1
|
Madden D, Stephens TM, Scott J, O’Neal Swann C, Prather K, Hoffmeister J, Ding L, Dunn IF, Conner AK, Yuan H. Functional connectivity of default mode network in non-hospitalized patients with post-COVID cognitive complaints. Front Neurosci 2025; 19:1576393. [PMID: 40276574 PMCID: PMC12018477 DOI: 10.3389/fnins.2025.1576393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/26/2025] [Indexed: 04/26/2025] Open
Abstract
Introduction Neurologic impairment is common in patients with acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. While patients with severe COVID have a higher prevalence of neurologic symptoms, as many as one in five patients with mild COVID may also be affected, exhibiting impaired memory as well as other cognitive dysfunctions. Methods To characterize the effect of COVID on the brain, the current study recruited a group of adults with post-COVID cognitive complaints but with mild, non-hospitalized cases. They were then evaluated through formal neuropsychological testing and underwent functional MRI of the brain. The participants in our study performed nearly as expected for cognitively intact individuals. Additionally, we characterized the functional connectivity of the default mode network (DMN), which is known for cognitive functions including memory as well as the attention functions involved in normal aging and degenerative diseases. Results Along with the retention of functional connectivity in the DMN, our results found the DMN to be associated with neurocognitive performance through region-of-interest and whole-brain analyses. The connectivity between key nodes of the DMN was positively correlated with cognitive scores (r = 0.51, p = 0.02), with higher performers exhibiting higher DMN connectivity. Discussion Our findings provide neuroimaging evidence of the functional connectivity of brain networks among individuals experiencing cognitive deficits beyond the recovery of mild COVID. These imaging outcomes indicate expected functional trends in the brain, furthering understanding and guidance of the DMN and neurocognitive deficits in patients recovering from COVID.
Collapse
Affiliation(s)
- Derek Madden
- Stephenson School of Biomedical Engineering, Gallogly College of Engineering, The University of Oklahoma, Norman, OK, United States
| | - Tressie M. Stephens
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jim Scott
- Department of Psychiatry and Behavioral Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Christen O’Neal Swann
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Kiana Prather
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jordan Hoffmeister
- Department of Psychiatry and Behavioral Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Lei Ding
- Stephenson School of Biomedical Engineering, Gallogly College of Engineering, The University of Oklahoma, Norman, OK, United States
- Institute for Biomedical Engineering, Science, and Technology, University of Oklahoma, Norman, OK, United States
| | - Ian F. Dunn
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Andrew K. Conner
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Han Yuan
- Stephenson School of Biomedical Engineering, Gallogly College of Engineering, The University of Oklahoma, Norman, OK, United States
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Institute for Biomedical Engineering, Science, and Technology, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
2
|
Suzuki Okutani M, Okamura S, Gis T, Sasaki H, Lee S, Kashiwabara A, Goto S, Matsumoto M, Yamawaki M, Miyazaki T, Nakagawa T, Ikawa M, Kamitani W, Takekawa S, Yamanishi K, Ebina H. Immunogenicity and safety of a live-attenuated SARS-CoV-2 vaccine candidate based on multiple attenuation mechanisms. eLife 2025; 13:RP97532. [PMID: 39932490 PMCID: PMC11813227 DOI: 10.7554/elife.97532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
mRNA vaccines against SARS-CoV-2 were rapidly developed and were effective during the pandemic. However, some limitations remain to be resolved, such as the short-lived induced immune response and certain adverse effects. Therefore, there is an urgent need to develop new vaccines that address these issues. While live-attenuated vaccines are a highly effective modality, they pose a risk of adverse effects, including virulence reversion. In the current study, we constructed a live-attenuated vaccine candidate, BK2102, combining naturally occurring virulence-attenuating mutations in the NSP14, NSP1, spike, and ORF7-8 coding regions. Intranasal inoculation with BK2102 induced humoral and cellular immune responses in Syrian hamsters without apparent tissue damage in the lungs, leading to protection against a SARS-CoV-2 D614G and an Omicron BA.5 strains. The neutralizing antibodies induced by BK2102 persisted for up to 364 days, which indicated that they confer long-term protection against infection. Furthermore, we confirmed the safety of BK2102 using transgenic (Tg) mice expressing human ACE2 (hACE2) that are highly susceptible to SARS-CoV-2. BK2102 did not kill the Tg mice, even when virus was administered at a dose of 106 plaque-forming units (PFUs), while 102 PFU of the D614G strain or an attenuated strain lacking the furin cleavage site of the spike was sufficient to kill mice. These results suggest that BK2102 is a promising live-vaccine candidate strain that confers long-term protection without significant virulence.
Collapse
Affiliation(s)
- Mie Suzuki Okutani
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka UniversitySuitaJapan
| | - Shinya Okamura
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka UniversitySuitaJapan
| | - Tang Gis
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
| | - Hitomi Sasaki
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
| | - Suni Lee
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
| | - Akiho Kashiwabara
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka UniversitySuitaJapan
| | - Simon Goto
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
| | - Mai Matsumoto
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
| | - Mayuko Yamawaki
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
| | - Toshiaki Miyazaki
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
| | - Tatsuya Nakagawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka UniversitySuitaJapan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka UniversitySuitaJapan
- Center for Advanced Modalities and DDS (CAMaD), Osaka UniversitySuitaJapan
- Center for Infectious Disease Education and Research (CiDER), Osaka UniversitySuitaJapan
| | - Wataru Kamitani
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of MedicineMaebashiJapan
| | - Shiro Takekawa
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
| | - Koichi Yamanishi
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
| | - Hirotaka Ebina
- The Research Foundation for Microbial Diseases of Osaka UniversitySuitaJapan
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka UniversitySuitaJapan
- Center for Advanced Modalities and DDS (CAMaD), Osaka UniversitySuitaJapan
- Center for Infectious Disease Education and Research (CiDER), Osaka UniversitySuitaJapan
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research institute for Microbial Diseases, Osaka UniversitySuitaJapan
| |
Collapse
|
3
|
Hasbun R, George M. SARS-CoV-2 and nervous system: From pathogenesis of disease to clinical manifestations. NEUROBIOLOGY OF INFECTIOUS DISEASES 2025:363-370. [DOI: 10.1016/b978-0-443-19130-5.00022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Pang Z, Tang A, He Y, Fan J, Yang Q, Tong Y, Fan H. Neurological complications caused by SARS-CoV-2. Clin Microbiol Rev 2024; 37:e0013124. [PMID: 39291997 PMCID: PMC11629622 DOI: 10.1128/cmr.00131-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
SUMMARYSARS-CoV-2 can not only cause respiratory symptoms but also lead to neurological complications. Research has shown that more than 30% of SARS-CoV-2 patients present neurologic symptoms during COVID-19 (A. Pezzini and A. Padovani, Nat Rev Neurol 16:636-644, 2020, https://doi.org/10.1038/s41582-020-0398-3). Increasing evidence suggests that SARS-CoV-2 can invade both the central nervous system (CNS) (M.S. Xydakis, M.W. Albers, E.H. Holbrook, et al. Lancet Neurol 20: 753-761, 2021 https://doi.org/10.1016/S1474-4422(21)00182-4 ) and the peripheral nervous system (PNS) (M.N. Soares, M. Eggelbusch, E. Naddaf, et al. J Cachexia Sarcopenia Muscle 13:11-22, 2022, https://doi.org/10.1002/jcsm.12896), resulting in a variety of neurological disorders. This review summarized the CNS complications caused by SARS-CoV-2 infection, including encephalopathy, neurodegenerative diseases, and delirium. Additionally, some PNS disorders such as skeletal muscle damage and inflammation, anosmia, smell or taste impairment, myasthenia gravis, Guillain-Barré syndrome, ICU-acquired weakness, and post-acute sequelae of COVID-19 were described. Furthermore, the mechanisms underlying SARS-CoV-2-induced neurological disorders were also discussed, including entering the brain through retrograde neuronal or hematogenous routes, disrupting the normal function of the CNS through cytokine storms, inducing cerebral ischemia or hypoxia, thus leading to neurological complications. Moreover, an overview of long-COVID-19 symptoms is provided, along with some recommendations for care and therapeutic approaches of COVID-19 patients experiencing neurological complications.
Collapse
Affiliation(s)
- Zehan Pang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Ao Tang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yujie He
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Junfen Fan
- Department of Neurology, Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Qingmao Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Huahao Fan
- School of Life Sciences, Tianjin University, Tianjin, China
| |
Collapse
|
5
|
Gibson SA, Liu Y, Li R, Hurst BL, Fan Z, Siddharthan V, Larson DP, Sheesley AY, Stewart R, Kunzler M, Polejaeva IA, Van Wettere AJ, Moisyadi S, Morrey JD, Tarbet EB, Wang Z. Differences in Susceptibility to SARS-CoV-2 Infection Among Transgenic hACE2-Hamster Founder Lines. Viruses 2024; 16:1625. [PMID: 39459957 PMCID: PMC11512293 DOI: 10.3390/v16101625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Animal models that are susceptible to SARS-CoV-2 infection and develop clinical signs like human COVID-19 are desired to understand viral pathogenesis and develop effective medical countermeasures. The golden Syrian hamster is important for the study of SARS-CoV-2 since hamsters are naturally susceptible to SARS-CoV-2. However, infected hamsters show only limited clinical disease and resolve infection quickly. In this study, we describe development of human angiotensin-converting enzyme 2 (hACE2) transgenic hamsters as a model for COVID-19. During development of the model for SARS-CoV-2, we observed that different hACE2 transgenic hamster founder lines varied in their susceptibility to SARS-CoV-2 lethal infection. The highly susceptible hACE2 founder lines F0F35 and F0M41 rapidly progress to severe infection and death within 6 days post-infection (p.i.). Clinical signs included lethargy, weight loss, dyspnea, and mortality. Lethality was observed in a viral dose-dependent manner with a lethal dose as low as 1 × 100.15 CCID50. In addition, virus shedding from highly susceptible lines was detected in oropharyngeal swabs on days 2-5 p.i., and virus titers were observed at 105.5-6.5 CCID50 in lung and brain tissue by day 4 p.i.. Histopathology revealed that infected hACE2-hamsters developed rhinitis, tracheitis, bronchointerstitial pneumonia, and encephalitis. Mortality in highly susceptible hACE2-hamsters can be attributed to neurologic disease with contributions from the accompanying respiratory disease. In contrast, virus challenge of animals from less susceptible founder lines, F0M44 and F0M51, resulted in only 0-20% mortality. To demonstrate utility of this SARS-CoV-2 infection model, we determined the protective effect of the TLR3 agonist polyinosinic-polycytidylic acid (Poly (I:C)). Prophylactic treatment with Poly (I:C) significantly improved survival in highly susceptible hACE2-hamsters. In summary, our studies demonstrate that hACE2 transgenic hamsters differ in their susceptibility to SARS-CoV-2 infection, based on the transgenic hamster founder line, and that prophylactic treatment with Poly (I:C) was protective in this COVID-19 model of highly susceptible hACE2-hamsters.
Collapse
Affiliation(s)
- Scott A. Gibson
- Department of Animal, Diary and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (S.A.G.); (Y.L.); (R.L.); (B.L.H.); (Z.F.); (V.S.); (D.P.L.); (A.Y.S.); (R.S.); (M.K.); (I.A.P.); (J.D.M.); (Z.W.)
- Institute for Antiviral Research, Utah State University, Logan, UT 84322, USA
| | - Yanan Liu
- Department of Animal, Diary and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (S.A.G.); (Y.L.); (R.L.); (B.L.H.); (Z.F.); (V.S.); (D.P.L.); (A.Y.S.); (R.S.); (M.K.); (I.A.P.); (J.D.M.); (Z.W.)
| | - Rong Li
- Department of Animal, Diary and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (S.A.G.); (Y.L.); (R.L.); (B.L.H.); (Z.F.); (V.S.); (D.P.L.); (A.Y.S.); (R.S.); (M.K.); (I.A.P.); (J.D.M.); (Z.W.)
| | - Brett L. Hurst
- Department of Animal, Diary and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (S.A.G.); (Y.L.); (R.L.); (B.L.H.); (Z.F.); (V.S.); (D.P.L.); (A.Y.S.); (R.S.); (M.K.); (I.A.P.); (J.D.M.); (Z.W.)
- Institute for Antiviral Research, Utah State University, Logan, UT 84322, USA
| | - Zhiqiang Fan
- Department of Animal, Diary and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (S.A.G.); (Y.L.); (R.L.); (B.L.H.); (Z.F.); (V.S.); (D.P.L.); (A.Y.S.); (R.S.); (M.K.); (I.A.P.); (J.D.M.); (Z.W.)
| | - Venkatraman Siddharthan
- Department of Animal, Diary and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (S.A.G.); (Y.L.); (R.L.); (B.L.H.); (Z.F.); (V.S.); (D.P.L.); (A.Y.S.); (R.S.); (M.K.); (I.A.P.); (J.D.M.); (Z.W.)
- Institute for Antiviral Research, Utah State University, Logan, UT 84322, USA
| | - Deanna P. Larson
- Department of Animal, Diary and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (S.A.G.); (Y.L.); (R.L.); (B.L.H.); (Z.F.); (V.S.); (D.P.L.); (A.Y.S.); (R.S.); (M.K.); (I.A.P.); (J.D.M.); (Z.W.)
| | - Ashley Y. Sheesley
- Department of Animal, Diary and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (S.A.G.); (Y.L.); (R.L.); (B.L.H.); (Z.F.); (V.S.); (D.P.L.); (A.Y.S.); (R.S.); (M.K.); (I.A.P.); (J.D.M.); (Z.W.)
- Institute for Antiviral Research, Utah State University, Logan, UT 84322, USA
| | - Rebekah Stewart
- Department of Animal, Diary and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (S.A.G.); (Y.L.); (R.L.); (B.L.H.); (Z.F.); (V.S.); (D.P.L.); (A.Y.S.); (R.S.); (M.K.); (I.A.P.); (J.D.M.); (Z.W.)
| | - Madelyn Kunzler
- Department of Animal, Diary and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (S.A.G.); (Y.L.); (R.L.); (B.L.H.); (Z.F.); (V.S.); (D.P.L.); (A.Y.S.); (R.S.); (M.K.); (I.A.P.); (J.D.M.); (Z.W.)
| | - Irina A. Polejaeva
- Department of Animal, Diary and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (S.A.G.); (Y.L.); (R.L.); (B.L.H.); (Z.F.); (V.S.); (D.P.L.); (A.Y.S.); (R.S.); (M.K.); (I.A.P.); (J.D.M.); (Z.W.)
| | - Arnaud J Van Wettere
- Department of Veterinary, Clinical, and Life Sciences, Utah State University, Logan, UT 84322, USA;
- Utah Veterinary Diagnostic Laboratory, Utah State University, Logan, UT 84322, USA
| | - Stefan Moisyadi
- Institute of Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96822, USA;
| | - John D. Morrey
- Department of Animal, Diary and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (S.A.G.); (Y.L.); (R.L.); (B.L.H.); (Z.F.); (V.S.); (D.P.L.); (A.Y.S.); (R.S.); (M.K.); (I.A.P.); (J.D.M.); (Z.W.)
- Institute for Antiviral Research, Utah State University, Logan, UT 84322, USA
| | - E. Bart Tarbet
- Institute for Antiviral Research, Utah State University, Logan, UT 84322, USA
- Department of Veterinary, Clinical, and Life Sciences, Utah State University, Logan, UT 84322, USA;
| | - Zhongde Wang
- Department of Animal, Diary and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (S.A.G.); (Y.L.); (R.L.); (B.L.H.); (Z.F.); (V.S.); (D.P.L.); (A.Y.S.); (R.S.); (M.K.); (I.A.P.); (J.D.M.); (Z.W.)
| |
Collapse
|
6
|
Presti S, Dierna F, Zanghì A, Vecchio M, Lavalle S, Praticò ER, Ruggieri M, Polizzi A. Cerebral Malformations Related to Coronavirus Disease 2019 during Pregnancy. JOURNAL OF PEDIATRIC NEUROLOGY 2024; 22:419-423. [DOI: 10.1055/s-0044-1786785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
AbstractThe pandemic of severe-acute-respiratory-syndrome-related coronavirus (SARS-CoV-2) has shown a wide spectrum of possible consequences in children, ranging from asymptomatic patients to the development of severe conditions, such as multisystem inflammatory syndrome in children and encephalopathies related to cytokine storm. Specifically, neurological and neuroimaging abnormalities, ranging from mild-to-the severe ones, have been documented in children as well, such as postinfectious immune-mediated acute disseminated encephalomyelitis, myelitis, neural enhancement, cranial nerve enhancement, and cortical injury, also without neurological symptoms. Considering the neurotropism of coronaviruses and SARS-CoV-2, which has been well described in the literature, we reviewed the literature reporting possible cerebral malformation in neonates due to the infection of SARS-CoV-2 in pregnancy. Coronavirus disease 2019 (COVID-19) during pregnancy might develop cerebral disorders in several ways. Articles in English in the literature were screened using the following search terms: (1) “brain malformations” AND “COVID-19”; (2) “cerebral malformations” AND “COVID-19”; (3) brain malformations AND “Sars-Cov-2”; (4) “cerebral malformations “AND “Sars-Cov-2.” Considering the congenital brain malformation found in newborns exposed to infection of SARS-Cov-2 pre- or neonatally, we identified one paper which reported three neonates with cerebral malformation. Although sporadic, cerebral malformations like atypical signals in white matter with delayed myelination, brain dysplasia/hypoplasia with delayed myelination, and unusual signals in the periventricular regions have been documented.
Collapse
Affiliation(s)
- Santiago Presti
- Pediatrics Postgraduate Residency Program, University of Catania, Catania, Italy
| | - Federica Dierna
- Pediatrics Postgraduate Residency Program, University of Catania, Catania, Italy
| | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technologies, Research Center for Surgery of Complex Malformation Syndromes of Transition and Adulthood, University of Catania, Catania, Italy
| | - Michele Vecchio
- Department of Biomedical and Biotechnological Sciences, Rehabilitation Unit, University of Catania, Catania, Italy
| | - Salvatore Lavalle
- Chair of Radiology, Department of Medicine and Surgery, Kore Universisty, Enna, Italy
| | | | - Martino Ruggieri
- Department of Clinical and Experimental Medicine, Unit of Clinical Pediatrics, University of Catania, Catania, Italy
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| |
Collapse
|
7
|
Etebar N, Naderpour S, Akbari S, Zali A, Akhlaghdoust M, Daghighi SM, Baghani M, Sefat F, Hamidi SH, Rahimzadegan M. Impacts of SARS-CoV-2 on brain renin angiotensin system related signaling and its subsequent complications on brain: A theoretical perspective. J Chem Neuroanat 2024; 138:102423. [PMID: 38705215 DOI: 10.1016/j.jchemneu.2024.102423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024]
Abstract
Cellular ACE2 (cACE2), a vital component of the renin-angiotensin system (RAS), possesses catalytic activity to maintain AngII and Ang 1-7 balance, which is necessary to prevent harmful effects of AngII/AT2R and promote protective pathways of Ang (1-7)/MasR and Ang (1-7)/AT2R. Hemostasis of the brain-RAS is essential for maintaining normal central nervous system (CNS) function. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a viral disease that causes multi-organ dysfunction. SARS-CoV-2 mainly uses cACE2 to enter the cells and cause its downregulation. This, in turn, prevents the conversion of Ang II to Ang (1-7) and disrupts the normal balance of brain-RAS. Brain-RAS disturbances give rise to one of the pathological pathways in which SARS-CoV-2 suppresses neuroprotective pathways and induces inflammatory cytokines and reactive oxygen species. Finally, these impairments lead to neuroinflammation, neuronal injury, and neurological complications. In conclusion, the influence of RAS on various processes within the brain has significant implications for the neurological manifestations associated with COVID-19. These effects include sensory disturbances, such as olfactory and gustatory dysfunctions, as well as cerebrovascular and brain stem-related disorders, all of which are intertwined with disruptions in the RAS homeostasis of the brain.
Collapse
Affiliation(s)
- Negar Etebar
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy - Eastern Mediterranean University Famagusta, North Cyprus via Mersin 10, Turkey
| | - Saghi Naderpour
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy - Eastern Mediterranean University Famagusta, North Cyprus via Mersin 10, Turkey
| | - Setareh Akbari
- Neuroscience and Research Committee, School of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meisam Akhlaghdoust
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; USERN Office, Functional Neurosurgery Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mojtaba Daghighi
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Matin Baghani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshid Sefat
- Department of Biomedical Engineering, School of Engineering, University of Bradford, Bradford, UK
| | - Seyed Hootan Hamidi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Acharya BM Reddy College of Pharmacy, Rajiv Gandhi University of Health Sciences, Bangalore, India
| | - Milad Rahimzadegan
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Kozłowski P, Leszczyńska A, Ciepiela O. Long COVID Definition, Symptoms, Risk Factors, Epidemiology and Autoimmunity: A Narrative Review. AMERICAN JOURNAL OF MEDICINE OPEN 2024; 11:100068. [PMID: 39034937 PMCID: PMC11256271 DOI: 10.1016/j.ajmo.2024.100068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 07/23/2024]
Abstract
The virus called SARS-CoV-2 emerged in 2019 and quickly spread worldwide, causing COVID-19. It has greatly impacted on everyday life, healthcare systems, and the global economy. In order to save as many lives as possible, precautions such as social distancing, quarantine, and testing policies were implemented, and effective vaccines were developed. A growing amount of data collected worldwide allowed the characterization of this new disease, which turned out to be more complex than other common respiratory tract infections. An increasing number of convalescents presented with a variety of nonspecific symptoms emerging after the acute infection. This possible new global health problem was identified and labelled as long COVID. Since then, a great effort has been made by clinicians and the scientific community to understand the underlying mechanisms and to develop preventive measures and effective treatment. The role of autoimmunity induced by SARS-CoV-2 infection in the development of long COVID is discussed in this review. We aim to deliver a description of several conditions with an autoimmune background observed in COVID-19 convalescents, including Guillain-Barré syndrome, antiphospholipid syndrome and related thrombosis, and Kawasaki disease highlighting a relationship between SARS-CoV-2 infection and the development of autoimmunity. However, further studies are required to determine its true clinical significance.
Collapse
Affiliation(s)
- Paweł Kozłowski
- Central Laboratory, University Clinical Centre of the Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Leszczyńska
- Central Laboratory, University Clinical Centre of the Medical University of Warsaw, Warsaw, Poland
| | - Olga Ciepiela
- Central Laboratory, University Clinical Centre of the Medical University of Warsaw, Warsaw, Poland
- Department of Laboratory Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
9
|
Adamaszek M, Langner S, Mehrholz J, Heiinrich A. Opsoclonus-Myoclonus-Ataxia Syndrome Due to Covid-19. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1245-1248. [PMID: 37814146 DOI: 10.1007/s12311-023-01610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
Opsoclonus-myoclonus syndrome (OMS) as a rare neurological encephalopathic entity associated with non-specific infections or cancer processes has been repeatedly described in the setting of SARS-CoV-2 infection. We report a case of a 53-year-old man with SARS-CoV-2 infection, who developed clinical features of opsoclonus-myoclonus ataxia syndrome including cognitive impairments with a prolonged course of disease. Of particular note, cerebrospinal fluid (CSF) analysis revealed the production of myelin oligodendrocyte glycoprotein (MOG) antibodies, suggesting an underlying neuroimmunological mechanism associated with infection with the novel SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Michael Adamaszek
- Department of Neurological and Neurocognitive Rehabilitation, Klinik Bavaria Kreischa, An der Wolfsschlucht, 1-2 01731, Kreischa, Germany.
| | - Soenke Langner
- Department of Radiology, Rostock University Medical Center, Schillingallee 35, 18057, Rostock, Germany
| | - Jan Mehrholz
- Department of Public Health, Dresden Medical School, Technical University Dresden, Dresden, Germany
| | | |
Collapse
|
10
|
Granholm ACE, Englund E, Gilmore A, Head E, Yong WH, Perez SE, Guzman SJ, Hamlett ED, Mufson EJ. Neuropathological findings in Down syndrome, Alzheimer's disease and control patients with and without SARS-COV-2: preliminary findings. Acta Neuropathol 2024; 147:92. [PMID: 38801558 PMCID: PMC11130011 DOI: 10.1007/s00401-024-02743-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/11/2024] [Accepted: 05/12/2024] [Indexed: 05/29/2024]
Abstract
The SARS-CoV-2 virus that led to COVID-19 is associated with significant and long-lasting neurologic symptoms in many patients, with an increased mortality risk for people with Alzheimer's disease (AD) and/or Down syndrome (DS). However, few studies have evaluated the neuropathological and inflammatory sequelae in postmortem brain tissue obtained from AD and people with DS with severe SARS-CoV-2 infections. We examined tau, beta-amyloid (Aβ), inflammatory markers and SARS-CoV-2 nucleoprotein in DS, AD, and healthy non-demented controls with COVID-19 and compared with non-infected brain tissue from each disease group (total n = 24). A nested ANOVA was used to determine regional effects of the COVID-19 infection on arborization of astrocytes (Sholl analysis) and percent-stained area of Iba-1 and TMEM 119. SARS-CoV-2 antibodies labeled neurons and glial cells in the frontal cortex of all subjects with COVID-19, and in the hippocampus of two of the three DS COVID-19 cases. SARS-CoV-2-related alterations were observed in peri-vascular astrocytes and microglial cells in the gray matter of the frontal cortex, hippocampus, and para-hippocampal gyrus. Bright field microscopy revealed scattered intracellular and diffuse extracellular Aβ deposits in the hippocampus of controls with confirmed SARS-CoV-2 infections. Overall, the present preliminary findings suggest that SARS-CoV-2 infections induce abnormal inflammatory responses in Down syndrome.
Collapse
Affiliation(s)
- Ann-Charlotte E Granholm
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Research Complex II, Aurora, CO, USA.
| | - Elisabet Englund
- Division of Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Anah Gilmore
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Research Complex II, Aurora, CO, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, USA
- Department of Neurology, University of California Irvine, Irvine, CA, USA
| | - William H Yong
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - Sylvia E Perez
- Department of Translational Neuroscience and Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Samuel J Guzman
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Eric D Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Elliott J Mufson
- Department of Translational Neuroscience and Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
11
|
Sun M, Manson ML, Guo T, de Lange ECM. CNS Viral Infections-What to Consider for Improving Drug Treatment: A Plea for Using Mathematical Modeling Approaches. CNS Drugs 2024; 38:349-373. [PMID: 38580795 PMCID: PMC11026214 DOI: 10.1007/s40263-024-01082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/07/2024]
Abstract
Neurotropic viruses may cause meningitis, myelitis, encephalitis, or meningoencephalitis. These inflammatory conditions of the central nervous system (CNS) may have serious and devastating consequences if not treated adequately. In this review, we first summarize how neurotropic viruses can enter the CNS by (1) crossing the blood-brain barrier or blood-cerebrospinal fluid barrier; (2) invading the nose via the olfactory route; or (3) invading the peripheral nervous system. Neurotropic viruses may then enter the intracellular space of brain cells via endocytosis and/or membrane fusion. Antiviral drugs are currently used for different viral CNS infections, even though their use and dosing regimens within the CNS, with the exception of acyclovir, are minimally supported by clinical evidence. We therefore provide considerations to optimize drug treatment(s) for these neurotropic viruses. Antiviral drugs should cross the blood-brain barrier/blood cerebrospinal fluid barrier and pass the brain cellular membrane to inhibit these viruses inside the brain cells. Some antiviral drugs may also require intracellular conversion into their active metabolite(s). This illustrates the need to better understand these mechanisms because these processes dictate drug exposure within the CNS that ultimately determine the success of antiviral drugs for CNS infections. Finally, we discuss mathematical model-based approaches for optimizing antiviral treatments. Thereby emphasizing the potential of CNS physiologically based pharmacokinetic models because direct measurement of brain intracellular exposure in living humans faces ethical restrictions. Existing physiologically based pharmacokinetic models combined with in vitro pharmacokinetic/pharmacodynamic information can be used to predict drug exposure and evaluate efficacy of antiviral drugs within the CNS, to ultimately optimize the treatments of CNS viral infections.
Collapse
Affiliation(s)
- Ming Sun
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Martijn L Manson
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Tingjie Guo
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Elizabeth C M de Lange
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
12
|
Wang W, Cui R, Leng L, Wang G, Peng G. Cognitive Impairment in the Post-Acute Phases of COVID-19 and Mechanisms: An Introduction and Narrative Review. J Alzheimers Dis Rep 2024; 8:647-658. [PMID: 38746637 PMCID: PMC11091721 DOI: 10.3233/adr-230172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/10/2024] [Indexed: 01/06/2025] Open
Abstract
Cognitive impairment is a primary manifestation of neurological symptoms associated with COVID-19 and may occur after disease resolution. Although cognitive impairment has been extensively reported in the literature, its duration and rate of remission remain controversial. This study discusses the various factors that influence cognitive impairment, including demographic characteristics, genetics, as well as disease course and severity. Furthermore, imaging and laboratory data have suggested various associations with cognitive impairment, most notably changes in EEG patterns, PET imaging, and serum markers. Some findings suggest similarities and potential links between COVID-related cognitive impairment and Alzheimer's disease. Moreover, this study reviews the various mechanisms proposed to explain the development of cognitive impairment in COVID-19, including cytokine storm, damage to the blood-brain barrier, compromise of small vessel integrity, hypoxic conditions, and immune dysregulation.
Collapse
Affiliation(s)
- Weiye Wang
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruxin Cui
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Luming Leng
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gang Wang
- Department of Neurology, RuiJin Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guoping Peng
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Gavilán E, Medina-Guzman R, Bahatyrevich-Kharitonik B, Ruano D. Protein Quality Control Systems and ER Stress as Key Players in SARS-CoV-2-Induced Neurodegeneration. Cells 2024; 13:123. [PMID: 38247815 PMCID: PMC10814689 DOI: 10.3390/cells13020123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
The COVID-19 pandemic has brought to the forefront the intricate relationship between SARS-CoV-2 and its impact on neurological complications, including potential links to neurodegenerative processes, characterized by a dysfunction of the protein quality control systems and ER stress. This review article explores the role of protein quality control systems, such as the Unfolded Protein Response (UPR), the Endoplasmic Reticulum-Associated Degradation (ERAD), the Ubiquitin-Proteasome System (UPS), autophagy and the molecular chaperones, in SARS-CoV-2 infection. Our hypothesis suggests that SARS-CoV-2 produces ER stress and exploits the protein quality control systems, leading to a disruption in proteostasis that cannot be solved by the host cell. This disruption culminates in cell death and may represent a link between SARS-CoV-2 and neurodegeneration.
Collapse
Affiliation(s)
- Elena Gavilán
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (R.M.-G.); (B.B.-K.); (D.R.)
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Junta de Andalucía, CSIC, University of Seville (US), 41013 Sevilla, Spain
| | - Rafael Medina-Guzman
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (R.M.-G.); (B.B.-K.); (D.R.)
| | - Bazhena Bahatyrevich-Kharitonik
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (R.M.-G.); (B.B.-K.); (D.R.)
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Junta de Andalucía, CSIC, University of Seville (US), 41013 Sevilla, Spain
| | - Diego Ruano
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (R.M.-G.); (B.B.-K.); (D.R.)
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Junta de Andalucía, CSIC, University of Seville (US), 41013 Sevilla, Spain
| |
Collapse
|
14
|
Chen S, Liang J, Chen D, Huang Q, Sun K, Zhong Y, Lin B, Kong J, Sun J, Gong C, Wang J, Gao Y, Zhang Q, Sun H. Cerebrospinal fluid metabolomic and proteomic characterization of neurologic post-acute sequelae of SARS-CoV-2 infection. Brain Behav Immun 2024; 115:209-222. [PMID: 37858739 DOI: 10.1016/j.bbi.2023.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/08/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023] Open
Abstract
The mechanism by which SARS-CoV-2 causes neurological post-acute sequelae of SARS-CoV-2 (neuro-PASC) remains unclear. Herein, we conducted proteomic and metabolomic analyses of cerebrospinal fluid (CSF) samples from 21 neuro-PASC patients, 45 healthy volunteers, and 26 inflammatory neurological diseases patients. Our data showed 69 differentially expressed metabolites and six differentially expressed proteins between neuro-PASC patients and healthy individuals. Elevated sphinganine and ST1A1, sphingolipid metabolism disorder, and attenuated inflammatory responses may contribute to the occurrence of neuro-PASC, whereas decreased levels of 7,8-dihydropterin and activation of steroid hormone biosynthesis may play a role in the repair process. Additionally, a biomarker cohort consisting of sphinganine, 7,8-dihydroneopterin, and ST1A1 was preliminarily demonstrated to have high value in diagnosing neuro-PASC. In summary, our study represents the first attempt to integrate the diagnostic benefits of CSF with the methodological advantages of multi-omics, thereby offering valuable insights into the pathogenesis of neuro-PASC and facilitating the work of neuroscientists in disclosing different neurological dimensions associated with COVID-19.
Collapse
Affiliation(s)
- Shilan Chen
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jianhao Liang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Dingqiang Chen
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Qiyuan Huang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Kaijian Sun
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yuxia Zhong
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Baojia Lin
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jingjing Kong
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jiaduo Sun
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Chengfang Gong
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jun Wang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Ya Gao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Qingguo Zhang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China.
| |
Collapse
|
15
|
Mohamadi A, Soroureddin S, Nayebirad S, Tamartash Z, Mohebbi M, Kavosi H. New-onset ANCA-associated vasculitis presenting with neuropathy after COVID-19 infection: A case report and literature review. Clin Case Rep 2024; 12:e8457. [PMID: 38259866 PMCID: PMC10801276 DOI: 10.1002/ccr3.8457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/10/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Coronavirus Disease 2019 (COVID-19) is a viral infection caused by SARS-CoV-2, which can trigger autoimmune diseases such as antineutrophilic cytoplasmic antibody (ANCA) associated vasculitis (AAV) that affect small and medium-sized blood vessels in multiple organs. This study discusses a case with neuropathy and positive ANCA after COVID-19 infection and reviews the literature on AAV following COVID-19 infection. A 59-year-old man is presented that was referred to Shariati Hospital for evaluation of neurologic problems after a COVID-19 infection. Initially, he had flu-like symptoms. A few days later, he developed right distal upper and lower limb paresthesia. His electromyography (EMG) and nerve conduction velocity (NCV) results were consistent with polyneuropathy. Lumbar puncture (LP) was normal except for positive COVID-19 polymerase chain reaction (PCR). The patient's paresthesia worsened. Laboratory data showed leukocytosis, anemia, thrombocytosis, high erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP). Perinuclear anti-neutrophil cytoplasmic antibody (MPO-ANCA) was positive. According to the results, vasculitis was the main differential diagnosis. The sural nerve biopsy was performed, and the result was consistent with small to medium-sized vessel vasculitis. The patient was diagnosed with COVID-induced AAV. He was prescribed methylprednisolone and cyclophosphamide and was discharged with prednisolone and cotrimoxazole. In this study, a unique case of AAV induced by COVID-19 infection confirmed by nerve biopsy is presented. A review of the literature found 48 cases of new-onset AAV in adults and pediatrics after COVID-19 infection. Further research is needed to completely understand the relationship between COVID-19.
Collapse
Affiliation(s)
- Aida Mohamadi
- Rheumatology Research CenterTehran University of Medical SciencesTehranIran
| | | | - Sepehr Nayebirad
- Tehran Heart Center, Cardiovascular Diseases Research InstituteTehran University of Medical SciencesTehranIran
| | - Zahra Tamartash
- Rheumatology Research CenterTehran University of Medical SciencesTehranIran
| | - Maryam Mohebbi
- Rheumatology Research CenterTehran University of Medical SciencesTehranIran
| | - Hoda Kavosi
- Rheumatology Research CenterTehran University of Medical SciencesTehranIran
| |
Collapse
|
16
|
Dubey G, Singh M, Singh H, Agarwal M, Chandel SS, Mishra A, Singh RP, Kukreti N. Emerging roles of SnoRNAs in the pathogenesis and treatment of autoimmune disorders. Pathol Res Pract 2024; 253:154952. [PMID: 38000202 DOI: 10.1016/j.prp.2023.154952] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
SnoRNAs (small non-coding RNAs) have recently gained prominence in autoimmune diseases, revealing their crucial role in modulating the immune response and contributing to disease pathogenesis. Initially known for their involvement in ribosomal RNA processing and modification, molecular biology and genomics advancements have uncovered their broader impact on cellular function, especially in autoimmune disorders. Autoimmune diseases represent conditions characterized by the immune system's erroneous attacks on self-tissues, encompassing disorders like systemic lupus erythematosus, rheumatoid arthritis, and multiple sclerosis. The complex etiology of these conditions involves a delicate interplay of genetic and environmental factors. Emerging evidence suggests that snoRNAs initially recognized for their housekeeping roles, extend their influence on immune regulation through diverse mechanisms. SnoRNAs have been implicated in epigenetic modification, directly affecting the gene expression profiles of immune cells. Their ability to guide site-specific changes on ribosomal RNAs and other non-coding RNAs can significantly influence the translation of proteins involved in immune response pathways. Moreover, snoRNAs interact with key immune-related proteins, modulating their functions and subsequently impacting immune cell development, activation, and tolerance. Dysregulation of snoRNA expression has been observed in various autoimmune diseases, underscoring their potential as biomarkers for disease diagnosis, prognosis, and therapeutic targets. Manipulating snoRNA expression or activity is a promising therapeutic intervention avenue, offering the potential for personalized treatment strategies in autoimmune diseases. However, there remains a need for comprehensive research efforts to elucidate the precise molecular mechanisms underlying snoRNA-mediated immune modulation. Further investigations in this domain are essential to unravel the potential of snoRNAs in autoimmune disorders.
Collapse
Affiliation(s)
- Gaurav Dubey
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | - Mithilesh Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, India.
| | - Himmat Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | - Mohit Agarwal
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | | | - Anurag Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | - Ravindra Pal Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| |
Collapse
|
17
|
Yang P, Zhu T, Ma Y, Gao R, Gao P, Liu X, Gao J, Jiang H, Zhang X. Reduced Libido Is a Major Factor in Decreased Erectile Function among Men with Mild COVID-19. Andrologia 2023; 2023:1-7. [DOI: 10.1155/2023/3923033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
During the Corona Virus Disease-2019 (COVID-19) pandemic, among men infected with SARS-CoV-2, little attention has been given to reduced libido and its associations with decreased erectile function, even though there may be physical and psychological factors that contribute to the two. So the purpose of the study is to determine the correlation between decreased erectile function and reduced libido in SARS-CoV-2 infected people during the COVID-19 pandemic and to describe the associated clinical, psychic, and lifestyle parameters. We recruited 321 eligible men with SARS-CoV-2 infection in the urology clinic of our hospital. We used the International Index of Erectile Function-5 (IIEF-5), the Patient Health Questionnaire-9 (PHQ-9), 7-item Generalized Anxiety Disorder (GAD-7) module, and Pittsburgh Sleep Quality Index to independently evaluate the subjects, collect relevant data, and analyze the data. In this study, we show that both libido and erectile function were decreased after SARS-CoV-2 infection (), and reduced libido was strongly correlated with decreased erectile function (; odds ratio (OR) = 11.33). In addition, anxiety (OR = 2.41, CI = 1.13–5.23), (), symptomatic infection (OR = 3.293, CI = 1.11–11.48), (), and body mass index (OR = 0.88, CI = 0.83–0.92), () were also associated with decreased erectile function. So, we think that during the COVID-19 pandemic, for erectile dysfunction patients who decreased erectile function after SARS-CoV-2 infection, we should not only pay attention to patients’ erectile function status but also to patients’ reduced libido status.
Collapse
Affiliation(s)
- Peng Yang
- The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 241000, China
| | - Tianle Zhu
- The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 241000, China
| | - Yukuai Ma
- The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 241000, China
| | - Rui Gao
- The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 241000, China
| | - Pan Gao
- The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 241000, China
| | - Xi Liu
- The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 241000, China
| | - Jingjing Gao
- The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 241000, China
| | - Hui Jiang
- Peking University Andrology Center, Peking University First Hospital, No. 8 Xishiku Street Xicheng District, Beijing 100034, China
| | - Xiansheng Zhang
- The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 241000, China
| |
Collapse
|
18
|
Sideratou CM, Papaneophytou C. Persisting Shadows: Unraveling the Impact of Long COVID-19 on Respiratory, Cardiovascular, and Nervous Systems. Infect Dis Rep 2023; 15:806-830. [PMID: 38131885 PMCID: PMC10742861 DOI: 10.3390/idr15060072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19), instigated by the zoonotic Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), rapidly transformed from an outbreak in Wuhan, China, into a widespread global pandemic. A significant post-infection condition, known as 'long- COVID-19' (or simply 'long- COVID'), emerges in a substantial subset of patients, manifesting with a constellation of over 200 reported symptoms that span multiple organ systems. This condition, also known as 'post-acute sequelae of SARS-CoV-2 infection' (PASC), presents a perplexing clinical picture with far-reaching implications, often persisting long after the acute phase. While initial research focused on the immediate pulmonary impact of the virus, the recognition of COVID-19 as a multiorgan disruptor has unveiled a gamut of protracted and severe health issues. This review summarizes the primary effects of long COVID on the respiratory, cardiovascular, and nervous systems. It also delves into the mechanisms underlying these impacts and underscores the critical need for a comprehensive understanding of long COVID's pathogenesis.
Collapse
Affiliation(s)
| | - Christos Papaneophytou
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus;
| |
Collapse
|
19
|
Bobrov MP, Voitenkov VB, Ekusheva EV, Kiparisova ES. The specifics of encephalitis after COVID-19. MEDICINE OF EXTREME SITUATIONS 2023. [DOI: 10.47183/mes.2023.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Encephalitis is a group of acute infectious diseases affecting the substance of the brain. They often lead to disability or death, and, therefore, require urgent medical attention. The article discusses the etiology, pathogenesis, and clinical picture of encephalitis, with special attention to the course of this disease after the COVID-19 pandemic. We note the growing number of encephalitis cases, especially of autoimmune variety and those caused by herpes. The possible reason behind this trend is the disruption of operation of the immune system brought by COVID-19, which manifests as a cytokine storm, neuroinflammation, and autoimmune reactions. There are cases of COVID-19-dependent encephalitis described. The pathways taken by SARS-CoV-2 to penetrate into the cells of the central nervous system have not yet been fully studied, although there are hypotheses that this happens both trans-synaptically through mechanoreceptors and chemoreceptors of the respiratory system into the medulla oblongata, and through receptors of the angiotensin converting enzyme 2.
Collapse
Affiliation(s)
- MP Bobrov
- Postgraduate Education Academy of the Federal Scientific and Clinical Center for Specialized Types of Medical Care and Medical Technologies, Federal Medical Biological Agency, Moscow, Russia
| | - VB Voitenkov
- Postgraduate Education Academy of the Federal Scientific and Clinical Center for Specialized Types of Medical Care and Medical Technologies, Federal Medical Biological Agency, Moscow, Russia
| | - EV Ekusheva
- Postgraduate Education Academy of the Federal Scientific and Clinical Center for Specialized Types of Medical Care and Medical Technologies, Federal Medical Biological Agency, Moscow, Russia
| | - ES Kiparisova
- Postgraduate Education Academy of the Federal Scientific and Clinical Center for Specialized Types of Medical Care and Medical Technologies, Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|
20
|
Loshkova EV, Rebrienko MV, Doroshenko IV, Lyulka TS, Budkin AV, Rafikova YS, Kondratyeva EI, Khavkin AI, Odinaeva ND, Solnyshko AL, Golikova ЕV. Difficulties in diagnosing complications of COVID-19: description of a clinical case. MEDITSINSKIY SOVET = MEDICAL COUNCIL 2023:180-188. [DOI: 10.21518/ms2023-323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
It is well known that COVID-19, caused by the SARS-CoV-2 virus and characterized by an acute respiratory syndrome with a high morbidity and mortality had rapidly spread around the world, taking on the character of a pandemic. The virus affects not only the respiratory tract, but also other organs due to mechanisms of the cytokine storm mechanism, in addition, hypoxic damage, immune mechanism and the mechanism involving angiotensin-converting enzyme. The frequency of CVT associated with COVID-19 is less than 0.02%, on the one hand, is low, but on the other hand, this rate is 30–60 times higher than the frequency of CVT in persons without COVID-19 (0.0003–0.0004% in adults and 0.0007% in children). For an individual patient, it is extremely important that the combination of CVT and COVID-19 is associated with a higher mortality rate (45.5%) in contrast to CVT (15%) and COVID-19 (5.6%) separately. In the presented literature review, the authors focus on the pathophysiological mechanisms of the development of COVID-19 associated cerebral thrombosis for a deeper and more holistic view of the pathological process occurring in the body in order to form and improve the clinical thinking of specialist doctors, and cite their own clinical observation as an illustration of the difficulties of diagnosing COVID-19 associated cerebral thrombosis. The authors believe that this review of the literature describing a clinical case is valuable from the point of view of practical applicability, both for clinicians of various fields and for researchers.
Collapse
Affiliation(s)
- E. V. Loshkova
- Siberian State Medical University;
Research Clinical Institute of Childhood
| | | | | | | | | | | | - E. I. Kondratyeva
- Research Clinical Institute of Childhood;
Medical Genetic Research Center named after Acad. N.P. Bochkov
| | - A. I. Khavkin
- Research Clinical Institute of Childhood;
Pirogov Russian National Research Medical University
| | | | - A. L. Solnyshko
- Siberian State Medical University;
Children’s City Hospital No. 1
| | - Е. V. Golikova
- Siberian State Medical University;
Research Clinical Institute of Childhood
| |
Collapse
|
21
|
Amadoro G, Latina V, Stigliano E, Micera A. COVID-19 and Alzheimer's Disease Share Common Neurological and Ophthalmological Manifestations: A Bidirectional Risk in the Post-Pandemic Future. Cells 2023; 12:2601. [PMID: 37998336 PMCID: PMC10670749 DOI: 10.3390/cells12222601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
A growing body of evidence indicates that a neuropathological cross-talk takes place between the coronavirus disease 2019 (COVID-19) -the pandemic severe pneumonia that has had a tremendous impact on the global economy and health since three years after its outbreak in December 2019- and Alzheimer's Disease (AD), the leading cause of dementia among human beings, reaching 139 million by the year 2050. Even though COVID-19 is a primary respiratory disease, its causative agent, the so-called Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), is also endowed with high neuro-invasive potential (Neurocovid). The neurological complications of COVID-19, resulting from the direct viral entry into the Central Nervous System (CNS) and/or indirect systemic inflammation and dysregulated activation of immune response, encompass memory decline and anosmia which are typically associated with AD symptomatology. In addition, patients diagnosed with AD are more vulnerable to SARS-CoV-2 infection and are inclined to more severe clinical outcomes. In the present review, we better elucidate the intimate connection between COVID-19 and AD by summarizing the involved risk factors/targets and the underlying biological mechanisms shared by these two disorders with a particular focus on the Angiotensin-Converting Enzyme 2 (ACE2) receptor, APOlipoprotein E (APOE), aging, neuroinflammation and cellular pathways associated with the Amyloid Precursor Protein (APP)/Amyloid beta (Aβ) and tau neuropathologies. Finally, the involvement of ophthalmological manifestations, including vitreo-retinal abnormalities and visual deficits, in both COVID-19 and AD are also discussed. Understanding the common physiopathological aspects linking COVID-19 and AD will pave the way to novel management and diagnostic/therapeutic approaches to cope with them in the post-pandemic future.
Collapse
Affiliation(s)
- Giuseppina Amadoro
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy;
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Valentina Latina
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy;
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Egidio Stigliano
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy;
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS-Fondazione Bietti, Via Santo Stefano Rotondo, 6, 00184 Rome, Italy
| |
Collapse
|
22
|
Al Saihati HA, Hussein HAM, Thabet AA, Wardany AA, Mahmoud SY, Farrag ES, Mohamed TIA, Fathy SM, Elnosary ME, Sobhy A, Ahmed AE, El-Adly AM, El-Shenawy FS, Elsadek AA, Rayan A, Zahran ZAM, El-Badawy O, El-Naggar MGM, Afifi MM, Zahran AM. Memory T Cells Discrepancies in COVID-19 Patients. Microorganisms 2023; 11:2737. [PMID: 38004749 PMCID: PMC10673271 DOI: 10.3390/microorganisms11112737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
The immune response implicated in Coronavirus disease 2019 (COVID-19) pathogenesis remains to be fully understood. The present study aimed to clarify the alterations in CD4+ and CD8+ memory T cells' compartments in SARS-CoV-2-infected patients, with an emphasis on various comorbidities affecting COVID-19 patients. Peripheral blood samples were collected from 35 COVID-19 patients, 16 recovered individuals, and 25 healthy controls, and analyzed using flow cytometry. Significant alterations were detected in the percentage of CD8+ T cells and effector memory-expressing CD45RA CD8+ T cells (TEMRA) in COVID-19 patients compared to healthy controls. Interestingly, altered percentages of CD4+ T cells, CD8+ T cells, T effector (TEff), T naïve cells (TNs), T central memory (TCM), T effector memory (TEM), T stem cell memory (TSCM), and TEMRA T cells were significantly associated with the disease severity. Male patients had more CD8+ TSCMs and CD4+ TNs cells, while female patients had a significantly higher percentage of effector CD8+CD45RA+ T cells. Moreover, altered percentages of CD8+ TNs and memory CD8+CD45RO+ T cells were detected in diabetic and non-diabetic COVID-19 patients, respectively. In summary, this study identified alterations in memory T cells among COVID-19 patients, revealing a sex bias in the percentage of memory T cells. Moreover, COVID-19 severity and comorbidities have been linked to specific subsets of T memory cells which could be used as therapeutic, diagnostic, and protective targets for severe COVID-19.
Collapse
Affiliation(s)
- Hajir A. Al Saihati
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, University of Hafr Al Batin, P.O. Box 1803, Hafar Al Batin 31991, Saudi Arabia; (H.A.A.S.); (E.S.F.)
| | - Hosni A. M. Hussein
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt; (A.A.W.); (T.I.A.M.); (A.M.E.-A.); (F.S.E.-S.)
| | - Ali A. Thabet
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt;
| | - Ahmed A. Wardany
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt; (A.A.W.); (T.I.A.M.); (A.M.E.-A.); (F.S.E.-S.)
| | - Sabry Y. Mahmoud
- Biology Department, College of Sciences, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia;
- Department of Microbiology, Sohag University, Sohag 82524, Egypt
| | - Eman S. Farrag
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, University of Hafr Al Batin, P.O. Box 1803, Hafar Al Batin 31991, Saudi Arabia; (H.A.A.S.); (E.S.F.)
- Department of Microbiology, South Valley University, Qena 83523, Egypt
| | - Taha I. A. Mohamed
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt; (A.A.W.); (T.I.A.M.); (A.M.E.-A.); (F.S.E.-S.)
| | - Samah M. Fathy
- Department of Zoology, Faculty of Science, Fayoum University, Fayoum 63514, Egypt;
| | - Mohamed E. Elnosary
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt; (M.E.E.); (M.M.A.)
| | - Ali Sobhy
- Department of Clinical Pathology, Faculty of Medicine, Al-Azhar University, Assiut 71524, Egypt; (A.S.); (A.E.A.)
| | - Abdelazeem E. Ahmed
- Department of Clinical Pathology, Faculty of Medicine, Al-Azhar University, Assiut 71524, Egypt; (A.S.); (A.E.A.)
| | - Ahmed M. El-Adly
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt; (A.A.W.); (T.I.A.M.); (A.M.E.-A.); (F.S.E.-S.)
| | - Fareed S. El-Shenawy
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt; (A.A.W.); (T.I.A.M.); (A.M.E.-A.); (F.S.E.-S.)
| | | | - Amal Rayan
- Department of Clinical Oncology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | | | - Omnia El-Badawy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Mohamed G. M. El-Naggar
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut 71515, Egypt; (M.G.M.E.-N.); (A.M.Z.)
| | - Magdy M. Afifi
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt; (M.E.E.); (M.M.A.)
| | - Asmaa M. Zahran
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut 71515, Egypt; (M.G.M.E.-N.); (A.M.Z.)
| |
Collapse
|
23
|
Chang SY, Lee MY. Photobiomodulation of Neurogenesis through the Enhancement of Stem Cell and Neural Progenitor Differentiation in the Central and Peripheral Nervous Systems. Int J Mol Sci 2023; 24:15427. [PMID: 37895108 PMCID: PMC10607539 DOI: 10.3390/ijms242015427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/06/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Photobiomodulation (PBM) is the regulation of biological processes using light energy from sources such as lasers or light-emitting diodes. Components of the nervous system, such as the brain and peripheral nerves, are important candidate PBM targets due to the lack of therapeutic modalities for the complete cure of neurological diseases. PBM can be applied either to regenerate damaged organs or to prevent or reduce damage caused by disease. Although recent findings have suggested that neural cells can be regenerated, which contradicts our previous understanding, neural structures are still thought to have weaker regenerative capacity than other systems. Therefore, enhancing the regenerative capacity of the nervous system would aid the future development of therapeutics for neural degeneration. PBM has been shown to enhance cell differentiation from stem or progenitor cells to near-target or target cells. In this review, we have reviewed research on the effects of PBM on neurogenesis in the central nervous system (e.g., animal brains) and the peripheral nervous system (e.g., peripheral sensory neural structures) and sought its potential as a therapeutic tool for intractable neural degenerative disorders.
Collapse
Affiliation(s)
- So-Young Chang
- Beckman Laser Institute Korea, Dankook University, Cheonan 31116, Republic of Korea;
| | - Min Young Lee
- Beckman Laser Institute Korea, Dankook University, Cheonan 31116, Republic of Korea;
- Department of Otolaryngology-Head &Neck Surgery, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
24
|
Matveeva N, Kiselev I, Baulina N, Semina E, Kakotkin V, Agapov M, Kulakova O, Favorova O. Shared genetic architecture of COVID-19 and Alzheimer's disease. Front Aging Neurosci 2023; 15:1287322. [PMID: 37927339 PMCID: PMC10625425 DOI: 10.3389/fnagi.2023.1287322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
The severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) and the сoronavirus disease 2019 (COVID-19) have become a global health threat. At the height of the pandemic, major efforts were focused on reducing COVID-19-associated morbidity and mortality. Now is the time to study the long-term effects of the pandemic, particularly cognitive impairment associated with long COVID. In recent years much attention has been paid to the possible relationship between COVID-19 and Alzheimer's disease, which is considered a main cause of age-related cognitive impairment. Genetic predisposition was shown for both COVID-19 and Alzheimer's disease. However, the analysis of the similarity of the genetic architecture of these diseases is usually limited to indicating a positive genetic correlation between them. In this review, we have described intrinsic linkages between COVID-19 and Alzheimer's disease, pointed out shared susceptibility genes that were previously identified in genome-wide association studies of both COVID-19 and Alzheimer's disease, and highlighted a panel of SNPs that includes candidate genetic risk markers of the long COVID-associated cognitive impairment.
Collapse
Affiliation(s)
- Natalia Matveeva
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Laboratory of Medical Genomics, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ivan Kiselev
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Laboratory of Medical Genomics, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Natalia Baulina
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Laboratory of Medical Genomics, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ekaterina Semina
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Viktor Kakotkin
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Mikhail Agapov
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Olga Kulakova
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Laboratory of Medical Genomics, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Olga Favorova
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Laboratory of Medical Genomics, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
25
|
Liu CH, Chiu LC, Lee CC, Chan TM. Case Report: High-dose steroid and IVIG successful treatment in a case of COVID-19-associated autoimmune encephalitis: a literature review. Front Immunol 2023; 14:1240089. [PMID: 37809102 PMCID: PMC10557068 DOI: 10.3389/fimmu.2023.1240089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/23/2023] [Indexed: 10/10/2023] Open
Abstract
Autoimmune encephalitis is a rare but critical complication of COVID-19. The management of COVID-19-associated autoimmune encephalitis includes the use of steroids, intravenous immunoglobulin (IVIG), plasmapheresis, and monoclonal antibody therapy. This study presented a patient with critical COVID-19 autoimmune encephalitis who rapidly recovered after the initiation of corticosteroids and IVIG therapy. This study reviewed the current literature on the pathophysiological mechanisms, diagnosis, and management of COVID-19-associated autoimmune encephalitis.
Collapse
Affiliation(s)
- Chi-Hung Liu
- Department of Medical Education, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - Li-Chung Chiu
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chih-Chun Lee
- Department of Medical Education, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Tien-Ming Chan
- Division of Rheumatology, Allergy, and Immunology, Department of Internal Medicine, Chang Gung Memorial Hospital, and Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
26
|
Kurup SV, Patil PM, Atkari SS, Divate SR, Thawkar BS, Kale MK. Guillain Barre Syndrome as a Complication of Infections Including COVID-19: a Review. CURRENT PHARMACOLOGY REPORTS 2023; 9:563-579. [DOI: 10.1007/s40495-023-00334-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 01/06/2025]
|
27
|
Chen TB, Chang CM, Yang CC, Tsai IJ, Wei CY, Yang HW, Yang CP. Neuroimmunological Effect of Vitamin D on Neuropsychiatric Long COVID Syndrome: A Review. Nutrients 2023; 15:3802. [PMID: 37686834 PMCID: PMC10490318 DOI: 10.3390/nu15173802] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19). COVID-19 is now recognized as a multiorgan disease with a broad spectrum of manifestations. A substantial proportion of individuals who have recovered from COVID-19 are experiencing persistent, prolonged, and often incapacitating sequelae, collectively referred to as long COVID. To date, definitive diagnostic criteria for long COVID diagnosis remain elusive. An emerging public health threat is neuropsychiatric long COVID, encompassing a broad range of manifestations, such as sleep disturbance, anxiety, depression, brain fog, and fatigue. Although the precise mechanisms underlying the neuropsychiatric complications of long COVID are presently not fully elucidated, neural cytolytic effects, neuroinflammation, cerebral microvascular compromise, breakdown of the blood-brain barrier (BBB), thrombosis, hypoxia, neurotransmitter dysregulation, and provoked neurodegeneration are pathophysiologically linked to long-term neuropsychiatric consequences, in addition to systemic hyperinflammation and maladaptation of the renin-angiotensin-aldosterone system. Vitamin D, a fat-soluble secosteroid, is a potent immunomodulatory hormone with potential beneficial effects on anti-inflammatory responses, neuroprotection, monoamine neurotransmission, BBB integrity, vasculometabolic functions, gut microbiota, and telomere stability in different phases of SARS-CoV-2 infection, acting through both genomic and nongenomic pathways. Here, we provide an up-to-date review of the potential mechanisms and pathophysiology of neuropsychiatric long COVID syndrome and the plausible neurological contributions of vitamin D in mitigating the effects of long COVID.
Collapse
Affiliation(s)
- Ting-Bin Chen
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung 407219, Taiwan;
| | - Ching-Mao Chang
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Faculty of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Cheng-Chia Yang
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan;
| | - I-Ju Tsai
- Department of Medical Research, Kuang Tien General Hospital, Taichung 433, Taiwan;
| | - Cheng-Yu Wei
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei 11114, Taiwan
- Department of Neurology, Chang Bing Show Chwan Memorial Hospital, Changhua 50544, Taiwan
| | - Hao-Wen Yang
- Department of Family Medicine, Kuang Tien General Hospital, Taichung 433, Taiwan
| | - Chun-Pai Yang
- Department of Medical Research, Kuang Tien General Hospital, Taichung 433, Taiwan;
- Department of Neurology, Kuang Tien General Hospital, Taichung 433, Taiwan
- Department of Nutrition, HungKuang University, Taichung 433, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
28
|
Heidari ME, Nazemi P, Feizabad E, Beiranvand F, Afzali M. Cranial nerve involvement among COVID-19 survivors. Front Neurol 2023; 14:1182543. [PMID: 37602247 PMCID: PMC10436332 DOI: 10.3389/fneur.2023.1182543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/11/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction COVID-19 was first reported in November 2019 in China and rapidly spread across the globe. COVID-19 causes neurologic symptoms and complications, which may persist even after recovery in patients. The objective of this research was to determine the involvement of cranial nerves in COVID-19 survivors. Method This was a retrospective study. The study was conducted between March and July of 2022. The analysis included 98 patients with a certain positive polymerase chain reaction. SPSS software version 19 was utilized for data analysis. Results The average age of the participants was 40.47 years (8.81). The olfactory nerve was found to be the most frequently involved cranial nerve (36.7%). Over 20% of participants had a taste disorder. The findings from the regression analysis indicated that lung involvement and age have a direct and significant relationship with cranial nerve involvement and can serve as its predictors (p = 0.001). Conclusion It seems that cranial nerve involvement was sustained in COVID-19 patients who survived. In addition, elderly patients and patients with severe illnesses were more likely to show cranial symptoms. It is necessary to monitor COVID-19 survivors for neurological symptoms.
Collapse
Affiliation(s)
| | - Pershang Nazemi
- Yas Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Feizabad
- Community Medicine Specialist, Department of Obstetrics and Gynecology, Yas Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Beiranvand
- School of Nursing and Midwifery, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Afzali
- Department of Neurology, School of Medicine, Yas Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Plumacker F, Lambert N, Maquet P. Immune-mediated cerebellitis following SARS-CoV-2 infection-a case report and review of the literature. J Neurovirol 2023; 29:507-518. [PMID: 37589883 DOI: 10.1007/s13365-023-01163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/15/2023] [Accepted: 07/26/2023] [Indexed: 08/18/2023]
Abstract
The coronavirus disease 2019 (COVID-19) can be associated with a wide variety of neurological manifestations. Some of these manifestations might result from the ongoing systemic inflammatory state, but the pathophysiology of specific neurologic involvement is still unclear. In this article, we report a patient who developed an isolated cerebellar syndrome 9 weeks after an episode of COVID-19. The reverse-transcriptase polymerase chain reaction (RT-PCR) for SARS-CoV-2 was positive on cerebrospinal fluid (CSF). A post-infectious-autoimmune-cerebellitis following COVID-19 was suspected, and the patient was treated with corticosteroids, leading to a complete recovery within a few weeks. We review the other cases of COVID-19-associated cerebellar syndrome reported so far and discuss the potential pathophysiological mechanisms underlying this neurologic manifestation.
Collapse
Affiliation(s)
- Florence Plumacker
- Department of Neurology, University Hospital of Liège, Liège, Belgium.
- Service de Neurologie, CHU de Liège, Avenue de L'Hôpital 1, 4000, Liège, Belgium.
| | - Nicolas Lambert
- Department of Neurology, University Hospital of Liège, Liège, Belgium
| | - Pierre Maquet
- Department of Neurology, University Hospital of Liège, Liège, Belgium
| |
Collapse
|
30
|
Small C, Mehkri Y, Panther E, Felisma P, Lucke-Wold B. Coronavirus Disease-2019 and Stroke: Pathophysiology and Management. Can J Neurol Sci 2023; 50:495-502. [PMID: 35762309 DOI: 10.1017/cjn.2022.267] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2, the virus that causes coronavirus disease-2019, has been associated with an increased risk for ischemic and hemorrhagic stroke. As data emerge about the underlying mechanisms, it is important to synthesize current knowledge to improve effective treatment options. In this review, we highlight the known pathophysiology, discuss the relationship between ischemic and hemorrhagic stroke, and address emerging implications for patient management. The information here is compiled to be a user-friendly, quick guide to help practitioners select management options for these patients.
Collapse
Affiliation(s)
- Coulter Small
- College of Medicine, Lillian S. Wells Department of Neurosurgery, University of Florida, 1505 SW Archer Road, Gainesville, FL 32610, USA
| | - Yusuf Mehkri
- College of Medicine, Lillian S. Wells Department of Neurosurgery, University of Florida, 1505 SW Archer Road, Gainesville, FL 32610, USA
| | - Eric Panther
- College of Medicine, Lillian S. Wells Department of Neurosurgery, University of Florida, 1505 SW Archer Road, Gainesville, FL 32610, USA
| | - Patrick Felisma
- College of Medicine, Lillian S. Wells Department of Neurosurgery, University of Florida, 1505 SW Archer Road, Gainesville, FL 32610, USA
| | - Brandon Lucke-Wold
- College of Medicine, Lillian S. Wells Department of Neurosurgery, University of Florida, 1505 SW Archer Road, Gainesville, FL 32610, USA
| |
Collapse
|
31
|
Ugwu DI, Asogwa FC, Olisaeloka SG, Ezugwu JA, Ogbuke SC, Benjamin I, Louis H, Gber TE, Ugwu MC, Eze FU, Manicum ALE. Anti-hypertensive properties of 2-[N-(4-methylbenzenesulfonyl)-1-phenylformamido]-n-(4-nitrophenyl)-3-phenylpropenamide: Experimental and theoretical studies. CHEMICAL PHYSICS IMPACT 2023; 6:100158. [DOI: 10.1016/j.chphi.2022.100158] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
32
|
Bonura A, Iaccarino G, Rossi SS, Capone F, Motolese F, Calandrelli R, Di Lazzaro V, Pilato F. Posterior reversible encephalopathy syndrome and reversible cerebral vasoconstriction syndrome in patients with COVID-19 infection: is there a link? A systematic review and case report analysis. J Neurol 2023; 270:2826-2852. [PMID: 37014421 PMCID: PMC10071475 DOI: 10.1007/s00415-023-11684-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/26/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
During the SARS-CoV2 pandemic, several cases of Posterior Reversible Encephalopathy Syndrome (PRES) and of Reversible Cerebral Vasoconstriction Syndrome (RCVS) in COVID-19 patients have been reported, but the link between these syndromes and COVID-19 is unclear. We performed a systematic review, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement to evaluate whether SARS-CoV2 infection or the drugs used to treat it could be deemed potential risk factors for PRES or RCVS. We performed a literature search. We found 70 articles (60 on PRES and 10 on RCVS) concerning n = 105 patients (n = 85 with PRES, n = 20 with RCVS). We analyzed the clinical characteristics of the two populations separately, then performed an inferential analysis to search for other independent risk factors. We found fewer than usual PRES-related (43.9%) and RCVS-related (45%) risk factors in patients with COVID-19. Such a low incidence of risk factors for PRES and RCVS might suggest the involvement of COVID-19 as an additional risk factor for both diseases due to its capability to cause endothelial dysfunction. We discuss the putative mechanisms of endothelial damage by SARS-CoV2 and antiviral drugs which may underlie the development of PRES and RCVS.
Collapse
Affiliation(s)
- Adriano Bonura
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
- Institute of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy
| | - Gianmarco Iaccarino
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
- Institute of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy
| | - Sergio Soeren Rossi
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
- Institute of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy
| | - Fioravante Capone
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
- Institute of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy
| | - Francesco Motolese
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
- Institute of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy
| | - Rosalinda Calandrelli
- Institute of Radiology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli, 1, 00168, Rome, Italy
| | - Vincenzo Di Lazzaro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
- Institute of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy
| | - Fabio Pilato
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy.
- Institute of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy.
| |
Collapse
|
33
|
Alves de Araujo Junior D, Motta F, Fernandes GM, Castro MECD, Sasaki LMP, Luna LP, Rodrigues TS, Kurizky PS, Soares AADSM, Nobrega ODT, Espindola LS, Zaconeta AM, Gomes CM, Martins-Filho OA, de Albuquerque CP, da Mota LMH. Neuroimaging assessment of pediatric cerebral changes associated with SARS-CoV-2 infection during pregnancy. Front Pediatr 2023; 11:1194114. [PMID: 37292371 PMCID: PMC10244818 DOI: 10.3389/fped.2023.1194114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 04/26/2023] [Indexed: 06/10/2023] Open
Abstract
Background SARS-CoV-2 infection and perinatal neurologic outcomes are still not fully understood. However, there is recent evidence of white matter disease and impaired neurodevelopment in newborns following maternal SARS-CoV-2 infection. These appear to occur as a consequence of both direct viral effects and a systemic inflammatory response, with glial cell/myelin involvement and regional hypoxia/microvascular dysfunction. We sought to characterize the consequences of maternal and fetal inflammatory states in the central nervous system of newborns following maternal SARS-CoV-2 infection. Methods We conducted a longitudinal prospective cohort study from June 2020 to December 2021, with follow-up of newborns born to mothers exposed or not exposed to SARS-CoV-2 infection during pregnancy. Brain analysis included data from cranial ultrasound scans (CUS) with grayscale, Doppler studies (color and spectral), and ultrasound-based brain elastography (shear-wave mode) in specific regions of interest (ROIs): deep white matter, superficial white matter, corpus callosum, basal ganglia, and cortical gray matter. Brain elastography was used to estimate brain parenchymal stiffness, which is an indirect quantifier of cerebral myelin tissue content. Results A total of 219 single-pregnancy children were enrolled, including 201 born to mothers exposed to SARS-CoV-2 infection and 18 from unexposed controls. A neuroimaging evaluation was performed at 6 months of adjusted chronological age and revealed 18 grayscale and 21 Doppler abnormalities. Predominant findings were hyperechogenicity of deep brain white matter and basal ganglia (caudate nuclei/thalamus) and a reduction in the resistance and pulsatility indices of intracranial arterial flow. The anterior brain circulation (middle cerebral and pericallosal arteries) displayed a wider range of flow variation than the posterior circulation (basilar artery). Shear-wave US elastography analysis showed a reduction in stiffness values in the SARS-CoV-2 exposed group in all analyzed regions of interest, especially in the deep white matter elasticity coefficients (3.98 ± 0.62) compared to the control group (7.76 ± 0.77); p-value < 0.001. Conclusion This study further characterizes pediatric structural encephalic changes associated with SARS-CoV-2 infection during pregnancy. The maternal infection has been shown to be related to cerebral deep white matter predominant involvement, with regional hyperechogenicity and reduction of elasticity coefficients, suggesting zonal impairment of myelin content. Morphologic findings may be subtle, and functional studies such as Doppler and elastography may be valuable tools to more accurately identify infants at risk of neurologic damage.
Collapse
Affiliation(s)
- David Alves de Araujo Junior
- Department of Medicine, University of Brasilia (UnB), Brasilia, Brazil
- Hospital Universitario de Brasília (HUB), Brasilia, Brazil
- Medical Sciences, University of Brasilia, Brasilia, Brazil
- Department of Medicine, Austin Health, University of Melbourne, Melbourne, VIC, Australia
| | - Felipe Motta
- Department of Medicine, University of Brasilia (UnB), Brasilia, Brazil
- Hospital Universitario de Brasília (HUB), Brasilia, Brazil
- Medical Sciences, University of Brasilia, Brasilia, Brazil
| | - Geraldo Magela Fernandes
- Department of Medicine, University of Brasilia (UnB), Brasilia, Brazil
- Hospital Universitario de Brasília (HUB), Brasilia, Brazil
- Medical Sciences, University of Brasilia, Brasilia, Brazil
| | - Maria Eduarda Canellas De Castro
- Department of Medicine, University of Brasilia (UnB), Brasilia, Brazil
- Hospital Universitario de Brasília (HUB), Brasilia, Brazil
- Medical Sciences, University of Brasilia, Brasilia, Brazil
| | - Lizandra Moura Paravidine Sasaki
- Department of Medicine, University of Brasilia (UnB), Brasilia, Brazil
- Hospital Universitario de Brasília (HUB), Brasilia, Brazil
- Medical Sciences, University of Brasilia, Brasilia, Brazil
| | - Licia Pacheco Luna
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Patricia Shu Kurizky
- Department of Medicine, University of Brasilia (UnB), Brasilia, Brazil
- Hospital Universitario de Brasília (HUB), Brasilia, Brazil
- Medical Sciences, University of Brasilia, Brasilia, Brazil
| | | | | | | | | | - Ciro Martins Gomes
- Department of Medicine, University of Brasilia (UnB), Brasilia, Brazil
- Hospital Universitario de Brasília (HUB), Brasilia, Brazil
- Medical Sciences, University of Brasilia, Brasilia, Brazil
| | | | - Cleandro Pires de Albuquerque
- Department of Medicine, University of Brasilia (UnB), Brasilia, Brazil
- Hospital Universitario de Brasília (HUB), Brasilia, Brazil
- Medical Sciences, University of Brasilia, Brasilia, Brazil
| | - Licia Maria Henrique da Mota
- Department of Medicine, University of Brasilia (UnB), Brasilia, Brazil
- Hospital Universitario de Brasília (HUB), Brasilia, Brazil
- Medical Sciences, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
34
|
Park JM, Woo W, Lee SC, Park S, Yon DK, Lee SW, Smith L, Koyanagi A, Shin JI, Kim YW. Prevalence and Mortality Risk of Neurological Disorders during the COVID-19 Pandemic: An Umbrella Review of the Current Evidence. Neuroepidemiology 2023; 57:129-147. [PMID: 37044073 DOI: 10.1159/000530536] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
INTRODUCTION Coronavirus disease 2019 (COVID-19), a global pandemic, has infected approximately 10% of the world's population. This comprehensive review aimed to determine the prevalence of various neurological disorders in COVID-19 without overlapping meta-analysis errors. METHODS We searched for meta-analyses on neurological disorders following COVID-19 published up to March 14, 2023. We obtained 1,184 studies, of which 44 meta-analyses involving 9,228,588 COVID-19 patients were finally included. After confirming the forest plot of each study and removing overlapping individual studies, a re-meta-analysis was performed using the random-effects model. RESULTS The summarized combined prevalence of each neurological disorder is as follows: stroke 3.39% (95% confidence interval, 1.50-5.27), dementia 6.41% (1.36-11.46), multiple sclerosis 4.00% (2.50-5.00), epilepsy 5.36% (-0.60-11.32), Parkinson's disease 0.67% (-1.11-2.45), encephalitis 0.66% (-0.44-1.77), and Guillain-Barré syndrome 3.83% (-0.13-7.80). In addition, the mortality risk of patients with comorbidities of COVID-19 is as follows: stroke OR 1.63 (1.23-2.03), epilepsy OR 1.71 (1.00-2.42), dementia OR 1.90 (1.31-2.48), Parkinson's disease OR 3.94 (-2.12-10.01). CONCLUSION Our results show that the prevalence and mortality risk may increase in some neurological diseases during the COVID-19 pandemic. Future studies should elucidate the precise mechanisms for the link between COVID-19 and neurological diseases, determine which patient characteristics predispose them to neurological diseases, and consider potential global patient management.
Collapse
Affiliation(s)
- Jong Mi Park
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Wongi Woo
- Department of Thoracic and Cardiovascular Surgery, Gangnam Severance Hospital, Seoul, Republic of Korea
| | - Sang Chul Lee
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seoyeon Park
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dong Keon Yon
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Seung Won Lee
- Department of Data Science, Sejong University College of Software Convergence, Seoul, Republic of Korea
- Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Lee Smith
- Centre for Health, Performance, and Wellbeing, Anglia Ruskin University, Cambridge, UK
| | - Ai Koyanagi
- Parc Sanitari Sant Joan de Deu/CIBERSAM, ISCIII, Universitat de Barcelona, Fundacio Sant Joan de Deu, Sant Boi de Llobregat, Barcelona, Spain
- ICREA, Pg. Lluis Companys 23, Barcelona, Spain
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong Wook Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
35
|
Kanibolotskiy AA, Zayratyants OV. Morphological features of brain damage in severe COVID-19. КЛИНИЧЕСКАЯ ПРАКТИКА 2023; 14:21-30. [DOI: 10.17816/clinpract176827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Background: The damage to the nervous system in COVID-19 reflects the systemic nature of the infection. The question of the neuroinvasive potential of SARS-CoV-2 remains open, the role of "pseudovirions" in the development of the endothelial dysfunction, as well as of the S1 subunit in the TLR activation, and the importance of the blood-brain barrier are discussed. The immunological, non-immunological, and cytopathic mechanisms of the virus's action are described; there is no clear understanding of the genesis of neuropathological changes caused by SARS-CoV-2. In this tragic pandemic, the lessons of the dead should help save lives and health. Aim: to study and explain the features of brain damage in COVID-19. Methods: Brain fragments from 20 patients who died due to severe COVID-19 were studied, the sections were stained with hematoxylin and eosin, according to van Gieson and Nissl, IHC reactions were performed with antibodies to the S-protein, CD68 and CD8, the changes were compared with those related to the lethal outcomes of pancreatic necrosis and ruptured aortic aneurysm. Results: The following changes in the olfactory analyzer were revealed: sharp edema, dystrophic changes in neurons, gliosis, accumulations of starchy bodies, which explains the neuronal pathway of SARS-CoV-2 invasion; vascular plethora, erythrostasis and thrombosis, perivenular hemorrhages, diffuse edema, macroglia proliferation, perivascular astrocytosis and satellite. A positive reaction with the antibodies to the S1 and S2 subunits of the spike protein was detected, while the result of the reaction with antibodies to the N-protein of the virus, confirming the active replication of the virus, was doubtful. The S-protein expression in individual endotheliocytes makes the transendothelial route of the virus entry unlikely, in contrast to the hematogenous and neuronal pathways. The viral DNA was not detected by PCR. A weak inflammatory reaction was revealed in the form of perivascular accumulations of lymphocytes, scattered T-lymphocytes. Conclusions: 2 groups of changes were identified, the first group included circulatory disorders with a tendency to thrombosis, edema, dystrophic-necrotic changes in neurons, glial proliferation, the second group included inflammatory-degenerative changes, a weak inflammatory reaction and amyloid-like bodies. Further morphometric and statistical studies are needed to obtain the reliable conclusions.
Collapse
Affiliation(s)
- Aleksander A. Kanibolotskiy
- N.V. Sklifosovsky Research Institute for Emergency Medicine
- Research Institute for Healthcare Organization and Medical Management
| | - Oleg V. Zayratyants
- Moscow State University of Medicine and Dentistry named after A.I. Evdokimov
| |
Collapse
|
36
|
Strong MJ. SARS-CoV-2, aging, and Post-COVID-19 neurodegeneration. J Neurochem 2023; 165:115-130. [PMID: 36458986 PMCID: PMC9877664 DOI: 10.1111/jnc.15736] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022]
Abstract
As the world continues to experience the effects of SARS-CoV-2, there is evidence to suggest that the sequelae of viral infection (the post-COVID-19 condition; PCC) at both an individual and population level will be significant and long-lasting. The history of pandemics or epidemics in the last 100 years caused by members of the RNA virus family, of which coronaviruses are a member, provides ample evidence of the acute neurological effects. However, except for the H1N1 influenza pandemic of 1918/1919 (the Spanish flu) with its associated encephalitis lethargica, there is little information on long-term neurological sequelae. COVID-19 is the first pandemic that has occurred in a setting of an aging population, especially in several high-income countries. Its survivors are at the greatest risk for developing neurodegenerative conditions as they age, rendering the current pandemic a unique paradigm not previously witnessed. The SARS-CoV-2 virus, among the largest of the RNA viruses, is a single-stranded RNA that encodes for 29 proteins that include the spike protein that contains the key domains required for ACE2 binding, and a complex array of nonstructural proteins (NSPs) and accessory proteins that ensure the escape of the virus from the innate immune response, allowing for its efficient replication, translation, and exocytosis as a fully functional virion. Increasingly, these proteins are also recognized as potentially contributing to biochemical and molecular processes underlying neurodegeneration. In addition to directly being taken up by brain endothelium, the virus or key protein constituents can be transported to neurons, astrocytes, and microglia by extracellular vesicles and can accelerate pathological fibril formation. The SARS-CoV-2 nucleocapsid protein is intrinsically disordered and can participate in liquid condensate formation, including as pathological heteropolymers with neurodegenerative disease-associated RNA-binding proteins such as TDP-43, FUS, and hnRNP1A. As the SARS-CoV-2 virus continues to mutate under the immune pressure exerted by highly efficacious vaccines, it is evolving into a virus with greater transmissibility but less severity compared with the original strain. The potential of its lingering impact on the nervous system thus has the potential to represent an ongoing legacy of an even greater global health challenge than acute infection.
Collapse
Affiliation(s)
- Michael J. Strong
- Department of Clinical Neurological Sciences and The Robarts Research InstituteWestern UniversityLondonCanada
| |
Collapse
|
37
|
Imataka G, Fujita Y, Kikuchi J, Wake K, Ono K, Yoshihara S. Brain Hypothermia Therapy and Targeted Temperature Management for Acute Encephalopathy in Children: Status and Prospects. J Clin Med 2023; 12:2095. [PMID: 36983098 PMCID: PMC10058746 DOI: 10.3390/jcm12062095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/28/2023] [Accepted: 03/05/2023] [Indexed: 03/10/2023] Open
Abstract
In adult intensive care, brain hypothermia therapy (BHT) was reported to be effective in neuroprotection after resuscitation and cardiac arrest. By contrast, in neonatal intensive care, the pathophysiology of brain damage caused by hypoxic-ischemic encephalopathy (HIE) is attributed to circulatory disturbances resulting from ischemia/reperfusion, for which neonatal brain cryotherapy is used. The International Liaison Committee on Resuscitation, 2010, recommends cerebral cryotherapy for HIE associated with severe neonatal pseudoparenchyma death. The usefulness of BHT for neuroprotection in infants and children, especially in pediatric acute encephalopathy, is expected. Theoretically, BHT could be useful in basic medical science and animal experiments. However, there are limitations in clinical planning for treating pediatric acute encephalopathy. No international collaborative study has been conducted, and no clinical evidence exists for neuroprotection using BHT. In this review, we will discuss the pathogenesis of neuronal damage in hypoxic and hypoperfused brains; the history of BHT, its effects, and mechanisms of action; the success of BHT; cooling and monitoring methods of BHT; adverse reactions to BHT; literature on BHT. We will review the latest literature on targeted temperature management, which is used for maintaining and controlling body temperature in adults in intensive care. Finally, we will discuss the development of BHT and targeted temperature management as treatments for pediatric acute encephalopathy.
Collapse
Affiliation(s)
- George Imataka
- Department of Pediatrics, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Yuji Fujita
- Department of Pediatrics, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Jin Kikuchi
- Department of Emergency and Critical Care Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Koji Wake
- Department of Emergency and Critical Care Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Kazuyuki Ono
- Department of Emergency and Critical Care Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Shigemi Yoshihara
- Department of Pediatrics, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| |
Collapse
|
38
|
Zhang Q, Jiu Y. The regulation of host cytoskeleton during SARS-CoV-2 infection in the nervous system. BRAIN SCIENCE ADVANCES 2023. [DOI: 10.26599/bsa.2023.9050004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
The global economy and public health are currently under enormous pressure since the outbreak of COVID-19. Apart from respiratory discomfort, a subpopulation of COVID-19 patients exhibits neurological symptoms such as headache, myalgia, and loss of smell. Some have even shown encephalitis and necrotizing hemorrhagic encephalopathy. The cytoskeleton of nerve cells changes drastically in these pathologies, indicating that the cytoskeleton and its related proteins are closely related to the pathogenesis of nervous system diseases. In this review, we present the up-to-date association between host cytoskeleton and coronavirus infection in the context of the nervous system. We systematically summarize cytoskeleton-related pathogen-host interactions in both the peripheral and central nervous systems, hoping to contribute to the development of clinical treatment in COVID-19 patients.
Collapse
Affiliation(s)
- Qian Zhang
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yaming Jiu
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
39
|
Long COVID-19 Syndrome Severity According to Sex, Time from the Onset of the Disease, and Exercise Capacity-The Results of a Cross-Sectional Study. Life (Basel) 2023; 13:life13020508. [PMID: 36836865 PMCID: PMC9961608 DOI: 10.3390/life13020508] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Symptoms of long COVID-19 syndrome (long COVID-19) are reported by 80% of convalescents up to several months after contracting the coronavirus-19 disease (COVID-19). The study aimed to assess the frequency and correlations of long COVID symptoms with sex, disease severity, time since the onset of the disease, and exercise capacity in a population of Polish convalescents hospitalized as a part of a rehabilitation program after COVID-19. The retrospective analysis was carried out based on medical records concerning reported symptoms, comorbidities, exercise capacity, fatigue and dyspnea on Borg's scale, arterial oxygen saturation (SpO2), spirometric parameters, chest X-rays/computed tomography scans, systolic pulmonary artery pressure, and left ventricular ejection fraction. The study involved 471 patients aged 63.83 ± 9.93 years who had been hospitalized 191.32 ± 75.69 days from the onset of COVID-19, of which 269 (57.1%) were women. The most common symptoms were fatigue (99.57%), dyspnea (99.36%), and myalgia (97.03%). Women reported more symptoms than men (p < 0.001) and rated their fatigue as more severe (p = 0.021). Patients with depressed moods reported more physical symptoms than others (p < 0.001). Most long COVID symptoms, including dyspnea, fatigue, and depressive symptoms, were found with the same frequency in patients 12-24 weeks and >24 weeks after recovery (p = 0.874, p = 0.400, and p = 0.320, respectively), regardless of acute COVID-19 severity (p = 0.240, p = 0.826, and p = 0.108, respectively). Dyspnea severity correlated with forced vital capacity (FVC) (r = -0.153, p = 0.005), and forced expiratory volume in one second (FEV1) (r = -0.142, p = 0.008). Fatigue severity correlated with impaired FVC and FEV1 (both r = -0.162, p = 0.003). Fatigue and dyspnea inversely correlated with the distance in a six-minute walk test (r = -0.497, p < 0.001, and r = -0.327, p < 0.001). In conclusion, in our cohort, long COVID symptoms are more common in women. Dyspnea/fatigue and depressive symptoms do not tend to subside after an average six-month recovery period. The intensity of perceived fatigue may be exaggerated by the coexistence of neuropsychiatric disorders. Increased fatigue and dyspnea correlate with impaired spirometric parameters and significantly affects convalescents' exercise capacity.
Collapse
|
40
|
Rabaan AA, Smajlović S, Tombuloglu H, Ćordić S, Hajdarević A, Kudić N, Mutai AA, Turkistani SA, Al-Ahmed SH, Al-Zaki NA, Al Marshood MJ, Alfaraj AH, Alhumaid S, Al-Suhaimi E. SARS-CoV-2 infection and multi-organ system damage: A review. BIOMOLECULES & BIOMEDICINE 2023; 23:37-52. [PMID: 36124445 PMCID: PMC9901898 DOI: 10.17305/bjbms.2022.7762] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 02/03/2023]
Abstract
The SARS-CoV-2 infection causes COVID-19, which has affected approximately six hundred million people globally as of August 2022. Organs and cells harboring angiotensin-converting enzyme 2 (ACE2) surface receptors are the primary targets of the virus. However, once it enters the body through the respiratory system, the virus can spread hematogenously to infect other body organs. Therefore, COVID-19 affects many organs, causing severe and long-term complications, even after the disease has ended, thus worsening the quality of life. Although it is known that the respiratory system is most affected by the SARS-CoV-2 infection, many organs/systems are affected in the short and long term. Since the COVID-19 disease simultaneously affects many organs, redesigning diagnostic and therapy policies to fit the damaged organs is strongly recommended. Even though the pathophysiology of many problems the infection causes is unknown, the frequency of COVID-19 cases rises with age and the existence of preexisting symptoms. This study aims to update our knowledge of SARS-CoV-2 infection and multi-organ dysfunction interaction based on clinical and theoretical evidence. For this purpose, the study comprehensively elucidates the most recent studies on the effects of SARS-CoV-2 infection on multiple organs and systems, including respiratory, cardiovascular, gastrointestinal, renal, nervous, endocrine, reproductive, immune, and parts of the integumentary system. Understanding the range of atypical COVID-19 symptoms could improve disease surveillance, limit transmission, and avoid additional multi-organ-system problems.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Samira Smajlović
- Laboratory Diagnostics Institute Dr. Dedić, Bihać, Bosnia and Herzegovina
| | - Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Sabahudin Ćordić
- Cantonal Hospital “Dr. Irfan Ljubijankić”, Microbiological Laboratory, Bihać, Bosnia and Herzegovina
| | - Azra Hajdarević
- International Burch University, Faculty of Engineering and Natural Sciences, Department of Genetics and Bioengineering, Ilidža, Bosnia and Herzegovina
| | - Nudžejma Kudić
- University of Sarajevo, Faculty of Agriculture and Food Science, Sarajevo, Bosnia and Herzegovina
| | - Abbas Al Mutai
- Research Center, Almoosa Specialist Hospital, Al Mubarraz, Saudi Arabia
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, NSW, Australia
- Nursing Department, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | | | - Shamsah H Al-Ahmed
- Specialty Pediatric Medicine, Qatif Central Hospital, Qatif, Saudi Arabia
| | - Nisreen A Al-Zaki
- Specialty Pediatric Medicine, Qatif Central Hospital, Qatif, Saudi Arabia
| | - Mona J Al Marshood
- Specialty Pediatric Medicine, Qatif Central Hospital, Qatif, Saudi Arabia
| | - Amal H Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq, Saudi Arabia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa, Saudi Arabia
| | - Ebtesam Al-Suhaimi
- Biology Department, College of Science and Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
41
|
Alqahtani MS, Abbas M, Alshahrani MY, Alabdullh K, Alqarni A, Alqahtani FF, Jambi LK, Alkhayat A. Effects of COVID-19 on Synaptic and Neuronal Degeneration. Brain Sci 2023; 13:brainsci13010131. [PMID: 36672112 PMCID: PMC9856402 DOI: 10.3390/brainsci13010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Neurons are the basic building blocks of the human body's neurological system. Atrophy is defined by the disintegration of the connections between cells that enable them to communicate. Peripheral neuropathy and demyelinating disorders, as well as cerebrovascular illnesses and central nervous system (CNS) inflammatory diseases, have all been linked to brain damage, including Parkinson's disease (PD). It turns out that these diseases have a direct impact on brain atrophy. However, it may take some time after the onset of one of these diseases for this atrophy to be clearly diagnosed. With the emergence of the Coronavirus disease 2019 (COVID-19) pandemic, there were several clinical observations of COVID-19 patients. Among those observations is that the virus can cause any of the diseases that can lead to brain atrophy. Here we shed light on the research that tracked the relationship of these diseases to the COVID-19 virus. The importance of this review is that it is the first to link the relationship between the Coronavirus and diseases that cause brain atrophy. It also indicates the indirect role of the virus in dystrophy.
Collapse
Affiliation(s)
- Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Michael Atiyah Building, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt
- Correspondence:
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Khulud Alabdullh
- Radiology Department, King Abdullah Hospital Bisha, Bisha 61922, Saudi Arabia
| | - Amjad Alqarni
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Fawaz F. Alqahtani
- Department of Radiological Sciences, College of Applied Medical Sciences, Najran University, Najran 55461, Saudi Arabia
| | - Layal K. Jambi
- Radiological Sciences Department, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Adnan Alkhayat
- Department of Hematopathology, King Fahad Central Hospital, Gizan 82666, Saudi Arabia
| |
Collapse
|
42
|
Cautilli F, Feleppa M, Valeriani M, Papetti L, Monte G, Midulla F, Spalice A. Case report: A case of acute disseminated encephalomyelitis after SARS-CoV-2 infection in pediatric patients. Front Neurol 2023; 14:1099458. [PMID: 36908623 PMCID: PMC9992531 DOI: 10.3389/fneur.2023.1099458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/19/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction Since the beginning, there has been enough evidence about the multi-systematic involvement of the coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recent observations have revealed that, together with others, typical neurological manifestations are also associated with COVID-19 infection. In the first 2 years, children accounted for a few percent of cases, but with the emergence of the Omicron variant, the number of cases in the pediatric population has increased. It has been described that ~5% of the affected population suffered from severe neurological complications, such as seizure, coma, encephalitis, demyelinating disorders, and aseptic meningitis. Acute disseminated encephalomyelitis (ADEM) is an inflammatory demyelinating disease of the central nervous system. Typically, it presents in childhood and occurs 1 or 2 weeks after infection or vaccination. Case presentation We present the case of a 12-year-old boy who developed ADEM, 10 days after an asymptomatic SARS-CoV-2 infection. Neurological symptoms began with headache, fever, irritability, paraplegia, and loss of sensitivity from the T1 level. The diagnosis of ADEM was confirmed by the typical signs found on brain MRI, whereas spinal cord MRI showed signs of transverse myelitis. The cerebrospinal fluid (CSF) testing excluded infections and did not reveal oligoclonal antibody bands (anti-MOG-negative and anti-AQP-negative). High-dose steroids (30 mg/kg/day) and IVIG (2 g/kg) were administered to the patient without any clinical improvement. The patient received a cycle of plasma exchange therapy, followed by rituximab infusion, with partial improvement. After 3 months, the magnetic resonance imaging (MRI) results demonstrated radiological improvement in accordance with the ADEM diagnosis. Conclusion This clinical case confirms that SARS-CoV-2 infections are increasingly implicated in severe neurological consequences in both adult and pediatric patients. While the most frequent complications that were reported in children included headache, altered mental status, and encephalopathy, ~5% of the individuals suffered from severe neurological complications, leading to lifelong sequelae. All physicians must be aware of these data and detect neurological signs of severe (or not) complications that require a specific follow-up and treatment.
Collapse
Affiliation(s)
- Francesca Cautilli
- Child Neurology Division, Department of Pediatrics, "Sapienza" University of Rome, Rome, Italy
| | - Mariavittoria Feleppa
- Child Neurology Division, Department of Pediatrics, "Sapienza" University of Rome, Rome, Italy
| | | | - Laura Papetti
- Developmental Neurology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Gabriele Monte
- Developmental Neurology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Fabio Midulla
- Department of Pediatrics, "Sapienza" University of Rome, Rome, Italy
| | - Alberto Spalice
- Child Neurology Division, Department of Pediatrics, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
43
|
Muacevic A, Adler JR, Mecheik A, Rahhal HH, Wazne J. Acute Disseminated Encephalomyelitis Following COVID-19 Infection. Cureus 2023; 15:e33365. [PMID: 36751218 PMCID: PMC9897810 DOI: 10.7759/cureus.33365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 01/06/2023] Open
Abstract
Acute disseminated encephalomyelitis (ADEM) is a relatively rare, post-inflammatory, immune-mediated demyelinating central nervous system disease that is predominantly reported in pediatric populations. Following the emergence of severe acute respiratory syndrome coronavirus 2, cases of ADEM are being reported following infection with this virus. Our case report describes a male patient in his early 40s who developed severe coronavirus disease 2019 (COVID-19) that rapidly progressed to a critical disease requiring invasive mechanical ventilation and high positive end-expiratory pressure, which was complicated by extensive neurological involvement and quadriplegia. MRI of the brain showed characteristic demyelinating lesions, suggestive of ADEM. As other entities were ruled out, our patient was treated using pulse steroids and intravenous immunoglobulins. The patient showed a good response to treatment and had an overall good prognosis, despite the severity of his condition. ADEM following COVID-19 is a rare entity worldwide.
Collapse
|
44
|
Di Vito A, Donato A, Bria J, Donato F, Donato G. Encephalitis lethargica. What is still wrong? Int J Immunopathol Pharmacol 2023; 37:3946320231154997. [PMID: 36716496 PMCID: PMC9892526 DOI: 10.1177/03946320231154997] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Encephalitis lethargica developed in epidemic from 1919 to 1926 in Europe and throughout the world. From the clinical point of view, the disturbances of consciousness and alertness and the possible outcomes of a postencephalitic Parkinsonism has attracted much attention. For a long time, it was thought that such a disease may still occur sporadically. In this review, the authors examined historical and current pictures of epidemics that may be related to Encephalitis lethargica. The previous Nona and Russian Influenza exhibited frequent neurological symptoms. The Spanish flu, formerly related to Encephalitis lethargica, would appear an epidemic that had its development in a partially overlapping period. The current pandemic linked to COVID-19 sometimes has aspects that can resemble Encephalitis lethargica. Based on historical analysis and the more recent immunological data, it could be suggested that Encephalitis lethargica was an autoimmune encephalitis that arose in a secondary form to the action of a viral agent. It cannot be ruled out that this agent was a coronavirus. From the nosological point of view, the term Encephalitis lethargica should be abolished in designating autoimmune encephalitis pictures that run sporadically.
Collapse
Affiliation(s)
- A Di Vito
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - A Donato
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - J Bria
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - F Donato
- CeRPS Foundation (Research Center on Psychiatry and Social Sciences), Nocera Inferiore, Italy
- Giuda Lab, Department of Mechanical, Energy and Management Engineering, University of Calabria, Arcavacata di Rende, Cosenza
| | - G Donato
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
45
|
Shen NP, Logvinenko VV, Tsiryatieva SB, Osin VI, Masserov AA. Preliminary outcomes of the COVID-19 pandemic: a new chronic pain profile. REGIONAL ANESTHESIA AND ACUTE PAIN MANAGEMENT 2022; 16:171-183. [DOI: 10.17816/ra109668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
In summing up the preliminary results of the COVID-19 pandemic that has not yet ended, modern research pays much attention to the so-called post-COVID syndrome, which includes the long-term consequences of the disease. In English, symptoms are reported as long COVID, post-acute COVID, or chronic post-COVID syndrome and are described as symptoms of fatigue, respiratory disorders, memory, and sleep problems. Symptoms such as muscle pain and decreased endurance when performing habitual physical exertion are mentioned much less often. Meanwhile, among the complaints of those who have been ill, this symptom is present quite often, reducing the quality of life and tolerability of normal physical exertion. This review aimed to provide an in-depth study of a new type of the chronic myofascial pain syndrome after COVID-19, i.e., the frequency of occurrence, causes of the development, and pathophysiology of chronic pain syndrome associated with COVID-19 and manifested as fibromyalgia of various localizations. To answer the questions posed, the authors searched for information in four electronic databases. The key search terms used were COVID-19, long COVID, and signs and symptoms of pain syndrome. A review of current literature data has shown that close study and dynamic monitoring of patients who had COVID-19 can contribute to further deciphering the pathophysiological mechanisms of the development of its long-term consequences and provide answers to questions on the prevention and treatment of chronic pain syndrome in this patient cohort.
Collapse
Affiliation(s)
- Natalia P. Shen
- Tyumen State Medical University
- Regional Clinical Hospital No. 1, Tyumen
| | | | | | - Valentin I. Osin
- Tyumen State Medical University
- Regional Clinical Hospital No. 1, Tyumen
| | | |
Collapse
|
46
|
Muacevic A, Adler JR, Teixeira A, Lima D, Lopes N, Amaral-Silva M, Seixo I, Miguéns AC. Neurological Complications Associated With SARS-CoV-2 Infection: A Single-Centre Experience. Cureus 2022; 14:e32655. [PMID: 36654564 PMCID: PMC9844021 DOI: 10.7759/cureus.32655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The clinical presentation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can range from mild or moderate disease (80% of the cases) to severe disease (15%) requiring oxygen support, and critical disease (5%), associated with acute respiratory distress syndrome and admission to the intensive care unit (ICU). In critically ill patients, prone positioning can be used to optimize oxygenation. Although there is a favourable response to this strategy, being a life-saving measure, additional associated complications may appear, including compressive neuropathies. Despite respiratory affection being more common, SARS-CoV-2 infection can also attack other systems and can, under certain conditions, affect the central or peripheral nervous system. It has been described that neurological manifestations can result from the neuroinvasive properties of the SARS-CoV-2 or as an indirect consequence of multiorgan dysfunction. AIMS We intend to report the patients who presented with neurological complications associated with coronavirus disease 2019 (COVID-19) and/or complications of its treatment, followed in our physical and rehabilitation medicine (PRM) service. MATERIALS AND METHODS A retrospective analysis of patients admitted to the PRM ward with outpatient consultation in the context of post-COVID-19 status between April 2020 and November 2021 (the period of the highest prevalence of infection) was carried out. Patients with neurological complications after SARS-CoV-2 infection and consequently a decline in previous functionality were identified. RESULTS Thirteen patients (23.6%) admitted to the PRM ward had peripheral neurological complications, documented by electroneuromyography, including Guillain-Barré syndrome, sensory-motor polyneuropathy, peroneal nerve injury, femoral nerve injury, and lumbar plexus injury. The neurological complications of the patients followed in a post-COVID-19 consultation were also evaluated. Eight patients (20%) reported neurological sequelae. Five patients presented peripheral nerve damage (peroneal, accessory, ulnar, and recurrent laryngeal) of undefined aetiology, diagnosed after the acute phase of hospitalization. Two patients had COVID-19 infection followed by ischemic stroke (vertebrobasilar and middle cerebral artery), requiring hospitalization in the acute phase. One patient had COVID-19 infection followed by longitudinal myelitis, with positive anti-myelin oligodendrocyte glycoprotein (MOG). All patients required follow-up by the rehabilitation team with partial recovery of deficits. CONCLUSIONS All patients admitted to the PRM ward with neurological manifestations had critical disease and symptoms compatible with peripheral nervous system involvement. Patients admitted to the PRM consultation had different levels of viral disease severity and had sequelae related to peripheral and central nervous system disorders. Identifying the aetiology of these injuries is essential for us to act on their prevention, particularly with regard to indirect complications, such as compressive neuropathies. It will be necessary to maintain the follow-up of these patients to understand the evolution of the neurological consequences associated with COVID-19.
Collapse
|
47
|
Askenase PW. Recommendation: Treatment of clinical long COVID encephalopathies with nasal administered mesenchymal stromal cell extracellular vesicles. FRONTIERS IN NANOTECHNOLOGY 2022; 4. [DOI: 10.3389/fnano.2022.987117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
We propose therapy with extracellular vesicles (EVs) for dominant central nervous system aspects of chronic Long COVID Syndromes (LCS). These clinical conditions have a delayed onset of 1–3 months following the cessation of active SARS-CoV-2 virus infections that cause an acute disease called COVID-19. The therapy of LCS will be achieved by direct access to the central nervous system (CNS) by nasal administration of small EVs derived from Mesenchymal Stromal Cells (MSC). When administered nasally, they target CNS microglia and endothelia involved in LCS encephalopathy, as indicated by experimental animal models and human autopsy and spinal fluid studies. Underlying this approach is the discovery that MSC-sEV treatment for healing neuro injury targets, microglia, and macrophages that then likely release secondary trophic EVs that affect the local capillary endothelial cells to restore vascular integrity. It is postulated that the pathways of endothelial and neural pathologies in acute SARS-CoV-2 virus infections may carry over to produce underlying vascular and neurological defects mediating LCS that are susceptible to this proposed nasal therapy with MSC-sEVs.
Collapse
|
48
|
Srichawla BS. Mild Encephalopathy/Encephalitis With a Reversible Splenial Lesion (MERS) and Longitudinally Extensive Transverse Myelitis (LETM) in Influenza B: Neurotropic Mechanisms and Diagnostic Challenges. Cureus 2022; 14:e30681. [PMID: 36426329 PMCID: PMC9681700 DOI: 10.7759/cureus.30681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 11/07/2022] Open
Abstract
Mild encephalopathy/encephalitis with a reversible splenial lesion (MERS) and longitudinally extensive transverse myelitis (LETM) are neuroinflammatory conditions related to the brain and spinal cord, respectively. Most cases of MERS and LETM are related to a secondary autoimmune process in response to an initial insult (i.e., infection, immunization, etc.). The case of an 18-year-old female who developed a three-day history of fever, quadriplegia, cough, and mild encephalopathy is reported here. The patient tested positive for influenza B by nasopharyngeal swab with polymerase chain reaction (PCR). Initial magnetic resonance imaging (MRI) revealed the presence of a diffusion-restricted non-enhancing lesion confined to the splenium of the corpus callosum (MERS type I) and longitudinally extensive non-enhancing T2 hyperintensities from C1 to C5. The patient was managed with a five-day course of 1,000 mg of intravenous methylprednisolone (IVMP). Additionally, five days of therapeutic plasmapheresis (PLEX) was completed. The patient showed significant improvement with medical management and physical therapy. At the one-year follow-up, her motor symptoms had resolved and endorsed only mild paresthesia in the upper extremities. A repeat MRI revealed a reversal of the splenium lesion and moderate improvement in T2 hyperintensities of the cervical cord. Assessing neuroinvasion of the influenza virus is difficult, and diagnostic challenges arise in determining primary infectious versus autoimmune-mediated neuroinflammation. A review of the literature on influenza infection with radiographic findings of MERS and LETM is included.
Collapse
Affiliation(s)
- Bahadar S Srichawla
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, USA
| |
Collapse
|
49
|
Kaya Özçora GD, Çetindağ F, Doğan M, Baştemir M. Childhood Multisystem Inflammatory Syndrome With Prominent Neurological Involvement. Pediatr Neurol 2022; 135:56-60. [PMID: 36007373 PMCID: PMC9349338 DOI: 10.1016/j.pediatrneurol.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022]
Affiliation(s)
- Gül Demet Kaya Özçora
- Division of Pediatric Neurology, Hasan Kalyoncu University, University of Health Sciences, Gaziantep, Turkey.
| | - Ferhan Çetindağ
- Department of Pediatrics, Private Medical Park Hospital, Gaziantep, Turkey
| | - Murat Doğan
- Department of Pediatrics, Private Medical Park Hospital, Gaziantep, Turkey
| | - Murat Baştemir
- Department of Radiology, Private Medical Park Hospital, Gaziantep, Turkey
| |
Collapse
|
50
|
Khoreva MA. Postcovid Syndrome – The New Reality. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2022; 52:619-624. [PMID: 36119648 PMCID: PMC9468516 DOI: 10.1007/s11055-022-01286-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 01/06/2025]
Abstract
The second year of the COVID-19 pandemic has demonstrated the need for detection and assessment of the long-term consequences SARS-CoV-2 infection, including adequate cognitive functioning. This review addresses our current understanding of the direct and indirect mechanisms of nervous system infection in COVID-19, paying special attention to cause-effect relationships between SARS-CoV-2 infection and long-term neuropsychological disorders. Understanding the pathogenesis of neurological impairments in COVID-19 is important for studies of the long-term sequelae of the disease and for identifying preventive and therapeutic possibilities in relation to brain damage. Further studies of nervous system lesions in COVID-19 are clearly needed to expand existing knowledge. Early initiation of therapeutic measures for emerging disorders will probably have decisive importance for improving quality of life for many COVID-19 survivors.
Collapse
|