1
|
Wu Y, Yang L, Jiang W, Zhang X, Yao Z. Glycolytic dysregulation in Alzheimer's disease: unveiling new avenues for understanding pathogenesis and improving therapy. Neural Regen Res 2025; 20:2264-2278. [PMID: 39101629 PMCID: PMC11759019 DOI: 10.4103/nrr.nrr-d-24-00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/11/2024] [Accepted: 06/20/2024] [Indexed: 08/06/2024] Open
Abstract
Alzheimer's disease poses a significant global health challenge owing to the progressive cognitive decline of patients and absence of curative treatments. The current therapeutic strategies, primarily based on cholinesterase inhibitors and N-methyl-D-aspartate receptor antagonists, offer limited symptomatic relief without halting disease progression, highlighting an urgent need for novel research directions that address the key mechanisms underlying Alzheimer's disease. Recent studies have provided insights into the critical role of glycolysis, a fundamental energy metabolism pathway in the brain, in the pathogenesis of Alzheimer's disease. Alterations in glycolytic processes within neurons and glial cells, including microglia, astrocytes, and oligodendrocytes, have been identified as significant contributors to the pathological landscape of Alzheimer's disease. Glycolytic changes impact neuronal health and function, thus offering promising targets for therapeutic intervention. The purpose of this review is to consolidate current knowledge on the modifications in glycolysis associated with Alzheimer's disease and explore the mechanisms by which these abnormalities contribute to disease onset and progression. Comprehensive focus on the pathways through which glycolytic dysfunction influences Alzheimer's disease pathology should provide insights into potential therapeutic targets and strategies that pave the way for groundbreaking treatments, emphasizing the importance of understanding metabolic processes in the quest for clarification and management of Alzheimer's disease.
Collapse
Affiliation(s)
- You Wu
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Lijie Yang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Wanrong Jiang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xinyuan Zhang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhaohui Yao
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Huang Z, Zhang Y, Zou P, Zong X, Zhang Q. Myelin dysfunction in aging and brain disorders: mechanisms and therapeutic opportunities. Mol Neurodegener 2025; 20:69. [PMID: 40518508 PMCID: PMC12168329 DOI: 10.1186/s13024-025-00861-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 06/02/2025] [Indexed: 06/18/2025] Open
Abstract
Myelin is a multilamellar membrane that surrounds axons in the vertebrate nervous system. Properly functioning myelin is essential for the rapid conduction of nerve impulses, and it metabolically supports axonal integrity. Emerging evidence indicates that myelin is also involved in various aspects of cognition, with adaptive myelination playing a critical role in memory consolidation and motor learning. However, these physiological processes can be disrupted in various diseases. Understanding the mechanisms underlying myelin pathology is therefore essential for the development of targeted therapies for associated medical conditions. This review provides a comprehensive overview of the role of myelin in neural function, with a particular focus on adaptive myelination in cognition. We also highlight myelin dysfunction and the underlying mechanisms in the aging brain, as well as in diverse brain disorders and neurological conditions, including neurodegenerative diseases, psychiatric conditions, brain injuries, chemotherapy-related cognitive impairment, and neurological symptoms associated with COVID-19. Furthermore, we discuss the therapeutic potential of recently identified pro-myelinating compounds in aging-associated cognitive decline and brain disorders, as well as the future of remyelination therapies. Current evidence suggests that restoring functional myelin may serve as a therapeutic strategy for various medical conditions associated with myelin dysfunction.
Collapse
Affiliation(s)
- Zhihai Huang
- Institute for Cerebrovascular and Neuroregeneration Research (ICNR), Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Yulan Zhang
- Institute for Cerebrovascular and Neuroregeneration Research (ICNR), Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Peibin Zou
- Institute for Cerebrovascular and Neuroregeneration Research (ICNR), Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Xuemei Zong
- Institute for Cerebrovascular and Neuroregeneration Research (ICNR), Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA.
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Quanguang Zhang
- Institute for Cerebrovascular and Neuroregeneration Research (ICNR), Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA.
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| |
Collapse
|
3
|
Ramesh V, Tsoukala E, Kougianou I, Kozic Z, Burr K, Viswanath B, Hampton D, Story D, Reddy BK, Pal R, Dando O, Kind PC, Chattarji S, Selvaraj BT, Chandran S, Zoupi L. The Fragile X Messenger Ribonucleoprotein 1 Regulates the Morphology and Maturation of Human and Rat Oligodendrocytes. Glia 2025; 73:1203-1220. [PMID: 39928301 PMCID: PMC12012330 DOI: 10.1002/glia.24680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 02/11/2025]
Abstract
The Fragile X Messenger Ribonucleoprotein (FMRP) is an RNA binding protein that regulates the translation of multiple mRNAs and is expressed by neurons and glia in the mammalian brain. Loss of FMRP leads to fragile X syndrome (FXS), a common inherited form of intellectual disability and autism. While most research has been focusing on the neuronal contribution to FXS pathophysiology, the role of glia, particularly oligodendrocytes, is largely unknown. FXS individuals are characterized by white matter changes, which imply impairments in oligodendrocyte differentiation and myelination. We hypothesized that FMRP regulates oligodendrocyte maturation and myelination during postnatal development. Using a combination of human pluripotent stem cell-derived oligodendrocytes and an Fmr1 knockout rat model, we studied the role of FMRP on mammalian oligodendrocyte development. We found that the loss of FMRP leads to shared defects in oligodendrocyte morphology in both rat and human systems in vitro, which persist in the presence of FMRP-expressing axons in chimeric engraftment models. Our findings point to species-conserved, cell-autonomous defects during oligodendrocyte maturation in FXS.
Collapse
|
4
|
Wright JL, Jiang Y, Nayar SG, Li H, Richardson WD. The INO80 Chromatin Remodeling Complex Regulates Histone H2A.Z Mobility and the G1-S Transition in Oligodendrocyte Precursors. Glia 2025; 73:1307-1323. [PMID: 40017313 PMCID: PMC12012327 DOI: 10.1002/glia.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 03/01/2025]
Abstract
Chromatin remodeling complexes (CRCs) participate in oligodendrocyte (OL) differentiation, survival, and maintenance. We asked whether CRCs also control the proliferation of OL precursors (OPs)-focusing on the INO80 complex, which is known to regulate the proliferation of a variety of other cell types during development and disease. CRISPR/Cas9-mediated inactivation of Ino80 in vitro, or Cre-mediated deletion in vivo, slowed the OP cell cycle substantially by prolonging G1. RNAseq analysis revealed that E2F target genes were dysregulated in OPs from INO80-deficient mice, but correlated RNAseq and ATAC-seq uncovered no general correlation between gene expression and altered nucleosome positioning at transcription start sites. Fluorescence photobleaching experiments in cultured OPs demonstrated that histone H2A.Z mobility increased following the loss of INO80, suggesting that INO80 regulates the cell cycle machinery in OPs through H2A.Z/H2A exchange. We also present evidence that INO80 associates with OLIG2, a master regulator of OL development.
Collapse
Affiliation(s)
- Jordan L. Wright
- Wolfson Institute for Biomedical ResearchUniversity College LondonLondonUK
| | - Yi Jiang
- Wolfson Institute for Biomedical ResearchUniversity College LondonLondonUK
| | - Stuart G. Nayar
- Wolfson Institute for Biomedical ResearchUniversity College LondonLondonUK
| | - Huiliang Li
- Wolfson Institute for Biomedical ResearchUniversity College LondonLondonUK
| | | |
Collapse
|
5
|
Gao Y, Xu L, Schilling KG, Choi S, Chen R, Li Y, Li M, Zu Z, Ding Z, Anderson AW, Gore JC. Myelination selectively modulates BOLD signal in white matter. RESEARCH SQUARE 2025:rs.3.rs-6597153. [PMID: 40386401 PMCID: PMC12083668 DOI: 10.21203/rs.3.rs-6597153/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
There is increasing recognition that blood oxygenation level dependent (BOLD) signals are detectable in white matter (WM) and reflect an important, heretofore overlooked functional activity in the brain, but their biophysical origins remain understudied and poorly understood. By integrating several disparate, multimodal data sets, we established the associations of resting state BOLD signals with key microstructural, hemodynamic and metabolic features in WM. In particular, we identified the roles of myelination and fiber type in modulating BOLD effects, and derived relationships between measurements of BOLD signal power and cerebral blood volume, flow, oxygen extraction and metabolic rate of oxygen consumption, which are predicted using a simple theory and then verified empirically. Our findings demonstrate that myelin selectively influences the fractional amplitude of low-frequency fluctuations (fALFF) in BOLD signals, and that differences in myelin content account for variations in their temporal spectra and hemodynamic response functions, but these in turn are qualitatively different in association versus projection fibers. Other determinants of BOLD in WM are further revealed by converging biological, genomic and neurochemical evidence, including measurements of neurite and mitochondrial densities. Moreover, analyses of images of the optic nerve from human subjects confirm that BOLD activations evoked by visual stimuli are preferentially localized to unmyelinated portions, with minimal responses in fully myelinated regions of the same nerve, suggesting a myelin-dependent requirement for BOLD effects in WM.
Collapse
Affiliation(s)
- Yurui Gao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA, 37232
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA, 37235
| | - Lyuan Xu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA, 37232
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA, 37235
| | - Kurt G Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA, 37232
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA, 37235
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA, 37232
| | - Soyoung Choi
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA, 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA, 37232
| | - Ran Chen
- School of Medicine, Meharry Medical College, Nashville, TN, USA, 37208
| | - Yikang Li
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA, 37232
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA, 37235
| | - Muwei Li
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA, 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA, 37232
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA, 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA, 37232
| | - Zhaohua Ding
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA, 37232
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA, 37235
| | - Adam W Anderson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA, 37232
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA, 37235
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA, 37232
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA, 37235
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA, 37232
| |
Collapse
|
6
|
Hyder F. Commentary to "Task activation results in regional 13C-lactate signal increase in the human brain". J Cereb Blood Flow Metab 2025:271678X251327935. [PMID: 40215405 PMCID: PMC11993549 DOI: 10.1177/0271678x251327935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/21/2025] [Accepted: 03/02/2025] [Indexed: 04/15/2025]
Abstract
Metabolism is fundamental to functional brain imaging. While functional MRI (fMRI) has greatly benefited neuroscience, 13C-MRS measures coupling between neuroenergetics and neurotransmission. However, a hyperpolarized 13C-MRI study in human brain shows increased 13C-lactate (i.e., cytosolic aerobic glycolysis) with no 13C-bicarbonate change (i.e., mitochondrial oxidation) within fMRI-defined activated areas. We discuss (dis)advantages of hyperpolarized vs. non-hyperpolarized 13C experiments and metabolic implications regarding the lactate increase: Is lactate a fuel for oligodendrocytes, astrocytes, or neurons? Is lactate a neuromodulator or a vasomodulator? Is lactate a byproduct of astrocytic glycogenolysis? Caveats aside, there is great enthusiasm for hyperpolarized 13C-fMRI.
Collapse
Affiliation(s)
- Fahmeed Hyder
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA
- Quantitative Neuroimaging with Magnetic Resonance (QNMR) Research Program, Yale University, New Haven, CT, USA
| |
Collapse
|
7
|
Waller TJ, Collins CA, Dus M. Pyruvate kinase deficiency links metabolic perturbations to neurodegeneration and axonal protection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.647282. [PMID: 40235982 PMCID: PMC11996495 DOI: 10.1101/2025.04.04.647282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Neurons rely on tightly regulated metabolic networks to sustain their high-energy demands, particularly through the coupling of glycolysis and oxidative phosphorylation. Here, we investigate the role of pyruvate kinase (PyK), a key glycolytic enzyme, in maintaining axonal and synaptic integrity in the Drosophila melanogaster neuromuscular system. Using genetic deficiencies in PyK, we show that disrupting glycolysis induces progressive synaptic and axonal degeneration and severe locomotor deficits. These effects require the conserved dual leucine zipper kinase (DLK), Jun N-terminal kinase (JNK), and activator protein 1 (AP-1) Fos transcription factor axonal damage signaling pathway and the SARM1 NADase enzyme, a key driver of axonal degeneration. As both DLK and SARM1 regulate degeneration of injured axons (Wallerian degeneration), we probed the effect of PyK loss on this process. Consistent with the idea that metabolic shifts may influence neuronal resilience in context-dependent ways, we find that pyk knockdown delays Wallerian degeneration following nerve injury, suggesting that reducing glycolytic flux can promote axon survival under stress conditions. This protective effect is partially blocked by DLK knockdown and fully abolished by SARM1 overexpression. Together, our findings help bridge metabolism and neurodegenerative signaling by demonstrating that glycolytic perturbations causally activate stress response pathways that dictate the balance between protection and degeneration depending on the system's state. These results provide a mechanistic framework for understanding metabolic contributions to neurodegeneration and highlight the potential of metabolism as a target for therapeutic strategies. Abstract Figure
Collapse
|
8
|
Liran M, Fischer I, Elboim M, Rahamim N, Gordon T, Urshansky N, Assaf Y, Barak B, Barak S. Long-Term Excessive Alcohol Consumption Enhances Myelination in the Mouse Nucleus Accumbens. J Neurosci 2025; 45:e0280242025. [PMID: 39909566 PMCID: PMC11968546 DOI: 10.1523/jneurosci.0280-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 12/15/2024] [Accepted: 01/08/2025] [Indexed: 02/07/2025] Open
Abstract
Chronic excessive alcohol (ethanol) consumption induces neuroadaptations in the brain's reward system, including biochemical and structural abnormalities in white matter that are implicated in addiction phenotypes. Here, we demonstrate that long-term (12 week) voluntary ethanol consumption enhances myelination in the nucleus accumbens (NAc) of female and male adult mice, as evidenced by molecular, ultrastructural, and cellular alterations. Specifically, transmission electron microscopy analysis showed increased myelin thickness in the NAc following long-term ethanol consumption, while axon diameter remained unaffected. These changes were paralleled by increased mRNA transcript levels of key transcription factors essential for oligodendrocyte (OL) differentiation, along with elevated expression of critical myelination-related genes. In addition, diffusion tensor imaging revealed increased connectivity between the NAc and the prefrontal cortex, reflected by a higher number of tracts connecting these regions. We also observed ethanol-induced effects on OL lineage cells, with a reduction in the number of mature OLs after 3 weeks of ethanol consumption, followed by an increase after 6 weeks. These findings suggest that ethanol alters OL development prior to increasing myelination in the NAc. Finally, chronic administration of the promyelination drug clemastine to mice with a history of heavy ethanol consumption further elevated ethanol intake and preference, suggesting that increased myelination may contribute to escalated drinking behavior. Together, these findings suggest that heavy ethanol consumption disrupts OL development, induces enhanced myelination in the NAc, and may drive further ethanol intake, reinforcing addictive behaviors.
Collapse
Affiliation(s)
- Mirit Liran
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Inbar Fischer
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - May Elboim
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nofar Rahamim
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tamar Gordon
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nataly Urshansky
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yaniv Assaf
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Boaz Barak
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Segev Barak
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
9
|
Alcover‐Sanchez B, Garcia‐Martin G, Paleo‐García V, Quintas A, Dopazo A, Gruart A, Delgado‐García JM, de la Villa P, Wandosell F, Pereira MP, Cubelos B. R-Ras1 and R-Ras2 regulate mature oligodendrocyte subpopulations. Glia 2025; 73:701-719. [PMID: 39558879 PMCID: PMC11845848 DOI: 10.1002/glia.24643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/20/2024]
Abstract
In the mammalian central nervous system, axonal myelination, executed by mature oligodendrocytes (MOLs), enables rapid neural transmission. Conversely, myelin deficiencies are hallmark features of multiple sclerosis, optic neuromyelitis, and some leukodystrophies. Recent studies have highlighted that MOLs are heterogeneous; however, how MOL subpopulations are specified and balanced in physiological settings is poorly understood. Previous works have demonstrated an essential role of the small GTPases R-Ras1 and R-Ras2 in the survival and myelination of oligodendrocytes. In this study, we aimed to determine how R-Ras1 and R-Ras2 contribute to the heterogeneity of MOL subpopulations. Our results evidence that R-Ras1 and R-Ras2 affect specification into the distinct subpopulations MOL1, MOL2, and MOL5/6, which in turn vary in their dependence of these GTPases. In R-Ras1 and/or R-Ras2 mutant mice, we observed an increase in the MOL1 subpopulation and a decrease in the MOL2 and MOL5/6 subpopulations. We identified R-Ras1 and R-Ras2 as key elements in balancing the heterogeneity of MOLs. Our results contribute to the understanding of the molecular mechanisms underlying the heterogeneity of MOLs and the myelination processes, which is crucial for innovating regenerative therapies for nervous system disorders.
Collapse
Affiliation(s)
- Berta Alcover‐Sanchez
- Centro de Biologia Molecular Severo Ochoa (CBM) CSICUniversidad Autonoma de MadridMadridSpain
| | - Gonzalo Garcia‐Martin
- Centro de Biologia Molecular Severo Ochoa (CBM) CSICUniversidad Autonoma de MadridMadridSpain
| | - Víctor Paleo‐García
- Departamento de Biología de SistemasUniversidad de AlcaláMadridSpain
- Grupo de Neurofisiología VisualInstituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)MadridSpain
| | - Ana Quintas
- Genomics UnitCentro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain
| | - Ana Dopazo
- Genomics UnitCentro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain
| | - Agnès Gruart
- Division of NeurosciencesPablo de Olavide UniversitySevilleSpain
| | | | - Pedro de la Villa
- Departamento de Biología de SistemasUniversidad de AlcaláMadridSpain
- Grupo de Neurofisiología VisualInstituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)MadridSpain
| | - Francisco Wandosell
- Centro de Biologia Molecular Severo Ochoa (CBM) CSICUniversidad Autonoma de MadridMadridSpain
- Alzheimer's Disease and Other Degenerative DementiasCentro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Marta P. Pereira
- Centro de Biologia Molecular Severo Ochoa (CBM) CSICUniversidad Autonoma de MadridMadridSpain
- Instituto Universitario de Biología MolecularUniversidad Autónoma de MadridMadridSpain
| | - Beatriz Cubelos
- Centro de Biologia Molecular Severo Ochoa (CBM) CSICUniversidad Autonoma de MadridMadridSpain
- Instituto Universitario de Biología MolecularUniversidad Autónoma de MadridMadridSpain
| |
Collapse
|
10
|
Huang LX, Sun T, Sun J, Wu ZM, Zhao YB, Li MY, Huo QY, Ling C, Zhang BY, Chen C, Wang H. The Role of Endothelial Cell Glycolysis in Schwann Cells and Peripheral Nerve Injury Repair: A Novel and Important Research Area. Neurochem Res 2025; 50:121. [PMID: 40100469 DOI: 10.1007/s11064-025-04374-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/20/2025]
Abstract
Endothelial cell glycolysis plays a novel and significant role in Schwann cells and peripheral nerve injury repair, which represents an emerging and important area of research. Glycolysis in endothelial cells is a conserved and tightly regulated biological process that provides essential energy (ATP) and intermediates by ultimately converting glucose into lactate. This metabolic pathway is crucial for maintaining the normal function of endothelial cells. During peripheral nerve injury repair, endothelial cell glycolysis influences the function of Schwann cells and the efficiency of nerve regeneration. Beyond glycolysis, endothelial cells also secrete various factors, including growth factors and extracellular vesicles, which further modulate Schwann cell activity and contribute to the repair process. This review will summarize the role of endothelial cell glycolysis in Schwann cell function and peripheral nerve injury repair, aiming to provide new insights for the development of novel strategies for peripheral nerve injury treatment.
Collapse
Affiliation(s)
- Li-Xin Huang
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Tao Sun
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Jun Sun
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Zhi-Min Wu
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Yi-Bo Zhao
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Ming-Yang Li
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Qing-Yi Huo
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Cong Ling
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Bao-Yu Zhang
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Chuan Chen
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
| | - Hui Wang
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
11
|
Onat F, Andersson M, Çarçak N. The Role of Glial Cells in the Pathophysiology of Epilepsy. Cells 2025; 14:94. [PMID: 39851521 PMCID: PMC11763453 DOI: 10.3390/cells14020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
Epilepsy is a chronic neurological disorder marked by recurrent seizures, significantly impacting individuals worldwide. Current treatments are often ineffective for a third of patients and can cause severe side effects, necessitating new therapeutic approaches. Glial cells, particularly astrocytes, microglia, and oligodendrocytes, are emerging as crucial targets in epilepsy management. Astrocytes regulate neuronal homeostasis, excitability, and synaptic plasticity, playing key roles in maintaining the blood-brain barrier (BBB) and mediating neuroinflammatory responses. Dysregulated astrocyte functions, such as reactive astrogliosis, can lead to abnormal neuronal activity and seizure generation. They release gliotransmitters, cytokines, and chemokines that may exacerbate or mitigate seizures. Microglia, the innate immune cells of the CNS, contribute to neuroinflammation, glutamate excitotoxicity, and the balance between excitatory and inhibitory neurotransmission, underscoring their dual role in seizure promotion and protection. Meanwhile, oligodendrocytes, primarily involved in myelination, also modulate axonal excitability and contribute to the neuron-glia network underlying seizure pathogenesis. Understanding the dynamic interactions of glial cells with neurons provides promising avenues for novel epilepsy therapies. Targeting these cells may lead to improved seizure control and better clinical outcomes, offering hope for patients with refractory epilepsy.
Collapse
Affiliation(s)
- Filiz Onat
- Department of Medical Pharmacology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34684 Istanbul, Türkiye
- Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, 34684 Istanbul, Türkiye
| | - My Andersson
- Department of Experimental Medicine, Faculty of Medicine, Lund University, 221 00 Lund, Sweden;
| | - Nihan Çarçak
- Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, 34684 Istanbul, Türkiye
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, 34452 Istanbul, Türkiye
| |
Collapse
|
12
|
Schuurmans IME, Mordelt A, de Witte LD. Orchestrating the neuroglial compartment: Ontogeny and developmental interaction of astrocytes, oligodendrocytes, and microglia. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:27-47. [PMID: 40122629 DOI: 10.1016/b978-0-443-19104-6.00011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Neuroglial cells serve as the master regulators of the central nervous system, making it imperative for glial development to be tightly regulated both spatially and temporally to ensure optimal brain function. In this chapter, we will discuss the origin and development of the three major glia cells such as astrocytes, oligodendrocytes, and microglia in the central nervous system. While much of our understanding of neuroglia development stems from studies using animal models, we will also explore recent insights into human glial development and potential differences from rodent models. Finally, the extensive crosstalk between glia cells will be highlighted, discussing how interactions among astrocyte, oligodendrocyte, and microglial influence their respective developmental pathways.
Collapse
Affiliation(s)
- Imke M E Schuurmans
- Department of Pediatrics, Radboud University Medical Center, Amalia Children's Hospital, Nijmegen, The Netherlands; Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Annika Mordelt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Lot D de Witte
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands; Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
13
|
Fernandes MGF, Pernin F, Antel JP, Kennedy TE. From BBB to PPP: Bioenergetic requirements and challenges for oligodendrocytes in health and disease. J Neurochem 2025; 169:e16219. [PMID: 39253904 PMCID: PMC11657931 DOI: 10.1111/jnc.16219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/24/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024]
Abstract
Mature myelinating oligodendrocytes, the cells that produce the myelin sheath that insulates axons in the central nervous system, have distinct energetic and metabolic requirements compared to neurons. Neurons require substantial energy to execute action potentials, while the energy needs of oligodendrocytes are directed toward building the lipid-rich components of myelin and supporting neuronal metabolism by transferring glycolytic products to axons as additional fuel. The utilization of energy metabolites in the brain parenchyma is tightly regulated to meet the needs of different cell types. Disruption of the supply of metabolites can lead to stress and oligodendrocyte injury, contributing to various neurological disorders, including some demyelinating diseases. Understanding the physiological properties, structures, and mechanisms involved in oligodendrocyte energy metabolism, as well as the relationship between oligodendrocytes and neighboring cells, is crucial to investigate the underlying pathophysiology caused by metabolic impairment in these disorders. In this review, we describe the particular physiological properties of oligodendrocyte energy metabolism and the response of oligodendrocytes to metabolic stress. We delineate the relationship between oligodendrocytes and other cells in the context of the neurovascular unit, and the regulation of metabolite supply according to energetic needs. We focus on the specific bioenergetic requirements of oligodendrocytes and address the disruption of metabolic energy in demyelinating diseases. We encourage further studies to increase understanding of the significance of metabolic stress on oligodendrocyte injury, to support the development of novel therapeutic approaches for the treatment of demyelinating diseases.
Collapse
Affiliation(s)
- Milton Guilherme Forestieri Fernandes
- Neuroimmunological Diseases and Glia Biology Research Group, Department of Neurology and Neurosurgery, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
| | - Florian Pernin
- Neuroimmunological Diseases and Glia Biology Research Group, Department of Neurology and Neurosurgery, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
| | - Jack P. Antel
- Neuroimmunological Diseases and Glia Biology Research Group, Department of Neurology and Neurosurgery, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
| | - Timothy E. Kennedy
- Neuroimmunological Diseases and Glia Biology Research Group, Department of Neurology and Neurosurgery, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
14
|
Yanai H, Adachi H, Hakoshima M, Katsuyama H. Pathology and Treatments of Alzheimer's Disease Based on Considering Changes in Brain Energy Metabolism Due to Type 2 Diabetes. Molecules 2024; 29:5936. [PMID: 39770025 PMCID: PMC11677283 DOI: 10.3390/molecules29245936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/22/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with cognitive dysfunction, memory decline, and behavioral disturbance, and it is pathologically characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. Although various hypotheses have been proposed to explain the pathogenesis of AD, including the amyloid beta hypothesis, oxidative stress hypothesis, and abnormal phosphorylation of tau proteins, the exact pathogenic mechanisms underlying AD remain largely undefined. Furthermore, effective curative treatments are very limited. Epidemiologic studies provide convincing evidence for a significant association between type 2 diabetes and AD. Here, we showed energy metabolism using glucose, lactate, ketone bodies, and lipids as energy substrates in a normal brain, and changes in such energy metabolism due to type 2 diabetes. We also showed the influences of such altered energy metabolism due to type 2 diabetes on the pathology of AD. Furthermore, we comprehensively searched for risk factors related with type 2 diabetes for AD and showed possible therapeutic interventions based on considering risk factors and altered brain energy metabolism due to type 2 diabetes for the development of AD.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan; (H.A.); (M.H.); (H.K.)
| | | | | | | |
Collapse
|
15
|
Bao X, Zhou B, Wen M. Effects of Arginine Vasopressin on Hippocampal Myelination in an Autism Rat Model: A RNA-seq and Mendelian Randomization Analysis. FRONT BIOSCI-LANDMRK 2024; 29:394. [PMID: 39614450 DOI: 10.31083/j.fbl2911394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND To explore the therapeutic role of arginine vasopressin (AVP) and its possible mechanisms in autism. METHODS Mid-trimester pregnant rats treated with valproate on embryonic day 12.5 and their offspring were selected as autism model. The autism rats were randomly assigned to autism group and AVP treatment group that given AVP by inhalation per day from postnatal days 21 to 42. The changes in social behavior and the hippocampus transcriptome were compared, and the hub genes were confirmed by quantitative real-time polymerase chain reaction (qPCR) and Mendelian randomization (MR). RESULTS 403 genes were found to be differentially expressed in the autism model, with the majority of these genes being involved in oligodendrocyte development and myelination. Only 11 genes associated with myelination exhibited statistically significant alterations following AVP treatment when compared to the autism group. Gene set enrichment, expression patterns, and weighted gene co-expression network analysis (WGCNA) analysis consistently indicated that the biological processes of oligodendrocyte development and myelination were markedly enriched in the autism group and exhibited improvement following treatment. The variation trend of various nerve cells demonstrated a notable increase in the proportion of oligodendrocytes and oligodendrocyte precursor cells in the autism group, which subsequently exhibited a significant decline following treatment. Five hub genes (MBP, PLIP, CNP, GFAP, and TAOK1) were verified by qPCR. Finally, MR studies have confirmed a causal relationship between hippocampal myelination-related gene expression and the risk of autism. CONCLUSIONS AVP could markedly enhance social interaction abilities in the autism rat model, possibly due to the significantly improved hippocampus oligodendrocytes development and myelination.
Collapse
Affiliation(s)
- Xingxing Bao
- Department of Pediatrics, Wuhan Third Hospital (Tongren Hospital of Wuhan University), 430064 Wuhan, Hubei, China
| | - Bo Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 550004 Guiyang, Guizhou, China
- College of Pharmacy, Guizhou Medical University, 550004 Guiyang, Guizhou, China
| | - Min Wen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 550004 Guiyang, Guizhou, China
- College of Pharmacy, Guizhou Medical University, 550004 Guiyang, Guizhou, China
- College of Basic Medical, Guizhou Medical University, 550004 Guiyang, Guizhou, China
| |
Collapse
|
16
|
Fischer I, Shohat S, Leichtmann-Bardoogo Y, Nayak R, Wiener G, Rosh I, Shemen A, Tripathi U, Rokach M, Bar E, Hussein Y, Castro AC, Chen G, Soffer A, Schokoroy-Trangle S, Elad-Sfadia G, Assaf Y, Schroeder A, Monteiro P, Stern S, Maoz BM, Barak B. Shank3 mutation impairs glutamate signaling and myelination in ASD mouse model and human iPSC-derived OPCs. SCIENCE ADVANCES 2024; 10:eadl4573. [PMID: 39392881 PMCID: PMC11468907 DOI: 10.1126/sciadv.adl4573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 09/06/2024] [Indexed: 10/13/2024]
Abstract
Autism spectrum disorder (ASD) is characterized by social and neurocognitive impairments, with mutations of the SHANK3 gene being prominent in patients with monogenic ASD. Using the InsG3680 mouse model with a Shank3 mutation seen in humans, we revealed an unknown role for Shank3 in postsynaptic oligodendrocyte (OL) features, similar to its role in neurons. This was shown by impaired molecular and physiological glutamatergic traits of InsG3680-derived primary OL cultures. In vivo, InsG3680 mice exhibit significant reductions in the expression of key myelination-related transcripts and proteins, along with deficits in myelin ultrastructure, white matter, axonal conductivity, and motor skills. Last, we observed significant impairments, with clinical relevance, in induced pluripotent stem cell-derived OLs from a patient with the InsG3680 mutation. Together, our study provides insight into Shank3's role in OLs and reveals a mechanism of the crucial connection of myelination to ASD pathology.
Collapse
Affiliation(s)
- Inbar Fischer
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Sophie Shohat
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
- The School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yael Leichtmann-Bardoogo
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Ritu Nayak
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Gal Wiener
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Idan Rosh
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Aviram Shemen
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Utkarsh Tripathi
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - May Rokach
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ela Bar
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
- The School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yara Hussein
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Ana Carolina Castro
- Department of Biomedicine–Experimental Biology Unit, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Gal Chen
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa, Israel
- The Interdisciplinary Program for Biotechnology, Technion, Haifa, Israel
| | - Adi Soffer
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Sari Schokoroy-Trangle
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Galit Elad-Sfadia
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yaniv Assaf
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- The Strauss Center for Neuroimaging, Tel Aviv University, Tel Aviv, Israel
| | - Avi Schroeder
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa, Israel
| | - Patricia Monteiro
- Department of Biomedicine–Experimental Biology Unit, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Ben M. Maoz
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- Sagol Center for Regenerative Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Boaz Barak
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
- The School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
17
|
Simons M, Gibson EM, Nave KA. Oligodendrocytes: Myelination, Plasticity, and Axonal Support. Cold Spring Harb Perspect Biol 2024; 16:a041359. [PMID: 38621824 PMCID: PMC11444305 DOI: 10.1101/cshperspect.a041359] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The myelination of axons has evolved to enable fast and efficient transduction of electrical signals in the vertebrate nervous system. Acting as an electric insulator, the myelin sheath is a multilamellar membrane structure around axonal segments generated by the spiral wrapping and subsequent compaction of oligodendroglial plasma membranes. These oligodendrocytes are metabolically active and remain functionally connected to the subjacent axon via cytoplasmic-rich myelinic channels for movement of metabolites and macromolecules to and from the internodal periaxonal space under the myelin sheath. Increasing evidence indicates that oligodendrocyte numbers, specifically in the forebrain, and myelin as a dynamic cellular compartment can both respond to physiological demands, collectively referred to as adaptive myelination. This review summarizes our current understanding of how myelin is generated, how its function is dynamically regulated, and how oligodendrocytes support the long-term integrity of myelinated axons.
Collapse
Affiliation(s)
- Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich 80802, Germany
- German Center for Neurodegenerative Diseases, Munich Cluster of Systems Neurology (SyNergy), Institute for Stroke and Dementia Research, Munich 81377, Germany
| | - Erin M Gibson
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford 94305, California, USA
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37075, Germany
| |
Collapse
|
18
|
Zhang C, Qiu M, Fu H. Oligodendrocytes in central nervous system diseases: the effect of cytokine regulation. Neural Regen Res 2024; 19:2132-2143. [PMID: 38488548 PMCID: PMC11034588 DOI: 10.4103/1673-5374.392854] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/08/2023] [Accepted: 12/06/2023] [Indexed: 04/24/2024] Open
Abstract
Cytokines including tumor necrosis factor, interleukins, interferons, and chemokines are abundantly produced in various diseases. As pleiotropic factors, cytokines are involved in nearly every aspect of cellular functions such as migration, survival, proliferation, and differentiation. Oligodendrocytes are the myelin-forming cells in the central nervous system and play critical roles in the conduction of action potentials, supply of metabolic components for axons, and other functions. Emerging evidence suggests that both oligodendrocytes and oligodendrocyte precursor cells are vulnerable to cytokines released under pathological conditions. This review mainly summarizes the effects of cytokines on oligodendrocyte lineage cells in central nervous system diseases. A comprehensive understanding of the effects of cytokines on oligodendrocyte lineage cells contributes to our understanding of central nervous system diseases and offers insights into treatment strategies.
Collapse
Affiliation(s)
- Chengfu Zhang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Mengsheng Qiu
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environment Sciences, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Hui Fu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
19
|
Crivelli SM, Gaifullina A, Chatton JY. Exploring the role of mitochondrial uncoupling protein 4 in brain metabolism: implications for Alzheimer's disease. Front Neurosci 2024; 18:1483708. [PMID: 39381683 PMCID: PMC11459774 DOI: 10.3389/fnins.2024.1483708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024] Open
Abstract
The brain's high demand for energy necessitates tightly regulated metabolic pathways to sustain physiological activity. Glucose, the primary energy substrate, undergoes complex metabolic transformations, with mitochondria playing a central role in ATP production via oxidative phosphorylation. Dysregulation of this metabolic interplay is implicated in Alzheimer's disease (AD), where compromised glucose metabolism, oxidative stress, and mitochondrial dysfunction contribute to disease progression. This review explores the intricate bioenergetic crosstalk between astrocytes and neurons, highlighting the function of mitochondrial uncoupling proteins (UCPs), particularly UCP4, as important regulators of brain metabolism and neuronal function. Predominantly expressed in the brain, UCP4 reduces the membrane potential in the inner mitochondrial membrane, thereby potentially decreasing the generation of reactive oxygen species. Furthermore, UCP4 mitigates mitochondrial calcium overload and sustains cellular ATP levels through a metabolic shift from mitochondrial respiration to glycolysis. Interestingly, the levels of the neuronal UCPs, UCP2, 4 and 5 are significantly reduced in AD brain tissue and a specific UCP4 variant has been associated to an increased risk of developing AD. Few studies modulating the expression of UCP4 in astrocytes or neurons have highlighted protective effects against neurodegeneration and aging, suggesting that pharmacological strategies aimed at activating UCPs, such as protonophoric uncouplers, hold promise for therapeutic interventions in AD and other neurodegenerative diseases. Despite significant advances, our understanding of UCPs in brain metabolism remains in its early stages, emphasizing the need for further research to unravel their biological functions in the brain and their therapeutic potential.
Collapse
Affiliation(s)
| | | | - Jean-Yves Chatton
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
20
|
Emamnejad R, Pagnin M, Petratos S. The iron maiden: Oligodendroglial metabolic dysfunction in multiple sclerosis and mitochondrial signaling. Neurosci Biobehav Rev 2024; 164:105788. [PMID: 38950685 DOI: 10.1016/j.neubiorev.2024.105788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune disease, governed by oligodendrocyte (OL) dystrophy and central nervous system (CNS) demyelination manifesting variable neurological impairments. Mitochondrial mechanisms may drive myelin biogenesis maintaining the axo-glial unit according to dynamic requisite demands imposed by the axons they ensheath. The promotion of OL maturation and myelination by actively transporting thyroid hormone (TH) into the CNS and thereby facilitating key transcriptional and metabolic pathways that regulate myelin biogenesis is fundamental to sustain the profound energy demands at each axo-glial interface. Deficits in regulatory functions exerted through TH for these physiological roles to be orchestrated by mature OLs, can occur in genetic and acquired myelin disorders, whereby mitochondrial efficiency and eventual dysfunction can lead to profound oligodendrocytopathy, demyelination and neurodegenerative sequelae. TH-dependent transcriptional and metabolic pathways can be dysregulated during acute and chronic MS lesion activity depriving OLs from critical acetyl-CoA biochemical mechanisms governing myelin lipid biosynthesis and at the same time altering the generation of iron metabolism that may drive ferroptotic mechanisms, leading to advancing neurodegeneration.
Collapse
Affiliation(s)
- Rahimeh Emamnejad
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia.
| | - Maurice Pagnin
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia.
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia.
| |
Collapse
|
21
|
Kompier N, Semtner M, Walter S, Kakabadze N, Steinhäuser C, Nolte C, Kettenmann H. Membrane properties and coupling of macroglia in the optic nerve. CURRENT RESEARCH IN NEUROBIOLOGY 2024; 7:100137. [PMID: 39253555 PMCID: PMC11382002 DOI: 10.1016/j.crneur.2024.100137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/18/2024] [Accepted: 08/10/2024] [Indexed: 09/11/2024] Open
Abstract
We established a longitudinal acute slice preparation of transgenic mouse optic nerve to characterize membrane properties and coupling of glial cells by patch-clamp and dye-filling, complemented by immunohistochemistry. Unlike in cortex or hippocampus, the majority of EGFP + cells in optic nerve of the hGFAP-EGFP transgenic mouse, a tool to identify astrocytes, were characterized by time and voltage dependent K+-currents including A-type K+-currents, properties previously described for NG2 glia. Indeed, the majority of transgene expressing cells in optic nerve were immunopositive for NG2 proteoglycan, whereas only a minority show GFAP immunoreactivity. Similar physiological properties were seen in YFP + cells from NG2-YFP transgenic mice, indicating that in optic nerve the transgene of hGFAP-EGFP animals is expressed by NG2 glia instead of astrocytes. Using Cx43kiECFP transgenic mice as another astrocyte-indicator revealed that astrocytes had passive membrane currents. Dye-filling showed that hGFAP-EGFP+ cells in optic nerve were coupled to none or few neighboring cells while hGFAP-EGFP+ cells in the cortex form large networks. Similarly, dye-filling of NG2-YFP+ and Cx43-CFP+ cells in optic nerve revealed small networks. Our work shows that identification of astrocytes in optic nerve requires distinct approaches, that the cells express membrane current patterns distinct from cortex and that they form small networks.
Collapse
Affiliation(s)
- Nine Kompier
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Dep. of Cellular Neurosciences, 13125, Berlin, Germany
| | - Marcus Semtner
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Dep. of Cellular Neurosciences, 13125, Berlin, Germany
- Charité Universitätsmedizin, Experimental Ophtalmology, Campus Virchow, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Sophie Walter
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Dep. of Cellular Neurosciences, 13125, Berlin, Germany
- Free University of Berlin, Institute for Biology, Virchowweg 6, 10117 Berlin
| | - Natali Kakabadze
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Dep. of Cellular Neurosciences, 13125, Berlin, Germany
- Department of Pathology, NYU Langone Medical Center, 550 First Avenue, NY, 10016, New York, USA
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Christiane Nolte
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Dep. of Cellular Neurosciences, 13125, Berlin, Germany
| | - Helmut Kettenmann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Dep. of Cellular Neurosciences, 13125, Berlin, Germany
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
22
|
Nguyen PT, Makowiecki K, Lewis TS, Fortune AJ, Clutterbuck M, Reale LA, Taylor BV, Rodger J, Cullen CL, Young KM. Low intensity repetitive transcranial magnetic stimulation enhances remyelination by newborn and surviving oligodendrocytes in the cuprizone model of toxic demyelination. Cell Mol Life Sci 2024; 81:346. [PMID: 39134808 PMCID: PMC11335270 DOI: 10.1007/s00018-024-05391-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024]
Abstract
In people with multiple sclerosis (MS), newborn and surviving oligodendrocytes (OLs) can contribute to remyelination, however, current therapies are unable to enhance or sustain endogenous repair. Low intensity repetitive transcranial magnetic stimulation (LI-rTMS), delivered as an intermittent theta burst stimulation (iTBS), increases the survival and maturation of newborn OLs in the healthy adult mouse cortex, but it is unclear whether LI-rTMS can promote remyelination. To examine this possibility, we fluorescently labelled oligodendrocyte progenitor cells (OPCs; Pdgfrα-CreER transgenic mice) or mature OLs (Plp-CreER transgenic mice) in the adult mouse brain and traced the fate of each cell population over time. Daily sessions of iTBS (600 pulses; 120 mT), delivered during cuprizone (CPZ) feeding, did not alter new or pre-existing OL survival but increased the number of myelin internodes elaborated by new OLs in the primary motor cortex (M1). This resulted in each new M1 OL producing ~ 471 µm more myelin. When LI-rTMS was delivered after CPZ withdrawal (during remyelination), it significantly increased the length of the internodes elaborated by new M1 and callosal OLs, increased the number of surviving OLs that supported internodes in the corpus callosum (CC), and increased the proportion of axons that were myelinated. The ability of LI-rTMS to modify cortical neuronal activity and the behaviour of new and surviving OLs, suggests that it may be a suitable adjunct intervention to enhance remyelination in people with MS.
Collapse
Affiliation(s)
- Phuong Tram Nguyen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Kalina Makowiecki
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Thomas S Lewis
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Alastair J Fortune
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Mackenzie Clutterbuck
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Laura A Reale
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Bruce V Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Jennifer Rodger
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Carlie L Cullen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- Mater Research Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.
| |
Collapse
|
23
|
Arbatskiy M, Balandin D, Churov A, Varachev V, Nikolaeva E, Mitrofanov A, Bekyashev A, Tkacheva O, Susova O, Nasedkina T. Intratumoral Cell Heterogeneity in Patient-Derived Glioblastoma Cell Lines Revealed by Single-Cell RNA-Sequencing. Int J Mol Sci 2024; 25:8472. [PMID: 39126040 PMCID: PMC11313325 DOI: 10.3390/ijms25158472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Glioblastoma cell lines derived from different patients are widely used in tumor biology research and drug screening. A key feature of glioblastoma is the high level of inter- and intratumor heterogeneity that accounts for treatment resistance. Our aim was to investigate whether intratumor heterogeneity is maintained in cell models. Single-cell RNA sequencing was used to investigate the cellular composition of a tumor sample and six patient-derived glioblastoma cell lines. Three cell lines preserved the mutational profile of the original tumor, whereas three others differed from their precursors. Copy-number variation analysis showed significantly rearranged genomes in all the cell lines and in the tumor sample. The tumor had the most complex cell composition, including cancer cells and microenvironmental cells. Cell lines with a conserved genome had less diverse cellularity, and during cultivation, a relative increase in the stem-cell-derived progenitors was noticed. Cell lines with genomes different from those of the primary tumors mainly contained neural progenitor cells and microenvironmental cells. The establishment of cell lines without the driver mutations that are intrinsic to the original tumors may be related to the selection of clones or cell populations during cultivation. Thus, patient-derived glioblastoma cell lines differ substantially in their cellular profile, which should be taken into account in translational studies.
Collapse
Affiliation(s)
- Mikhail Arbatskiy
- Russian Clinical Research Center of Gerontology, Pirogov Russian National Research Medical University of the Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia (A.C.); (O.T.)
| | - Dmitriy Balandin
- Russian Clinical Research Center of Gerontology, Pirogov Russian National Research Medical University of the Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia (A.C.); (O.T.)
| | - Alexey Churov
- Russian Clinical Research Center of Gerontology, Pirogov Russian National Research Medical University of the Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia (A.C.); (O.T.)
| | - Vyacheslav Varachev
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (T.N.)
| | - Eugenia Nikolaeva
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 115522 Moscow, Russia; (E.N.); (A.M.); (A.B.); (O.S.)
| | - Alexei Mitrofanov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 115522 Moscow, Russia; (E.N.); (A.M.); (A.B.); (O.S.)
| | - Ali Bekyashev
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 115522 Moscow, Russia; (E.N.); (A.M.); (A.B.); (O.S.)
| | - Olga Tkacheva
- Russian Clinical Research Center of Gerontology, Pirogov Russian National Research Medical University of the Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia (A.C.); (O.T.)
| | - Olga Susova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 115522 Moscow, Russia; (E.N.); (A.M.); (A.B.); (O.S.)
| | - Tatiana Nasedkina
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (T.N.)
| |
Collapse
|
24
|
Di Bella DJ, Domínguez-Iturza N, Brown JR, Arlotta P. Making Ramón y Cajal proud: Development of cell identity and diversity in the cerebral cortex. Neuron 2024; 112:2091-2111. [PMID: 38754415 PMCID: PMC11771131 DOI: 10.1016/j.neuron.2024.04.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/28/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Since the beautiful images of Santiago Ramón y Cajal provided a first glimpse into the immense diversity and complexity of cell types found in the cerebral cortex, neuroscience has been challenged and inspired to understand how these diverse cells are generated and how they interact with each other to orchestrate the development of this remarkable tissue. Some fundamental questions drive the field's quest to understand cortical development: what are the mechanistic principles that govern the emergence of neuronal diversity? How do extrinsic and intrinsic signals integrate with physical forces and activity to shape cell identity? How do the diverse populations of neurons and glia influence each other during development to guarantee proper integration and function? The advent of powerful new technologies to profile and perturb cortical development at unprecedented resolution and across a variety of modalities has offered a new opportunity to integrate past knowledge with brand new data. Here, we review some of this progress using cortical excitatory projection neurons as a system to draw out general principles of cell diversification and the role of cell-cell interactions during cortical development.
Collapse
Affiliation(s)
- Daniela J Di Bella
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Nuria Domínguez-Iturza
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Juliana R Brown
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
25
|
Barbaresi P, Fabri M, Lorenzi T, Sagrati A, Morroni M. Intrinsic organization of the corpus callosum. Front Physiol 2024; 15:1393000. [PMID: 39035452 PMCID: PMC11259024 DOI: 10.3389/fphys.2024.1393000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/16/2024] [Indexed: 07/23/2024] Open
Abstract
The corpus callosum-the largest commissural fiber system connecting the two cerebral hemispheres-is considered essential for bilateral sensory integration and higher cognitive functions. Most studies exploring the corpus callosum have examined either the anatomical, physiological, and neurochemical organization of callosal projections or the functional and/or behavioral aspects of the callosal connections after complete/partial callosotomy or callosal lesion. There are no works that address the intrinsic organization of the corpus callosum. We review the existing information on the activities that take place in the commissure in three sections: I) the topographical and neurochemical organization of the intracallosal fibers, II) the role of glia in the corpus callosum, and III) the role of the intracallosal neurons.
Collapse
Affiliation(s)
- Paolo Barbaresi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, Ancona, Italy
| | - Mara Fabri
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Teresa Lorenzi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, Ancona, Italy
| | - Andrea Sagrati
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Manrico Morroni
- Electron Microscopy Unit, Azienda Ospedaliero-Universitaria, Ancona, Italy
| |
Collapse
|
26
|
Radulescu CI, Ferrari Bardile C, Garcia-Miralles M, Sidik H, Yusof NABM, Pouladi MA. Environmental Deprivation Effects on Myelin Ultrastructure in Huntington Disease and Wildtype Mice. Mol Neurobiol 2024; 61:4278-4288. [PMID: 38079108 DOI: 10.1007/s12035-023-03799-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/12/2023] [Indexed: 07/11/2024]
Abstract
Environmental deprivation can have deleterious effects on adaptive myelination and oligodendroglia function. Early stage Huntington disease (HD) is characterised by white-matter myelin abnormalities in both humans and animal models. However, whether deprived environments exacerbate myelin-related pathological features of HD is not clearly understood. Here, we investigated the impact of deprivation and social isolation on ultrastructural features of myelin in the corpus callosum of the YAC128 mouse model of HD and wildtype (WT) mice using transmission electron microscopy. HD pathology on its own leads to increased representation of altered myelin features, such as thinner sheaths and compromised morphology. Interestingly, deprivation mirrors these effects in WT mice but does not greatly exacerbate the already aberrant myelin in HD mice, indicating a disease-related floor effect in the latter animals. These novel findings indicate that environmental deprivation causes abnormalities in myelin ultrastructure in the otherwise healthy corpus callosum of wild-type mice but has distinct effects on HD mice, where compromised myelin integrity is manifest from early stages of the disease.
Collapse
Affiliation(s)
- Carola I Radulescu
- Agency for Science, Technology and Research (A*STAR), Translational Laboratory in Genetic Medicine (TLGM), Singapore, 138648, Singapore
- UK Dementia Research Institute (DRI), Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Costanza Ferrari Bardile
- Agency for Science, Technology and Research (A*STAR), Translational Laboratory in Genetic Medicine (TLGM), Singapore, 138648, Singapore
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, British Columbia Children's Hospital Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, V5Z 4H4, Canada
| | - Marta Garcia-Miralles
- Agency for Science, Technology and Research (A*STAR), Translational Laboratory in Genetic Medicine (TLGM), Singapore, 138648, Singapore
| | - Harwin Sidik
- Agency for Science, Technology and Research (A*STAR), Translational Laboratory in Genetic Medicine (TLGM), Singapore, 138648, Singapore
| | - Nur Amirah Binte Mohammad Yusof
- Agency for Science, Technology and Research (A*STAR), Translational Laboratory in Genetic Medicine (TLGM), Singapore, 138648, Singapore
| | - Mahmoud A Pouladi
- Agency for Science, Technology and Research (A*STAR), Translational Laboratory in Genetic Medicine (TLGM), Singapore, 138648, Singapore.
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, British Columbia Children's Hospital Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, V5Z 4H4, Canada.
| |
Collapse
|
27
|
Song J, Saglam A, Zuchero JB, Buch VP. Translating Molecular Approaches to Oligodendrocyte-Mediated Neurological Circuit Modulation. Brain Sci 2024; 14:648. [PMID: 39061389 PMCID: PMC11275066 DOI: 10.3390/brainsci14070648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The central nervous system (CNS) exhibits remarkable adaptability throughout life, enabled by intricate interactions between neurons and glial cells, in particular, oligodendrocytes (OLs) and oligodendrocyte precursor cells (OPCs). This adaptability is pivotal for learning and memory, with OLs and OPCs playing a crucial role in neural circuit development, synaptic modulation, and myelination dynamics. Myelination by OLs not only supports axonal conduction but also undergoes adaptive modifications in response to neuronal activity, which is vital for cognitive processing and memory functions. This review discusses how these cellular interactions and myelin dynamics are implicated in various neurocircuit diseases and disorders such as epilepsy, gliomas, and psychiatric conditions, focusing on how maladaptive changes contribute to disease pathology and influence clinical outcomes. It also covers the potential for new diagnostics and therapeutic approaches, including pharmacological strategies and emerging biomarkers in oligodendrocyte functions and myelination processes. The evidence supports a fundamental role for myelin plasticity and oligodendrocyte functionality in synchronizing neural activity and high-level cognitive functions, offering promising avenues for targeted interventions in CNS disorders.
Collapse
Affiliation(s)
- Jingwei Song
- Medical Scientist Training Program, School of Medicine, Stanford University, Stanford, CA 94305, USA;
| | - Aybike Saglam
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; (A.S.); (J.B.Z.)
| | - J. Bradley Zuchero
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; (A.S.); (J.B.Z.)
| | - Vivek P. Buch
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; (A.S.); (J.B.Z.)
| |
Collapse
|
28
|
Tang Y, Wu X, Li J, Li Y, Xu X, Li G, Zhang P, Qin C, Wu LJ, Tang Z, Tian DS. The Emerging Role of Microglial Hv1 as a Target for Immunomodulation in Myelin Repair. Aging Dis 2024; 15:1176-1203. [PMID: 38029392 PMCID: PMC11081154 DOI: 10.14336/ad.2023.1107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
In the central nervous system (CNS), the myelin sheath ensures efficient interconnection between neurons and contributes to the regulation of the proper function of neuronal networks. The maintenance of myelin and the well-organized subtle process of myelin plasticity requires cooperation among myelin-forming cells, glial cells, and neural networks. The process of cooperation is fragile, and the balance is highly susceptible to disruption by microenvironment influences. Reactive microglia play a critical and complicated role in the demyelination and remyelination process. Recent studies have shown that the voltage-gated proton channel Hv1 is selectively expressed in microglia in CNS, which regulates intracellular pH and is involved in the production of reactive oxygen species, underlying multifaceted roles in maintaining microglia function. This paper begins by examining the molecular mechanisms of demyelination and emphasizes the crucial role of the microenvironment in demyelination. It focuses specifically on the role of Hv1 in myelin repair and its therapeutic potential in CNS demyelinating diseases.
Collapse
Affiliation(s)
- Yingxin Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiarui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuanwei Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaoxiao Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gaigai Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
29
|
Lee H, Park W, An G, Park J, Lim W, Song G. Hexaconazole induces developmental toxicities via apoptosis, inflammation, and alterations of Akt and MAPK signaling cascades. Comp Biochem Physiol C Toxicol Pharmacol 2024; 279:109872. [PMID: 38423198 DOI: 10.1016/j.cbpc.2024.109872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/16/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Hexaconazole is a highly effective triazole fungicide that is frequently applied in various countries to elevate crop productivity. Given its long half-life and high water solubility, this fungicide is frequently detected in the environment, including water sources. Moreover, hexaconazole exerts hazardous effects on nontarget organisms. However, little is known about the toxic effects of hexaconazole on animal development. Thus, this study aimed to investigate the developmental toxicity of hexaconazole to zebrafish, a valuable animal model for toxicological studies, and elucidate the underlying mechanisms. Results showed that hexaconazole affected the viability and hatching rate of zebrafish at 96 h postfertilization. Hexaconazole-treated zebrafish showed phenotypic defects, such as reduced size of head and eyes and enlarged pericardiac edema. Moreover, hexaconazole induced apoptosis, DNA fragmentation, and inflammation in developing zebrafish. Various organ defects, including neurotoxicity, cardiovascular toxicity, and hepatotoxicity, were observed in transgenic zebrafish models olig2:dsRed, fli1:eGFP, and l-fabp:dsRed. Furthermore, hexaconazole treatment altered the Akt and MAPK signaling pathways, which possibly triggered the organ defects and other toxic mechanisms. This study demonstrated the developmental toxicity of hexaconazole to zebrafish and elucidated the underlying mechanisms.
Collapse
Affiliation(s)
- Hojun Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Wonhyoung Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junho Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
30
|
Rokach M, Portioli C, Brahmachari S, Estevão BM, Decuzzi P, Barak B. Tackling myelin deficits in neurodevelopmental disorders using drug delivery systems. Adv Drug Deliv Rev 2024; 207:115218. [PMID: 38403255 DOI: 10.1016/j.addr.2024.115218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/27/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Interest in myelin and its roles in almost all brain functions has been greatly increasing in recent years, leading to countless new studies on myelination, as a dominant process in the development of cognitive functions. Here, we explore the unique role myelin plays in the central nervous system and specifically discuss the results of altered myelination in neurodevelopmental disorders. We present parallel developmental trajectories involving myelination that correlate with the onset of cognitive impairment in neurodevelopmental disorders and discuss the key challenges in the treatment of these chronic disorders. Recent developments in drug repurposing and nano/micro particle-based therapies are reviewed as a possible pathway to circumvent some of the main hurdles associated with early intervention, including patient's adherence and compliance, side effects, relapse, and faster route to possible treatment of these disorders. The strategy of drug encapsulation overcomes drug solubility and metabolism, with the possibility of drug targeting to a specific compartment, reducing side effects upon systemic administration.
Collapse
Affiliation(s)
- May Rokach
- Sagol School of Neuroscience, Tel-Aviv University, Israel
| | - Corinne Portioli
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Sayanti Brahmachari
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Bianca Martins Estevão
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Boaz Barak
- Sagol School of Neuroscience, Tel-Aviv University, Israel; Faculty of Social Sciences, The School of Psychological Sciences, Tel-Aviv University, Israel.
| |
Collapse
|
31
|
Zheng C, Xiao X, Zhao W, Yang Z, Guo S. Functional brain network controllability dysfunction in Alzheimer's disease and its relationship with cognition and gene expression profiling. J Neural Eng 2024; 21:026018. [PMID: 38502960 DOI: 10.1088/1741-2552/ad357e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/19/2024] [Indexed: 03/21/2024]
Abstract
Objective. In recent studies, network control theory has been applied to clarify transitions between brain states, emphasizing the significance of assessing the controllability of brain networks in facilitating transitions from one state to another. Despite these advancements, the potential alterations in functional network controllability associated with Alzheimer's disease (AD), along with the underlying genetic mechanisms responsible for these alterations, remain unclear.Approach. We conducted a comparative analysis of functional network controllability measures between patients with AD (n= 64) and matched normal controls (NCs,n= 64). We investigated the association between altered controllability measures and cognitive function in AD. Additionally, we conducted correlation analyses in conjunction with the Allen Human Brain Atlas to identify genes whose expression was correlated with changes in functional network controllability in AD, followed by a set of analyses on the functional features of the identified genes.Main results. In comparison to NCs, patients with AD exhibited a reduction in average controllability, predominantly within the default mode network (DMN) (63% of parcellations), and an increase in average controllability within the limbic (LIM) network (33% of parcellations). Conversely, AD patients displayed a decrease in modal controllability within the LIM network (27% of parcellations) and an increase in modal controllability within the DMN (80% of parcellations). In AD patients, a significant positive correlation was found between the average controllability of the salience network and the mini-mental state examination scores. The changes in controllability measures exhibited spatial correlation with transcriptome profiles. The significant genes identified exhibited enrichment in neurobiologically relevant pathways and demonstrated preferential expression in various tissues, cell types, and developmental periods.Significance. Our findings have the potential to offer new insights into the genetic mechanisms underlying alterations in the controllability of functional networks in AD. Additionally, these results offered perspectives for a deeper understanding of the pathogenesis and the development of therapeutic strategies for AD.
Collapse
Affiliation(s)
- Chuchu Zheng
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, People's Republic of China
- Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, People's Republic of China
| | - Xiaoxia Xiao
- School of Informatics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China
| | - Wei Zhao
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, People's Republic of China
- Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, People's Republic of China
| | - Zeyu Yang
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, People's Republic of China
- Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, People's Republic of China
| | - Shuixia Guo
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, People's Republic of China
- Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, People's Republic of China
| |
Collapse
|
32
|
Looser ZJ, Faik Z, Ravotto L, Zanker HS, Jung RB, Werner HB, Ruhwedel T, Möbius W, Bergles DE, Barros LF, Nave KA, Weber B, Saab AS. Oligodendrocyte-axon metabolic coupling is mediated by extracellular K + and maintains axonal health. Nat Neurosci 2024; 27:433-448. [PMID: 38267524 PMCID: PMC10917689 DOI: 10.1038/s41593-023-01558-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/13/2023] [Indexed: 01/26/2024]
Abstract
The integrity of myelinated axons relies on homeostatic support from oligodendrocytes (OLs). To determine how OLs detect axonal spiking and how rapid axon-OL metabolic coupling is regulated in the white matter, we studied activity-dependent calcium (Ca2+) and metabolite fluxes in the mouse optic nerve. We show that fast axonal spiking triggers Ca2+ signaling and glycolysis in OLs. OLs detect axonal activity through increases in extracellular potassium (K+) concentrations and activation of Kir4.1 channels, thereby regulating metabolite supply to axons. Both pharmacological inhibition and OL-specific inactivation of Kir4.1 reduce the activity-induced axonal lactate surge. Mice lacking oligodendroglial Kir4.1 exhibit lower resting lactate levels and altered glucose metabolism in axons. These early deficits in axonal energy metabolism are associated with late-onset axonopathy. Our findings reveal that OLs detect fast axonal spiking through K+ signaling, making acute metabolic coupling possible and adjusting the axon-OL metabolic unit to promote axonal health.
Collapse
Affiliation(s)
- Zoe J Looser
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Zainab Faik
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Luca Ravotto
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Henri S Zanker
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Ramona B Jung
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Dwight E Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - L Felipe Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Aiman S Saab
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
33
|
Li Q, Liu S, Zheng T, Li M, Qi B, Zhou L, Liu B, Ma D, Zhao C, Chen Z. Grafted human-induced pluripotent stem cells-derived oligodendrocyte progenitor cells combined with human umbilical vein endothelial cells contribute to functional recovery following spinal cord injury. Stem Cell Res Ther 2024; 15:35. [PMID: 38321505 PMCID: PMC10848469 DOI: 10.1186/s13287-024-03651-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a devastating disease that causes extensive damage to oligodendrocytes and neurons leading to demyelination and axonal degeneration. In this study, we co-transplanted cell grafts containing oligodendrocyte progenitor cells (OPCs) derived from human-induced pluripotent stem cells (iPSCs) combined with human umbilical vein endothelial cells (HUVECs), which were reported to promote OPCs survival and migration, into rat contusion models to promote functional recovery after SCI. METHODS OPCs were derived from iPSCs and identified by immunofluorescence at different time points. Functional assays in vitro were performed to evaluate the effect of HUVECs on the proliferation, migration, and survival of OPCs by co-culture and migration assay, as well as on the neuronal axonal growth. A combination of OPCs and HUVECs was transplanted into the rat contusive model. Upon 8 weeks, immunofluorescence staining was performed to test the safety of transplanted cells and to observe the neuronal repairment, myelination, and neural circuit reconstruction at the injured area; also, the functional recovery was assessed by Basso, Beattie, and Bresnahan open-field scale, Ladder climb, SEP, and MEP. Furthermore, the effect of HUVECs on grafts was also determined in vivo. RESULTS Data showed that HUVECs promote the proliferation, migration, and survival of OPCs both in vitro and in vivo. Furthermore, 8 weeks upon engraftment, the rats with OPCs and HUVECs co-transplantation noticeably facilitated remyelination, enhanced functional connection between the grafts and the host and promoted functional recovery. In addition, compared with the OPCs-alone transplantation, the co-transplantation generated more sensory neurons at the lesion border and significantly improved the sensory functional recovery. CONCLUSIONS Our study demonstrates that transplantation of OPCs combined with HUVECs significantly enhances both motor and sensory functional recovery after SCI. No significance was observed between OPCs combined with HUVECs group and OPCs-alone group in motor function recovery, while the sensory function recovery was significantly promoted in OPCs combined with HUVECs groups compared with the other two groups. These findings provide novel insights into the field of SCI research.
Collapse
Affiliation(s)
- Qian Li
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Sumei Liu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Tianqi Zheng
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Mo Li
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Boling Qi
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Liping Zhou
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Bochao Liu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Dan Ma
- Translational Medicine Research Group (TMRG), Aston Medical School, Aston University, Birmingham, B4 7ET, UK
| | - Chao Zhao
- Department of Clinical Neurosciences, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Zhiguo Chen
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China.
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China.
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China.
| |
Collapse
|
34
|
Jammoul M, Jammoul D, Wang KK, Kobeissy F, Depalma RG. Traumatic Brain Injury and Opioids: Twin Plagues of the Twenty-First Century. Biol Psychiatry 2024; 95:6-14. [PMID: 37217015 DOI: 10.1016/j.biopsych.2023.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/22/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023]
Abstract
Traumatic brain injury (TBI) and opioid use disorder (OUD) comprise twin plagues causing considerable morbidity and mortality worldwide. As interactions between TBI and OUD are to our knowledge uncharted, we review the possible mechanisms by which TBI may stimulate the development of OUD and discuss the interaction or crosstalk between these two processes. Central nervous system damage due to TBI appears to drive adverse effects of subsequent OUD and opioid use/misuse affecting several molecular pathways. Pain, a neurological consequence of TBI, is a risk factor that increases the likelihood of opioid use/misuse after TBI. Other comorbidities including depression, anxiety, posttraumatic stress disorder, and sleep disturbances are also associated with deleterious outcomes. We examine the hypothesis that a TBI "first hit" induces a neuroinflammatory process involving microglial priming, which, on a second hit related to opioid exposure, exacerbates neuroinflammation, modifies synaptic plasticity, and spreads tau aggregates to promote neurodegeneration. As TBI also impairs myelin repair by oligodendrocytes, it may reduce or degrade white matter integrity in the reward circuit resulting in behavioral changes. Along with approaches focused on specific patient symptoms, understanding the CNS effects following TBI offers a promise of improved management for individuals with OUD.
Collapse
Affiliation(s)
- Maya Jammoul
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Dareen Jammoul
- Anesthesiology Department, Lebanese American University Medical Center-Rizk Hospital, Beirut, Lebanon
| | - Kevin K Wang
- Center for Neurotrauma, MultiOmics & Biomarkers, Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia; Department of Emergency Medicine, University of Florida, Gainesville, Florida.
| | - Firas Kobeissy
- Center for Neurotrauma, MultiOmics & Biomarkers, Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia; Department of Emergency Medicine, University of Florida, Gainesville, Florida; Faculty of Medicine, Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon.
| | - Ralph G Depalma
- Office of Research and Development, Department of Veterans Affairs, Washington, DC; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
35
|
Taylor KR, Monje M. Neuron-oligodendroglial interactions in health and malignant disease. Nat Rev Neurosci 2023; 24:733-746. [PMID: 37857838 PMCID: PMC10859969 DOI: 10.1038/s41583-023-00744-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 10/21/2023]
Abstract
Experience sculpts brain structure and function. Activity-dependent modulation of the myelinated infrastructure of the nervous system has emerged as a dimension of adaptive change during childhood development and in adulthood. Myelination is a richly dynamic process, with neuronal activity regulating oligodendrocyte precursor cell proliferation, oligodendrogenesis and myelin structural changes in some axonal subtypes and in some regions of the nervous system. This myelin plasticity and consequent changes to conduction velocity and circuit dynamics can powerfully influence neurological functions, including learning and memory. Conversely, disruption of the mechanisms mediating adaptive myelination can contribute to cognitive impairment. The robust effects of neuronal activity on normal oligodendroglial precursor cells, a putative cellular origin for many forms of glioma, indicates that dysregulated or 'hijacked' mechanisms of myelin plasticity could similarly promote growth in this devastating group of brain cancers. Indeed, neuronal activity promotes the pathogenesis of many forms of glioma in preclinical models through activity-regulated paracrine factors and direct neuron-to-glioma synapses. This synaptic integration of glioma into neural circuits is central to tumour growth and invasion. Thus, not only do neuron-oligodendroglial interactions modulate neural circuit structure and function in the healthy brain, but neuron-glioma interactions also have important roles in the pathogenesis of glial malignancies.
Collapse
Affiliation(s)
- Kathryn R Taylor
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
36
|
Lao Y, Li Z, Bai Y, Li W, Wang J, Wang Y, Li Q, Dong Z. Glial Cells of the Central Nervous System: A Potential Target in Chronic Prostatitis/Chronic Pelvic Pain Syndrome. Pain Res Manag 2023; 2023:2061632. [PMID: 38023826 PMCID: PMC10661872 DOI: 10.1155/2023/2061632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/24/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023]
Abstract
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is one of the most common diseases of the male urological system while the etiology and treatment of CP/CPPS remain a thorny issue. Cumulative research suggested a potentially important role of glial cells in CP/CPPS. This narrative review retrospected literature and grasped the research process about glial cells and CP/CPPS. Three types of glial cells showed a crucial connection with general pain and psychosocial symptoms. Microglia might also be involved in lower urinary tract symptoms. Only microglia and astrocytes have been studied in the animal model of CP/CPPS. Activated microglia and reactive astrocytes were found to be involved in both pain and psychosocial symptoms of CP/CPPS. The possible mechanism might be to mediate the production of some inflammatory mediators and their interaction with neurons. Glial cells provide a new insight to understand the cause of complex symptoms of CP/CPPS and might become a novel target to develop new treatment options. However, the activation and action mechanism of glial cells in CP/CPPS needs to be further explored.
Collapse
Affiliation(s)
- Yongfeng Lao
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Zewen Li
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Yanan Bai
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Weijia Li
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jian Wang
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Yanan Wang
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Qingchao Li
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhilong Dong
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
37
|
Zeng K, Yu X, Wei Z, Wu Y, Wang J, Liu R, Li Y, Wang X. Single-nucleus transcriptome profiling of prefrontal cortex induced by chronic methamphetamine treatment. Gen Psychiatr 2023; 36:e101057. [PMID: 37936947 PMCID: PMC10626793 DOI: 10.1136/gpsych-2023-101057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 10/01/2023] [Indexed: 11/09/2023] Open
Abstract
Background Methamphetamine (METH) addiction causes a huge burden on society. The prefrontal cortex (PFC), associated with emotion and cognitive behaviours, is also involved in addiction neurocircuitry. Although bulk RNA sequencing has shown METH-induced gene alterations in the mouse PFC, the impact on different cell types remains unknown. Aims To clarify the effects of METH treatment on different cell types of the PFC and the potential pathways involved in METH-related disorders. Methods We performed single-nucleus RNA sequencing (snRNA-seq) to examine the transcriptomes of 20 465 nuclei isolated from the PFC of chronic METH-treated and control mice. Main cell types and differentially expressed genes (DEGs) were identified and confirmed by RNA fluorescence in situ hybridization(FISH). Results Six main cell types were identified depending on the single-cell nucleus sequencing; of particular interest were the mature oligodendrocytes in the PFC. The DEGs of mature oligodendrocytes were enriched in the myelin sheath, adenosine triphosphate (ATP) metabolic process, mitochondrial function and components, and so on. The messenger RNA levels of Aldoc and Atp5l (FISH) and the protein level of the mitochondrial membrane pore subunit TOM40 (immunofluorescence) decreased in the mature oligodendrocytes. Fast blue staining and transmission electron microscopy image indicated myelin damage, and the myelin thickness decreased in METH brains. Conclusions snRNA-seq reveals altered transcriptomes of different cell types in mouse PFC induced by chronic METH treatment, underscoring potential relationships with psychiatric disorders.
Collapse
Affiliation(s)
- Kuan Zeng
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Xuan Yu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, China
| | - Zhen Wei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, China
- Department of Pathology, Maternal and Child Hospital of Hubei Province, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, China
| | - Yong Wu
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Jianzhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, China
| | - Yi Li
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
38
|
Shimizu T, Nayar SG, Swire M, Jiang Y, Grist M, Kaller M, Sampaio Baptista C, Bannerman DM, Johansen-Berg H, Ogasawara K, Tohyama K, Li H, Richardson WD. Oligodendrocyte dynamics dictate cognitive performance outcomes of working memory training in mice. Nat Commun 2023; 14:6499. [PMID: 37838794 PMCID: PMC10576739 DOI: 10.1038/s41467-023-42293-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023] Open
Abstract
Previous work has shown that motor skill learning stimulates and requires generation of myelinating oligodendrocytes (OLs) from their precursor cells (OLPs) in the brains of adult mice. In the present study we ask whether OL production is also required for non-motor learning and cognition, using T-maze and radial-arm-maze tasks that tax spatial working memory. We find that maze training stimulates OLP proliferation and OL production in the medial prefrontal cortex (mPFC), anterior corpus callosum (genu), dorsal thalamus and hippocampal formation of adult male mice; myelin sheath formation is also stimulated in the genu. Genetic blockade of OL differentiation and neo-myelination in Myrf conditional-knockout mice strongly impairs training-induced improvements in maze performance. We find a strong positive correlation between the performance of individual wild type mice and the scale of OLP proliferation and OL generation during training, but not with the number or intensity of c-Fos+ neurons in their mPFC, underscoring the important role played by OL lineage cells in cognitive processing.
Collapse
Affiliation(s)
- Takahiro Shimizu
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK
| | - Stuart G Nayar
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK
| | - Matthew Swire
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK
| | - Yi Jiang
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK
| | - Matthew Grist
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK
| | - Malte Kaller
- Wellcome Centre for Integrative Neuroimaging, Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Cassandra Sampaio Baptista
- Wellcome Centre for Integrative Neuroimaging, Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- Institute of Neuroscience and Psychology, University of Glasgow, 62 Hillhead Street, G12 8QB, Glasgow, UK
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3TA, UK
| | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging, Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Katsutoshi Ogasawara
- Technical Support Center for Life Science Research, Iwate Medical University, 1-1-1 Idaidori, Yahabacho, Shiwa-gun, Morioka, Iwate, 028-3694, Japan
| | - Koujiro Tohyama
- Department of Physiology, Iwate Medical University, 1-1-1 Idaidori, Yahabacho, Shiwa-gun, Morioka, Iwate, 028-3694, Japan
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK
| | - William D Richardson
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
39
|
Chen K, Cambi F, Kozai TDY. Pro-myelinating clemastine administration improves recording performance of chronically implanted microelectrodes and nearby neuronal health. Biomaterials 2023; 301:122210. [PMID: 37413842 PMCID: PMC10528716 DOI: 10.1016/j.biomaterials.2023.122210] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
Intracortical microelectrodes have become a useful tool in neuroprosthetic applications in the clinic and to understand neurological disorders in basic neurosciences. Many of these brain-machine interface technology applications require successful long-term implantation with high stability and sensitivity. However, the intrinsic tissue reaction caused by implantation remains a major failure mechanism causing loss of recorded signal quality over time. Oligodendrocytes remain an underappreciated intervention target to improve chronic recording performance. These cells can accelerate action potential propagation and provides direct metabolic support for neuronal health and functionality. However, implantation injury causes oligodendrocyte degeneration and leads to progressive demyelination in surrounding brain tissue. Previous work highlighted that healthy oligodendrocytes are necessary for greater electrophysiological recording performance and the prevention of neuronal silencing around implanted microelectrodes over the chronic implantation period. Thus, we hypothesize that enhancing oligodendrocyte activity with a pharmaceutical drug, Clemastine, will prevent the chronic decline of microelectrode recording performance. Electrophysiological evaluation showed that the promyelination Clemastine treatment significantly elevated the signal detectability and quality, rescued the loss of multi-unit activity, and increased functional interlaminar connectivity over 16-weeks of implantation. Additionally, post-mortem immunohistochemistry showed that increased oligodendrocyte density and myelination coincided with increased survival of both excitatory and inhibitory neurons near the implant. Overall, we showed a positive relationship between enhanced oligodendrocyte activity and neuronal health and functionality near the chronically implanted microelectrode. This study shows that therapeutic strategy that enhance oligodendrocyte activity is effective for integrating the functional device interface with brain tissue over chronic implantation period.
Collapse
Affiliation(s)
- Keying Chen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Franca Cambi
- Veterans Administration Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
40
|
Lu W, Wen J. H 2S-RhoA/ROCK Pathway and Glial Cells in Axonal Remyelination After Ischemic Stroke. Mol Neurobiol 2023; 60:5493-5504. [PMID: 37322287 DOI: 10.1007/s12035-023-03422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/03/2023] [Indexed: 06/17/2023]
Abstract
Ischemic stroke is one of the main reasons of disability and death. Stroke-induced functional deficits are mainly due to the secondary degeneration of the white matter characterized by axonal demyelination and injury of axon-glial integrity. Enhancement of the axonal regeneration and remyelination could promote the neural functional recovery. However, cerebral ischemia-induced activation of RhoA/Rho kinase (ROCK) pathway plays a crucial and harmful role in the process of axonal recovery and regeneration. Inhibition of this pathway could promote the axonal regeneration and remyelination. In addition, hydrogen sulfide (H2S) has the significant neuroprotective role during the recovery of ischemic stroke via inhibiting the inflammatory response and oxidative stress, regulating astrocyte function, promoting the differentiation of endogenous oligodendrocyte precursor cells (OPCs) to mature oligodendrocyte. Among all of these effects, promoting the formation of mature oligodendrocyte is a crucial part of axonal regeneration and remyelination. Furthermore, numerous studies have uncovered the crosstalk between astrocytes and oligodendrocyte, microglial cells and oligodendrocyte in the axonal remyelination following ischemic stroke. The purpose of this review was to discuss the relationship among H2S, RhoA/ROCK pathway, astrocytes, and microglial cells in the axonal remyelination following ischemic stroke to reveal new strategies for preventing and treating this devastating disease.
Collapse
Affiliation(s)
- Weizhuo Lu
- Medical Branch, Hefei Technology College, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
41
|
Tsesmelis K, Maity‐Kumar G, Croner D, Sprissler J, Tsesmelis M, Hein T, Baumann B, Wirth T. Accelerated aging in mice with astrocytic redox imbalance as a consequence of SOD2 deletion. Aging Cell 2023; 22:e13911. [PMID: 37609868 PMCID: PMC10497807 DOI: 10.1111/acel.13911] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/08/2023] [Accepted: 05/31/2023] [Indexed: 08/24/2023] Open
Abstract
Aging of the central nervous system (CNS) leads to motoric and cognitive decline and increases the probability for neurodegenerative disease development. Astrocytes fulfill central homeostatic functions in the CNS including regulation of immune responses and metabolic support of neurons and oligodendrocytes. In this study, we investigated the effect of redox imbalance in astrocytes by using a conditional astrocyte-specific SOD2-deficient mouse model (SOD2ako ) and analyzed these animals at different stages of their life. SOD2ako mice did not exhibit any overt phenotype within the first postnatal weeks. However, already as young adults, they displayed progressive motoric impairments. Moreover, as these mice grew older, they exhibited signs of a progeroid phenotype and early death. Histological analysis in moribund SOD2ako mice revealed the presence of age-related brain alterations, neuroinflammation, neuronal damage and myelin impairment in brain and spinal cord. Additionally, transcriptome analysis of primary astrocytes revealed that SOD2 deletion triggered a hypometabolic state and promoted polarization toward A1-neurotoxic status, possibly underlying the neuronal and myelin deficits. Conclusively, our study identifies maintenance of ROS homeostasis in astrocytes as a critical prerequisite for physiological CNS aging.
Collapse
Affiliation(s)
| | - Gandhari Maity‐Kumar
- Institute of Physiological ChemistryUniversity of UlmUlmGermany
- Institute for Diabetes and ObesityHelmholtz Diabetes Center at Helmholtz Zentrum MünchenNeuherbergGermany
| | - Dana Croner
- Institute of Physiological ChemistryUniversity of UlmUlmGermany
| | - Jasmin Sprissler
- Institute of Physiological ChemistryUniversity of UlmUlmGermany
- Department of Pediatrics and Adolescent MedicineUlm University Medical CenterUlmGermany
| | | | - Tabea Hein
- Institute of Physiological ChemistryUniversity of UlmUlmGermany
| | - Bernd Baumann
- Institute of Physiological ChemistryUniversity of UlmUlmGermany
| | - Thomas Wirth
- Institute of Physiological ChemistryUniversity of UlmUlmGermany
| |
Collapse
|
42
|
Deng Q, Wu C, Liu TCY, Duan R, Yang L. Exogenous lactate administration: A potential novel therapeutic approach for neonatal hypoxia-ischemia. Exp Neurol 2023; 367:114450. [PMID: 37268250 DOI: 10.1016/j.expneurol.2023.114450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is the primary reason for neonatal mortality and prolonged disablement. Currently, hypothermia is the only approved clinical treatment available for HIE. However, hypothermia's limited therapeutic efficacy and adverse effects suggest an urgent need to advance our knowledge of its molecular pathogenesis and develop novel therapies. The leading cause of HIE is impaired cerebral blood flow and oxygen deprivation-initiated primary and secondary energy failure. Lactate was traditionally regarded as a marker of energy failure or a waste product of anaerobic glycolysis. Recently, the beneficial aspects of lactate as supplementary energy for neurons have been demonstrated. Under the conditions of HI, lactate supports various functions of neuronal cells, including learning and memory formation, motor coordination, and somatosensory. Furthermore, lactate contributes to the regeneration of blood vessels and has shown its beneficial effects on the immune system. This review first introduces the hypoxic or ischemic events-induced fundamental pathophysiological changes in HIE and then discusses the potential neuroprotective properties of lactate for the treatment and prevention of HIE. Finally, we discuss the possible protective mechanisms of lactate in the context of the pathological features of perinatal HIE. We conclude that exogenous and endogenous lactate exert neuroprotective effects in HIE. Lactate administration may be a potential approach to treating HIE injury.
Collapse
Affiliation(s)
- Qianting Deng
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, GD 510006, China
| | - Chongyun Wu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, GD 510006, China
| | - Timon Cheng-Yi Liu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, GD 510006, China
| | - Rui Duan
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, GD 510006, China.
| | - Luodan Yang
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, GD 510006, China.
| |
Collapse
|
43
|
Huang S, Ren C, Luo Y, Ding Y, Ji X, Li S. New insights into the roles of oligodendrocytes regulation in ischemic stroke recovery. Neurobiol Dis 2023:106200. [PMID: 37321419 DOI: 10.1016/j.nbd.2023.106200] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/20/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023] Open
Abstract
Oligodendrocytes (OLs), the myelin-forming cells of the central nervous system, are integral to axonal integrity and function. Hypoxia-ischemia episodes can cause severe damage to these vulnerable cells through excitotoxicity, oxidative stress, inflammation, and mitochondrial dysfunction, leading to axonal dystrophy, neuronal dysfunction, and neurological impairments. OLs damage can result in demyelination and myelination disorders, severely impacting axonal function, structure, metabolism, and survival. Adult-onset stroke, periventricular leukomalacia, and post-stroke cognitive impairment primarily target OLs, making them a critical therapeutic target. Therapeutic strategies targeting OLs, myelin, and their receptors should be given more emphasis to attenuate ischemia injury and establish functional recovery after stroke. This review summarizes recent advances on the function of OLs in ischemic injury, as well as the present and emerging principles that serve as the foundation for protective strategies against OL deaths.
Collapse
Affiliation(s)
- Shuangfeng Huang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China; Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Changhong Ren
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yumin Luo
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China; Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University, Detroit, MI, USA
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Sijie Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China; Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
44
|
Li S, Sheng ZH. Oligodendrocyte-derived transcellular signaling regulates axonal energy metabolism. Curr Opin Neurobiol 2023; 80:102722. [PMID: 37028201 PMCID: PMC10225329 DOI: 10.1016/j.conb.2023.102722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 04/08/2023]
Abstract
The unique morphology and functionality of central nervous system (CNS) neurons necessitate specialized mechanisms to maintain energy metabolism throughout long axons and extensive terminals. Oligodendrocytes (OLs) enwrap CNS axons with myelin sheaths in a multilamellar fashion. Apart from their well-established function in action potential propagation, OLs also provide intercellular metabolic support to axons by transferring energy metabolites and delivering exosomes consisting of proteins, lipids, and RNAs. OL-derived metabolic support is crucial for the maintenance of axonal integrity; its dysfunction has emerged as an important player in neurological disorders that are associated with axonal energy deficits and degeneration. In this review, we discuss recent advances in how these transcellular signaling pathways maintain axonal energy metabolism in health and neurological disorders.
Collapse
Affiliation(s)
- Sunan Li
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA. https://twitter.com/@sunan_li
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA.
| |
Collapse
|
45
|
Lee H, An G, Park J, Lim W, Song G. Molinate induces organ defects by promoting apoptosis, inflammation, and endoplasmic reticulum stress during the developmental stage of zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163768. [PMID: 37146827 DOI: 10.1016/j.scitotenv.2023.163768] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/16/2023] [Accepted: 04/23/2023] [Indexed: 05/07/2023]
Abstract
Molinate is classified as a thiocarbamate herbicide and is mainly used in paddy fields to culture rice. However, the toxic effects of molinate and the associated mechanisms in the process of development have not been completely elucidated. Therefore, in the present study, we demonstrated that molinate reduced the viability of zebrafish larvae and the probability of successful hatching using zebrafish (Danio rerio), one of the remarkable in vivo models for testing the toxicity of chemicals. In addition, molinate treatment triggered the occurrence of apoptosis, inflammation, and endoplasmic reticulum (ER) stress response in zebrafish larvae. Furthermore, we identified that an abnormal cardiovascular phenotype through wild type zebrafish, neuronal defects through transgenic olig2:dsRed zebrafish, and developmental toxicity in the liver through transgenic lfabp:dsRed zebrafish. Collectively, these results provide evidence of the hazardous effects of molinate on the developmental stage of non-target organisms by elucidating the toxic mechanisms of molinate in developing zebrafish.
Collapse
Affiliation(s)
- Hojun Lee
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
46
|
Zorec R, Vardjan N. Adrenergic regulation of astroglial aerobic glycolysis and lipid metabolism: Towards a noradrenergic hypothesis of neurodegeneration. Neurobiol Dis 2023; 182:106132. [PMID: 37094775 DOI: 10.1016/j.nbd.2023.106132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/26/2023] Open
Abstract
Ageing is a key factor in the development of cognitive decline and dementia, an increasing and challenging problem of the modern world. The most commonly diagnosed cognitive decline is related to Alzheimer's disease (AD), the pathophysiology of which is poorly understood. Several hypotheses have been proposed. The cholinergic hypothesis is the oldest, however, recently the noradrenergic system has been considered to have a role as well. The aim of this review is to provide evidence that supports the view that an impaired noradrenergic system is causally linked to AD. Although dementia is associated with neurodegeneration and loss of neurons, this likely develops due to a primary failure of homeostatic cells, astrocytes, abundant and heterogeneous neuroglial cells in the central nervous system (CNS). The many functions that astrocytes provide to maintain the viability of neural networks include the control of ionic balance, neurotransmitter turnover, synaptic connectivity and energy balance. This latter function is regulated by noradrenaline, released from the axon varicosities of neurons arising from the locus coeruleus (LC), the primary site of noradrenaline release in the CNS. The demise of the LC is linked to AD, whereby a hypometabolic CNS state is observed clinically. This is likely due to impaired release of noradrenaline in the AD brain during states of arousal, attention and awareness. These functions controlled by the LC are needed for learning and memory formation and require activation of the energy metabolism. In this review, we address first the process of neurodegeneration and cognitive decline, highlighting the function of astrocytes. Cholinergic and/or noradrenergic deficits lead to impaired astroglial function. Then, we focus on adrenergic control of astroglial aerobic glycolysis and lipid droplet metabolism, which play a protective role but also promote neurodegeneration under some circumstances, supporting the noradrenergic hypothesis of cognitive decline. We conclude that targeting astroglial metabolism, glycolysis and/or mitochondrial processes may lead to important new developments in the future when searching for medicines to prevent or even halt cognitive decline.
Collapse
Affiliation(s)
- Robert Zorec
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia.
| | - Nina Vardjan
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia.
| |
Collapse
|
47
|
Graciani AL, Gutierre MU, Coppi AA, Arida RM, Gutierre RC. MYELIN, AGING, AND PHYSICAL EXERCISE. Neurobiol Aging 2023; 127:70-81. [PMID: 37116408 DOI: 10.1016/j.neurobiolaging.2023.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
Myelin sheath is a structure in neurons fabricated by oligodendrocytes and Schwann cells responsible for increasing the efficiency of neural synapsis, impulse transmission, and providing metabolic support to the axon. They present morpho-functional changes during health aging as deformities of the sheath and its fragmentation, causing an increased load on microglial phagocytosis, with Alzheimer's disease aggravating. Physical exercise has been studied as a possible protective agent for the nervous system, offering benefits to neuroplasticity. In this regard, studies in animal models for Alzheimer's and depression reported the efficiency of physical exercise in protecting against myelin degeneration. A reduction of myelin damage during aging has also been observed in healthy humans. Physical activity promotes oligodendrocyte proliferation and myelin preservation during old age, although some controversies remain. In this review, we will address how effective physical exercise can be as a protective agent of the myelin sheath against the effects of aging in physiological and pathological conditions.
Collapse
|
48
|
Chen K, Cambi F, Kozai TDY. Pro-myelinating Clemastine administration improves recording performance of chronically implanted microelectrodes and nearby neuronal health. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526463. [PMID: 36778360 PMCID: PMC9915570 DOI: 10.1101/2023.01.31.526463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Intracortical microelectrodes have become a useful tool in neuroprosthetic applications in the clinic and to understand neurological disorders in basic neurosciences. Many of these brain-machine interface technology applications require successful long-term implantation with high stability and sensitivity. However, the intrinsic tissue reaction caused by implantation remains a major failure mechanism causing loss of recorded signal quality over time. Oligodendrocytes remain an underappreciated intervention target to improve chronic recording performance. These cells can accelerate action potential propagation and provides direct metabolic support for neuronal health and functionality. However, implantation injury causes oligodendrocyte degeneration and leads to progressive demyelination in surrounding brain tissue. Previous work highlighted that healthy oligodendrocytes are necessary for greater electrophysiological recording performance and the prevention of neuronal silencing around implanted microelectrodes over chronic implantation. Thus, we hypothesize that enhancing oligodendrocyte activity with a pharmaceutical drug, Clemastine, will prevent the chronic decline of microelectrode recording performance. Electrophysiological evaluation showed that the promyelination Clemastine treatment significantly elevated the signal detectability and quality, rescued the loss of multi-unit activity, and increased functional interlaminar connectivity over 16-weeks of implantation. Additionally, post-mortem immunohistochemistry showed that increased oligodendrocyte density and myelination coincided with increased survival of both excitatory and inhibitory neurons near the implant. Overall, we showed a positive relationship between enhanced oligodendrocyte activity and neuronal health and functionality near the chronically implanted microelectrode. This study shows that therapeutic strategy that enhance oligodendrocyte activity is effective for integrating the functional device interface with brain tissue over chronic implantation period. Abstract Figure
Collapse
|
49
|
Myelinodegeneration vs. Neurodegeneration in MS Progressive Forms. Int J Mol Sci 2023; 24:ijms24021596. [PMID: 36675111 PMCID: PMC9864662 DOI: 10.3390/ijms24021596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 01/15/2023] Open
Abstract
In MS patients with a progressive form of the disease, the slow deterioration of neurological functions is thought to result from a combination of neuronal cell death, axonal damages and synaptic dysfunctions [...].
Collapse
|
50
|
Gorlova A, Svirin E, Pavlov D, Cespuglio R, Proshin A, Schroeter CA, Lesch KP, Strekalova T. Understanding the Role of Oxidative Stress, Neuroinflammation and Abnormal Myelination in Excessive Aggression Associated with Depression: Recent Input from Mechanistic Studies. Int J Mol Sci 2023; 24:915. [PMID: 36674429 PMCID: PMC9861430 DOI: 10.3390/ijms24020915] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Aggression and deficient cognitive control problems are widespread in psychiatric disorders, including major depressive disorder (MDD). These abnormalities are known to contribute significantly to the accompanying functional impairment and the global burden of disease. Progress in the development of targeted treatments of excessive aggression and accompanying symptoms has been limited, and there exists a major unmet need to develop more efficacious treatments for depressed patients. Due to the complex nature and the clinical heterogeneity of MDD and the lack of precise knowledge regarding its pathophysiology, effective management is challenging. Nonetheless, the aetiology and pathophysiology of MDD has been the subject of extensive research and there is a vast body of the latest literature that points to new mechanisms for this disorder. Here, we overview the key mechanisms, which include neuroinflammation, oxidative stress, insulin receptor signalling and abnormal myelination. We discuss the hypotheses that have been proposed to unify these processes, as many of these pathways are integrated for the neurobiology of MDD. We also describe the current translational approaches in modelling depression, including the recent advances in stress models of MDD, and emerging novel therapies, including novel approaches to management of excessive aggression, such as anti-diabetic drugs, antioxidant treatment and herbal compositions.
Collapse
Affiliation(s)
- Anna Gorlova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Evgeniy Svirin
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
- Neuroplast BV, 6222 NK Maastricht, The Netherlands
| | - Dmitrii Pavlov
- Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Raymond Cespuglio
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Centre de Recherche en Neurosciences de Lyon (CRNL), 69500 Bron, France
| | - Andrey Proshin
- P.K. Anokhin Research Institute of Normal Physiology, 125315 Moscow, Russia
| | - Careen A. Schroeter
- Preventive and Environmental Medicine, Kastanienhof Clinic, 50858 Köln-Junkersdorf, Germany
| | - Klaus-Peter Lesch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|