area (SMA), and left inferior occipital cortices in patients with DCM, while increased GMV was observed in the cerebellum. Conclusion Our findings suggest that structural and functional alterations independently contributed to the neuropathology of DCM. However, longitudinal studies are still needed to further illustrate the associations between structural deficits and functional alterations underlying the onset of brain abnormalities as DCM develops.
Collapse
|
32
|
Li XK, Qiu HT, Hu J, Luo QH. Changes in the amplitude of low-frequency fluctuations in specific frequency bands in major depressive disorder after electroconvulsive therapy. World J Psychiatry 2022; 12:708-721. [PMID: 35663299 PMCID: PMC9150034 DOI: 10.5498/wjp.v12.i5.708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/26/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Major depressive disorder (MDD) tends to have a high incidence and high suicide risk. Electroconvulsive therapy (ECT) is currently a relatively effective treatment for MDD. However, the mechanism of efficacy of ECT is still unclear.
AIM To investigate the changes in the amplitude of low-frequency fluctuations in specific frequency bands in patients with MDD after ECT.
METHODS Twenty-two MDD patients and fifteen healthy controls (HCs) were recruited to this study. MDD patients received 8 ECT sessions with bitemporal placement. Resting-state functional magnetic resonance imaging was adopted to examine regional cerebellar blood flow in both the MDD patients and HCs. The MDD patients were scanned twice (before the first ECT session and after the eighth ECT session) to acquire data. Then, the amplitude of low-frequency fluctuations (ALFF) was computed to characterize the intrinsic neural oscillations in different bands (typical frequency, slow-5, and slow-4 bands).
RESULTS Compared to before ECT (pre-ECT), we found that MDD patients after the eighth ECT (post-ECT) session had a higher ALFF in the typical band in the right middle frontal gyrus, posterior cingulate, right supramarginal gyrus, left superior frontal gyrus, and left angular gyrus. There was a lower ALFF in the right superior temporal gyrus. Compared to pre-ECT values, the ALFF in the slow-5 band was significantly increased in the right limbic lobe, cerebellum posterior lobe, right middle orbitofrontal gyrus, and frontal lobe in post-ECT patients, whereas the ALFF in the slow-5 band in the left sublobar region, right angular gyrus, and right frontal lobe was lower. In contrast, significantly higher ALFF in the slow-4 band was observed in the frontal lobe, superior frontal gyrus, parietal lobe, right inferior parietal lobule, and left angular gyrus.
CONCLUSION Our results suggest that the abnormal ALFF in pre- and post-ECT MDD patients may be associated with specific frequency bands.
Collapse
Affiliation(s)
- Xin-Ke Li
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China
| | - Hai-Tang Qiu
- Mental Health Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400016, China
| | - Jia Hu
- Institute for Advanced Studies in Humanities and Social Science, Chongqing University, Chongqing 400044, China
| | - Qing-Hua Luo
- Mental Health Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
33
|
Luo Q, Yu H, Chen J, Lin X, Wu Z, Yao J, Li Y, Wu H, Peng H. Altered Variability and Concordance of Dynamic Resting-State Functional Magnetic Resonance Imaging Indices in Patients With Major Depressive Disorder and Childhood Trauma. Front Neurosci 2022; 16:852799. [PMID: 35615286 PMCID: PMC9124829 DOI: 10.3389/fnins.2022.852799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Childhood trauma is a non-specific risk factor for major depressive disorder (MDD). resting-state functional magnetic resonance imaging (R-fMRI) studies have demonstrated changes in regional brain activity in patients with MDD who experienced childhood trauma. However, previous studies have mainly focused on static characteristics of regional brain activity. This study aimed to determine the specific brain regions associated with MDD with childhood trauma by performing temporal dynamic analysis of R-fMRI data in three groups of patients: patients with childhood trauma-associated MDD (n = 48), patients without childhood trauma-associated MDD (n = 30), and healthy controls (n = 103). Dynamics and concordance of R-fMRI indices were calculated and analyzed. In patients with childhood trauma-associated MDD, a lower dynamic amplitude of low-frequency fluctuations was found in the left lingual gyrus, whereas a lower dynamic degree of centrality was observed in the right lingual gyrus and right calcarine cortex. Patients with childhood trauma-associated MDD showed a lower voxel-wise concordance in the left middle temporal and bilateral calcarine cortices. Moreover, group differences (depressed or not) significantly moderated the relationship between voxel-wise concordance in the right calcarine cortex and childhood trauma history. Overall, patients with childhood trauma-associated MDD demonstrated aberrant variability and concordance in intrinsic brain activity. These aberrances may be an underlying neurobiological mechanism that explains MDD from the perspective of temporal dynamics.
Collapse
Affiliation(s)
- Qianyi Luo
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huiwen Yu
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Juran Chen
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinyi Lin
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiyao Wu
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiazheng Yao
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuhong Li
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huawang Wu
- Department of Radiology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongjun Peng
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
34
|
Zhang A, Wang X, Li J, Jing L, Hu X, Li H, Yang C, Zhang K, Sun N. Resting-State fMRI in Predicting Response to Treatment With SSRIs in First-Episode, Drug-Naive Patients With Major Depressive Disorder. Front Neurosci 2022; 16:831278. [PMID: 35250466 PMCID: PMC8888836 DOI: 10.3389/fnins.2022.831278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/27/2022] [Indexed: 01/01/2023] Open
Abstract
Objective For major depressive disorder (MDD), there has been a lack of neuroimaging markers of efficacy of pharmacological treatment. In this study, we aimed to explore the neuroimaging mechanisms in patients with first-episode MDD and identify markers that predict the efficacy of 5-hydroxytryptamine reuptake inhibitors (SSRIs) with the use of resting-state brain imaging technology. Methods A total of 101 patients with first-episode MDD and 53 normal controls were finally included in this study. Based on the reduction rate of the score of Hamilton Depression Rating Scale (HAMD-17) during the 2-week SSRI treatment, 31 patients were assigned into the unresponsive group and 32 were assigned into the responsive group. The brain function was compared between patients with MDD and normal controls, and the diagnostic value of brain function was analyzed. With brain regions showing differences between patients with MDD and normal controls as a mask, and the brain function between the responsive and unresponsive groups were compared. Correlations between brain function the HAMD-17 score reduction rate during the 2-week SSRI treatment were analyzed. Results Compared to normal controls, patients with MDD showed increased ReHo in the left parahippocampal gyrus and right parahippocampal gyrus, decreased ReHo in the right middle occipital gyrus, and decreased functional connectivity between the right and left parahippocampal gyri, right middle occipital gyrus and middle temporal gyrus. Receiver operator characteristic (ROC) curve analysis showed that the area under the curve (AUC) was 0.544 (95% CI: 0.445–0.644) for ReHo and 0.822 (95% CI: 0.734–0.909) for functional connectivity. Logistic regression pooling of the differences in ReHo mean time series with the functional connectivity mean time series was performed for the ROC curve analysis, which showed an AUC of 0.832 (95% CI: 0.752–0.911). Compared to the responsive group, the unresponsive group showed elevated ReHo in the right parahippocampal gyrus and lower functional connectivity in the middle temporal gyrus. We also found that the ReHo value was negatively correlated with the HAMD-17 score reduction after 2 weeks of SSRI treatment. Conclusion Altered resting-state brain function in some regions might be a neurobiological marker for the diagnosis of MDD, and ReHo values are expected to be predictors of patient response to treatment with SSRIs. Clinical Trial Registration [http://www.chictr.org.cn/], identifier [ChiCTR1900028722].
Collapse
Affiliation(s)
- Aixia Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Xin Wang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Jianying Li
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Lin Jing
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Xiaodong Hu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Hejun Li
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Chunxia Yang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Kerang Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- *Correspondence: Kerang Zhang,
| | - Ning Sun
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Department of Mental Health, Shanxi Medical University, Taiyuan, China
- Ning Sun,
| |
Collapse
|
35
|
Liu J, Zhu Q, Zhu L, Yang Y, Zhang Y, Liu X, Zhang L, Jia Y, Peng Q, Wang J, Sun P, Fan W, Wang J. Altered brain network in first-episode, drug-naive patients with major depressive disorder. J Affect Disord 2022; 297:1-7. [PMID: 34656674 DOI: 10.1016/j.jad.2021.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Resting-state functional magnetic resonance imaging has been widely used for the assessment of brain functional network, yet with inconsistent results. The present study aimed to investigate intranetwork and internetwork connectivity differences between patients with major depressive disorder (MDD) and healthy controls at the integrity, network and edge levels of 8 well-defined resting state networks. METHODS Thirty patients with MDD and sixty-three healthy control subjects were recruited in this study. RESULTS Compared with healthy controls, patients with MDD showed increased node degree in the right amygdala and putamen, increased connectivity strength in the deep gray matter network (DGN) and increased functional connectivity in intranetwork and internetwork. Meanwhile, MDD showed decreased connectivity strength in visual network-DGN pair. LIMITATIONS The sample size was small, and all patients in this study were of Asian ethnicity, especially Han individuals. CONCLUSIONS These findings demonstrate that MDD cases and healthy controls may have divergent intranetwork and internetwork connectivity at an early stage without confounding influence of medication. These differences may underlie cognitive and behavioral alterations in patients with MDD. And these differences may help with the discrimination of patients and healthy people at an early stage of MDD. More studies in the future are warranted to assist in the diagnosis of this burdensome disease.
Collapse
Affiliation(s)
- Jia Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Qing Zhu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Licheng Zhu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yun Yang
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China; Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, China
| | - Yiran Zhang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Lan Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yuxi Jia
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Qinmu Peng
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China
| | - Jiazheng Wang
- MSC Clinical and Technical Solutions, Philips Healthcare, Beijing, China
| | - Peng Sun
- MSC Clinical and Technical Solutions, Philips Healthcare, Wuhan, China
| | - Wenliang Fan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
| | - Jing Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
| |
Collapse
|
36
|
Xiong S, Li W, Zhou Y, Ren H, Lin G, Zhang S, Xiang X. Vortioxetine Modulates the Regional Signal in First-Episode Drug-Free Major Depressive Disorder at Rest. Front Psychiatry 2022; 13:950885. [PMID: 35845440 PMCID: PMC9277001 DOI: 10.3389/fpsyt.2022.950885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Previous studies on brain functional alterations associated with antidepressants for major depressive disorder (MDD) have produced conflicting results because they involved short treatment periods and a variety of compounds. METHODS Resting-state functional magnetic resonance imaging scans were obtained from 25 first-episode drug-free patients with MDD and 25 healthy controls. The patients, who were treated with vortioxetine for 8 weeks, were scanned at two-time points (baseline and week 8 of treatment). The amplitude of low-frequency fluctuation (ALFF) in the imaging data was used to analyze local brain signal alterations associated with antidepressant treatment. RESULTS Compared with the controls, the patients at baseline showed decreased ALFF values in the right inferior temporal gyrus and increased ALFF values in the left inferior cerebellum, right cingulate gyrus and postcentral gyrus. After 8 weeks of vortioxetine treatment, patients showed increased ALFF values in the bilateral cingulate gyrus, middle temporal gyrus, medial superior frontal gyrus, and inferior cerebellum. CONCLUSION This study provided evidence that vortioxetine modulates brain signals in MDD sufferers. These findings contribute to the understanding of how antidepressants effect brain function.
Collapse
Affiliation(s)
- Shihong Xiong
- Department of Nephrology, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Wei Li
- Department of Otolaryngology-Head and Neck Surgery, Wuhan Asia General Hospital, Wuhan, China
| | - Yang Zhou
- Wuhan Mental Health Center, Wuhan, China
| | - Hongwei Ren
- Department of Medical Imaging, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | | | - Sheng Zhang
- Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Xiang
- Department of Spine and Orthopedics, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
Fu L, Chen H, Liu T, Liu L, Fu Q, Huang W, Chen F. Altered Spontaneous Brain Activity in Betel Quid Dependence Chewers: A Resting-State Functional MRI Study With Percent Amplitude of Fluctuation. Front Psychiatry 2022; 13:830541. [PMID: 35586413 PMCID: PMC9109957 DOI: 10.3389/fpsyt.2022.830541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/08/2022] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE This study aimed to investigate brain spontaneous neural activity changes in betel quid dependence (BQD) chewers using the percent amplitude of fluctuation (PerAF) method. METHODS This study included 48 BQD chewers. The healthy control (HC) group comprised 35 volunteers who were matched with BQD chewers in age, gender, and educational status. All subjects underwent resting-state functional magnetic resonance imaging (rs-fMRI) and neuropsychological tests. The PerAF method was used to identify BQD-related regional brain activity changes. An independent samples t-test was used to evaluate the PerAF difference across two groups. The association between PerAF changes and clinical features such as BQD scores, duration of BQD, Hamilton Depression Rating Scale-24 item (HAMD-24), and Hamilton Anxiety Rating Scale-14 item (HAMA-14) was evaluated by using Spearman's correlation analysis. It assessed the ability of the PerAF method to distinguish between BQD chewers and HCs using a receiver operating characteristic (ROC) curve. RESULTS Compared to the control group, BQD chewers showed decreased PerAF in right anterior cingulate cortex (ACC), right middle frontal gyrus (MFG), right insula, right precuneus, left putamen, left supramarginal gyrus (SMG), and left cerebellum and increased PerAF in right orbitofrontal and left superior temporal gyrus (STG) [P < 0.05, Gaussian random field (GRF) corrected]. PerAF values of the right MFG and right ACC had a significant negative relationship with the duration of BQD (P < 0.05). The average values of PerAF in the left putamen, left cerebellum, and left STG showed significant discriminatory power in distinguishing BQD chewers from HCs, with relatively prime area under the curve (AUC) values. CONCLUSION Our findings suggested that betel quid chewing is associated with spontaneous neural activity alterations in the impulsivity areas (MFG and ACC), cognitive (MFG, ACC, precuneus, and the cerebellum), and reward (orbitofrontal, putamen, and insula) systems, which may be correlated with neuropathological mechanisms of BQD. Also, PerAF may be useful as a potential sensitive biomarker for identifying spontaneous brain activity changes in BQD chewers.
Collapse
Affiliation(s)
- Lili Fu
- Department of Radiology, Hainan General Hospital (The Hainan Affiliated Hospital, Hengyang Medical School, University of South China), Haikou, China
| | - Huijuan Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Tao Liu
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Liting Liu
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Qingqing Fu
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Weiyuan Huang
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Feng Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| |
Collapse
|
38
|
Runia N, Yücel DE, Lok A, de Jong K, Denys DAJP, van Wingen GA, Bergfeld IO. The neurobiology of treatment-resistant depression: A systematic review of neuroimaging studies. Neurosci Biobehav Rev 2021; 132:433-448. [PMID: 34890601 DOI: 10.1016/j.neubiorev.2021.12.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/08/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022]
Abstract
Treatment-resistant depression (TRD) is a debilitating condition associated with higher medical costs, increased illness burden, and reduced quality of life compared to non-treatment-resistant major depressive disorder (MDD). The question arises whether TRD can be considered a distinct MDD sub-type based on neurobiological features. To answer this question we conducted a systematic review of neuroimaging studies investigating the neurobiological differences between TRD and non-TRD. Our main findings are that patients with TRD show 1) reduced functional connectivity (FC) within the default mode network (DMN), 2) reduced FC between components of the DMN and other brain areas, and 3) hyperactivity of DMN regions. In addition, aberrant activity and FC in the occipital lobe may play a role in TRD. The main limitations of most studies were related to inherent confounding factors for comparing TRD with non-TRD, such as differences in disease chronicity/severity and medication history. Future studies may use prospective longitudinal neuroimaging designs to delineate which effects are present in treatment-naive patients and which effects are the result of disease progression.
Collapse
Affiliation(s)
- Nora Runia
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands.
| | - Dilan E Yücel
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Anja Lok
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Kiki de Jong
- University of Amsterdam, Amsterdam, the Netherlands
| | - Damiaan A J P Denys
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Guido A van Wingen
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Isidoor O Bergfeld
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
39
|
Prefrontal-limbic-striatum dysconnectivity associated with negative emotional endophenotypes in bipolar disorder during depressive episodes. J Affect Disord 2021; 295:422-430. [PMID: 34507222 DOI: 10.1016/j.jad.2021.08.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/24/2021] [Accepted: 08/21/2021] [Indexed: 01/23/2023]
Abstract
BACKGROUND The prefrontal-limbic-subcortical network has been suggested as an important circuitry in the pathophysiology underlying bipolar disorder during depressive episodes (BDD). However, the relationships between disrupted prefrontal-limbic-subcortical connection and the emotional endophenotypes in BDD patients remain largely unclear. METHODS Forty-three BDD patients and 63 matched healthy controls (HCs) underwent the resting-state functional magnetic resonance imaging scan. The altered clusters were first identified by using a spatial pairwise clustering method and then were extracted as regions of interest to calculate the functional connectivity (FC). Group comparisons were conducted to identify the abnormal FCs. Classification analysis was employed to examine whether the altered FCs could distinguish BDD from HCs. The relationships between FC alterations and the emotional endophenotypes as measured by the Affective Neuroscience Personality Scales (ANPS) were further detected in BDD. RESULTS Compared with HCs, BDD patients showed abnormal FCs in the prefrontal-limbic-striatum circuit. Importantly, the altered FCs yielded 84.91% accuracy (p< 1/5000) with 93.65% sensitivity and 72.09% specificity in differentiating between BDD and HCs. Moreover, the decreased FCs in the prefrontal-striatum and prefrontal-limbic systems were positively correlated with negative emotional endophenotypes of Sadness and Fear scores. CONCLUSIONS The findings demonstrated that prefrontal-limbic-striatum disconnection may be identified as a potential effective biomarker for BDD, which could help further explain the neurobiological mechanisms underlying BDD.
Collapse
|
40
|
Tarchi L, Damiani S, La Torraca Vittori P, Marini S, Nazzicari N, Castellini G, Pisano T, Politi P, Ricca V. The colors of our brain: an integrated approach for dimensionality reduction and explainability in fMRI through color coding (i-ECO). Brain Imaging Behav 2021; 16:977-990. [PMID: 34689318 PMCID: PMC9107439 DOI: 10.1007/s11682-021-00584-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 11/29/2022]
Abstract
Several systematic reviews have highlighted the role of multiple sources in the investigation of psychiatric illness. For what concerns fMRI, the focus of recent literature preferentially lies on three lines of research, namely: functional connectivity, network analysis and spectral analysis. Data was gathered from the UCLA Consortium for Neuropsychiatric Phenomics. The sample was composed by 130 neurotypicals, 50 participants diagnosed with Schizophrenia, 49 with Bipolar disorder and 43 with ADHD. Single fMRI scans were reduced in their dimensionality by a novel method (i-ECO) averaging results per Region of Interest and through an additive color method (RGB): local connectivity values (Regional Homogeneity), network centrality measures (Eigenvector Centrality), spectral dimensions (fractional Amplitude of Low-Frequency Fluctuations). Average images per diagnostic group were plotted and described. The discriminative power of this novel method for visualizing and analyzing fMRI results in an integrative manner was explored through the usage of convolutional neural networks. The new methodology of i-ECO showed between-groups differences that could be easily appreciated by the human eye. The precision-recall Area Under the Curve (PR-AUC) of our models was > 84.5% for each diagnostic group as evaluated on the test-set – 80/20 split. In conclusion, this study provides evidence for an integrative and easy-to-understand approach in the analysis and visualization of fMRI results. A high discriminative power for psychiatric conditions was reached. This proof-of-work study may serve to investigate further developments over more extensive datasets covering a wider range of psychiatric diagnoses.
Collapse
Affiliation(s)
- Livio Tarchi
- Psychiatry Unit, Department of Health Sciences, University of Florence, viale della Maternità, Padiglione 8b, AOU Careggi, Firenze, Florence, FI, 50134, Italy.
| | - Stefano Damiani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, PV, Italy
| | | | - Simone Marini
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | - Nelson Nazzicari
- Council for Agricultural Research and Economics (CREA), Research Centre for Fodder Crops and Dairy Productions, Lodi, LO, Italy
| | - Giovanni Castellini
- Psychiatry Unit, Department of Health Sciences, University of Florence, viale della Maternità, Padiglione 8b, AOU Careggi, Firenze, Florence, FI, 50134, Italy
| | - Tiziana Pisano
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Pierluigi Politi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, PV, Italy
| | - Valdo Ricca
- Psychiatry Unit, Department of Health Sciences, University of Florence, viale della Maternità, Padiglione 8b, AOU Careggi, Firenze, Florence, FI, 50134, Italy
| |
Collapse
|
41
|
Scangos KW, Khambhati AN, Daly PM, Owen LW, Manning JR, Ambrose JB, Austin E, Dawes HE, Krystal AD, Chang EF. Distributed Subnetworks of Depression Defined by Direct Intracranial Neurophysiology. Front Hum Neurosci 2021; 15:746499. [PMID: 34744662 PMCID: PMC8566975 DOI: 10.3389/fnhum.2021.746499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/02/2021] [Indexed: 12/30/2022] Open
Abstract
Major depressive disorder is a common and disabling disorder with high rates of treatment resistance. Evidence suggests it is characterized by distributed network dysfunction that may be variable across patients, challenging the identification of quantitative biological substrates. We carried out this study to determine whether application of a novel computational approach to a large sample of high spatiotemporal resolution direct neural recordings in humans could unlock the functional organization and coordinated activity patterns of depression networks. This group level analysis of depression networks from heterogenous intracranial recordings was possible due to application of a correlational model-based method for inferring whole-brain neural activity. We then applied a network framework to discover brain dynamics across this model that could classify depression. We found a highly distributed pattern of neural activity and connectivity across cortical and subcortical structures that was present in the majority of depressed subjects. Furthermore, we found that this depression signature consisted of two subnetworks across individuals. The first was characterized by left temporal lobe hypoconnectivity and pathological beta activity. The second was characterized by a hypoactive, but hyperconnected left frontal cortex. These findings have applications toward personalization of therapy.
Collapse
Affiliation(s)
- Katherine Wilson Scangos
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Ankit N. Khambhati
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Patrick M. Daly
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Lucy W. Owen
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| | - Jeremy R. Manning
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| | - Josiah B. Ambrose
- Kaiser Permanente Redwood City Medical Center, Redwood City, CA, United States
| | - Everett Austin
- Kaiser Permanente Redwood City Medical Center, Redwood City, CA, United States
| | - Heather E. Dawes
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Andrew D. Krystal
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Edward F. Chang
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
42
|
Pregnancy leads to changes in the brain functional network: a connectome analysis. Brain Imaging Behav 2021; 16:811-819. [PMID: 34590214 DOI: 10.1007/s11682-021-00561-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Pregnancy leads to long-lasting changes in human brain structure; however, little is known regarding alterations in the topological organization of functional networks. In this study, we investigated the effect of pregnancy on human brain function networks. Resting-state fMRI data was collected from eighteen primiparous mothers and twenty-four nulliparous control women of similar age, education level and body mass index (BMI). The functional brain network and topological properties were calculated by using GRETNA toolbox. The demographic data differences between two groups were computed by the independent two sample t-test. We tested group differences in network metrics' area under curve (AUC) using non-parametric permutation test of 1,000 permutations and corrected for false discovery rate (FDR). Differences in regional networks between groups were evaluated using non-parametric permutation tests by network-based statistical analysis (NBS). Compared with the nulliparous control women, a hub node changed from left inferior temporal gyrus to right precentral gyrus in primiparous mothers, while primiparous mothers showed enhanced network global efficiency (p = 0.247), enhanced local efficiency (p = 0.410), larger clustering coefficient (p = 0.410), but shorter characteristic path length (p = 0.247), smaller normalized clustering coefficient (p = 0.111), and shorter normalized characteristic path length (p = 0.705). Although both groups of functional networks have small-world property (σ > 1), the σ values of primiparous mothers were decreased significantly. NBS evaluation showed the majority of altered connected sub-network in the primiparous mothers occurred in the bilateral frontal lobe gyrus (p < 0.05). Altered functional network metrics and an abnormal sub-network were found in primiparous mothers, suggested that pregnancy may lead to changes in the brain functional network.
Collapse
|
43
|
Ma J, Wu JJ, Hua XY, Zheng MX, Huo BB, Xing XX, Feng SY, Li B, Xu J. Alterations in brain structure and function in patients with osteonecrosis of the femoral head: a multimodal MRI study. PeerJ 2021; 9:e11759. [PMID: 34484979 PMCID: PMC8381875 DOI: 10.7717/peerj.11759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/21/2021] [Indexed: 11/30/2022] Open
Abstract
Background Pain, a major symptom of osteonecrosis of the femoral head (ONFH), is a complex sensory and emotional experience that presents therapeutic challenges. Pain can cause neuroplastic changes at the cortical level, leading to central sensitization and difficulties with curative treatments; however, whether changes in structural and functional plasticity occur in patients with ONFH remains unclear. Methods A total of 23 ONFH inpatients who did not undergo surgery (14 males, nine females; aged 55.61 ± 13.79 years) and 20 controls (12 males, eight females; aged 47.25 ± 19.35 years) were enrolled. Functional indices of the amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), and a structural index of tract-based spatial statistics (TBSS) were calculated for each participant. The probability distribution of fiber direction was determined according to the ALFF results. Results ONFH patients demonstrated increased ALFF in the bilateral dorsolateral superior frontal gyrus, right medial superior frontal gyrus, right middle frontal gyrus, and right supplementary motor area. In contrast, ONFH patients showed decreased ReHo in the left superior parietal gyrus and right inferior temporal gyrus. There were no significant differences in TBSS or probabilistic tractography. Conclusion These results indicate cerebral pain processing in ONFH patients. It is advantageous to use functional magnetic resonance imaging to better understand pain pathogenesis and identify new therapeutic targets in ONFH patients.
Collapse
Affiliation(s)
- Jie Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Wu
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University, Shanghai, China.,Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bei-Bei Huo
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang-Xin Xing
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sheng-Yi Feng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bo Li
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianguang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
44
|
Shen CY, Tsai YH, Chen VCH, Chou MC, McIntyre RS, Weng JC. Comparison of functional dorsal attention network alterations in breast cancer survivors before and after chemotherapy. Medicine (Baltimore) 2021; 100:e27018. [PMID: 34414995 PMCID: PMC8376308 DOI: 10.1097/md.0000000000027018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 01/04/2023] Open
Abstract
ABSTRACT Breast cancer is the leading type of cancer among women worldwide, and a high number of breast cancer patients are suffering from psychological and cognitive disorders. This cross-sectional study used resting-state functional magnetic resonance imaging (rs-fMRI) and clinical neuropsychological tests to evaluate the possible underlying mechanisms.We enrolled 32 breast cancer patients without chemotherapy (BC), 32 breast cancer patients within 6 to 12 months after the completion of chemotherapy (BC_CTx) and 46 healthy controls. Participants underwent neuropsychological tests and rs-fMRI with mean fractional amplitude of low-frequency fluctuation and mean regional homogeneity analyses. Between groups whole-brain voxel-wise rs-fMRI comparisons were calculated using two-sample t test. rs-fMRI and neuropsychological tests correlation analyses were calculated using multiple regression. Age and years of education were used as covariates. A false discovery rate-corrected P-value of less than .05 was considered statistically significant.We found significantly alteration of mean fractional amplitude of low-frequency fluctuation and mean regional homogeneity in the frontoparietal lobe and occipital lobe in the BC group compared with the other 2 groups, indicating alteration of functional dorsal attention network (DAN). Furthermore, we found the DAN alteration was correlated with neuropsychological impairment.The majority of potential underlying mechanisms of DAN alteration in BC patients may due to insufficient frontoparietal lobe neural activity to drive DAN and may be related to the effects of neuropsychological distress. Further longitudinal studies with comprehensive images and neuropsychological tests correlations are recommended.
Collapse
Affiliation(s)
- Chao-Yu Shen
- Institute of Medicine and School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yuan-Hsiung Tsai
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Vincent Chin-Hung Chen
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ming-Chih Chou
- Institute of Medicine and School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Roger S. McIntyre
- Mood Disorder Psychopharmacology Unit, University Health Network, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Departments of Psychiatry and Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Jun-Cheng Weng
- Department of Psychiatry, Chang Gung Memorial Hospital, Chiayi, Taiwan
- Department of Medical Imaging and Radiological Sciences, Bachelor Program in Artificial Intelligence, Chang Gung University, Taoyuan, Taiwan
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|
45
|
Li H, Song S, Wang D, Tan Z, Lian Z, Wang Y, Zhou X, Pan C. Individualized diagnosis of major depressive disorder via multivariate pattern analysis of thalamic sMRI features. BMC Psychiatry 2021; 21:415. [PMID: 34416848 PMCID: PMC8377985 DOI: 10.1186/s12888-021-03414-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 08/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Magnetic resonance imaging (MRI) studies have found thalamic abnormalities in major depressive disorder (MDD). Although there are significant differences in the structure and function of the thalamus between MDD patients and healthy controls (HCs) at the group level, it is not clear whether the structural and functional features of the thalamus are suitable for use as diagnostic prediction aids at the individual level. Here, we were to test the predictive value of gray matter density (GMD), gray matter volume (GMV), amplitude of low-frequency fluctuations (ALFF), and fractional amplitude of low-frequency fluctuations (fALFF) in the thalamus using multivariate pattern analysis (MVPA). METHODS Seventy-four MDD patients and 44 HC subjects were recruited. The Gaussian process classifier (GPC) was trained to separate MDD patients from HCs, Gaussian process regression (GPR) was trained to predict depression scores, and Multiple Kernel Learning (MKL) was applied to explore the contribution of each subregion of the thalamus. RESULTS The primary findings were as follows: [1] The balanced accuracy of the GPC trained with thalamic GMD was 96.59% (P < 0.001). The accuracy of the GPC trained with thalamic GMV was 93.18% (P < 0.001). The correlation between Hamilton Depression Scale (HAMD) score targets and predictions in the GPR trained with GMD was 0.90 (P < 0.001, r2 = 0.82), and in the GPR trained with GMV, the correlation between HAMD score targets and predictions was 0.89 (P < 0.001, r2 = 0.79). [2] The models trained with ALFF and fALFF in the thalamus failed to discriminate MDD patients from HC participants. [3] The MKL model showed that the left lateral prefrontal thalamus, the right caudal temporal thalamus, and the right sensory thalamus contribute more to the diagnostic classification. CONCLUSIONS The results suggested that GMD and GMV, but not functional indicators of the thalamus, have good potential for the individualized diagnosis of MDD. Furthermore, the thalamus shows the heterogeneity in the structural features of thalamic subregions for predicting MDD. To our knowledge, this is the first study to focus on the thalamus for the prediction of MDD using machine learning methods at the individual level.
Collapse
Affiliation(s)
- Hanxiaoran Li
- Institutes of Psychological Sciences, College of Education, Hangzhou Normal University, 2318#, Yuhangtang Rd, Hangzhou, 311121, China
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 311121, China
| | - Sutao Song
- School of Information Science and Engineering, Shandong Normal University, 1#, University Rd, Changqing District, Jinan, 250358, China.
| | - Donglin Wang
- Institutes of Psychological Sciences, College of Education, Hangzhou Normal University, 2318#, Yuhangtang Rd, Hangzhou, 311121, China.
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, 311121, China.
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 311121, China.
- Department of Psychiatry, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, 310015, China.
| | - Zhonglin Tan
- Department of Psychiatry, Hangzhou Seventh People's Hospital, Hangzhou, 310013, China
| | - Zhenzhen Lian
- Institutes of Psychological Sciences, College of Education, Hangzhou Normal University, 2318#, Yuhangtang Rd, Hangzhou, 311121, China
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 311121, China
| | - Yan Wang
- Institutes of Psychological Sciences, College of Education, Hangzhou Normal University, 2318#, Yuhangtang Rd, Hangzhou, 311121, China
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 311121, China
- Department of Psychiatry, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, 310015, China
| | - Xin Zhou
- Institutes of Psychological Sciences, College of Education, Hangzhou Normal University, 2318#, Yuhangtang Rd, Hangzhou, 311121, China
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 311121, China
| | - Chenyuan Pan
- Institutes of Psychological Sciences, College of Education, Hangzhou Normal University, 2318#, Yuhangtang Rd, Hangzhou, 311121, China
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 311121, China
| |
Collapse
|
46
|
He F, Li Y, Li C, Fan L, Liu T, Wang J. Repeated anodal high-definition transcranial direct current stimulation over the left dorsolateral prefrontal cortex in mild cognitive impairment patients increased regional homogeneity in multiple brain regions. PLoS One 2021; 16:e0256100. [PMID: 34388179 PMCID: PMC8363005 DOI: 10.1371/journal.pone.0256100] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/31/2021] [Indexed: 01/10/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) can improve cognitive function. However, it is not clear how high-definition tDCS (HD-tDCS) regulates the cognitive function and its neural mechanism, especially in individuals with mild cognitive impairment (MCI). This study aimed to examine whether HD-tDCS can modulate cognitive function in individuals with MCI and to determine whether the potential variety is related to spontaneous brain activity changes recorded by resting-state functional magnetic resonance imaging (rs-fMRI). Forty-three individuals with MCI were randomly assigned to receive either 10 HD-tDCS sessions or 10 sham sessions to the left dorsolateral prefrontal cortex (L-DLPFC). The fractional amplitude of low-frequency fluctuation (fALFF) and the regional homogeneity (ReHo) was computed using rs-fMRI data from all participants. The results showed that the fALFF and ReHo values changed in multiple areas following HD-tDCS. Brain regions with significant decreases in fALFF values include the Insula R, Precuneus R, Thalamus L, and Parietal Sup R, while the Temporal Inf R, Fusiform L, Occipital Sup L, Calcarine R, and Angular R showed significantly increased in their fALFF values. The brain regions with significant increases in ReHo values include the Temporal Inf R, Putamen L, Frontal Mid L, Precentral R, Frontal Sup Medial L, Frontal Sup R, and Precentral L. We found that HD-tDCS can alter the intensity and synchrony of brain activity, and our results indicate that fALFF and ReHo analysis are sensitive indicators for the detection of HD-tDCS during spontaneous brain activity. Interestingly, HD-tDCS increases the ReHo values of multiple brain regions, which may be related to the underlying mechanism of its clinical effects, these may also be related to a potential compensation mechanism involving the mobilization of more regions to complete a function following a functional decline.
Collapse
Affiliation(s)
- Fangmei He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, and Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
- National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong, P. R. China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, and Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
- National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong, P. R. China
| | - Chenxi Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, and Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
- National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong, P. R. China
| | - Liming Fan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, and Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
- National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong, P. R. China
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, and Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
- National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong, P. R. China
- * E-mail: (JW); (TL)
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, and Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
- National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong, P. R. China
- * E-mail: (JW); (TL)
| |
Collapse
|
47
|
Huang HL, Yang SB, Mei ZG, Huang YG, Chen MH, Mei QL, Lei HP, Mei QX, Chen JH. Efficacy and safety of electroacupuncture combined with Suanzaoren decoction for insomnia following stroke: study protocol for a randomized controlled trial. Trials 2021; 22:485. [PMID: 34496928 PMCID: PMC8427963 DOI: 10.1186/s13063-021-05399-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 06/25/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Insomnia is a common but frequently overlooked sleep disorder after stroke, and there are limited effective therapies for insomnia following stroke. Traditional Chinese medicine (TCM), including acupuncture and the Chinese herbal medication (CHM) Suanzaoren decoction (SZRD), has been reported as an alternative option for insomnia relief after stroke in China for thousands of years. Here, this study aims to investigate the efficacy and safety of electroacupuncture (EA) in combination with SZRD in the treatment of insomnia following stroke. METHODS A total of 240 patients with post-stroke insomnia will be included and randomized into four groups: the EA group, SZRD group, EA & SZRD group, and sham group. The same acupoints (GV20, GV24, HT7, and SP6) will be used in the EA group, EA & SZRD group, and sham group, and these patients will receive the EA treatment or sham manipulation every other day for 4 consecutive weeks. SZRD treatments will be given to participants in the SZRD group and EA & SZRD group twice a day for 4 consecutive weeks. The primary outcome measures include Pittsburgh Sleep Quality Index scores and polysomnography. Secondary outcome measures include the Insomnia Severity Index, the National Institutes of Health Stroke Scale, the Hospital Anxiety and Depression Scale, brain magnetic resonance imaging, functional magnetic resonance imaging, and nocturnal melatonin concentrations. The primary and secondary outcomes will be assessed at baseline (before treatment), during the 2nd and 4th weeks of the intervention, and at the 8th and 12th weeks of follow-up. Safety assessments will be evaluated at baseline and during the 4th week of the intervention. DISCUSSION This study will contribute to assessing whether the combination of these two therapies is more beneficial for post-stroke insomnia than their independent use, and the results of this clinical trial will improve our understanding of the possible mechanisms underlying the effects of combination therapies. TRIAL REGISTRATION Chinese Clinical Trials Register ChiCTR2000031413 . Registered on March 30, 2020.
Collapse
Affiliation(s)
- Hui-Lian Huang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang, 310053, Hangzhou, China.,College of Traditional Chinese Medicine, China Three Gorges University & Yichang Hospital of Traditional Chinese Medicine, Yichang, 443003, Hubei, China
| | - Song-Bai Yang
- College of Traditional Chinese Medicine, China Three Gorges University & Yichang Hospital of Traditional Chinese Medicine, Yichang, 443003, Hubei, China
| | - Zhi-Gang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China. .,Medical College of China Three Gorges University, Yichang, 443002, Hubei, China.
| | - Ya-Guang Huang
- Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443001, Hubei, China
| | - Mao-Hua Chen
- College of Traditional Chinese Medicine, China Three Gorges University & Yichang Hospital of Traditional Chinese Medicine, Yichang, 443003, Hubei, China
| | - Qun-Li Mei
- College of Traditional Chinese Medicine, China Three Gorges University & Yichang Hospital of Traditional Chinese Medicine, Yichang, 443003, Hubei, China
| | - Hua-Ping Lei
- College of Traditional Chinese Medicine, China Three Gorges University & Yichang Hospital of Traditional Chinese Medicine, Yichang, 443003, Hubei, China
| | - Qing-Xian Mei
- College of Traditional Chinese Medicine, China Three Gorges University & Yichang Hospital of Traditional Chinese Medicine, Yichang, 443003, Hubei, China
| | - Jian-Hua Chen
- College of Traditional Chinese Medicine, China Three Gorges University & Yichang Hospital of Traditional Chinese Medicine, Yichang, 443003, Hubei, China
| |
Collapse
|
48
|
Lu F, Wang M, Xu S, Chen H, Yuan Z, Luo L, Wang X, Zhang J, Dai J, Wang X, Chen H, Zhou J. Decreased interhemispheric resting-state functional connectivity in male adolescents with conduct disorder. Brain Imaging Behav 2021; 15:1201-1210. [PMID: 32623563 DOI: 10.1007/s11682-020-00320-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Conduct disorder (CD) is a common psychiatric disorder defined by a repetitive and persistent pattern of aggressive and antisocial behaviors. Although numerous task-based and resting-state functional magnetic resonance imaging (rsfMRI) studies have emphasized the disrupted functional connectivity in CD, the CD-related alterations in functional interactions between the bilateral cerebral hemispheres are rarely investigated directly. In this study, a voxel-mirrored homotopic connectivity (VMHC) method based on rsfMRI was employed for the first time to examine the abnormalities of interhemispheric functional connectivity in patients with CD. The VMHC was compared between eighteen pure CD patients and eighteen typically developing (TD) healthy controls. In CD patients, reduced homotopic connectivity was observed relative to TDs in the middle occipital gyrus (MOG), pre- and postcentral gyrus, rolandic operculum and paracentral lobe (PCL) which were the components of visual and motor networks. Furthermore, the VMHC of the MOG and PCL was found to be negatively correlated with clinical scores in the CD group. Moreover, the regions with altered VMHC exhibited a relative good and robust ability to discriminate CD patients from TDs. This study provided a novel angle to identify the important role of interhemispheric coordination in the pathophysiology underlying CD and further indicated that the aberrant homotopic connectivity could be a potential clinical neural marker for CD diagnosis.
Collapse
Affiliation(s)
- Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Mengyun Wang
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Shiyang Xu
- Faculty of Health Sciences, University of Macau, Macau, China.,Centre for Cognitive and Brain Sciences, University of Macau, Macau, China
| | - Heng Chen
- School of Medicine, Guizhou University, Guizhou, China
| | - Zhen Yuan
- Faculty of Health Sciences, University of Macau, Macau, China.,Centre for Cognitive and Brain Sciences, University of Macau, Macau, China
| | - Lizhu Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiuli Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiang Zhang
- Department of Medical Information Engineering, Sichuan University, Chengdu, 610065, China
| | - Jing Dai
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoping Wang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,National Clinical Research Center on Mental Disorders, Changsha, 410011, Hunan, China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Jiansong Zhou
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China. .,National Clinical Research Center on Mental Disorders, Changsha, 410011, Hunan, China.
| |
Collapse
|
49
|
Zhang YM, Kang YF, Zeng JJ, Li L, Gao JM, Liu LZ, Shi LR, Liao WH. Surface-Based Falff: A Potential Novel Biomarker for Prediction of Radiation Encephalopathy in Patients With Nasopharyngeal Carcinoma. Front Neurosci 2021; 15:692575. [PMID: 34349618 PMCID: PMC8326829 DOI: 10.3389/fnins.2021.692575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Radiation encephalopathy (RE) is an important potential complication in patients with nasopharyngeal carcinoma (NPC) who undergo radiotherapy (RT) that can affect the quality of life. However, a functional imaging biomarker of pre-symptomatic RE has not yet been established. This study aimed to assess radiation-induced gray matter functional alterations and explore fractional amplitude of low-frequency fluctuation (fALFF) as an imaging biomarker for predicting or diagnosing RE in patients with NPC. A total of 60 patients with NPC were examined, 21 in the pre-RT cohort and 39 in the post-RT cohort. Patients in the post-RT cohort were further divided into two subgroups according to the occurrence of RE in follow-up: post-RT non-RE (n = 21) and post-RT REproved infollow-up (n = 18). Surface-based and volume-based fALFF were used to detect radiation-induced functional alterations. Functional derived features were then adopted to construct a predictive model for the diagnosis of RE. We observed that surface-based fALFF could sensitively detect radiation-induced functional alterations in the intratemporal brain regions (such as the hippocampus and superior temporal gyrus), as well as the extratemporal regions (such as the insula and prefrontal lobe); however, no significant intergroup differences were observed using volume-based fALFF. No significant correlation between fALFF and radiation dose to the ipsilateral temporal lobe was observed. Support vector machine (SVM) analysis revealed that surface-based fALFF in the bilateral superior temporal gyri and left insula exhibited impressive performance (accuracy = 80.49%) in identifying patients likely to develop RE. We conclude that surface-based fALFF may serve as a sensitive imaging biomarker in the prediction of RE.
Collapse
Affiliation(s)
- You-Ming Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Ya-Fei Kang
- School of Psychology, Shaanxi Normal University, Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, Xi'an, China
| | - Jun-Jie Zeng
- Department of Radiology, Hunan Children's Hospital, Changsha, China
| | - Li Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jian-Ming Gao
- Department of Radiation Oncology, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li-Zhi Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Liang-Rong Shi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei-Hua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
50
|
Lu F, Cui Q, He Z, Tang Q, Chen Y, Sheng W, Yang Y, Luo W, Yu Y, Chen J, Li D, Deng J, Hu S, Chen H. Superficial white-matter functional networks changes in bipolar disorder patients during depressive episodes. J Affect Disord 2021; 289:151-159. [PMID: 33984685 DOI: 10.1016/j.jad.2021.04.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/01/2021] [Accepted: 04/20/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Bipolar disorder is a common psychiatric disorder characterized by insufficient or ineffective connections associated with white-matter (WM) abnormalities. Previous studies have detected the structural attributes of WM using magnetic resonance imaging (MRI) or diffusion tensor imaging, however, they failed to disentangle the dysfunctional organization within the WM. METHODS This study aimed to uncover the WM functional connectivity (FC) in 45 bipolar disorder patients during depressive episodes (BDD) and 45 healthy controls based on resting-state functional MRI. Eight WM functional networks were identified by using a clustering analysis of voxel-based correlation profiles, which were further classified into superficial, middle and deep layers of networks. RESULTS Group comparisons on the FCs among 8 WM networks showed that the superficial tempofrontal network (TFN) in BDD patients had increased FC with the superficial cerebellar network (CN) and with the superficial pre/post-central network (PCN). Further, support vector regression prediction analysis results revealed that the increased FCs of CN-TFN and PCN-TFN could be served as features to predict the numbers of depressive episode in BDD patients. CONCLUSIONS The current study extended our knowledge about the impaired WM functional connections associated with emotional and sensory-motor perception processing in BDD, which may facilitate the interpretation of the pathophysiology mechanisms underlying BDD.
Collapse
Affiliation(s)
- Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P R China
| | - Qian Cui
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, China.
| | - Zongling He
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P R China
| | - Qin Tang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P R China
| | - Yuyan Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P R China
| | - Wei Sheng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P R China
| | - Yang Yang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P R China
| | - Wei Luo
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P R China
| | - Yue Yu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P R China
| | - Jiajia Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P R China
| | - Di Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P R China
| | - Jiaxin Deng
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, China
| | - Shan Hu
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P R China; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, P R China.
| |
Collapse
|